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Abstract

Welding tasks are among the most prevalent use cases of robots. In this thesis, the
synchronization properties of a welding system, the IntelliWelder M06, are formally
verified. The welding system consists of a robotic arm (UR10e) and a welding table
(Carpano FIVE MOT) external axis. This system allows the user to define a
welding operation directly on a CAD model in simulation and consequently plans
trajectories for the robotic arm and external axis so that the welding operation can
be performed autonomously. The relevant sections of this system are modeled using
RoboChart, a UML-based modeling language tailored to represent robotic
applications accurately. This work is performed to verify properties critical to the
synchronized operation of the system through model checking. Desired properties
were defined as assertions through tock-CSP, a process algebra that includes the
tock event representing the passage of discrete time. The assertions required the
following properties:

• Each time a movement request is received for the robotic arm or the external
axis, a movement operation is called for the corresponding component.

• The state machines corresponding to the system state tracker, the external
axis, and the robotic arm do not terminate.

The CSP refinement checker, FDR4, was used to verify the validity of these
properties. The results showed that the system requirements were fulfilled for sets of
inputs based on the assumption of correctness outside of the model. Also, they were
not fulfilled if the components outside the model were not assumed to be ideal,
which shows that the modeled part of the system is input-dependant.

III



Sammendrag

Sveiseoppgaver er ett av de vanligste bruksområdene for roboter. I denne
masteroppgaven blir synkroniseringsegenskapene til et sveisesystem, IntelliWelder
M06, formelt verifisert. Dette systemet består av en robotarm (UR10e) og et
sveisebord (Carpano FIVE MOT) som fungerer som en ekstern akse. Løsningen
laget av Pioneer Robotics tillater operatøren å definere en sveis direkte på en
CAD-modell i simulering, og planlegger baner for robotarmen og den eksterne aksen
slik at sveiseoppgaven kan utføres autonomt. De relevante delene av systemet blir
modellert ved hjelp av RoboChart, et modelleringsspråk basert på UML som er
skreddersydd for å nøyaktig representere anvendelser innen robotikk. Dette arbeidet
ble gjort for å verifisere egenskaper som er kritiske for sykroniseringen av
kompentene i dette systemet ved bruk av modell-sjekking. Nødvendige egenskaper
ble definert som påstander i tock-CSP, en prosess-algebra som inkluderer tock

hendelsen for å representere at diskretisert tid passerer. Påstandene krevde at de
følgende egenskapene ble oppfylt:

• Hver gang det ble mottatt en forespørsel om at en bevegelse skulle bli
gjennomført av den eksterne aksen eller robotarmen, så ble en
bevegelseskommando sendt til den tilsvarende komponenten.

• Tilstandsmaskinene som representerer den eksterne aksen, robotarmen og
komponenten ansvarlig for å holde styr på systemets status avsluttes ikke.

FDR4 er en "refinement-checker" for prossess-algebraen CSP. Dette programmet ble
brukt til å verifisere disse egenskapene. Resultatene viste at systemkravene ble
oppfylt for input som tilsier at alt utenfor modellen oppfører seg ideelt. Disse
systemkravene ble ikke oppfylt dersom ugyldig input ble tillatt, noe som viser at
modellen er avhengig av at den får gyldig input.
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Abbreviations

CAD Computer-Aided Design

CSP Communicating Sequential Processes

DSL Domain-Specific Language

EXAX External Axis (Refers to the two-axis welding table)

FDR Failures-Divergences Refinement (Model checking software)

GUI Graphical User Interface

IDE Integrated Development Environment

IP Internet Protocol

IPC Industrial Personal Computer

OLP Off-Line Programming

PID Proportional–integral–derivative (controller)

PLC Programmable Logic Controller

RAM Random Access Memory

RTDE Real-Time Data Exchange

STM State Machine

TCP Tool Center Point or Transmission Control Protocol

UML Unified Modeling Language

UR Universal Robots
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Chapter 1

Introduction

1.1 Motivation

Robotic manipulators are used to perform a wide range of tasks, from surgical
operations [1] to spray painting [2]. One of the most prevalent industrial use cases of
robotic manipulators is welding. "It is estimated as much as 25% of all industrial
robots are being used for welding tasks." [3]. Companies come in many shapes and
sizes, and they require different solutions to optimize their productivity. Pioneer
Robotics 1 is a Norwegian provider of robotic system integration and tailor-made
solutions. One of their products, the IntelliWelder M06, targets small and
medium-sized production lines. At companies where the set of tasks being
performed varies throughout the year, a flexible robotic system is a good fit. An
image of the IntelliWelder M06 can be seen in Figure 1.1. It is a system centered
around a robotic arm (UR10e [4]), a welding table (Carpano FIVE MOT [5])
external axis, and a mobile pedestal that allows the UR10e to be moved further
away or closer to the external axis (EXAX). The EXAX is used to simplify the
movement of the robotic arm. It can also enable the welding of large objects that
would normally require a reach beyond what the UR10e provides by itself. Pioneer
Robotics are developing a workflow where welding operations are done simply by
defining an edge to be welded directly on a CAD model. From there, the system
takes care of the planning and execution. One challenge they face is the
synchronization of movements between the EXAX and the UR10e. In this thesis,
system modeling and formal verification will be used to ensure that the properties
necessary for the synchronized operation of the system are satisfied.

1https://www.pioneer-robotics.no/
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Figure 1.1: The IntelliWelder system with components numbered.

Commonly, before deploying a robot into the real world, the robot is modeled and
tested in simulation. A survey of robotics developers found that 84% used
simulation during the testing stage [6]. This helps avoid undesired behaviour in the
real world, which can save costs and increase the iteration speed of development [7].
Testing at the system level through simulation, or in the real world has been
deemed insufficient to cover complex autonomous robotics systems. [8]. This is due
to the systems operating in uncertain and dynamic environments where reproducing
the exact sequence of inputs that cause a failure is difficult.

Another useful tool for weeding out undesired behaviour in the development stage is
model checking. Model checking [9] is a method of verifying that desired properties
of a model are maintained during operation. The workflow typically starts with the
creation of a model and the specification of the properties that the system must
satisfy. Then, the verification procedure is done by exhaustively searching all
possible permutations of the states of the model. The result is a proof that the
properties are always satisfied for all possible inputs to the model. A few example
use cases are applying model checking to ensure that multiple robotic manipulators
can work in the same environment without colliding [10], and the safety assurance
of an industrial robotic control system using hardware/software co-verification [11].
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One of the most notable approaches for modeling systems is the Unified Modeling
Language (UML) [12]. There exist domain-specific versions made to suit certain
industries and systems. RoboChart [13] is based on a subset of UML. It includes
time primitives to capture the real-time nature of robotic applications. RoboChart
has a suite of plugins for the Eclipse IDE [14] named Robotool [15]. These provide a
GUI that lets the user define RoboChart models. Based on these models, CSP [16]
is generated, ready for refinement checking in FDR [17].

1.2 Problem statement

The aim of this thesis is to model a section of the IntelliWelder M06 in RoboChart
in order to verify that certain requirements are fulfilled during the operation of the
system. Requirements for the system will be defined through RoboChart’s domain
specific language, and verified through model checking in FDR4, a refinement
checker for CSP. If any of the requirements do not hold, a counterexample will be
produced by FDR4 that highlights the faulty behaviour. If all requirements are
fulfilled, the scope of problematic components in the system will be narrowed down
as certain aspects of their behaviour have been formally verified. An ambition is that
valuable insight can be gained about both the IntelliWelder M06 and RoboChart,
and that there is some value to be gained through the merging of these systems.

1.3 Goals and objectives

• Familiarization with the RoboStar workflow as well as previous case studies
where RoboChart has been used.

• Analysing the IntelliWelder solution to identify a suitable section for modeling
as well as appropriate abstractions.

• Modeling a well defined section of the IntelliWelder in an adequate and
representative manner in RoboChart.

• Defining requirements for the model in a format that allows refinement
checking in FDR4.

• Evaluating the results of the model checking, as well as the model itself and
the assertions defined.

• Stating recommendations and further work based on the experiences and
findings from the thesis.
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Chapter 2

Theory

For the modeling process to be successful, it is crucial that well informed decisions
are made about how to represent the system. This section will aim to provide the
necessary theoretical background, so that this reasoning is sound.

2.1 Robot manipulators and welding

This section gives a brief introduction to terminology and key concepts for robotic
manipulators, as well as a short description of the requirements and challenges of
performing welding tasks with robots.

2.1.1 Terminology

The reader should be familiar with some core terminology before the theory and
application is presented in the following chapters. In this section, some frequently
used terms are explained, so that nuances in the definitions can be clarified before
proceeding.
Coordinate systems is always referring to Cartesian coordinate systems in two or
three dimensions.
End effector refers to the coordinate system placed at the end of the final link of a
robotic arm. It specifies where a tool might be mounted.
Tool center point is a coordinate system based on the mounted tool. For a
welding torch it will be the tip of torch, which is the position of concern when
welding. For a gripper tool, it may be between the "fingers" of the gripper.
Joint angles are the positions of the joints expressed as angles. A joint may be
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Figure 2.1: Robotic arm and table with frames and transforms.

able to move in the range +/- 90° from its "middle" position.
Configurations refers to the different solutions to an inverse kinematics problem.
Often, there are multiple combinations of joint angles that result in the end effector
being in the desired pose.
Singularities are points where the end effector is blocked from moving in certain
directions. Commonly, this happens because one or more of the joints are close to
their maximum values, meaning they cannot move further in that direction.

2.1.2 Frames and kinematics

Frames are coordinate systems, typically used to describe the positions of objects
with some predictable relation to that coordinate system. As an example, imagine a
robotic arm interacting with objects on a table. This example is visualized in
Figure 2.1. The objects may be positioned at specific positions on the table so that
the robotic arm knows where they can be found in the table frame. In that case, it
is important to know where the picking tool of the robot is relative to the table
frame. The table frame is a coordinate system that could be defined as one of the
corners of the table as in Figure 2.1. Points of interest can then be defined in this
coordinate system. This is useful since the object is expected to stay stationary in
the table frame, but will move in the frame of the picking tool.

