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Abstract

Salmon constitutes a large part of the fish industry, and the increasing number of
salmon fillets with melanin spots leads to significant economic losses due to reduced
quality perception by the customers. Studies show that Omega-3 Fatty acid content
is correlated with a more healthy-looking fillet, and it has been proven that Raman
spectroscopy is feasible for estimating this content. Further research shows that a
robotic solution is very promising to overcome the tedious and error-prone labor
of manual scanning in a production line. If these melanin spots are not avoided
during the spectroscopic measurements, the resulting spectra can be misleading and
imprecise.

This motivates the development of an enhanced sensor coverage solution, which led to
the research question: “How can machine vision, AI-driven models, image processing,
and path planning be used to generate a scan profile and instruct a robot arm to
perform an effective scanning of salmon fillets, ensuring the avoidance of melanin
spots?”

To reach this goal, a robotic pipeline was built, which utilizes Mask R-CNN to segment
the belly and pseudo-melanin spots on the salmon fillet, followed by image processing
and a step-wise path planning method inspired by artificial potential fields (APFs)
method. The APF-like path planner is used to command a 6-DoF robot arm in a
Gazebo-simulated environment using the motion planning framework “Moveit”.

The results demonstrate a planning algorithm that is able to generate complex paths
and adapt to multiple melanin spots and orientations of the fillet. The AI-driven
image segmentation needs some improvements, and the use of pseudo-melanin spots
due to the unavailable dataset makes it difficult to assess its full performance. The
robotic scanning is able to accurately follow the planned path with an average execu-
tion time of 3.365 seconds, corresponding to an average TCP speed of 116.3 mm s−1,
which is within the required exposure time for a satisfactory Raman scanning.

Future work in this field of research includes using a relevant dataset for more pre-
cise training, testing and validation of the AI-driven models and the APF-like path
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planner. Furthermore, when testing in a laboratory environment with a Raman spec-
troscopy sensor and a moving conveyor belt, the robotic system can be further tuned
and optimized, making it possible to implement the solution in a relevant environ-
ment.
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Sammendrag

Laks utgjør en stor andel av fiskeindustrien, og den økende forekomsten av lakse-
filleter med melaninflekker forårsaker store økonomiske tap grunnet nedsatt kvalitet-
soppfatning hos kundene. Studier viser at Omega-3 fettsyreinnhold er korrelert med
en fillet som ser sunnere ut, og det har blitt bevist at det er mulig å bruke Raman
spektroskopi for å estimere dette innholdet. Videre studier viser at en robot-løsning
ser veldig lovende ut for å løse utfordringen med det langtekkelige og feiltilbøyelige
arbeidet med denne manuelle skanningen ved en produksjonslinje. Hvis disse melan-
inflekkene ikke blir unngått under spektroskopien, kan de resulterende spektrene være
villedende og av mindre verdi.

Dette motiverer utviklingen av en forbedret sensor-dekkende løsning, som ledet til
det følgende forskningsspørsmålet: “Hvordan kan maskinsyn, KI-drevne modeller,
bildebehandling, og veiplanlegging bli brukt til å generere en skanneprofil og instruere
en robotarm til å utføre effektiv skanning av laksefileter, og sørge for at melaninflekker
unngås?”

For å nå dette målet ble det bygd en robotstruktur som bruker Mask R-CNN til å
segmentere magen og pseudo-melaninflekker på laksefilleten, etterfulgt av bildebehan-
dling og en trinnvis planleggingsmetode inspirert av kunstige potensialfelts (KPFs)
metode. Den KPF-baserte planleggeren blir brukt til å kommandere en 6-DoF robo-
tarm i et Gazebo-simulert miljø ved å bruke rammeverket for bevegelsesplanlegging,
“Moveit”.

Resultatene demonstrerer en planleggingsalgoritme som er i stand til å generere kom-
plekse planer, og tilpasse seg til flere melaninflekker og orienteringer av fileten. Den
KI-drevne segmenteringen trenger noe forbedring, og bruken av pseudo-melaninflekker
grunnet det utilgjengelige datasettet gjør det vanskelig å vurdere ytelsen. Den robo-
tiserte skanningen er i stand til å nøyaktig følge den planlagte banen med en gjennom-
snittlig utførelsestid på 3.365 sekunder, tilsvarende en gjennomsnittlig TCP-fart på
116.3 mm s−1. Dette er innenfor den nødvendige eksponeringstiden for en akseptabel
Raman skanning.
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Fremtidig arbeid innenfor dette forskningsområdet inkluderer å bruke et relevant
datasett for bedre trening, testing og validering av den KI-drevne modellen og KPF-
baserte planleggeren. Videre, ved å teste i et laboratoriemiljø med en Raman spek-
troskopisensor og et bevegende samlebånd, vil robotsystemet kunne bli videre justert
og optimert, som gjør det mulig å implementere løsningen i en relevant miljø.
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Nomenclature

Abbreviations

AI Artificial Intelligence -

APF Artificial Potential Field(s) -

DoF Degrees of Freedom -

EE End effector -

FOV Field of View -

IBVS Image-Based Visual Servoing -

IMU Inertial measurement unit -

NIR Near infrared -

PBVS Position-Based Visual Servoing -

RGB-D Red, green, blue, distance -

ROS Robot Operating System -

TCP Tool Center Point -

UR Universal Robots -

VI



Contents

Preface I

Abstract II

Sammendrag IV

Nomenclature VI

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Kinematics and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Displacement and Rotation of Poses . . . . . . . . . . . . . . . 6
2.1.2 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Vision System and Depth Sensing . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Camera Intrinsics and Extrinsics . . . . . . . . . . . . . . . . 10
2.2.2 Camera Configurations . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Closed- and Open Loop Controllers . . . . . . . . . . . . . . . 14
2.3.2 Joint Space Control . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Visual Servoing . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 AI-based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Object Detection and Instance Segmentation . . . . . . . . . . 19
2.4.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Artificial Potential Fields - A Path Planning Algorithm . . . . . . . 20

VII



2.5.1 Attractive Potential and Attractive Force . . . . . . . . . . . . 21
2.5.2 Repulsive Potential and Repulsive Force . . . . . . . . . . . . 22

3 Methodology 25
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Machine Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 AI Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 AI Model Selection . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Artificial Melanin Spots and Image Annotation . . . . . . . . 37
3.3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Extracting Features of Belly (qs and qg) . . . . . . . . . . . . . 40
3.4.2 Extracting Melanin Spots . . . . . . . . . . . . . . . . . . . . 41

3.5 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Standard Artificial Potential Fields . . . . . . . . . . . . . . . 43
3.5.2 APF-like Path Planner . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Robotic Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Results and Discussion 53
4.1 AI and Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 AI Segmentation Performance . . . . . . . . . . . . . . . . . . 56
4.1.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Tuning the Planner Parameters . . . . . . . . . . . . . . . . . 61
4.2.2 Choosing An Appropriate n_steps . . . . . . . . . . . . . . . 63
4.2.3 Planned Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Scan Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 TCP Tracking and Joint Results . . . . . . . . . . . . . . . . . 76

5 Conclusion and Future Work 89
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

VIII



Chapter 1

Introduction

This chapter will give a brief introduction to the background of the master’s thesis
and the motivation related to the assessment of food quality in the salmon industry.
It will highlight one of the biggest problems in the field and some of the previous
research aimed at overcoming it, before presenting the objectives of this thesis and
the contribution.

1.1 Background

Salmon is dominating the fish industry in Norway, being the most sold slaughtered
fish at approximately 1.6 million metric tonnes in 2022, equivalent to more than 102
billion NOK [1]. The salmon contains important nutrients, such as omega-3, which
has numerous health benefits for consumers. The level of omega-3 fatty acids varies
between salmon, and research conducted by Ytrestøyl et al. [2] show that there is
a connection between high fatty acid content and a redder and, therefore, healthier
appearance. This opens the door for quality sorting, where healthy-looking fillets
with higher concentrations of omega-3 can be sold at a higher price, as quality is used
by consumers in decision-making.

One of the bigger problems in the salmon industry is melanin spots, which have been
a challenge for many years. They affect the quality perception by consumers and,
therefore, also the selling price. Over the years, this problem has increased, with 7%
of salmon being affected in 2003, and 20% being affected in 2015 [3]. The believed
origin of this problem has been changing over the years: vaccines, impact injuries,
nutrition and viruses [4]. Recent discoveries suggest the problem originates from
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various causes [5]. Nowadays, workers have to manually detect and remove these
spots from the affected areas in the filleting line, which is a labor intensive and costly
solution, and causes price reductions of 9 to 67% [6].

A well-established technique used for fatty acid estimation is chromatography, and
since gas chromatography was first used to for analytical fatty acid estimation, it has
been a vital technique within chemical analysis [7]. However, since it must be carried
out in a laboratory, it is not suitable for production lines in the industry. To achieve
this, a faster, non-destructive method is needed, and a study led by Afseth et al.
[8] shows that Raman spectroscopy has potential for use in fatty acid prediction. In
this research, Near-infrared (NIR) and Raman spectroscopic data were compared and
evaluated to determine the quantification of fatty acids in salmon. Further studies
show that Raman is also viable for in-line measurements, where scans were carried
out on moving samples with short exposure (up to 4 seconds) [9].

Using computer vision to detect melanin spots is not new. Research carried out
in 2007 [10] shows that a simple camera can be used to automatically detect these
unwanted spots in Atlantic salmon fillets, and with the advancements of artificial
intelligence (AI) over the years, this technology can be further enhanced. Studies
led by Fenelon et al. [11] demonstrate the effectiveness of using robotic system to
perform Raman spectroscopy on salmon fillets moving on a conveyor at 25 mm s−1

in a proof of concept demonstration. The authors’ tests include the use of real fillets,
and demonstrate that a simple straight scan profile along the belly of the fillet can be
successfully followed by a Raman sensor connected to the robot’s TCP. The next steps
discussed by the authors include developing a pilot-scale system solution, commanding
the sensor to follow complex trajectories, and even avoiding melanin spots, to estimate
fatty acid values with greater accuracy.

Enabling an efficient and automatic in-line measurement system for salmon fillets
creates opportunities not only for quality assurance but also provides large datasets,
which can be analyzed to get a better understanding of the problem. All of this
together will help increase the quality of the salmon fillet, positively impact con-
sumption, and expand the market.
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1.2 Objective

The objective of this thesis is to develop, integrate, and test a path planning algorithm
based on artificial potential fields (APF) method, that generates complex 2D paths on
a static salmon, using melanin spots as obstacles. The new path planning algorithm
will be denoted as an APF-like path planner. The generated path will be used to
control a 6-DoF robot arm to move a Raman spectroscopy sensor across the fillet
in a simulated environment. To achieve this, a combination of machine vision, AI-
driven models and image processing techniques will be used to extract the intricate
information about the fillet, so a path planning framework can be built to generate
complex, but feasible paths for the simulated 6-DoF robot arm to follow (see Figure
1.1). The simulated system can thus be used in future implementations, allowing a
real robot arm to scan natural salmon fillets. The objectives of the master’s thesis
are summarized in Table 1.1 below.

Table 1.1: Main objectives of the Masters’ Thesis.

Objective Description
AI-driven models Run AI-driven models for instance segmentation

Feature Extraction Use image processing to extract information for the path planner
Path Planner Build a path planning algorithm for melanin spot avoidance
Simulation Test the robotic system in simulation

Based on the background and objectives presented, the following research question
was formulated, which this thesis aims to answer::

How can machine vision, AI-driven models, image processing, and path
planning be used to generate a scan profile and instruct a robot arm to
perform an effective scanning of salmon fillets, ensuring the avoidance of
melanin spots?

1.3 Contribution

The contribution of this thesis is to extend and enhance the development of the
work presented by Fenelon et al. [11]. This includes taking the robotic Raman
spectroscopy system to a level in which it can use a 3D camera and AI-driven models
to segment pseudo-melanin spots in a simulated environment. By building a new path
planner, inspired by the APF method, which is able to generate a path using AI-based
segmentation, and finally deprojecting this path from the image plane to the world
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Figure 1.1: Simulated Robotic Raman Spectroscopy System.

frame, the robot arm can follow it with a dummy Raman spectroscopy sensor attached
to its end effector. Simulation results are presented showing the trajectories of the
robot end-effector and the joint angles for different cases of melanin spot occurrence
in a given salmon fillet.
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Chapter 2

Theory

This chapter will cover the necessary theory which lay the foundation for this thesis.
It aims to provide a better fundamental understanding of the different theoretical
concepts and topics which are explored and discussed later on this work.

The chapter begins by providing the reader with a better understanding of kinematics
and frames in robotics, before exploring the field of vision systems and depth sens-
ing. Furthermore, the general concept of control systems are explained followed by
some different models of AI-learning and some common techniques used in this field.
Lastly, artificial potential fields will be explained, followed by some image processing
techniques.

