Norges miljg- og

|_ J biovitenskapelige

N universitet

Master’s Thesis 2024 30 ECTS
REALTEK

Comparative study of SLAM
systems in various environments
using different sensing
technologies

Sammenligningsstudie av SLAM-systemer i ulike
miljger ved bruk av forskjellige sensorteknologier

Tor Erik Aasestad & Marko Miric

Applied Robotics

Abstract

This thesis explores a comparative study on camera based and LIDAR based Simultaneous Localization
and Mapping (SLAM) systems across diverse environments, specifically agricultural orchards and urban

parking lots. For camera based systems, it also includes indoor environments.

Traditional evaluations of SLAM technologies often rely on well-known datasets such as KITTI and TUM,
which may not entirely reflect the operational challenges encountered in different real-world scenarios.
Our study extends these evaluations to include real-world datasets collected from specific environments
using both a RGB-D camera and a LIDAR. This research utilizes a range of SLAM systems, including
ORB-SLAM?2, ManhattanSLAM, RESLAM, RGBDSLAMv2 and RTAB-Map for camera-based meth-
ods, as well as A-LOAM, F-LOAM, KISS-ICP, HDL Graph SLAM, SC-A-LOAM and LeGO-LOAM for
LIDAR-based methods. We measured the accuracy of the pose estimation and the density of the resulting
maps of these systems, aiming to identify which technologies perform best under different environmental

conditions without adjusting the system parameters.

Initial findings indicate that environmental complexity significantly affects SLAM performance, with
LIDAR-based systems showing greater robustness in less structured environments. This comprehensive
comparison not only aids in understanding the relative strengths and weaknesses of SLAM systems in
different contexts, but also guides future enhancements in SLAM technology tailored to specific environ-

mental challenges.

Sammendrag

Denne oppgaven tar for seg en sammenligningsstudie mellom kamera baserte og LIDAR baserte Simul-
taneous Localization and Mapping (SLAM) systemer i forskjellige miljger, spesifikt agrikulturelle fruk-

thager og urbane parkeringsplasser. For kamera baserte systemer, blir ogsa innendgrs miljger inkludert.

Tradisjonelle evalueringsmetoder av SLAM teknologier baserer seg ofte pa kjente datasett som KITTI og
TUM som ikke alltid representerer de utfordringene som man mgter i virkelige scenarioer. Var studie
utvider disse evalueringene til a inkludere nye datasett som inneholder bade et RGB-D kamera og en
LIDAR sensor. Denne studien sammenligner en rekke SLAM systemer, som inkluderer ORB-SLAM?2,
ManhattanSLAM, RESLAM, RGBDSLAMvV2 og RTAB-Map for kamera baserte metoder og A-LOAM,
F-LOAM, KISS-ICP, HDL Graph SLAM, SC-A-LOAM og LeGO-LOAM for LIDAR baserte metoder. Vi
maler ngyaktigheten til den estimerte posisjonen og punkttettheten i det resulterende kartet for hver av de
forskjellige systemene med mal om & identifisere hvilket av sensorene som gir best resultater i forskjellige

settinger uten a justere parametere.

Vare funn viser at komplekse miljger pavirker SLAM systemene i stor grad og LIDAR baserte systemer
viser mer robusthet i mindre strukturerte miljger. Denne omfattende sammenligningen bidrar ikke bare
til & forsta de relative styrker og svakheter med forskjellige SLAM-systemer i forskjellige sammenhenger,

men ogsa til a veilede fremtidige utviklinger i SLAM-teknologi tilpasset spesifikke miljger.

il

Acknowledgements

We would like to express our gratitude to our supervisor, Weria Khaksar, for his guidance, useful feedback,
good discussions and overall enthusiastic engagement and support towards this thesis. We would also like
to thank Havard Pedersen Brandal for his contributions on inputs for the thesis and for aiding in hardware

configurations.

We also show appreciation to our co-students at Applied Robotics and teachers at the robotics group for

their friendship, support and knowledge sharing throughout our studies.

Finally, we express our sincere gratitude to our friends and families for supporting us in our journey here
at NMBU.

Tor Erik Aasestad & Marko Miric
Norwegian University of Life Sciences (NMBU)
May, 2024

il

Contents

1

Introduction 1
1.1 Motivation e e e e e 1
1.2 Problem statement and objective 2
1.3 Maincontribution L e 2
Theory 3
2.1 Simultaneous Localization and Mapping 3
2.1.1 Maprepresentations oo 4
2.1.2 Graph-based SLAM 5
2.1.3 Feature-based SLAM 6
2.2 Visual SLAM approaches 7
22.1 ORB-SLAM2 e 7
22.2 RGBDSLAMV2 . . . e 8
223 RTAB-Map e 9
224 RESLAM e 10
2.2.5 ManhattanSLAM 10
2.3 LIDAR-based SLAM approaches 12
2.3.1 A-LOAM, Advanced LIDAR Odometry And Mapping 12
2.3.2 F-LOAM, Fast LIDAR Odometry And Mapping 13
2.3.3 SC-A-LOAM, Scan Context Advanced LIDAR Odometry And Mapping 13
234 LeGO-LOAM, lightweight and ground-optimized 14
2.3.5 HDL Graph SLAM e 14
23.6 KISS-ICP . . . 15
2.4 Sensing technologies 16
24.1 DepthCamera i 16
242 3DLIDAR 17
2.5 ROS (Robot Operating System) 17
2.5.1 Datarepresentation, PointCloud2 17
252 Rosbag e 18
253 RVIZ . . . e e e 19
2.6 RTK-GNSS . . . e 19
277 Evaluation metricso e e e 20
277.1 Absolute Pose Error 20
2772 Mapdensity e e 21

v

3 Methodology 22

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Hardware e 22
3.1.1 RobotPlatform 22
3.1.2 Computer hardware for camera-based SLAM methods. 23
3.1.3 Computer hardware for the LIDAR-based SLAM methods. 23
Software 25
32.1 Oracle VM VirtualBox 25
322 Dockero 25
323 CloudCompare i i i ittt 25
324 ChatGPT e 25
Benchmark Experiments 25
3.3.1 TUM-RGBD benchmark experiment 26
3.3.2 KITTI benchmark experiment 26
Collected data e 27
34.1 Orchard e 29
342 Parkinglot 29
Ground truth generation for collected datasets 29
3.5.1 Camera-based SLAM Systems o v it 29
3.5.2 LIDAR-based SLAM systems it 31
Setup of SLAM systems o e e e e 31
3.6.1 Setup of camera-based SLAM systems 32
3.6.1.1 Conversion of collected rosbag to TUM format 32
3.6.1.2 ORB-SLAM2 e 32
3.6.1.3 ManhattanSLAM 33
3.6.1.4 RESLAM 33
36.1.5 RTAB-Map 33
3.66.1.6 RGBDSLAMV2 e 34
3.6.2 Setup for LIDAR based SLAM system 34
3.6.2.1 A-LOAM e 35
3622 F-LOAM e 35
3623 SC-A-LOAM e 35
3.6.24 LeGO-LOAM 35
3.6.25 HDLGraph SLAM 36
36626 KISS-ICP e 36
3.6.277 Reconstructedmapso 36
Calculation of density and volume L 36

4 Results

4.1 Dataset aCCUTaCy v v v v v e i e e e e e e e e e e e e e e e
42 Camera e e e e e e
42.1 TUMRGB-DDataset it
422 Orcharddataset e e
423 Parkingdataset
43 LIDAR . . .
43.1 KITTL e
432 KITTIOL e e e e e e
433 Orcharddataset
43.4 Parkingdataset

5 Discussion

5.1 Ground truthaccuracy L
5.2 Camera e
5.2.1 Environmental impact on camera-based SLAM performance
5.2.2 Quality of reconstructed maps
5.3 LIDAR e
5.3.1 Rolling Shutter in LIDAR
5.3.2 Variation in ground truth vs estimated positionerror
5.3.3 KITTIvscollected sequences
5.34 LOAMbased approaches
5.3.5 Reconstructed maps, file size, volume and density
54 LIDARvsCamera e e

5.5 Limitations .
5.6 Further works

6 Conclusion

7 Appendix

vi

37
37
37
39
56
61
65
65
65
74
75

82
82
82
82
83
84
85
85
85
86
86
87
88
89

91

98

List of Figures

O 0 9 O Nk~ W N =

LW W W W W N N NN NN NN === = = = = s =
A W N =) O©O O 0 N9 N N R~ W N = O VOV 0o NN R WD - O

Downsampling example 5
Octotree representation ottt e e e e e e e 5
Graph-based SLAM representation Lo 6
Classic visual SLAM framework [1] 7
ORB-SLAM?2 framework structure [2] e 8
RGBDSLAMYV2 framework structure [3]o 9
RTAB-Map framework structure [4] 10
RESLAM framework structure [5] e 11
ManhattanSLAM framework structure [6] 11
A-LOAMon KITTIo e 12
SC-A-LOAM framework 14
LeGO-LOAMexample 15
HDL Graph SLAM dataflow 15
HDL Graph SLAM global map example 16
KISS-ICP illustration o e 16
Image of Intel RealSense D4351 [7] 17
Image of Ouster OSO-128 e 18
Example of a PointCloud2 messageinros [8]., 18
Example of the output for “rosbag info”. L L oo 19
Compact ROS Message Type Specification for nav_msgs/NavSatFix [9]. 20
RB-Vogui configuration 24
Data collection locations 28
Image of orchard environment 30
Image of parking environment Lo 31
GPS covariance for orchard dataseto Lo Lo 37
GPS covariance for parking dataset o 38
XZplotof trajectory for fr2.desk 40
XYZ plot of trajectory for fr2. desk Lo 41
Reconstructed maps for fr2. desk Lo 42
XZ plot of trajectory for fr2_desk with_person 44
XYZ plot of trajectory for fr2_desk_with_person 45
Reconstructed maps for fr2_desk_with_person 46
XZ plot of trajectory for fr3_walking xyz 49
XYZ plot of trajectory for fr3_walking xyz, 50

vii

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Reconstructed maps for fr3_walking xyz L. 51
XZ plot of trajectory for fr3_sitting_static 53
XYZ plot of trajectory for fr3_sitting_static. 54
Reconstructed maps for fr3_sitting_static 55
XY plot for orchard (Camera) 58
XYZ plot for orchard (Camera) 59
Reconstructed maps for orchard (Camera) 60
XY plot for parking (Camera) e 62
XYZ plot for parking (Camera) e 63
Reconstructed maps for parking (Camera) 64
Legend for KITTIplots e 66
XYZplot for KITTIO1 e 68
XY, XZ,YZplots KITTIO1 68
Reconstructed maps KITTIO1 69
XYZ plot for KITTIOS e e e e e e 71
XY, XZ,YZplots KITTIOS e 71
Reconstructed maps KITTIO5 72
KITTI 05 zoomed intersection oot i it i e e 73
Legend collected datasets 74
XYZ plot for orchard (LIDAR) 76
XY, XZ, YZ plots for orchard (LIDAR) 76
Reconstructed maps for orchard (LIDAR) 77
XYZ plot for parking lot (LIDAR) 79
XY, XZ, YZ plots for parking (LIDAR) L. 80
Reconstructed maps for parking (LIDAR) 81

viii

List of Tables

O 0 N N N kWD -

[\ T O T N R S e e e e e e e
N = O 0O 00 NN N Bt W N = O

Trajectory statistics for KITTL 27
Trajectory Statistics for collected dataset 28
APE forfr2.desk 40
Map statistics for fr2.desk 43
APE for fr2_desk with_person 44
Map statistics for fr2_desk with person Lo 47
APE for fr3_walking xyz 48
Map statistics for fr3_walking xyz L 48
APE for fr3_sitting_static e 52
Map statistics for fr3_sitting_static 56
Absolute positional error for orchard (Camera) 57
Map statistics for orchard (Camera) L oo 57
Absolute positional error for parking (Camera) 65
Map statistics for parking (Camera) 65
Absolute positional error for KITTIO1 67
Map statistics for KITTIO1 e 67
Absolute positional error for KITTIO5 70
Map statistics for KITTIOS o o 72
Absolute positional error for orchard (LIDAR) 75
Map statistics for orchard (LIDAR) 75
Absolute positional error for parking (LIDAR) oo, 79
Map statistics for parking (LIDAR) oo 80

X

List of Abbreviations

APE Absolute Pose Error

EMM Environment Measurement Model
GB Gigabyte

GNSS Global Navigation Satellite System
GUI Graphical User Interface

ICP Iterative Closest Point

IMU Inertial Measurement Unit

LIDAR Light Detection And Ranging
LOAM Lidar Odometry And Mapping
MB Megabyte

ORB Oriented FAST and Rotated BRIEF
RGB-D Red Green Blue-Depth

RMSE Root Mean Square Error

ROS Robot Operating System

RTK Real-time Kinematic Positioning
SIFT Scale-Invariant Feature Transform
SURF Speeded-Up Robust Features
SLAM Simultaneous Localization And Mapping
SSD Solid-State Drive

std Standard Deviation

VM Virtual Machine

WSL Windows Subsystem for Linux

w.r.t with respect to

1. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is a technology that is advancing and becoming increas-
ingly more important by the day, particularly in the field of autonomous systems, including autonomous

driving, drones, and other various robotics applications.

In the realm of autonomous vehicles, SLAM serves great purpose in navigation, where it allows accurate
position calculation and mapping in real-time. It also pushes these vehicles towards achieving extraor-
dinary levels of autonomy, efficiency, and safety. In the aerospace industry, drones utilize SLAM for
enhanced navigation capabilities, revolutionizing tasks such as search and rescue operations, as well as

inspection and surveillance.

Moreover, the impact that SLAM can have is not only limited to urban and industrial settings. In agri-
culture, this technology revolutionizes farming practices by contributing to innovative solutions, such as
crop monitoring, precise field mapping and autonomous farming navigation. Thus, integrating SLAM
systems in agriculture introduces the prospect of improving efficiency, resource utilization, and overall

productivity.

1.1. Motivation

The rapid advancement and increasing deployment of autonomous systems in various sectors highlights
the need of having robust and reliable navigational technologies. SLAM, as a cornerstone technology, has
revolutionized how machines perceive and interact with their surroundings. However, the success of these
systems heavily relies on their ability to operate under varied and unpredictable environmental conditions.
Historically, the development and testing of SLAM technologies have been predominantly centered around
the environments that can be easily controlled or predicted, such as some urban landscapes and indoor
settings, using datasets like KITTI and TUM. These environments, while critical, represent only a fraction

of the potential applications for SLAM technologies.

Thus, the motivation for this study stems from the recognition that the real world presents a broader array of
challenges, which includes everything from fluctuating lighting conditions to dynamic obstacles in outdoor
environments. This diversity often leads to performance discrepancies that are not well-documented in
conventional SLAM studies. By extending the scope of testing to include non-traditional environments
such as agricultural fields and other urban areas, this research aims to fill a gap in existing literature. This
investigation is driven by the broader goal of enabling technological advancements that can seamlessly

transition into the practical demands of our ever-evolving world.

1.2. Problem statement and objective

While there are multiple studies ([10], [11], [12]) that compare various SLAM approaches, often using
popular datasets such as KITTI [13] and TUM [14], this thesis aims to extend the comparison to agricul-
tural and other urban environments. It is well documented that SLAM technologies may exhibit optimized
performance for the specific conditions and scenarios captured in these datasets. Recognizing this po-
tential bias, our research seeks to investigate how camera-based and LIDAR-based SLAM technologies
perform in varied settings, including orchards and parking lots, without changing the inherent parameters.
This approach not only challenges the generalizability of current SLAM systems but also addresses the

need for broader validation across diverse real-world applications.

To create an evaluation baseline, the camera-based and LIDAR-based methods are firstly ran on TUM
[14] and KITTI [13], respectively. This provides a benchmark for further analysis with other datasets and
confirms that the methods are implemented correctly. The SLAM systems will then be evaluated on the
self collected dataset to assess the performance of each of the sensor-based SLAM systems within the
same environments. To add to this, the parameters of the SLAM systems will not be altered for the TUM
and KITTI dataset, nor the collected dataset, as mentioned earlier. This is done to maintain consistency

and fairness in the comparative analysis between different environments.

1.3. Main contribution

In contributing to methodological diversity using various datasets, this thesis aims to highlight the impor-
tance of testing SLAM technologies in a wider range of environments beyond those typically represented
in benchmark datasets. By doing so, it not only provides a more comprehensive understanding of SLAM
performance across different domains but also encourages the development of systems that are more adapt-
able and effective, regardless of the application context. This endeavor aims to inspire other researchers to
consider a broader spectrum of testing environments and scenarios when developing future SLAM frame-
works. This could potentially contribute to innovations in SLAM technologies that can transition from
urban landscapes to more complex environments, such as agricultural fields, without fine tuning the pa-
rameters in between each environment. Such a methodological expansion is crucial for advancing the
field toward solutions that are robust, versatile, and capable of meeting the challenges of an increasingly

automated and diverse world.

2. THEORY

2.1. Simultaneous Localization and Mapping

SLAM is briefly and well explained by Xiang Gao and Tao Zhang from the book “’Introduction to Visual
SLAM” [1]:

”Simultaneous Localization and Mapping usually refer to a robot or a moving rigid body, equipped with
a specific sensor, that estimates its motion and builds a model of the surrounding environment, without a

priori information”

In more formal terms, the SLAM problem can be defined as finding the posterior probability p over the

path x;.; and map m given the data z,.; and control signals u1.;:

P(X1:0, M| 214, U (D)

The vehicle’s path x;.; is a sequence of poses Xi, X, ..., X;, where each pose x; typically includes the
vehicle’s position and orientation. The data z;., represents cumulative sensory observations, while .,

denotes control inputs that influence the vehicle’s trajectory [15].

The difficulty of SLAM arises from the need to manage the uncertainty inherent in both the map and the
vehicle’s location. A key aspect of addressing the SLAM problem is the formulation of a motion model,

which relates the current pose x; to the previous pose x;_; and the control input wu,:

P(Xt|Xt—17Ut) 2)

Thus, the motion model acts as a prediction step since it predicts the robot’s new pose based on the previous
pose and control input. This prediction serves as a starting point for the SLAM algorithm to incorporate

new sensor information and to update its belief about the robot’s location and map.

Additionally, the measurement model correlates sensory observations z; with the map m and the current

pose X;:

P(2e|x¢,m) (3)

The measurement model plays a critical role in the SLAM process by linking the sensory data to the
estimated map and the robot’s pose. This model is integral for updating the belief about the robot’s
position and refining the map based on new observations. It effectively filters noisy sensor data to improve

estimation accuracy [15].

2.1.1. Map representations

Within robotics there are multiple approaches on how to represent the environment using maps, this section

will aim to introduce the specific representation that is applied by the SLAM systems used in this thesis.

Feature-based maps

Feature-based mapping is a technique that enables the construction of maps using a combination of de-
tection, extraction and usage of distinct environmental features. These features include edges, corners, or
identifiable objects and are used to create a spatial representation of the surroundings. Algorithms such as
SIFT [16], SURF [17] and ORB [18] are utilized to identify and describe these features effectively. Once
identified, the spatial relationships between these matched features are analyzed using techniques such as
RANSAC [19] for robust estimation, which helps align the scans accurately, even amid noise and outliers.
The result is a feature-based map that represents the environment through key features, each characterized
by its own unique descriptor. This form of mapping not only aids in efficient localization and navigation,

but also reduces the computational load compared to using dense point cloud maps.

Point cloud maps

Point cloud maps is a popular map representation used in SLAM and it is the result of one or more point
clouds being combined into one, unified map, using techniques such as ICP [20]. Each point is assigned a
label with X, y, z coordinates. The point clouds are especially useful for visualizing the environment, which
helps identifying and evaluating the performance of mapping methods. However, despite being useful for
visualization, point clouds present significant challenges in terms of data management and processing.
The large number of data points require substantial computational resources for storage, processing and
real-time analysis. To alleviate computational cost, there are processing techniques such as filtering [21]
and downsampling [22] that may help in refining the point cloud by removing noise. An example of how a
point cloud looks like before and after downsampling is shown in Fig. 1. By applying these techniques to
the point cloud map, it may aid in reducing data size and computational costs while improving localization

and mapping processes.

Volumetric maps

Volumetric maps are a form of occupancy grid in 3D. One common example of this is an octomap. To
increase the efficiency, the authors proposed to have a dynamic resolution, where free cells can have a

lower resolution than the occupied cells [24]. A visualization of this dynamic size can be seen in Fig. 2.

4

Fig. 1: Example of downsampling of point cloud. The left figure is the original figure while the right
image shows the downsampled version [23].

Fig. 2: An example of how the octotree is represented in 3D where the free blocks are white and the black
cells represent the occupied cells. This image is from the original octomap paper [24].

2.1.2. Graph-based SLAM

To overcome the complexity of map representation, a popular approach is to use a graph to represent the
map. The graph allows for easy access to each node in the graph and allows for efficient minimization of

the errors as the robot moves around in its environment.

The graph is created by creating a node for each pose during the mapping process. These can be obtained
from the odometry of the wheels or other sensors which allows for capture of poses from the robot. The
edges of the graph represent the constraints that describe the relationship of the nodes. This can be infor-
mation such as odometry information at the two different nodes or sensor information from each of the
poses. To optimize the configuration of the nodes and edges, most optimization techniques can be applied.

Including, but not limited to, Gauss-Newton and least-squares error minimization [25].

If the robot returns to a previously explored area after traveling in an unexplored area, the algorithm checks
the nearby nodes to detect whether the older scan matches the new scan. If the scan matches, then it adds

edges from the current node to the nodes where the scan matches. This new edge contains information

5

about the transformation that allows the best overlap in the scans [25]. Fig. 3 shows how a 2D graph-based

SLAM can be represented where the poses x; are in chronological order from 1 to ¢.

Fig. 3: Graph-based SLAM representation, where the x represent the poses and the edges are represented
by the dotted lines between nearby nodes [25].

2.1.3. Feature-based SLAM

In feature-based SLAM, the main focus lies on identifying areas in an image that have unique characteris-
tics. These features vary in complexity; they can either be simple geometric shapes, super-pixels, or even
semantically labeled objects. The key attribute of a good feature is its repeatability, which allows it to be

recognized consistently across various framed captured from different perspectives [26].

One crucial element of feature-based SLAM, is the ability to extract features and match them in various
lighting conditions and viewpoints, as well as being computationally efficient to track. This necessitates
the use of advanced algorithms for feature detection such as SIFT [16], SURF [17], or ORB [18], as noted

earlier, which provides a balance between accuracy and processing speed.

In terms of scalability, while feature-based approaches are less memory-intensive compared to other
SLAM methods, they may struggle in environments that have few distinct features, such as hallways
or blank walls. In addition to this, feature-based SLAM have challenges related to dynamic environments,
where moving objects could obstruct the consistency of feature detection [27]. However, there are ways
to tackle this; by introducing additional sensors or using semantic labeling in environments that are not
feature-rich, as well as incorporating techniques such as dynamic object recognition and tracking to en-

hance the robustness under these conditions.

2.2. Visual SLAM approaches

There are various approaches that are used in visual SLAM, and they usually share the same underlying
structure as seen in the classical framework for visual SLAM, showcased in Fig. 4. However, there are
slight distinctions between the various approaches that researchers have implemented for each unique
SLAM system. This offers a large quantity of applications each of them can be used on, where some of

them may be more suited in certain environments than others.

' Frontend Backend
Sensor Data p. ronten — Filters ™ Reconstruction
Visual Odometry|[> Optimizati
pltimization

%5 W 4\
AN |

Loop Closing —

Fig. 4: Classic visual SLAM framework [1]

2.2.1. ORB-SLAM?2

ORB-SLAM?2 [2] is an open-source SLAM system that works with monocular, stereo, and RGB-D cam-
eras. It is a continued version of the original ORB-SLAM [28] which only worked with monocular cam-
eras. While somewhat old, around 7 years at the time of writing, it is still considered state-of-the-art and

has inspired other SLAM algorithms that preceded it.

ORB-SLAM?2 has three parallel threads it operates in. These include tracking, local mapping, and loop
closure, as shown in Fig. 5. First up is the tracking thread, which locates the sensor by finding the
corresponding features while simultaneously minimizing the reprojection error. After this, the map man-
agement operations are done by the local mapping thread. And at last, the loop closing, is responsible
for the detection of new loops and correcting the drift error in the loop, and as stated earlier, some of the
key concepts from the classical visual SLAM framework is clearly utilized here. When the last iteration
of the three threads are finished, the algorithm further enhances the structure, while also ensuring motion

consistency by performing a full bundle adjustment.

Due to ORB-SLAM?2’s sophisticated back-end, which is based on bundle adjustment, it can create high
accuracy trajectory estimations and map reconstructions. Furthermore, the system features advanced map
management capabilities, including the ability to reuse maps, perform loop closing, and relocalize within
a known map [2]. This may contribute to providing accurate localization and robust mapping even in large

and complex environments.

As ORB-SLAM?2? is very reliant on good quality visual features for operation, it implies that the system

7

may struggle in low-texture environments where feature detection is difficult or in environments where

there is either too much or too little light [29].

TRACKING

Pose Prediction
(Motion Model)
or Relocalization

PLACE

Stereo/RGB-D Pre-process
Frame [™ Input

Track New KeyFrame
Local Map Decision

-
RECOGNITION MAP KeyFrame || ©
4 Insertion g
Visual MapPoints -
Vocabulary P Recent =
MapPoints ||
Recognition Covisibility Spanning Culling T
Database Graph Tree %
New Points ||
Creation
.LoopCorrection . LoopDetection .. _
Optimize Local
Update Full : Loop Compute Query i
-e— | Essential : 1 KeyFrames
Map BA 1| “oraph Fusion SE3 Database Culling
FULL BA 'LOOP CLOSING

Fig. 5: ORB-SLAM?2 framework structure [2]

2.2.2. RGBDSLAMv2

RGBDSLAMV?2 [3], which operates with ROS, builds upon the foundations laid by earlier SLAM systems
by incorporating more sophisticated algorithms and models for feature detection, matching, and optimiza-
tion. Its main advantage, is its incorporation of an Iterative Closest Point (ICP) algorithm as well as an
Environment Measurement Model (EMM) to validate the estimated transformations. These improvements
allow for better performance in terms of accuracy, speed, and robustness to diverse environments and

lighting conditions.

The system implements a graph-based approach. Graph optimization techniques are used to refine the
pose graph, ensuring that the map remains consistent as new data is processed. This helps to correct any
drift that may occur over time, improving the overall representation of the generated map. The framework

structure is shown in Fig. 6.

Despite this, the computational demand of RGBDSLAMYV?2 is quite resource-intensive w.r.t real-time per-
formance. This is mainly due to its use of SIFT features, which are much slower than e.g. ORB features.

Moreover, it is highly reliant on slow movement of the sensor to obtain good tracking [30].

8

Pose
Graph

Point Cloud Point Cloud
Subsampling Storage
Transformation B rancfor Tl Transformation Transfor- IGI?phI Trajectory Map
Estimation mations Validation mations e Optimization Creation
||| Descriptors,
3D Positions

Matchmaking Fro ntend BaCkend

Strategy

Feature
Extraction

Descriptors,
3D Positions

Descriptor
Storage

Fig. 6: RGBDSLAMYv?2 framework structure [3]

2.2.3. RTAB-Map

RTAB-Map [4] is another graph-based SLAM approach, which supports integration with ROS as the
rtabmap_ros package since 2013. It operates by receiving odometry as an external input, allowing flexibil-
ity in the choice of odometry sources suitable for various applications and robots. As the core structure of
the map in RTAB-Map is graph-based, it consists of nodes and links. The sensor data, and additional in-
formation like visual words and local occupancy grids is stored in the node that is created by a Short-Term
Memory module. This data assists in subsequent processes such as Loop Closure and Proximity Detection,
and Global Map Assembling. Nodes are generated at a fixed rate set by the parameter Rtabmap/Detec-
tionRate, which can be adjusted based on the robot’s speed and sensor range to ensure appropriate overlap

between consecutive nodes as well as optimizing memory and processing requirements.