When you want to describe the location of an object in one frame relative to
another, you can perform a transformation. A transformation defines how
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coordinates in one frame relate to coordinates in another. The transformation
typically consists of a linear translation, as well as a rotation.

A robotic arm can be viewed as a series of links and joints. Given the lengths of the
links and the angle of the joints connecting them, the position of the end effector of
the robot can be calculated through a series of transformations [18]. This is called
forward kinematics. Target positions for the robot are often defined through the
joint angles the robot should have once it has reached its goal. While the robot is
moving towards that goal, the feedback received is commonly the joint positions,
tracked perhaps by odometers placed in each of the joints. To get information about
where the end effector is along the way, forward kinematics can be used to calculate
that position. Figure 2.1 also shows the transformations from the base of a robotic
arm to the end effector.

When a robotic arm is used in a real world application, it is rarely the case that the
joint positions themselves are of interest. The point of interest, or perhaps pose of
interest, is that of the end effector. Normally, the task requires the tool of the
robotic arm to be in a certain pose, so that it can perform its task. Inverse
kinematics is the problem of finding the possible combinations of joint positions
that place the end effector of the robot in the desired pose [18]. Often, there are
multiple solutions to this problem and this leads to multiple configurations.

2.1.3 Movement types

A set of different movement types are normal when working with robotic arms. A
few of the most common ones are moveL, moveJ and moveP. These represent
different ways the robot can travel from point A to point B, and they all have
different features.

MoveL

The ideal for a MoveL command is to move the end effector in a straight line from
point A to point B. That means that the joints of the robot may travel longer
distances in the joint space in order to facilitate straight line movement. This
typically means more uneven movement in the joint space in order to keep the end
effector on this straight line path throughout the movement.
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Figure 2.2: Example of how the offset might look in a 2D path from point A to point B

MoveJ

For a UR10e, the MoveJ command can be used with different sets of arguments. In
the IntelliWelder it is called with the arguments: target pose, acceleration, joint
velocity of leading axis and blending radius. The robot will then use the
acceleration argument to accelerate to the correct joint velocities based on the
acceleration input. The velocities calculated are based on current joint poses and
target joint poses. MoveJ is the only move command used by the IntelliWelder that
uses joint velocity. This is because the movement is performed in the joint-space
instead of in the tool space. Another consequence of this is that the movement will
be linear in the joint space, but not necessarily in the tool space. This can lead to
the movement deviating from the linear path between the waypoints. This concept
is visualized in Figure 2.2.

Blending

It is often undesirable for a robotic arm to stop momentarily for every waypoint it
completes. This makes the movement less smooth than if some blending
functionality is used. The UR10e takes blending radius as an argument. This means
that once the robot is within a certain distance of the target point, it will look
towards the next waypoint and start moving in that direction, instead of continuing
to move towards the current waypoint. This means that instead of coming to a halt
at the waypoint, it keeps moving toward the next, adjusting the velocity based on
the target velocity of the next waypoint. This is useful for the IntelliWelder since
jagged movements will result in a bad weld. Therefore, this blending feature is used
extensively in the code that is being modeled. One downside of using blending is
that it is more difficult to predict exactly how the robot will behave. The velocity
with which it moves towards the current waypoint, and when it will switch to the
next waypoint is more uncertain. The blending may allow some "shortcuts" between
waypoints, since the robot does not move exactly to the coordinates of the waypoint,
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Figure 2.3: An example of a moveP movement with circular blending between waypoints.

but instead a somewhat shorter path. This could lead to the robot arriving early
while performing a sequence of waypoints, if no adaptive planning is implemented.
A requirement for commands with blending is that the blending radius is sufficiently
small, so that there is no overlap between the blending zones of two waypoints. This
would cause the skipping of a waypoint, which is usually undesirable [19].

MoveP

The moveP movement type leverages the blending principle, and attempts to plan a
circular trajectory when switching from one waypoint to the next. This means that
once the end effector is within the blending radius, it will move along a circular path
until it is heading in the correct direction for the next waypoint. This is visualized
in Figure 2.3.

2.1.4 Welding and robots

Welding is the process of joining two or more objects, typically metals, by melting
the edges of the objects so that they fuse together [20]. Normally some filler
material is also added to ensure a solid joining of the objects. The melting is most
often done by applying a large current to the area being welded, so that the
temperature rises enough to make the metal melt. This is a time-sensitive
operation, since moving too fast means that the metal does not heat up enough to
melt, and moving too slow means that too much of the metal will melt or too much
filler material will be applied. In the case of using robotic arms for welding, it
means that the tool should move with an even pace in the weld frame throughout
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the welding operation. This is given that the object being welded is stationary. This
is not always the case, and will be explored further in the next chapter.

2.2 Formal verification and model checking

Many different models are used to describe systems used for computation. Perhaps
the most famous is the Turing machine [21]. It is also seen as the most general, as
no other model of computation exists that has produced computations that the
Turing machine cannot [22]. In this chapter, different approaches to modeling will
be explored. Some approaches for formally verifying the properties of models will
also be presented.

2.2.1 Transition systems and state machines

In software engineering, transition systems are a go to for explaining the behaviour
of systems [23]. These systems represent variables as possible states of the system,
where each value the variables can take on is a separate state. The mechanisms that
can cause these variables to change are viewed as transitions between states. This
gives rise to a common construct known as a state machine. A state machine is a
transition system that contains input events. These can trigger transitions in the
state machine, and potentially also output events that allow the state machine to
trigger events elsewhere. To implement such state machines, it is necessary to have
a language in which these logical operations can be expressed syntactically.

2.2.2 Unified Modelling Language - UML

As the field of software development has grown, many common concepts and
methodologies have emerged. It became crucial to avoid that different developers
implemented similar solutions with slight differences that would make them
incompatible. In an effort to unify the models and definitions used, the Object
Management Group (OMG) voiced their wish for a standard approach to
object-oriented modeling in 1996 [12]. This later became the Unified Modeling
Language. Today it is used ubiquitously for modeling systems. Since its creation it
has taken on many different forms to accommodate new use-cases. Extensions have
also been made to automatically generate code from UML-diagrams [24].
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2.2.3 Communicating Sequential Processes - CSP

In 1978 C.A.R. Hoare suggested that the primitives of programming are input,
output and concurrency [16]. These primitives in combination with Dijkstra’s
guarded command [25] have proven adaptable for many categories of software, and
are still commonly used through CSP almost 50 years later. CSP is a process
algebra, and not directly readable by a machine. CSPm is a machine-readable
version used to interface with other programs. Since the creation of CSP, further
progress has been made to capture the diversity of computational tasks being
performed. One of the most important additions is capturing the real-time aspects
of systems operating in the real world. Early attempts resulted in the development
of timed CSP [26]. Today, expressing time-budgets and deadlines for systems that
are time-critical is possible through tock-CSP [27].

2.3 Tools

The following section provides an overview of the tools used in the modeling and
verification of the IntelliWelder system.

2.3.1 Verification tool - FDR

A key feature of such process algebras is the possibility of refinement checking. The
most popular refinement checker for CSPm is FDR [17]. It enables the comparison
of processes defined in CSPm, to check whether one process is a refinement of the
other. This bears fruit in the space of modeling, where a common need is to check
whether certain requirements hold true during execution. If a model and the
requirements for that model are defined as processes in CSPm, it is possible to
check whether the model is a refinement of the requirement. In other words, it can
be verified whether the model fulfills the requirement or not. FDR exhaustively
checks all possible traces of the model to see if any of them violate the requirement.
If that occurs, a counterexample is produced. This counterexample is useful to
identify the behaviour that led to the violation. In this thesis, FDR4 1 is the tool
chosen for model checking.

1FDR4: https://www.cs.ox.ac.uk/projects/fdr
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2.3.2 RoboChart

To simplify the process of working with these tools, RoboChart [15] introduces a
GUI tool that allows the developer to model systems in an intuitive way. There are
a number of useful constructs available in RoboChart. Together they form a basis
for modeling complex systems. These models can be directly translated to CSP for
refinement checking in FDR4. In the following section, the constructs used in this
thesis will be presented and explained.

Robotic Platform

The Robotic Platform (RP) is introduced to abstract away the parts of a system
that reside outside of the model. It allows the triggering of external events to be
used as inputs to the model. This is a natural approach, as robotics solutions often
are modular, and are comprised of multiple layers of abstraction.

Controller

A controller is a construct used to model the behaviour of some section of the
system. It has to contain one or more state machines. It can also require and define
interfaces and events. The events of the RP can be connected to controller
asynchronously.

State Machines

State machines are mainly comprised of states and transitions. These transitions
can require an event to be triggered. They can also have a guard that makes the
transition conditional. A transition can also be associated with an action. This
action could be changing the value of a variable or triggering an event. The
behavior of the system can be modularised through state machines.

Operations

In RoboChart, operations can either be provided by the RP, or implemented as part
of the model. If it is provided by the RP, it can be called with arguments, without
that having any effect on the state of the model. This makes sense if the model is
not intended to capture the behaviour of the operation.
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Events

An event in RoboChart can have a type. This means that when that event triggers,
it arrives with an object of that type. This object can be written to a variable,
which can later be used in the state machine, for example as a guard for a transition.

Variables, interfaces, record types and enumerations

There are a few ways to store information in RoboChart models compactly. It is
possible to define variables in a similar way to when programming in a language like
C++. The variable has a type and a name, and can be initialized with a value.
Interfaces provide a way to create one-off structures for storing information. They
can contain a list of variables and constants that are needed in a state machine.
Record types are very similar to structs in C++. They enable passing one object
containing multiple variables instead of them being separate. Events can also carry
record types which makes them useful for modeling updates where multiple
variables are received at the same time.

