

Master’s Thesis 2024 60 ECTS

Faculty of Chemistry, Biotechnology and Food Science

Using machine learning for source

attribution of Listeria

monocytogenes

Terese Ryan Andersen

Bioinformatics and Applied Statistics

i

Acknowledgements

This thesis is a part of the master’s degree in Bioinformatics and Applied Statistics at the

Faculty of Chemistry, Biotechnology, and Food Science (KBM) at the Norwegian University

of Life Science (NMBU). The study conducted for this master’s thesis was done in

collaboration with the section for Epidemiology at the Norwegian Veterinary Institute.

I would like to thank my supervisor Karin Lagesen at the Norwegian Veterinary Institute. I

am grateful for all the guidance and knowledge you have shared with me, and for all the

meaningful discussions and help you have provided throughout this work.

I would also like to thank my supervisor Lars-Gustav Snipen at the Norwegian University of

Life Science for all the feedback you have given me and helping me to improve my work.

Lastly, I would like to thank my family and friends for the support throughout this year,

especially my boyfriend Jonas Antonsen for always believing in me.

Ås, May 2024

Terese Ryan Andersen

ii

Abstract

In this study source attribution was combined with machine learning for the purposes of

making models that can predict the source of new cases of infection caused by Listeria

monocytogenes. L. monocytogenes causes the infection listeriosis in humans, and the main

source of infection is through food. Although it is considered a low pathogenic bacterium, the

mortality rate for infected humans makes it a public health issue. Listeriosis is particularly

dangerous for the elderly, the immune suppressed and for pregnant individuals. A quick

identification of the source of infection is key to stopping further spread of the bacteria. By

using genomic data from L. monocytogenes with known sources, a machine learning model

may be trained to classify the bacterial isolates by sources. The trained model can then predict

the sources of new cases. The available information in the genomic data was also explored to

investigate if it was diverse enough to be used for partitioning isolates by source. Machine

learning has already shown potential for source attribution of L. monocytogenes and other

pathogens in studies from other countries. The origin of the data set in this study was

Norwegian and contained data of whole genome sequenced L. monocytogenes isolates. The

possibility of separating the isolates and being able to predict the sources utilizing the genetic

information were explored with different kinds of machine learning methods, representation

of the genomes, and subsets of the genes in the data set. The results of this research suggest

that allelic profiles from both core genome and whole genome Multi Locus Sequence Typing

(MLST) methods gives input data that are diverse enough for machine learning models to use

for source attribution. The machine learning method Random Forest could use the allelic

profiles directly as input data and had good predicting performance for the isolates with food-

associated sources in this study but had poorer performance for the isolates with not food-

associated sources. The method Support Vector Machine needed scaling of the input data to

predict well and had similar predicting performance as the Random Forest method. The last

machine learning method in this study was a neural network which was the method with the

highest use of time and computational resources. The neural network performed poorer than

the other methods but showed potential and better predicting performance can possibly be

obtained with more tuning to improve the model.

iii

Sammendrag

I denne studien er smittesporing kombinert med maskinlæring for å kunne lage modeller som

kan predikere smittekilden til nye infeksjonstilfeller forårsaket av Listeria monocytogenes.

Infeksjonen listeriose hos mennesker er forårsaket av L. monocytogenes, og den hyppigste

smittemåten er gjennom mat. Selv om den regnes som en lavpatogen bakterie gjør den høye

dødeligheten for infiserte personer den til et folkehelseproblem. Listeriose er spesielt farlig for

eldre, immunsupprimerte og gravide personer. En rask identifikasjon av smittekilden er viktig

for å stanse spredningen av bakterien. Ved å bruke data fra genomene til L. monocytogenes

hvor kilden er kjent kan en maskinlæringsmodell trenes til å klassifisere bakterieisolater etter

kilde. Den trente modellen kan videre brukes til å predikere smittekilden til nye tilfeller.

Informasjonen som finnes i dataen fra genomene ble også utforsket for å se om den

inneholder nok variasjon til å kunne brukes til å skille isolater etter kilde. Maskinlæring har

allerede vist potensiale for bruk ved smittesporing av L. monocytogenes og andre patogener i

studier fra andre land. Datasettet i denne studien er innhentet fra Norge og inneholder

helgenomsekvenserte isolater av L. monocytogenes. For å utforske muligheten til å skille

isolatene og predikere smittekilden ved å bruke data fra genomer ble forskjellige typer

maskinlæringsmodeller, representasjon av genomene, og mindre grupper av gener fra

datasettet utforsket. Resultatene fra denne forskingen tyder på at allel-profiler fra både

kjernegenom og helgenom Multi Locus Sequence Typing (MLST) metoder gir nok variasjon i

dataene til at maskinlæringsmodeller kan bruke den til smittesporing. Maskinlæringsmetoden

Random Forest brukte allel-profilene direkte som inputdata og hadde gode prediksjonsevner

for isolater fra mat-assosierte kilder, men dårligere for isolater fra ikke mat-assosierte kilder.

Metoden Support Vector Machine trengte skalering av inputdataene for å kunne få bedre

prediksjonsevner, og fikk omtrent de samme prediksjonsevnene som Random Forest. Den

siste maskinlæringsmetoden som ble benyttet i denne studien var et neuralt nettverk, og dette

var den metoden med størst bruk av tid og data-resurser. Det neurale nettverket hadde

dårligere prediksjonsevner enn de andre metodene, men viste potensial og bedre

prediksjonsevner kan antagelig oppnås ved mer tilpasning av modellen.

iv

Table of contents

Abbreviations ... 1

1.0 Introduction .. 2

1.1 Listeriosis.. 2

1.2 Genomes and genotyping ... 3

1.3 Source attribution... 7

1.4 Machine learning ... 8

1.4.1 Machine learning methods ... 8

1.4.1.1 Unsupervised machine learning.. 8

1.4.1.2 Supervised machine learning ..10

1.4.2 Overfitting and underfitting...15

1.4.3 Preprocessing for machine learning ...16

1.4.4 Dealing with high dimensionality data ...17

1.4.5 Assessing model performance ...18

1.5 Machine learning for source attribution ..21

1.6 Aim of study...24

2.0 Materials and methods ..26

2.1 Software...26

2.2 Data set ..27

2.3 Preprocessing and data cleaning ...28

2.3.1 Allelic profiles ...28

2.3.1.1 cgMLST ..29

2.3.1.2 wgMLST ...30

2.3.2 Data cleaning ...32

2.3.3 Encoding the output class variable ...33

2.4 Data exploration ...34

2.4.1 Differences in MLST methods and diversity of data..34

2.4.2 Clustering ..35

2.5 Feature-selection...36

2.5.1 Feature-selection using mutual information ..37

2.6 Machine learning models for prediction..39

2.6.1 Random Forest ...39

2.6.2 Support Vector Machine ...41

2.6.3 Neural network ..43

2.6.4 Predicting sources for isolates from clinical cases ...46

v

3.0 Results ...47

3.1 Preprocessing and data cleaning ...47

3.2 Data exploration ...50

3.2.1 Differences in MLST methods and diversity of data..50

3.2.2 Clustering ..51

3.3 Feature-selection...55

3.3.1 Mutual information...56

3.4 Machine learning models for prediction..57

3.4.1 Training models ...57

3.4.2 Evaluating model predictions ..61

3.4.3 Predicting sources for isolates from clinical cases ...69

4.0 Discussion ...71

5.0 Conclusion and future work ..82

References ...83

Appendix A ...86

Appendix B ...88

Appendix C ...90

1

Abbreviations

BLAST Basic Local Alignment Tool

BSR BLAST scoring ratio

CC Clonal complex

CDS Coding sequence

cgMLST Core genome Multi Locus Sequence Typing

DNA Deoxyribonucleic acid

L. monocytogenes Listeria monocytogenes

MLST Multi Locus Sequence Typing

PFGE Pulse-Field Gel Electrophoreses

rbf Radial basis function

ReLU Rectified Linear Unit

RFLP Restriction Fragment Length Polymorphism

ST Sequence type

wgMLST Whole genome Multi Locus Sequence Typing

2

1.0 Introduction

1.1 Listeriosis

The bacterium Listeria monocytogenes is the cause of the infection listeriosis in humans. The

bacterium is low pathogenic, and infection is relatively rare (Degré et al., 2010, pp. 223-226).