2.1 Kinematics and Frames

The theoretical concepts and formulas which lay the foundation for kinematics in
this thesis are predominantly extracted from the ‘Springer Handbook of Robotics’,
2016, which provides a comprehensive overview and explanation of the many topics
within the field [12]. The goal of this section is to get a better understanding of
robot kinematics, which is fundamental topic before more complex fields are covered.
Kinematics in robotics is essentially the study of movement of rigid bodies, where the
required forces to perform the motion are left aside. Since the forces required are not
considered, kinematics can focus on the pose, that is, position and orientation, and the
velocity of the body. This is because higher derivatives of position and orientation,
such as linear and angular acceleration, require forces and torques to be present [12].
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2.1.1 Displacement and Rotation of Poses

One prerequisite to express the pose of an object is to have another coordinate frame,
commonly referred to as frame for reference. A frame consists of an origin point,
denoted as Oi and three orthogonal axes (x̂i ŷi ẑi). This is because the pose or
displacement of one frame always needs to be relative to some other frame. When a
frame is considered to be moving, it is implied that the observer is stationary within
another frame that is considered fixed, and the movement of the given frame is relative
to the fixed frame.

To represent the position of the origin of frame i relative to frame j, a 3× 1 vector is
used, as seen in Equation 2.1. This vector consists of the three Cartesian coordinates
of the origin of the i frame Fi with respect to the j frame.

jpi =


jpi

x

jpi
y

jpi
z

 . (2.1)

When this vector is not equal to zero, there is a displacement along at least one of
the axes, called a translation. This means that the object is not rotated, but simply
displaced in some direction.

In addition to displacement, a frame can also be rotated. This means that the origin
of the frame remains in the same position; however, when a frame is rotated, the
alignment between at least one of its original x, y, or z-axis and their corresponding
orientation after rotation will no longer be parallel. To represent the orientation of
coordinate frame i with respect to coordinate frame j, the basis vector representation
of i with respect to j is used. This yields (jx̂i j ŷi j ẑi), and when this is written as the
3× 3 matrix, it is called a rotation matrix jRi:

jRi =

x̂i · x̂j ŷi · x̂j ẑi · x̂j
x̂i · ŷj ŷi · ŷj ẑi · ŷj
x̂i · ẑj ŷi · ẑj ẑi · ẑj

 . (2.2)

The basis vectors are unit vectors, meaning that they are of norm 1, and since the
dot product between two unit vectors is just the cosine of the angle between them,
the formula in Equation 2.2 can be simplified for a rotation around each axis. The
elementary rotations of angle θ of frame i about the z, y and x-axis of frame j can be
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written as:

RZ(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , RY (θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , RX(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

These matrices can also be combined through matrix multiplication. This means that
if the rotation matrices jRi and kRj, then the orientation of frame i relative to the
frame of k can be expressed as:

kRi =
kRj

jRi . (2.3)

The basis vectors of coordinate frame i and j are both orthonormal, meaning that
each vector is a unit vector and orthogonal to the other basis vectors. The formed
columns of jRi from the dot product of said vectors will also be mutually orthonormal.
In mathematics, a matrix in which the vectors are mutually orthonormal and of a
unit-norm 1 is an orthogonal matrix, and orthogonal matrices have a special property
where the inverse and the transpose of the matrix are equal. This property provides
six auxiliary relationships, being three for orthogonality and three for unit length,
and as the rotation matrix consists of nine elements, only three of them are needed
to represent the orientation.

So far, displacement and rotation have been explained separately, but in many cases,
a frame can be both rotated and displaced, which calls for the topic of homogeneous
transformations. The goal of homogeneous transformations is to combine the position
vectors and rotation matrices. If the relationship between to coordinate systems, for
example, i and j, is known, a vector ir (expressed through the i frame) can be
transformed to the j frame by combining the two notations jpi and jRi to describe
the position of the origin and orientation of the frame, respectively. This gives the
equation:

jr = jRi
ir +j pi, (2.4)
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which can be further written as:(
jr
1

)
=

(
jRi

jpi
0T 1

)(
ir
1

)
, (2.5)

and, more concisely:

jTi =

(
jRi

jpi
0T 1

)
. (2.6)

Equation 2.6 is the homogeneous transformation matrix, which transforms vectors
from the i coordinate frame to the j coordinate frame. Its inverse, denoted as
(jTi)

−1 = iTj, will transform vectors from coordinate frame j to i.

As with rotation matrices, these transformation matrices can also be combined through
matrix multiplication, which means that the transformation kTi can be written as:

kTi =
kTj

jTi . (2.7)

Performing a simple rotation around an axis can be denoted as Rot, and a translation
along an axis can be denoted as Trans. A rotation of θ around the ẑ-axis, and the
translation of d along the x̂-axis axis can be written as:

Rot(ẑ, θ) =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 , (2.8) Trans(x̂, d) =


1 0 0 d

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.9)

This concludes the topic of pose representation. Being able to describe systems in
3D is fundamental for robotics applications, and it also enables several components
to communicate sensor data with each other. The information from a camera is of
no use to a robot arm if there is no way of transforming the data into a coordinate
system in which the robot arm operates.

2.1.2 Forward Kinematics

Based on the foundations of frame transformations covered in Section 2.1.1, it is
possible to describe a robot arm using the relation between the individual links and
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joints. The link length is essentially the displacement, and the joint angle is the
rotation between two joint frames. Using the principles of transformation matrices,
it is possible to describe the pose of the end effector using a series of transformation
matrices. For a simple two-dimensional planar arm with two joints q = [q1 q2]

T and
two links a1 and a2, rotating about the z-axis, the transformation from the base frame
to the end effector frame can be expressed as [13]:

eTb = Rot(z, q1)︸ ︷︷ ︸
joint 1

⊕Trans(x, a1)︸ ︷︷ ︸
link 1

⊕Rot(z, q2)︸ ︷︷ ︸
joint 2

⊕Trans(x, a2)︸ ︷︷ ︸
link 2

. (2.10)

2.1.3 Inverse Kinematics

As shown in Section 2.1.2, it is possible to find out the pose of the end effector through
the joint angles using the forward kinematic map of the arm. Another fundamental
part of robot kinematics is the inverse kinematics, which is naturally the opposite of
the forward kinematics. Instead of finding the pose of the end effector through the
joint angles, the required joint angles to achieve a desired end effector pose are found
[13].

2.2 Vision System and Depth Sensing

A robotic system does not necessarily require a vision system to work. If the task
of the robot arm is repetitive, and there are no variations between instances, the
movement of the arm can be programmed to strictly perform this task. One example
of this is car assembly. The arm can be invoked once a prerequisite condition is
satisfied, e.g., the chassis has arrived at its designated location. However, for a
robotic system to operate autonomously in unknown environments or perform a task
that may vary slightly or considerably due to randomness or unique instances, some
kind of external sensor system is needed. An example of this is the interaction between
a robot arm and heterogeneous foods on a moving conveyor belt. The food may vary
slightly, and the exact position of the given food is not known. The use of vision
systems for a given application enables the robot arm to act based on real-world
sensor data, which can be useful in robotics systems.
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Figure 2.1: Camera Pinhole Model showing the camera frame in the middle, with the
image frame to the left and world frame to the right.

2.2.1 Camera Intrinsics and Extrinsics

Most RGB-D (red, green, blue, depth) cameras can be described with the pinhole
model, which describes how a three dimensional point in the world frame can be
transformed into the two dimensional point in the image plane. There are two sets
of parameters for the camera to account for in this transformation: the intrinsic and
the extrinsic parameters.

The extrinsic parameters account for the displacement and rotation between the cam-
era frame and the world frame while the intrinsic parameters account for the internal
parameters of the camera. This includes coordinates of the principal point, which is
where the optical axis intersects with the image plane, and a parameter representing
skewness [14]. This concept is visualized in Figure 2.1, where the optical axis is rep-
resented with a red line from the world frame through the pinhole and projected at
the image plane. The transformation from some arbitrary point M̃ = [X Y Z 1]T in
the world frame Fw, to the corresponding pixel values m̃ = [u v 1]T can be described
with the following formula [14]:

sm̃ = A[R t]M̃ . (2.11)
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Here, s is an arbitrary scale factor and A is the matrix with the intrinsic parameters,

A =

α γ u0

0 β v0

0 0 1

 , (2.12)

Where u0 and v0 represent the coordinate of the principal point, α and β are the
focal lengths in pixels of the two axes u and v, and γ is a factor for describing the
skewness in the image. [R t] is the homogeneous transformation matrix which maps
the point from the world frame to the camera frame using rotation matrix R and
translation vector t, as discussed in Section 2.1.1. Once the intrinsic parameters are
calibrated, they do not need to be updated, unlike extrinsic parameters that naturally
change when the camera is moved. Of course, the intrinsic parameters will need to
be updated when a new camera model is used.

2.2.2 Camera Configurations

A camera can be configured in two ways when used with a robot arm system. The
two have favorable and unfavorable factors, which will be further explored in this
section.

(a) Eye-in-Hand camera configuration. (b) Eye-to-Hand camera configuration.

Figure 2.2: Camera configuration setup.

Eye-in-Hand

The first configuration, seen in Figure 2.2a, is called Eye-in-Hand. This implies that
the camera is attached to the end effector of the robot, and the configuration results in
a non-stationary camera with respect to the environment. However, the relationship
between the camera frame FC and the end effector frame FE will remain constant.
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This also implies the transformation matrix ETC , is constant, and calibration is
relatively simple. With this configuration, the robot itself will likely not obstruct the
cameras field of view (FOV). The eye-in-hand also allows more freedom in field of
view, as it is not limited to the robots workspace. If ETC = I, then the following
relationship holds:

BTC = BTE . (2.13)

Eye-to-Hand

The second option for camera configuration is Eye-to-Hand, as seen in Figure 2.2b.
In this configuration, the camera is fixed in the workspace. Therefore, it will not be a
constant relationship between the robot end effector frame FE and the camera frame
FC , and the transformation ETC will be expressed based on the robot base frame
FB:

ETC = ETB
BTC . (2.14)

This configuration requires a more complex calibration, but it also allows the camera
to capture objects outside the robots workspace. It does not add extra weight to the
end effector of the robot, compared to the eye-in-hand configuration.

2.2.2.1 Calibration using Internal Sensors

One method for finding the configuration error between two frames by using internal
sensors is presented by Leite et al. [15]. The method defines the known frame Fb

and the frame Fb1 , and aims to find the configuration error between them, denoted
by xbb1 = [pTbb1 ΦT

bb1
]T . Here, pbb1 denotes the translation error, and Φbb1 = [ϕ ϑ ψ]T

represent the orientation error, expressed, in roll, pitch and yaw angles, with Rbb1

being the corresponding rotation matrix..

The configuration error is found by using a set of i = [1, 2, . . . , N ] calibration points,
denoted by, λ1.λ2, . . . , λN , whose positions with respect to frame Fb are known, and
are estimated with respect to frame Fb1 using the following equations:
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pbλ1 = pbb1 +Rbb1pb1λ1 ,

pbλ2 = pbb1 +Rbb1pb1λ2 ,

...

pbλN = pbb1 +Rbb1pb1λN , (2.15)

Here, pbλi ∈ R3 denote the position of the calibration point λi with respect to the
robot base frame Fb, and pb1λi ∈ R3 is the position of the calibration point λi with
respect to frame Fb1 , as introduced in Section 2.1.1, both being the components of
the transformation matrix Tij = [Rij pij] with i={b, b1} and j = λi.

To find the homogeneous transformation matrix Tbb1 , the configuration of the cali-
bration points regarding the frames Fb and Fb1 can used:

Tbb1 = Tbλi T
−1
b1λi

, i = 1, 2, . . . , N. (2.16)

The configuration error, denoted xbb1 = [pTbb1 Φ
T
bb1
]T , can be found through the solution

of a non-linear least squares problem by using an appropriate method, like Newton’s
method [16]. First, an objective function f , which describes the system through
the position and orientation vectors, must be defined. This is based on the stacked
equations in Equation 2.15, and should be solved for f(pbb1 , Rbb1) = 0,

f(pbb1 , Rbb1) =


pbλ1 − pbb1 −Rbb1pb1λ1

...
pbλN − pbb1 −Rbb1pb1λN

 ∈ R3N . (2.17)

In the previous equations, each of them has three position coordinates and six ori-
entation constraints. Therefore, the minimum number of endpoints λ to perform the
calibration procedure is three. However, by choosing a higher number, the effect of
measurement noise is mitigated, and the configuration error accuracy is improved.
Equation 2.17 is minimized by using its Jacobian Jf , given by

Jf = ∇f =

[
∂Tf

∂pbb1

∂Tf

∂Φbb1

]T
, (2.18)
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since
∂f

∂pbb1
= −[I · · · I]T ∈ R3N×3, and to obtain Equation 2.18 is only necessary to

calculate:

∂f

∂Φbb1

= −


∂Rbb1

∂ϕ
pb1λ1

∂Rbb1

∂ϑ
pb1λ1

∂Rbb1

∂ψ
pb1λ1

...
...

...
∂Rbb1

∂ϕ
pb1λN

∂Rbb1

∂ϑ
pb1λN

∂Rbb1

∂ψ
pb1λN

 , (2.19)

where ∂Rbb1

∂ϕ
,
∂Rbb1

∂ϑ
,
∂Rbb1

∂ψ
∈ R3×3 and ∂f

∂Φbb1
∈ R3N×3.