Assertions

When a model has been created in RoboChart, a series of standard assertions are
automatically generated. These check the model for properties such as
deadlock-freedom, determinism, and divergence. These can cover the needs of some
models, but it is also possible to define custom assertions in CSP or in the
domain-specific language (DSL) of RoboChart. Assertions defined in this language
are automatically translated to CSP that is ready to be checked in FDR4.

2.3.3 Delfoi

Delfoi Robotics is a part of Visual Components Group. They provide tools for
Offline Programming (OLP) 2. These tools can be used for 3D layout planning,
simulations and the integration of systems. For the IntelliWelder, Delfoi can create
an environment consisting of the UR10e, Carpano FIVE, and the CAD model of the
object that will be welded. The Delfoi OLP tool lets the user specify an edge
directly on the CAD model. That is the edge the user wants to weld along. This
edge is used to calculate a series of synchronized waypoints for the UR10e and the
Carpano FIVE.

2https://www.visualcomponents.com/olp-products/robotics-olp/

12

https://www.visualcomponents.com/olp-products/robotics-olp/


Chapter 3

Problem analysis

This chapter provides a deeper analysis of the setup and the architecture of the
IntelliWelder system. The different components of the IntelliWelder will be
presented along with parts of the code. Key concepts relevant to the modeling
decisions will also be explained. By the end, a more concrete definition of the scope
of the modeling task will be in place. A set of requirements will also be defined,
both for the full system, and for the section covered by the model.

3.1 System architecture

This section presents the architecture of the IntelliWelder system, and goes through
the process from the definition of the weld to the execution of the movements. The
full system architecture of the IntelliWelder is shown in Figure 3.1.

3.1.1 Delfoi

At the top of the IntelliWelder system architecture is Delfoi. It allows the user to
select an edge directly on a CAD model, and turns that edge into two sets of
waypoints. One set for the Carpano FIVE and one for the UR10e. This offline
planning is based on a kinematic model, meaning the focus is on joint positions and
end effector poses, rather than a dynamic model focusing on the forces and torques
experienced by the system during operation. These waypoints have ideal
synchronization. They are planned as one-to-one pairs for the external axis and
UR10e. This means that at those waypoint-pairs, the welding torch is placed
correctly at the object being welded, based on the corresponding position of the
welding table.
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Figure 3.1: The full system architecture of the IntelliWelder. The dotted line shows the
section of the system being modeled.
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3.1.2 IPC

After this path has been created, it is passed to the Industrial PC (IPC). The lists
of waypoints are then processed through C++ code that turns the waypoints into
trajectories. This process is based on the desired forward welding speed as well as a
few other parameters such as weaving. These other parameters are assumed not to
affect the analysis. As described in the theory section, the speed with which the
welding torch moves in the weld-frame is a key property. The waypoints for the
external axis are kept the same, and turned into a trajectory, while the waypoints
for the UR10e are sampled at a higher resolution, and then turned into the
trajectory that will be performed by the UR10e. A consequence of this is that the
number of waypoints is no longer the same for the UR10e and the Carpano FIVE,
and the UR10e will have more waypoints to iterate through. Figure 3.2 shows an
example of what this might look like for two parallel processes, executing three and
five waypoints over the same time period respectively. Once the trajectories have
been generated, the IPC feeds them as movement requests for the rest of the system
to execute.

Figure 3.2: Visualization of how different numbers of waypoints can start and finish at the
same time. Here, the arrows represent the passage of time.

3.1.3 Programmable Logic Controller - PLC

The control of the Carpano FIVE is performed through a Programmable Logic
Controller (PLC). The IPC is responsible for feeding move commands to the PLC.
The PLC receives a command that is either based on position and velocity, or just
velocity. Then, the PLC regulates the movement through PID-control.

3.1.4 Real-Time Data Exchange - RTDE

The Real-Time Data Exchange (RTDE) is responsible for the synchronization of
external applications with the UR10e [28]. It is responsible for relaying messages
from the IPC to the UR Controller. Messages are passed through a TCP/IP
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connection and written to registers in the UR Controller. These messages are
customizable and can be tailored to fit the application. The RTDE is also
responsible for controlling the power source for the welding.

3.1.5 UR10e

The UR10e is a cobot [29] produced by Universal Robots. A cobot is a robot that is
designed to be safe for collaborating with humans. That places a particular
emphasis on monitoring the maximum speeds, forces and torques that are allowed
for the robot. In the case of the IntelliWelder system, the UR10e is used to perform
the welding task. For this, it has a welding torch as the mounted tool. The UR10e
is comprised of both the physical robot and the UR Controller. The physical robot
has six joints and a reach of 1.3m. It weighs 33.5kgs and can carry payloads of up
to 12.5kgs. The UR Controller is responsible for running applications written in
URScript. The controller also regulates movement through PID control. The
URScript used for the IntelliWelder will be presented in the next section.
Specifications and a manual for the use of the UR10e can be found online: [4].

3.1.6 Carpano FIVE MOT

The Carpano FIVE MOT is the welding table used for the IntelliWelder. It is also
referred to as the external axis or EXAX in this thesis. It is capable of tilting and
rotating the top plate of the table about its own axis. The IntelliWelder uses a
motorized version, but the Carpano FIVE can also be controlled by hand-wheel. It
weighs 340kgs and can carry loads of up to 500kgs. Further specifications for the
Carpano FIVE MOT are also found online: [5].

3.2 URScript

The IntelliWelder uses a script written in Universal Robots’ programming language,
URScript. It is used to select what kind of movement is performed by the UR10e,
and to call the movement functions with calculated arguments. This language
includes a number of built-in functions, some of which are used in the code for the
IntelliWelder. These will be presented and explained in this section along with
custom functions that are used in the implementation.
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3.2.1 Function - get_target_tcp_pose

This function is a built-in function of URScript that returns the tool center pose at
the waypoint the UR10e is currently headed towards. This should not be confused
with get_current_tcp_pose with returns the pose of the TCP at the current time.

3.2.2 Function - point_dist(a, b)

This is another built-in function. It returns the distance from pose a to pose b,
including rotation.

3.2.3 Function - calculate_offset

As discussed in Section 2.1.3, using moveJ can result in a deviation from the linear
path from point A to point B. In the URScript, this deviation is calculated by a
function called calculate_offset. This function performs inverse kinematics on
the curr_target_pose and next_target_pose to retrieve the joint values of the
robot in those positions. It is then possible to find the joint values at the point in
the middle of the movement. This is done by finding the middle of the two joint
positions for each joint. Then, forward kinematics can be performed on the joint
positions at the halfway mark to find the pose of the robot at that point. The
halfway point when traveling along a linear path from point A to point point B in
the tool space, can be found by using the built-in interpolate_pose function of
URScript. In addition to start- and end-poses, A and B, this function also expects
an interpolation parameter, α ∈ [0, 1]. If alpha is set to 0.5, the function will
return the position and orientation at the halfway point. This was also shown in
Figure 2.2 as the interpolated midpoint. Then, the built-in point_dist function
can be used to find the offset.

3.2.4 Function - sharp_angle

Certain movement types are undesirable if the movement involves making a sharp
turn. By finding the angle between the direction of the current velocity and the
heading for the next waypoint it can be determined if the TCP will experience such
a sharp turn. It is assumed that the robot is moving straight toward its current
waypoint, so that its velocity upon arrival will be in the same direction as the
current velocity. An illustration can be seen in Figure 3.3. The angle can now be
found based on the formula for the dot product:

17



Figure 3.3: Visualization of the angle between current TCP-speed and direction for next
waypoint.

a⃗ · b⃗ = |⃗a| · |⃗b| · cos(θ) (3.1)

Then, by rearranging this formula, a formula for the angle between two vectors can
be obtained:

θ = arccos
a⃗ · b⃗

|⃗a| · |⃗b|
(3.2)

3.2.5 Function - calculate_jv

For moveJ commands, the robot takes the joint velocity of the leading axis as an
argument. The leading axis is the axis that has to travel the furthest distance. The
velocity for that joint is calculated by first finding the distance between the
curr_target_pose and the next_target_pose. That distance is then divided by
planned_velocity to find the time budget for the move. The largest joint distance
is then calculated based on the inverse kinematics of the curr_target_pose and the
next_target_pose. This distance is then divided by the time budget to find the
joint velocity of the leading axis, jv.

3.2.6 Function - moveL_with_t

MoveL_with_t is a custom function in the URScript used to call moveL with the
arguments next_target_pose and next_target_time. When these arguments are
used in moveL, the UR10e will calculate the velocity necessary to perform the
movement within the given target time, and accelerate to that velocity with its
maximum acceleration. Since there is no blending argument, the robot will slow
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down, and come to a halt at the waypoint. This leads to more jagged movement,
which is undesirable for a welding process. Therefore, this type of movement is used
as a fallback when the other move commands are considered non-feasible options.