For people with a healthy immune system listerioses is often mild and passes without

treatment, but for immune suppressed, elderly, infants, or pregnant individuals listeriosis can

be fatal (Degré et al., 2010, pp. 223-226). Most of the severe cases involve patients above 60

years old (Degré et al., 2010, pp. 223-226). Listeriosis can cause sepsis and other severe

infections in humans, and it can cause miscarriages and stillbirth for pregnant individuals or

severe infections in the newborn (Degré et al., 2010, pp. 223-226). The total mortality rate for

clinical cases of listeriosis is around 25% (Ditlefsen & Egeland, 2023). Because of the high

mortality rate, it is important to rapidly find the source of listeriosis outbreaks to prevent the

spread to persons with high risk of severe infections.

Listeriosis is a foodborne infection and its main path of introduction to humans is through the

food supply chain (Degré et al., 2010, pp. 223-226; NicAogáin & O'Byrne, 2016). L.

monocytogenes is found in a range of different surroundings like soil and water, agricultural

environments, certain animals, and in food processing facilities (Degré et al., 2010, pp. 223-

226; Liao et al., 2023). Because of L. monocytogenes’ ability to survive in high stress

environments it is a pathogen that is hard to eradicate. It endures pH and temperature changes,

high salt concentration and other conditions that normally reduce bacterial survival (Liao et

al., 2023; NicAogáin & O'Byrne, 2016). L. monocytogenes can grow in refrigerator

temperatures, as it has the ability to multiply in temperatures down to 0 ℃ (Degré et al., 2010,

pp. 223-226). Because it is common to find in food processing facilities, strict regulations on

the concentration of the bacteria in food products are enforced in Europe (NicAogáin &

O'Byrne, 2016). High temperatures kills L. monocytogenes, so food products that are cooked

or heat treated before consumption are rarely a source for human infection (NicAogáin &

O'Byrne, 2016). Poorly washed vegetables, raw or undercooked meat and fish, unpasteurised

dairy products, and meats meant to be consumed cold are common sources for listerioses

(Degré et al., 2010, pp. 223-226; Folkehelseinstituttet, 2023).

3

In Norway the annual number of reported listeriosis cases is low, between 15-40 cases

(Folkehelseinstituttet, 2023). Most of the cases of listeriosis in Norway have their origins

within the country (Lyngstad et al., 2022). All severe listeriosis cases are logged in a reporting

system. In sporadic cases the source is normally not investigated, however, when several

cases occur within a certain time span, an outbreak investigation is launched

(Folkehelseinstituttet, 2023). The Norwegian Institute of Public health (NIPH) follows an

outbreak guide that contains a procedure for formulating a hypothesis for infection source

(Kapperud, 2018). In this procedure there is an extensive search where all available

information about the outbreak is gathered. A lot of this information is gathered by

interviewing patients about their food consumption before the infection, and testing samples

from potential sources and patients (Kapperud, 2018). The interviewing is time consuming

and rely on people’s ability to remember what food they have consumed and where they got it

from. People might misremember or not be able to participate in these enquiries because of

their condition. Sampling potential food sources can also cause difficulties because there

might not be any of the food product left for testing, or traces of the bacteria may be hard to

detect. When bacterial isolates are found in potential sources part of confirming the true

source of an outbreak is comparing bacterial isolates sampled from the patients and the source

using epidemiological markers like the genetic material of the bacteria (Kapperud, 2018).

Sometimes it is not possible to get a sample or find isolates in suspected sources, and the

source has to be inferred by calculation of likelihood based on the information gathered

during the search (Kapperud, 2018). By implementing a machine learning model to make

prediction for potential sources early in the search process the range of suspected sources may

possibly be narrowed faster and the need for sampling can be decreased. The machine

learning model may predict likely sources for the outbreak based only on the information in

the genetic material of the bacteria in the clinical samples. This can also be helpful in the

cases where there is not an available isolate from the source to confirm, and the likelihood

must be estimated using information gathered in the search.

1.2 Genomes and genotyping

The genome of an organism contains all the hereditary genetic information of the organism

(Klug et al., 2013, pp. 1-14). The genetic information is contained in molecular structures

called deoxyribonucleic acid (DNA), which are comprised of nucleotides. There are 4

nucleotides in DNA, adenine, guanin, thymine, and cytosine, and their sequence order in the

4

DNA encodes the genetic information of organisms (Klug et al., 2013, pp. 1-14). The part of

these DNA sequences that encodes functional elements like proteins are called genes, and the

location of each gene sequence in the DNA is referred to as its locus (Klug et al., 2013, pp. 1-

14). The characteristics of an organism are encoded by its genes. These characteristics and

functions are often referred to as the organism’s phenotype (Klug et al., 2013, pp. 1-14). The

same gene can be encoded in different forms known as the alleles of that gene, and

differences in alleles may give rise to differences in the phenotype the gene expresses. The

different allele types found in an organism are the organism’s genotype (Klug et al., 2013, pp.

1-14).

Genetic diversity within a species arises from diversity in the genomes and genes (Klug et al.,

2013, pp. 1-14). Different mechanisms are behind the occurrence of genetic diversity within a

species. For bacteria the flow of the genetic information can be either vertical between

bacteria of different generation through cell division, or horizontal between bacteria when

bacteria transfer part of their DNA to other bacteria (Tortora et al., 2004, pp. 210-243). When

new DNA is transferred into a bacterium’s cell caused by horizontal transfer a recombination

of the recipient bacterium’s DNA can occur and new alleles and genes can be introduced

(Tortora et al., 2004, pp. 210-243). Changes in a bacterium’s DNA can also occur because of

mutations and mobile elements in the bacterium’s DNA (Tortora et al., 2004, pp. 210-243).

Mutations are small, random substitutions between the nucleotides making up the DNA

sequence (Tortora et al., 2004, pp. 210-243). Mutations can create new alleles, or they can

destroy genes and make them inactive. Mobile elements are small parts of the DNA sequences

that can change its place along the sequence within one bacterium’s genome, or these

elements can be part of the horizontal transfer between bacteria of the same generation

(Tortora et al., 2004, pp. 210-243). Like mutations these changes can introduce new alleles or

destroy genes. These changes caused by recombination, mutations and mobile elements gives

rise to genetic diversity in a bacteria species. Natural selection then drives the selection for

survival of the fittest bacterial isolates (Tortora et al., 2004, pp. 210-243). Bacteria with

genetic adaptations giving enhanced chances of survival will be the ones with the best

opportunities to multiply and replicate their genomes to new generations. The kind of

phenotypes that will be advantageous depends on the environment and other factors impacting

the bacteria in their surroundings (Tortora et al., 2004, pp. 210-243).

5

Genetic diversity within a bacteria species can be exploited to divide bacteria into subtypes.

When diversity is caused by adaptation to an environment the bacterial subtype with the

adaptations can be associated with this environment. Further, knowing the subtype of a

bacterial isolate, when there is an association between subtypes and environment, can be used

to indicate the source of the isolate. Microbial subtyping in general tries to find characteristics

in the data collected from bacterial isolates to divide the species into subtypes (Pires et al.,

2009). Genotyping is when genomic data is used for microbial subtyping (Pires et al., 2009).

When characteristics such as biological or biochemical qualities are used for subtyping it is

known as phenotyping (Pires et al., 2009).

Genotyping can be done in several different ways depending on the genomic data available

for the bacterial isolates. For many years genotyping methods using Restriction Fragment

Length Polymorphism (RFLP) analysed with Pulse-Field Gel Electrophoreses (PFGE) was

one of the most used methods (Martin et al., 1998; Nemoy et al., 2005). This method uses

enzymes to fragment the isolate’s genome at specific locations, giving fragments of different

lengths (Graves & Swaminathan, 2001). The fragments are then analysed using

electrophoresis, and the patterns the fragments generate during migration over the

electrophoreses gel creates a PFGE profile. The PFGE profiles can be used to divide the

species into subtypes (Graves & Swaminathan, 2001). This typing method gained popularity

because it could be standardised between laboratories (Graves & Swaminathan, 2001).