Lastly, the correction in xbb1 is found at each iteration k using Newton’s method by

xbb1(k + 1) = xbb1(k)− βJ†
f (k)f(pbb1(k), Rbb1(k)), (2.20)

in which β > 0 and J†
f (k) = (JTf (k)Jf (k))

−1Jf (k)
T represents the left pseudo-inverse

of Jf .

As explained by the authors [15], the dimension of this Jacobian matrix is 3N × 6,
and it can grow significantly larger by choosing many endpoints.

2.3 Control Systems

One prerequisite to better understand visual servoing and robot motion control is
the topic of control systems in general. The goal of a control system is to maintain
some process output close to a desired value by manipulating some control variable
(actuators) to counter the disturbances by which the process is affected [17]. The
topic of control systems is a wide and deep research area, and for this thesis, only the
necessary concepts and theories will be explored.

2.3.1 Closed- and Open Loop Controllers

One common way of controlling a process is by using closed loop controllers. The
principle behind this is to compute the process error e, being the difference between
the desired value ysp of the process output, and the actual, or measured value ym,
and use it to update the control variable (actuators) accordingly.

e = ysp − ym. (2.21)
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One example is temperature control in a room, where a sensor measures the error
between the desired temperature and the current temperature. The error will provide
information on whether the heater (actuator) should be turned up or down, but how
much it should be adjusted is more complicated, and is the foundation of control
systems. Other examples might include simple cruise controls in cars, water level
control in tanks, and dynamic positioning systems of vessels. The key to designing a
satisfactory control system is knowing how to process the different variables to achieve
minimal error over time. A block diagram illustrating the process, the controller, the
sensor, and common variables is shown in Figure 2.3

Figure 2.3: General feedback controller showing how the measurement error is used to
update the control signal.

Over the years, many techniques have been developed to efficiently drive the error in
a feedback system to zero. These include the popular proportional-integral-derivative
(PID) controller [18], state-space controllers [19], model predictive control [20] and
Lyapunov-based control [12]. The details covering the signal processing and filtering
within the control module lie beyond the scope of this thesis, as the general concept
of feedback loops and their structure is of greater importance.

As opposed to a closed loop system, like the feedback controller, an open loop system
is also common. However, since these processes are predetermined and there is no
feedback loop, the input signal(s) to the process does not depend on the system
output, as shown in Figure 2.4. Examples of such processes are time-based processes
like toasters, traffic lights, and electric hand dryers [21], which only operate for a
given amount of time based on the input settings.
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Figure 2.4: General predetermined open loop controller with no feedback to update control
signal.

2.3.2 Joint Space Control

In robotics, feedback loops are commonly used to control robotic manipulators, and
one common control method is the joint space controller [12]. As explained in section
2.3.1, a feedback controller uses the error from Equation 2.21 to update the pro-
cess, which in this case is the joint angles. The general feedback loop of joint space
controllers is visualized in Figure 2.5.

Figure 2.5: Joint space controller using the error from the actual joint angles to update
the input to the manipulator.

As seen in Figure 2.5, the system first gets some desired position xd of the end effector,
and uses the inverse kinematics of the arm to find the corresponding angles qd of the
joints. A tuned controller then finds the required torques τ to achieve these angles
and the robotic manipulator outputs joint angles, which are used for the feedback
error. It is also worth mentioning that the inverse kinematics are calculated on some
interpolated points between the current joint angles q and the desired joint angles qd
[12].
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2.3.3 Visual Servoing

Visual servoing is a robotics area that covers the use of camera data to control the
robot. As described in Section 2.2, this makes it possible for the robot to operate
autonomously in unknown environments and perform various tasks. For this thesis,
the camera, with the help of an AI-driven model, is used to retrieve data from the
salmon fillet on the conveyor belt. The concepts and fundamental theory surrounding
the topic of visual servoing are based on the book Robotics, Vision and Control by
Peter Corke [13].

2.3.3.1 Position-based Visual Servoing

Figure 2.6: PBVS, feature extraction is used to estimate some pose, which is used as
feedback error.

In a PBVS system, the pose of the goal with respect to the camera is estimated.
The objective is to determine the motion required to move the camera from its initial
pose to the desired pose. Since the required movement can be significantly large,
it is common to split into multiple smaller fractions of the movement, essentially
interpolating the error in joint angles.

If the goal pose is moved, the motion of next step will take it into consideration, as
the relative pose and its fractional step is computed at each time step. PBVS requires
the intrinsics and pose of the camera with respect to the robot to be known to be able
to estimate the pose of an object in the image frame as explained in Section 2.2.1.
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2.3.3.2 Image-based Visual Servoing

Figure 2.7: IBVS, extracted features in the observed scene are used directly as feedback
error.

While PBVS tries to minimize the pose error of the goal in the control loop, image-
based visual servoing (IBVS) tries to minimize the error of the visual features of the
goal in the loop. Given two different camera positions, one can imagine the position
of the edges, or some other feature of an object can differ considerably. This opens
the door to a control loop that tries to align some feature points on an object to some
desired position in the image frame. This approach will not let the observed features
fall outside the camera frame.

2.4 AI-based Learning

This section will cover the necessary concepts in the field of AI-based learning, accord-
ing to the book ‘Python Machine Learning’, Second Edition by Sebastian Raschka
and Vahid Mirjalili [22]. Starting with an insight to deep learning and convolutional
neural networks, before covering some common techniques used for training them.
Furthermore, the different types of image classification will be covered before an in-
troduction to model evaluation.

2.4.1 Deep Neural Networks

The aim of deep neural networks is to learn from data, so a model can be built to
make predictions. A network is built by first extracting a number of features from
some input data, and feeding it into a layered network of neurons, which learns by
tuning weights, and outputs a prediction. Deep neural networks consist of multiple
layers, which are able to see more complex patterns in the input data, but they are
increasingly computationally heavy.
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2.4.2 Object Detection and Instance Segmentation

Object detection and segmentation are pivotal tasks in the field of computer vision,
as they play a fundamental role in applications such as autonomous driving, medical
research and video surveillance. The key role of object detection or segmentation,
is to retrieve spatial information of an object/area of interest in an image, video or
video stream. There are four main levels of classification in this field of research.
The simplest is classification, which aim to only classify some object in an image.
Classification + localization takes it a step further by retrieving its spatial information
with a bounding box. The third is object detection, which is able to classify instances
of objects and their respective spatial information by creating bounding boxes with
a corresponding label. Lastly is segmentation, which goes into more detail than the
previously mentioned techniques, as it aims to classify the object in an image on a
pixel-level. There are two types, instance segmentation, which separates instances of
the same object, and semantic segmentation, which instead groups them as a single
entity.

2.4.3 Model Evaluation

One common technique used to evaluate a model, is splitting the available data into
training, testing and validation sets. The training and validation data is used during
model training, while the test data is used for testing the model on unseen data.
These two will give the indication of overfitting, or underfitting. Overfitting describes
the behaviour when the model is performing really well on the training data, but
poorly on the validation or test data. This effectively means that the model learns
patterns in the training data that are not very generalized, and will not apply for
new data. Underfitting, on the other hand, means that the model is not able to learn
any patterns from the training data, and performs poorly in general. This requires a
more complex model, and it is important to find a balance between these two cases
to build a model that performs well on unseen data [22].

2.4.4 Data Augmentation

Data augmentation [23] is a technique used in AI-based learning where new image
data is generated by augmenting the already available dataset. This can include
skewing, stretching, flipping, adding brightness, and cropping (to name a few). The
technique can make a model more generalized, and therefore avoid overfitting. It can
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also help balance data by generating more data of one class, for example, if a model
is built to detect two different classes, like cats and dogs, but the dataset consists
mostly of cat images.

2.5 Artificial Potential Fields - A Path Planning Al-

gorithm

This section discusses some of the main aspects related to path planning algorithms
for robotics. Planning a collision-free path for a robotic system is a fundamental
task, and even though it may seem simple, it can be a complex problem in robotics.
The thesis will take a closer look at artificial potential fields, which is an intuitive,
yet complex algorithm for path planning and obstacle avoidance. The formulas and
theory regarding artificial potential fields (APF) are based on material from the book
‘Robotics: Modelling, Planning and Control’, by Siciliano et al. [24], which provides
a wide and in-depth analysis of the various topics within robotics.

Potential fields are nothing new. In fact, the approach was presented in 1986 by Ous-
sama Khatib [25], and since then has been a popular planning algorithm in robotics.
It uses an analogy for the obstacle avoidance problem. The method describes the
robot as a particle moving in an artificial potential field U across a planning space C,
where the principle of gradient descent is used for navigation. The gradient descent
tries to lead the robot to a global minima qg, by traversing towards the negative
gradient of the field −∇U . This negative gradient is effectively the force affecting
the particle, meaning a steep configuration in U will lead to a substantial force. This
force is calculated at each step, and determines the direction and size of the next
step.

The potential field, and its corresponding force vector field, is defined based on the
position of the goal qg and the areas of C which are defined as any i present obstacles
COi. The current position of the robot is denoted by q, and the algorithm works by
having the goal qg exert a global, radial attractive force Fa(q), while the stationary
obstacles exert a local, radial repulsive force Fr(q). The objective of the attractive
force is to lead the robot towards the goal, and the repulsive fields try to keep the
robot away from them. The sum of said forces:

Ftot(q) = Fa(q) + Fr(q),
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lay the foundation for the heterogeneous force vector field across C.

2.5.1 Attractive Potential and Attractive Force

The attractive potential Ua(q) is global across C, and there are in general two possible
approaches for defining this field, being paraboloidal and conical. A paraboloidal
attractive field is defined by:

Ua1(q) =
1

2
kae

T (q)e(q) =
1

2
ka||e(q)||2, (2.22)

where e(q) = (qg− q) and ka is a positive tunable parameter to control the gain. The
paraboloidal field implies that the resulting force, being the gradient of the potential,
is proportional to e(q):

fa1(q) = −∇Ua1(q) = kae(q). (2.23)

The paraboloidal function ensures that the attractive force fa1(q) decreases close to
qg. This helps achieve a soft landing, and not overshooting; however, it increases
indefinitely with e. This can lead to poor performance in terms of obstacle avoidance
far from qg, as fa1(q) ≫ fr(q).

The conical attractive field ensures a constant attractive force, regardless of e. It is
defined by:

Ua2(q) = ka||e(q)||, (2.24)

with its respective force being:

fa2(q) = −∇Ua(q) = ka
e(q)

||e(q)||
. (2.25)

This approach avoids the problem of indefinitely scaling attractive force, but the force
does not diminish as q approaches qg, and can lead to overshooting the goal.

One way to ensure both a soft landing, and avoiding infinitely scaling potential far
from qg, is by combining the two approaches. By defining a threshold distance ρ, the
new attractive field can be defined as:

Ua(q) =


1

2
ka1||e(q)||2 if ||e(q)|| ≤ ρ ,

ka2||e(q)|| if ||e(q)|| > ρ .
(2.26)
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To ensure a continuous fa function for this combined approach, the following rela-
tionship must be satisfied [26]:

ka1e(q) = ka2
e(q)

||e(q)|| for ||e(q)|| = ρ , (2.27)

which can be achieved by simply defining ka2 = ρka1.

2.5.2 Repulsive Potential and Repulsive Force

Unlike the attractive potential, which has some non-zero value globally across C, the
repulsive potential is locally defined around the i present obstacles defined in C as
COi.

It is most common to define this potential field as:

Ur,i(q) =


kr,i
γ

(
1

ηi(q)
− 1

η0,i

)γ
if ηi(q) ≤ η0,i ,

0 if ηi(q) > η0,i ,

(2.28)

where:

kr,i > 0: is the parameter for repulsive gain for obstacle i.
γ = 2, 3, . . . : is the exponent of the function, impacting the field behaviour.
η0,i: is the repulsive field extent of obstacle i.
ηi(q): is the minimal distance to obstacle i, ηi(q) = minq′∈COi

||q − q′||.

The repulsive potential of COi also exerts a repulsive force, being the gradient −∇Ur,i(q),
of the potential field.

fr,i(q) = −∇Ur,i(q) =


kr,i
ηi2(q)

(
1

ηi(q)
− 1

η0,i

)γ−1

∇ηi(q) if ηi(q) ≤ η0,i(q) ,

0 if η0,i(q) > η0,i .

(2.29)

Since ηi(q) is the minimal distance from q to the defined obstacle, the repulsive force
fr,i is orthogonal to the field at q and directed away from q′. There can be several
obstacles in C, meaning a position q can be affected by more than one obstacle. To
account for this when visualizing the potential field or finding the net force in q, the
sum of the p repulsive potentials or forces must be found, respectively.
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Ur(q) =

p∑
i=1

Ur,i(q). (2.30)

Using this repulsive field, the total potential field, and thus a total force field, can be
found, which is simply the sum of both the attractive and all repulsive potentials.