3.3 Pseudo-code

The pseudo-code for the URScript can be seen in Listing 1. Each time a new
movement request is received, this code runs. The RDTE has already updated
registers with the necessary information for the script. The code begins with
updating the required variables by reading from these registers. This happens in the
function update_variables. The variable curr_target_pose is not read from a
register, but rather fetched by calling the function get_target_tcp_pose.
The first if-statement checks whether the target time for the next waypoint has
already passed. If so, the current solution logs it as a warning, and continues
execution. Next, it is checked whether the command includes a blending radius. If
so, the preferred response is to use MoveJ or MoveP. The offset calculation is then
performed as previously described. A check is also performed to see if the next
movement will involve making a sharp turn.
First, if the calculated offset is above a certain threshold, in this case 0.8mm, a
different move command is selected. If it is smaller, MoveJ is considered a good
option. In that case, the joint velocity of the leading axis is calculated, and MoveJ
is called with the appropriate arguments.
In the case where the offset is above the threshold, the script checks if the next
movement involves making a sharp turn. Using MoveP is seen as undesirable if
there are sharp turns involved. If that is not the case, MoveP is called. The fallback
is to call MoveL_with_t.
In the case where there is no blending, the distance of the movement is calculated.
This distance is calculated based on the distance from the curr_target_pose to the
next_target_pose. If the distance is above a threshold of 2mm, MoveL is called
with the normal arguments. For short distances MoveL struggles to complete in
time, and so MoveL_with_t is called. It is noteworthy that MoveL_with_t is used
as a fallback in both cases. This is due to it causing jagged movements as previously
described.
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# New command received
acceleration = 0.8
curr_target_pose = None
next_target_pose = None
curr_tcp_speed = None
curr_time = None
next_target_time = None
blending = None
planned_vel = None
update_variables(curr_target_pose, next_target_pose, curr_tcp_speed,

curr_time, next_target_time, blending, planned_vel)
if next_target_time < curr_time

log("Waypoint is in the past. Skipping waypoint")
elif blending > 0.1

offset = calculate_offset(curr_target_pose, next_target_pose)
sharp_corner = check_sharp_corner(curr_tcp_speed,

curr_target_pose,
next_target_pose) #returns boolean

if offset < 0.8:
joint_vel = calculate_jv(curr_target_pose,
next_target_pose,
planned_vel )
moveJ(next_target_pose, joint_vel, acceleration, blending)

elif not sharp_corner:
moveP(next_target_pose, planned_vel, acceleration, blending)

else:
moveL_with_t(next_target_pose, next_target_time)

else:
dist = get_distance(curr_target_pose, next_target_pose)
if dist > 2:

moveL(next_target_pose, planned_vel, acceleration)
else:

moveL_with_t(next_target_pose, next_target_time)

Listing 1: URScript pseudo-code.
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3.4 Modeling

Now that the system architecture and components have been presented, the scope of
the model considered in this thesis can be more accurately stated. This section will
show what part of the system is being modeled, as well as stating some of the
implications this has for the applicability of the model to the real system.

3.4.1 Section of system that will be modeled

The part of the system being modeled can be seen inside the dotted line in
Figure 3.1. The inputs to the model are movement requests. These are sent from
the IPC, based on the trajectories that have been planned for the UR10e and the
Carpano FIVE. As previously mentioned, the number of waypoints is different, and
so they are expected to receive and execute commands concurrently. The model will
span the system until it reaches the point of calling movement commands for the
Carpano FIVE and the UR10e. From there, the UR Controller and PLC take over
the execution of the movements. In terms of responsibility, this means that the
planning of trajectories lies outside of the model, and the feasibility of a planned
movement is not checked in the model. The model has the responsibility of calling
the movement type it considers best fit for each movement request. It should also
detect whether or not the system is out of sync, meaning the target time for the
movement request it received is already in the past. In the model, this is
represented by an out-of-sync event, which is considered a critical failure for the
system. The correct execution of the movements themselves is also naturally
assumed and, therefore, outside the scope of the model. These are represented by
calls to operations in the model.

3.4.2 System-wide synchronization requirements

There are a number of candidate requirements for the IntelliWelder system. For a
single robot, it could be possible to split the requirements into "right place, right
time". One requirement could be that the robot does not deviate more than a given
distance from the planned path. Another could be that the waypoints are all
reached within a certain margin of error of the target time. This becomes more
complex when the movements of the robots are mutually dependent. If the Carpano
FIVE welding table is lagging behind in its movement, the UR10e would ideally
slow down, but as previously discussed, welding is a time-sensitive operation, and so
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the forward weld speed is a key property. With this in mind, requirements could be
specified with respect to the weld frame. The following requirements are suggested:

1. The welding torch always stays within a maximum deviation from the weld
frame. This includes both position and orientation.

2. The welding torch always moves forward in the weld frame within a given
maximum deviation of the desired forward weld speed.

These requirements are not easy to implement directly. Therefore, they need to be
further developed and split into requirements specifically for Delfoi, the IPC
planner, the calculation of arguments for the robot commands, and the execution of
the movements. They could be extended to include requirements regarding the
communication of information and the execution time of code.

3.4.3 Requirements for the modeled section of system

With this in mind, requirements that reside within the scope of the model can be
defined. These requirements should aim at ensuring the desired properties of the
system. The following requirements are suggested for the modeled section:

R1: The model should catch events that imply that the system is out of sync.

- This places a responsibility on the model to catch certain scenarios where
the system is out of sync. This is necessary as a safety precaution since
not all problematic cases will be caught by the PLC or UR Controller
during execution.

R2: For each movement request received from the IPC, the corresponding robot
should receive a movement command unless the model discovers that the
system is out of sync.

- This is a natural requirement as it is undesirable for the system to plan a
movement that is not executed.

R3: The synchronization properties of the system should not be compromised due
to calculations performed in the model.

- This requirement is necessary because arguments such as jv are
calculated inside the model. If these are not calculated correctly, the
movement would be executed incorrectly, potentially causing system
failure.
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Chapter 4

Method

In this section, the results of the modeling process are presented along with the
assertions defined to capture key properties. The chosen abstractions, all state
machines, and custom functions are shown and explained. Many of the modeling
decisions are based on patterns seen in the various case studies found on the
RoboStar website 1. Examples include an Autonomous Chemical Detector [30], the
Alpha Algorithm [31], and a robot performing UVC-treatment of plants [32]. All
source code produced for this thesis can be found on GitHub 2.

4.1 RoboChart workflow

The RoboStar group have suggested an idealized workflow for projects using their
framework. This workflow can be seen in Figure 4.1. This workflow, presented in
[33], shows a complete process, from defining a software model and assumptions
about the platform and environment, to eventually reaching a solution that is
certified for safe use through model checking.

4.1.1 Idealized workflow

The idealized workflow according to the RoboStar philosophy starts with the
definition of a software model in RoboChart in addition to a specification of the
assumptions being made about the platform and environment [33]. The first step to
defining a model is to identify what variables, events and operations should be
provided by the Robotic Platform (RP). This defines the scope of the model,

1https://robostar.cs.york.ac.uk/case_studies/
2https://github.com/henrik-nordlie/IntelliWelder_RoboChart
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Figure 4.1: Idealized workflow using RoboStar technology. The figure is from [33]. Repro-
duced with permission from Springer Nature.
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cementing what part of the chosen system will be analysed. The model checker will
consider all possible sequences of events that the RP can produce and thus the
actual behaviour will always be a refinement of this. When the scope of the model
has been restricted, the internal logic can be defined using the various constructs
available in RoboChart. Once the model is complete, a set of requirements for the
model can be defined. These are the maxims that the model should adhere to. If
these requirements are fulfilled, the solution can be used to automatically generate a
RoboSim counterpart according to the idealized structure.

4.1.2 Actual workflow

Now the chosen system needs to be placed into this workflow. Previously, the
section of the system being modeled, as well as the assumptions made about the
platform and environment, were described in Chapter 3. The requirements for the
model have been defined and will be implemented in the form of assertions. If those
assertions pass when tested using the FDR4 model checker, the model would be
ready to move on to the next part of the idealized workflow. That is also where the
scope of this thesis ends. In [33] it is stated that ideally, development would begin
with the definition of the model in RoboChart. In this thesis, that has not been the
case. Instead, the starting point is the existing solution which has a structure and
code that has already been determined. Thus, the natural place to continue is to
consider the chosen section of the existing solution and define the events and
operations that mirror the functionality of the implementation.

4.2 Abstractions and simplifacations

Figure 4.2 shows the model of the RP. It contains three events that can be triggered
by the platform, and provides five operations that can be called. The events are
defined in the events interface and are used to start the system and send new move
requests as the previous moves are completed. The operations are defined in two
separate interfaces: ur_ops and exax_ops. The operations correspond to the move
commands that the physical UR10e and the Carpano FIVE can perform. These
events and operations make use of a number of abstractions that will be presented
and justified in these sections. These abstractions are made with R3 from Section
3.4.3 in mind. It is important to ensure that the synchronization properties are not
compromised due to the introduction of abstractions.
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Figure 4.2: RP with its defined events, provided operations and custom record types to
represent move commands.
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4.2.1 Number of joints

The first abstraction considers the number of joints represented, both for the
Carpano FIVE and the UR10e. The Carpano FIVE has two rotational axes for tilt
and rotation respectively. During normal operation, however, only the rotational
axis of the top plate of the welding table is used. This is because when working with
large objects, the ability to rotate the object about its own axis can greatly reduce
the traveling distance to reach a point on the object, while tilting the welding table
back and forth is often less useful. Therefore, this abstraction is considered very
reasonable, and does not constrain the normal usage of the EXAX. The UR10e
consists of six joints. In the model, it is abstracted to only having two axes. This is
justified mainly on the basis that the movement operations are not performed
within the scope of the model, and so issues regarding singularities and other
complex physical relations are not expected to be relevant to the section selected for
modeling. The functions involving calculations related to kinematics have also been
abstracted to boolean values. Therefore, the reduction of the number of joints for
the UR10e is not expected to affect what properties are captured by the model.
Since there are still two axes, the model will catch any problems related to the fact
that multiple joint values are being handled. The method used for the two-axis
version is expected to be extendable to six axes as well, only affecting the
computational complexity of the verified model.

4.2.2 Move request record types

The UR10e and the Carpano FIVE use different move commands that require
different arguments. As described in Chapter 3, there is also a more complex system
for selecting the most suitable movement command. Because of this, the model
includes record types that include all necessary variables to make these decisions
and call the move commands with the required arguments.
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EXAX move

The record type for EXAX moves is shown in Figure 4.3. The type only contains
two variables since that is all that is needed to call the movement operation. The
distance represents how far the external axis needs to rotate. If the positive direction
is clockwise, a positive value means to rotate that angular distance clockwise. A
negative value means rotating counterclockwise. If the value is zero, the joint can
remain still for that waypoint. In this model, a distance of 1 corresponds to moving
the joint 60 degrees. A visual representation of this abstraction can be seen in
Figure 4.4. The time variable is an abstraction that imagines a time budget instead
of an absolute time value for when the waypoint should be completed. For example:
if the current time is 35 seconds after system start and the waypoint should be
reached at 36 seconds, the time budget will be 1 second. If the previous move
command took too long and the current time is 37 seconds after system start, the
target time has already passed, and a time budget of -1 seconds will appear.