Today, methods using DNA sequencing data are often used. The increasing access to and easy

sharing of sequencing data between laboratories are some of the reasons the sequence-based

methods are becoming popular (Nemoy et al., 2005). Multi Locus Sequencing Type (MLST)

methods are one of these methods and it uses sequencing data to find the allele variation

between isolates genomes within a species (Martin et al., 1998). The MLST methods use

schemas containing the loci of specific genes of interest and an allelic profile is made for the

genes in the schema (Maiden et al., 2013). The profiles are made by giving distinct allele

sequences at each gene a unique label in the form of a number, creating an allelic profile of

the combination of numbers (Martin et al., 1998). Further, bacterial isolates with the same

profile gets the same sequence type (ST) number which can be used for subtyping (Martin et

al., 1998). An example to illustrate this using 4 bacterial isolates and a MLST schema for 7

loci is shown in Table 1. The numbers for each locus in the schema constitute the allelic

profiles for the isolates, and identical profiles get the same sequence type number.

6

Table 1. Example of the MLST method for genotyping of bacterial isolates. A schema of 7 loci is used to make allelic profiles

for 4 bacterial isolates and to divide them into sequence types based on similarity in the allelic profiles. The allelic profile for

each isolate is the combination of the number values assigned to their allele type found at each locus.

Isolate

no.

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6 Locus 7 Sequence

type

1 3 7 1 4 1 5 3 1

2 5 3 1 3 3 4 2 2

3 3 7 1 4 1 5 3 1

4 4 2 9 9 5 2 1 3

Different schemas can be made containing different loci depending on the genes of interest.

MLST usually has a schema of 7 loci containing genes presumed to be found in all isolates of

a species, often called “housekeeping” genes (Martin et al., 1998).

With whole genome sequencing becoming more common sequencing data for the entire

genomes for the bacterial isolates are becoming available. This makes it possible to divide

bacterial isolates into subtypes by defining MLST schemas based on more than 7 loci. Better

resolution for the allelic profiles can be obtained and the discriminatory power for the method

increases with more loci in the schema (Maiden et al., 2013). Whole genome sequencing

made core genome MLST (cgMLST) and whole genome MLST (wgMLST) possible.

Schemas for cgMLST are made by using loci for genes with high conservation, found in most

of the genomes in a set of isolates from the species (Maiden et al., 2013). For example, for L.

monocytogenes a core genome has been defined as genes found in over 95% of a set of 957

genomes, and a cgMLST schema of 1748 loci with accompanying core genome sequence

types has been defined by the Institute Pasteur (Moura et al., 2016). MLST methods using

schemas containing loci for all genes found in a set of isolates for a species are referred to as a

wgMLST, and schemas like this can increase the discriminatory power of the method even

more (Maiden et al., 2013).

7

1.3 Source attribution

The purpose of source attribution methods is to give information on the sources of foodborne

pathogens infecting humans (Pires et al., 2009). The information gain from source attribution

depends on the chosen method, the data availability, and the subject of study (Pires et al.,

2009). The transmission chain of infection is the route between sources where the bacteria

might have been introduced and the infected humans, and the sources defined in the source

attribution method can be from any place along this transmission chain (Pires et al., 2009). An

example of a transmission chain is the connections between natural environments, farmland

and animals, food production facilities, food products, and infected humans (Pires et al.,

2009).

Microbial subtyping methods like genotyping can be used in source attribution when genomic

data is available for the bacterial isolates from the sources. Source attribution methods using

genomic data for microbial subtyping rely on a relationship between genotypes of the bacteria

and specific sources, giving a lower diversity of genotypes within each source and higher

between the sources (Pires et al., 2009). The methods require a large data set of bacteria with

known sources to make predictive models, and the models can only calculate probabilities for

the predefined sources (Pires et al., 2009).

The models that use microbial subtyping have been divided into two general types of methods

and are reviewed with other methods in “Critical Orientation in the Jungle of Currently

Available Methods and Types of Data for Source Attribution of Foodborne Diseases” by

Mughini-Gras et al. (2019). The two main methods in the review article are frequency

matching and population genetics, and they are described below:

The frequency matching methods uses the frequency of distinct genotypes for its calculation

of probable sources for clinical cases. The genotype frequencies per source are compared to

genotype frequencies in the clinical cases. By weighing the frequencies by factors such as

exposure and how common a source is the predictions can be more accurate. The frequency of

clinical cases attributed to each source can then be calculated.

Population genetics methods consider each source as a population of isolates. The method

uses distinct genetic markers like allele type for a certain locus as a trait. The trait needs to be

8

found in the genotypes of the isolates within each population and not found in the other

populations. The importance of the trait depends on how many of the isolates within the

source that have the trait. The probabilities of belonging to the different sources are calculated

for the clinical cases based on which of the traits are found in their genotypes and the traits

importance.

In newer approaches of source attribution association between genomic data for bacteria and

sources are looked for using machine learning algorithms (Arning et al., 2021; Bayliss et al.,

2023; Castelli et al., 2023; Lupolova et al., 2019; Munck et al., 2020; Tanui et al., 2022).

1.4 Machine learning

Machine learning methods are mainly divided into two types: supervised and unsupervised

(Lupolova et al., 2019). Supervised methods can be used for prediction, and unsupervised

methods can be used to look for grouping in the data (Lupolova et al., 2019). The samples that

the methods use as input are described by their features, and the features are used as input

variables for the methods (Lupolova et al., 2019). For supervised methods, where the goal is

prediction, the outcome values for the predictions also need to be used as an output variable.

The metadata associated with the input data usually contains this information (Lupolova et al.,

2019). Depending on the metadata the predictions are either classification if the output values

are categorical, or regression if the output values are continuous (Raschka & Mirjalili, 2019,

pp. 1-7). When a model finds patterns in the feature variables depending on the output

variable the method is supervised (Raschka & Mirjalili, 2019, pp. 1-7). In unsupervised

methods output variables are not used to guide the model to find pattens, and unknown groups

often referred to as clusters might be discovered in the input data (Raschka & Mirjalili, 2019,

pp. 1-7).

1.4.1 Machine learning methods

1.4.1.1 Unsupervised machine learning

Unsupervised machine learning is useful for exploring the input data or when metadata for

predictions is not available (Lupolova et al., 2019). It can be used to look for potential

structuring in the data and give insight into the data set’s potential to divide the data into

9

clusters (Lupolova et al., 2019). In unsupervised machine learning methods no output

variables are given to the model, so the clusters are independent of any information in the

metadata (Lupolova et al., 2019). Some common methods that can be used for these purposes

are described below.

K-clustering methods are designed to be given a predefined number of k clusters to look for.

A similarity measure is calculated between the input data and the chosen, often random at the

beginning, centroids for the k clusters, then the samples in the input data are assigned to the

cluster with the centroid they are most similar to (Raschka & Mirjalili, 2019, pp. 353-382). By

updating the centroid values using the samples clustered to it the similarity measure between

the samples and centroids can also be updated, and samples can be reassigned to the clusters

again based on the new similarity measures. This can be repeated for a set number of

iterations, or until the centroids no longer change when updated (Raschka & Mirjalili, 2019,

pp. 353-382). The method for the centroid update, and the similarity measure depends on the

chosen method.

In hierarchical clustering methods there are no need to predefine a set of clusters to look for

(Lupolova et al., 2019). The most common way to use hierarchical clustering is agglomerative

(Lupolova et al., 2019). In agglomerative hierarchical clustering all samples in the input data

represent unique clusters at the beginning, then a similarity measure is computed between all

samples and the most similar samples are clustered together, this goes on by clustering similar

clusters together in a hierarchical way until every sample is in one large cluster (Raschka &

Mirjalili, 2019, pp. 353-382). In hierarchical clustering the similarity measure and how

clusters are linked can vary. A common way to cluster similar clusters together is to calculate

the average of the similarity measures between the samples in one cluster and the samples in

another cluster (Raschka & Mirjalili, 2019, pp. 353-382). The less common divisive

hierarchical clustering goes the other way, from one large cluster to more and more clusters

until all samples are their own unique cluster (Raschka & Mirjalili, 2019, pp. 353-382).

10

1.4.1.2 Supervised machine learning

There are many different supervised machine learning methods to choose from, and when

choosing methods the data set and the purpose of the analysis should be considered (Lupolova

et al., 2019). Supervised machine learning models that are used for classification are trained

on input data with a known output class variable to find patterns that separate the data by class

(Raschka & Mirjalili, 2019, pp. 1-7). The trained models can then be used for prediction of

the class for new data samples. A few relevant methods for this study are presented below.