Total Potential Field: Ut(q) = Ua(q) + Ur(q) , (2.31)

Total Force Field: ft(q) = −∇Ut(q) = fa(q) +

p∑
i=1

fr,i(q) . (2.32)

Challenges

As for all problem-solving approaches, they may be generally effective but can fall
short in certain scenarios. As with gradient descent, the movement towards the
negative gradient −∇Ut(q), aims to reach the global minima qg, where the gradient
is zero. A problem occurs when the gradient reaches zero without being at the goal
position. This is known as the local minima problem, which is the major challenge in
machine learning using gradient descent, and subsequently for APF.

In more detail, this problem occurs when the sum of forces ft(q) → 0, resulting in a
stagnation of the steps towards the goal. In machine learning, this problem can be
solved by adding a momentum term based on previous steps to the gradient descent,
which lets the optimization search escape these local minima. However, for this
application, this is not necessarily viable, as the main goal is to avoid the obstacle,
and not overcome, i.e., traverse over them.

To better understand a solution, it is necessary to understand when these local min-
ima problems occur in APF. There are mainly two scenarios. One with the robot
being trapped between two obstacles, where their repulsive sum equals the negative
attractive force,

∑n
i=1 fr,i(q) = −fa(q) = 0. The other scenario is when the robot, the

obstacle, and the goal form a symmetrical straight line, meaning the repulsive force
vector fr(q) that occurs as the robot approaches COi will be the opposite direction
as fa(q). This repulsive force will grow until it becomes the same magnitude as the
attractive force, and their sum will be zero, resulting in a net zero force. The two
scenarios can be seen in Figure 2.8.
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Figure 2.8: Two different ways local minima problems can occur in potential artificial
potential fields.

The basic artificial potential field algorithm has no solution to this problem, other
than tuning the parameters to minimize the occurrences of them. This is also the
reason why the majority of papers covering the application of this method to mobile
robots are focusing on overcoming the local minima problem [27]. The algorithm,
however, can quite easily be modified. There are several ways of overcoming this
local minima problem, ranging from simple and intuitive solutions to more complex
ones. This includes vortex field surrounding the obstacles [28], wall-following mode
when encountering local minima [29], and movement prediction for setting temporary
goals to avoid local minima [30].
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Chapter 3

Methodology

In this chapter, the methodology of this thesis will be presented. As discussed in 1.2,
the goal is to develop a system capable of conducting robotic Raman spectroscopy
with enhanced sensor coverage, effectively avoiding the illumination of unwanted
melanin spots. This is achieved with the help of computer vision, AI-based models,
image processing, and the development of a path planner based on artificial potential
fields. To achieve this, a robotic pipeline is built, consisting of different components
and software aimed to extract the necessary information from the raw camera feed
to perform the robotic scan. This robotic pipeline is visualized in Figure 3.1.

Figure 3.1: Robotic Pipeline [31]

3.1 System Overview

The entire system is built using ROS (Robot Operating System) [32], which is a
widely used open-source framework for robotic applications. It is helpful for building
anything from simple to more complex systems consisting of several software compo-
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nents or programs in C++ and/or Python that need to run and communicate with
each other simultaneously.

ROS is built around an architecture using nodes, responsible for executing a specific
function of a system, and using communicating information, structured as messages
to topics. These messages are usually structured in a predefined format, decided by
the type of message. They can also be custom-created by the user. The nodes can
subscribe and publish to these topics to receive and send these messages respectively.
ROS also has other features, as it is a deep, intricate system capable of many opera-
tions. However, for the work in this thesis, mainly publishers and subscribers are used.
A simple example of this structure is shown in Figure 3.2, where two nodes are com-
municating with each other through a topic. The left node publishes a string-message
containing “Hello World” to the topic called “talker”. The right node subscribes to
the topic and receives the published message. The sample code in C++ and Python
can be found in the ROS tutorials [33].

Figure 3.2: Simple visualization of ROS architecture, showing the communication between
two nodes through a topic.

The system is simulated using Gazebo [34], which is a simulation tool which allows for
accurate implementation of simulated sensors, advanced 3D graphics, and accurate
physics and collision. It is also well integrated with ROS, making it a fitting choice
for simulation. In addition, the system is visualized in Rviz, which is a visualization
tool in ROS. The visualization makes it possible to see relevant information, such as
frames, markers, camera feed, 3D models, as well as sensor data, like range, FOV,
point clouds, etc.
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Figure 3.3: Simulated environment showing the different models loaded into Gazebo

An overview of the robotic Raman Spectroscopy system is presented in Figure 3.3,
where the UR3 robot arm, a support stand, conveyor, the RealSense and a salmon
are created using a URDF chain [35]. Each component in the system is considered
as a link, which refers to a parent link; the world; whose origin in Gazebo is (x =

0m, y = 0m, z = 0m) . The robot base is mounted on a flat surface of a support
structure (vention link), which is 0.1m x 0.1m x 1.050m in dimension. The vention
link is fixed to the world at (x = 0m, y = 0m, z = 1.050/2m), thus the robot base is
placed in the world at (x = 0m, y = 0m, z = 1.050m). The complete URDF chain
can be seen in Figure 3.4.
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Figure 3.4: URDF Chain of the Gazebo Simulated Environment

The conveyor belt featured in this project comes from an existing open-source Gazebo
plugin, gazebo_conveyor [36]. The conveyor is capable of moving, and the linear
velocity can be changed by using the max_velocity parameter, and the power can
be changed by calling a ROS service, as explained in the documentation. However,
the purpose of this thesis is to develop a path planner for a static salmon fillets,
i.e., a salmon fillet on a tabletop or a non-moving conveyor. The path planning and
robotic scanning for a moving salmon fillet on a conveyor is considered future work.
Therefore, the conveyor power is set to 0, using the ROS service,

rosservice call /robot_ns/conveyor/control "power: 0.0".

The camera is located above the conveyor, at (x = 0.4m, y = 0m, z = 1.5m) with
respect to the world frame Fw, and with Z axis of the camera color optical frame
pointing into the salmon. The image of the salmon fillet is imported into Gazebo by
printing it onto the top surface of a relatively flat plate of dimensions (0.6m x 0.24m
x 0.01m) by using the 3D modeling software Blender [37]. The different fillets were
then imported by changing the image printed on this plate, which was then placed
on top of the conveyor. This 2D version of the salmon fillet should be sufficient, since
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the camera is only considering the 2D color image of the fillet, and not the depth
information.

The Flowchart in Figure 3.5 describes the software nodes/programs that connect
different modules of the pipeline to achieve the objective.

Figure 3.5: System Flowchart

The system pipeline begins with a static salmon which is printed on a plate being
spawned in Gazebo. The user can define its position and orientation, but for it to lie
on the top surface of the conveyor, it should be spawned at +0.3m in x, ±0.3m in y,
and +1.0m in z, all with respect to the world frame Fw.

The camera in the pipeline captures a complete view of a salmon fillet. The camera
feed consists of ROS topics (RGB and Depth information/images) that are used as
the input to the AI system. Details regarding the camera are explained in Section
3.2: Machine Vision.

The AI module consists of a Mask R-CNN model using Detectron2 to extract binary
images (called masks) of the belly and melanin spots using instance segmentation.
The output of this module is a belly mask and melanin masks that is used to compute
the path in the image plane. The details of the AI module, such as model, annotation
and image augmentation are explained in section 3.3: AI Learning.

The feature extraction module uses the belly and melanin masks to compute the start
and end points of a path while using the melanin spots as obstacles. OpenCV func-
tions and algorithms such as findContour(), convexHull(), fitLine(), and moments(),
to name a few, are used. The output of this module is the pixel values of the two
ends of the belly, as well as information about the melanin spots. The details are
explained in section 3.4: Feature Extraction.
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The APF-like path planner uses the information from the feature extraction module
to generate a series of points in the image plane. The details of the path planner are
presented and explained in Section 3.5.2: APF-like path planner.

The generated points from the planner are then transformed to the world frame by
using a transformation matrix. The information on this is found in Section 3.2: Eye-
To-Hand Calibration.

By using the Moveit motion planning framework, the planned path is used to compute
a trajectory for the UR3 robot arm. This framework has access to the information
about the Gazebo simulated UR3 robot arm, and uses a joint position controller to
command the arm in Gazebo using a ROS node. This is further explained in Section
3.6: Robotic Scanning.

3.2 Machine Vision

For depth cameras, the Intel RealSense [38] cameras feature high resolution and accu-
rate depth measurements suitable for robotics applications. Their RealSense models
differ from each other mostly in terms of range, FOV, shutter technology, and extra
features.

Table 3.1: Intel RealSense Model Specs [38].

Model Ideal Range FOV (w × h) Shutter Type Extra
D457 0.6 m to 6 m 87° × 58° Global GMSL, IMU, IP65
D455 0.6 m to 6 m 87° × 58° Global IMU
D435 0.3 m to 3 m 87° × 58° Global -
D415 0.5 m to 3 m 65° × 40° Rolling -
D405 0.07 m to 0.5 m 87° × 58° Global Close range camera

As seen in Table 3.1, there are a variety of models to choose from in the RealSense
lineup. However, the cameras with IMU (Inertial measurement unit) will be excessive
for this application, as the eye-to-hand configuration implies a stationary camera with
no use of IMU. The D415 camera is a low-cost camera with a narrow FOV, in addition
to having a rolling shutter, meaning the image can be distorted when capturing high-
speed objects [39].

The D435 camera acts as the middle ground, featuring a wider field of view at 87°×58°,
suitable for the application, as it can detect objects earlier than a camera with a
narrower FOV like the D415. Even though a rolling shutter would have been sufficient,
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as the salmon does not move a very high speeds, the global shutter acts as a bonus.
The camera is also mounted within the ideal range, making it a fitting choice.

The machine vision is composed of an eye-to-hand mounted Intel® RealSense D435
RGB-D camera [40]. It is positioned on a tripod over the conveyor belt to obtain a
complete view of the salmon fillet, which is about 0.6m x 0.25m x 0.03m in size. The
same position applies for the simulated camera, and it uses the Realsense Gazebo
plugin [41]. The camera color optical frame can be seen in Figure 3.6, and with
respect to the image plane, it can be seen that the z-axis points outward, while the
x- and y-axis points to the right and down respectively.

Figure 3.6: Pose of the camera_color_optical_frame above the conveyor in the simulated
environment.

Camera Calibration

As explained in Section 2.2, a camera must be calibrated, both in terms of intrinsics
and extrinsics. With a real camera, this can be done using the camera_calibration()
ROS package [42], using a printed checkerboard. This calibration utilizes the OpenCV
camera calibration [14], to calculate the intrinsics and extrinsics parameters described
in Section 2.2.1 until the checkerboard has no distortion.

For the simulated system, the RealSense Gazebo plugin is used [41]. This plugin
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makes it possible to publish information from the Gazebo simulation, like color im-
ages, depth images, and point clouds to different topics. For this application however,
only the color and depth image are subscribed to by another node, so that the data
can be further processed in the robotic pipeline. Note that the color and depth images
are not aligned by default, so they have to be aligned by using another ROS node [43].
This node subscribes to the topics published by the color image (/color/camera_info,
/color/image_raw) and depth image (/depth/camera_info and /depth/image_raw).

Eye-To-Hand Calibration

It is important to establish the relationship between the different frames used in the
system, as it enables data to be translated between them. The relationship between
the camera frame and the TCP frame, found through the eye-to-hand calibration, is
what allows for the visual servoing as discussed in Section 2.3.3. To do this, WhyCode
markers [44] can be used, which is a precise localization system utilizing small markers
to estimate position. One marker is placed on the robot’s end effector, enabling the
RealSense camera to estimate its pose with high accuracy. There are essentially four
different frames to consider, being:

• Fc : Camera frame.
• Fb : Robot base frame.
• Fb : WhyCode marker frame.
• Ft : Attached Raman sensor (TCP) frame.

These are visualized in Figure 3.7:

Figure 3.7: Different Frames of Robotic System
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As described in Section 2.2.2, internal sensors in the robot arms joints can be used to
estimate the transformation between two frames. This also applies when finding the
transformation from Fb to Fc. Since the marker is attached to the arms end effector,
the relationship between this frame Fm and the tool frame Ft remains constant.
Since the position of the end-effector is known with respect to Fb through the forward
kinematics, the transformation can be found by solving the following set of equations,
as used in experiments carried out by Fenelon et al. [11]:

pbt(λ1) = pbc +Rbcpcm −Rbt(λ1)ptm,

pbt(λ2) = pbc +Rbcpcm −Rbt(λ2)ptm,

...

pbt(λN) = pbc +Rbcpcm −Rbt(λN)ptm,

This can be optimized using the optimization library from SciPy [45].

Figure 3.8: Transformation from world frame to camera_color_optical_frame, Twc.

In the simulation, the arm is mounted on the stand, therefore, the hand to eye
calibration is performed from the world to the camera frame, instead of the base to
the camera frame. This camera position vector, as seen in 3.8, can be found using
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the tf library [46]. The URDF of the RealSense contains many links and thus results
in respective frames when loaded in Gazebo and Rviz.