Figure 4.3: Custom record type for EXAX move requests

Figure 4.4: Angle abstraction used for all joint distances. A distance of 1 corresponds to
moving 60° in the joint space.
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UR move

The corresponding record type for UR movement requests is shown in Figure 4.5.
This type contains two distances since the UR10e has been simplified to have two
axes instead of six like the physical robot has. These are the variables jd1 and jd2.
The distances and the goal_time variable use the same abstractions as the EXAX
move. In addition, there are three boolean variables that are used in the model to
make decisions about what move command to select. In the pseudo-code presented
in section 1, blending and offset are numerical values rather than boolean values.
The blending value is an input to the URScript that could have been numerical in
the model, but since the only use of it in the model is to check whether it is larger
or smaller than a threshold value, it was simplified to a boolean representing
whether or not the input would have exceeded that threshold or not. The method of
calculating the offset was shown in Section 3.2.3, and again the numerical value is
compared to a threshold. Since the calculation of the offset is not modeled, it can
be simplified in the same way as the blending to a boolean stating whether or not
there is a "large" offset from the ideal path if using moveJ. Large is defined as a
distance of more than 0.8mm in the URScript. The sharp corner check used to
determine whether or not MoveP can be used is actually a boolean value in the code,
and so this is a natural way to represent it in the model as well. These variables
together form the necessary basis for modeling the decision process while keeping
the computational complexity as low as possible.

Figure 4.5: Custom record type for UR movement requests

4.2.3 Value ranges

The distance variables in these records are of type real. The value range of real
can be defined in a file called instantiations.csp in RoboChart. As mentioned,
the distance variables should cover positive, negative and zero-values. To keep the
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cardinality as low as possible, the range of [-1..1] was chosen. This covers all
cases, but does not excessively increase the computational complexity of the model.
The variables related to time are of type int. This has been chosen so that the
range of time can easily be altered without also altering the distance ranges, which
is what would happen if they used the same type. The assertions for the model are
checked both with int being in the range [0..2] and the range [-1..1]. When the
range has strictly positive or zero-values, the model assumes that the UR10e will
never arrive too late for its waypoint to the degree where the next waypoint is
already in the past. In the other range where the negative value of -1 is included, the
model can be checked also for the case where the goal time for the next waypoint
has passed. Another type for which the range is defined in the instantiations.csp

file, is nat. Variables of type nat are used when considering what waypoint is
currently being executed. It is set to have the range [0..3], which means natural
numbers from 0 to 3 are considered. This means a maximum of four waypoints can
be executed. However, in the model this full range is only used for the UR state
machine while the EXAX is limited to operating with waypoints in the range
[0..1]. This is to capture the feature of the actual system that the UR10e and the
external axis can have a different number of waypoints as discussed in Section 3.1.2.

4.2.4 Waypoint queuing

One difference between the actual system and the model is how the IntelliWelder
performs the planning of the following waypoint during the execution of the current
one. In the pseudo-code of the URScript, the variables curr_target_pose and
next_target_move are accurate to how the planning is done, since the UR uses the
waypoint it is currently headed towards as the assumed starting point of the next
command. Since the robot does the planning beforehand, not at the moment it
arrives at the current waypoint, there is no need to worry about the execution time
of the planning software given that the planning is done sufficiently early.

4.2.5 Omitted variables

Some of the variables that are defined in the pseudo-code are never passed into the
model. This decision keeps the number of variables at a minimum while still
capturing all necessary features in the model. An example is that there is no need
to include current and target positions if they are only used to calculate a distance.
Instead, the distance can be an input directly. For the UR_move, that means two
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distance variables are passed instead of four position variables. Since some variables
are left out and some are transformed to boolean values instead of numerical values,
the arguments passed to the operations in the model do not exactly correspond to
the arguments in the pseudo-code. For example, the distance is passed as an
argument to the operation call instead of the target pose. This should not be an
issue since the execution of operations is a part of the robotic platform, not
modeled, and therefore do not affect any of the properties of the model.

4.3 RoboChart model

4.3.1 Main

The main module of the RoboChart project is shown in Figure 4.6. The module
contains one controller and the RP. The controller consists of five state machines,
three required interfaces and three events used as input. The RP has the ability to
trigger the three events start_system, next_EXAX_move and next_UR_move which
in turn will lead to different behaviours in the model. Figure 4.7 shows all of the
interfaces defined and provided by the RP and required by the Controller. The
exax_ops and ur_ops contain the operations called from the EXAX and UR state
machines respectively. The events interface include all events that can be triggered
by the Platform, and StateInf contains a variable passed to represent the state of
the System state machine.

4.3.2 System state machine

The System state machine can be considered the top level of the planning. It is
responsible for keeping track of whether or not the system has been started, if it is
out of sync or if any of the two state machines representing the two robots have
finished all of their waypoints. The state machine can be seen in Figure 4.8. Once a
state is entered in this state machine, an update to the variable sys_state is
performed to reflect the current state of the system. The variable has type
SystemState which is based on the enumeration shown in Figure 4.9. This variable
is passed through the interface StateInf which is provided by the RP and required
in other state machines. The transitions between states in System are all triggered
by events. Initially, the state machine is in the wait_for_start state waiting for
the event start_system. Once that occurs, the system is in the working state until
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Figure 4.6: Main module of RoboChart project. It includes the Controller with all state
machines and the RP.

Figure 4.7: Interfaces defined and provided by the RP
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Figure 4.8: System state machine. Note the variable update on entry to each state and
the possibility of termination through the out_of_sync event.

one of the robots finishes all of their waypoints or an out_of_sync event occurs. If
the system receives an out_of_sync event while it is in the states working,
UR_finished or EXAX_finished, it transitions to the final node which means the
system terminates. It is not possible to define a transition back out of the final

state. Otherwise, if the event UR_done occurs it means the UR state machine has
finished all of its waypoints and triggered the UR_done event. Since the system still
has to wait for the EXAX state machine to finish, the system waits in the
UR_finished state until the event EXAX_done triggers. The same system is
employed for the case where the EXAX state machine finishes first. Then, the system
waits in the state EXAX_finished until the event UR_done triggers. Once both the
EXAX and UR state machines have finished all waypoints, the system goes back to the
wait_for_start state. This can be viewed as one welding operation finishing, and
the system is ready for the next task to be defined and started.
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Figure 4.9: Enumeration containing the different states the system can be in. these exactly
mirror the states of the System state machine.

4.3.3 EXAX state machine

The state machine representing the Carpano FIVE welding table can be seen in
Figure 4.10. On initialization, the state machine is in the wait_for_move state.
Here it waits for a move command to arrive. It initializes the variable
curr_waypoint to have the value 0, and it currently has n_waypoints=1, which
means it will go through two waypoints since it starts counting from 0. Note that
the type of the variables responsible for counting waypoints is nat, which is bound
to be in the range [0..3]. When it receives a move event, it stores the move
request in a variable named exax_move. Then, it reaches a junction where it checks
whether the time value of the move request is negative or not. If it is negative, that
means that the move command has been given a negative time budget to complete
the movement, which in this case has been categorized as an out_of_sync event.
Such an event will make the state machine terminate. If the time budget is zero or
positive, it will call the operation go_to_pos with the arguments exax_move.dist
and exax_move.time. This operation is defined in the required interface exax_ops.
After this operation has been called, the system is either finished or has more
waypoints to iterate through. This is checked with a guard comparing
curr_waypoint to n_waypoints. If it has reached n_waypoints it resets
curr_waypoint and triggers the done event. The done event is relayed to the event
EXAX_done in the System state machine transitioning the system either to the state
EXAX_finished if the EXAX state machine finishes its waypoints first or
wait_for_start if the UR state machine is already finished.

4.3.4 UR state machine

The state machine representing the UR10e robot is shown in Figure 4.11. The
structure is quite similar to the EXAX state machine, but the by_position state has
been turned into a composite state named choose_cmd. This is due to the system
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Figure 4.10: EXAX state machine

employed to choose move commands for the UR10e. This decision process was
discussed in Section 3.3. In the choose_cmd state, the move command is selected
based on the boolean values that are part of the UR_move record type and the joint
distance values jd1 and jd2. The distance values are used in the function
check_big_dist. The definition of this function and the abs function that it calls
can be seen in Figure 4.12. The check_big_dist function checks whether the
absolute value of either of the joint distances is larger than a certain value, in this
case the value 1. As discussed in Chapter 3, this is different from calculating the
distance in the tool frame, but has been deemed an ample simplification. The
calculation of Euclidean distances is not so simple due to the lack of support for
certain mathematical operations in CSP and FDR. This check of maximum absolute
distance can however be seen as taking the infinity norm of the vectors in joint space
instead of the Euclidean (2-norm). The purpose of the check is that given a larger
movement, the UR10e is expected to be capable of performing moveL according to
the request, but the developers of the IntelliWelder experienced that a "normal"
moveL command struggled to complete movements over short distances. Instead, a
moveL_with_t command is used, which takes only goal position and goal time as
the arguments. Based on the decision process in the composite state choose_cmd, a
move command is selected and the corresponding operation is called. On entry to
the choose_cmd state, the boolean variable choosing is set to true. Due to this, the
state machine is trapped in the state until a move command has been selected. In

35



Figure 4.11: UR state machine.

the move command states, after a move operation has been called, the choosing

variable is set to false on exit before transitioning to the final node of the composite
state. Once the variable is set to false, the state machine can transition out. This
requirement is enforced by the guard [choosing == false] on the transition out of
choose_cmd state. The same system of incrementing the curr_waypoint variable
and resetting the value upon completion is used as in the EXAX state machine. The
same goes for the way the done and out_of_sync events are called.

4.3.5 out_of_sync relay

Figure 4.13 shows the state machine responsible for relaying the out_of_sync

events from the EXAX and UR state machines. This exists because it is not currently
possible to connect two different events from state machines to the same input of
another state machine in RoboChart. Therefore, a relay state machine has been
created that functions as an or-gate that triggers the out_of_sync event of the
System state machine if either the EXAX or the UR is out of sync.
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Figure 4.12: Definitions of functions in instantiations.csp.