The Random Forest classifier is an ensemble learner method that combines the single

prediction of a set of decision tree models to classify samples (Raschka & Mirjalili, 2019, pp.

91-103). The single decision trees are only trained on a subset of the original training samples,

this makes the predictions based on different grounds for the individual trees (Raschka &

Mirjalili, 2019, pp. 91-103). An illustration of a Random Forest model with 3 decision trees is

shown in Figure 1, note that a Random Forest model can be an ensemble of several hundred

decision trees. The decision trees are made of a binary tree structure of nodes, splitting the

training samples in two at each node according to a set condition. Each condition is trying to

find patterns in a random selection of the features that splits the samples by their class, in the

final nodes the training data is ideally separated according to class (Raschka & Mirjalili,

2019, pp. 91-103). A function is used to ensure that the condition leaves the nodes after the

split with higher purity of classes than before. These functions are called impurity functions

and are used to calculate the purity of a node by measuring how many samples of different

classes are left in each node, and an impurity of 0 means the node only contains samples from

one class (Raschka & Mirjalili, 2019, pp. 91-103). When the Random Forest model is

predicting the class for a sample the ensemble of decision trees might have some differences

in prediction, but the final prediction of the class is settled by choosing the class that most

trees predict. Based on the distribution of predictions among the decision trees the Random

Forest model also comes with a prediction likelihood for all classes, not only a prediction for

most likely class (Raschka & Mirjalili, 2019, pp. 223-237).

11

Figure 1. Illustration of a Random Forest model with 3 decision trees, the nodes in each tree sets a condition trying to

separate the samples by class aiming to have a pure class in the last nodes. The dept of the tree can vary and depend on the

number of nodes needed to set enough conditions to separate samples by class. The Random Forest model predicts the

sample to be of the class the majority of the decision trees predict it to be. Created with canva.com/draw/.

The “gini” impurity is a common choice for the impurity function for the decision trees, and it

tries to minimize the probability of misclassification (Raschka & Mirjalili, 2019, pp. 91-103).

The “gini” impurity is calculated by the following formula:

 𝐼𝐺 (𝑡) = ∑ 𝑝(𝑖|𝑡)

𝑐

𝑖=1

(1 − 𝑝(𝑖|𝑡)) (1)

Where 𝐼𝐺 is the impurity in node t, c is all the classes and p is the proportion of class i in node

t (Raschka & Mirjalili, 2019, p. 92).

Along with the impurity function the number of decision trees are common hyperparameters

to tune to optimise the Random Forest model during training. A larger set of decision trees

often gets better predictions but it comes with a higher use of computational resources

(Raschka & Mirjalili, 2019, pp. 91-103).

12

The Support Vector Machine classifier finds decision boundaries in the feature space of the

training samples to separate the samples by class (Raschka & Mirjalili, 2019, pp. 79-90). To

find the optimal decision boundary between the samples the model tries to find the boundary

that maximises the space between it and the samples closest to it in the feature space. The

space between the boundary and the closest samples is called a margin, and the closest

samples are called the support vectors (Raschka & Mirjalili, 2019, pp. 79-90). In Figure 2 a

visualisation is presented of samples from two classes, circles and triangles, separated by a

decision boundary in a dashed line, and with the maximised margin shown as solid lines.

Figure 2. Illustration of how Support Vector Machine models separates two classes, here represented by circles and

triangles, using a decision boundary shown by the dashed line found by maximising the margin between the classes shown

as the space between the solid lines. Created with canva.com/draw/.

In Figure 2 the decision boundary is a line in a two-dimensional feature space separating only

two classes, in a multi-dimensional feature space the boundary would be a hyperplane in the

space, and by using a one-versus-rest approach several boundaries can be found if the training

data has more than two classes. A one-versus-rest approach picks one class at the time to be

the positive class and the rest of the classes are the negative class. This is then used to train a

model and find a boundary to separate the positive class from the rest, and when all classes

have been used as the positive class several decision boundaries have been found (Raschka &

Mirjalili, 2019, p. 31).

13

Support Vector Machine models can use non-linear kernel functions to find non-linear

decision boundaries (Raschka & Mirjalili, 2019, pp. 79-90). A kernel function is a similarity

function which calculates similarity between features to make an abstract higher-dimensional

space, and in this space the decision boundaries can be established (Raschka & Mirjalili,

2019, pp. 79-90). The decision boundaries can then be used to predict the class for new

samples.

A common choice of non-linear kernel function is the “radial basis function” (rbf) kernel, and

the similarity between the features is calculated by the following formula:

 𝐾(𝑥(𝑖), 𝑥(𝑗)) = exp (−𝛶||𝑥(𝑖) − 𝑥(𝑗)||2) (2)

Where 𝑥(𝑖) and 𝑥(𝑗) are different features and ϒ (gamma) is a scaling hyperparameter for the

rbf-kernel (Raschka & Mirjalili, 2019, p. 87). The similarities calculated between features

using this kernel function makes the similarity between 0 and 1, where 1 is between identical

features (Raschka & Mirjalili, 2019, pp. 79-90). The scaling hyperparameter is usually tuned

to optimise the Support Vector Machine model during training and is a weight for how

important the samples are. A high gamma gives tighter boundaries around the training

samples, and a small gamma gives a wider boundary and therefore a softer separation of the

samples (Raschka & Mirjalili, 2019, pp. 79-90).

Neural networks consist of layers of nodes where all the layers are connected. Their

combination and interaction make it possible for the model to find non-linear patterns to

separate the training samples by the classes in the output variable (Raschka & Mirjalili, 2019,

pp. 383-423). Only the general terms of neural networks are explained here as numerous

different variations of neural networks can be made depending on the architecture of the

layers. Neural networks are generally built up with an input layer, at least one hidden layer,

and an output layer (Raschka & Mirjalili, 2019, pp. 383-423). An illustration of the

architecture of a shallow neural network with one hidden layer is presented in Figure 3.

14

Figure 3. Illustration of the architecture of a neural network with input layer, one hidden layer and output layer. The arrows

illustrate the interactions between layers when input from the samples goes through the network. The number of nodes in

the layers can vary. Created with canva.com/draw/.

A neural network is trained by running the training data through the model for several

iterations and letting the model find patterns in the data. During the training a loss function is

used to calculate model performance often called loss, and the calculated loss is used by an

optimiser to lead the learning to better performance (Raschka & Mirjalili, 2019, pp. 383-423).

Each node in a hidden layer combines the features of a sample by weighing them and sends

the combination to an activation function. Activation functions are used in the hidden layers

to determine the output of each node, and in the output layer to determine the prediction

(Raschka & Mirjalili, 2019, pp. 383-423). There are a number of adjustments that can be done

for the neural network like changing the number of hidden layers and nodes, different kinds of

layers and activation functions can be chosen, the batch size for how many samples are run

through the model before the loss is calculated, and the learning rate for the optimiser can be

tuned to get better predictions depending on the data and the purpose of the prediction

(Raschka & Mirjalili, 2019, pp. 383-423).

The “Rectified Linear Unit” (ReLU) function is often used as the activation function after

hidden layers, it is a non-linear function that aids the neural network to find non-linear

patterns for classification (Raschka & Mirjalili, 2019, pp. 468-469). ReLU-functions makes

15

the output of the node 0 if the input to the function is lower than 0, and the output of the node

is not changed by the function if the input to the function is equal to or greater than 0

(Raschka & Mirjalili, 2019, pp. 468-469). When using neural networks for classification with

more than two classes the activation function after the output layer is usually “softmax”. It

outputs the probability of each class (Raschka & Mirjalili, 2019, pp. 465-466).

For classification with more than two classes the loss function “categorical cross-entropy” is

mostly used, often with the optimiser “Adam” (Raschka & Mirjalili, 2019, pp. 486-489, 539-

541). This loss function calculates the difference between the predicted classes and the true

classes for the model during training. The optimiser uses this information to lead the training

to better predictions (Raschka & Mirjalili, 2019, pp. 383-423).