Figure 3.9: Displacement between the two frames, camera_color_optical_frame and cam-
era_base_link.

A yaml file is used to load the placement of the camera into Gazbo and Rviz, and its
values are used to position the camera_base_link with respect to the world are as
follows:

x: 0.4 m
y: 0.0 m
z: 1.5 m
roll: 0 radian
pitch: -3.141592 radian
yaw: 1.570796 radian

However, since the pixel deprojections are computed with respect to the cam-
era_color_optical_frame, as seen in Figure 3.9, the homogeneous transformation
matrix from this frame to the world frame is the one of interest. Using the tf library,
this can be computed as follows,
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tfBuffer = tf.T ransformListener()

(trans, rot) = tfBuffer.lookupTransform(world_frame, camera_color_optical_frame, time = 0)

T_world_camera = tfBuffer.fromTranslationRotation(trans, rot)

Here, rot represents the rotation, and trans represents the translation of the cam-
era_color_optical_frame with respect to the world frame. Given the rotation and
translation from the lookupTransform(), the 4x4 homogeneous transformation matrix
can be computed using the fromTranslationRotation(), as explained in Section 2.1.1.
The resulting matrix is seen in Figure 3.2.

Table 3.2: Transformation matrix from world to camera_optical_frame.

T_world_camera =


0 1 0 0.4
1 0 0 0.015
0 0 1 1.5
0 0 0 1



It can be seen in the matrix, that the optical frame has a 0.015m displacement in the
world frame y direction. This small displacement is clearly seen in Figure 3.9, and is
between the physical frame of the camera and the lens used for the color imager.

3.2.1 Pose Estimation

The RealSense is used to deproject a generic point in the image plane, pvi={xvi, yvi},
to the world frame Fw. This deprojection from the point (xvi, yvi) in the 2D image
plane, to the corresponding 3D position p̃wi is calculated with the following functions
from the ROS-Gazebo Realsense plugin [41]:

d = aligned_depth_frame[xvi, yvi] (3.1)

pci = rs2_deproject_pixel_to_point(K, pvi, d) (3.2)

p̃wi = mat_mul(Twc, p̃ci) (3.3)

where:
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d Depth measurement in meters
K Intrinsics parameters
pci Pose of point Pi with respect to camera frame Fc

pwi Pose of point Pi with respect to world frame Fw

Twc Homogeneous transformation matrix from frame Fw to Fc

3.3 AI Learning

To retrieve useful information from the RealSense camera, it is necessary to implement
some image processing algorithm or machine learning model. The objective of the AI
step in the robotic pipeline is to detect the regions of interest, being the belly and any
present melanin spots on the salmon. To achieve this, a fast real-time deep learning
model for classification is used.

3.3.1 AI Model Selection

Since the goal of the AI model is to detect the belly of the fillets and any melanin
spots, it is fitting to choose a segmentation algorithm. Compared to an object detec-
tion algorithm, segmentation will more precisely classify the belly, with its pixel-wise
classification, compared to object detection, which only returns a bounding box. It
is also not desirable to define, for example, circular-shaped melanin spots as boxes,
which makes a segmentation method fitting. Instance segmentation is chosen over se-
mantic segmentation, so that the feature extraction of the melanin masks is returned
in separate binary masks, instead of having to use image processing techniques to
distinguish between them.

The AI-based learning is developed with the help of Detectron2 [47], which is an
open-source library of state-of-the-art machine learning models for object detection
and segmentation developed by Facebook AI Research (FAIR). Their library has a
wide variety of models. Examples include Faster R-CNN, RetinaNet, and RPN & Fast
R-CNN. However, they are suitable for different purposes. For instance segmentation,
Mask R-CNN is the only available model. The different variations available in the
library are based on three different baselines, listed in Table 3.3. These are using
different backbone combinations.

Table 3.3 shows that the R50-FPN model has the fastest inference time of 0.043s,
which is suitable for real-time application. It also has the fastest training time per
iteration. As described in the documentation [47], most of the models are trained with
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Table 3.3: Detectron2 Instance Mask R-CNN models [47].

Name lr sched Train Time (s/iter) Inference Time (s) Model ID
R50-C4 1x 0.584 0.110 137259246

R50-DC5 1x 0.471 0.076 137260150
R50-FPN 1x 0.261 0.043 137260431
R50-C4 3x 0.575 0.111 137849525

R50-DC5 3x 0.470 0.076 137849551
R50-FPN 3x 0.261 0.043 137849600
R101-C4 3x 0.652 0.145 138363239

R101-DC5 3x 0.545 0.092 138363294
R101-FPN 3x 0.340 0.056 138205316
X101-FPN 3x 0.690 0.103 139653917

a 3x learning rate schedule, and that the 1x models are under-trained, but included
for other purposes. This makes the R50-FPN (Model ID: 137849600) a fitting model
choice for the application.

3.3.2 Artificial Melanin Spots and Image Annotation

At the time of this Thesis’ production and publication, the dataset of salmon fil-
lets with melanin spots was still not available, as it is sensitive information for the
company that requires adherence to confidentiality agreements. This process took
longer than anticipated, due to unforeseen events. Therefore, a previously collected
dataset with healthy fillets was altered by adding pseudo-melanin spots, mimicking
real melanin spots. The size of these is inspired by other research addressing melanin
spots [48] [49]. The image manipulation was done in Pinta [50], an open-source pro-
gram for image editing and drawing. The dataset used contains images of B-trimmed
[51] salmon fillets with a resolution of 1920x1080. The images were annotated to
provide the ground truth for the AI using VIA (VGG Image Annotator) [52], as seen
in Figure 3.10.
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Figure 3.10: Image Annotation Using VGG Image Annotator

3.3.3 Model Training

The Mask R-CNN model was used for both detecting the belly, and the pseudo-
melanin spots. The model is pre-trained on the MS-COCO dataset [53].

The model training for this thesis was done on the NMBU Robotics lab workstation
with the following configurations:

Motherboard: Lenovo P920
CPU: Intel® Xeon(R) Silver 4114 CPU @ 2.20GHz × 20
GPU card: NVIDIA GeForce RTX 2080
CUDA Toolkit: 11.4
Operative System: Ubuntu 20.04 LTS

The Detectron2 framework operates under the libraries PyTorch 1.9.0, Python 3.8
and OpenCV 4.5.6, and the ROS framework runs on the Noetic distribution that
supports Python 3.

The dataset used for building the model consists of 87 images of 36 salmon, where
29 of the images has added pseudo-melanin spots. These 87 images are split in a
79:17:4 (train:validation:test) ratio, for the training of the Mask R-CNN model from
the Model Zoo and Baselines [47]. Since the dataset is sparse, data augmentation is
used to provide the model with more data for its training. The augmentations, value,
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and probability are listed in Table 3.4, and some examples of image augmentation
are seen in Figure 3.11.

Table 3.4: Image Augmentation, values, and probabilities.

Transform parameter Value Probability
Random brightness 0.2 to 0.8 0.5
Random Contrast 0.2 to 1.5 0.5

Random Flip horizontal 0.5
Random Flip vertical 0.5

Random Saturation 0.3 to 1.8 0.5
Random Lightining 0.8 0.5
Random Rotation -30 deg to 30 0.5
Random Resize 480 x 640 0.5

Figure 3.11: Image Augmentation Examples, showing how three different images are being
applied different augmentation.

3.4 Feature Extraction

As discussed in Section 2.5, the artificial potential field model defines a field U with
a known goal and start positions, being qs and qg respectively, as well as i known
obstacle areas COi. The feature extraction step aims to extract this information from
the binary images provided by the machine learning model. These binary images
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are processed using various image processing techniques, provided by the open-source
computer vision software OpenCV [54], which will be further explained in this section.

The feature extraction is essentially two processes run in parallel, where the binary
image of the belly is processed to obtain qs and qg, and the n binary image(s) of the
n melanin spot(s) are processed individually to find COi. For a fillet with only one
melanin spot, this is visualized in Figure 3.12.

Figure 3.12: Feature Extraction visualized, showing how the camera feed is processed.

3.4.1 Extracting Features of Belly (qs and qg)

The desired scan line is a straight line between each of the far ends of the belly,
with an added offset towards the salmon loin, as suggested by Nofima Researchers
[11]. To find these points, the binary image of the belly is processed by first finding
the contour of the mask, using the functions threshold() and findContours(). Using
this contour, a line is fitted through it by using the function fitLine(), which aims to
minimize the following function [55]: ∑

i

ρ(ri),

where:

ri: Distance from the ith point and the line.

ρ(r) =
r2

2
: Chosen L2 distance function.

This line is constructed based on an initial point in the middle of the contour, and
its slope. Based on this initial point, two close, neighboring points on the line are
found on each side of this point by using elementary trigonometry. These points
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are then individually moved away from the initial point until they intersect with the
contour. Lastly, the suggested offset toward the loin is applied, by moving the points
orthogonally away from the line, a distance of 1/30 of the scan length ||qs − qg||,
marking qs and qg.

These steps are visualized in Figure 3.13, showing a zoomed-in area of a fillet with
the explained feature extraction steps for the belly.

Figure 3.13: (a): Raw Image, (b): Binary Mask, (c): Contour of Mask, (d): Fitted Tine
Through Contour, (e): Neighbor Points, (f): Line-Contour Intersection, (g): Added Offset,
(h): Final qs and qg

3.4.2 Extracting Melanin Spots

Many of the same functions used to find the qs and qg in Section 3.4.1, will also be
used extract the information about melanin spot(s). Since the AI model outputs n
binary images, the presented feature extraction will apply for each individual binary
image.

Defining the Area CO

As discussed in Section 2.5, about artificial potential fields, the method can be prone
to the local minima problem. One of the scenarios where local minima occur, as
shown in Figure 2.8, is when the robot gets stuck in a net zero part of C. Therefore,
an approach of enclosing potential net-zero areas is chosen. This is done by first
finding melanin spot i’s contour, before using its corresponding convex hull to define
COi. This will only have an effect on concave melanin spots, and make the definition
of CO better for the planner. It is achieved by finding the contour, followed by
applying the OpenCV function convexHull() on the contour.
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Finding the Center of Mass

In addition to the convex hull, the center of mass for a given melanin spot is found,
which will be used and will be used for path planning later. The center of mass can be
found using the OpenCV function moments() [55] on the defined convex hull, along
with some simple calculations as shown in Algorithm 1.

Algorithm 1 Mass center of convex hull
1: moments = cv2.moments(contour)
2: cx = int(moments[′m10′]/moments[′m00′])
3: cy = int(moments[′m01′]/moments[′m00′])
4: mass_center = (cx, cy)

Scaling CO

Finally, to define a margin around the melanin spot, the size of this convex hull is
scaled by a factor kscale. This will be further explained in Section 3.5.2. This scaling
is presented in Algorithm 2.

Algorithm 2 Scaling contour
1: moments = cv2.moments(contour)
2: cx = int(moments[′m10′]/moments[′m00′])
3: cy = int(moments[′m01′]/moments[′m00′])
4: contour_norm = contour − [cx, cy]
5: scaled_contour = contour ∗ kscale

A more visual explanation of the feature extraction of CO is shown in Figure 3.14,
where (a) shows an arbitrary melanin spot, (b) shows the calculated contour in green,
(c) shows the convex hull, as well as the mass center, and (d) shows the scaled convex
hull.

Figure 3.14: (a): Arbitrary Melanin Spot Mask, (b): Contour (green), (c): Convex Hull
and Mass Center, (d): Scaled Convex Hull with Mass Center.

42



3.5 Path Planning

The path planner developed in this thesis is based on artificial potential fields, a
planner explained in greater detail in Section 2.5. To stay consistent and to avoid
misunderstandings, the melanin spots will henceforth be referred to as "obstacles",
as it is more suitable when discussing the planner. As shown in the feature extraction
step, the input parameters to the planner are the start- and stop positions, namely qs
and qg, as well as the i defined obstacles COi. The goal of the planner is to generate
the scan profile from qs to qg, and avoid any obstacles that interfere with the desired
straight scan profile. The planner operates in the two-dimensional image space, thus
C ∈ R2. Lastly, this two-dimensional path in the image plane must be transformed
to the corresponding three-dimensional path in the robots’ frame with the use of the
RGB-D camera, as explained in Section 3.2.1.

3.5.1 Standard Artificial Potential Fields

As discussed in Section 2.5, the bare bones APF algorithm defines an attractive
function and a repulsive function, with two types of attractive potential, paraboloidal
and conical. Using a paraboloidal field will result in a greater attractive force, and
thus steps toward qg, close to the starting position qs, where the distance ||e|| is
significantly bigger. This also makes the obstacle avoidance behaviour inconsistent
by having different step sizes throughout the scan line. Therefore, a conical approach
was chosen, resulting in constant attraction and more predictable steps towards the
goal.

Using the formulas for attractive force with conical field, Fa2(q) (Equation 2.25) and
repulsive force fr,i(q) (Equation 2.29) from Section 2.5.

fr,i(q) = −∇Ur,i(q) =


kr,i
ηi2(q)

(
1

ηi(q)
− 1

η0,i

)γ−1

∇ηi(q) if ηi(q) ≤ η0,i(q)

0 if η0,i(q) > η0,i

,

and
fa2(q) = −∇Ua(q) = ka

e(q)

||e(q)||
.