The system differentiates between three types of links: Neighbor, Loop Closure, and Proximity links,
which connect the nodes in the graph. The Neighbor links are included in the Short-Term Memory mod-
ule between consecutive nodes which includes the odometry transformation, while Loop Closure and
Proximity links are identified through their respective detection mechanisms, which is either loop closure
detection or proximity detection, which in turn provides constraints for the graph optimization. Whenever
one of these two links are added, a graph optimization process is triggered, which corrects the entire graph
to minimize the odometry drift. The optimized graph then has the possibility to publish OctoMap, Point

Cloud, and 2D Occupancy Grid outputs to external modules.

A key advantage of RTAB-Map is the graph-based nature which allows for efficient memory usage and
robust map management. This structure supports large-scale and long-term SLAM operations by dynami-

cally managing memory and optimizing the map in real-time [4].

However, due to its flexibility and the range of features it offers, RTAB-Map can be complex to configure
and tune effectively. If e.g. the detection rate parameter is set too high, it would cause an increasingly high

memory usage and computation time.

“mgmas| RGB-D Image(s) ‘rtabmap_ros/rtabmap

: Iransferred LTM Retrieved
o i 6 =

‘M e

Map Data I
TF : New Node [T oop Closure and :
: Map Graph I

STM Proximity Detection e

: X
Odometry Node : New Link(s)

Graph Optimization

: Sensor Data /map -> /odom | | .
Do~ 7T G J L ocomap)
1 : :
[,.Q : —>[Point C]oud]
N :
i

Y. Y

Synchronization Global Map =
Assembling :

y

>{ 2D Occupancy Grid]

Fig. 7. RTAB-Map framework structure [4]

2.2.4. RESLAM

RESLAM [5] is a novel, edge-based SLAM system. The novelty and main advantages of RESLAM
comes from its edge-based approach where it improves edge depth, optimizes the camera’s poses and
intrinsic parameters, while simultaneously performing loop closure on a global map as well as supporting

relocalization.

The architectural framework of RESLLAM is organized into four main parts that operate in parallel: System,
Visual Odometry, Local Mapper, and Global Mapper. The framework structure is shown in Fig. 8. It starts
by processing the RGB-D data to identify the edges. Next, the Visual Odometry part calculates how the
camera moves relative to a specific frame. This information is then sent to the Local Mapper to decide
whether to mark this frame as a keyframe, which if marked, is included in a local set for further analysis.
This process involves refining the edges’ depth and the camera’s pose and intrinsic parameters. Finally,
the Global Mapper looks for potential loops in the data. If a loop is detected, it attempts to close it, if not,
the frame is stored for future reference. In situations where the system is put to a halt or if it encounters
an error in estimating the camera’s pose, it switches to relocalization mode where it tries to re-establish its

location using new RGB-D data until it is successful in doing so.

There is a drawback for this system however, and this is mostly in cases where there is a lack of texture for
edge detection or the depth information is missing for large parts of the scene. These cases are typically
represented by excess sunlight or partial or full covering of the sensor. If any of these situations above
occur, tracking losses will become a problem [5]. And despite the fact that it has relocalization capabilites

when tracking losses occur, it is not a given that it will be able to relocalize after this occurs.

2.2.5. ManhattanSLAM

ManhattanSLAM [6] proposes a SLAM system that utilizes a less stringent version of the Manhattan

World assumption [31] to make it applicable to both Manhattan and non-Manhattan environments through

10

Relocalise ‘ l

Global Mapper Local Mapper

it s - - - -

Find and Verify KF

Fig. 8: RESLAM framework structure [5]

a combination of point, line, and plane tracking. It offers a method to detect Manhattan Frames from
planes to model a scene as a Mixture of Manhattan Frames. Manhattan Frames are coordinate systems
that are aligned with the primary orthogonal axes of the environment, such as the edges of buildings and
streets, which form a grid-like pattern. In turn, it results in drift-free rotation estimation, alongside robust
feature tracking in situations where Manhattan Frames are not present. This serves as one of the main
advantages of ManhattanSLLAM, since maintaining high accuracy in the rotation estimation without the

accumulation of errors is very crucial in SLAM applications.

Additionally, it introduces an efficient surfel-based mapping strategy that optimizes memory use by differ-
entiating between planar and non-planar regions. This allows for a more memory-efficient representation
of the environment, as planar regions can be densely packed with fewer surfels without loss of detail,

reducing the computational load and memory usage [6].

SPARSE MAPPING

(e))

(oo] [) [)

TRACKING

FRAME [Feamre ! ves _ [Rotation using MF |} H
— | i |_Extraction | H tracking ! 1 !
¢ RGB | . 1 . i 3 '
| Image | 1 | Initial pose WE Translation using | Pose :)
H i — 1+ | using motion | | i . 1| feature H ing local 11— | Key
: ' : model e + |using locall ,
Mo H

: ! MAP
H H
| image |! : - : ommssmssaesmennes . map : [MFs] [Kay‘frames] [Surfels]
" Il . eature H z i i '
T —— J ' . ' i | Full pose using | ! \ J
H Matching ' i| feature tracking |} . | | Tmmmmmmsmsmsmsses 1 """""" T‘ “““
.\ ‘\.--..-----------—’
___ v]
| Non-planar superpixel Non-planar surfel Planar surfel |
H

initialization fusion initialization |

DENSE MAPPING

Fig. 9: ManhattanSLAM framework structure [6]

11

2.3. LIDAR-based SLAM approaches

There are a plethora of different approaches based on LIDAR and as such this thesis will only explore a
handful of the alternatives. A more comprehensive list of the approaches can be found at github [32]. For
each SLAM system, the basics of how it works will be introduced, as well as some upsides and downsides

to each.

2.3.1. A-LOAM, Advanced LIDAR Odometry And Mapping

Advanced LIDAR Odometry and Mapping (A-LOAM) is based on the original LOAM [33]. A-LOAM
serves as the benchmark and to show how the other algorithms iterate and differentiate from the original

implementation.

Each scan from the LIDAR is processed by two nodes in parallel. The LIDAR odometry estimates the
motion of the LIDAR between two consecutive steps. While these estimated steps are used to correct for

distortion, and then the non-distorted scans are combined to create a global map [33].

The benefits of A-LOAM is considered similar to the the original LOAM with improved performance due
to the implementations of optimization libraries such as Eigen [34] and Ceres Solver [35]. A-LOAM uses
feature extraction from sharp edges and planar surfaces to optimize the matching process. This reduces
the number of points which needs to be compared while minimizing the loss of information. This feature
extraction can lead to reduced performance if the feature extraction removes too many points. It does not

offer any loop closure, meaning that there is no compensation for drifting in the map.

While the original implementation of LOAM is closed source, A-LOAM [36] is open-source and is the
basis for some of the other implementations that will be introduced, such as SC-A-LOAM, LeGO-LOAM
and F-LOAM.

Fig. 10: Resulting map after running A-LOAM on KITTI sequence 00. Image from their GitHub [36].

12

https://github.com/szenergy/awesome-lidar

2.3.2. F-LOAM, Fast LIDAR Odometry And Mapping

The authors and developers of F-LOAM wanted to improve the original LOAM by reducing the computa-
tional cost. This is achieved by approaching distortion compensation without using iterative computation.
Instead they assume that the angular and linear velocities are constant in between the scans thus simplify-
ing the computation. They also increase the efficiency of the feature extraction and matching by utilizing
a local map and adding a weighted optimization for pose estimation. By not feature matching on a global
map they are able to reduce the computations even further which allows the algorithm to run faster. In addi-
tion, weighed optimization allows the method to use the most significant local geometries to be prioritized

in the matching process. [37]

These improvements are even more significant when there is an increase in either duration or length trav-
eled. Such improvements are especially good for real time applications as there is often limited hardware
resources on robots. Assumptions about constant angular and linear velocities could be exposed as weak-

ness when dealing with data containing more inconsistent movement patterns.

2.3.3. SC-A-LOAM, Scan Context Advanced LIDAR Odometry And Mapping

As there are no papers regarding this specific algorithm, a more detailed description of how scan context
works and how it improves upon A-LOAM will be described. This extension of A-LOAM aims to add
place recognition abilities and add loop detection and loop closure.

Scan Context++ introduces new techniques to introduce the place recognition capabilities for A-LOAM
(section 2.3.1). It aims to tackle how changes in lateral movements and rotations often leave the algorithms
struggling when recognizing places by introducing augmented descriptors. These descriptors are used
to compare the current position to previously visited positions given a distance function and similarity
constraints. To help the algorithms with estimating pose within a previously visited location, it provides an
initial guess for the metric pose. The framework can be seen in Fig. 11 where the semi-metric Localization

represents the initial guess of the method [38].

This addition of scan context on top of A-LOAM allows for submap handling, which in turn allows the
SC-A-LOAM to not update the global map as frequently, and thus reducing computational cost. Further
enhancements are the ability to optimize these submaps independently.

The increased complexity increases the difficulty of the parameter tuning as there are more parameters.
While the integration and merging of submaps can introduce errors if the transformation between the

submaps is not accurate.

13

Augmented
1. Description Sco |
| - 2
Raw Voxel BEV Space Bin E?R::ﬂo"'lh:rn E
point cloud scan | (Downsampling | | Partitioning | | Encoding ‘chi o
g
Aligning Key
Topological — ™ L
Place Retrieval --| Place Index can Context f arest
Distance ;:!E:;:g":am Candidates Database
Semi-metric -'-| 1 DoF relative Thrasholding Proposal
Localization
2. Retrieval

Fig. 11: Describes how the framework for SC-A-LOAM processes data from the pointcloud. The semi-
metric localization is the estimated position within the map. [38]

2.3.4. LeGO-LOAM, lightweight and ground-optimized

Lightweight and Ground-optimized LIDAR Odometry and Mapping (LeGO-LOAM) is a SLAM system
that outputs an estimated pose with 6 degrees of freedom. It projects the input scan into a range image and
extracts features from this image. The feature extraction also removes noise from the scan and the package
has parameters that can be tuned in environments where the scans might be more noisy. An example of
noise reduction can be seen in Fig. 12. These features are also used to calculate the trajectory between
the consecutive scans. LeGO-LOAM also maps these features to a global cloud map. This method is

specifically developed for use with ground based systems [39].

This ground optimization is supposed to increase performance where there is height variance within the
terrain [39]. One potential drawback is an overly aggressive pre-filtering, as this might remove points

which support scan-matching.

2.3.5. HDL Graph SLAM

HDL Graph SLAM [40] is an open-source package for SLAM. As the name implies it relies on graphs to
represent the environment as the robot moves about. It uses poses over time, combined with scans to keep
track of landmarks [41]. This method also applies NDT [42] scan matching-based odometry to optimize

its scan matching capabilities.

This package is developed for indoor and outdoor applications and consists of four nodes. The flow
between these nodes can be seen in Fig. 13. The odometry estimation that is used to estimate the trajectory
is within the scan_matching_odometry node. An example of a global map generated by HDL graph SLAM
can be seen in Fig.14 where the color of the ponts shows ther height[40].

14

Fig. 12: Example of how LeGO-LOAM handles a messy scan using feature segmentation. The original
scan is shown in (a). (b) the red points are the ground while the rest of the points are the points remaining
after the segmentation. (c) the blue and yellow dots represents edges and planar features. Lastly, (d)
represent the green and pink dots represent the edges and planar features in global frame. [39].

One significant upside is the efficient loop-closure detection which allows the map to update and compen-
sate for drifting in the map generation. A downside with HDL Graph SLAM is the computational cost to
process and optimize the graph. In real-time applications this graph optimization can lead to significant

delays between scans as it tries to optimize the graph.

Jvelodyne_points [filter ed_points Jodom J/map_points
S — b » e

Jfloor_cogfs T

Fig. 13: HDL Graph SLAM data flow through the nodes [40].

2.3.6. KISS-ICP

Keep It Small and Simple Iterative Closest Point, or just KISS-ICP [43], provides an alternative based on
ICP [20] to estimate a trajectory based only on 3D LIDAR scans. For each frame, it aims to compute the
LIDAR trajectory by comparing consecutive scans. To estimate the trajectory without any other sensors,
it relies on a constant velocity model which assumes that the sensor moves at a constant velocity between

the scans.

One upside of KISS-ICP is that it does not require parameter tuning between different environments and
platforms as shown in Fig. 15. KISS-ICP also adds algorithms to predict motion to aid in the deskewing

15

Fig. 14: Example of global map as created by the example rosbag (hdl 400.bag) provided by the publishers
on GitHub [40].
and movement compensation.

A drawback of KISS-ICP is that it does not offer any loop closure mechanism, limiting how it can deal

with cumulative errors over time. It is also not developed for SLAM, only for odometry estimation.

Fig. 15: Illustration of the mapping performed by KISS-ICP without tuning the parameters for each setting.
Courtesy of [43].

2.4. Sensing technologies
2.4.1. Depth Camera

Stereo depth cameras could be compared to human vision in the sense that it uses two cameras placed a
few centimeters apart. They spot the same points on each camera and then calculates how far away these
points are by measuring the differences between their positions, which is a method called triangulation.

When the camera comes across a featureless surface, such as a flat, white wall, it may sometimes be

16

an issue, but more often than not, the camera is equipped with a light projector that shines a patterned
infrared light to aid in finding the points [44]. Many stereo depth cameras also have the ability to capture
RGB information, allowing them to add color to the depth data they collect, such as the Intel RealSense
cameras. And as such, in this thesis, a Intel RealSense D435i is used to collect data. A picture of the

camera is shown in Fig. 16.

90 mm x 25 mm x 25 mm

Fig. 16: Image of Intel RealSense D435i [7]

2.4.2. 3D LIDAR

Light Detection and Ranging (LIDAR) is an active sensor, by emitting light waves and calculating the time
between emitting and detection one can get the position of objects within the environment [45]. There are
several types of LIDAR’s but this thesis utilizes a surround LIDAR. Surround LIDAR’s are generally a
scanner that rotates with a high frequency and combines the scans as it rotates to create a 3D representation

of the environment.

The LIDAR that was utilized for this thesis is an Ouster OS0-128 3D LIDAR as seen in Fig. 17.

2.5. ROS (Robot Operating System)

ROS [47] is an open-source framework with various tools and libraries to write robot software and develop
robot applications. Researchers from Stanford University and University of Southern California developed
a standard for robotics development to make development more consistent and transparent. The goal of
ROS was to develop a free, open-source and tool-based framework which can support different coding

languages.
2.5.1. Data representation, PointCloud2

To represent 3D range data with ROS the default sensor message is given as shown in Fig. 18.

Where the header contains when the data is send and which frame _id it is related to. Height and width

describes the size of rows and the number of rows each row contains. Fields are a array of pointfields

17

&

Fig. 17: Image of Ouster OS0-128, a rotating 3D LIDAR with 128 vertical channels [46].

std_msgs/Header header
uint32 height

uint32 width
sensor_msgs/PointField[] fields
bool is_bigendian

uint32 point_step

uint32 row_step

uint8[] data

bool is_dense

Fig. 18: Example of a PointCloud2 message in ros [8].

where each pointfield describes one dimension (such as X, y, z, or intensity). Data represents the actual

data and the rest of the fields describe how the data passed and represented. [48].

2.5.2. Rosbag

Rosbag [47] is a tool that is used for recording and playback of data from ROS topics. It also offers
many different functionalities like compressing data to save space for big recordings, as well as making it
possible to filter out what topics should/should not be recorded/played. Additionally, it is also possible to
display information about the rosbag that is human-readable using the command “rosbag info” [49]. This
allows for easy confimation that the data has been recorded as expected. An example of how this would

look like is shown in Fig. 19.

18

$ rosbag info foo.bag path: foo.bag

version: 2.0

duration: 1.2s

start: Jun 17 2010 14:24:58.83 (1276809898.83)

end: Jun 17 2010 14:25:00.01 (12768099900.01)

size: 14.2 KB

messages: 119

compression: none [1/1 chunks]

types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
topics: /points 119 msgs @ 100.0 Hz : geometry_msgs/Point

Fig. 19: Example of the output for ’rosbag info”.

2.5.3. Rviz

Rviz is a 3D visualization tool that is used to display various topics that are published from a node,
these include information from sensor data, robot models, and more. It is very versatile and there are a
multitude of parameters to configure which can be saved as a .rviz config file for later use. Furthermore,
rviz supports a variety of data types such as point clouds, images and laser scans, making it useful for

different applications [50].

2.6. RTK-GNSS

Real-time Kinematic Positioning (RTK) is a high precision technique used to increase the accuracy of
Global Navigation Satellite System (GNSS). Compared to standard GNSS which can reach meter-level
accuracy, a RTK system can reach centimeter-level accuracy. This accuracy makes it suitable for creating

ground truth trajectories when collecting data outside.

To increase accuracy, a RTK system relies on a base station, where a stationary receiver is located at a
precisely known coordinate. This base station is used to calculate correction data based on the received
satellite signals with the base station. The mobile robot also needs a receiver that can receive correction

data from the base station [51].

While RTK is capable of high accuracy position estimates, it can only do so if it receives a clear signal
from both the base station and satellites. The system provides the covariance matrix for error estimation
for longitude, latitude and altitude. Within ROS, these error estimates can be given in the format as shown

in Fig. 20 as the variable position_covariance.

The estimated pose error is given in a 3x3 matrix with the following format:

19

Message Type: nav_msgs/NavSatFix

Fields:

Header header (seq, stamp, frame_id)
NavSatStatus status (status, service)
float64 latitude, longitude, altitude
float64[9] position_covariance

uint8 position_covariance_type

Fig. 20: Compact ROS Message Type Specification for nav_msgs/NavSatFix [9].

2
O1at Olatlon Olatalt

_ 2
COV(X) = | Olat,lon Jlon Olon,alt | >

2
Ulat,alt Ulon,a]t Ualt

where the variance in the diagonal elements (02, o2, 02,) is the variances for longitude, latitude and
altitude squared. They represent the squared uncertainty for each of the dimensions, while the off-diagonal

elements represent the covariance between the different dimensions.

2.7. Evaluation metrics

In SLAM, evaluating the performance of a system is crucial for understanding its accuracy, robustness,
and reliability. One common metric used for this purpose are the Absolute Pose Error (APE). This metric

provides insights into how well a SLAM system can track its position and orientation over time.

For evaluating and comparing the trajectory of the various SLAM approaches in this thesis, a Python
package named evo was used. This package supports multiple data formats, which includes KITTI, TUM
and EuRoC MAV, as well as support for ROS1/ROS?2 rosbags [52].

2.7.1. Absolute Pose Error

The Absolute Pose Error measures the absolute difference in the pose between the estimated trajectory
provided by the SLAM system and the ground truth trajectory. This metric is useful for understanding the
overall accuracy of the system across a complete dataset. To calculate the APE, you first have to align the
estimated trajectory with the ground truth trajectory. This alignment can be done using methods such as the
Umeyama method [53], which is used in the evo package [52]. These alignment methods provide a trans-
formation 7' that best aligns the estimated trajectory with the ground truth. This transformation includes
rotation translation and in the case of Umeyama, possibly a scale factor. Let’s denote the transformation
resulting from the Umeyama method as 74, which applies to the estimated poses to align them with the

ground truth before computing the APE. If we consider N to be the total number of timestamps at which

20

poses are estimated and ground truth is available, the RMSE for APE, after alignment, across all time

indices can be expressed as:

N
1 . .
RMSEapr = \| 7 D (1950(2) = Tutign - Gest ()1])’,)

i=1

where ¢, (7) and . (7) is the ground truth pose and estimated pose at timestamp 7. [54]

2.7.2. Map density

To calculate the map density, this thesis utilizes a volume-based density calculation method. This is done
by finding the volume of the boundary box for the point cloud and divide the number of points in the point

cloud by this volume. This assumes that all the resulting maps have the same scale.

To achieve consistent method of calculation across all systems and data sequences, the following method

was applied:
N

V?
where N is the total number of points and V' is the volume of the bounding box.

(&)

21

3. METHODOLOGY

This section presents the hardware and software used, which includes the robotics platform for data col-
lection and the computers that ran the SLAM systems, as well as what and how each software was utilized.
Subsequently, the benchmark datasets are introduced, featuring TUM-RGBD for camera and KITTI for
LIDAR. Following this, the data that was collected is described, with separate sections on the orchard
environment and the parking area. The process of generating ground truth for the collected dataset is also
discussed. Moving along, the integration of both camera-based and LIDAR-based SLAM systems are then
further discussed w.r.t how they were utilized with all of the datasets. Lastly, this chapter introduces how
the calculations of the density and volume of the generated maps were calculated. All of the scripts and
configuration files described in this chapter are provided in the Appendix.

3.1. Hardware

The hardware section will be split into different parts; first we will introduce our robotics platform which
was used to record the orchard and parking dataset. Then we will separate the hardware used to run camera

based and LIDAR based algorithms as these were ran on two different computers.

3.1.1. Robot Platform

RB-VOGUI [55] is a robot developed by Robotnik and this was the one used when collecting the data.
The specifications of the robot are listed under:

* Dimensions: 1.040 x 650 x 530 mm

* Weight: 165 Kg

* Max Velocity: 2,5 m/s

* Environment: Indoor/Outdoor

* Enclosure Class: IP50

* Autonomy: Upto6 h

* Batteries: LiFePO4 30Ah@48V

* Traction Motors: 4 x 500 Watts with brake
* Steering Motors: 4

* Temperature Range: -10°C to +45°C

* Payload: Up to 150 Kg

22

e Maximum Slope: 47

Controller: Industrial PC Intel i7, Open Architecture based on ROS
* Connectivity: USB, RJ45, HDMI, Power supply 12, 24, VDC and batteries
* Operating System: Ubuntu 18.04

* Depth Camera: Intel Realsense D435i

3D-LIDAR: Ouster OS0-128

GNSS: u-blox C099-F9P-1 application board with ZED-F9P module

Although most of the components are delivered with the robot, the 3D LIDAR was manually mounted and
configured by us, and in doing so, it was necessary to also configure the TF transformations and launch
files to make it operable with the robot. The picture of our modified RB-Vogui robot is shown in Fig. 21.

3.1.2. Computer hardware for camera-based SLAM methods.
¢ Processor (CPU): Intel i5-12400F 6-core Processor, 12 threads, 2.5GHz/4.4GHz
* Graphics Processing Unit (GPU): NVIDIA GeForce RTX 3060
* Memory (RAM): 16 GB
» Storage: 1 TB SSD

* Operating System: Host PC: Windows, Guest: Ubuntu 16.04, 18.04 and 20.04 on Oracle VM
VirtualBox

3.1.3. Computer hardware for the LIDAR-based SLAM methods.

* Processor (CPU): AMD Ryzen 7 3700X 8-Core Processor, 3600 MHz, 8 core(s), 16 logical pro-

cessor(s)
* Graphics Processing Unit (GPU): NVIDIA GeForce 1660 SUPER
* Memory (RAM): 32 GB
» Storage: 2 TB HDD & 1 TB SSD

* Operating System: Ubuntu 18.04 running as Windows Subsystem for Linux (WSL) in Windows
10

* Note: Default WSL configuration allocates a maximum of half of the total RAM capacity and hence
it effectively only had 16 GB RAM while running the algorithms.

23

Fig. 21: RB-Vogui with attached Ouster OS0-128 on top and RealSense D435i integrated in the front.

24

3.2. Software

This section aims to introduce the different software that was applied throughout this thesis. Some of
which help to create a stable environment for code execution, while others help with data visualization and

debugging.

3.2.1. Oracle VM VirtualBox

Oracle VM VirtualBox [56] was used to run different versions of Ubuntu such that they would be com-
patible with all of the camera-based SLAM systems. It was allocated 10GB of RAM to each Virtual
Machine (VM) with 100GB of storage for each. The VMs were also setup with 4 virtual CPUs, corre-
sponding to 4 threads, to ensure efficient utilization of the host’s Intel 15-12400F CPU, which features 6

cores and 12 threads.

3.2.2. Docker

Docker [57] was used to containerize the evaluation environment for LIDAR based methods. Docker
allows the program to run in an isolated environment from the host computer while dynamically being
allocated the amount of computing resources depending on the requirements of the container. This creates

a stable environment that can also be quickly implemented on other systems, increasing the reproducibility.

3.2.3. Cloud Compare

For our research, we used CloudCompare [58], which is an open-source software for 3D point cloud
processing, to inspect the full point cloud and allow a closer inspection of areas with worse results. This
software allowed us to catch errors in configurations from mapping attempts, and thus aided our research

to get more accurate results.

3.2.4. ChatGPT

For the implementations of the algorithms, ChatGPT was used to help debug errors during setup of the
SLAM systems and to help ensure that the configuration files matched our use case. ChatGPT was also
used to speed up the development of certain scripts that were used for various purposes. For correcting

and refining any grammatical errors, ChatGPT was also used.

3.3. Benchmark Experiments

As there are no available datasets that we are aware of which have both RGB-D and LIDAR data, we used
two different datasets to establish benchmark performance. Four sequences from TUM and two sequences

from KITTI. This section will introduce each of them and explain what the sequences contain.

25

3.3.1. TUM-RGBD benchmark experiment

To obtain a baseline of how each of the SLAM systems perform, it was first implemented and evaluated
on the TUM RGB-D dataset [14]. This dataset includes RGB-D data that was recorded with a Microsoft
Kinect, alongside a ground-truth trajectory that was obtained from a motion-capture system. There are
multiple sequences that contain static and dynamic scenes, both with and without loop closure. The aim
was to evaluate how each SLAM system performed in various scenes, therefore it was tested on four
different sequences in this thesis. These include the fr2_desk, fr2_desk_with_person, fr3_walking_xyz and

fr3_sitting_static sequences. A more descriptive explanation for each of the sequences is provided below.
fr2_desk:
— Captures a traditional office environment containing two desks with standard office items.

— The Kinect device navigates around the tables, completing a full circuit such that the loop is closed,

thus being useful for investigating loop closure capabilities of SLAM systems.
fr2_desk_with_person:
— Similar to the fr2_desk setup, but includes an individual seated at one of the desks.

— The person interacts with various objects during the recording, adding dynamic elements to the

scene.
fr3_walking xyz:

— Includes two individuals moving in the scene while simultaneously capturing movement along the

X, y and z axes.
— Focuses on evaluating dynamic objects that are moving quickly in the scene.
fr3_sitting static:
— Contains a static scenario with two individuals sitting and talking.

— Focuses on evaluating dynamic objects that move slowly in the scene.

3.3.2. KITTI benchmark experiment

To compare how well the LIDAR based SLAM methods work, they were first tested on two sequences from
the KITTI dataset. KITTTI is one of the most popular datasets for developing and testing SLAM methods
[13]. As there are some different versions of the KITTI dataset we went with the odometry dataset as this
contains the ground-truth poses that were obtained with a GPS/OXTS sensor. As all methods for LIDAR
are applied using Robot Operating System (ROS) we converted two sequences from the KITTI dataset into

26

rosbags. That is, the first and fifth sequence. Both of these rosbags contain the same number and type of

rostopics, but the environments in which they drive are quite different.