1.4.2 Overfitting and underfitting

When supervised machine learning models are trained overfitting can become a problem. This

means that a model finds too complex patterns specific to the data it is trained on (Raschka &

Mirjalili, 2019, pp. 75-76, 127). An overfitted model would generalise poorly because it

classifies by patterns not general to the classification task it is made for , but specific to one

data set (Lupolova et al., 2019). The risk of overfitting can be minimised by using different

strategies specific to each machine learning method. A lot of methods have a hyperparameter

that can be tuned during training to avoid overfitting. Overfitting is rarely a problem for

Random Forest models, the combination of many decision trees makes the models resistant

against overfitting because noise influencing the single decision trees will not influence the

models unless a majority of the trees are influenced (Raschka & Mirjalili, 2019, pp. 91-103).

Support Vector Machine models have a cost hyperparameter regulating the cost for

misclassification to allow for softer boundaries in the models (Raschka & Mirjalili, 2019, pp.

79-90). This can prevent the models from learning specific patterns for the data they are

trained on by allowing some misclassification. In neural networks special dropout layers can

be added. Dropout layers drops the output for a fraction of the nodes. The dropped nodes are

chosen randomly and changes during the training (Raschka & Mirjalili, 2019, pp. 536-539).

The models then have to rely on a changing set of nodes making it more general and robust

against overfitting. Underfitting is the opposite of overfitting and occurs when too little

information is held by the features or there are too few features to find patterns, making the

16

models too general to distinguish between classes (Raschka & Mirjalili, 2019, pp. 75-76).

Underfitting can be prevented by choosing features with a high content of information, or

adding more features if the models are too simple.

1.4.3 Preprocessing for machine learning

Most machine learning methods requires the input data to be presented as numbers (Raschka

& Mirjalili, 2019, pp. 115-121), but sometimes the samples features are represented by

categories of not numeric data. Categorical data are divided into ordinal and nominal data. In

ordinal data there is a rank order between the categories, and in nominal data there is no order

to the data (Raschka & Mirjalili, 2019, pp. 115-121). Ordinal data can be academic degrees

like a bachelor’s, a master’s or doctorial. It could make sense to rank them and label them by

numbers like 1, 2, 3 because a doctoral labelled 3 is a higher degree than master’s labelled 2,

and a master’s is higher than a bachelor’s labelled 1. If the data presents bacteria species like

Listeria monocytogenes, Salmonella enterica and Campylobacter jejuni it would not make

sense to rank them.

When categorical features are used in machine learning they often need to be encoded by

transforming the categories into numbers. There are different ways of transforming the

categories in categorical features to numbers by using encoding methods. Ordinal encoding

simply gives a distinct integer to each category in a feature, and is suitable when the data is

ordinal (Raschka & Mirjalili, 2019, pp. 115-121). Using an ordinal encoding for nominal data

can make some machine learning methods misinterpret the relationship between the samples

by assuming a rank order between the categories of the feature (Raschka & Mirjalili, 2019,

pp. 115-121). One-hot encoding can instead be used to encode the features so that the

categories will be represented as vectors. One-hot encoding creates vectors with length equal

to the number of unique categories in the feature it encodes. The vectors are filled with zeroes

and a single one, and the position of the number one holds the information on which category

it is (Raschka & Mirjalili, 2019, pp. 115-121). For example, category 1 of 5 would be encoded

as [1 0 0 0 0], and category 2 of 5 would be encoded as [0 1 0 0 0] and so on making one

unique vector for each category.

17

Some machine learning methods are also sensitive to the scale of the features (Raschka &

Mirjalili, 2019, pp. 124-127). Methods for scaling can be used to bring features into the same

range. Standardisation of the features is common to use for scaling.

Standardisation can be done by the following formula:

 𝑥𝑠𝑡𝑑
(𝑖)

=
𝑥(𝑖) − 𝜇𝑥

𝜎𝑥
 (3)

Where x is the feature’s value for sample i, and 𝜇𝑥 is the average value for the entire feature,

and 𝜎𝑥 is the standard deviation (Raschka & Mirjalili, 2019, p. 126). Standardisation alters the

values to centre the feature to have an average value of 0 and a standard deviation of 1.

1.4.4 Dealing with high dimensionality data

When the number of features are high compared to the number of samples this is often

referred to as the “curse of dimensionality” (Raschka & Mirjalili, 2019, p. 107). High

dimensionality makes it harder for the machine learning models to generalise, and often

makes the performance of the models poorer. Models trained on high dimensional data have

an increased risk of overfitting to the data set (Lupolova et al., 2019). Many features in a data

set also makes maintaining and use of the data harder by increasing the need for

computational time and resources (Raschka & Mirjalili, 2019, pp. 127-146).

With the purpose of reducing the number of features in a data set feature-selection methods

can be implemented (Raschka & Mirjalili, 2019, pp. 127-146). There are several methods for

selecting features, and the choice of method depend on the data. Getting an insight into the

information held by the features of the data set is important to select meaningful features. The

amount of information held by each feature can be explored by calculating the variety of

values in a feature using diversity measures, like Shannon entropy, for the features (Lupolova

et al., 2019).

Shannon entropy for a categorical variable can be calculated by the formula:

 𝐻(𝑋) = ∑(−𝑃(𝑖)

𝑆

𝑖=1

log(𝑃(𝑖))) (4)

18

Where H is the entropy of variable X, S is the set of distinct values in variable X, and P is the

probability of value i (Chambert-Loir, 2022, pp. 23-54). For a variable an entropy of 0 would

mean no variation among the samples (Chambert-Loir, 2022, pp. 23-54). Features with low

diversity can be filtered out by using tools to measure and set a threshold for too low

variation.

Mutual information can be calculated to not only take the total diversity of a feature into

account, but also the feature’s ability to give information on the output variable. Mutual

information is a measurement of dependency between two variables, and gives a score for the

shared information between two variables (Sherwin, 2010).

Mutual information between two variables can be calculated by the formula:

 𝑀𝐼 = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (5)

Where MI is the mutual information and H(X) is the entropy of variable X, and H(Y) is the

entropy of variable Y, and H(X,Y) is the entropy of the pair (X ,Y) (Chambert-Loir, 2022, pp.

23-54). The entropy of the pair (X, Y) is derived from the H(Y) and the H(X |Y) which is the

entropy of variable X given variable Y (Chambert-Loir, 2022, pp. 23-54). If there are no

dependencies between variable X and variable Y, the entropy of the pair (X ,Y) will be equal

to the two individual entropies added together, and the equation (5) will make the mutual

information score 0. If knowing variable Y gives lower entropy for variable X there is a

dependency between the variables making the entropy of the pair (X ,Y) lower than the two

single entropies added together, and the mutual information is calculated to be higher than 0.

1.4.5 Assessing model performance

When training supervised machine learning models the hyperparameters of the models need

to be optimised to get the best performing models (Lupolova et al., 2019). Hyperparameters

can be the number of decision trees for Random Forest models, misclassification cost and

scaling of the kernel function for Support Vector Machines, or optimiser learning rate and

architectural choices like number of nodes in the layers for a neural network. In k-fold cross-

validation the samples in the training data are divided into groups called folds, and the data is

19

normally split into 5-10 folds (Raschka & Mirjalili, 2019, pp. 191-211). All but one fold are

used in the training and the last fold is used to test the predictive ability of the model using a

performance metric. This is an iterative prosses which is usually repeated until all folds have

been the test-fold, and the average performance of the iterations is calculated (Raschka &

Mirjalili, 2019, pp. 191-211). The model hyperparameter can then be changed and the k-fold

cross-validation can be run again. By comparing the performance for each cross validation

run the hyperparameter setting providing the highest performance score can be chosen for the

model. The possible combination of different hyperparameters that leads to the highest

performance can be assessed by using a grid search. A cartesian grid search tries all

combinations of hyperparameters when training the model, and in combination with the k-fold

cross validation the grid search can evaluate and choose the ones that give the highest

performance (Raschka & Mirjalili, 2019, pp. 191-211).

When validating the optimised model’s predicting ability, it is good practise to do so with

data that was not included in the training of the model (Raschka & Mirjalili, 2019, pp. 191-

211). The aim is to avoid bias in the model and to see how well the model generalise

(Raschka & Mirjalili, 2019, pp. 191-211). This can be achieved by splitting the data samples

into a training set and a test set before the training, usually with the training set containing

around 70% of the total data set’s samples (Raschka & Mirjalili, 2019, pp. 121-124). When

the model predicts the class for the samples in the test set, performance metrics can be

calculated to analyse the model’s strength.