The resulting path is seen in Figure 3.15.
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(a) Shortest path is taken (b) Dense waypoints

Figure 3.15: Resulting Path of Normal Artificial Potential Field

Shortcomings

After running a demonstration of the bare bones APF, it occurs that some challenges
arise with this planner. The planner follows the desired straight scan line (green
dotted line in Figure 3.15) at the start, between x = 180 and x ≈ 270. However,
after it has deviated from this line at x ≈ 280 to avoid the obstacle, it does not go
back to the desired path as seen between x = 310 and x = 480. This behaviour is not
unexpected from the planner, as it is designed to move towards the goal in a straight
path when not obstructed by a repulsive field, but it is not optimal for generating
a scan profile, as the straight line should be followed when possible. In addition to
this, the planner first takes decreasingly smaller steps at x ≈ 280, followed by larger
steps at x ≈ 300, as seen in Figure 3.15b. This is because kr and ka first oppose each
other and then collaborate. If the planner is not tuned well, it will also have produce
an oscillating path at x ≈ 285, since the attractive and repulsive forces alternate.
By instructing the robot arm to follow this path, it will have to follow unnecessarily
many waypoints in this area, and it will not be able to follow the desired path after
a circumvention.

3.5.2 APF-like Path Planner

The shortcomings of the basic version artificial potential field planner call for another
approach aimed at overcoming the problems observed in Section 3.5.1. Mainly, being
able to generate a path which follows the desired straight path when possible and also
avoids compressed steps and spread steps due to opposing and collaborating forces,
respectively.
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Desired Behaviour:

• Follow the desired straight line when not obstructed by obstacles.

• Avoid opposing forces, resulting in clumped waypoints.

• Avoid collaborating forces, resulting in spread waypoints.

• Predictive obstacle avoidance behaviour regardless of distance ||e|| to goal qg,
requiring homogeneous fa.

The conventional fields are radial, which makes the attractive and repulsive forces
oppose each other in CO. This is the origin of local minima, and the varying step
sizes due to opposing and collaborating forces. To avoid this problem, and create a
planning algorithm that fulfills the criteria listed above, the radial fields are changed
to directional-uniform, local fields, aimed at generating the necessary forces for con-
trolled and successful planning, as well as not having the ineffective opposing forces.

The three forces used are directed either parallel with- or orthogonal to, the desired
straight line from qs to qg. The attractive force fa,goal, is leading the step-wise planner
to qg, is globally defined across C, and is parallel to this desired line. It is therefore
not dependent on the current configuration q, and it is effectively the only necessary
force when no obstacles are present, as it will not deviate from this desired line in
such case. Using the same reasoning as for the standard APF, this force is based on
a conical potential field, resulting in constant, predictable steps. The field is defined
as follows:

fa,goal = ka,goal
j

||j||
, (3.4)

where ka,goal is the attractive coefficient, and j = (qg − qs).

Since this attractive field is parallel to the desired path, the planner will fail to reach
the goal once it first deviates from it, like in the case of circumventing an obstacle.
Therefore, it is necessary to define a field that aims to take the planner back to the
desired scan path after the deviation. To do this, another field, fa,desired, is defined,
which is directed orthogonally to the desired path from the current configuration q.
Choosing some arbitrary points, qs (green), qg (star), and q (purple) this orthogonal
vector, denoted w, is visualized in Figure 3.16.
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Figure 3.16: Direction of fa,desired

Knowing j = (qg − qs) and v = (q − qs), w can be found using the projection and
simple vector calculations:

w = v − v · j
j · j

· j. (3.5)

The field is then defined as follows,

fa,desired(q) =

ka,desired
w

||w||
if q /∈ CO

0 if q ∈ CO
, (3.6)

where ka,goal is the attractive coefficient.

These two simple fields combined will take the planner toward qg, and encourage it to
follow the desired path, instead of the shortest path, as seen in the standard artificial
potential fields. The two vector fields fa,goal and fa,desired are visualized in Figure
3.17.
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(a) Attractive Field Towards Goal, fa,goal.
(b) Attractive Field Towards the desired path
(center) fa,desired(q).

Figure 3.17: Visualization of The Two Attractive Fields.

For the i obstacles in C, The repulsive field in COi, is defined based on its size. As
explained in Section 3.4.2, the center of mass for the individual melanin spot masks
are found, and is used to define the repulsive field as follows:

1. Draw a straight line inside COi, through the center of mass, and parallel to the
desired path.

2. For any point inside COi, the field is directed orthogonally away from this drawn
line.

3. The field strength is proportional to the distance to the edge of COi, and the
repulsive coefficient kr

The strength of the field is given by Equation 3.7,

fr(q) =

kr ∗ dc
−w
||w||

if q ∈ COi

0 if q /∈ COi

, (3.7)

where kr is the repulsive coefficient, w is the same as from Equation 3.5, and dc is
the distance from q, to the edge of COi in the direction of the field.

An illustrated example of a simple circumvention, and the forces affecting the planner
steps is shown in Figure 3.18, where fa,goal is yellow, fa,desired is blue, and fr is red.
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Figure 3.18: Simple Visualization of forces during circumvention, where the planned path
is created from left to right.

Planner Pseudocode

Algorithm 3 Planner
1: current_position = q_start
2: path_image = [current_position]
3: while path < max_iterations do
4: f_goal = fa,goal
5: f_desired = fa,desired(current_position)
6: f_repulsive = fr(current_position)
7: f_total = f_goal + f_desired + f_repulsive
8: next_position = current_position + f_total ▷ Take step in direction of

f_total
9: if distance(next_position, q_goal) < goal_threshold then

10: add next_position to path
11: add q_goal to path
12: exit loop ▷ Exit if inside goal threshold
13: end if
14: add next_position to path_image
15: current_position = next_position
16: end while
17: return path_image ▷ Return list of waypoints

The planner returns a list of waypoints path_image = [pt0, pt1, ...ptN ] in the image
plane, which is passed forward to the robotic scanning.
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3.6 Robotic Scanning

The physical robotic arm is of the type Universal Robots™CB series UR3 [56]. It has
an ad hoc mounted casing for a MarqMetrix All-in-One Raman System [57]. The
digital twin of the system in Gazebo features the arm [58], with a dummy Raman
sensor, a conveyor belt [36], the RealSense D435 camera [41], and the image of the
salmon is printed onto a flat plate on top of the conveyor.

The arm is manipulated using Moveit [59], which is state-of-the-art software for robot
arm manipulation. It has packages for over 150 different robots [60], and allows for
easier manipulation of both real and simulated robotic arms. An example of the
Moveit interactive planner is seen in Figure 3.19.

Figure 3.19: Example of the Interactive Interface of Moveit

Moveit is integrated with ROS using the move_group node [61], which can access
information on the arm, including joint states, transform information, controller in-
terface and more. It is used for calculating inverse kinematics. The node uses the
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following parameters,

planning frame: World
joint tolerances: 0.001 radian
position tolerances: 0.05m
end_effector link: TCP
planner: RRT Connect
velocity, acceleration scaling: 1.0
step_size: 0.01m
jump threshold: 0.0m

The APF-like planner generates waypoints in the image plane, which needs to be
transformed into a pose_list_world = [posew0, posew1, ...posewN ], in the world frame
Fw using Equation 3.1-3.3, as repeated under:

d = aligned_depth_frame[ptix, ptiy]

pci = rs2_deproject_pixel_to_point(K, pti, d)

p̃wi = mat_mul(Twc, p̃ci)

The list of waypoints in the image plane, computed by the planner, can be lengthy,
as the planner needs sufficiently small steps for the potential fields to have an effect.
However, the robotic system does not benefit from a large number of waypoints, as
the inverse kinematics and corresponding trajectory will have to take minor unnec-
essary details into consideration. To reduce the number of waypoints that have to
be transformed to the world frame for the robot to follow, only a subset,n_steps, of
evenly spread steps, including the start and goal, are chosen. This can be found using
the open-source numerical computing library NumPy [62], as follows,

list_indices = np.round(np.linspace(0, len(path)− 1, n_steps).astype(int))

path_with_35_steps = path[list_indices]
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Figure 3.20: Visualized offset between deprojected path and planned path, Rviz

The computed path in the image plane and the corresponding poses in the world
frame Fw are visualized in Figure 3.20. It is worth mentioning that the deprojected
waypoints have an added z-offset from the conveyor to have some distance from the
Raman sensor to the fillet, and that the orientation of the TCP is predefined, so that
the sensor is orthogonal to the conveyor.

Robot Movement Types

This new list of poses pose_list_world = [posew0, posew1, ...posewN ], in the world
frame is used in the move_group node for creating trajectories and moving the arm
so that the TCP follows the desired path. Three different ways of generating a path
and moving the arm have been tested, as presented by Algorithms 4-6 below.

Algorithm 4, move_L()

This robot movement type iterates through the list of poses by computing and exe-
cuting the trajectory between each individual pose. This will make the arm move in
a straight line between the poses, and since each trajectory is unique, the arm will
accelerate and decelerate throughout the iteration, likely making it slow. To highlight
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the impact of the robot arm’s acceleration and deceleration between the points, the
velocity and acceleration scaling (vel_scale and acc_scale) are tested for the max
value 1.0 (Algorithm 4a), and smaller value 0.2 (Algorithm 4b).

Algorithm 4 move_L(target_poses)
1: for pose in target_poses do
2: (plan, fraction) = move_group.compute_cartesian_path(pose)
3: plan = move_group.retime_trajectory(move_group.get_current_state(),plan,

vel_scale, acc_scale)
4: move_group.execute(plan)
5: end for

Algorithm 5, move_J()

This movement type can only plan for one pose, meaning the only way to use this
function is by iterating through the list of the planned path. The same acceleration
and deceleration between the individual poses applies for this algorithm.

Algorithm 5 move_J(target_poses)
1: for pose in target_poses do
2: move_group.set_pose_target(pose, end_eff_link)
3: move_group.go()
4: move_group.stop()
5: move_group.clear_pose_targets()
6: end for

Algorithm 6, move_waypoints()

This algorithm computes a trajectory for the entire list of poses, where the resulting
trajectory has some freedom for smooth movement between them. To test the robot
arm’s ability to follow the trajectory, the velocity and acceleration scaling are set to
1.0.

Algorithm 6 move_waypoints(target_poses)
1: (plan, fraction) = move_group.compute_cartesian_path(target_poses)
2: plan = move_group.retime_trajectory(move_group.get_current_state(),plan,

vel_scale=1.0, acc_scale=1.0)
3: move_group.execute(plan)
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Chapter 4

Results and Discussion

This chapter will present and discuss the performance of the simulated robotic system,
including the challenges that have arisen, limitations, and alternative approaches.
The chapter is split into sections covering the steps of the built pipeline that lay the
foundation for robotic scanning, before presenting and evaluating the performance of
the simulated robot manipulation itself. The dataset consists of 87 images of fillets,
where 29 of them have pseudo-melanin spots. Showing the results for each individual
fish would be rather inexpedient. The results from the train:validation:test split meant
that only one fillet in the test set has a pseudo-melanin spot. Therefore, some other
samples were chosen and modified after the AI was trained to represent a bigger test
set. This results in four different fillets, representing different numbers of melanin
spots that will be used throughout this results section. The four fillets are shown in
Figure 4.1.

53



(a) fillet_0 (b) fillet_1

(c) fillet_2 (d) fillet_3

Figure 4.1: Test fillets

The samples are named after the number of pseudo-melanin spots for simplicity, and
they aim to test different cases for the AI, the planner, and the robotic scanning. It is
worth mentioning that fish_3 is presented upside down, so the belly and the melanin
spots are on the top side of the image. In addition to this, the fillet has the melanin
spots at the far ends of the belly. This is done to test the system further.

4.1 AI and Feature Extraction

This section will go into more detail on the results of the AI, more specifically model
training, some thoughts, and its performance as part of the robotic pipeline. Further-
more, the close related feature extraction will also be presented and discussed.

4.1.1 Model Training

The biggest limiting factor when it comes to the model training was evidently the
use of the pseudo-melanin spots. The approach is not ideal to accurately mimic the
real melanin spots, but as a proof of concept, it still demonstrates the potential of
the system, and allows for easier testing of different melanin spot locations. Using a
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software tool to modify the limited number of pictures might also make it easier for
the AI model to train and segment them, as there is a more defined border between
the healthy part of the fillet and the melanin spots.

The loss function for the model, seen in Figure 4.2, shows that the system does indeed
learn over the course of the iterations. However, at approximately 5000 iterations,
it is apparent that the model starts overfitting, as it performs better on the training
data than the validation data.