The first sequence starts at a T-intersection and drives down a high way. There are no loops in this data
and hence we can not utilize loop detection. The average velocity for this sequence is 78.2523 km/h and

the distance traveled is 2469 meters.

The fifth sequence is from a more populated area and this contains multiple places in which the car returns
to the same street which allows for loops to be detected. The average velocity for this sequence is 27.5858
km/h and the distance traveled is 2200 meters.

A more comprehensive comparison between the sequences can be found in table 1. While the distance

traveled is similar in both of these sequences the speed, duration and the environment are different.

Sequence 01 Sequence 05

Duration (s) 113.6137 287.1200
Path Length (m) 2469.4728 2199.9117
Statistics

Average Time Interval (s) 0.1037 0.1042
Maximum Time Interval (s) 0.1063 0.1103
Minimum Time Interval (s) 0.1011 0.0982
Average Velocity (km/h) 78.2523 27.5858
Average Velocity (m/s) 21.7367 7.6627
Maximum Velocity (km/h) 112.5752 42.3820
Maximum Velocity (m/s) 31.2709 11.7728
Minimum Velocity (km/h) 31.1331 0.0262
Minimum Velocity (m/s) 8.6481 0.0073

Table 1: Comparison of Sequence Statistics for the KITTI[13] dataset. This is obtained by utilizing the
EVO[52] python package and comparing the ground truth in both sequences.

These two sequences allow us to demonstrate if the methods work on our computer and establish a refer-

€nce performance .

3.4. Collected data

For this thesis, data was collected from two different settings: an orchard, representing an agricultural
environment, and a parking lot, representing an urban environment. Both of these drove a route where the
robot ends approximately where it started. Hence, both had the capability of creating closed loops. The
complete information can be found in Table 2, where the values were generated using the evo package

[52]. The locations of the recording from a satellite view can be inspected in Fig. 22.

27

W e
orchard. V’*

" 4
it |

i e

o

.. [TRLLTLS
o ¥

B

i}

pue-grE—.

Fig. 22: Map of the locations of data collection, with pins at the locations. Image created using Google
maps [59].

Orchard Parking

Duration (s) 357.692 164.202
Path Length (m) 156.651 151.358
Statistics

Avg Time Interval (s) 0.100 0.1001
Max Time Interval (s) 0.109 0.110
Min Time Interval (s) 0.092 0.089
Avg Velocity (km/h) 1.577 3.320

Avg Velocity (m/s) 0.438 0.922
Max Velocity (km/h) 2.575 5.048
Max Velocity (m/s) 0.715 1.402
Min Velocity (km/h) 0.000 0.036
Min Velocity (m/s) 0.000 0.010

Table 2: Trajectory statistics for the orchard and parking lot environments using the evo python package.

28

3.4.1. Orchard

This dataset was recorded in an orchard on the campus of NMBU, and it totaled about 6 minutes. The
weather was shifting between sunny and cloudy during the recording, and the terrain was very uneven and
slightly muddy due to the weather being rainy a couple of hours prior to recording. The path length is
156.6 meters and the average velocity is 1.577 km/h. In regards of altitude, the first half of the trajectory

is downhill and the second half is driving back up to the original altitude.

3.4.2. Parking lot

This recording was captured outside the robotics lab on the NMBU campus. The terrain is paved, but
because the pavement is a bit worn, it is still slightly bumpy at times. The weather at the time of the
recording was dry and sunny. The path length is 151.4 m and the average speed is 3.3 km/h. The altitude
is close to flat, apart from small bumps on the road.

3.5. Ground truth generation for collected datasets

Due to the different data formats between the camera based approaches and LIDAR based approaches the

global position to local coordinates was handled differently.

3.5.1. Camera-based SLAM systems

As we are utilizing a RTK-GNSS to create a ground truth, the recorded data from the GPS will be stored as
latitude, longitude and altitude. Moreover, when the SLAM systems are predicting a trajectory estimate,
they are predicting poses (X, ¥, z, X, qy, qz, qw), meaning that if someone would evaluate the predicted
poses with the GPS coordinates, it would not make sense. In order to counteract this, the solution is to
convert the GPS coordinates into Cartesian coordinates such that the ground truth is in the same format
as the estimated trajectory. There were multiple steps involved in this process, the first one was to extract
only the /robot/gps/fix topic into a .txt file by firstly using this command in a Bash terminal after running

roscore in another terminal first:

rostopic echo foo.bag > gps_extracted_from_bag.txt

Then, you would playback the rosbag like this:

rosbag play —--clock foo.bag

This is done such that it can write to the .txt file. When this is done, a script was created in order to read

the GPS coordinates for every timestamp and output it in a format like this:

timestamp longitude latitude altitude

29

Fig. 23: Image of orchard environment where data was collected. The robot was driven down the row
between the trees before making a U-turn at the bottom to drive back up on the right-hand side of the
picture.

30

Fig. 24: Image of the parking lot where data was collected. The recording was performed a few days later
when there were more parked cars.

Then another script was created in order to convert the GPS coordinates into cartesian coordinates (X, y, z).
In addition to this, since the camera is fixed in the collected dataset, the constant orientation means there is
no variation in rotation. Thus, the script also adds 0 0 O 1 to the end of every line such that the quaternions
represent a neutral rotation in 3D space. When all of this is done, a ground truth for the recorded bag file

has been generated.

3.5.2. LIDAR-based SLAM systems

For the LIDAR based system, one also had to convert to Cartesian local coordinates. To achive this the
GPS coordinates from the rostopic /robot/gps/fix was used to generate a new topic in the rosbag containing
the local coordinates. To convert from global cordinates to local cordinates the geographiclib [60] python
package was used. When converting from global to local coordinates has to define where the origin of the
coordinates are. To define this, the position of the first gps message in the rosbag was defined as the origin.

As we only had a singular RTK-GNSS reciever we can only consider the position, not the orientation.

3.6. Setup of SLAM systems

As all systems needed alteration to allow the algorithms to work on both benchmark datasets and the

collected dataset, this section aims to explain what changes were made to each system.

31

3.6.1. Setup of camera-based SLAM systems

All of the camera-based SLAM systems were built and compiled with the instructions found on their
respective GitHub pages ([61], [62], [63], [64], [65]). For ORB-SLAM2, ManhattanSLLAM and RESLAM,
the only adjustment that was made in the .yaml configuration files, was the camera’s intrinsic parameters.
Since RTAB-Map and RGBDSLAMYV?2 were configured with ROS, the only modifications that were done
in the launch files was the adjustment of rostopics as well as the camera’s intrinsic parameters. Note; these

adjustments that were mentioned is only applicable for the collected dataset.

3.6.1.1. Conversion of collected rosbag to TUM format

Since ORB-SLAM?2, ManhattanSLAM and RESLAM, in contrast to RGBDSLAMv2 and RTAB-Map,
were not ran using a rosbag, there had to be a conversion of the rosbag to a proper format, more specifically
the TUM format. This includes a RGB and depth folder as well as an associations file that contains
the synchronized timestamps between each RGB and depth image. An example of how one line of the

associations file looks like is given here:

1712929696.511281 rgb/1712929696.511281.png 1712929696.511281
< depth/1712929696.511281.png

The recorded topics of the rosbag that had to be converted was /robot/camera/color/camera_info, /robot/-
camera/color/image_raw and /robot/camera/depth/image_rect_raw. These had to be converted into a RGB
and depth folder containing their respective images using a script . After this was done, a rgb.txt and
depth.txt file had to be made using this script such that it could be used with the association script provided
by TUM, found on this page [66]. This association script generated an associations.txt file as exemplified
above and the collected dataset was almost ready to be used with ORB-SLAM?2, ManhattanSLLAM and
RESLAM.

Note; All of the following commands in this section (until the section about TUM-RGBD benchmark
experiment) are to be executed within a terminal using Bash. For the commands that utilize roslaunch, it

is important to source the workspace as well before executing the command.

3.6.1.2. ORB-SLAM?2

For running and evaluating the sequence on the TUM-RGBD dataset, the configuration file(s) named
TUMX.yaml is included in the repository, meaning the SLAM system is ready for use if you have installed

the dataset, with this command:

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml
— PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

32

For running and evaluating the sequence on the collected dataset, the command is pretty much similar
except that the configuration file changes from TUMX.yaml to D435i.yaml, meaning that the command
would be:

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/D435i.yaml
— PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

One thing to note; the ORB-SLAM?2 package that was used in this thesis is a modified version of the
original one. The only difference is that it includes a reconstructed point cloud map, whereas the original
does not. However, this does not impact the estimated trajectory or any other aspects than the reconstructed

map.

3.6.1.3. ManhattanSLAM

ManhattanSLAM is based upon ORB-SLAM?2, meaning that the command to run the SLAM system is
almost identical to ORB-SLAM2. This also entails that the same process for converting the rosbag to
TUM format for the collected dataset had to be done here. For running ManhattanSLLAM on the TUM-
RGBD dataset, the command would like this:

./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/TUMX.yaml
— PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

For running it on the collected dataset, the command would like this:

./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/D435i.yaml
— PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

3.6.1.4. RESLAM

While RESLAM, in addition to ORB-SLAM?2 and ManhattanSLAM, had to have an associations.txt file
to run the SLAM system, this was not entirely equal in terms of this. The command to run the SLAM
system on the TUM dataset looks like this:

build/RESLAM config_files/reslam_settings.yaml config_files/dataset_tumX.yaml

Whilst running it on the collected dataset, the command would look like this:

build/RESLAM config_files/reslam_settings.yaml config_files/D435i.yaml

3.6.1.5. RTAB-Map

In RTAB-Map we see a different approach than in the three, aforementioned SLAM systems, since rosbags

are utilized here instead of using an associations.txt file. Firstly, a launch file had to be created to be

33

compatible with the collected dataset. Then, to run the SLAM system, one would execute this launch file,
then proceed to Rviz and add the topics of interest for visualization. Finally, run the rosbag using this

command:

rosbag play —--clock foo.bag

After the rosbag has finished processing, the reconstructed map and estimated trajectory is stored in RTAB-

Map’s database, and this can be accessed using this command:

rtabmap-databaseViewer ~/.ros/rtabmap.db

This opens a GUI to view the database of the processed rosbag, and the main points of interest here is
exporting the estimated trajectory as well as the reconstructed map. This is easily done using “Export

poses” and “Export 3D map” under “File” inside the GUL

3.6.1.6. RGBDSLAMv?2

Similar to RTAB-Map, this SLAM system also operates with rosbags, meaning that a launch file had to
be created here as well to make sure it was able to be ran with the collected dataset. For running it with
the TUM-RGBD dataset, a launch file was provided with the repository and the command would look like
this:

roslaunch rgbdslam test_settings.launch

— bagfile_name:="/home/marko/Documents/rgbd_dataset_freiburg2_desk.bag"

To run RGBDSLAMvV?2 with the collected dataset, the command would look like this:

roslaunch rgbdslam realsense_slam.launch

— bagfile_name:="/home/marko/Documents/orchard.bag"

When the bag file has finished processing, the GUI in which the SLAM system was visualized, there are
options to export the trajectory and reconstructed map, similar to RTAB-Map. Here you would use ~’Save

as Point Cloud ...” and “’Save Trajectory Estimate...” under the ”Save” option in the GUL

3.6.2. Setup for LIDAR based SLAM system

While our goal was to run all the methods as they are available on GitHub, there were still some changes
made to the codebases and the following section aims to clarify what changes were made to each LIDAR
based approach. Although most of the packages needed to be updated to allow for input with 128 channels,
some required further alteration. To install all packages, the instructions are available on each respective
GitHub ([40], [36], [67], [68], [40], [43]) then the following modifications were made to each of them.

34

Important to note that the rosbags were played back in real time, and all were ran using roslaunch.

3.6.2.1. A-LOAM

A-LOAM did not support more than 64 vertical input channels by default, so

scanRegistration.cpp had to be modified to allow for 128 channel LIDAR input and change the
topic name to be a ROS parameter instead of being hard-coded to work only with KITTI dataset. The
global map this method produced had some limitations in regard to the maximum number of points. By
updating the 1laserCloudNum variable in laserMapping.cpp the maximum size of the resulting

map was increased.

3.6.2.2. F-LOAM

The unit did not support the 128 channel LIDAR input, so changed the code within
laserProcessingClass.cpp to allow for more channels. To allow the input topic to be changeable,
the hard-coded topic name was changed for a ROS parameter that allowed alternative input topic name to

be changed from launch files.

3.6.2.3. SC-A-LOAM

As SC-A-LOAM is based on A-LOAM, all the same changes had to be made to this package. Update to
a ROS parameter for the input topic name and update to allow 128 channel LIDAR input, both of these
modifications were made to the scanRegistration.cpp. This also lacked the ability to create global

maps for all datasets without increasing the 1aserCloudNum variable within laserMapping.cpp.

3.6.2.4. LeGO-LOAM

To run this on the KITTI dataset the only file that needed to be updated was to change the utility.hto
specify the type of LIDAR. The settings for Velodyne HDL64 was included in the file. For the ouster LI-
DAR used in the collected dataset the following modifications had were implemented. Inthe utilily.h
the input topic was changed. The parameters for OS0-128 were updated according to Listing 1. And in
imageProjection.cpp line 166 was uncommented so that the resulting point cloud would get the

correct timestamp [69].

Listing 1: Snapshot of the utilily.h header file defining LIDAR parameters for OS0-128

// QOuster 0S0-128

extern const string LIDAR.TYPE = ”"OustermOS0-128";

extern const int N.SCAN = 128;

extern const int Horizon_.SCAN = 1024; //2048

extern const float ang_res_x = 360.0 / float (Horizon.SCAN);

35

extern const float ang res.y = 90.0 / float (N.SCAN-1); //45
extern const float ang bottom = 22.5 + 0.1; //22.5

extern const int groundScanlnd = 30;

3.6.2.5. HDL Graph SLAM

The only modifications necessary in HDL Graph SLAM was within hdl _graph_slam kitti.launch.
For the KITTI dataset, the static transform publisher was changed to go between vehicle and velodyne.
And within the prefiltering_nodlet the base_link_name was updated to vehicle. For the collected dataset,
the static transform publisher was not necessary and the base_link frame in the prefiltering_nodlet was

changed to “robot_top_3d_laser_link™ as this link is where the LIDAR 1is connected.

3.6.2.6. KISS-ICP

As KISS-ICP is developed to be LIDAR odometry pipeline, and not a full SLAM system, it does not
generate a global map by default, but by changing the range of the local map, it became the global map as
the robot drove around. This was achieved by removing RemovePointsFarFromLocation function
in VoxelHasMap.cpp. In addition to this, only modifications were made to odometry.launch,

where the topic name and robot_odom were set according to the datasets.

3.6.2.7. Reconstructed maps

To export the reconstructed maps the pcl_ros package was used with the pointcloud_to_pcd function
which saves all point clouds at a given topic to pcd format. As all algorithms published a full map to a
topic, the input topic needed to be adjusted for each algorithm. As seen in the code snippet below. Then

the last point cloud generated by each algorithm was considered as the reconstructed global map.

rosrun pcl_ros pointcloud_to_pcd input:=/<full-map-topic>

3.7. Calculation of density and volume

For both camera and LIDAR based approaches the same script was used to calculate density and volume.
All algorithms that created a exportable map was either .ply or .pcd files, so by converting the .ply to .pcd
the same script could be utilized. To calculate the densities and volumes of the resulting maps, the open3d
[70] Python package was used. The density calculation was based on the number of points per cubed meter

within the bounding box of the map.

36

4. RESULTS

This section presents the comprehensive evaluation conducted on various algorithms, leveraging both
RTK-GNSS, LIDAR data and camera data to assess their performance across different environments and
conditions. This analysis spans from dataset accuracy to trajectory and map reconstruction, with a focus

on the precision and consistency of the SLAM systems under evaluation.

4.1. Dataset accuracy

To evaluate the performance of the algorithms on the dataset that was collected for this thesis, it is impor-
tant to include the accuracy of the GNSS. This data is represented in Fig. 25 and in Fig. 26. In both plots,
the longitude and latitude have identical values. From the plots, one can observe that within each plot the
accuracy of the altitude is less accurate than longitude and latitude. It is also apparent that the performance

in the orchard dataset is more accurate than the parking dataset.

Covariance in Latitude, Longitude, and Altitude Over Time

—— Covariance for Latitude
Covariance for Longitude
—— Covariance for Altitude
0.30
0.25 A
w
[}
o
@
=
T 0.20 -
o
v}
0.15 +
0.10 A

T T T T T T T
—-300 —250 —200 -150 -100 —=50 0 50
Time (s) +1.71293e9

Fig. 25: Covariance of longitude, longitude and altitude for the orchard dataset. Unit of measurement is
m?2. Longitude and latitude share covariance.

4.2. Camera

The evaluation of the results consists of both quantitative and qualitative methods, focusing on trajectory

estimates and map reconstruction quality. The quantitative map reconstruction analysis involves looking

37

Covariance in Latitude, Longitude, and Altitude Over Time

—— Covariance for Latitude
0.8 1 Covariance for Longitude
’ —— Covariance for Altitude
0.7
0.6
w
[¥)
[=
@ 0.5 1
=
m
=
8
0.4
0.3 /
0.2 1
0.1 1 T T T T T T T
-150 -125 -100 —-75 —=50 —25 0
Time (s) +1.71327e9

Fig. 26: Covariance of longitude, longitude and altitude for the parking dataset. Unit of measurement is
in m?, and Longitude and latitude share covariance.

38

at the file size, number of points, volume, and density, while the qualitative analysis concentrates on fea-
ture representation, detail, and consistency of the reconstructed maps. Trajectory analysis also employs
both approaches, where the quantitative analysis involves utilizing ground truth data to measure the error
metrics, whilst the qualitative analysis entails visual plot examination for qualitative coherence. The met-
rics evaluated include maximum error (Max), mean error (Mean), median error (Median), minimum error

(Min), root mean square error (RMSE), and standard deviation (Std), with all units reported in meters.

Note; RESLAM did not have the ability to extract the reconstructed map into a .pcd or .ply file. Thus,

only qualitative analysis for the reconstructed map was performed for RESLAM for all of the datasets.

4.2.1. TUM RGB-D Dataset
fr2_desk:

For the fr2_desk sequence, ORB-SLAM?2 demonstrated remarkable performance with the lowest RMSE
and standard deviation, indicating both high accuracy and precision. RTAB-Map, while exhibiting a larger
mean error, maintained a relatively low standard deviation, suggesting consistency in its tracking albeit
with a systematic bias. ManhattanSLAM and RESLAM, while having higher maximum errors, maintained

competitive mean and median errors. The APE results for the fr2_desk sequence are shown in Table. 3.

The trajectories plotted against each other in both XZ and XYZ plots, is shown in Fig. 27 and 28. When
evaluating the estimated trajectories qualitatively, a critical observation is the tight grouping of trajectories
from different algorithms, indicating similar performance characteristics in the XZ plane. However, subtle
deviations and occasional spread among the lines hint at varying degrees of drift or error accumulation
over time. Exemplified, the trajectory estimate plotted for RTAB-Map closely resembles the performance
in the error metrics, where it performed worst in almost all of them, and this seems valid when looking
at the plotted trajectory compared to the others as it slightly deviates more than the others with respect to

ground truth.

When looking at the reconstructed maps for this sequence, shown in Fig. 29, there are some clear dif-
ferences. The reconstructed map by ORB-SLAM?2 shows high detail in the feature-rich areas with a rel-
atively clean and noise-free reconstruction. However, some sparsity is observed in less textured regions.
RTAB-MAP’s reconstruction exhibits a denser map with a good balance between detail and noise. The
environmental structure is well-defined, although some minor artifacts are present. The map generated by
RGBDSLAMYvV?2 shows a dense point cloud reconstruction with detailed object reconstruction and surface
contours. ManhattanSLLAM’s output presents a relatively dense reconstruction in feature-rich areas, such
as the table with the objects, but produces a more sparse representation at surfaces where there are less
features. RESLAM’s map appears less dense compared to others, with sparse point clouds in regions of

low texture. Despite this, the reconstruction maintains a coherent overall structure with fewer artifacts.

39

Algorithm Max Mean Median Min RMSE Std

ORB-SLAM?2 0.028737 | 0.007781 | 0.007625 | 0.000750 | 0.008328 | 0.002969
RTAB-Map 0.175503 | 0.109263 | 0.104634 | 0.056007 | 0.112313 | 0.025998
RGBDSLAMv2 | 0.140237 | 0.087903 | 0.089168 | 0.026175 | 0.089630 | 0.017510
ManhattanSLAM | 0.073054 | 0.027944 | 0.025050 | 0.000446 | 0.031950 | 0.015489
RESLAM 0.044868 | 0.018435 | 0.018180 | 0.002193 | 0.019431 | 0.006140

Table 3: APE w.r.t. translation part (m) with SE(3) Umeyama alignment [53] for fr2_desk sequence. All
units are in meters.

24 ---- fr2_desk_groundtruth

—— RGBDSLAMv2_fr2_desk_trajectory
ORBSLAM2_fr2_desk_trajectory
RESLAM_fr2_desk_trajectory
ManhattanSLAM_fr2_desk_trajectory
RTABMAP_fr2_desk_trajectory

2.2

z(m)

1.2
-0.5 0.0 0.5 10 15 2.0 25 3.0 3.5

Fig. 27: XZ plot of trajectory estimate from each SLAM system for the fr2_desk sequence with ground
truth alignment using the Umeyama method [53].

The statistics for each reconstructed map is shown in table 4. ORB-SLAM2, with a modest file size of
12.11 MB and 294,281 points, covered a volume of 1,700 cubic meters and exhibited a density of 173.24
points per cubic meter. RTAB-Map demonstrated a remarkable density of 25,115.96 points per cubic meter
within a relatively small volume of 640 cubic meters, the smallest volume in the dataset, which correlated
with its substantial file size of 42.67 MB. In contrast, RGBDSLAMV2, despite its larger file size of 165.73
MB and the highest number of points at 10,861,255, maintained a lower density of 4,853.71 points per
cubic meter across a volume of 2,240 cubic meters. ManhattanSLLAM had the lowest point density at 43.85
points per cubic meter in a volume of 1,440 cubic meters, accompanied by the smallest file size of 1.69
MB.

40

—-—— fr2_desk _groundtruth

—— RGBDSLAMv2 fr2 desk trajectory

—— ORBSLAM2 fr2 desk trajectory

—— RESLAM fr2_desk_trajectory

—— ManhattanSLAM _fr2_desk_trajectory
RTABMAP fr2 desk trajectory

Fig. 28: XYZ plot of trajectory estimate from each SLAM system for the fr2_desk sequence with ground
truth alignment using the Umeyama method [53].

41

Fig. 29: Reconstructed maps for the fr2_desk sequence from each SLAM algorithm. Top-left: ORB-
SLAM?2, top-right: RTAB-Map, middle-left: RGBDSLAMvV2, middle-right: ManhattanSLLAM, bottom:
RESLAM.

42

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

ORB-SLAM?2.pcd 12.11 294281 1.70e+03 173.24
RTAB-Map.pcd 42.67 1597853 0.64e+03 25115.96
RGBDSLAMVv2.pcd 165.73 10861255 2.24e+03 4853.71
ManhattanSLAM.pcd 1.69 63338 1.44e+03 43.85
RESLAM.pcd N/A N/A N/A N/A

Table 4: Statistics for each reconstructed map for the fr2_desk sequence. For each map in point cloud
data (pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

fr2_desk_with_person:

Moving to the fr2_desk_with_person sequence, the results showcased an increase in error metrics for all al-
gorithms when a person was interacting with the same environment. Despite this, ORB-SLAM?2 managed
to keep its RMSE low, although with a notable increase from the static environment. ManhattanSLAM
showed an increased variance in performance with a higher RMSE. RTAB-Map and RGBDSLAMv?2 had
notably higher values in most of the error metrics for this sequence. In contrast, RESLAM achieved the
lowest error metrics with the exception of the minimum error metric. The table showing the APE results

for the fr2_desk_with_person sequence are shown in Table. 5.

The trajectories plotted against each other in both XZ and XYZ plots, is shown in Fig. 30 and 31. There
are noticeable differences within the same environment when a dynamic object, in this case a person, is
introduced. There are greater variances between the trajectories estimates to the ground truth, even for the
better performing ones, signifying that dynamic objects cause the estimates to be worse. One more thing
to note however, is that in this sequence there is no loop closure as it was in the fr2_desk sequence which
is based in the same environment, this could also have a significant impact on the estimated trajectory for

each of the SLAM systems, where the trajectory estimates are not as smooth as in the fr2_desk sequence.

The map for ORB-SLAM2 looks sparse and the features seem to be very localized around certain high-
contrast areas. The person and desk are identifiable, but the overall structure lacks detail. The reconstructed
map from RTAB-Map is very dense and provides good detail of the most feature-rich areas, but seems to
not include a lot of the ground and walls from the entire sequence. RGBDSLAMYV2’s reconstruction looks
very similar to ORB-SLAM?2, but way denser. The details of the environment, including the desk and other
objects, are much clearer. The reconstruction for ManhattanSLAM and RESLAM appears more sparse
than the others with respect to less feature-rich areas such as the ground and walls. The reconstructed

maps are shown in Fig. 32.

The statistics for each reconstructed map is shown in table 6. ORB-SLAM?2 had a relatively small file size

of 8.37 MB and contained 203,610 points within a volume of approximately 2010 cubic meters, resulting

43

Algorithm Max Mean Median Min RMSE Std

ORB-SLAM?2 0.068307 | 0.05538 | 0.05085 | 0.000307 | 0.06294 | 0.02990
RTAB-Map 0.146268 | 0.107228 | 0.104088 | 0.078417 | 0.108187 | 0.014371
RGBDSLAMv2 | 0.140278 | 0.076161 | 0.077577 | 0.018702 | 0.079397 | 0.022436
ManhattanSLAM | 0.089529 | 0.034721 | 0.035829 | 0.007985 | 0.038494 | 0.016620
RESLAM 0.065306 | 0.030606 | 0.030592 | 0.002822 | 0.032225 | 0.011596

Table 5: APE w.r.t. translation part (m) with SE(3) Umeyama alignment [53] for {fr2_desk_with_person
sequence. All units are in meters.

---- fr2_desk with_person_groundtruth

—— RGBDSLAMv2 fr2_desk with_person_trajectory
ORBSLAM2 fr2_desk_with_person_trajectory

20 —— RESLAM _fr2_desk_with_person_trajectory

ManhattanSLAM_fr2_desk_with_person_trajectory

RTABMAP_fr2_desk_with_person_trajectory

2.2

1.8
1.6 A =
. g‘-- ST 000 W
NI sl —E T T e
st _Mﬁ kﬂ’ﬂ(’
ﬁ‘%_ e ———— i\:ﬁ. =
14 — = N
-0.5 0.0 0.5 1.0 15
x (m)

Fig. 30: XZ plot of trajectory estimate from each SLAM system for the fr2_desk_with_person sequence
with ground truth alignment using the Umeyama method [53].

in a density of 101.16 points per cubic meter. RTAB-Map had a smaller bounding box volume of 83 cubic
meters, but packed a significantly higher number of points, reflecting a dense cluster of 22,076.35 points
per cubic meter. Moreover, RGBDSLAMYv?2, the largest file at 214.56 MB, contained the highest number
of points, spread over a volume of 2740 cubic meters, yielding a density of 5122.83 points per cubic meter.
Finally, ManhattanSLAM presented the lowest density of 45.91 points per cubic meter, with 79,058 points

across a 1720 cubic meter volume.