Several statistical metrics are available for the assessment of model performance. Accuracy is

perhaps the most intuitive measure as it is the fraction of correct predictions out of all

predictions (Raschka & Mirjalili, 2019, pp. 211-222). Accuracy might not be the best measure

to assess the performance when the classes that are predicted are not represented by equal

number of samples in the data set. The model tends to be biased towards classifying the

largest classes to get a high accuracy (Raschka & Mirjalili, 2019, pp. 211-222). Metrics as

precision and recall can be used to get a better prediction on imbalanced data sets. These

metrics use true and false positives and negatives for calculation (Raschka & Mirjalili, 2019,

pp. 211-222). A positive prediction for a class means the model has predicted this class for a

sample. If it is a true positive the prediction was correct, if incorrect it is a false positive. The

20

same principle applies to negative predictions for a class. The connections are presented in

Table 2.

Table 2. Relationship between prediction and real value for classes in a data set.

Positive

prediction

Negative

prediction

Real

positive

True Positive

 (TP)

False negative

(FN)

Real

negative

False positive

(FP)

True negative

(TN)

Precision is calculated with the formula:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6)

Precision is the fraction of true positives for a class out of all the positive predictions of that

class, meaning out of both true and false positive predictions (Raschka & Mirjalili, 2019, pp.

211-222).

Recall is calculated with the formula:

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7)

Recall is the fraction of true positives for a class out of all real positive for that class, meaning

out of both true positives and false negatives (Raschka & Mirjalili, 2019, pp. 211-222).

Precision is affected by the model’s false positive rate, and the recall is affected by the false

negative rate. The two metrics often need to be balanced because wanting a high precision

often comes with the price of a lower recall and vice versa. The F1-score is a performance

21

metric that does this by balancing precision and recall by combining them (Raschka &

Mirjalili, 2019, pp. 211-222).

The F1-score is calculated with the formula:

 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8)

The precision and recall, and therefore F1-score are calculated per class. The overall

performance for a model with several classes can be found by using the averages of this

metrics. In a macro average the individual metrics, like the F1-score for each class, are added

and then divided by the number of classes (Raschka & Mirjalili, 2019, pp. 211-222). A

weighted average is when the individual metrics first are weighted by the number of sample

per class, before the metrics are added up (Raschka & Mirjalili, 2019, pp. 211-222).

1.5 Machine learning for source attribution

A supervised machine learning model for source attribution can be trained with genomic data

from Listeria monocytogenes isolates with known sources to find patterns in the genomes that

can classify the isolates by source. When a new clinical case of listerioses occurs, an isolate

can be sampled from it and run through the model. Depending on the genome of the new

isolate its source will be predicted by the model based on its training. When making a model

like this several elements must be considered to make good choices for the model , and certain

requirements for the data should be met to be able to fit it to a machine learning model and to

use it for source attribution. This section will reflect upon these elements and requirements

based on previous research in the field.

First, there has to be some genetic diversity in the data set for it to be possible for the machine

learning model to look for general patterns in the genomes associated with the sources. The

information held by the features are used by the model to find patterns, and a model with too

few informative features is likely to be underfit (Raschka & Mirjalili, 2019, pp. 75-76). L.

monocytogenes is a bacterium found in very different environments, this is an indication that

the bacterium has adapted to a range of different habitats (Tortora et al., 2004, pp. 210-243).

22

For studies using MLST methods with only a few loci for defining the allelic profiles and

sequence types (STs), the STs are often clustered into clonal complexes (CCs) based on

similarity to further compare groupings of the isolates. Studies where frequencies of CCs and

sources for L. monocytogenes are compared like the study by Linke et al. (2014), Maury et al.

(2016) and Painset et al. (2019) suggest that specific CCs are found in higher abundance

among the isolates in certain sources like natural environments, food processing environments

and clinical human cases. This indicates that there is some structuring of isolates based on

sources already at the resolution level provided by allelic profiles using MLST methods with

only a few loci. Further, in a study by Moura et al. (2016) cgMLST was used to make allelic

profiles for L. monocytogenes isolates and showed the usefulness of cgMLST to express the

genetic diversity in a large set of isolates from several sources including clinical human cases,

food products and processing environments, and animals. The study compared the

discriminative powers between cgMLST and PFGE showing the advantages of cgMLST for

surveillance of L. monocytogenes because of its ability to make profiles for the isolates with a

higher resolution. Diversity in the bacteria population was also found in a study into genomic

variation in Listeria species by Liao et al. (2023) where L. monocytogenes isolates from

natural environmental sources and food-associated sources were compared. Several analyses

into the core genes of the isolates, among them differences in cgMLST profiles, showed a

difference between isolates from the two sources indicating core genes had an association

with source. The study further investigated the association of accessory genes, genes that are

not shared by a high fraction of isolates like core genes, and the source the isolates came

from. They also found accessory genes associated with source for L. monocytogenes. MLST

methods have shown the potential to express genetic diversity and information in genomic

data from L. monocytogenes, and making allelic profiles also translates the genomic

sequences into data suitable for machine learning methods.

The MLST methods of representing genomes as allelic profiles transforms the sequences into

numbers, and cgMLST has been used several times before as input data for source attribution

using machine learning. Examples of this are the use by Tanui et al. (2022) for source

attribution of Listeria monocytogenes, and the use by Munck et al. (2020) for source

attribution of Salmonella typhimurium. Several methods of representing the genomes, and

among them cgMLST profiles, were compared by Arning et al. (2021) for source attribution

of Campylobacter jejuni. In the study by Arning et al. (2021) the highest performance in the

23

study was found by using the cgMLST profiles directly. Using one of the MLST methods

allelic profiles directly as input data like these studies would give categorical data for the

features. The features would be the loci and each distinct number in a feature would represent

one category of the alleles found at that locus. When having categories of allele types, it

would not make sense to try and rank them in any order, so MLST methods would give

nominal, categorical input variables for the machine learning model. It is important to be

aware of the type of features that the MLST methods produce because many machine learning

models would handle categorical features presented by numbers as ordinal (Raschka &

Mirjalili, 2019, pp. 115-121). The way Random Forest models uses conditions to classify

samples makes it a good fit for categorical features because no ordinal relationship is inferred

even if the categorical features are presented as integer values (Wright & König, 2019). When

using a Support Vector Machine model, the decision boundaries are found in the feature space

of the samples (Raschka & Mirjalili, 2019, pp. 79-90). The model would therefore give

ordinal meaning to categorical features presented as numbers by interpreting the relationship

between the positions of the samples in the feature space. For this reason it is common to

scale the input data for Support Vector Machine models to optimise the performance

(Raschka & Mirjalili, 2019, pp. 124-126). The same applies to neural networks which uses the

samples combination of features for training and therefore would use the feature values as

numeric for categorical features presented as numbers (Raschka & Mirjalili, 2019, pp. 383-

423).

Previous research using supervised machine learning for source attribution has shown that

ensemble learners has performed well as models for source attribution. When using the

cgMLST profiles of L. monocytogenes isolates as input data for machine learning models

Tanui et al. (2022) compared the performance of three different ensemble learners, among

them Random Forest, with a Support Vector Machine using a rbf-kernel. The result of

comparing the models showed a higher performance for the ensemble learners. This was also

the case for Arning et al. (2021) which compared 14 different machine learning methods for

source attribution of Campylobacter jejuni, where the ensemble learner XGBoost performed

best closely followed by Random Forest. The performance of the Support Vector Machine

model using cgMLST profiles in the study by Tanui et al. (2022) had a little lower

performance than the ensemble learners when attributing sources for L. monocytogenes, while

the Support Vector Machine with a rbf-kernel in the study comparing 14 different machine

24

learning methods by Arning et al. (2021) was among the methods with lowest performance

when attributing sources for Campylobacter jejuni. Support Vector Machine models with

other representations of the genomes than MLST allelic profiles used as input data have also

shown potential when used for source attribution. Predicted protein variants in Salmonella

enterica isolates were used by Lupolova et al. (2019) to compare the source attribution

performance of the methods Support Vector Machine, Random Forest and a neural network.