Figure 4.2: Training Loss

This observation suggests that 5000 iterations should be sufficient. A new model was
therefore trained with early stopping at 5000 iterations. The loss function for this
model is shown in Figure 4.3, and it is overall a decent result where the model learns
throughout the iterations. However, it does show somewhat slow learning after 1000
iterations, as well as the first signs of overfitting towards the end of the training. The
quality of the training data is limited both in terms of size and the use of pseudo-
melanin spots. Therefore, the potential of a well-trained and generalized model is
reduced, and this model was used for further experiments.
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Figure 4.3: Training Loss

4.1.2 AI Segmentation Performance

To get a more precise evaluation of the AI performance, it was tested in the simulated
environment on the unseen data. It was observed that both the segmentation of
the belly, as well as the pseudo-melanin spot(s) for the most part were successfully
detected with effectively no downtime in the continuous camera stream. This might
be due to the limited data, but also that the pseudo-melanin spots are very distinct
with little to no color gradient. However, the segmentation mask for the belly was,
to a small degree, inconsistent toward the tail region of the fillet, where the height
of the mask occasionally became narrower. This might be the result of poor image
annotation of the dataset, lighting in the simulation, or other factors, like data quality.
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(a) Realsense View

(b) Belly

Figure 4.4: AI Segmentation Masks for fillet_0.

The result from the AI segmentation of fillet_0, seen in Figure 4.4, represents a simple
case, where it does not have any melanin spots. However, the segmented belly (4.4b)
is narrow toward the tail of the fillet, which only applied for this sample during the
various tests.
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(a) Realsense View

(b) Belly

(c) Melanin Spot

Figure 4.5: AI Segmentation for fillet_1.
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fillet_1 aims to test another simple case for the AI where only one melanin spot is
present. Figure 4.5 shows the two separate binary images returned by the AI. This
fillet, contrary to fillet_0 has a more precise segmented belly, with no narrowing
toward the tail region.

(a) Realsense View (b) Belly

(c) Melanin Spot (d) Melanin Spot

Figure 4.6: AI Segmentation for fillet_2.

The two melanin spots present on fillet_2 aims to represent a more difficult case.
It showcases the systems instance segmentation, as the two spots are returned in
separate binary images.
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(a) (b) (c)

(d) (e)

Figure 4.7: AI Segmentation fillet_3.

Even though fillet_3 is upside down, the AI manages to successfully segment the
belly, as well as the three melanin spots, as seen in Figure 4.7. Since the training
data is limited, the image augmentation provides the model with more samples to
learn from, and the orientation for this fillet does not limit the segmentation.

Overall, the AI model performs quite well, even though it shows small signs of weak-
ness in segmenting the belly, like for fillet_0. This encourages a better-trained model
with more accurate annotations. It should be mentioned that instead of using in-
stance segmentation to detect the belly, object detection should be considered, as
this simpler approach might give better results, and it does not make much sense to
use a complex model like instance segmentation when there is only one belly present.

As for the melanin spots, the AI showed good performance with no signs of real
downtime. This might be because all the spots have the same color, and that they
have no smooth transition to the healthy part of the fillet. It is hard to say how
well this ad hoc solution will carry over to the real melanin spots, which might not
be as well defined as the pseudo-melanin spots in this thesis. However, as a proof
of concept approach, it shows promising results. The model demonstrates promising
behaviour on the belly, which is a less distinct part of the fillet than the discolored
melanin spots. Therefore, it is not believed the model will have significant difficulties
training and detecting real melanin spots, given a larger dataset with real melanin
spots.
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4.1.3 Feature Extraction

The feature extraction algorithm is overall consistent with finding qs and qg from the
binary mask. However, as mentioned in Section 4.1.2, the AI occasionally returns
narrow or oddly shaped masks of the belly, see Figure 4.4a. With the implemented
approach of fitting a line through the segmented mask of the belly, explained in
Section 3.4.1, this could cause this line to not pass through this narrow part, meaning
qs would be misplaced. This could either encourage a better-trained AI-model, or a
more robust approach for finding qs and qg, like choosing the top or bottom corners
of a bounding box from object detection. However, the feature extraction seems to
be consistent apart from this case.

As for the melanin spots, it is hard to really evaluate the effect of using convex hull
to avoid local minima problems, since the pseudo-melanin spots are not as big or
complex shaped. The approach may also limit the free space the planner can use
when circumventing a melanin spot. For the tested cases, however, it did not affect
the planner in a negative or positive way. The approach of proportionally scaling an
area CO by its original size might present problems for different sized, for example,
considerably bigger or smaller, melanin spots, and it should be considered to rather
scale by some constant margin.

4.2 Path Planning

Before reviewing and discussing the general performance of the planner on the dif-
ferent test fillets, the parameters of the planner must be tuned, being ka,goal and
ka,desired. These parameters control the size of the steps toward qg and the desired
path respectively, and it will therefore affect plan quality and computation time.

4.2.1 Tuning the Planner Parameters

Choosing an appropriate value for the attractive force gain ka,goal is important to
ensure good performance. The parameter is the only one responsible for the pro-
gression towards qg, meaning it also controls the computation speed of the step-wise
planner. An increased gain will therefore mean bigger, thus fewer steps, and faster
computation time, at the cost of quality. The increased steps will make the planner
become decreasingly accurate, as it is not exposed enough to the different fields for
them to be effective, until some point where it can cause the planner to skip over a
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melanin spot. For this testing, fillet_2 was chosen, as it has a moderate number of
melanin spots to test the planner, as well as ka,desired = 1.

(a) ka,goal = 1, time=110 ms

(b) ka,goal = 2, time=37 ms

(c) ka,goal = 4, time=32 ms

(d) ka,goal = 8, time=7 ms

Figure 4.8: Different values for ka,goal, RealSense View
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Table 4.1: Attractive Force Tuning.

Attractive Force Tuning
ka,goal Time Continuous Plan

1 110 ms Yes
1 130 ms Yes
2 37 ms Yes
2 50 ms Yes
2 63 ms Yes
4 27 ms Yes
4 35 ms Yes
4 32 ms No
8 7 ms No
8 15 ms No

The results show varying degree of planner quality for the tested values of ka,goal. It
is also clear that this parameter has an impact on the planner’s ability to follow the
desired path, as highlighted by the blue arrows in Figure 4.8, which shows the view
of the RealSense from its pose above the conveyor belt. An increased value of ka,goal
results in fewer steps, resulting in less exposure to the force towards the desired path.
Figure 4.8d shows the planned steps rejoining the desired line close to qg, while Figure
4.8a shows the planner rejoining the desired path relatively quickly. The planned path
gets notably worse at ka,goal = 4, where it starts becoming discontinuous, marked by
the red arrow in Figure 4.8c and 4.8d. It is also evident that the computation time
is inversely proportional to ka,goal, and even though it is relatively small for all the
cases, it seems excessive to use the high detailed path generated by ka,goal = 1. A
good balance between computation time and performance seem to be ka,goal = 2.
With this value, the planner also shows promising ability to rejoin the desired path
using ka,desired = 1, which is why these values will be used for the presented results in
Section 4.2.3.

4.2.2 Choosing An Appropriate n_steps

In contrast to the planner, which benefits from a high number of steps to get the
full effect of the force fields, the waypoints set for the robot arm do not. Too many
waypoints will force the arm to go through an unnecessarily detailed plan with little
freedom for the trajectory between them, while too few will result in unsatisfactory
melanin spot avoidance. It is therefore necessary to find an appropriate number of
steps, n_steps for the robot arm.
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Since the complexity of the planning space will have a significant impact on the
required number of steps, for example, fillet_0 will effectively only require two steps,
while fillet_3 will require many more, fillet_3 was chosen for testing different values.

(a) n_steps=20

(b) n_steps=25

(c) n_steps=30

(d) n_steps=35

(e) n_steps=40

Figure 4.9: Different Values of n_steps

From the tested values, it is can be observed that n_steps ≤ 30 (Figure 4.9a-4.9c)
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show some tendencies to discontinuity, which might result in unsatisfactory melanin
spot avoidance, while 40 steps (Figure 4.9e) results in close to overlapping waypoints.
Setting n_steps = 35 seem to offer a balance between them, the path looks quite
continuous, while not having these dense, waypoints, as seen in Figure 4.9d. Based
on these observations, 35 steps were chosen for further testing.

4.2.3 Planned Paths

The parameters used to obtain the results in this section are the following: ka,goal = 2,
kr = 1, ka,desired = 1, goal_thresh = 2, max_iterations = 200, kscale = 2, and
n_steps = 35. The test samples are presented both relatively parallel with the
conveyor and with an angle of ψ = +18° about the z-axis. This angle was chosen as
it is close to the maximum angle the plate with the printed salmon can be presented
before interfering with the robot base, and hanging over the side of the conveyor.

fillet_0

(a) Parallel Placement (b) Incline Placement

Figure 4.10: Planned Path fillet_0
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fillet_1

(a) Parallel Placement (b) Incline Placement

Figure 4.11: Planned Path fillet_1

fillet_2

(a) Parallel Placement (b) Incline Placement

Figure 4.12: Planned Path fillet_2
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fillet_3

(a) Parallel Placement (b) Incline Placement

Figure 4.13: Planned Path fillet_3

Discussion

Starting with the simple fillet_0, the planner generates the desired straight line re-
gardless of the orientation, as seen in Figure 4.10. It can be seen, that the straight line
has some minor deviations. This might come from rounding of angle values through-
out the planner calculations, and the effect of fa,desired(q). However, these deviations
are not significant. As mentioned in Section 4.2.2, for this fillet, two points would be
sufficient to describe the scan line. The 35 chosen steps has its disadvantages, as it
generates a detailed path with these small deviations.

For fillet_1, since the mass center of the melanin spot is above the desired path, the
planner circumvents under the melanin spot by the logic of the planner before going
back to the desired straight path relatively quickly, until it reaches the goal.

fillet_2 shows an example starting like fillet_1, where the mass center of the melanin
spot lies above the desired path, repelling the planner under it. The second melanin
spot is the opposite case, as the mass center lies below, repelling the planner above,
and ensuring the desired path is followed when possible. For this fillet, the planner
risks generating a path that lies outside the fillet. This might be because the scaled
contour is relatively large, and it shows a potential weakness in the planner.

Finally, fillet_3 demonstrates the planner’s ability to consistently circumvent melanin
spots and follow the desired path throughout the planner steps. It also starts close
to a melanin spot, and is immediately repelled away from it, as seen in Figure 4.13
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The choice of using 35 evenly spread waypoints shows varying degrees of importance.
For fillet_0, two waypoints, namely qs and qg would be enough information for the
arm, but as the complexity of the planner space C increases, more waypoints are
needed. For the most complex planning scene, fillet_3, 35 waypoints seem quite
adequate. This parameter might need more tuning, based on the number, size, and
shape of melanin spots in the real industry. The available data for testing is still
small, and further testing is necessary to better evaluate the planner in even more
cases that might not have been accounted for in this thesis.

4.3 Scan Execution

In this section, the results of the executed scans are presented. First, the performance
of the three different robot movement types, as explained in Section 3.6, are presented,
followed by further testing of the best of the three.

Figure 4.14 shows the deprojected 2D path from the path planner in the image plane
to the 3D path for the robot in the world frame.

Figure 4.14: Planned and Execution Path.

Movement Types

This part of the thesis will take a closer look at the performance of the three different
robot movement methods discussed in Section 3.6. The following results show the

68



joint angles plotted over time for the four different movement methods on the planned
path of fillet_1, as shown in Figure 4.11a. The planned path is repeated below.

Planned Path for fillet_1
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Alogrithm 5, move_J()

(a)

(b)

Figure 4.16: Plot demonstrating joint angles w.r.t time. Start of path at t = 1208.269,
end of path at t = 1226.429.
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Algorithm 4a, move_L(), (vel_scale = 1.0, acc_scale = 1.0)

(a)

(b)
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(c)

Figure 4.17: Plot demonstrating joint angles w.r.t time. Start of path at t = 974.083, end
of path at t = 984.143.
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Alogrithm 4b, move_L(), (vel_scale = 0.2, acc_scale = 0.2)

(a)

(b)
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(c)

Figure 4.18: Plot demonstrating joint angles w.r.t time. Start of path at t = 1017.4, end
of path at t = 1033.8.

Alogrithm 6, move_waypoints()

Figure 4.19: Plot demonstrating joint angles w.r.t time. Start of path at t = 727.576, end
of path at t = 730.936.
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Performance

The resulting execution times for the different methods are presented below:

Algorithm 5, move_J() : 18.16 seconds

Algorithm 4b, move_L() : 16.40 seconds

Algorithm 4a, move_L() : 10.06 seconds

Algorithm 6, move_waypoints() : 3.36 seconds

Algorithm 5, shown in Figure 4.16, shows that the iterative approach is inefficient.
The execution takes 18.6 seconds, which is not viable for the potential of in-line
measurements. Here, wrist 3 joint, also shows that the z-orientation of the dummy
Raman sensor Ft is inverted. The step-wise motion throughout the execution becomes
clearer in Figure 4.16b, which presents a more detailed look at the elbow joint, shoulder
lift joint and wrist 2 joint. However, since the execution takes more than 18 seconds,
this steps-wise motion is somewhat smoothed out.