44

rgbd_dataset_freiburg2_desk_with_person-groundtruth
RGBDSLAMv2Z fr2_desk with_person_trajectory

—— ORBSLAM2 fr2 desk with_person_trajectory

—— RESLAM fr2 desk with_person_trajectory

—— ManhattanSLAM fr2 _desk with person_trajectory
RTABMAP fr2_desk with _person_trajectory

=35
=~ 3.0
—~25
=~ 20
~15
=~ 1.0
T s

=~ 0.0
=-0.5

- 0.0
. - -05
Fd
-1.5 P -~ -1
- -15\&

-1.0 s ’
—0. > .‘\
-2.0

0.0 7 —
0.5
‘ 25

X(m) 10 p ~
1.5 /30

2.5

Fig. 31: XYZ plot of trajectory estimate from each SLAM system for the fr2_desk_with_person sequence
with ground truth alignment using the Umeyama method [53].

45

Fig. 32: Reconstructed maps for the fr2_desk_with_person sequence from each SLAM algorithm. Top-
left: ORB-SLAM2, top-right: RTAB-Map, middle-left: RGBDSLAMv2, middle-right: ManhattanSLAM,
bottom: RESLAM.

46

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

ORB-SLAM2.pcd 8.37 203610 2.01e+03 101.16
RTAB-Map.pcd 48.75 1825496 0.083e+03 22076.35
RGBDSLAMVv2.pcd 214.56 14060916 2.74e+03 5122.83
ManhattanSLAM.pcd 2.11 79058 1.72e+03 4591
RESLAM.pcd N/A N/A N/A N/A

Table 6: Statistics for each reconstructed map for the fr2_desk with_person sequence. For each map in
point cloud data (pcd) format, there is file size, total number of points, volume of the bounding box, and
density of the points in terms of volume.

fr3_walking xyz:

The fr3_walking xyz sequence results indicate a significant increase in localization errors for most al-
gorithms, likely due to the complexity introduced by rapid 3D motion while simultaneously incorporat-
ing dynamic objects. ORB-SLAM?2, while showing a decent increase in its RMSE and max error, still
maintained a relatively lower mean error compared to ManhattanSLAM and RESLAM. RGBDSLAMv2
demonstrated a low RMSE, potentially indicating a more effective strategy for dealing with full 3D mo-
tion. RTAB-MAP also had a substantial increase in terms of performance for this sequence compared

to the previous ones. The table showing the APE results for the fr3_walking xyz sequence are shown in
Table. 7.

The trajectories plotted against each other in both XZ and XYZ plots, is shown in Fig. 33 and 34. Upon
inspection of the trajectory plots, it can be clearly seen that the estimated trajectories for this sequence
is highly irregular and erratic. When looking at how these SLAM systems performed during run-time,
it could be noticed that most of them struggled when one of the people are moving in the scene while
simultaneously the camera is being moved along the x-axis. It could be made the case for that the only
SLAM systems that performed well in this sequence based on the trajectory plot, was RGBDSLAMv2 and
RTAB-Map. The others had great deviations from ground truth.

The reconstructed maps for this sequence has less detailed features than the two previous sequences with
the desk. The reconstructions for ORB-SLAM?2 and RGBDSLAMYv?2 look quite similar except that ORB-
SLAM?2’s reconstruction is a bit more sparse and includes more information about areas where there are
not many features as can be seen at the top of the reconstruction for both of them compared. RTAB-Map’s
reconstruction got a lot of detail from the main part of the scene which was the people and the desk, but
did not include information about the rest of the area. ManhattanSLAM and RESLAM give relatively
sparse reconstructions compared to RGBDSLAMvV2 and RTAB-Map and details are not as clear in these

reconstructions. The reconstructed maps for this sequence is shown in Fig. 35.

The statistics for each reconstructed map is shown in table 8. ORB-SLAM?2, with a file size of 15.77 MB

47

Algorithm Max Mean Median Min RMSE Std

ORB-SLAM?2 0.726983 | 0.332119 | 0.323284 | 0.015219 | 0.392336 | 0.208864
RTAB-Map 0.556849 | 0.097965 | 0.075098 | 0.012696 | 0.129375 | 0.084503
RGBDSLAMv2 | 0.111939 | 0.027264 | 0.022928 | 0.002296 | 0.032240 | 0.017206
ManhattanSLAM | 1.563303 | 0.517755 | 0.411244 | 0.030480 | 0.626333 | 0.352453
RESLAM 1.513727 | 0.832047 | 0.819912 | 0.206197 | 0.906516 | 0.359817

Table 7: APE w.r.t. translation part (m) with SE(3) Umeyama alignment [53] for fr3_walking xyz se-
quence. All units are in meters.

and 386,068 points, covers a volume of approximately 1,290 cubic meters, resulting in a density of around
299 points per cubic meter. RTAB-Map, although smaller in volume with about 54 cubic meters, provides
a much higher density of 16,519.29 points per cubic meter, facilitated by a larger file size of 23.84 MB
and a total of 892,609 points. Furthermore, the data from RGBDSLAMYv2 and ManhattanSLAM further
underline these discrepancies. The RGBDSLAMYv2.pcd, with the largest file size at 36.25 MB and the
highest point count of 2,375,609, shows a volume similar to that of ORB-SLAM?2, but with a significantly
higher density of 2,064.36 points per cubic meter. Additionally, ManhattanSLLAM, despite having the
smallest file size of 1.55 MB and the lowest number of points, spans nearly the same volume as ORB-
SLAM?2, but with an exceedingly low density of 54.64 points per cubic meter.

File Name File Size (MB) Number of Points Volume (m?) Density (points/m?)
ORB-SLAM2.pcd 15.77 386068 1.29e+03 299.03
RTAB-Map.pcd 23.84 892609 0.054e+03 16519.29
RGBDSLAMvV2.pcd 36.25 2375609 1.15e+03 2064.36
ManhattanSLAM.pcd 1.55 58103 1.06e+03 54.64
RESLAM.pcd N/A N/A N/A N/A

Table 8: Statistics for each reconstructed map for the fr3_walking xyz sequence. For each map in point
cloud data (pcd) format, there is file size, total number of points, volume of the bounding box, and density
of the points in terms of volume.

fr3_sitting_static:

Finally, in the fr3 _sitting_static sequence, we see a return to lower error metrics across all algorithms, which
makes sense since 3D motion and quickly moving dynamic objects are out of the picture. Thus, while not
surprising, every algorithm performed well and there was not an exceptionally outstanding performer even
though RGBDSLAMV2 performed the best. The low standard deviations across the board suggest that
the static nature of the sequence minimized the influence of external variables on algorithm performance,
such as movement or occlusion. The table showing the APE results for the fr3_sitting_static sequence are

shown in Table. 9.

48

groundtruth
RGBDSLAMv2_fr3_walking_xyz_trajectory
ORBSLAM2_fr3_walking_xyz_trajectory
RESLAM fr3 walking xyz trajectory
ManhattanSLAM_fr3_walking_xyz_trajectory
RTABMAP fr3 walking xyz trajectory

2.25

1.25

1.00

0.75

-2.0 -1.5 -1.0 -0.5 0.0 0.5

Fig. 33: XZ plot of trajectory estimate from each SLAM system for the fr3_walking_xyz sequence with
ground truth alignment using the Umeyama method [53].

49

——= groundtruth

—— RGBDSLAMv2 fr3 walking xyz trajectory

—— ORBSLAMZ2 fr3 walking xyz trajectory

—— RESLAM fr3 walking xyz trajectory

—— ManhattanSLAM fr3 walking xyz_trajectory
RTABMAP fr3 walking xyz trajectory

-1.2 g 30
-1.0 4 ~ 3
—0.8 s -3.2
Ylm) -o0s . o
Yy -34

Fig. 34: XYZ plot of trajectory estimate from each SLAM system for the fr3_walking xyz sequence with
ground truth alignment using the Umeyama method [53].

50

Fig. 35: Reconstructed maps for the fr3_walking xyz sequence from each SLAM algorithm. Top-left:
ORB-SLAM?2, top-right: RTAB-Map, middle-left: RGBDSLAMvV2, middle-right: ManhattanSLAM, bot-
tom: RESLAM.

51

Algorithm Max Mean Median Min RMSE Std

ORB-SLAM?2 0.037843 | 0.007270 | 0.006570 | 0.000438 | 0.008323 | 0.004052
RTAB-Map 0.031495 | 0.008061 | 0.007381 | 0.001178 | 0.009219 | 0.004473
RGBDSLAMv2 | 0.027057 | 0.006192 | 0.005557 | 0.000942 | 0.006976 | 0.003213
ManhattanSLAM | 0.035891 | 0.008120 | 0.007755 | 0.000942 | 0.008978 | 0.003828
RESLAM 0.040538 | 0.007428 | 0.006483 | 0.000620 | 0.008962 | 0.005014

Table 9: APE w.r.t. translation part (m) with SE(3) Umeyama alignment [53] for fr3_sitting_static se-
quence. All units are in meters.

The trajectory plots for this sequence are not that easy to analyze qualitatively as the estimated trajectories
are very erratic and covers the ground truth trajectory quite a bit. However, they all seem to have the
”same” pattern across the entire plot which makes sense given the fact that they all performed well with
respect to error metrics. The trajectories plotted against each other in both XZ and XYZ plots, is shown in
Fig. 36 and Fig. 37.

As this sequence had no movement alongside any axis, the reconstruction for some of the SLAM systems
did not include as much information as the one in the previous sequence, given that they were recorded in
the same area. ORB-SLAM?2 and RGBDSLAMV2 are still looking quite similar, but with the exception
that ORB-SLLAM2’s reconstructed is yet again more sparse. RTAB-Map had a quite similar reconstruction
as the one in the previous sequence, but with less artifacts and noise. ManhattanSLAM, obtained a more
dense reconstruction in this sequence compared to the previous one. Finally, it seems that RESLAM had
issues with capturing details, even in the feature-rich areas, resulting in a sparse, low-detail reconstruction.

The reconstructed maps for this sequence is shown in Fig. 38.

The statistics for each reconstructed map is shown in table 10. ORB-SLAM?2 shows a modest file size of
1.38 MB with 33,658 points in a 460 cubic meter space, rendering a point density of 72.57 points per cubic
meter. The RTAB-Map, provides a file size of 10.65 MB, including about 398,913 points, confined within
a notably smaller volumetric space of 23 cubic meters. This yields an exceptionally high point density of
17,456.85 points per cubic meter. The RGBDSLAMYV?2 file, with its considerably larger file size of 33.89
MB, contains over 2.2 million points within a volume of 730 cubic meters, resulting in a lower density
of 3,057.83 points per cubic meter. In contrast, ManhattanSLAM, with the smallest file size of 0.83 MB,

captures 30,915 points within 400 cubic meters, achieving a density of 76.49 points per cubic meter.

52

1.50 ---- fr3_sitting_static_groundtruth

—— RGBDSLAMv2_fr3_sitting_static_trajectory
—— ORBSLAMZ2_fr3_sitting_static_trajectory
—— RESLAM_fr3_sitting_static_trajectory

—— ManhattanSLAM_fr3_sitting_static_trajectory

1.48
RTABMAP_fr3_sitting_static_trajectory

1.46
E
N

1.44

1.42

1.40

-0.74 -0.72 -0.70 -0.68 ~0.66 -0.64 -0.62 ~0.60
x (m)

Fig. 36: XZ plot of trajectory estimate from each SLAM system for the fr3_sitting_static sequence with
ground truth alignment using the Umeyama method [53].

53

=== fr3_sitting_static_groundtruth

—— RGBDSLAMv2 fr3 sitting static_trajectory
—— ORBSLAMZ fr3_sitting_static_trajectory
—— RESLAM fr3 sitting_static_trajectory

—— ManhattanSLAM _fr3_sitting_static_trajectory
RTABMAP fr3 sitting static_trajectory

~1.48
~1.46
~1.44
~1.42
~1.40

=138

- 292
—2.94

.
07a 7 _ —2.96
e s "
o 070 7 ~ _2'93.@
—0.68 > . —3.00

7

X (m, —0.66
M) —0.64 ’, -3.02
—0.62

Fig. 37: XYZ plot of trajectory estimate from each SLAM system for the fr3 _sitting_static sequence with
ground truth alignment using the Umeyama method [53].

54

Fig. 38: Reconstructed maps for the fr3_sitting_static sequence from each SLAM algorithm. Top-left:
ORB-SLAM?2, top-right: RTAB-Map, middle-left: RGBDSLAMv2, middle-right: ManhattanSLLAM, bot-
tom: RESLAM.

55

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

ORB-SLAM2.pcd 1.38 33658 0.46e+03 72.57
RTAB-Map.pcd 10.65 398913 0.023e+03 17456.85
RGBDSLAMVv2.pcd 33.89 2220854 0.73e+03 3057.83
ManhattanSLAM.pcd 0.83 30915 0.40e+03 76.49
RESLAM.pcd N/A N/A N/A N/A

Table 10: Statistics for each reconstructed map for the fr3_sitting_static sequence. For each map in point
cloud data (pcd) format, there is file size, total number of points, volume of the bounding box, and density
of the points in terms of volume.

4.2.2. Orchard dataset

For the orchard dataset, ORB-SLAM?2 demonstrated outstanding performance across several metrics for
the orchard dataset, notably achieving the lowest mean error, median error, RMSE, and standard devia-
tion. RTAB-Map, while slightly outperforming ORB-SLAM?2 in terms of maximum and minimum error,
showed slightly higher values in mean and median errors, as well as RMSE. RGBDSLAMYv?2, on the other
hand, exhibited substantially higher errors across all metrics, with a particularly notable maximum error
of 15.279077 m. The mean and RMSE values exceeded 8 m, significantly higher than those of the other
algorithms. ManhattanSLLAM showed moderate performance with its metrics lying between the best and
the worst performer. RESLAM, marked with an asterisk, indicates partial evaluation due to memory issues
during runtime, covering approximately half of the dataset. Running RESLAM on half of the dataset con-
sumed 10GB of RAM which was the maximum amount of RAM dedicated to the VM. With this limitation
in mind, RESLAM achieved quite remarkable results. However, since it was not ran on the entire dataset,
it is not possible to conclude that it would outperform the others on the entire dataset. On the other hand, if
it would continue to perform the way it did for the first half, ORB-SLAM?2 would have a quite challenging
competitor at hand for this dataset. The table showing the APE results for the orchard dataset are shown
in Table. 11.

The most noticeable characteristic of the plots from the orchard dataset, shown in Fig. 39 and Fig. 40, is
the trajectory estimate from RGBDSLAMYV?2 which is relatively poor compared to the other ones. While
not a surprise from the error metrics, it seems that it struggles during the sharp U-turn, which could lead to
accumulative errors. The rest of the SLAM systems seem to have very closely related trajectory estimates
for this dataset and there is not a totally clear distinction. On the other hand, looking at the estimated
trajectory of RESLAM, it seems to be the best performing and as noted earlier, if it was able to run the
whole dataset, the trajectory estimate could very well be almost flawless except for the U-turn where all
of the SLAM systems struggled.

The reconstructed maps for this sequence is shown in Fig. 41. ORB-SLAM?2, RTAB-Map and RESLAM

56

displayed a quite good reconstruction of the grass and trees, whilst RGBDSLAMYv?2 seemed to suffer quite
a bit here with the plot not yielding much information about the orchard. ManhattanSLLAM’s reconstruc-
tion was not entirely disappointing, but not impressive either, the reconstruction of the grass and tress
where the robot actually drove is in the middle of the plot. Meanwhile, the reconstruction at the outside of
this orchard is from the building at the top and bottom of the orchard, which is not necessarily the point of

interest in the reconstruction.

The statistics for each reconstructed map is shown in table 12. The ORB-SLAM? file, at a size of 98.61
MB, contains approximately 2.4 million points within a bounding box volume of 11,600 cubic meters,
resulting in a point density of 207.03 points per cubic meter. The RTAB-Map file, at a larger file size
of 281.23 MB, also displays a remarkably higher density of 3732.91 points per cubic meter within a
significantly smaller volume of 2,820 cubic meters. Further analysis shows that the RGBDSLAMV?2 file,
the largest among the set with a file size of 670.15 MB, contains an extremely high number of points
at approximately 43.9 million, while also covering an extensively larger volume of 3.19 million cubic
meters, which results in a substantially lower density of 13.77 points per cubic meter. In contrast to this,
ManhattanSLAM, with a minimal file size of 10.41 MB, includes around 390,021 points distributed over

a volume of 1.12 million cubic meters, which results in an extremely low density of 0.35 points per cubic

meter.
Algorithm Max Mean Median Min RMSE Std
ORB-SLAM?2 1.876483 | 1.203415 | 1.180617 | 0.621010 | 1.225237 | 0.230212
RTAB-Map 1.854631 | 1.278669 | 1.310110 | 0.272796 | 1.303255 | 0.251950

RGBDSLAMv2 | 15.279077 | 8.678303 | 9.043291 | 2.604970 | 9.198417 | 3.049252
ManhattanSLAM | 3.324453 | 1.710893 | 1.549815 | 0.569914 | 1.793658 | 0.538568
RESLAM* 2.351481* | 0.454535* | 0.234107* | 0.066266* | 0.669685* | 0.491809*

Table 11: Absolute positional error w.r.t. translation part (m) with Sim(3) Umeyama alignment [53] for
the orchard dataset. All units are in meters. *RESLLAM evaluation was only taken on about half of the
dataset due to issues with memory during run-time of the SLAM system.

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)
ORB-SLAM2.pcd 98.61 2403870 1.16e+04 207.03
RTAB-Map.pcd 281.23 10531943 2.82e+03 373291
RGBDSLAMV2.pcd 670.15 43918894 3.19e+06 13.77
ManhattanSLAM.pcd 10.41 390021 1.12e+06 0.35
RESLAM.pcd N/A N/A N/A N/A

Table 12: Statistics for each reconstructed map for the orchard dataset. For each map in point cloud data
(pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

57

—--- orchard_groundtruth
% —— RGBDSLAMv2 orchard_estimate
ORBSLAM2 orchard estimate
RESLAM orchard_estimate
ManhattanSLAM orchard
RTABMAP orchard _estimate

Fig. 39: XY plot of trajectory estimate from each SLAM system for the orchard dataset with ground truth
alignment using the Umeyama method [53].

58

=== orchard_groundtruth

—— RGBDSLAMvZ2 orchard estimate

—— ORBSLAM2 orchard estimate

—— RESLAM orchard estimate

—— ManhattanSLAM orchard
RTABMAP orchard estimate

=~ 70

~ 60
£

~ 50 by

~ 40

=~ 30

50

40
s 30
50 ’ S,
60 ’ / 3
70 /
10
*im) 80 ’ 7
90 0

Fig. 40: XYZ plot of trajectory estimate from each SLAM system for the orchard dataset with ground
truth alignment using the Umeyama method [53].

59

Fig. 41: Reconstructed maps for the orchard dataset from each SLAM algorithm. Top-left: ORB-SLAM?2,
top-right: RTAB-Map, middle-left: RGBDSLAMyv2, middle-right: ManhattanSLAM, bottom: RESLAM.

60

4.2.3. Parking dataset

Taking a look at the statistics of error metrics for the parking dataset, shown in Table. 13, ORB-SLAM?2 yet
again performs quite remarkable, but with ManhattanSLLAM not too far behind. RGBDSLAMv?2 unfortu-
nately struggled yet again with a dataset in an outdoor environment obtaining a max error of approximately
28.9 meters, which is relatively high when compared to the performance of the other SLAM systems, and
the remaining statistics for the error metrics are not quite impressive either. RTAB-Map and RESLAM did
not perform exceptional, but not necessarily terrible either, even though expectations for RESLAM was a

bit higher after looking at the performance for the orchard dataset.

When looking at the plots, shown in Fig. 42 and Fig. 43, one could easily notice that RGBDSLAMv?2
performs the worst, which is also indicative from the error metrics talked about earlier. Furthermore, the
trajectory estimate for RGBDSLAMV2 could suggest that it struggles with turns as the estimate becomes
erratic during the turns. ORB-SLAM?2 and ManhattanSLAM seem to follow the trajectory the closest of
all the SLAM systems, and whilst RTAB-Map and RESLAM performs decent, they seem to also strug-
gle with the issue of estimating the trajectory when the robot turns, although not to the same degree as
RGBDSLAMV2.

For the reconstructed maps in the parking dataset, shown in Fig. 44, most of the SLAM systems output
a quite descriptive map of the parking lot environment. With the expectation from the orchard dataset in
mind, ORB-SLAM?2 and RTAB-Map especially, created a quite satisfactory, dense reconstruction of the
environment, while RESLAM had a more sparse reconstruction of the map, it was definitely not dissat-
isfactory. Unfortunately, yet again, RGBDSLAMYv?2 had issues with the reconstruction here as it was not
very descriptive of the parking environment. We see similar characteristics for ManhattanSLAM, where it

seems to focus quite extensively on buildings around as well as the parking lot itself.

The statistics for each reconstructed map is shown in table 14. The ORB-SLAM?2 had a file size of 80.42
MB and contained approximately 1,969,400 points within a bounding box volume of 19,700 cubic me-
ters, resulting in a density of 99.72 points per cubic meter. Comparatively, the RTAB-Map file, with a
larger file size of 100.09 MB, held a notably higher number of points at 3,748,223 within a significantly
smaller volume of 7,800 cubic meters, resulting in an increased density of 480.74 points per cubic meter.
Furthermore, the RGBDSLAMV?2 file stood out due to its exceptionally large file size and volume, con-
taining 8,996,388 points within 819,000 cubic meters, which interestingly led to a much lower density of
approximately 10.98 points per cubic meter. On the other end of the spectrum, ManhattanSLLAM, with the
smallest file at only 1.21 MB, had the lowest point count and density, with just 45,398 points in a volume

of 8,510 cubic meters, translating to an extremely sparse density of 0.053 points per cubic meter.

61

—-—~— parking groundtruth

—— RGBDSLAMv2 parking estimate
—— ORBSLAMZ2 parking estimate i
—— RESLAM parking_estimate \
—— ManhattanSLAM parking estimate

|

i

I

I

|

i

i RTABMAP parking_estimate]
1 /
L]
1
1

Fig. 42: XY plot of trajectory estimate from each SLAM system for the parking dataset with ground truth
alignment using the Umeyama method [53].

62

--- parking_groundtruth

—— RGBDSLAMv2 parking estimate

—— ORBSLAM2 parking estimate

—— RESLAM_ parking_estimate

—— ManhattanSLAM_parking_estimate
RTABMAP parking estimate

—~930

~920

210

~0800

~890

90
y 80
890 ’ = N
&
900 ’ 10 4'\
910 ; a0
*(m) 920 , /
930 50

Z (m)

Fig. 43: XYZ plot of trajectory estimate from each SLAM system for the parking dataset with ground

truth alignment using the Umeyama method [53].

63

Fig. 44: Reconstructed maps for the parking dataset from each SLAM algorithm. Top-left: ORB-SLAM?2,
top-right: RTAB-Map, middle-left: RGBDSLAMvV2, middle-right: ManhattanSLLAM, bottom: RESLAM.

64

Algorithm Max Mean Median Min RMSE Std

ORB-SLAM?2 1.946445 | 0.758792 | 0.718813 | 0.163199 | 0.844977 | 0.371779
RTAB-Map 7.157090 | 3.084035 | 2.955693 | 0.298086 | 3.563645 | 1.785579
RGBDSLAMv2 | 28.914690 | 11.422564 | 10.643130 | 1.878419 | 12.992568 | 6.191271
ManhattanSLAM | 3.292745 | 1.212169 | 0.894768 | 0.177902 | 1.446434 | 0.789188
RESLAM 10.507336 | 5.070167 | 4.565861 | 0.652530 | 5.815401 | 2.848208

Table 13: Absolute positional error w.r.t. translation part (m) with Sim(3) Umeyama alignment [53] for
the parking dataset. All units are in meters.

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)
ORB-SLAM?2.pcd 80.42 1969400 1.97e+04 99.72
RTAB-Map.pcd 100.09 3748223 7.80e+03 480.74
RGBDSLAMV2.pcd 137.28 8996388 8.19e+05 10.98
ManhattanSLAM.pcd 1.21 45398 8.51e+03 0.053
RESLAM.pcd N/A N/A N/A N/A

Table 14: Statistics for each reconstructed map for the parking dataset. For each map in point cloud data
(pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

4.3. LIDAR

For the section of LIDAR based approaches the KITTI results will be presented first before presenting the

data from the collected datasets.

4.3.1. KITTI

This section presents the performance of both KITTI odometry sequences. For each sequence, there will
be tables of the Absolute Pose Error (APE) and plots of the trajectories. All KITTI plots share the legends
found in Fig. 45. All measurements in the trajectory plots are in meters. And the origin is the start position

for all plots.

4.3.2. KITTIO01

The evaluation metrics for the estimated trajectories are in Table 15 and show the numeric statistics. This
table reveals significant performance variation between the approaches. LeGO-LOAM demonstrated the
most consistent performance with an average error of 2.167 meters, followed by A-LOAM, F-LOAM
and SC-A-LOAM which had average error of 8.274, 7.874 and 8.074 meters respectively. Similarly, the
standard deviations show that LeGO-LOAM is the most consistent and 1.734 meters again followed by A-
LOAM, F-LOAM and SC-A-LOAM at 2.657, 2.851 and 2.579. HDL Graph SLAM exhibited considerably

65

— aloam.tum
floam.tum

hdl.tum

kiss odometry.tum
lego.tum

Ground Truth
scaloam.tum

Fig. 45: Legend corresponding to the KITTI plots. Note that the ground truth shown as dotted lines while
all the trajectories have full lines.

higher error rates with a maximum error at 650.768 meters, being 18 times higher than the second worst
(KISS-ICP) and 98 times higher than LeGO-LOAM.

The presented 3D plots in Fig. 47 and in Fig. 47 visualize the estimated trajectories generated by each
SLAM system. The ground truth is the dashed line and serves as a benchmark for the performance.
LeGO-LOAMs trajectory matches best with the ground truth across all planes consistently to what table
15 presents. HDL Graph SLAM is the heaviest outlier, where even the origin of the generated trajectory
does not match the origin of any other algorithm. This is visible in all planes, but is most significant in
XZ and YZ plane, highlighting that HDL Graph SLAM struggles most with vertical accuracy. The other
algorithms, A-LOAM, F-LOAM, SC-A-LOAM and KISS-ICP show good performance in the XZ plane,

but they also show a decreased performance for vertical accuracy when inspecting XZ plane and YZ plane.