The result of this study was a similar performance for all the methods involved. Neural

networks for source attribution were also explored by Arning et al. (2021), and the study

included 4 different neural network architectures which all performed quite similar. Their

performances were a little lower than the ensemble learners when cgMLST profiles were used

as input data.

Further, a method for feature-selection might be useful because most ways of representing

genomic data make the data complex with a high dimensionality (Lupolova et al., 2019).

While working with genomic data for one species it can be assumed that a lot of the features

will contain similar values for all isolates, these features contribute with little information on

dividing the isolates (Lupolova et al., 2019). In the source attribution study for Salmonella

enterica by Lupolova et al. (2019) Shannon entropy was used to explore the diversity in the

data set. To select features with high content of information both Munck et al. (2020) and

Tanui et al. (2022) reduced the number of features in their cgMLST data sets by filtering out

low diversity features, based on distinct values in each feature compared to number of

isolates, and frequency ratios between the distinct values.

1.6 Aim of study

The main aim of this study was to explore supervised machine learning models to see if

different methods were able to classify Norwegian Listeria monocytogenes isolates by source

using whole genome sequencing data. A secondary objective was to investigate the diversity

and the information held by the data set, because some diversity is required to separate the

isolates by source.

25

The first step to achieve the aims were to make allelic profiles with both cgMLST and

wgMLST for the genomes in the data set. The diversity and information captured by using

cgMLST and wgMLST were compared by calculating diversity measures, and unsupervised

machine learning methods were used to look for similarities and grouping of the isolates.

Further, the different machine learning methods Random Forest, Support Vector Machine and

a neural network were used to make models and their performance were compared. When

comparing the supervised machine learning methods in this study the Random Forest method

was used as a benchmark to compare the other methods against, based on the experience

obtained from earlier studies where tree-based ensemble methods for categorical data and

with the direct use of allelic profiles as input data had been shown to work well (Tanui et al.,

2022; Wright & König, 2019). Along with the different methods ability to handle the different

allelic profiles directly, the methods performance on reduced sets of loci were compared by

selecting subsets of the loci in the allelic profiles. The feature-selection was used to try and

enhance the performance of the models as well as to explore if there was a threshold for how

many loci needed to be present before the information in the data set got too low and affected

the performance of the models.

The final step for obtaining the aims of this study were using the models to predict the sources

from a set of isolates from clinical human cases of listeriosis.

26

2.0 Materials and methods

2.1 Software

The software used in this study and the most used libraries during coding are stated here. The

software ALPPACA (Kaspersen & Fiskebeck, 2022) version 23.04.1 and chewBBACA (Silva

et al., 2018) version 3.1.0 were run by UNIX commands and were used for making the

different MLST allelic profiles. ALPPACA and chewBBACA utilized the high-performance

computing resources provided by Sigma2 – the National Infrastructure of High-Performance

Computing and Data Storage in Norway. The time and resources needed to run ALPPACA

and chewBBACA made it most efficient to use them with the help of Sigma2. The coding for

data preprocessing, exploration and machine learning were done using Python version 3.9.18

in Spyder version 5.4.3 on a windows computer with the processor 11th Gen Intel(R)

Core(TM) i7-1165G7 and 16.0 GB RAM. Except for the neural networks which were run

using Python version 3.10.12 in Google Colaboratory (https://colab.research.google.com).

Neural networks often use more computational resources for training than other machine

learning methods, and resources are made available for this purpose by Google Colaboratory.

In Python the libraries pandas version 2.1.4, NumPy version 1.26.2, and functools version

1.6.4 were frequently used to manage the data. To aide in the exploring of the data the library

SciPy version 1.11.4 was used, and a k-mode clustering was done using the library kmodes

version 0.12.2. Most of the machine learning were performed using the library Scikit-learn

version 1.3.0, but the architecture in the neural networks were made using the keras module

from the TensorFlow library version 2.15.0.

Most of the data visualisations of the results were made using R version 4.3.1 in RStudio

version 2023.06.1+524, and the libraries dplyr version 1.1.3 and tidyverse version 2.0.0 were

used in R to manage and visualise the results. The exceptions, visualised using Python, were

the heatmaps using the library seaborn version 0.12.2 and the confusion matrices made for

visualising the machine learning performances using Scikit-learn.

Parts of the code are presented as Figures during the descriptions of the methods. The full

source code using Python is available at GitHub:

https://github.com/teanderse/Listeria_sourceattribution

https://colab.research.google.com/
https://github.com/teanderse/Listeria_sourceattribution

27

2.2 Data set

A total number of 1097 Listeria monocytogenes isolates were included in this study. The data

set, containing whole genome sequencing of the isolates and metadata about their sources,

was released from the study “Whole-Genome Sequencing Analysis of L. monocytogenes from

Rural, Urban, and Farm Environments in Norway. Genetic Diversity, Persistence, and Relation to

Clinical and Food Isolates” by Fagerlund et al. (2022). The assemblies of the genomes made of

the isolates sequencing data were acquired from previous work done by the Norwegian

Veterinary Institute using the same data set. The data set had 130 isolates sampled from

Norwegian clinical cases. Further, the data set included 456 isolates sampled from Norwegian

meat processing factories that were from the food processing environment, raw food material

and cooked food products. It included 299 isolates sampled from Norwegian salmon

processing factories that came from food processing environments, raw food material and

food products. From the outdoor environment there were 110 isolates from rural and urban

locations all over Norway. The rural and urban environmental isolates were sampled from

grassland and animal path, residential areas, agricultural fields, locations near food processing

plants, beach or sandbank, and forest or mountain area. There were 78 isolates sampled from

cattle feed, faeces, milk filters, and teat swabs on Norwegian dairy farms. The last source

were slugs with 24 isolates sampled from the species Arion vulgaris found in gardens and

farm environments in Norway. The number and percent of isolates per source is presented in

Table 3.

The 5 sources meat processing factories, salmon processing factories, rural and urban

environments, dairy farms, and slugs constitute the classes the machine learning models will

classify the isolates by. The isolates from clinical cases of listeriosis were not a part of model

training, but later used for the models to attribute to a source.

28

Table 3. The number and percent of isolates per source in the data set used for this study.

Source Number of isolates Percent of isolates

Meat processing factory 456 42%

Salmon processing factory 299 27%

Rural/urban environment 110 10%

Dairy farm 78 7%

Slugs 24 2%

Clinical cases 130 12%

All 1097 100%

2.3 Preprocessing and data cleaning

2.3.1 Allelic profiles

The isolates genomes were transformed to allelic profiles using two types of MLST methods.

Both cgMLST and wgMLST profiles were made for the isolates using the software

chewBBACA (Silva et al., 2018). The chewBBACA software can either make the schema by

itself by finding the loci of the genes of interest and then define the nomenclature for the

alleles found at these loci, or an external schema can be provided for the software to use. The

software then uses the given schema for its allele calling to match the alleles found at the loci

of interest in each isolate to the schema and give each isolate an allelic profile.

ChewBACCA has an integration with the nomenclature server Chewie-NS (Mamede et al.,

2021) for easy downloading of external cgMLST schemas to use for the allelic profiling. For

making internal schemas, the software uses Prodigal (Hyatt et al., 2010) to predict coding

sequences (CDSs) in each genome provided for schema creation. All distinct CDSs found are

further processed by translating them to protein sequences and then clustering them based on

alignment score ratios using Basic Local Alignment Tool (BLAST) (Altschul et al., 1990).

BLAST aligns the sequences against each other and gives the alignments a score based on

how similar the sequences are. The BLAST scoring ratio (BSR) is a normalisation of the raw

BLAST scores making them range from 0 to 1, where 1 is defined as a perfect match between

the sequences (Rasko et al., 2005). CDSs are defined as alleles of the same loci and clustered

when their BSR is equal to or greater than 0.6. Further, only the largest allele in each cluster is

kept representing the distinct loci in the schema. Alleles can be added to each locus defined in

29

the new schema by using the same input genomes to perform an allele call with the software

using the new schema. After the allele calling paralogous loci can be removed based on

alleles that matches more than one locus, indicating a gene duplication.

For both the cgMLST and wgMLST the allele calling is performed based on CDSs found by

Prodigal (Hyatt et al., 2010) in the input genomes aligned against the alleles in the schema

using BLAST (Altschul et al., 1990). The CDSs in the input genomes are first matched at a

DNA sequence level. If they are not matched to an allele from a locus in the schema, they are

translated to protein sequences and matched again at a protein level. Still unmatched alleles

are assessed if they are novel alleles that not yet has been assigned a number in the schema.