Figure 4.13: This is the state machine responsible for relaying any of the two out_of_sync

events from the UR or EXAX to the out_of_sync event on the System state machine.
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Figure 4.14: State machine responsible for only relaying the move commands of the UR

and EXAX if the System is in a state where those state machines should receive commands.

4.3.6 state_check STM

In the System state machine, a variable is updated each time the system transitions
to a different state. This is done to facilitate this state machine. As seen in
Figure 4.14, it has only one state, which transitions to itself whenever it receives a
move event. It writes the move command to a variable based on whether the UR or
the EXAX received a move request. It uses a guard to check if the system is in a state
that implies the move should be forwarded to the UR or EXAX state machines. If that
is the case, the move is sent to the output event corresponding to the correct state
machine. This state machine ensures that no move operations can be executed
before the system has been started, and that no more move operations can be
executed once all the waypoints of a robot are completed until the system resets and
is restarted.
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4.4 Properties for verification

Now that the model has been defined, assertions about the system can be made,
and thus, certain aspects of the model’s behavior can be investigated. The
assertions are derived from the previously established requirements set for the
selected section of the IntelliWelder system. Ideally, the assertions set for the model
should align perfectly with the requirements set for the physical system. Below,
these assertions are stated in natural language to later be defined in CSP so that
their validity can be tested through model checking.

• Every time a UR_move event is triggered by the RP, the model responds by
calling one of the defined UR movement operations.

• Every time an EXAX_move event is triggered by the RP, the model responds by
calling the defined EXAX movement operation.

• The UR state machine does not terminate.

• The EXAX state machine does not terminate.

• If no out_of_sync event occurs in the System state machine, the state
machine does not terminate.

4.5 Assertions

Since the coreassertions automatically generated by RoboChart do not cover the
requirements set for the model, it is necessary to define some custom assertions.
These assertions are defined in a file named IntelliWelder.assertions. In
.assertions files, it is possible to define CSP blocks of code, as well as assertions in
RoboChart’s own DSL. This .assertions file is then translated to a CSP file which
can be checked using FDR. RoboChart’s DSL uses tock-CSP, which uses the event
tock to mark the passage of discrete time. This enables the definition of timed
assertions. For a thorough explanation of CSP and tock-CSP, refer to [34].
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4.5.1 Assertion A1

The first assertion is defined in listing 2. This assertion requires that
EXAX refines SpecA1 in the traces model. Searching the traces model means
looking for safety through the notion of refinement. The definition of SpecA1 can be
seen in listing 3. Notice that it is within a Timed section, which means it will be
treated as a timed process. In SpecA1 the process Def is defined. It starts with
CHAOS(Events), which can only be interrupted by EXAX::move.in. This leads to a
call to ADeadline. The definition of ADeadline can be seen in listing 4. The
function ADeadline takes a set of events and a deadline, given as a number of tock
events, as arguments. It then demands that one of the events in the provided set
occur within the deadline. In SpecA1, ADeadline is called with only
EXAX::go_to_posCall in the set of events with a zero-tock deadline. This means
that the call to the go_to_pos operation has to happen immediately when the
EXAX::move_in event is received.

1 timed assertion A1: EXAX refines SpecA1 in the traces model.

Listing 2: Definition of assertion A1

1 timed csp SpecA1 csp-begin
2 Timed (OneStep) {
3 SpecA1 = let
4 Def = (CHAOS(Events) [| {|EXAX::move.in|} |>
5 ADeadline({|EXAX::go_to_posCall|}, 0)); Def
6 within timed_priority(Def) }
7 csp-end

Listing 3: Definition of SpecA1 used in assertion A1.

1 timed csp ADeadline csp-begin
2 Timed(OneStep) {
3 ADeadline(E,d) = (CHAOS(Events) ||| Deadline(SKIP,d)) [|E|> SKIP}
4 csp-end

Listing 4: Definition of the function ADeadline used in assertion A1 and assertion A3.
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4.5.2 Assertion A2

In order to make sure that assertion A1 provides meaningful insight, it is
necessary to ensure that the EXAX state machine is timelock-free. This is because
there is a trivial case where the process refuses the event tock. The definition of
assertion A2 can be seen in listing 5. In the listing, EXAX2 is defined as a version
of EXAX where EXAX::go_to_posCall is ignored. Note that when the EXAX::D__

process is initialized, it receives the arguments (0, 1). The first argument is an
ID-value, and the second is a definition of the value of n_waypoints for the EXAX

STM. This represents the number of waypoints the state machine iterates through.
The constant n_waypoints being 1 corresponds to two waypoints because of
zero-indexing. This is done because the state machine could get stuck in the call to
the operation and, therefore, refuse the tock event. This happens since calls to the
operations are expected to take no time, and are therefore urgent. This means the
liveliness of the state machine was not preserved.

1 timed csp EXAX2 csp-begin
2 Timed(OneStep) {
3 EXAX2 = EXAX::D__(0, 1) \ {| EXAX::go_to_posCall |}
4 }
5 csp-end
6 assertion A2: EXAX2 is timelock-free.

Listing 5: Definition of EXAX2 and assertion A2.

4.5.3 Assertion A3

Listing 6 shows the definition of assertion A3 and SpecA3. This is the equivalent
of assertion A1 and SpecA1, but for the UR. Since the UR can choose between four
different move operations, the set of events seen in SpecA3 now contains all four of
those operation calls. The assertion ensures that for each UR_move.in event, one of
the four move operation calls needs to be made before any time is allowed to pass.

4.5.4 Assertion A4

In the same manner as in assertion A2, it is necessary to ensure timelock-freedom
for the UR STM for assertion A3 to be meaningful. The definition of
assertion A4 can be seen in listing 7. The definition of UR2 is very similar to that
of EXAX2, but instead of ignoring only EXAX::go_to_posCall it ignores all calls to
all four move operations provided for the UR state machine.
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1 timed csp SpecA3 csp-begin
2 Timed(OneStep) {
3 SpecA3 = let
4 Def = (CHAOS(Events) [| {|UR::move.in|} |> ADeadline({|UR::

moveJCall, UR::movePCall, UR::moveLCall, UR::moveL_with_tCall|}, 0)
); Def

5 within
6 timed_priority(Def)
7 }
8 csp-end
9 timed assertion A3: UR refines SpecA3 in the traces model.

Listing 6: Definition of SpecA3 used in assertion A3 as well as the definition of assertion
A3 itself.

1 timed csp UR2 csp-begin
2 Timed(OneStep) {
3 UR2 = UR::D__(0, 3) \ {| UR::moveJCall, UR::movePCall, UR::moveLCall

, UR::moveL_with_tCall |}
4 }
5 csp-end
6 assertion A4: UR2 is timelock-free.

Listing 7: Definition of UR2 and assertion A4.

4.5.5 Assertion A5

In listing 8, assertion A5 is defined. It simply demands that the EXAX STM does
not terminate. This assertion is expected to pass given that no out_of_sync event
occurs.

1 assertion A5: EXAX does not terminate.

Listing 8: Definition of assertion A5.

4.5.6 Assertion A6

This assertion is exactly the same as assertion A5, but for the UR STM. Its
definition can be seen in listing 9.

1 assertion A6: UR does not terminate.

Listing 9: Definition of assertion A6.
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4.5.7 Assertion A7

To define an assertion that ensures that the System STM does not terminate, a
modified version is necessary. Therefore, a constraint is placed on the
System::D__(0) process. During model checking, all possible combinations of
inputs are searched. Since the components are verified in isolation, the System STM
is unaware that if out_of_sync never triggers in any of the other two state
machines, it will not trigger here. In listing 10, the definition of SysTerminates can
be seen, as well as the definition of a process Stop, and assertion A7. The process
SysTerminates is based on another process named SysConstrained. This is a
version of the system where out_of_sync events are skipped. Then, the
SysTerminates process listens only for the termination event of the System state
machine. This is done by hiding all events except System::terminate using the |\

operator. If this happens despite the out_of_sync event being ignored, the
assertion should fail. This is done by comparing SysTerminates to the process
Stop. This process just corresponds to the CSP process STOP, which is a deadlock.
This means that the Stop process can never perform any events before terminating,
and so by demanding that SysTerminates refines Stop in the traces model,
it can be ensured that this process never performs System::terminate, and thus
never terminates. The assertion is expected to always pass since the out_of_sync

event is being ignored. Still, it shows that in the cases where it does not occur, the
System state machine will not terminate.

1 timed csp Systerminates associated to System csp-begin
2 SysConstrained = (System::D__(0) [| {| System::out_of_sync |} |] SKIP

)
3 SysTerminates = (SysConstrained ; System::terminate -> SKIP) |\ {|

System::terminate |}
4 csp-end
5
6 csp Stop csp-begin
7 Stop = STOP
8 csp-end
9
10 assertion A7: SysTerminates refines Stop in the traces model.

Listing 10: Definition of SysTerminates, Stop and assertion A7.
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4.6 Checking the assertions

In the next chapter the results from checking the assertions will be presented. They
are checked for two different ranges for the type core_int. A sanity check is also
performed to verify the correctness of some of the assertions.

4.6.1 core_int value ranges

When the range is defined as [0..2], the results will show how the system reacts if
it does not receive negative time budgets for the movement commands, meaning the
movements are always performed as planned. When the range is defined as [-1..1],
the results will show how the system reacts to negative time budgets. These
negative time budgets can occur due to an infeasible plan being received from Delfoi,
or due to incorrect execution of movement operations by the UR10e or the Carpano
FIVE. In general, this value range is meant to cover the case of erroneous input.

4.6.2 Purpose of sanity check

The reason for performing a sanity check is to ensure that certain assertions are
defined correctly. Specifically if assertion 1 and assertion 3 pass, they can be
validated by removing calls to operations in the model. This should cause them to
fail, since there should be no traces where a movement operation is not immediately
called after receiving a movement request.