Fig. 48 shows a snapshot of the reconstructed maps generated for KITTI O1. Each sub-figure represents
the individual map as generated by the respective algorithm. In terms of shape, LeGO-LOAM stands
out as it generates a more curvy road compared to all the others. LeGO-LOAM, F-LOAM, A-LOAM
and SC-A-LOAM gives color to the map based on the intensity of the scans while KISS-ICP and HDL
graph SLAM generate a monochrome map. From Table 16 one finds that the file sizes of LeGO-LOAM,
A-LOAM and SC-A-LOAM are quite similar, whilst LeGO-LOAM is boasting the smallest size at 58.7
MB. F-LOAM falls a bit behind this sitting at 82.9 MB, while KISS-ICP and HDL Graph SLAM are
significantly larger than all the others at 116.9 MB and 209.7 MB, respectively. Considering the number
of points the HDL Graph SLAM has the most points at 6347677, more than twice as many points as

66

Algorithm Max Mean Median | Min | RMSE | Std
A-LOAM 14.55 8.274 7.579 3.479 | 8.69 2.657
F-LOAM 13.914 | 7.874 7.25 3.638 | 8.374 2.851
HDL-Graph-Slam | 650.768 | 350.155 | 336.409 | 31.08 | 388.507 | 168.312
KISS-ICP 36.078 | 19.902 | 22.194 | 7.306 | 21.118 | 7.064
LeGO-LOAM 6.651 2.617 243 0.583 | 3.139 1.734
SC-A-LOAM 13.971 | 8.074 7.421 3.362 | 8.476 2.579

Table 15: Absolute positional error from each algorithm for the first sequence from the kitti dataset. All
units are in meters

LeGO-LOAM, A-LOAM, SC-A-LOAM and F-LOAM and 1.68 times the number of points as KISS-ICP.
Although the HDL Graph SLAM holds the highest number of points, it is also the smallest in volume at

3.3 x 107 m? a magnitude lower than all the other algorithms. Resulting in a density of 0.19 points/m?.

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

kiss.pcd 116.92000 3770678 3.16e+08 0.01194
lego.pcd 58.68000 1652093 1.46e+08 0.01135
hdl.pcd 209.66000 6347677 3.33e+07 0.19076
floam.pcd 82.92000 2119120 6.84e+08 0.00310
aloam.pcd 60.43000 1492762 6.21e+08 0.00240
scaloam.pcd 63.30000 1563504 6.22e+08 0.00251

Table 16: Statistics for each reconstructed map for KITTI 01 sequence. For each map in point cloud data
(pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

Table 17 represents the absolute positional error metrics for each of the different algorithms being applied
to the KITTI 05 sequence and offers an insight on the performance. KISS-ICP offers a the most stable
performance by having the smallest spread of error values, ranging from 0.381 to 5.393 meters. This
is again reflected by KISS-ICP boasting the lowest mean error at 1.241 meters and the lowest standard
deviation at 0.703 meters. This implies that the most accurate algorithms in this sequence is KISS-ICP.
A-LOAM, and SC-A-LOAM also has excellent performance where the mean errors are 1.759 and 1.697
meters. Along with KISS-ICP, they are the only ones that keep the maximum error under 10 meters. LeGO-
LOAM has a slightly higher mean of 2.775 meters and also has the largest recorded error at 10.363 meters.
HDL Graph SLAM and F-LOAM fall in the middle range with mean errors of 2.519 and 2.387. HDL
Graph SLAM presents the lowest minimum error of the algorithms, indicating that it has high accuracy
under certain conditions. KISS-ICP has the most accurate performance for this sequence with A-LOAM

and SC-A-LOAM also displaying good performance.

The following figures illustrate the estimated trajectories for the KITTI 05 sequence. The sub-figures in

67

Fig. 46: XYZ plot of trajectory estimate from each SLAM system for the first seuqnce from Kitti with

3D Trajectories

0
—250
—500
-750 o
—-1000.¢°
—125048”
—-15004

—400
—200 0 —-1750

ground truth alignment using the Umeyama method [53].

XY Plane

XZ Plane

|
]
o

Z Position

|
—
=]
=]

| I
hJ =
=] un
< (=]

YZ Plane

—250 4

—500

—750 4

Y Position

—1000

—1250 4

—1500

-17501 "/

Z Position

—100 -

—150 1

=200 4

Z Position

—100 A

—150 4

=200 4

T T T T T T T
—1200 -1000 —800 —600 —400 -200 o
X Position

T T T T T T T
—1200 -1000 —800 —600 —400 —200 o

X Position

T T T T T T T
—1750 —-1500 —-1250 —1000 —750 -500 -250
Y Position

T
[}

Fig. 47: XY, XZ and YZ plot of trajectory estimate from each SLAM system for the first sequence from
Kitti with ground truth alignment using the Umeyama method [53].

68

(b)

(d) (e)

Fig. 48: Reconstructed map for KITTI sequence 01. From top left: (a) SC-A-LOAM, (b) Kiss ICP, (c)
HDL Graph SLAM, (d) LeGO-LOAM, (e) F-LOAM, (f) A-LOAM.

69

Algorithm Max Mean | Median | Min | RMSE | Std
A-LOAM 7.481 | 1.769 | 1.35 0.546 | 2.201 | 1.311
F-LOAM 8.44 2.519 | 1.998 1.034 | 2.927 | 1.49
HDL-Graph-Slam | 6.639 | 2.387 | 2.427 0.342 | 2.646 | 1.142
KISS-ICP 5.393 | 1.241 | 1.189 0.381 | 1.426 | 0.703
LeGO-LOAM 10.363 | 2.775 | 2.476 0.668 | 3.177 | 1.545
SC-A-LOAM 7.202 | 1.697 | 1.311 0.565 | 2.102 | 1.24

Table 17: Absolute positional error from each algorithm for the fifth sequence from the KITTI dataset.
All units are in meters.

Fig. 50 and Fig. 49 show the XY, XZ, YZ and the three dimensional consolidation of these images. These
visualizations allows the performance to be qualitatively assessed and compare the performance in the
individual dimensions. The 3D plot does not show any extreme outliers as all of the algorithms struggle
to match the ground truth. When inspecting the 2D plots it is clear that all algorithms are capable of
estimating the trajectory with respect to X and Y as in the XY plot the estimations and the ground truth
align very closely. The XZ and YZ plot are much more noisy and indicates that the algorithms struggle

more to estimate accurate altitude.

The reconstructed maps in Fig. 51 shows a top down view of the reconstructed maps. A-LOAM and
SC-A-LOAM share the color pallet for the points while F-LOAM and LeGO-LOAM display more yellow
and blue respectively. KISS-ICP and HDL Graph SLAM do not offer any information about the intensity
of the points and only generates a monochrome representation. Taking a closer look at the intersection in
the middle of each sub-figure in Fig. 52 they appear very similar and both of the algorithms generate two
layers for the road while it is supposed to be one layer.

When inspecting table 18 we can get statistical information about the reconstructed maps. The file sizes
are more spread out, the largest file being hdl.pcd at 240 MB and the smallest being lego.pcd at 30 MB.
F-LOAM, A-LOAM and SC-A-LOAM have a similar size, ranging between 48 and 66 MB while kiss.pcd
is 103 MB. The largest file is also the file with the highest number of points, while the smallest file has
the lowest number of points. For the volume, aloam.pcd and scaloam.pcd have almost identical volume
at 9.93 x 10°m?® and 9.96 m3. lego.pcd has the lowest volume at 8.96 x 10°m? and the largest being
floam.pcd 1.54 x 10" m3. hdl.pcd has the highest density, having 0.67 points/m?® which is twice as dense
as the runner up kiss.pcd at 0.247 points/m?3. The final four files have a similar density, being around
0.67 points/m?®.

70

3D Trajectories

SN ow oy
o w o
Position

[
oo
(=R,

Z

—-7.5

Fig. 49: XYZ plot of trajectory estimate from each SLAM system for the fifth sequence from KITTI with
ground truth alignment using the Umeyama method [53].

XY Plane XZ Plane YZ Plane

2004

100 4

Y Position
o
Z Position
°
o
Z Position
°
)

—=100 4

~200 754

T T T T T T T T T T T T T
0 100 200 300 0 100 200 300 -200 -100 0 100 200
X Position X Position Y Position

Fig. 50: XY, XZ and YZ plot of trajectory estimate from each SLAM system for the fifth sequence from
KITTI with ground truth alignment using the Umeyama method [53].

71

File Name File Size (MB) Number of Points

Volume (m?®) Density (points/m?)

kiss.pcd 103.17000
lego.pcd 30.66000
hdl.pcd 240.52000
floam.pcd 65.84000
aloam.pcd 48.72000
scaloam.pcd 53.17000

3484703

822944
7617550
1642879
1247896
1358872

1.41e+07
8.96e+06
1.13e+07
1.54e+07
9.93e+06
9.96e+06

0.24745
0.09183
0.67637
0.10698
0.12564
0.13637

(@

(b)

72

Table 18: Statistics for each reconstructed map for KITTI 05 sequence. For each map in point cloud data
(pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

Fig. 51: Reconstructed map for KITTI sequence O1. From top left: (a) SC-A-LOAM, (b) Kiss ICP, (c)
HDL Graph SLAM, (d) LeGO-LOAM, (e) F-LOAM, (f) A-LOAM.

Fig. 52: Section of A-LOAM (a) and SC-A-LOAM (b) zoomed in to a intersection of the roads.

— aloam.tum
floam.tum

GPS Data

hdl.tum
kiss_odometry.tum
lego.tum
scaloam.tum

Fig. 53: Legend corresponding to the collected datasets and their corresponding plots. Note that the ground
truth shown as dotted lines while all the trajectories have full lines.

4.3.3. Orchard dataset
Both of the self collected datasets share the legend which is in Fig. 53.

For the orchard dataset the absolute positional error can be observed in Table 19. All algorithms offer a
very similar performance where the deviations between each algorithm is small. The maximum error varies
from 1.437 meters to 1.673 meters with SC-A-LOAM and LeGO-LOAM respectively. SC-A-LOAM and
A-LOAM has almost identical performances within all of the categories, only separated by 0.02 meters
in minimum error which is the largest gap between them. HDL Graph SLAM outperformed the others in

mean error, median error, RMSE and std which indicates that this is the best performing overall.

In Fig. 54 the 3D plot show how the trajectories are estimated from the orchard dataset, with trajectory
alignment. The green dotted line represents the ground truth and when looking at the origin and endpoint
for this line one can observe how they do not align, while in reality the robot started and ended at approx-
imately same altitude. This is also reflected in 55 where the 2D plot for XY, XZ and YZ respectively are
plotted. While the XY plane plot shows precise alignment of the algorithms and the ground truth, the XZ
and YZ plane deviates more from the ground truth, but they all deviate in the same way which indicates

that the algorithms produce a better trajectory than the RTK-GNSS system.

Figures 41 show how A-LOAM, F-LOAM, LeGO-LOAM and SC-A-LOAM maps dynamic object to the
global map as the lines in between the rows of show how the data collectors moved along the robot to
capture the data. The angle for HDL Graph SLAM and KISS-ICP is different and aims to make the

74

Algorithm Max | Mean | Median | Min | RMSE | Std
A-LOAM 1.442 | 0.875 | 0.875 0.362 | 0.896 | 0.195
F-LOAM 1.454 | 0.883 | 0.879 0.389 | 0.904 | 0.192
HDL-Graph-Slam | 1.545 | 0.733 | 0.723 0.36 | 0.754 | 0.175
KISS-ICP 1.495 | 0.855 | 0.849 0.289 | 0.878 | 0.202
LeGO-LOAM 1.673 | 1.098 | 1.061 0.716 | 1.12 0.22
SC-A-LOAM 1.437 | 0.871 | 0.868 0.382 | 0.891 | 0.19

Table 19: Absolute positional error from each algorithm for the dataset collected from an orchard at
NMBU. All units are in meters.

resulting figure more readable as these are monochrome which makes the reconstructed map less readable.
A closer inspection of KISS-ICP shows that there are stray points in the cloud, indicating a lack of outlier
removal before mapping. When inspecting the statistical metrics as found in Table 20 the file sizes for
these maps are between 1.6 and 5.4 MB by lego.pcd and kiss.pcd, respectively. Lego.pcd is an outlier
on the lower boundary, as floam.pcd, aloam.pcd and scaloam.pcd are around 3 MB while hdl.pcd is 5
MB. The file size and number of points seem to correlate. Where more points correlate with larger size,
kiss.pcd is both the largest and has the most points at 186750 points and lego.pcd has the smallest file and
the fewest points at 43376 points. Where the maps deviate the most is when considering volume of the
bounding box, this ranges from 7.35 x 10*m?® to 1.81 x 10" m3. The map with lowest volume is hdl.pcd
while the highest is aloam.pcd. Hdl.pcd has both the highest number of points and the smallest volume
that leads to the highest density 2.29 points/m? lego.pcd had the fewest points and close to the largest
volume leading to the lowest density of 0.002 17 points/m?.

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

kiss.pcd 3.61000 120482 5.84e+06 0.02062
lego.pcd 1.25000 32729 1.51e+07 0.00217
hdl.pcd 5.33000 168450 7.35e+04 2.29202
floam.pcd 2.08000 51678 6.62e+05 0.07811
aloam.pcd 2.40000 60660 1.80e+07 0.00337
scaloam.pcd 2.43000 61425 1.71e+07 0.00359

Table 20: Statistics for each reconstructed map for the orchard dataset. For each map in point cloud data
(pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

4.3.4. Parking dataset

Table 21 shows the quantitative results of the absolute positional error metric on the parking dataset col-
lected at NMBU. These results highlight that LeGO-LOAM produces the most precise trajectory courtesy

75

3D Trajectories

Z Position

Fig. 54: XYZ plot of trajectory estimate from each SLAM system for the orchard dataset with ground
truth alignment using the Umeyama method [53]. The green dotted lines is the ground truth.

XY Plane XZ Plane YZ Plane

Z Position

Y Position
Z Position

304

4
~104
A

=50 -40 =30 =20 -10 o] =50 —40 =30 -20 -10 o] =50 -40 =30 =20 -10 0
X Position X Position Y Position

Fig. 55: XY, XZ and YZ plot of trajectory estimate from each SLAM system for the orchard dataset with
ground truth alignment using the Umeyama method [53]. Legend is located in : Fig. 53.

76

(a) (b)

() (d)

(e) ®

Fig. 56: Reconstructed map for orchard dataset. From top left: (a) SC-A-LOAM, (b) Kiss ICP, (c) HDL
Graph SLAM, (d) LeGO-LOAM, (e) F-LOAM, (f) A-LOAM.

77

of having the lowest value in five of the six categories. Especially the RMSE score at 0.694 meters and
the standard deviation at 0.25 meters show that the estimated trajectory is both consistent and accurate for
this environment. In comparison, HDL Graph SLAM has competitive mean error, at 0.909 meters and the
lowest minimum error of 0.254 meters suggesting periods of high accuracy. The maximum error on the
other hand, is higher than LeGO-LOAM. The rest of the algorithms, A-LOAM, F-LOAM, KISS-ICP and
SC-A-LOAM, show more variable performances. A-LOAM and SC-A-LOAM both boast a mean error
under 1 meter, at 0.988 and 0.974 meters respectively. These two also has a almost identical standard devi-
ation only separated by 0.001 meters. Overall the results show that the performances are quite competitive
with LeGO-LOAM having the best overall performance for this dataset.

Fig. 57 offers a 3D visualization of the trajectory estimates for the parking dataset, aligned with the ground
truth. All the algorithms seem to be fairly aligned, while the ground truth seems to be the outlier. This
is further supported by Fig. 58 which shows the 2D plot for the trajectory estimates. The XY plane
shows that the estimation algorithms slightly deviates from the ground truth, but that all of them deviate
the same way. In the XZ and YZ planes the deviation between the algorithms and ground truth is more
significant. These plots indicate that altitude is the least stable dimension both for the ground truth and for

the algorithms.

The reconstructed map in Fig. 44 shows each of the reconstructed maps for the parking dataset. KISS-ICP
seems to be the worst at removing outliers as there are some points far from any object. A-LOAM and
SC-A-LOAM share an almost identical color pallete to represent the intensity of the scans. LeGO-LOAM
and F-LOAM uses a different color palette while still being similar in style. KISS-ICP and HDL Graph
SLAM have monochrome representation. Taking a closer look at the statistics of the files as found in
Table 20 the file size varies from 1.6 to 5.4 MB with lego.pcd being the smallest file and kiss.pcd being the
largest file. Aloam.pcd and scaloam.pcd have identical files size at 3.44 MB, floam.pcd is slightly smaller
at 2.73 MB and hdl.pcd is larger at 5.01 MB. As for the total number of points, kiss.pcd has the most points
having 186750 while lego.pcd has the lowest amount of 43376. aloam.pcd and scaloam.pcd are separated
by 50 points. Hdl.pcd has the smallest volume of 2.26 x 10° m?, while scaloam.pcd has the largest volume
2.97 x 10" m?®.

78

Algorithm Max | Mean | Median | Min | RMSE | Std
A-LOAM 2.388 | 0.988 | 0.942 | 0.372 | 1.072 | 0.416
F-LOAM 2.524 | 1.055 | 0.991 0.385 | 1.143 | 0.44
HDL-Graph-Slam | 2.13 | 0.909 | 0.857 0.254 | 0.975 | 0.351
KISS-ICP 249 | 1.038 | 0.983 0.395 | 1.125 | 0.434
LeGO-LOAM 1.496 | 0.647 | 0.604 | 0.263 | 0.694 | 0.25
SC-A-LOAM 2.375 | 0.974 | 0.925 0.359 | 1.059 | 0.417

Table 21: Absolute positional error from each algorithm for the dataset collected from a parking lot at
NMBU. All units are in meters.

3D Trajectories

Z Position

=20 A
0
X Posjp; —10
on 0

Fig. 57: XYZ plot of trajectory estimate from each SLAM system for the parking dataset with ground
truth alignment using the Umeyama method [53]. Legend is located in : Fig. 53.

79

XY Plane XZ Plane YZ Plane

404

30 4

Fig. 58: XY, XZ and YZ plot of trajectory estimate from each SLAM system for the parking dataset with
ground truth alignment using the Umeyama method [53].

File Name File Size (MB) Number of Points Volume (m?®) Density (points/m?)

kiss.pcd 5.45000 186750 5.42e+06 0.03445
lego.pcd 1.62000 43376 1.21e+07 0.00359
hdl.pcd 5.01000 160877 2.26e+05 0.71312
floam.pcd 2.73000 71078 1.48e+06 0.04801
aloam.pcd 3.44000 88934 2.43e+07 0.00366
scaloam.pcd 3.44000 88884 2.97e+07 0.00300

Table 22: Statistics for each reconstructed map for the parking sequence. For each map in point cloud
data (pcd) format, there is file size, total number of points, volume of the bounding box, and density of the
points in terms of volume.

80

(a) (b)

(©) (d)

(e) ®

Fig. 59: Reconstructed map for parking lot dataset. From top left: (a) SC-A-LOAM, (b) Kiss ICP, (c)
HDL Graph SLAM, (d) LeGO-LOAM, (e) F-LOAM, (f) A-LOAM.

81

S. DISCUSSION

5.1. Ground truth accuracy

In the parking dataset and the orchard dataset, an RTK-GNSS receiver from ublox was used to estimate a
ground truth, and under optimal conditions could provide centimeter-accuracy, as shown in Fig. 25 and 26.
From these figures one can note that for the orchard dataset the accuracy is consistent, but for the parking
dataset the data is less stable. If the error between the output of each SLAM system and the ground truth
is less than the error estimate from the RTK-GNSS system, then these SLAM systems can be considered
as accurate as RTK-GNSS in estimating the trajectory. This is especially important to consider for the

altitude, as the covariance plots show that the estimated errors are larger in this dimension.

5.2. Camera

This section discusses the implication of the results of the camera based SLAM systems in both of the
datasets. The discussion will display the contrasts of outdoor versus indoor performance, underlined by the
error metrics and the quality of reconstructed maps w.r.t number of points, volume and density. Analysis
will include both within-dataset comparisons and between the outdoor dataset collected for this study
and the indoor TUM-RGBD dataset. By addressing these aspects through quantitative and qualitative
assessments, this section aims to identify trends and deviations in system performance under different

environmental conditions.

5.2.1. Environmental impact on camera-based SLAM performance

The comparative analysis illustrates the significant impact of environmental complexity on the perfor-
mance of SLAM systems. Indoor environments, as exemplified by the TUM RGB-D dataset, generally
provide favorable conditions for SLAM operations. These environments typically includes consistent fea-
tures and controlled lighting, as well as minimal occlusions. These environments are densely populated
with distinct, high-contrast textures that aid in reliable feature detection and matching. For instance, the
fr2_desk sequence demonstrated the strengths of each SLAM system, where all of them achieved excep-
tionally low error metrics and produced detailed, high-fidelity maps. This can be attributed to the SLAM
system’s reliance on rich textural information to maintain robust tracking and accurate map reconstruc-

tions.

In contrast, outdoor environments present a different array of challenges and complexities, as observed
in the results for the orchard and parking datasets. These settings are characterized by variable lighting
conditions, which can dramatically affect the visibility of features. For example, shadows and overexpo-
sure can obscure important landmarks or introduce noise into feature detections. The expansiveness of

these environments also introduces challenges in maintaining persistent feature tracks across wide areas,

82

exacerbating issues with drift over long distances. The less structured and more dynamic nature of out-
door scenes further complicates the task, as moving objects and changing scene geometries can disrupt the

continuity of feature observations.

The orchard dataset highlighted these challenges, where even the best-performing algorithms like ORB-
SLAM?2 and RTAB-Map exhibited increased error metrics compared to the indoor environments. Despite
these challenges, RTAB-Map’s dense mapping capabilities showcased its utility in environments requiring
detailed environmental modeling. It maintained a higher density of points per cubic meter in its map
reconstructions than other systems, suggesting that its approach to feature integration and map updating is

well-suited to handling the complexities of outdoor navigation.

Moreover, the parking dataset underscored the variability in performance across different outdoor scenar-
ios. Here, RGBDSLAMYV?2 faced significant difficulties, possibly due to how it handled vast open spaces
with sparse features as well as its sensitivity to lighting variations, which led to the highest maximum error
observed in the study. This contrasted sharply with its performance in more confined and well-defined in-
door spaces, where it obtained the lowest error metrics for both the fr3_walking xyz and fr3 _sitting_static
sequence. Thus, highlighting the importance of algorithmic adaptability to different environmental condi-

tions.

These observations suggest that while current SLAM systems are capable of operating under a variety of
conditions, there remains a substantial divide in performance between controlled indoor environments and
unpredictable outdoor settings. Enhancements in more advanced feature extraction algorithms that can
operate robustly in feature-poor regions, could help bridge this gap. Additionally, incorporating adaptive
strategies that adjust the processing tactics based on the detected environment could further enhance the

versatility and reliability of SLAM systems in diverse operational scenarios.

5.2.2. Quality of reconstructed maps

The quality of maps reconstructed by various SLAM systems can be deeply analyzed by examining the
metrics w.r.t number of points, volume, and density. In controlled, indoor environments, as observed in
the TUM RGB-D sequences, the systems generally produced maps with higher detail and density. This
is primarily due to the consistent and structured nature of these environments, which are rich in distinct,
static features that makes precise feature matching and robust tracking possible which are exemplified by

the results in e.g. the fr2_desk sequence for all of the SLAM systems.

Conversely, in outdoor settings such as the orchard and parking datasets, the challenges imposed by ex-
pansive areas, variable lighting, and less structured scenes are evident in the reconstructed maps. The
orchard dataset presented a diverse performance across systems. ORB-SLAM?2 and RTAB-Map were no-

table for maintaining a reasonable balance between detail and density despite the challenging environment.

83

ORB-SLAM?2 generated a map with approximately 2.4 million points in a volume of 11,600 cubic meters,
achieving a density of 207.03 points per cubic meter. RTAB-Map, on the other hand, demonstrated its
dense mapping capability by achieving an impressive density of 3,732.91 points per cubic meter within a
much smaller volume of 2,820 cubic meters. This high density signifies RTAB-Map’s proficiency in cap-
turing the detailed environmental features, crucial for tasks requiring accurate and detailed environmental

modeling.

In stark contrast, RGBDSLAMYvV2 and ManhattanSLAM struggled in these less controlled outdoor settings.
In the orchard dataset, RGBDSLAMYV2’s map contained an enormous number of points—approximately
43.9 million—spread over a vast volume of 3.19 million cubic meters, resulting in a very low density of
13.77 points per cubic meter. This low density suggests inefficiency in point distribution and possible
difficulties in handling expansive and feature-poor environments. ManhattanSLAM showed even more
pronounced challenges, with a map density of only 0.35 points per cubic meter, highlighting its struggle
with vast, unstructured environments. This suggests that the Manhattan World assumption that Manhat-
tanSLAM is based on, does not perform well in an agricultural environment with few orthogonal and

planar features.

The parking dataset further enhanced these disparities. Here, the challenges were magnified by the ex-
pansive open spaces typical of parking areas, which are often devoid of distinct, close-range features that
SLAM systems rely on for accurate mapping. RGBDSLAMYv2’s performance in this dataset was notably
poor, with a map containing about 8.99 million points but spread over a tremendous volume of 819,000
cubic meters, leading to a density of only 10.98 points per cubic meter. Such a low density in a complex
outdoor environment suggests difficulties in maintaining feature tracking and map coherence over larger

distances and in feature-sparse regions.

Yet again it is evident that environmental conditions play a significant role in influencing the performance
of SLAM systems, not only in terms of trajectory estimates, but also in map reconstructions. Indoor
environments, with their abundance of clear, static features, allow for more detailed and dense map recon-
structions. In contrast, outdoor environments challenge these systems with their scale, complexity, and
variable conditions, often resulting in lower fidelity and density in the reconstructed maps. Improving
SLAM systems’ robustness and adaptability to diverse and challenging outdoor environments remains a

crucial area for future research and development.

5.3. LIDAR

In this section the variation in ground truth will be discussed and compared to the estimated position
error for the LIDAR based algorithms. Then the LOAM based approaches of F-LOAM, A-LOAM, SC-A-
LOAM and LeGO-LOAM will be compared within this subset. Lastly, the metrics for absolute positional

84

error and their implications will be explored before finishing with the density of the reconstructed maps.

5.3.1. Rolling Shutter in LIDAR

As the LIDAR used in this thesis produces scans at 10 Hz, higher velocities will get more smearing.
At the highest velocity, 112 kilometers per hour in KITTI 01, the distance traveled in one second is 31
meters, meaning that between each rotation the platform will at least have moved 3 meters, making the
scan matching vastly more challenging. Add the factor that not all scans are taken into consideration and
the distance increases further. With this in mind, the camera has an advantage as the continuous capture
allows for a reduced distance traveled between matching attempts. This further punishes algorithms that

require more time for each calculation, as the distance for the scan matching will increase.

5.3.2. Variation in ground truth vs estimated position error

For all LIDAR datasets, the ground truth is calculated using some form of RTK-GNSS system, and for
the KITTI dataset we cannot adjust this ground truth estimate in any way. Thus, we must assume that this
ground truth is high precision. For our own dataset on the other hand, one has to consider the covariance
of the estimation as found in Fig. 25 and Fig. 26. Firstly, in the orchard dataset, the covariance, especially

in longitude and latitude, shows high accuracy. Comparing the results from Table 19 to the covariance plot

in Fig. 25 we can observe that even the lowest mean, 0.733 meters, is larger than the v/covariance,,,, =
0.59 which is the approximate maximum value of the least accurate dimension, altitude. That means
that all algorithms have more variation than the variation explained by the inaccurate RTK-GNSS signal.
For the covariance of Fig. 26 compared to Table 21, the highest value of the covariance is approximately
Veovariance ., = 0.9 while LeGO-LOAM has a mean of 0.604. This indicates that the entire variation in

LeGO-LOAM might be due to the inaccurate ground truth estimates for this dataset, leading to a best-case
scenario where LeGO-LOAM has equal performance to trajectory estimates as the RTK-GNSS approach.
It is important to note that this compares the point in time where the variance in GNSS is the worst with

the mean error of the entire dataset.