The shortcomings of the iterative approach is also seen in Figure 4.17, and even
though move_L() is faster than move_J(), it is still more than 7 seconds slower
than move_waypoints(). The acceleration and deceleration caused by the numerous
individual trajectories become clear in Figure 4.17b and 4.17c. The results from the
reduced velocity and acceleration scaling (Algorithm 4b), are seen in Figure 4.18.
Here, it is easier to see that the arm gradually speeds up, as the joint angles are less
jagged, which results in a slow execution time of 16.40 seconds.

Figure 4.19 shows the performance of Algorithm 6, when the trajectory is computed
and executed based on the entire list of poses. The scan takes 3.36 seconds, which
is approximately 3x times as fast as the iterative counterpart, Alorithm 4. The joint
angles show a stable, smooth execution, which was also observed in Rviz at the time
of execution.

It becomes clear that the Algorithm 6, move_list(), performs the best. The scan
takes 3.36 seconds, which is fast compared to 18.16, 16.40, and 10.06 seconds for the
three tested iterative approaches. The iterative methods result in a slow execution
time because they do not compute a single trajectory through all the waypoints, but
rather calculate and execute individual trajectories between each waypoint of the
list, making the arm accelerate and decelerate between each of them. This means
the number of steps will have a great effect on the execution time for the iterative
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methods. However, reducing the number of steps will likely not make the iterative
methods comparable with the non-iterative one, due to the acceleration between the
poses. By running these tests in the simulation, it is possible to find issues and
problems, which reduces the risks of testing the planner on a real arm.

4.3.1 TCP Tracking and Joint Results

As the non-iterative compute_cartesian_path() + execute() showed superior be-
haviour, its performance was further tested on the four different fillets: filet_0,
filet_1, filet_2, and filet_3. The fillets are presented with the orientation of ψ = 18°
about the z-axis, as this is considered a greater challenge for the arm.

filet_0

Figure 4.20: Executed Path Incline fillet_0
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Figure 4.21: TCP Zoomed fillet_0

Figure 4.22: Plot demonstrating joint angles w.r.t time. Start of path at t = 611.716, end
of path at t = 615.136.
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filet_1

Figure 4.23: Executed Path Incline fillet_1

Figure 4.23: TCP Zoomed fillet_1
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Figure 4.24: Plot demonstrating joint angles w.r.t time. Start of the path at t = 342.149,
end of the path at t = 345.289.

filet_2

Figure 4.25: TCP Zoomed fillet_2
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Figure 4.26: Executed Path Incline fillet_2

Figure 4.27: Plot demonstrating joint angles w.r.t time. Start of the path at t = 630.529,
end of the path at t = 634.109.
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filet_3

Figure 4.28: Executed Path Incline fillet_3

Figure 4.29: TCP Zoomed, fillet_3
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Figure 4.30: Plot demonstrating joint angles w.r.t time. Start of the path at t = 895.015,
end of the path at t = 898.735.

Performance

The overall performance of the simulated scans seems promising. The plots in Figure
4.20 - 4.30 show the arm’s ability accurately to track the waypoints for the TCP, as
generated by the path planner, as well as the joint angles throughout the execution.
The simple straight-line trajectory is presented by fillet_0. The TCP accurately goes
through each of the waypoints with high accuracy, as seen in 4.20. A more detailed
inspection of this trajectory is presented in Figure 4.21, and it can be observed that
the actual path has a little ‘tail’ at the beginning y ≈ 0.09, x ≈ 0.28. This probably
comes from some minor logging flaw, where the actual position started logging before
it had reached the first waypoint. The joint angles are also quite smooth throughout
the execution.

fillet_1, filet_2, and fillet_3 present different numbers of melanin spots and increas-
ing complexity of the trajectories, which are handled well by the arm. The executed
path is able to accurately go through all of the waypoints, however in these cases, it be-
comes clear that the arm does not move in a straight path between the waypoints, but
instead creates a smoother and continuous trajectory. This is naturally more visible
in the sharp turns, like fillet_1 (y ≈ 0.06, x ≈ 0.285), fillet_2 (y ≈ 0.09, x ≈ 0.335),
and fillet_3 (y ≈ 0.16, x ≈ 0.38). This type of trajectory ensures smoother execu-
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tion, and it will naturally reduce the wear on the joints in the arm. The execution
for fillet_1 (Figure 4.23) also shows the same ‘tail’ as fillet_0, which again, is likely
caused by a logging flaw.

Figure 4.31: Joints of UR3 Arm

The joint angles for the four fillets show some general tendencies. To begin with, wrist
2 joint is stationary throughout the executions. This joint will change the orientation
of the TCP in the Y Z-plane of the world frame Fw, which is not desired, since the
TCP should be orthogonal to the table. It can also be seen that shoulder pan joint
and wrist 3 joint follow each other throughout all of the executions, which ensures
the orientation of the TCP about its own Z axis does not change. The shoulder lift
joint and elbow joint seem to be countering each other, which makes sense, as the
lift joint will raise the TCP in the world frame, and the elbow joint will counter this,
ensuring the correct height of the TCP above the conveyor. The two (shoulder lift
joint and elbow joint), together with wrist 1 joint, allow the arm to reach further out
in the XY -plane of the world frame Fw, with wrist 1 joint ensuring last corrections
in TCP orientation.
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Overall, the joint angles for the four fillets points to the complex 6-DoF arm being
excessive for the task, and that a more simple robot manipulator might be sufficient
to perform this robotic scanning, like a one- or two axis. However, if the task change
slightly, like requiring more complex measurements or assessment, where the TCP
must be oriented in a more complex way, the 6-DoF arm does prove its effectiveness.

Table 4.2: Execution Times for Test Samples

Execution Times
Sample z : ψ = 18° z : ψ = 0° Mean Scan Length Avg. TCP Speed
fillet_0 3.42 s 2.56 s 2.99 s 0.3746 m 125.3 mm s−1

fillet_1 3.14 s 3.36 s 3.25 s 0.3761 m 115.7 mm s−1

fillet_2 3.58 s 3.94 s 3.76 s 0.4124 m 109.7 mm s−1

fillet_3 3.72 s 3.20 s 3.46 s 0.3961 m 114.5 mm s−1

Mean 3.465s 3.265 s 3.365 s 0.3898 m 116.3 mm s−1

The execution times, seen in Figure 4.2, shows promising results. The average execu-
tion time is 3.365 seconds, and the average TCP speed is 116.3 mm s−1. A study [63]
explains that exposure times of 1-2 seconds represent highly relevant conveyor speeds
and that the exposure time of 3-4 seconds is critical for solid results. The studies by
Fenelon et al. [31] present in-line measurements with conveyor speeds ranging from
10 mm s−1 to 100 mm s−1.

Given the speed of 100 mm s−1, the fillet will move about 300 mm in 3 seconds,
which is inside the workspace of the UR3 arm, and it would be able to scan the
fillet successfully. If the conveyor speed increases to 150 mm s−1, the arm will risk
failing, as it would move 450 mm in 3 seconds. Lastly, if the conveyor speed is
200-250 mm s−1, it can be envisioned that the arm will fail since the salmon moves
significantly quickly in, through, and out of the workspace. To solve this, an arm
with a larger workspace and higher TCP speed, or a more efficient implementation
of a path planner is required.

The fastest and slowest times are 2.56 s and 3.94 s for (fillet_0, ψ = 0°) and (fillet_2,
ψ = 0°), respectively. The two results are shown in Figure 4.32, and it is no surprise
that the fastest execution time came from the almost straight scan profile for fillet_0
(seen in Figure 4.32a). However, the slowest execution time for fillet_2 (seen in
Figure 4.32b), might be due to the quite sharp turn at y ≈ −0.05, x ≈ 0.3, which is
also the case for fillet_3. It is hard to say if that is the reason, since the execution
also shows the same ‘tail’, which might affect the time measurements, as well as the
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few test samples. Overall, the execution times are relatively close, with the number
of melanin spots showing the expected trend of increasing the execution time.

(a) Fastest Executed Path (fillet_0, ψ = 0°)

(b) Slowest Executed Path (fillet_2, ψ = 0°)

Figure 4.32: Fastest- and Slowest Executed Paths
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Figure 4.33: Fully Planned Path for fillet_2, ψ = 18°

Unsuccessful Execution

The arm performs consistently, and it was not many cases where it was not able to
complete the whole scan. However, there was one case where the planner did not
fully complete the planned path. Even though the planned path reaches the goal, as
seen in Figure 4.33, the actual execution does not reach the end, as seen in Figure
4.34 and 4.35. The more detailed plot (Figure 4.35), also shows a dense cluster of
trajectory waypoints toward the end, but the reason it did not complete the full plan
is not really understood.
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Figure 4.34: Unsuccessful Scan for fillet_2, ψ = 18°

Figure 4.35: Unsuccessful Scan for fillet_2, ψ = 18°

The observation also brings in another topic for discussion, which is the distribution
of waypoints (not trajectory points) for the arm. For a simple, close to straight scan
profile, it is quite redundant to have many waypoints aligned along this profile, instead
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it is is more appropriate to have denser waypoints for more complex parts of the scan
profile, like when the direction changes more rapidly. This is something that should
be considered, for example, by checking the angle between subsequent waypoints in
the planned path and removing excessive waypoints which do not contribute to a
significant change in direction.
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Chapter 5

Conclusion and Future Work

This chapter presents concluding remarks on the results obtained in this master’s
thesis and perspectives on the work developed here.

5.1 Conclusion

The aim of this thesis was to build a robotic Raman Spectroscopy system in simula-
tion, more specifically, by addressing the research question stated in Chapter 1: “How
can machine vision, AI-driven models, image processing, and path planning be used
to generate a scan profile and instruct a robot arm to perform an effective scanning
of salmon fillets, ensuring the avoidance of melanin spots?”. This was addressed by
introducing the robotic pipeline which was built throughout Chapter 3, Methodology,
and the results are very promising. The system uses a deep learning-powered solu-
tion, as well as image processing techniques to retrieve the required information on
the fillet, before the developed planner generates a path based on this information.

The main limiting factor in the presented work was the availability of the dataset of
salmon with melanin spots, which should be used for training the AI model, as well as
testing the performance of the new APF-like planner. This dataset was not accessible
during the course of this work, so a previous dataset had to be used to generate a new
dataset of salmon fillets with pseudo-melanin spots to mimic the unavailable data.
This resulted in a sparse dataset, limiting the training and testing of the developed
AI model and the path planner.

Using this dataset, the AI model is predominantly able to segment the binary mask
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of the belly, however, as discussed in Section 4.1.2, it might need some improvement
due to somewhat poor performance in particular scenarios. Another approach can
also be considered, like using object detection to create a bounding box instead of a
segmentation, which can also make the image processing less complex. The evaluation
of the AI-driven model’s performance on the melanin spots is limited by the dataset
availability. It does show solid performance on the pseudo-melanin spots. However, it
still needs to be tested on real ones to get an insight into its ability to segment these
image features. In addition, it is unlikely that the model training and performance
on real spots will be a challenge, considering the promising AI performance on the
belly, which is a less distinct area than the discolored melanin spots.

After tuning the parameters for the path planning algorithm, as well as evaluating
different approaches and tuning parameters for the robot movement, the APF-like
planner shows robust performance. It was successfully able to adapt to the different
number of pseudo-melanin spots and fillet orientation, resulting in complex paths and
robot trajectories. The robot end-effector is then able to accurately follow these tra-
jectories in a simulated environment with an average execution time of 3.365 seconds,
corresponding to an average TCP speed of 116.3 mm s−1, which seems promising for
the industry, as discussed in Section 4.3.1.

Based on the work developed in this thesis and the results, it is suggested to further
modify the path planner to remove redundant waypoints in the resulting path. The
most prominent example of this was seen in fillet_0, where the APF-like planner gen-
erates a relatively highly detailed path (Section 4.2.3), forcing the robot end-effector
to go through these points, as seen in Section 4.3.1. In this example, only two points
are necessary to efficiently follow the desired path, being the two extreme points. By
solving this problem, for example, by removing points that do not contribute to a
significant direction change, the robot arm will have fewer waypoints to visit, and
will be able to achieve faster execution times.

5.2 Future Work

To further elevate the concept presented in this work, a more relevant dataset fea-
turing salmon fillets with real melanin spots will give a better opportunity to more
precisely evaluate the system. The next steps also include taking the system from
the simulated environment, to using the real robot arm, natural salmon and Raman
sensor in a relevant laboratory environment. This can lead to further tuning of the
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planner based on resulting Raman spectra. Finally, by using a moving conveyor belt
and streamlining this process, the system would be one step closer to the industrial
conditions. By successfully achieving the deployment of a fully autonomous robotic
solution, food quality assessment in processing lines will become less error-prone,
more cost-effective, and highly efficient. Although this work presented melanin spots
as obstacles in the measurement of Omega-3 fatty acids, the melanin spots can also
be a region of interest. For example, the chemical content or compounds in a melanin
spot could lead to the cause of such spots. Similar visual planning and path planning
can be used to plan to one or more melanin spots and measure spectra using a Raman
spectroscopy or other sensors.
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