4.6.3 Specifications of PC used for checking assertions

Because of the computational demands of checking some of the assertions, a
dedicated computer was used. It has an AMD Dual EPYC 7501 (2*32 cores)
processor and 2TiB of RAM. The RAM is especially relevant as a lot of memory is
required to hold the information generated during assertion checks.
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Chapter 5

Results

This chapter will present the results from all checks performed on the model as it
was presented in Chapter 4. Initially, the assertions are checked with only positive
time budgets. Then a sanity check is performed with a modified model, still with
only positive time budgets. This is a way to ensure that the assertion catches flaws
in the model as expected. The assertions are then checked with negative time
budgets allowed. This, to represent the case when the input to the model is
non-idealized or erroneous. Since RoboTool generates two CSP files, one for timed
assertions and one for untimed assertions, the assertions that are untimed show up
in both files. These assertions are therefore checked both as timed and untimed
assertions so that the results can be compared.

5.1 Results with core_int in range [0..2]

Firstly, all assertions will be checked with only positive time budgets.
assertion 5-7 are checked both in the timed assertions CSP file, and in the
untimed version.

5.1.1 Normal model

Table 5.1 shows the results when checking all of the assertions defined in
IntelliWelder.assertions with the range for core_int set to [0..2]. The
format for the table follows that of [11]. It can be seen that all assertions pass and
that the number of states visited and transitions made is the same for all assertions
associated with the same state machine.
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Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A1 ✓ 10.79s 0.34s 11.13s 228 713
A2 ✓ 11.10s 0.32s 11.42s 228 713
A3 ✓ 14.42s 0.51s 14.93s 5,060 17,001
A4 ✓ 14.15s 0.57s 15.72s 5,060 17,001
A5 ✓ 0.12s 0.39s 0.51s 228 713
A6 ✓ 0.12s 0.60s 0.72s 5,060 17,001
A7 ✓ 0.64s 0.55s 1.19s 32 197

Table 5.1: Results of model-checking all assertions in FDR with only positive values for
core_int.

Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A5 ✓ 0.98s 0.47s 1.45s 156 557
A6 ✓ 9670.82s 0.48s 9671.30s 3,380 13,621
A7 ✓ 768.59s 0.45s 769.04s 32 165

Table 5.2: Results of checking the untimed assertions with only positive values for
core_int. Only assertion 5-7 are untimed, so the others are unavailable here.

Table 5.2 shows the results of checking the untimed assertions. They all pass, but
assertion A6 and assertion A7 take much longer than when checking them in the
timed assertions. It can also be observed that the number of states and transitions
are different when comparing the timed and untimed assertions.

5.1.2 Sanity check with modified model

As a sanity check to see if assertion A1 and assertion A3 work as they should,
one of the calls to the operation in the model can be removed. Since the
assertion A1 and assertion A3 demand that an operation from a defined set is
called for each move event received, the assertions would be expected to fail. This
should produce a trace that is logically connected to the missing operation. In
Figure 5.1, the choose_cmd state of the UR state machine can be seen. It has been
altered so that there is no call to the moveJ operation. When assertion A3 is
checked in FDR4 it fails and the counterexample shown in Figure 5.2 is produced.
By clicking on the Specification Behaviour it is possible to further investigate the
case that made the assertion fail. In Figure 5.3, the move request that was received
to make the assertion fail can be seen. The boolean values of the movement request
are true, false, false. If the decision process of the composite state is followed,
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it is clear that if the first boolean is true and the second is false, the state machine
will end up in the moveJ state. Since there is no call to a move operation in this
state, the assertion fails.

Figure 5.1: The composite state of the UR state machine with the call to moveJ removed.

Figure 5.2: Counterexample produced with call to moveJ operation missing.

Figure 5.3: Trace to behaviour that causes assertion A2 to fail.
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Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A1 X 11.16s 0.26s 11.42s 11 87
A2 X 10.94s 0.28s 11.22s 99 388
A3 X 15.23s 0.26s 15.49s 75 1,235
A4 X 14.19s 0.35s 14.54s 931 4,412
A5 X 0.10s 0.40s 0.50s 153 554
A6 X 0.12s 0.48s 0.60s 1,497 6,329
A7 ✓ 0.70s 0.58s 1.28s 32 197

Table 5.3: Results of model-checking all assertions in FDR with both positive and negative
values for core_int.

5.2 Results with core_int in range [-1..1]

Next, the assertions are checked with the type core_int, including negative values.
Again, both the timed and untimed assertions are checked to compare the results.

5.2.1 Timed assertions

Table 5.3 shows the results when checking all of the assertions with the range of
core_int set to [-1..1]. All of the timed assertions fail apart from assertion A7.
This is not unexpected, since assertion A7 has the constraint that it skips
out_of_sync events. The elapsed times are similar when compared to checking the
timed assertions for a range of the same size, but with only positive values as was
done in Table 5.1. The number of states visited and the number of transitions is
lower for all assertions apart from assertion A7. This is expected since the
assertion check terminates upon the discovery of a counterexample.

5.2.2 Counterexample trace for assertion A5

An example of a trace to one of the failed assertions can be seen in Figure 5.4. It
shows that the implementation behavior showing the EXAX_move has a negative
value for the time-variable and that, as a consequence, the trace includes an
out_of_sync event, which leads to termination.
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Figure 5.4: Trace showing a counterexample to assertion A5 - EXAX does not terminate.

5.2.3 Untimed assertions

Table 5.4 shows the results of checking the untimed assertions with negative time
budgets included. It can be seen that assertion A5 and assertion A6 fail, and
assertion A7 pass. All of this is expected as the negative time budget will cause
out_of_sync events and consequently, termination. Again, assertion A7 passes
because of the constraint, skipping the out_of_sync events.

Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A5 X 750.57s 0.40s 750.97s 123 466
A6 X 9736.80s 0.41s 9737.21s 1,147 5,409
A7 ✓ 751.78s 0.41s 752.19s 32 165

Table 5.4: Results of checking the untimed assertions with both positive and negative
values for core_int
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Chapter 6

Discussion and further work

This chapter discusses the results and their implications. It presents other
approaches to the modeling, suggests potential improvements to the suite of
assertions, and discusses the limitations of the current solution. It also includes
recommendations for others performing similar work in addition to suggesting
further work.

6.1 Implications of results

To begin with, the results obtained in the previous chapter will be further discussed.
Their significance with respect to the requirements defined in Section 3.4.3 are
discussed, and interesting findings are presented.

6.1.1 Timed assertion results with core_int in the range [0..2]

All assertions passed, given that the time budgets were always positive or had the
value of zero. This was a desirable result for verifying the synchronization properties
of the model. Since assertion A1 and assertion A3 passed, it can be determined
that a movement operation is always called for each movement request received.
This means that no movement requests are lost due to faulty logic in the model,
serving as an example of a non-trivial result. To relate this back to the requirements
set for the model in Section 3.4.3, it indicates that R2 is satisfied. To make sure
that these assertions were not trivially satisfied, assertion A2 and assertion A4

also needed to pass, which they did. As for the assurance against termination,
assertion A5-A7 show that the UR, EXAX, and System state machines do not
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terminate. For the UR and EXAX state machines, this implicitly indicates that no
out_of_sync event occurs. For the System state machine it shows that if no
out_of_sync event occurs, it does not terminate. In the System state machine this
event occurs either by the UR state machine or EXAX state machine triggering it
through their out_of_sync events. Therefore, assertion A5-A6 passing implies
that the out_of_sync event would not trigger in the System state machine if the
entire module was used.

6.1.2 Sanity check with core_int in range [0..2]

The sanity check performed on a model without the call to the movement operation
moveJ showed that assertion A5 failed. This strengthens the belief that the
assertion works as intended and that it would catch cases where a movement request
did not lead to a movement operation call. Again, this is related to ensuring that
R2 from Section 3.4.3 is met. It is, however, interesting to note the necessity of a
sanity check. In the idealized workflow shown in 4.1, label 9 refers to the automatic
generation of tests from RoboChart models [33]. The generation of test cases
through mutation of RoboChart models has been explored in [35]. This approach
could potentially produce a test that would serve the same purpose as this sanity
check.

6.1.3 Untimed assertion results with core_int in range [0..2]

A surprising result when checking the untimed assertions was the compilation time.
When checking untimed assertions, FDR does not have to include calls to the tock

event, hence, model-checking should intuitively be simpler than the timed assertion
checks. Despite this, the compilation of assertion A6 took 9670.82s for the
untimed version, while it took merely 0.12s in the timed assertions file. This is a
factor of almost 105. It was also shown that assertion A7 took much longer in the
untimed version. The exact reason for this has not been pinpointed. In personal
correspondence with one of the developers of RoboChart, Pedro Ribeiro
(Departement of Computer Science, University of York, May 2024), it was suggested
that it could be related to a difference in how the timed and untimed semantics are
represented. The timed semantics may be more efficient for FDR to compile. His
experience was that FDR could compile processes in a very inefficient way because
of how they were constructed, despite them being logically equivalent. Another
thing to note is the fact that the number of states and transitions visited is lower in
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the untimed version. This is because extra states and transitions appear due to the
inclusion of the tock event when checking timed assertions.

6.1.4 Timed assertion results with core_int in range [-1..1]

The timed assertion results were as expected with negative time budgets included.
All assertions failed, apart from assertion A7. On inspection of the
counterexamples, the traces included a call to the out_of_sync event followed by
termination. The fact that out_of_sync events were caught is positive because it
shows that R1 from Section 3.4.3 is being met. The time spent was similar to the
timed assertions with core_int in the range [0..2]. This is reasonable since the
cardinality is equal. The time taken for verification was somewhat shorter than for
checking the range [0..2]. This is also logical since the verification terminates
upon the discovery of counterexamples. These failures also indicate that the model
is input-dependent and that if there exist issues upstream in the system, the
synchronization properties of the model are not maintained.