5.3.3. KITTI vs collected sequences

The four sequences can be classified as KITTI or collected. The KITTI sequences are about 10 times longer
in path length compared to collected sequences, while still being relative similar in duration, meaning there
are higher velocities for the KITTI dataset. Larger velocities translate to a larger distance traveled between
scans; this is extra punishing for the methods where the computation is the slowest and infrequent. HDL
Graph SLAM appears to be a victim of this as the performance in KITTI 01, as shown in Table 15 and
the plot in Fig. 46 shows that HDL Graph SLAM misses the origin and never seems to recover. This
case is further supported by the fact that HDL Graph SLAM displayed much more competitive results for

85

all other sequences as seen in tables 17, 19 and 21 as these sequences have a significantly lower average
velocity than KITTI O1. Moreover, the higher velocities also affects the other algorithms as they all, except
LeGO-LOAM, have their worst performance in KITTI O1. The previous case is also true here, where the
dataset with the second highest velocity KITTI 05 shows much better performance for all of the remaining
SLAM systems.

5.3.4. LOAM based approaches

For the LOAM based methods, A-LOAM, F-LOAM LeGO-LOAM and SC-A-LOAM, the results from
KITTI O1 in Table 15 show LeGO-LOAM outperforming the rest by a significant margin. The other three
methods perform very similar in this dataset. As KITTI 01 does not have any loops to close, SC-A-
LOAM does not have the opportunity to utilize scan matching. In KITTI 05, where there are loop closures
in the dataset, the SC-A-LOAM slightly outperformed the other LOAM methods. Fig. 52 shows how
the SC-A-LOAM better recognizes the intersection. For both collected datasets, SC-A-LOAM outper-
formed F-LOAM and A-LOAM, with LeGO-LOAM being the worst performer in the orchard dataset and
the best performer in the parking dataset. This inconsistency for LeGO-LOAM indicates that it is more
environment-dependent, giving less reliable performance. One reason for this inconsistency could be that
the pre-processing of the scan removes points in a way that hurts performance in some environments. Ex-
emplified, if it is tuned to find the corners of flat surfaces it will suffer in the orchard as there is only one

wall while all other sequences consists of more flat surfaces.

5.3.5. Reconstructed maps, file size, volume and density

When comparing the file metrics from the reconstructed maps as they are in tables 16, 18, 20 and 22, there
is a deviation between the KITTI sequences and the collected sequences. Both file sizes and the number of
points are larger in the KITTI sequences, and this might be due to the much longer paths and hence much
larger area to map. The duration of the sequences contributes less to the file size, as the orchard dataset is
2.17 times longer than the parking dataset, while the average increase in file size between the sequences is
31.79%.

This is further supported when comparing the KITTT and collected sequences. Table 1 shows that KITTI
path lengths are on average 2334 meters compared to 154 meters from Table 2. This equals to 15.15
times longer average path while the average file size increase is 31.6 times larger. Although the file size
increases more than the path length, the KITTI duration is on average shorter than the both of the collected
sequences. Considering that the map increases in three dimensions as the platform travels through the
environment, it is consistent that an increasing path length would affect the file size more than the linear

duration.

The highest density of points across all sequences is produced by HDL Graph SLAM, as it stores a higher

86

number of points than all other SLAM systems while keeping the volume of the bounding box small.
This increase in number of points and density gives the method more points to match against, leading
to heavier computing costs per scan matching. This increased cost is not necessarily only bad, as more
complete information can lead to more accurate estimates. The LOAM based approaches apply more
feature extraction and outlier remover such that the number of points in the final map has fewer points.
Notably, LeGO-LOAM optimizes to reduce computational cost leading to the lowest average of points

across the sequences.

5.4. LIDAR vs Camera

To discuss the differences in terms of performance and applicability between camera and LIDAR based
systems this section will mainly focus on the results from the collected dataset as they were the only dataset
that all of the SLAM systems were evaluated on. This section will therefore explore how adaptable each
of the sensor-based SLAM systems are in the same environment, and provide theories as to why this is the

case.

There are several nuanced factors that contribute to the different performance observed between each of
the sensor-based SLAM systems. LIDAR technology, in contrast to cameras, relies on light detection and
ranging to map physical spaces, meaning that it is inherently less susceptible to visual limitations that
may affect camera-based systems. Example wise, in environments like orchards and parking lots that are
characterized by complex geometries and variable lighting conditions, LIDAR systems excel by providing

accurate spatial data, which is independent of ambient light.

In orchards, there are challenges due to structured, yet repetitive nature, and although this seems coun-
terintuitive, this is especially true for cameras. LIDAR systems handle these scenarios better as they are
more adept at capturing subtle differences between the rows of trees and the spacing between each of them.
This is troublesome for camera images due to shadowing or overlapping branches, as can be seen from the

results.

Some of the aforementioned capabilities of LIDAR systems comes to light in the parking lot dataset.
Here, they benefit from being able to detect and map diverse structures, from building facades to cars,
again, regardless of lighting conditions. This, unfortunately, yet again is an issue where cameras might
struggle, where there is either too strong reflective light, or too little light with low visual contrast. In our

case, as the recording was done during a very sunny day, the strong reflective light would be the culprit.

With all of this in mind, these can provide a basis as to why the each of the sensor-based SLAM systems
perform the way they do, where all of the LIDAR based SLAM systems perform better than all of the
camera based SLAM systems w.r.t RMSE and most of the other error metrics for both the orchard and

parking dataset. Interestingly enough however, ORB-SLAM?2 performs better than almost all LIDAR

87

based SLAM systems except for LeGO-LOAM on the parking dataset. There may be a multitude of
reasons for this, where firstly, parking areas are typically more contained and enclosed, which can alleviate
issues such as feature scarcity over large distances. The relatively static nature of the environment, also
has a significant impact on ORB-SLAM?2’s performance, where compared to dynamic environments, static

environments make it much easier to achieve robust feature detection and matching.

The observed performances suggest that while LIDAR-based methods generally provide more reliable
and versatile mapping and trajectory estimations in complex and variable environments, there are niche
scenarios where camera-based systems, particularly advanced ones like ORB-SLAM?2, can outperform
LIDAR-based SLAM systems. This underlines the importance of selecting the appropriate SLAM tech-
nology based on the specific requirements and characteristics of the environment in question, albeit with

LIDAR-based SLAM systems performing better in outdoor environments.

5.5. Limitations
RTK-GNSS

By generating ground truth with RTK-GNSS with one single receiver, there are two challenges. Firstly, as
we only have one antenna there is no way to get the orientation so instead of absolute pose error one can
only consider absolute positional error for the collected dataset. Secondly, the accuracy of the RTK-GNSS
receiver limits the precision level the estimated trajectories can provide, especially for the parking dataset
as the covariance plots show larger errors in this sequence, and as such, some of the SLAM systems may

actually provide a more accurate ground truth estimation than the RTK-GNSS itself.
Velocity limitation

The Robotnik platform has a maximum velocity of 5 km/h, and thus it is not possible to collect data at
higher speeds than was done in this thesis. Higher speed would allow us to create datasets with larger

variation and further explore to what degree velocities affect performance.
Processing delays

All LIDAR based systems were run with a playback rate of 1, meaning the rosbags were played back at
the same rate as the original rosbags. However, ORB-SLAM2, ManhattanSLLAM and RESLAM processed
each image in the sequence, meaning that the actual runtime of these system could be longer than the
duration of the rosbag. This allows these three systems to evaluate and generate an estimated pose for
each image while the rest could process only as many images or scans as the computation would allow.
A more comparative assessment would be to ensure that all systems process every image/scan or operate

with a playback rate of 1.

This leads to a question about the performance of the computers, as better performance might reduce

88

the computation time for each system, allowing them to estimate more poses. More specifically, the
virtual machine that the camera based SLAM systems were ran on, had no GPU passthrough such that
the graphics card could be utilized for better SLAM performance. This was especially true for one of
the SLAM systems, RGBDSLAMYv2, which had the option to use SIFT-GPU. Another issue that was
encountered with the VM, which was mentioned earlier, was the RAM problem that RESLAM faced
when running it on the orchard dataset. In short, having more RAM allocated to the VM would make it
possible for RESLAM to be fully evaluated on the orchard dataset. This could be solved by using either
dual boot, a permanent install of an operating system, or simply acquiring and inserting more RAM into
the host’s PC.

Seasonal impact

Since the data was collected only during spring, there is limited seasonal variation in the data. This was
mainly due to the fact that the Robotnik platform would struggle with grip during winter due to lack of

winter tires.

5.6. Further works
Sensor fusion

An interesting future research could be to investigate how data fusion with both sensor technologies could
improve the reconstructed map, specifically. This could be done by combining the resulting point cloud
from both of the sensors into one. It is also possible to integrate an IMU sensor to improve the pose

estimates which in turn could improve the reconstructed maps.
Multi-antenna RTK-GNSS

An immediate extension could involve the incorporation of a multi-antenna RTK-GNSS system to address
the limitations identified with the single-receiver setup. A multi-antenna system would enable the mea-

surement of orientation as well as position, thereby providing more data for evaluating SLAM systems.
Increased velocities

By conducting experiments at increased velocities, one could examine how velocity impacts the accuracy
and reliability of SLAM systems. There is a lack of dataset with high velocity for RGB-D based system:s,
while there is a large gap in velocities between the collected dataset and KITTI. Moreover, understanding
the velocity-dependent behavior of SLAM systems can lead to more robust designs that compensate for

speed-induced errors.
Increased computational power

The computational aspects of SLAM systems, in particular the impact of hardware capabilities on per-

89

formance, could benefit from further exploration. Future studies could evaluate the benefits of running
on a dedicated system, including GPU support. An empirical analysis of how processing power, memory
bandwidth, and storage speeds affect the real-time capabilities of these systems could also provide insight

into the optimal hardware configurations for various SLAM systems.
Collecting more data

Gathering data from both identical and different environments across various seasons, weather conditions,
and times of day would yield an exceptionally varied dataset including an extensive spectrum of scenar-
10s. Such a dataset would facilitate a comprehensive analysis of SLAM system performance, determining
which configurations excel under specific conditions. This approach would significantly deepen our under-

standing of sensor-based SLAM systems’ adaptability and robustness in diverse operational environments.
Parameter tuning

As this research did not change the inherent parameters for the environments, exploring with different
parameters for each SLAM system and tuning them would allow for better performance for each of them,
furthermore highlighting the strengths and weaknesses of each system. Experimenting with parameter
tuning could showcase how each SLAM system performs with the optimal parameters for a given environ-
ment, providing a more extensive comparison across multiple scenarios. This could cause the results both
within, and between each sensor-based SLAM system to be completely different than what was obtained

in this research without parameter tuning.
Semantic SLAM

As all of the SLAM systems in this thesis, except for RESLLAM, had the ability to extract a point cloud file.
Post-processing on the reconstructed map could be explored, and as such, take a step into the direction
of semantic SLAM. Semantic SLAM refers to the integration of semantic understanding with traditional
SLAM algorithms, where the system not only maps an environment in terms of spatial layout but also
interprets and classifies the elements within it [71]. This could involve identifying and labeling different
objects and structures in the point clouds, such as distinguishing between trees, vehicles, buildings, and
other landmarks. Furthermore, this could also have an impact on how dynamic objects are handled, thus

making pose estimation more robust and accurate.

90

6. CONCLUSION

This thesis explored a comprehensive study on sensor-based SLAM systems, particularly examining the
comparative effectiveness of LIDAR and camera-based SLAM systems within varied environmental con-
ditions. The findings of this investigation underscore the complexity of pose estimation and mapping and

the significant impact that sensor selection has on the performance of SLAM systems.

Throughout the study, LIDAR-based SLAM systems demonstrated superior performance in environments
with complex geometries and variable lighting conditions, more specifically orchards and parking lots.
This can be attributed to the LIDAR’s ability to deliver accurate spatial data independent of ambient
light conditions, thus ensuring robustness in mapping precision. Conversely, camera-based systems, while
sometimes struggling under these conditions, showcased their potential in controlled, static environments
where visual features are more prevalent and consistent. Notably, ORB-SLAM?2 exhibited commendable
performance in the parking lot dataset, highlighting the capabilities of advanced visual SLAM systems in

certain areas.

The limitations identified through this research, such as the reliance on a single RTK-GNSS receiver for
ground truth generation and the constraints imposed by the computational hardware, particularly absence
of GPU passthrough and memory management, showcases how suboptimal experimental setups influence
the performance of SLAM systems. These limitations not only highlight the need for a comprehensive
approach to the evaluation of the SLAM system, but also underscore the potential inaccuracies that might

arise when these issues are not addressed and dealt with.

Future work will benefit from a more integrative approach that harnesses the strengths of both LIDAR and
camera technologies. The fusion of data from these sensors could lead to more comprehensive and accurate
mapping capabilities. Additionally, the inclusion of semantic understanding in SLAM processes could aid
in expanding the capabilities of these systems, enabling them not only to map, but also to understand and

interact with their surroundings in a context-aware manner.

In conclusion, while this thesis has provided valuable insights into the performance of LIDAR and camera-
based SLAM systems under various conditions, it also highlights the critical importance of continuing re-
search in this field. As we move forward, the integration of both sensor fusion and semantic understanding
in SLAM could be a valuable contribution and advancement to environmental mapping, creating systems

that are robust in a multitude of environments and applications.

91

References

[1] Gao X, Zhang T. Introduction to Visual SLAM: From Theory to Practice. Springer Verlag; 2021.

[2] Mur-Artal R, Tardés JD. ORB-SLAM?2: An Open-Source SLAM System for Monocular, Stereo, and
RGB-D Cameras. IEEE Transactions on Robotics. 2017 Oct;33(5):1255-62.

[3] Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3D Mapping with an RGB-D Camera. 1IEEE
Transactions on Robotics. 2012 Jan;30(1):177 187.

[4] Labbé M, Michaud F. RTAB-Map as an open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online operation. Journal of Field Robotics.
2019;36(2):416-46.

[5] Schenk F, Fraundorfer . RESLAM: A real-time robust edge-based SLAM system. In: 2019 Inter-
national Conference on Robotics and Automation (ICRA); 2019. p. 154-60.

[6] Yunus R, Li Y, Tombari F. ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging
Mixture of Manhattan Frames. CoRR. 2021;abs/2103.15068. Available from: https://arxiv.
org/abs/2103.15068.

[7] Intel Corporation. Intel RealSense Depth Camera D4351;. Accessed: 2024-04-14. https://www.

intelrealsense.com/depth-camera-d4351i/.

[8] sensor_msgs: sensor_msgs.point_cloud2 Namespace Reference;. Available from: https:
//docs.ros.org/en/melodic/api/sensor_msgs/html/namespacesensor_

_msgs_1_lpoint__ cloud2.html.

[9] sensor-msgs/NavSatFix Documentation;. Available from: https://docs.ros.org/en/

melodic/api/sensor_msgs/html/msg/NavSatFix.html.

[10] Li ZX, Cui GH, Li CL, Zhang ZS. Comparative Study of Slam Algorithms for Mobile Robots in
Complex Environment. In: 2021 6th International Conference on Control, Robotics and Cybernetics
(CRC); 2021. p. 74-9.

[11] Zou Q, Sun Q, Chen L, Nie B, Li Q. A Comparative Analysis of LIDAR SLAM-Based Indoor
Navigation for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems.
2022;23(7):6907-21.

[12] Filipenko M, Afanasyev I. Comparison of Various SLAM Systems for Mobile Robot in an Indoor
Environment. In: 2018 International Conference on Intelligent Systems (IS); 2018. p. 400-7.

92

https://arxiv.org/abs/2103.15068
https://arxiv.org/abs/2103.15068
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://docs.ros.org/en/melodic/api/sensor_msgs/html/namespacesensor__msgs_1_1point__cloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/namespacesensor__msgs_1_1point__cloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/namespacesensor__msgs_1_1point__cloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/NavSatFix.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/NavSatFix.html

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Geiger A, Lenz P, Urtasun R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark
Suite. In: Conference on Computer Vision and Pattern Recognition (CVPR); 2012. .

Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A Benchmark for the Evaluation of RGB-D
SLAM Systems. In: Proc. of the International Conference on Intelligent Robot Systems (IROS);
2012..

Thrun S, Burgard W, Fox D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press; 2005.

Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. vol. 60. Springer; 2004. p.
91-110.

Bay H, Tuytelaars T, Van Gool L. SURF: Speeded Up Robust Features. In: Leonardis A, Bischof H,
Pinz A, editors. Computer Vision — ECCV 2006. vol. 3951 of Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg; 2006. p. 404-17.

Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. In:
2011 International Conference on Computer Vision; 2011. p. 2564-71.

Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commun ACM. 1981 jun;24(6):381-395. Available
from: https://doi.org/10.1145/358669.358692.

Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1992;14(2):239-56.

Point Cloud Library. PassThrough Filtering;. Accessed: 2024-04-14. https://pointclouds.

org/documentation/tutorials/passthrough.html.

Point Cloud Library. Voxel Grid Downsampling;. Accessed: 2024-04-14. https://pcl.
readthedocs.io/projects/tutorials/en/latest/voxel_grid.html.

Downsample a 3-D point cloud - MATLAB pcdownsample - MathWorks Nordic;. Available from:
https://se.mathworks.com/help/vision/ref/pcdownsample.html.

Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W. OctoMap: an efficient probabilistic
3D mapping framework based on octrees. Autonomous Robots. 2013 Apr;34(3):189-206. Available
from: http://link.springer.com/10.1007/s10514-012-9321-0.

93

https://doi.org/10.1145/358669.358692
https://pointclouds.org/documentation/tutorials/passthrough.html
https://pointclouds.org/documentation/tutorials/passthrough.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/voxel_grid.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/voxel_grid.html
https://se.mathworks.com/help/vision/ref/pcdownsample.html
http://link.springer.com/10.1007/s10514-012-9321-0

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Grisetti G, Kummerle R, Stachniss C, Burgard W. A Tutorial on Graph-Based SLAM. IEEE
Intelligent Transportation Systems Magazine. 2010;2(4):31-43. Available from: http://

ieeexplore.ieee.org/document/5681215/.

Azzam R, Taha T, Huang S, et al. Feature-based visual simultaneous localization and mapping: a

survey. vol. 2. Springer; 2020. p. 224.

Sahili AR, Hassan S, Sakhrieh SM, Mounsef J, Maalouf N, Arain B, et al. A Survey of Visual SLAM
Methods. IEEE Access. 2023;11:139643-77.

Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: A Versatile and Accurate Monocular SLAM
System. IEEE Transactions on Robotics. 2015 Oct;31(5):1147-1163. Available from: http://
dx.doi.org/10.1109/TR0O.2015.2463671.

Luo K, Lin M, Wang P, Zhou S, Yin D, Zhang HL. Improved ORB-SLAM?2 Algorithm Based on
Information Entropy and Image Sharpening Adjustment. Mathematical Problems in Engineering.
2020 09;2020:13.

Barros, Andréa Macario and Michel, Maugan and Moline, Yoann and Corre, Gwenolé and Carrel,
Frédérick. A Comprehensive Survey of Visual SLAM Algorithms. Robotics. 2023;11(1):24.

Coughlan J, Yuille A. The Manhattan World Assumption: Regularities in scene statistics which
enable Bayesian inference. NIPS. 1970 02.

szenergy/awesome-lidar. szenergy; 2024. Original-date: 2020-04-13T14:15:48Z. Available from:
https://github.com/szenergy/awesome-lidar.

Zhang J, Singh S. LOAM: Lidar Odometry and Mapping in Real-time. In: Robotics: Science
and Systems X. Robotics: Science and Systems Foundation; 2014. Available from: http://www.
roboticsproceedings.org/rssl10/p07.pdf.

Eigen Developers. Figen: a C++ template library for linear algebra;. Accessed: 2024-04-14.
https://eigen.tuxfamily.org/index.php?title=Main_Page.

Ceres Solver Developers. Ceres Solver;. Accessed: 2024-04-14. http://ceres-solver.
org/.

HKUST-Aerial-Robotics/A-LOAM: Advanced implementation of LOAM;. Available from:
https://github.com/HKUST-Aerial—-Robotics/A-LOAM.

94

http://ieeexplore.ieee.org/document/5681215/
http://ieeexplore.ieee.org/document/5681215/
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2015.2463671
https://github.com/szenergy/awesome-lidar
http://www.roboticsproceedings.org/rss10/p07.pdf
http://www.roboticsproceedings.org/rss10/p07.pdf
https://eigen.tuxfamily.org/index.php?title=Main_Page
http://ceres-solver.org/
http://ceres-solver.org/
https://github.com/HKUST-Aerial-Robotics/A-LOAM

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Wang H, Wang C, Chen CL, Xie L. F-LOAM: Fast LIDAR Odometry And Mapping. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2021. p. 4390-6.
ArXiv:2107.00822 [cs]. Available from: http://arxiv.org/abs/2107.00822.

Kim G, Choi S, Kim A. Scan Context++: Structural Place Recognition Robust to Rotation and
Lateral Variations in Urban Environments. arXiv; 2021. ArXiv:2109.13494 [cs]. Available from:
http://arxiv.org/abs/2109.13494.

Shan T, Englot B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping
on Variable Terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Madrid: IEEE; 2018. p. 4758-65. Available from: https://ieeexplore.ieee.org/
document/8594299/.

koide3. koide3/hdl_graph_slam; 2024. Original-date: 2018-01-01T07:35:43Z. Available from:
https://github.com/koide3/hdl_graph_slam.

Koide K, Miura J, Menegatti E. A portable three-dimensional LIDAR-based system for long-term and
wide-area people behavior measurement. International Journal of Advanced Robotic Systems. 2019
Mar;16(2):172988141984153. Available from: http://journals.sagepub.com/doi/10.
1177/1729881419841532.

Akai N, Morales LY, Takeuchi E, Yoshihara Y, Ninomiya Y. Robust localization using 3D NDT scan
matching with experimentally determined uncertainty and road marker matching. In: 2017 IEEE
Intelligent Vehicles Symposium (IV); 2017. p. 1356-63.

Vizzo 1, Guadagnino T, Mersch B, Wiesmann L, Behley J, Stachniss C. KISS-ICP: In
Defense of Point-to-Point ICP — Simple, Accurate, and Robust Registration If Done the
Right Way. IEEE Robotics and Automation Letters. 2023 Feb;8(2):1029-36. Available
from: https://ieeexplore.ieee.org/document/10015694, https://github.
com/PRBonn/kiss—icp/tree/v0.3.0.

FRAMOS. What Are Depth Sensing Cameras and How Do They
Work?;. Accessed: 2024-02-07. http://framos.com/en/articles/

what—-are—-depth-sensing-cameras—and-how—-do-they-work.

Li Y, Ibanez-Guzman J. Lidar for Autonomous Driving: The principles, challenges, and trends for
automotive lidar and perception systems. IEEE Signal Processing Magazine. 2020 Jul;37(4):50-61.
ArXiv:2004.08467 [cs]. Available from: http://arxiv.org/abs/2004.08467.

0S0-128: 128-CHANNEL ULTRA-WIDE DIGITAL LIDAR SENSOR;. Available from: https:
//atyges.es/en/tienda/product/os0-128/.

95

http://arxiv.org/abs/2107.00822
http://arxiv.org/abs/2109.13494
https://ieeexplore.ieee.org/document/8594299/
https://ieeexplore.ieee.org/document/8594299/
https://github.com/koide3/hdl_graph_slam
http://journals.sagepub.com/doi/10.1177/1729881419841532
http://journals.sagepub.com/doi/10.1177/1729881419841532
https://ieeexplore.ieee.org/document/10015694, https://github.com/PRBonn/kiss-icp/tree/v0.3.0
https://ieeexplore.ieee.org/document/10015694, https://github.com/PRBonn/kiss-icp/tree/v0.3.0
http://framos.com/en/articles/what-are-depth-sensing-cameras-and-how-do-they-work
http://framos.com/en/articles/what-are-depth-sensing-cameras-and-how-do-they-work
http://arxiv.org/abs/2004.08467
https://atyges.es/en/tienda/product/os0-128/
https://atyges.es/en/tienda/product/os0-128/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, et al. ROS: an open-source Robot
Operating System.

sensor-msgs/PointCloud2 Documentation;. Available from: https://docs.ros.org/en/

melodic/api/sensor_msgs/html/msg/PointCloud2.html.
ROS Wiki Contributors. rosbag;. Accessed: 07.02.2024. http://wiki.ros.org/rosbag.
ROS Wiki Contributors. rviz;. Accessed: 07.02.2024. http://wiki.ros.org/rviz.

Kim E, Kim Sk. Global Navigation Satellite System Real-Time Kinematic Positioning Framework
for Precise Operation of a Swarm of Moving Vehicles. Sensors. 2022;22(20). Available from:
https://www.mdpi.com/1424-8220/22/20/79309.

Grupp M. evo: Python package for the evaluation of odometry and SLAM.; 2017. https://
github.com/MichaelGrupp/evo.

Umeyama S. Least-squares estimation of transformation parameters between two point patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991;13(4):376-80.

Sturm J, Burgard W, Cremers D. Evaluating Egomotion and Structure-from-Motion Approaches
Using the TUM RGB-D Benchmark. 2012 01.

RB-VOGUI Mobile Robot - Outdoor Mobile Robot | Robotnik®;. Available from: https://

robotnik.eu/products/mobile-robots/rb-vogui-en/.

Oracle. Oracle VM VirtualBox; 2024. Virtualization software. Available from: https://www.

virtualbox.org/.

Docker: Accelerated Container Application Development; 2022. Available from: https://www.

docker.com/.
CloudCompare - Open Source project;. Available from: https://www.danielgm.net/cc/.

Google Earth. Top down image of NMBU campus; 2024. Available from: https:
//www.google.com/earth/, https://earth.google.com/earth/d/
17xgD1Vixp73cj50sPS9ISHeTXEexwPBo?usp=sharing.

Charles F F Karney. geographiclib;. Accessed: 2024-05-10. https://geographiclib.
sourceforge.io/html/python/.

Xiang G. ORBSLAM?2 with pointcloud map. GitHub;. https://github.com/gaoxiangl2/
ORBSLAMZ_with_pointcloud_map.

96

https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html
http://wiki.ros.org/rosbag
http://wiki.ros.org/rviz
https://www.mdpi.com/1424-8220/22/20/7939
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://robotnik.eu/products/mobile-robots/rb-vogui-en/
https://robotnik.eu/products/mobile-robots/rb-vogui-en/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.docker.com/
https://www.docker.com/
https://www.danielgm.net/cc/
https://www.google.com/earth/, https://earth.google.com/earth/d/17xgDlVixp73cj50sPS9ISHeTXEexwPBo?usp=sharing
https://www.google.com/earth/, https://earth.google.com/earth/d/17xgDlVixp73cj50sPS9ISHeTXEexwPBo?usp=sharing
https://www.google.com/earth/, https://earth.google.com/earth/d/17xgDlVixp73cj50sPS9ISHeTXEexwPBo?usp=sharing
https://geographiclib.sourceforge.io/html/python/
https://geographiclib.sourceforge.io/html/python/
https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map
https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

IntRoLab. RTAB-Map’s ROS package. GitHub;. https://github.com/introlab/

rtabmap_ros.

Endres F. RGB-D SLAM for ROS. GitHub;. https://github.com/felixendres/
rgbdslam_v2.

Yunus R. ManhattanSLAM. GitHub;. https://github.com/razayunus/
ManhattanSLAM.

Schenk F. RESLAM: A real-time robust edge-based SLAM system. GitHub;. https://github.
com/fabianschenk/RESLAM.

Computer Vision Group T. Useful Tools for the RGB-D Benchmark; 2024. Accessed: 2024-04-21.
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools.
wh200720041/floam: Fast LOAM: Fast and Optimized Lidar Odometry And Mapping

for indoor/outdoor localization IROS 2021;. Available from: https://github.com/
wh200720041/floam.

Kim G. gisbi-kim/SC-A-LOAM; 2024. Original-date: 2021-05-10T12:29:05Z. Available from:
https://github.com/gisbi-kim/SC-A-LOAM.

Kim D. kimdaebeom/LeGO-LOAM; 2022. Original-date: 2022-01-28T06:18:17Z. Available from:
https://github.com/kimdaebeom/LeGO-LOAM.

Zhou QY, Park J, Koltun V. Open3D: A modern library for 3D data processing. arXiv:180109847.
2018.

Yu C, Liu Z, Liu XJ, Xie F, Yang Y, Wei Q, et al. DS-SLAM: A Semantic Visual SLAM towards
Dynamic Environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Madrid: 1EEE; 2018. p. 1168-74. Available from: https://ieeexplore.
ieee.org/document/8593691/.

Cheng R. bag file to image files in tum dataset and realsense dataset; 2024. Accessed: 2024-04-12.
https://gist.github.com/rancheng/11bl3ec6c218278laf7fdclled7c3cl8.

https://github.com/introlab/rtabmap_ros
https://github.com/introlab/rtabmap_ros
https://github.com/felixendres/rgbdslam_v2
https://github.com/felixendres/rgbdslam_v2
https://github.com/razayunus/ManhattanSLAM
https://github.com/razayunus/ManhattanSLAM
https://github.com/fabianschenk/RESLAM
https://github.com/fabianschenk/RESLAM
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
https://github.com/wh200720041/floam
https://github.com/wh200720041/floam
https://github.com/gisbi-kim/SC-A-LOAM
https://github.com/kimdaebeom/LeGO-LOAM
https://ieeexplore.ieee.org/document/8593691/
https://ieeexplore.ieee.org/document/8593691/
https://gist.github.com/rancheng/11b13ec6c2182781af7fdc11ed7c3c18

7. APPENDIX

Camera configuration files
ORB-SLAM?2 and Manhattan-SLAM

§YAML:1.0

Camera Parameters. Adjust them!

Camera calibration and distortion parameters (OpenCV)
Camera.fx: 605.612060546875

Camera.fy: 604.5374145507812

Camera.cx: 322.8209228515625

Camera.cy: 248.99522399902344

Camera.kl:
Camera.k2:

Camera.pl:

o O o O
o O o O

Camera.p2:

Camera.width: 640
Camera.height: 480

Camera frames per second

Camera.fps: 30.0

IR projector baseline times fx (aprox.)

Camera.bf: 30.2806
Color order of the images (0: BGR, 1: RGB. It is ignored if images
— are grayscale)

Camera.RGB: 1

Close/Far threshold. Baseline times.

ThDepth: 50.0

Deptmap values factor
DepthMapFactor: 1000.0

ORB Extractor: Number of features per image

ORBextractor.nFeatures: 1000

ORB Extractor: Scale factor between levels in the scale pyramid
—

ORBextractor.scaleFactor: 1.2

ORB Extractor: Number of levels in the scale pyramid

ORBextractor.nlLevels: 8

ORB Extractor: Fast threshold

Image is divided in a grid. At each cell FAST are extracted imposing
— a minimum response.

Firstly we impose iniThFAST. If no corners are detected we impose a
« lower value minThFAST

You can lower these values if your images have low

— contrast

ORBextractor.iniThFAST: 20

ORBextractor.minThFAST: 7

Viewer .KeyFrameSize: 0.05
Viewer .KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9

Viewer .PointSize: 2

Viewer.CameraSize: 0.08
Viewer.CameralLineWidth: 3
Viewer.ViewpointX: 0
Viewer .ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

PointCloudMapping.Resolution: 0.04

RESLAM

EYAML:l.O

Camera Parameters. Adjust them!

#Sensor settings
InputSensorType: O
InputDepthScaleFactor: 5000.0
IntrinsicsImgSize.width: 640
IntrinsicsImgSize.height: 480
Camera calibration and distortion parameters (OpenCV)
IntrinsicsCamFx: 605.612060546875
IntrinsicsCamFy: 604.5374145507812
IntrinsicsCamCx: 322.8209228515625
IntrinsicsCamCy: 248.99522399902344
IntrinsicsCamKl: O
IntrinsicsCamK2: 0
IntrinsicsCamPl: O
IntrinsicsCamP2: O

0

IntrinsicsCamK3:

InputCannyEdgeThl: 60
InputCannyEdgeTh2: 40
InputSmoothEdgeImage: O
InputComputeGradientsForEdgeDetector: 0
InputDatasetFile: "associations.txt"
InputDatasetFolder: "/home/marko/Music/parking_tum_sync_tum"
InputReadGT: 1 #groundtruth.txt
InputReadNFrames: 5000

InputDepthMin: 0.1

InputDepthMax: 5.2

InputColorFormatRGB: 0

#Input

InputSkipFirstNFrames: 0

RESLAM

§YAML:1.0
#GENERAL
SystemMultiThreading: O

ViewerPointSize: 2

#Tracker

TrackerNPyrLevels: 3

TrackerEvalLvlForInit: 2
TrackerSkipResdiualsOnLowerLvls: O
TrackerTrackFromFrameToKf: 0 #leave it deactivated at the moment!
TrackerUseWeightsResidualsForErrorComputation: 1
TrackerResidualHuberWeight: 0.3
TrackerUseEdgeWeight: 0

TrackerUseEdgeFilter: 1
TrackerOpticalFlowTFactor: 0.1
TrackerOpticalFlowRTFactor: 0.15
TrackerOpticalFlowThreshold: 1

TrackerHistDist: 1.5 #For LC

TrackerAvgResidualBeforeTrackinglLoss: 2.5

#Output Settings

OutputPoses: 1

OutputRecordImages: O

OutputPoseFileFolder: "/home/marko/RESLAM/output"

#Local Mapper

EnablelLocalMapping: 1
LocalMapperUseCoarseDistanceMap: 1
LocalMapperOptimizeDepth: 1
LocalMapperOptimizeInitDepth: 1
LocalMapperConditionalDepthOptimization: 1
LocalMapperMaxDistForValidPixels: 5.0 #5.0
LocalMapperMinDistInDistMapForValidPixels: 5.0 #7.0
LocalMapperShowResidualsInImage: O
LocalMapperEdgeDistance: 5.0
LocalMapperLinearProcessing: 1
LocalMapperDoMarginalize: 1
LocalMapperAdaptMinActDist: 0
LocalMapperUseNewPoseUpdate: O

#Loop Closure

EnableLoopClosure: 0

This sets the minimum distance between two candidates, where we
- don't close a loop
LoopClosureMinDistBetweenFrames: 15
LoopClosureFramesToCheck: 3
LoopClosurekEdgeWeight: 3 #Insert loop 3 times
LoopClosureUseBAConstraints: 1
LoopClosurelLinearProcessing: 1
LoopClosureKeyframeThreshold: 0.25
LoopClosureNumberOfBAConstraints: 3
LoopClosureDoNotCloseLoopsIfClosedLastN: 7
LoopClosureOnlyUseFernKF: 1
LoopClosureFixWindowPoses: 1
LoopClosureAddAdjacentConstraints: 0
LoopClosureDoBackCheck: 1

#Relocaliser

EnableRelocaliser: 1

FernDatabaseAlwaysAddKf: O
#FernDatabaseHarvestingThreshold: 0.2
#FernDatabaseNumFerns: 500

#FernDatabaseNumDecisions: 4

#Debug

SystemDebugTextOutput: 0
TrackerShowIterationsDebug: 0
TrackerShowInitDebug: 0
LoopClosureDebugShowTransformationImages: 0

LoopClosureTrackerShowIterations: 0

RTAB-Map

<?xml version="1.0"?>
<launch>

<param name="use_sim_time" type="bool" value="True"/>

<node pkg="tf" type="static_transform_publisher"
« name="camera_base_link"
args="0 0 0 0 0 0 1 base_1link

« robot_front_rgbd_camera_color_optical_frame 100" />
<group ns="rtabmap">

<!—-- Odometry ——>
<node pkg="rtabmap_odom" type="rgbd_odometry" name="rgbd_odometry"
— output="screen">

<remap from="rgb/image"

— to="/robot/camera/color/image_raw"/>

<remap from="depth/image"

< to="/robot/camera/depth/image_rect_raw"/>

<remap from="rgb/camera_info"

— to="/robot/camera/color/camera_info"/>

<param name="frame_id" type="string" value="base_link"/>

</node>

<!-— SLAM —-—>
<node name="rtabmap" pkg="rtabmap_slam" type="rtabmap"
— output="screen" args="--delete_db_on_start">
<param name="subscribe_depth" type="bool" value="true"/>

<param name="frame_id" type="string" value="base_link"/>

<param name="Rtabmap/StartNewMapOnLoopClosure" type="string"
~ value="true"/>

<param name="RGBD/CreateOccupancyGrid" type="string"

— value="false"/>

<param name="Rtabmap/CreateIntermediateNodes" type="string"
< value="true"/>

<param name="RGBD/LinearUpdate" type="string" value="0"/>

<param name="RGBD/AngularUpdate" type="string" value="0"/>

<remap from="rgb/image"

< to="/robot/camera/color/image_raw"/>
<remap from="depth/image"

— to="/robot/camera/depth/image_rect_raw"/>
<remap from="rgb/camera_info"

— to="/robot/camera/color/camera_info"/>
<remap from="odom" to="odom"/>

</node>

</group>

</launch>

RGBDSLAMyv2

<launch>
<!-—- These parameters are used for the benchmark evaluation.
— Documentation can be found in parameter._server.cpp —-—>
<!—-—<env name="ROSCONSOLE_CONFIG _FILE" value="S(find
« rgbdslam)/rgbd_benchmark/log _eval.conf"/>——>

<env name="ROSCONSOLE_FORMAT" value="[${severity}] Time:[${time}]
« Thread:[${thread}]: S${message}"/>

<arg name="debug" default="false"/>

<!-—-arg if="S(arg debug)" name="launch prefix"

~ value="/usr/bin/time"/—->

<!-—arg if="S(arg debug)" name="launch_prefix" value="/usr/bin/gdb
—~ —ex run -args"/-->

<arg if="$ (arg debug)" name="launch_prefix" value="/usr/bin/xterm -e
~ gdb —ex run -—-args"/>

<!—-—arg if="$(arg debug)" name="launch_prefix" value="/usr/bin/ddd
—~ —ex run -args"/-->

<!-—-arg i1f="S(arg debug)" name="launch prefix"

~ value="/usr/bin/valgrind -DELETEME-tool=callgrind

— -DELETEME-callgrind-out-file=/tmp/callgrind.out"/——>

<!-—-arg if="S(arg debug)" name="launch prefix"

— value="/usr/bin/valgrind -DELETEME-leak-check=full "/-—->

<arg unless="$ (arg debug)" name="launch_prefix" value=""/>

<!-—- These parameters are defined in the calling script
. (run_tests.sh)—-——>

<arg name="bagfile_name" />

<arg name="feature_type" default="ORB"/>

<arg name="ransac_iterations" default="1500"/>
<arg name="optimizer_skip_step" default="1"/>
<arg name="observability_threshold" default="0"/>
<arg name="use_root_sift" default="false"/>

<arg name="max_keypoints" default="500"/>

<arg name="match_candidates" default="4"/>

<arg name="sampled_candidates" default="4"/>

<arg name="gui" default="true"/>

<node pkg="rgbdslam" type="rgbdslam" name="rgbdslam" required="true"
—~ output="screen" launch-prefix="$ (arg launch_prefix)">

<!-— Input data settings——>

<param name="config/topic_image_mono"

— value="/robot/camera/color/image_raw"/>
<param name="config/topic_image_depth"

— value="/robot/camera/depth/image_rect_raw"/>
<param name="config/camera_info_topic"

~ value="/robot/camera/color/camera_info"/>

<param name="config/depth_camera_fx"
~ value="605.612060546875"/>
<param name="config/depth_camera_fy"
~ value="604.5374145507812"/>
<param name="config/depth_camera_cx"
— value="322.8209228515625"/>
<param name="config/depth_camera_cy"
~ value="248.99522399902344"/>

<!-— TF information settings —->
<param name="config/fixed_frame_name" value="/map"/>
<param name="config/odom_frame_name" value=""/>

<param name="config/ground_truth_frame_name"

« value=""/><!--empty string if no ground truth-->

<param name="config/base_frame_name"

« value="robot_front_rgbd_camera_color_optical_ frame"/> <!/-——

« /Jopenni_camera for hand-held kinect. For robot, e.qg.,

- /base _link —->

<param name="config/fixed_camera" value="true"/>
— <!--is the kinect fixed with respect to base, or can it be

— moved (false makes sense only 1f transform betw. base_ frame

< and openni_camera 1is sent via tf)-->

<param name="config/start_paused" value="false"/>
<param name="config/store_pointclouds" value="true"/>
- <!-—- 1if, e.qg., only trajectory 1is required, setting this to

— false saves lots of memory —-—>

<param name="config/feature_detector_type" value="$ (arg
~ feature_type)"/>
<param name="config/feature_extractor_type" value="$ (arg

— feature_type)"/>

<param name="config/matcher_type"
— value="BRUTEFORCE"/> <!—-—- FLANN (not avail for ORB features),
— SIFTGPU (only for SIFTGPU detector) or BRUTEFORCE—-—->
<param name="config/bagfile_name"
— value="$ (arg bagfile_name)"/>
<!-—-param name="config/nn_distance_ratio"
— value="0.80"/--> <!-- Feature correspondence 1is valid if
— distance to nearest neighbour is smaller than this parameter
— times the distance to the 2nd neighbour -->
<param name="config/max_keypoints"
<« value="$ (arg max_keypoints)"/>
<param name="config/min_keypoints"
~ value="0"/>
<param name="config/sufficient_matches"
— value="400"/><!-- Instead of matching all new descriptors
— against all of a previous node in one step,
— sufficient_matches+100 of the new descriptors are iteratively
— compared to all of the previous node until sufficient_matches
— are found. Setting this parameter low (e.g. 2x min_matches)
— Speeds up comparisons of frames with many matches, but with a
« potential loss of accuracy, as the transformation is estimated
— from less features. Set it to max_keypoints for maximum
—~ accuracy -—-->
<param name="config/min_translation_meter"
— value="-1.0"/><!--disabled —-->
<param name="config/min_rotation_degree"
~ value="-1.0"/><!--disabled —-—>
<param name="config/max_translation_meter"
— value="100.0"/><!—-- transformations with motion more than this

— per second!, will be omitted —-—>

<param name="config/max_rotation_degree"
« value="900"/><!-- transformations with motion more than this
— per second!, will be omitted ——>

<param name="config/min_time_reported"

« value="0.02"/>

<param name="config/predecessor_candidates" value="$ (arg
< match_candidates)"/><!--search through this many immediate
« predecessor nodes for corrspondences ——>

<param name="config/neighbor_candidates" value="$ (arg
— match_candidates)"/><!--search through this many graph

— neighbour nodes for corrspondences ——>

<param name="config/min_sampled_candidates" value="$ (arg
—» sampled_candidates)"/><!--search through this many uniformly
— sampled nodes for corrspondences ——>

<param name="config/max_connections"
« value="-1"/><!-- stop after this many succesfully found

—~ Spation relations ——>

<param name="config/drop_async_frames"

— value="false"/>

<param name="config/min_matches"

o value="20"/>

<param name="config/max_dist_for_inliers"

~ value="0.5"/>

<param name="config/ransac_iterations"

— value="$ (arg ransac_iterations)"/><!-- these are fast,
— sSo high values are ok ——>

<param name="config/use_gui"

— value="$ (arg gui)"/>

<param name="config/use_glwidget"

~ value="$(arg gui)"/>

<param name="config/concurrent_node_construction"
— value="true"/>

<param name="config/concurrent_edge_construction"

<~ value="true"/>

<param name="config/concurrent_optimization"

—~ value="true"/>

<param name="config/optimizer_skip_step" value="$ (arg
— optimizer_skip_step)"/><!--optimize at end only ——>
<param name="config/backend_solver" value="pcg"/>

<param name="config/pose_relative_to"
~ value="inaffected"/>
<param name="config/optimize_landmarks" value="true"/>
— <!—— Include feature poses as vertices in graph
—~ optimization—->
<param name="config/data_skip_step"
o value="2"/><!-- skip every n-th frame completely —-->
<param name="config/visualization_skip_step"
~ value="1"/> <!-- draw only every nth pointcloud row and
— line, high values require higher
< squared_meshing threshold —->
<param name="config/encoding_bgr"
— value="false"/>
<param name="config/visualize_mono_depth_overlay"
~ value="false"/>
<param name="config/squared_meshing_threshold"
~ value="0.0081"/>
<param name="config/batch_processing" value="true"/>
— <!--store results and close after bagfile has been
- processed—-—>
<param name="config/keep_all_nodes" value="true"/>
— <!—-- add nodes with constant motion if no transformation can
- be found —-->
<param name="config/use_icp" value="false"/>
— <!—-— Ignored if ICP is not compiled in (see top of
< CMakeLists.txt) —--—>
<param name="config/gicp_max_cloud_size" value="15000"/>
<param name="config/use_root_sift" value="$ (arg

—~ use_root_sift)"/>

<param name="config/optimizer_iterations"
« value="0.001"/><!-- maximum of iterations 1in online operation
o (i.e., does affect the final optimization in batch mode) —-->

<param name="config/emm__skip_step" value="1"/>

<param name="config/emm__mark_outliers" value="false"/>

<param name="config/observability_threshold" value="$ (arg
«» oObservability_threshold)"/>

<l—- <param name="config/max_edge_ error" value="0.01"/>
o m>

<param name="config/cloud_creation_skip_step" value="8"/>

— <!——= Only active if cloud is computed (i.e. "topic_points" is

— empty. This value multiplies to emm _skip step and

— visualization skip step——>

<param name="config/octomap_resolution" value="0.01"/>

— <!—=—= Only active if cloud is computed (i.e. "topic _points" is

— empty. This value multiplies to emm _skip_step and

< visualization_ skip step——>

<!-—-param name="config/g20 transformation_refinement"

« value="1000"/--> <!-- Use g20 to refine the ransac result,

— 1.e. optimize the Mahalanobis distance in a final step.-——>
</node>

</launch>

Launch files for KITTI
A-LOAM

<launch>
<arg name="sequence" default="sequencel05"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— -r 1 -k
— /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

— sequence) .bag" required="true" />

<group if="$ (arg record)">
<node name="rosbag_record" pkg="rosbag" type="record"
args="/odom_pose /aft_mapped_to_init -O '/mnt/d/OneDrive -
— Norwegian University of Life Sciences/master/results/$ (arg
— sequence) /aloam_$ (arg sequence)_$ (arg speed) .bag'"
output="screen"/>

</group>

<param name="/use_sim_time" value="true" />

<param name="scan_line" type="int" value="64" />

<!-— if 1, do mapping 10 Hz, if 2, do mapping 5 Hz. Suggest to use
- 1, it will adjust frequence automaticlly -->

<param name="mapping_skip_frame" type="int" value="1" />

<!-- remove too closed points —-->

<param name="minimum_range" type="double" value="5"/>

<param name="mapping_line_resolution" type="double" value="0.4"/>

<param name="mapping_plane_resolution" type="double" value="0.8"/>

<node pkg="aloam_velodyne" type="ascanRegistration"

— name="ascanRegistration" output="screen" />

<node pkg="aloam_velodyne" type="alaserOdometry"

« name="alaserOdometry" output="screen" />

<node pkg="aloam_velodyne" type="alaserMapping"

— name="alaserMapping" output="screen" />

<arg name="rviz" default="true" />

<group if="$ (arg rviz)">

<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz"
« args="-d $(find
— aloam_velodyne) /rviz_cfg/aloam_velodyne.rviz" />

</group>

</launch>

F-LOAM

<?xml version="1.0"7?>

<launch>
<arg name="sequence" default="sequencel05"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— -r 1 -k
—~ /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

< sequence) .bag" required="true" />

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/odom_pose /odom -0 '/mnt/d/OneDrive - Norwegian University
—~ of Life Sciences/master/results/$ (arg sequence)/floam_$ (arg
«— sequence)_S (arg speed) .bag'"

output="screen"/>

</group>

<!-— For Velodyne HDL-64 ——>

<param name="scan_line" value="64" />
<!-—— Sim Time ——>
<param name="/use_sim_time" value="true" />

<param name="scan_period" value="0.1" />

<param name="vertical_angle" type="double" value="2.0" />

<param name="max_dis" type="double" value="90.0" />
<param name="map_resolution" type="double" value="0.4" />

<param name="min_dis" type="double" value="3.0" />

<node pkg="floam" type="floam_odom_estimation_node"

« name="floam_odom_estimation_node" output="screen"/>
<node pkg="floam" type="floam_ laser_processing_node"

— name="floam laser_processing node" output="screen"/>
<node pkg="floam" type="floam_laser_mapping_node"

«— name="floam_laser_mapping_node" output="screen"/>

<node pkg="tf" type="static_transform_publisher"
<« name="word2map_tf" args="0 0 0 0 0 0 /world /map 10" />

<arg name="rviz" default="true" />

<group if="$ (arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz"
« args="-d $(find floam)/rviz/floam_mapping.rviz" />

</group>

<node pkg="hector_trajectory_server"
< type="hector_trajectory_server"
< name="trajectory_server_loam" ns="gt" >
<param name="/target_frame_name" value="world" />
<param name="/source_frame_name" value="velodyne" />
<param name="/trajectory_update_rate" value="10.0" />
<param name="/trajectory_publish_rate" value="10.0" />
</node>
<node pkg="hector_trajectory_server"
— type="hector_trajectory_server" name="trajectory_server_loam"
< ns="base_ link" >
<param name="/target_frame_name" value="world" />
<param name="/source_frame_name" value="base_link" />
<param name="/trajectory_update_rate" value="10.0" />

<param name="/trajectory_publish_rate" value="10.0" />

</node>

</launch>

<!--TO SAVE THE RESULTING MAP RUN

rosrun pcl_ros pointcloud to_pcd input:=/map

HDL-Graph SLAM

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="sequencelO5"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— -r 1 -k
~ /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

<~ sequence) .bag" required="true" />

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/odom_pose /odom -0 '/mnt/d/OneDrive - Norwegian University
—~ of Life Sciences/master/results/$ (arg sequence)/hdl_$ (arg

- sequence)_S (arg speed) .bag'"

output="screen"/>

</group>

<arg name="rviz" default="true" />
<arg name="rviz_config" default="$(find

« hdl_graph_slam)/rviz/hdl_graph_slam.rviz" />

<rosparam param="use_sim_time">true</rosparam>

<include file="S (find

« hdl_graph_slam)/launch/hdl_graph_slam_kitti.launch"/>

<group if="$(arg rviz)">

<node pkg="rviz" type="rviz" name="rviz" args="-d $(arg
— rviz_config)" />
</group>
</launch>

KISS-ICP

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="sequence05"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock

— -r 1 -k
— /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

< sequence) .bag" required="true" />

<group if="$ (arg record)">

<node name="rosbag_record" pkg="rosbag" type="record"

args="/odom_pose /kiss/odometry -0 '/mnt/d/OneDrive - Norwegian

< University of Life Sciences/master/results/$ (arg
— sequence) /kiss_icp_$ (arg sequence)_$ (arg speed) .bag'"
output="screen"/>

</group>

<include file="$(find kiss_icp)/launch/odometry.launch">

<arg name="topic" value="velodyne_points"/>

<arg name="odom_frame" value="map"/>

</include>

</launch>

LeGO-LOAM

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="sequencel05"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— -r 1 -k
— /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

-+ sequence) .bag" required="true" />

<group if="$ (arg record)">

<node name="rosbag_record" pkg="rosbag" type="record"
args="/odom_pose /aft_mapped_to_init -0 '/mnt/d/OneDrive -

~ Norwegian University of Life Sciences/master/results/$ (arg
— sequence) /lego_S$ (arg sequence)_S$ (arg speed) .bag'"
output="screen"/>

</group>

<include file="$(find lego_loam)/launch/run.launch">

</include>

</launch>

SC-A-LOAM

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="sequence05"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— -r 1 -k
— /home/tor/Downloads/semantikitti2bag/semantickitti_$ (arg

— sequence) .bag" required="true" />

<group if="$ (arg record)">

<node name = "rosbag_ record" pkg="rosbag" type="record"
args="/odom_pose /aft_mapped_to_init -0 '/mnt/d/OneDrive -

«— Norwegian University of Life Sciences/master/results/$ (arg
— sequence) /scaloam_$ (arg sequence)_S$ (arg speed) .bag'"
output="screen"/>

</group>

<include file="$ (find

< sc_aloam_velodyne) /launch/aloam_velodyne_HDIL_64.launch"/>

</launch>

Launch files for collected dataset
A-LOAM

<launch>
<!-— Roslaunch /ouster/points topics to /velodyne_points ——>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock -r
— 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"

~ required="true"/>

<param name="/use_sim_time" value="true" />

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/gps_pose /aft_mapped_to_init -0 '/mnt/d/OneDrive -

~ Norwegian University of Life Sciences/master/results/$ (arg

— sequence) /aloam_$ (arg sequence)_S$ (arg speed) .bag'"
output="screen"/>

</group>

<param name="scan_line" type="int" value="128" />

<!-— if 1, do mapping 10 Hz, if 2, do mapping 5 Hz. Suggest to use

- 1, it will adjust frequence automaticlly —-—>

<param name="mapping_skip_frame" type="int" value="1" />

<!-- remove too closed points —->

<param name="minimum_range" type="double" value="5"/>

<param name="mapping_line_resolution" type="double" value="0.4"/>

<param name="mapping_plane_resolution" type="double" value="0.8"/>

<param name="point_cloud_topic" type="string"

— value="/ouster/points"/>

<node pkg="aloam_velodyne" type="ascanRegistration"

— name="ascanRegistration" output="screen" />

<node pkg="aloam_velodyne" type="alaserOdometry"

« name="alaserOdometry" output="screen" />

<node pkg="aloam_velodyne" type="alaserMapping"

< name="alaserMapping" output="screen" />

<arg name="rviz" default="true" />

<group if="$ (arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz"
-~ args="-d $(find
— aloam_velodyne) /rviz_cfg/aloam_velodyne.rviz" />

</group>
</launch>

F-LOAM

<?xml version="1.0"7?>

<launch>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock -r
- 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"

< required="true"/>

<param name="/use_sim_time" value="true" />

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/gps_pose /odom -0 '/mnt/d/OneDrive - Norwegian University
— of Life Sciences/master/results/$ (arg sequence)/floam_$ (arg
— sequence)_S (arg speed) .bag'"

output="screen"/>

</group>

<!-— For Velodyne VLP-16

<param name="scan_line" value="16" />

-——>

<!—-— For Velodyne HDL-32

<param name="scan_line" value="32" />
——>

<!—-- For Velodyne 0S50-128 ——>

<param name="point_cloud_topic" value="/ouster/points"/>

<param name="scan_line" value="128" />

<!-—— Sim Time ——>
<param name="/use_sim_time" value="true" />

<param name="scan_period" value="0.1" />

<param name="vertical_angle" type="double" value="2.0" />
<param name="max_dis" type="double" value="90.0" />
<param name="map_resolution" type="double" value="0.4" />

<param name="min_dis" type="double" value="4.0" />

<node pkg="floam" type="floam_ odom_estimation_node"

— name="floam_odom_estimation_node" output="screen"/>
<node pkg="floam" type="floam_laser_processing_node"