6.1.5 Untimed assertion results with core_int in range [-1..1]

The same phenomenon occurs in these untimed assertion results as in the untimed
results with core_int in range [0..2]. The time taken is much longer for
assertion A6-A7, but with this configuration, assertion A5 also takes a much
longer time to compile than for the timed assertion check.

6.2 Limitations

The following section will discuss the known limitations of the current solution.
Those include the use of abstractions when modeling the system, the interpretation
and translation of existing code, as well as the limitations that exist in the software
used for modeling.

6.2.1 Abstractions

There are a number of abstractions involved in the process of turning the real
system into a RoboChart model. Some of these include reducing the granularity of
the angular values, decreasing the number of joints of the robots, and converting
time values based on a clock to relative time budgets for each movement. Ideally, an
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abstraction can reduce the complexity of a system without compromising the key
properties in the process. It can, however, be difficult to be sure that this does not
happen. Many of the functions in the URScript are also simplified through
abstraction. Capturing these in the model would cover the full functionality of the
URScript, which could uncover errors in the calculations implemented. This was not
done in the thesis because it is challenging to capture complex mathematical
operations in RoboChart while using abstractions to simplify the numerical values
of the system. This has been discussed in a previous publication by the RoboStar
team: "The issue with abstraction and arithmetic raises concerns regarding the use
of model checking to deal with properties related to complex numeric calculations.
For this class of properties, the use of theorem proving is likely to be more fruitful."
[33].

6.2.2 Assumptions

The assumptions that are made can be split into assumptions about the outside of
the model, and the assumptions made about the internal components of the model.
For the outside of the model, we assume that the planned waypoints and goal times
form a request that can feasibly be performed by the physical system, given that a
suitable movement command is selected. This means that there are no issues due to
singularities or conflicting configurations for the robotic arm, and that the
accelerations and target velocities are within the physical capabilities of the robots.
It is also assumed that the precision of the UR10e and Carpano FIVE is not a
limiting factor. For the modeled section, an assumption is that the custom functions
of the URScript are correct. These are simplified to boolean values in the model.
The functions are used to make decisions about what move command to select.
Since they are not modeled and verified, their correctness can not be ensured.
Another assumption is that there are no issues regarding the time required to make
computations within the modeled section of the system. One argument supporting
this assumption is that the UR Controller, which arguably performs the most
complex computations, uses a queuing mechanism. It always plans the following
waypoint during the execution of the current one. This should ensure that it never
pauses in order to process its next move command. There are other ways to avoid
the issue of having to perform instantaneous calculations. A suggested solution is
the Almost ASAP approach [36].
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6.2.3 Interpretation of existing code

When modeling an already existing solution, part of the process is interpreting code
and making a model that reflects the code as well as possible. Ideally, this
translation would be done in such a way that there is no difference between the logic
of the RoboChart model and the code, but this is not likely to be the case.
Therefore, this potential gap between the source code and the created model should
be acknowledged.

6.2.4 Limitations of software used

Model checking can be quite computationally expensive, and so checking assertions
can take a long time. This can slow down the iteration speed of the development. It
can also be a limiting factor because of the hardware specifications that are
necessary for the checking. During this thesis, not all assertions could be checked on
a laptop, and a dedicated computer had to be used. A limitation when learning to
use RoboChart is that there is a limited amount of material available in the form of
tutorials. Some can be found, but commonly the use cases found on the website had
to be explored to find examples of how the software can be used. Luckily, help was
easily available from the University of York throughout the process.

6.3 Further work

This section will consider natural further work based on the findings of this thesis.
The main consideration is the further development of the solution presented in this
thesis, but potential further work for the IntelliWelder system and some thoughts
for further improvement of RoboChart are also mentioned.

6.3.1 Modeling

Modeling is a process involving making a number of decisions. When modeling
using RoboChart, this involves deciding what the variables, operations and events of
the RP should be, what abstractions are used to represent the real system, and
what assertions should be defined for the model. Firstly, the events and operations
that were defined also define the section of the system that will be modeled. The
selected section captures a part of the system, but far from everything. "An
important factor in the successful application of CSP and FDR has been a high
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degree of selectivity in the choice of problem to tackle. The scope must be
sufficiently well-defined to be able to isolate a portion of the system to treat, while
being sufficiently complex that there is benefit to be gained from the investment of
effort involved."[37]. There are still many components of the system that could be
modeled and formally verified. For example, the execution of movement operations
by the UR10e and Carpano FIVE could be modeled. The offline programming in
Delfoi could also be modeled so that requirements could be set for the generation of
waypoints. This could ensure properties related to the feasibility of the planned
movements. If the requirements for the system defined in Section 3.4.2 are compared
to the requirements for the model defined in Section 3.4.3, the connection cannot be
made directly. The requirements for the model are defined based on what can be
captured within the selected scope for the model. They state requirements that are
expected to be necessary for the synchronized operation of the full system, but more
work needs to be done to bridge the gap between these lists of requirements.

6.3.2 Assertions

While the current set of requirements ensures some important properties of the
system, many more could be defined to verify other aspects. It could, for example,
be checked that all states are reachable, which should be the case for this model.
Assertions to ensure properties about the order of events could also be defined. For
example, no calls to movement operations should happen before a movement request
has been received. Also, the System state machine should not be able to reach the
states UR_finished or EXAX_finished before it has been in the working state.

6.3.3 Continuation of RoboStar workflow

Eventually, a natural goal for this project would be to move the model further along
in the RoboStar workflow described in [33] and depicted in Figure 4.1. This would
mean creating a RoboSim block diagram to represent the platform. Here, the
operations that are called in the RoboChart would be modeled along with the
triggering of events. Eventually, the goal would be to bring the whole solution into a
simulation for further validation.
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6.3.4 Further work for the IntelliWelder product

There are also opportunities for further development of the IntelliWelder system.
Hopefully, the insights gained during the analysis of the code and the modeling
process can contribute to the improvement of the product. Perhaps the
requirements defined for the full system, as well as the requirements for the modeled
part of the system could prove useful for the development process. As described, the
IntelliWelder plans a discrete set of waypoints along the edge that will be welded. It
is also possible to use an entirely different approach. One could imagine a PID
controller with feedback control for the current position, as well as feedforward
control that looks at the projected positions of the UR10e and Carpano FIVE in the
near future. This approach is perhaps less suited for model checking as it operates
in a less discrete domain. Since the current solution uses sets of waypoints, it seems
more natural to interpret it as a finite state system.

6.3.5 Further work for the development of RoboTool

The RoboTool software provides an intuitive way to model complex systems through
the GUI. This philosophy of modeling through a graphical interface could be further
developed by making even more functionality available in the graphical view. A few
features are suggested to improve the user experience. The first is to add the
capability of writing statements inside of states from the graphical view. Currently,
the only way to define an entry action is to open the .rct file in the text editor and
write the command there. It would be nice to have all capabilities available without
leaving the graphical view. Another is that you can have diverging versions if both
the text file and the graphical view are open, and both are edited. A suggested fix is
that a warning could occur if the user tries to make changes to the text file when
there are unsaved changes in the graphical view. The same warning could appear if
there are changes in the text file that have not been updated in the model. Finally,
it could be interesting to perform further experiments to pinpoint the reason for
untimed assertions taking so long to compile for this model. This could very well be
an issue with FDR4, which can also be investigated further.
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Chapter 7

Conclusion

To conclude this thesis, the goals and objectives that were defined in the
introduction will be restated and evaluated in retrospect of what has been achieved.

The first goal was: "Familiarization with the RoboStar workflow as well as previous
case studies where RoboChart has been used". This goal was met by consulting the
available case studies on the RoboStar website. The models used in these case
studies were used as templates for the model presented in this paper. Since the
source material is limited, these were the main sources of inspiration for ways to
represent different concepts in RoboChart.

The second goal was: "Analysing the IntelliWelder solution to identify a suitable
section for modeling as well as appropriate abstractions". This goal was met in the
problem analysis chapter, where the different components of the IntelliWelder
system were analyzed so that well-informed modeling decisions could be made. The
abstractions were defined in the method chapter based on the insight gained from
the problem analysis. The section of the system that was later modeled was also
defined in the problem analysis chapter.

The third goal was: "Modeling a well defined section of the IntelliWelder in an
adequate and representative manner in RoboChart". The model was defined in the
method chapter based on the abstractions that were previously defined and the
analysis of the system. This model was made to capture as many meaningful
features of the real system as possible within the framework of RoboChart
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modeling. The goal was to do this while maintaining the synchronization properties
defined for the modeled section.

The fourth goal was: "Defining requirements for the model in a format that allows
refinement checking in FDR4". The requirements were defined as assertions in the
method chapter. These were custom assertions defined to capture key properties of
the system such as movement operations being called for each movement request
and the absence of undesired termination of the state machines in the model. The
assertions were automatically compiled to a CSP file ready for model checking in
FDR4.

The fifth goal was: "Evaluating the results of the model checking, as well as the
model itself and the assertions defined". This goal was met by checking the
assertions in FDR4. The results of the checks can be seen together with the
statistics of the model checking in the results chapter. Some of the interesting traces
that were obtained through FDR4 were also presented here. In the discussion
chapter, these results were evaluated based on whether or not they lined up with
the expected outcomes of the model checking. Generally, the assertion results were
as expected, which means certain properties of the model have been formally
verified. It was also shown that the model is input-dependent and that
synchronization properties were not maintained if erroneous input was received.
One surprising result was the time it took to compile some of the untimed
assertions. The model and assertions were also evaluated in the discussion chapter.

The sixth and final goal was: "Stating recommendations and further work based on
experiences and findings from the thesis". These recommendations were given in
Chapter 7 along with suggestions for further work. The suggestions included the
natural next steps for the model. Those included potential changes to the existing
model as well as a plan for progressing the model in the RoboStar workflow.
Further work was also suggested for the IntelliWelder system and for the further
improvement of RoboChart.

Hopefully, the work done in this thesis has provided valuable insight for both the
developers of the IntelliWelder system and the team behind RoboStar technology.
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