<« name="floam_laser_processing_node" output="screen"/>
<node pkg="floam" type="floam laser_mapping_node"

« name="floam_laser_mapping_node" output="screen"/>

<node pkg="tf" type="static_transform_publisher"
~ name="word2map_tf" args="0 0 0 0 0 O /robot_odom /map 10" />

<arg name="rviz" default="true" />
<group if="S$ (arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz"

— args="-d $(find floam)/rviz/floam_mapping.rviz" />

</group>

<node pkg="hector_trajectory_server"
— type="hector_trajectory_server"
<~ name="trajectory_server_loam" ns="gt" >
<param name="/target_frame_name" value="world" />
<param name="/source_frame_name" value="map" />
<param name="/trajectory_update_rate" value="10.0" />
<param name="/trajectory_publish_rate" value="10.0" />
</node>
<node pkg="hector_trajectory_server"
— type="hector_trajectory_server" name="trajectory_server_loam"
— ns="base_link" >
<param name="/target_frame_name" value="world" />
<param name="/source_frame_name"
«— value="robot_top_3d_laser_link" />
<param name="/trajectory_update_rate" value="10.0" />
<param name="/trajectory_publish_rate" value="10.0" />

</node>

</launch>

HDL-Graph SLAM

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01l"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock -r
—~ 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"
« required="true"/>

<param name="/use_sim_time" value="true" />

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/gps_pose /odom -0 '/mnt/d/OneDrive - Norwegian University
—~ of Life Sciences/master/results/$ (arg sequence)/hdl_$ (arg

— sequence)_S (arg speed) .bag'"

output="screen"/>

</group>

<arg name="rviz" default="true" />
<arg name="rviz_config" default="$(find

« hdl_graph_slam)/rviz/hdl_graph_slam.rviz" />

<rosparam param="use_sim_time">true</rosparam>

<include file="$ (find

< hdl_graph_slam)/launch/hdl_graph_slam_robotnik.launch"/>

<group if="$ (arg rviz)">

<node pkg="rviz" type="rviz" name="rviz" args="-d $(arg
— rviz_config)" />
</group>
</launch>

KISS-ICP

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<!--

<node pkg="rosbag" type="play" name="rosbag play" args=" clock -r
- 1 '"/mnt/d/OneDrive - Norwegian University of Life

— Sciences/master/data/$ (arg sequence)_with_gps.bag'"

~ required="true"/>

——>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock -r
—~ 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"

< required="true"/>

<param name="/use_sim_time" value="true" />

<group if="$ (arg record)">

<node name = "rosbag_ record" pkg="rosbag" type="record"
args="/gps_pose /kiss/odometry -0 '/mnt/d/OneDrive - Norwegian
< University of Life Sciences/master/results/$ (arg

— sequence) /kiss_icp_$ (arg sequence)_$ (arg speed) .bag'"
output="screen"/>

</group>

<include file="$(find kiss_icp)/launch/odometry.launch">
<arg name="topic" value="ouster/points"/>
<arg name="odom_frame" value="robot_odom"/>

</include>

</launch>

LeGO-LOAM

<launch>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock
— 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"

~ required="true"/>

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/gps_pose /aft_mapped_to_init -0 '/mnt/d/OneDrive -

—~ Norwegian University of Life Sciences/master/results/$ (arg
— sequence) /lego_$ (arg sequence)_$ (arg speed) .bag'"
output="screen"/>

</group>

<!-—— Sim Time ——>

<param name="/use_sim_time" value="true" />

<!--— Run Rviz——>
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find

< ouster_lego)/launch/test.rviz" />

<!-—— TF ——>

<node pkg="tf" type="static_transform_publisher"

< name="camera_init_to_map" args="0 0 0 1.570795 0
-~ 1.570795 /map /camera_init 10" />

<node pkg="tf" type="static_transform_publisher"

— name="base_link_to_camera" args="0 0 0 -1.570795 -1.570795 0

— /camera /robot_base_link 0" />

<!-—- LeGO-LOAM —->

<node pkg="ouster_lego" type="imageProjection"

< name="imageProjection" output="screen"/>
<node pkg="ouster_lego" type="featureAssociation"
<~ name="featureAssociation" output="screen"/>
<node pkg="ouster_ lego" type="mapOptmization"

« name="mapOptmization" output="screen"/>

<node pkg="ouster_ lego" type="transformFusion"

« name="transformFusion" output="screen"/>

</launch>

SC-A-LOAM

<?xml version="1.0"?>

<launch>
<arg name="sequence" default="orchard"/>
<arg name="speed" default="speed01"/>

<arg name="record" default="false"/>

<node pkg="rosbag" type="play" name="rosbag_play" args="--clock -r
-~ 1 '"/mnt/e/master/data/$ (arg sequence)_with_gps.bag'"

« required="true"/>

<group if="$ (arg record)">

<node name = "rosbag_record" pkg="rosbag" type="record"
args="/gps_pose /aft_mapped_to_init -0 '/mnt/d/OneDrive -

— Norwegian University of Life Sciences/master/results/$ (arg
— sequence) /scaloam_$ (arg sequence)_S$ (arg speed) .bag'"
output="screen"/>

</group>

<param name="scan_line" type="int" value="128" />

<!-— if 1, do mapping 10 Hz, if 2, do mapping 5 Hz. Suggest to use
- 1, it will adjust frequence automaticlly —-—>

<param name="mapping_skip_frame" type="int" value="1" />

<!-- remove too closed points —->

<param name="minimum_range" type="double" value="5"/>

<param name="mapping_line_resolution" type="double" value="0.4"/>
- <!-— A-LOAM ——>

<param name="mapping_plane_resolution" type="double" value="0.8"/>
o <!-— A-LOAM ——>

<!-— SC-A-LOAM —->

<param name="keyframe_meter_gap" type="double" value="0.01"/>

<!-- Scan Context -—>
<param name="sc_dist_thres" type="double" value="0.4"/> <!/-——

— SC-A-LOAM, 1f want no outliers, use 0.1-0.15 ——>

<!-— <param name="sc_max_radius" type="double" value="40.0"/> 20
« or 40 for indoor —-->

<param name="sc_max_radius" type="double" value="80.0"/> <!/-- for
— outdoor —-->

<!-- for MulRan —->

<param name="lidar_type" type="string" value="0S0-128"/>

<remap from="/velodyne_points" to="/ouster/points"/>

<!-— utils —-—>

<param name="save_directory" type="string"

— value="/home/tor/Documents/scloam/"/> <!-— CHANGE THIS and
—~ end with / ——>

<param name="point_cloud_topic" type="string"

<~ value="/ouster/points"/>

<!-— nodes —-—>

<node pkg="sc_aloam_velodyne" type="ascanRegistration"

—» name="ascanRegistration" output="screen" /> <!-—- A-LOAM ——>
<node pkg="sc_aloam_velodyne" type="alaserOdometry"

— name="alaserOdometry" output="screen" /> <!/-- A-LOAM ——>
<node pkg="sc_aloam_velodyne" type="alaserMapping"

— name="alaserMapping" output="screen" /> <!-- A-LOAM ——>
<node pkg="sc_aloam_velodyne" type="alaserPGO" name="alaserPGO"
~ output="screen" /> <!-- SC-A-LOAM —->

<!-- visulaization —--—>

<arg name="rviz" default="true" />

<group if="S$ (arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz"
— args="-d $(find
— aloam_velodyne) /rviz_cfg/aloam_velodyne.rviz" />

</group>

</launch>

Scripts
Covariance plotter

import rosbag
import matplotlib.pyplot as plt

from sensor _msgs.msg import NavSatFix

Function to extract covariance from NavSatFix messages
def extract_covariance (bag):
cov_lat = []
cov_lon = []
cov_alt = []
times = []
for topic, msg, timestamp in
— bag.read_messages (topics=["'/robot/gps/fix']):
cov_lat.append(msg.position_covariance[0])
cov_lon.append(msg.position_covariance([4])
cov_alt.append (msg.position_covariance[8])
times.append(timestamp.to_sec())

return cov_lat, cov_lon, cov_alt, times

Load bag file
bag_path = "2024-04-10-14-22-54 .bag"
bag = rosbag.Bag(bag_path)

Extract covariance in latitude, longitude, and altitude over time

cov_lat, cov_lon, cov_alt, times = extract_covariance (bag)

Plot covariance over time

plt.figure(figsize=(10, 6))

plt.plot (times, cov_lat, label='Covariance for Latitude')
plt.plot (times, cov_lon, label='Covariance for Longitude')
plt.plot (times, cov_alt, label='Covariance for Altitude')
plt.xlabel ('Time (s) ')

plt.ylabel ('Covariance')

plt.title('Covariance in Latitude, Longitude, and Altitude Over Time')
plt.legend()

plt.grid(True)

plt.show ()

Close the bag
bag.close ()

Gps to odom converter for lidar

#RUNS IN WSL, NO DOCKER, PYHTON 2

import rosbag

from geographiclib.geodesic import Geodesic
from geometry_msgs.msg import PoseStamped
from std msgs.msg import Float64

import numpy as np

import tf

from collections import deque

from datetime import datetime, timedelta

def gps_to_local(lat, lon, alt, origin_lat, origin_lon, origin_alt):
geod = Geodesic.WGS84
g = geod.Inverse(origin_lat, origin_lon, lat, lon)
forward_azimuth_rad = np.deg2rad(g['azil'])

x = g['sl2'] » np.sin(forward_azimuth_rad)

def

gl'sl2"']

<
Il

* np.cos (forward_azimuth_rad)

z = alt - origin_alt

return x, vy,

Z

process_rosbag (input_bag_path, output_bag path):

time windows

data_buffers

origin_set =
origin_lat =
origin_Jlon =

origin_alt =

with rosbag.

for topi

= [] # Time windows 1in seconds

= {window: deque () for window in time_windows}

False
None
None

None

Bag (output_bag_path, 'w') as outbag:

c, msg, t in

-~ rosbag.Bag (input_bag_path) .read_messages|() :

if t

opic == '/robot/gps/fix':
#print (msg.header.stamp.to_sec())
if not origin_set:

origin_lat = msg.latitude

origin_lon = msg.longitude
origin_alt = msg.altitude
origin_set = True

Write the /odom pose message for the latest received
— point
X, y, z = gps_to_local (msg.latitude, msg.longitude,
— msg.altitude,

origin_lat, origin_lon,

< origin_alt)
odom_pose_msg = PoseStamped()
odom_pose_msg.header.stamp = t

odom_pose_msg.header.frame_id = 'robot_odom'

odom_pose_msg.pose.position.x

odom_pose_msg.pose.position.y =y

I
N

odom_pose_msg.pose.position.z =

outbag.write('/gps_pose', odom_pose_msg, t)

Write the original topic and message to the bag

outbag.write(topic, msg, t)

if name_ == "__main__ ":
input_bag_path = '../data/parking.bag' # Replace with your input
— bag path
output_bag_path = '../data/parking_with_gps.bag' # Define your
— output bag path

process_rosbag (input_bag_path, output_bag_ path)

Pcd file calculator for volume and density

import os
import pandas as pd

import open3d as o3d

Define the directory containing the PCD files
folder = "parking"
directory_path = 'maps/' + folder # Adjust this to your folder path:w

Initialize a DataFrame to store the results
results_df = pd.DataFrame (columns=]|
'File Name', 'File Size (MB)', 'Number of Points', 'Volume
- (Sm”38%) "',
'Density (points/S$Sm~3$)', 'Area (Sm”"2$)', 'Density
— (points/S$m~2$%)'])

Iterate through all files in the directory

for filename in os.listdir(directory_path):
if filename.endswith (".pcd") :
Load the PCD file
file_path = os.path.join(directory_path, filename)
pcd = o3d.io.read_point_cloud(file_path)

Get the file size in megabytes
file_size = os.path.getsize(file_path) / 1048576 # Convert
<~ bytes to megabytes

Compute the axis—aligned bounding box

aabb = pcd.get_axis_aligned_bounding_box ()

Calculate the volume of the bounding box in scientific

— notation

aabb_volume = aabb.volume ()

formatted_volume = f"{aabb_volume:.2e}l" # Format volume as

— Scilentific notation

Calculate the area of the base of the bounding box (x and y
< dimensions)

aabb_extent = aabb.get_extent ()

base_area = aabb_extent[0] *» aabb_extent[1]

formatted_area = f£f"{base_area:.2e}"

Get the number of points

num_points = len (pcd.points)
Calculate the density (points per unit volume)
density_volume = num_points / aabb_volume if aabb_volume > 0

<~ else 0

Calculate the density (points per unit area)

density_area = num_points / base_area if base_area > 0 else 0

Append results to DataFrame

results_df.loc[len(results_df)] = [
filename, round(file_size, 2), num_points,
— formatted_volume, density_volume, formatted_area,

- density_area]

Convert DataFrame to LaTeX format
latex_output = results_df.to_latex(index=False, header=True,
< bold_rows=True, float_ format="%.5f",

«— label=folder+"ReconstrucedStats")

output_file_path = folder + 'ReconstrucedStats.tex' # Specify your
— desired file path
Save the LaTeX-formatted DataFrame to a .tex file
with open (output_file_path, 'w') as file:
file.write ("\\begin{table} [H]\n")

file.write ("\\centering\n")

file.write ("\\caption{Reconstructed Statistics}\n")

(
(
file.write (latex_output)
(
file.write ("\\end{table}\n")

print (f"Saved LaTeX table to {output_file_ path}")

ply to pcd converter

—%— coding: utf-8 —#-

mmn

Created on Thu Apr 25 13:05:45 2024

@author: marko

mmn

import open3d as o3d
pcd = o3d.io.read_point_cloud ("RTABMAP_fr2_ desk_reconstructed.ply")
o3d.io.write_point_cloud ("RTABMAP_fr2_ desk_reconstructed.pcd", pcd)

rosbag to

image folder [72]

#!/usr/bin/env python

—»— coding: utf-8 —#*-—

Copyright 2021 ran.cheng2@mail.mcgill.ca

""'"Extract images from a rosbag and synchronize the sequences

Please

and don

run this script with /usr/bin/python2.7 instead of python3

't forget to source the ros environment: source

— Jopt/ros/melodic/setup.bash

mmn

import
import
import
import
import
import

import

os

argparse
numpy as np
cv2

copy

rosbag
shutil

from tqdm import tgdm

from se

nsor_msgs.msg import Image

from cv_bridge import CvBridge

def mat

mmn

Sea

—

ching_time_indices (stamps_1, stamps_2,
max_diff = 0.1,
offset_2 = 0.0):

rches for the best matching timestamps of two 1lists of

timestamps

and returns the 1list indices of the best matches.

:pa
:pa
:pa
:pa

ram stamps_1: first vector of timestamps (numpy array)
ram stamps_2: second vector of timestamps (numpy array)
ram max_diff: max. allowed absolute time difference

ram offset_2: optional time offset to be applied to stamps_Z2

:return: 2 1ists of the matching timestamp indices (stamps_]1,

—~ Stamps_Z2)

mmn

matching_indices_1 = []
matching_indices_2 = []
stamps_2 = copy.deepcopy (stamps_2)
stamps_2 += offset_2
for index_1, stamp_1 in enumerate (stamps_1) :
diffs = np.abs(stamps_2 - stamp_1)
index_2 = int(np.argmin(diffs))
if diffs[index 2] <= max_diff:
matching _indices_1.append(index_1)
matching_indices_2.append(index_2)

return matching_indices_1, matching_ indices_2

def main() :
"""Extract a folder of images from a rosbag.
global seq _base_folder_sync
parser = argparse.ArgumentParser (description="Extract images from
—~ a ROS bag.")
parser.add_argument ("bag_file", help="Input ROS bag.")
parser.add_argument ("output_dir", help="Output directory.")
parser.add_argument ("-—-tum", help="convert to tum mode.",

— dest="tum", type=bool, default=False)

parser.add_argument ("-—image_topic", nargs='+', help="usage:
—~ ——image_topic /image/data /depth/data")
args = parser.parse_args ()

o

print "Extract images from %s on topic %s into %$s" %

-~ (args.bag_file,

<~ args.image_toj

< args.output_d:

bag = rosbag.Bag(args.bag file, "r")
bridge = CvBridge ()

color_count = 0

depth_count = 0

{}

depth_stamps = {} # use depth stamps as master and color as

color_stamps

<~ aligner for time stamp sync
if not os.path.exists(args.output_dir):
os.mkdir (args.output_dir)
you can use topics= [args.image_topic] to specify your topic
« name /device 0/sensor_0/Depth_0/image/data
— /Jdevice 0/sensor_1/Color_0/image/data
for topic, msg, t in
— bag.read _messages (topics=["/camera/color/image_raw",
— "/camera/aligned depth_to color/image_raw"]) :

if args.image_topic:

img_topics = args.image_topic
else:
img_topics = ["/camera/color/image_raw",
— "/camera/aligned_depth_to_color/image_raw"]

for topic, msg, t in bag.read_messages (

topics=img_topics) :

cv_img = bridge.imgmsg_to_cv2 (msg,

< desired_encoding="passthrough")

output_fname = ""

if not 'depth' in topic.lower () and 'color' in topic.lower():
cv_img = cv2.cvtColor (cv_img, cv2.COLOR_BGR2RGB)
color_directory_path = os.path.join(args.output_dir,
- "color")
if not os.path.exists(color_directory_path) :

os.makedirs (color_directory_path)

output_fname = os.path.join(color_directory_path,

[

<~ "%06i.png" % color_count)
print "Wrote color image %i" % color_count
color_stamps |[msg.header.stamp.to_sec ()] = output_fname

color_count += 1

if 'depth' in topic.lower():
depth_directory_path = os.path.join(args.output_dir,
— "depth")
if not os.path.exists (depth_directory_path) :
os.makedirs (depth_directory_path)
output_fname = os.path.join(depth_directory_path,

o

<~ "%06i.png" % depth_count)
print "Wrote depth image %i" % depth_count
depth_stamps[msg.header.stamp.to_sec ()] = output_fname
depth_count += 1
cv2.imwrite (output_fname, cv_img)

bag.close ()

print ("starting time sync...")

start the time sync:

depth_stamps_t = np.fromiter (depth_stamps.iterkeys (), dtype=float)

color_stamps_t = np.fromiter(color_stamps.iterkeys (), dtype=float)

depth_stamps_t.sort ()

color_stamps_t.sort ()

find the matching indices between depth and color time stamps

matching_indices_1, matching_indices_2 =

< matching_time_indices (depth_stamps_t, color_stamps_t)

len (matching indices 1) == len(matching indices_2)

matched_depth_stamps_t = []

seq_base_folder sync = args.output_dir + "_sync"

if args.tum:

seq_base_folder_sync += "_tum"
seq_depth_folder_sync = os.path.join(seq base_folder_sync,
-~ "depth")

if args.tum:

seqg_color_folder_sync os.path.join(seq_base_folder_sync,

"rgb")
else:
seq_color_folder_sync = os.path.join(seq base_folder_sync,
— "color™")

if not os.path.exists(seq _base_folder_sync):

os.makedirs (seq_base_folder_sync)

os.makedirs (seq_depth_folder_sync)
os.makedirs (seq_color_folder_sync)
for depth_iter_idx, dpt_index in
< tgdm(enumerate (matching_indices_1)):
obtain the file path of the matched indices
depth_file_path = depth_stamps|[depth_stamps_t [dpt_index]]
color_file_path =
— color_stamps[color_stamps_t [matching_indices_2[depth_iter_idx]].
save the depth and color sync files to the new folder with
— new indices
if args.tum:
print "Converting to TUM dataset"
shutil.copy (depth_file_path,
< os.path.join(seq depth_folder sync, "%$1.6f.png" %
— depth_stamps_t [dpt_index]))
shutil.copy(color_file_path,
< os.path.join(seqg color_folder sync, "%$1.6f.png" %
— depth_stamps_t [dpt_index]))
else:
print "Converting to RealSense Dataset"
shutil.copy (depth_file_path,
— os.path.join(seqg depth_folder_sync, "%06i.png" %
< depth_iter_idx))
shutil.copy(color_file_path,
—~ os.path.join(seqg color_folder_ sync, "%06i.png" %
— depth_iter_idx))
record the time stamp
matched_depth_stamps_t.append([depth_iter_idx,
— depth_stamps_t [dpt_index]])
matched_depth_stamps_t = np.array (matched_depth_stamps_t)
print ("end time sync.")
fmt = '%06d', '%1.6f'
np.savetxt (os.path. join (seq_base_folder_sync, "timestamps.txt"),
— matched_depth_stamps_t, fmt)

print ("timestamps.txt saved to %$s" %

< os.path.join(seqg base_folder_sync, "timestamps.txt"))

return

if name == ' main '

main ()

From rosbag echo to foo.txt to GPS coordinates

input_file_path = '/home/vboxuser/Music/parking_gps.txt'
output_file_path = '/home/vboxuser/Music/parking_gps_1.txt'

def process_gps_data_final (file_path):
with open(file_path, 'r') as file:
data = file.read()

entries = data.split('-———")

processed_data = []

for entry in entries:
lines = entry.strip().split('\n")
gps_info = {}

for line in lines:
line = line.strip()

if line.startswith('secs:'):

gps_info['secs'] = line.split(':")[-1].strip()

elif line.startswith('nsecs:'):

gps_info['nsecs'] = line.split(':")[-1].strip()

elif line.startswith('latitude:"):

gps_info['latitude'] = line.split(':')[-1].strip()
elif line.startswith('longitude:"):
gps_info['longitude'] = line.split(':"'")[-1].strip()
elif line.startswith('altitude:"'"):
gps_info['altitude'] = line.split(':'")[-1].strip()
if all(key in gps_info for key in ['secs', 'nsecs',

— 'latitude', 'longitude', 'altitude']):

timestamp = f"{gps_info['secs']}.{gps_info['nsecs']}"

processed_line = f"{timestamp} {gps_info['latitude']}
— {gps_info['longitude']} {gps_info['altitude']}"

processed_data.append (processed_line)
return processed_data
def save_processed_data (processed_data, output_file_path):
with open (output_file_path, 'w') as file:
for line in processed_data:
file.write(line + '\n")
processed_gps_data_final = process_gps_data_final (input_file_path)

save_processed_data (processed_gps_data_final, output_file_path)

GPS to XYZ converter for camera based SLAM systems

import numpy as np

import pandas as pd

file_path = '/home/vboxuser/Music/parking gps_1.txt'
gps_data = pd.read_csv (file_path, sep=" ", header=None,
< names=["timestamp", "latitude", "longitude", "altitude"])

R = 6371000 # FEarth's radius 1in meters
Convert degrees to radians
gps_data['latitude_rad'] = np.radians(gps_datal['latitude'])

gps_data['longitude_rad'] = np.radians(gps_data['longitude'])

Convert from GPS coordinates to Cartesian coordinates

gps_data['x'] = (R + gps_data['altitude']) =«
< np.cos(gps_data['latitude_rad']) =

— np.cos(gps_data['longitude_rad'])
gps_datal['y'] = (R + gps_data['altitude']) =«
— np.cos(gps_data['latitude_rad']) =«

<~ np.sin(gps_data['longitude_rad'])

gps_datal['z'] = (R + gps_data['altitude']) =«
— np.sin(gps_data['latitude_rad'])

Quaternion values to append
quaternion_str = "0.000000 0.000000 0.000000 1.000000™

formatted_lines = gps_data.apply(lambda row: f"{row['timestamp']}

o {row['x']} {row['y']} {row['z']} {gquaternion_str}", axis=1)

Save the formatted lines to a new TXT file
output_file_path = '/home/vboxuser/Music/orchard_groundtruth.txt'
with open (output_file_path, 'w') as file:
for line in formatted_lines:
file.write(f"{line}\n")

print (output_file_path)

Creating rgb.txt and depth.txt from rgb/depth folder

import os

import sys

def process_images (folder_path, output_file):
if not os.path.isdir (folder_path):
print (f"The directory {folder_path} does not exist.")
sys.exit (1)

files = [f for f in os.listdir(folder_path) if f.endswith('.png')]
sorted_files = sorted(files, key=lambda x: float (x.rsplit('."',
- 1)[01))

with open (output_file, 'w') as file:
for file_name in sorted_files:
timestamp = os.path.splitext (file_name) [0]
file.write(f"{timestamp}

— {os.path.basename (folder_path)}/{file_name}\n")

if name == " main

w.

if len(sys.argv) != 3:
print ("Usage: python process_images.py <folder_path>
— <output_file>")

sys.exit (1)

folder_path = sys.argv[1l]
output_file = sys.argv[2]

process_images (folder_path, output_file)

- Norges miljg- og biovitenskapelige universitet Postboks 5003
r J Noregs miljg- og biovitskapelege universitet NO-1432 As
N Norwegian University of Life Sciences Norway

	 Introduction
	 Motivation
	 Problem statement and objective
	 Main contribution

	 Theory
	 Simultaneous Localization and Mapping
	 Map representations
	 Graph-based SLAM
	 Feature-based SLAM

	 Visual SLAM approaches
	 ORB-SLAM2
	 RGBDSLAMv2
	 RTAB-Map
	 RESLAM
	 ManhattanSLAM

	 LIDAR-based SLAM approaches
	 A-LOAM, Advanced LIDAR Odometry And Mapping
	 F-LOAM, Fast LIDAR Odometry And Mapping
	 SC-A-LOAM, Scan Context Advanced LIDAR Odometry And Mapping
	 LeGO-LOAM, lightweight and ground-optimized
	 HDL Graph SLAM
	 KISS-ICP

	 Sensing technologies
	 Depth Camera
	 3D LIDAR

	 ROS (Robot Operating System)
	 Data representation, PointCloud2
	 Rosbag
	 Rviz

	 RTK-GNSS
	 Evaluation metrics
	 Absolute Pose Error
	 Map density

	 Methodology
	 Hardware
	 Robot Platform
	 Computer hardware for camera-based SLAM methods.
	 Computer hardware for the LIDAR-based SLAM methods.

	 Software
	 Oracle VM VirtualBox
	 Docker
	 Cloud Compare
	 ChatGPT

	 Benchmark Experiments
	 TUM-RGBD benchmark experiment
	 KITTI benchmark experiment

	 Collected data
	 Orchard
	 Parking lot

	 Ground truth generation for collected datasets
	 Camera-based SLAM systems
	 LIDAR-based SLAM systems

	 Setup of SLAM systems
	 Setup of camera-based SLAM systems
	 Conversion of collected rosbag to TUM format
	 ORB-SLAM2
	 ManhattanSLAM
	 RESLAM
	 RTAB-Map
	 RGBDSLAMv2

	 Setup for LIDAR based SLAM system
	 A-LOAM
	 F-LOAM
	 SC-A-LOAM
	 LeGO-LOAM
	 HDL Graph SLAM
	 KISS-ICP
	 Reconstructed maps

	 Calculation of density and volume

	 Results
	 Dataset accuracy
	 Camera
	 TUM RGB-D Dataset
	 Orchard dataset
	 Parking dataset

	 LIDAR
	 KITTI
	 KITTI 01
	 Orchard dataset
	 Parking dataset

	 Discussion
	 Ground truth accuracy
	 Camera
	 Environmental impact on camera-based SLAM performance
	 Quality of reconstructed maps

	 LIDAR
	 Rolling Shutter in LIDAR
	 Variation in ground truth vs estimated position error
	 KITTI vs collected sequences
	 LOAM based approaches
	 Reconstructed maps, file size, volume and density

	 LIDAR vs Camera
	 Limitations
	 Further works

	 Conclusion
	 Appendix