Novel alleles are in addition to being assigned a distinct number marked with a flag. Some of

the isolates will for different reasons not have an allele call to all loci defined in the schema.

Instead of a number for the allelic profile this locus will get a flag depending on the reason for

the missing allele. Missing allele calls to a locus happens if there are no CDS match for the

locus, the locus is not found or are at the tip of the assembly of the genomes, the CDS is

smaller or larger than the matched allele from the schema, or there are several matches. All

flags and their meaning can be found in the chewBBACA documentation file

(https://chewbbaca.readthedocs.io/en/latest/index.html).

2.3.1.1 cgMLST

To obtain cgMLST profiles for the genomes the software tool ALPPACA (Kaspersen &

Fiskebeck, 2022) was used. ALPPACA is a nextflow pipeline software tool which contains a

cgMLST pipeline using chewBBACA. This pipeline was used to run the commands necessary

to make cgMLST profiles. For the cgMLST profiles an external schema was used. The input

commands for ALPPACA are shown in Figure 4. FASTA files of the 1097 Listeria

monocytogenes isolates genomes were provided as the “$SAMPLE” for the --input, and to

make sure results are reproducible, a prodigal training file for L. monocytogenes as the

“$PTF” was provided for the --ptf parameter. The download of an external schema was

triggered by --download_external, and the schema to download was specified in the command

line as --species_value “6” for L. monocytogenes and schema number “1” as --id_value, and

was from the nomenclature server Chewie-NS (Mamede et al., 2021). The chosen schema

contained 1748 loci for core genes and is the Institute Pasteur Listeria monocytogenes

https://chewbbaca.readthedocs.io/en/latest/index.html

30

cgMLST schema (Moura et al., 2016). The parameter --output_schema adds the downloaded

schema to the output folder, --skip_schema_eval stops the default schema evaluation as this is

not necessary for the external schema, and --prepped_schema states that the schema is in the

format necessary for chewBBACA, all external schemas from Chewie-NS is in the format

used by chewBBACA. The --max_missing parameter makes a separate filtered output file

without isolates having over the threshold, here set to “12”, missing alleles, but this file was

not used. The --skip_mlst parameter stops the default making of regular 7 loci MLST allelic

profiles. The software also outputs a dendrogram using the clustering method defined as “nj”

(neighbour joining) in the –clustering_method but it was not used in this study. The name

“alpaca_run” was given to the output folder parameter --out_dir, and the main result file in

this folder with the allelic profiles for all the input isolates were used further in this study. The

wiki page of ALPPACA has a detailed description of all parameters for the software

(https://github.com/NorwegianVeterinaryInstitute/ALPPACA/wiki).

Figure 4. Command line for running ALPPACA to make cgMLST profiles, the isolates genomes were the --input $SAMPLE, and

--ptf $PTF was a prodigal training file. The additional parameters used were --download_external to states that a

downloaded schema was used, --output_schema added the used schema file to the output folder, --skip_schema_eval

stopped the default schema evaluation, --species_value “6” was the number for Listeria monocytogenes as species and –

id_value”1” the schema number 1 from Chewie-NS, --preped_schema states that the schema form Chewie-NS already was in

the right format, --max_missing “12” filtered out isolates with over 12 missing alleles, --skip_MLST stopped the default 7 loci

MLST profiles from being made, --clustering_method “nj” outputs a dendrogram using neighbour joining as clustering

method, and finally the --out_dir “alpaca_run” was the name of the output directory.

2.3.1.2 wgMLST

For the wgMLST profiles an internal schema was created using the schema creation command

described earlier for the chewBBACA software. FASTA files for the 1097 Listeria

monocytogenes isolates genomes were used as input “$SAMPLE” for the -i parameter, as

shown in Figure 5. The same prodigal training file “$PTF” used for the cgMLST profiles was

also provided here for the --ptf parameter. The names “chewbbaca_shema_run” and

“schema_listeria_wgMLST” were the name of the output folder -o and file name for the

created schema --n, and the number “20” for the –cpu parameter indicates CPUs used for the

task. After the schema creation the output file contained the schema with FASTA files for the

https://github.com/NorwegianVeterinaryInstitute/ALPPACA/wiki

31

alleles representing the loci, and the prodigal training file was also stored along with the

schema for reproducibility. In addition to the schema the output folder had files for invalid

alleles and metadata for the coordinates of the predicted genes in each genome.

Figure 5. Command line for creating schemas with chewBBACA, the isolates genomes were the --input $SAMPLE, and --ptf

$PTF was a prodigal training file. The --o “chewBBACA_shema_run” was the name of the output folder, and –n

“schema_listeria_wgMLST” was the name of the file for the created schema. The parameter --cpu ”20” states that 20 CPUs

were used for the task.

The created schema only stored the largest allele in the cluster of alleles for each locus, so

alleles were added to the schema by running chewBACCA’s allele calling command with the

same 1097 Listeria monocytogenes isolates genomes. The allele calling command was run

twice because the same command was also used to make the wgMLST profiles. The

command line is visualised in Figure 6 where “$SAMPLE” given to the input parameter -i

were the isolates genomes as FASTA files and “$SCHEMA” was the schema created in the

previous step given as input to the -g parameter. The output folder -o was called

“chewbbaca_call_run” and after the second run of the allele calling command it contained the

wgMLST profiles and possible paralogous genes. The number of CPUs used for the task were

20 as indicated by the parameter --cpu “20”.

Figure 6. Command line for allele calling with chewBBACA, the isolates genomes were the -input $SAMPLE, and the wgMLST

schema created earlier was the $SCHEMA given as input to the parameter -g. The parameter -o “chewBBACA_call_run” was

the name of the output folder. The parameter –cpu”20” states that 20 CPUs were used for the task.

Paralogous genes found during allele calling were removed from the wgMLST profiles using

the gene removing command. Figure 7 shows the command line for removing paralogous

genes. The wgMLST profiles used as input -i were called “results_alleles.tsv”, and the

paralogous genes called “paralogous_count.tsv” for the -g parameter were found during the

allele calling and were in the output file from the allele calling command

“chewbbaca_call_run”. The output file -o was the wgMLST profiles without the paralogous

32

genes called “results_alleles_NoParalogs.tsv”. This output file with all the isolates and the

paralogous genes filtered out of their allelic profiles were used further in this study.

Figure 7. Command line for removing paralogous genes with chewBBACA, the input -i is the wgMLST profiles and -g the

paralogous genes found during the allele calling. The output file -o named “results_alleles_NoParalogs.tsv” was the allelic

profiles for the isolates with the paralogous genes removed.

A schema evaluation was done for the created schema by assessing the output evaluation file

of chewBBACA’s schema evaluator command, the command to create a schema evaluation is

shown in Figure 8. The schema “schema_listeria_wgMLST” created by the schema creation

command was the “$SCHEMA” used as input -i, and the output evaluation folder -o was

called “chewbbaca_schemeval” and the parameter –cpu “20” indicated 20 CPUs were used

for the task.

Figure 8. Command line for evaluating schemas with chewBBACA, the internally made wgMLST schema was the input -i as

$SCHEMA and the output folder -o for the evaluation was called “chewbbaca_schemaeval”. The parameter –cpu”20” states

that 20 CPUs were used for the task.

2.3.2 Data cleaning

After the allelic profiles were made the output for the cgMLST and wgMLST were two data

sets that contained columns of loci and rows of isolates represented by their allele type

numbers in the columns. If for some reason no allele in an isolate was found for one of the

loci in the schema the allele number at that locus would be replaced by a flag representing the

reason why the allele was missing. The metadata for the isolates containing a column for the

sources associated with each isolate was added to the data sets as a class variable column

holding the labels for the sources. For simplicity, all flags marking missing alleles were

replaced with the not-a-number value “NaN”, and flags marking new alleles were stripped of

the flag leaving only the number. After this the isolates with clinical cases as source were

filtered out and stored separately, as they were not used to create machine learning models.

33

Several steps were taken to prepare the two data sets for machine learning. The cleaning steps

to preprocess missing values were inspired by the preprocessing done by Arning et al. (2021).

For the cgMLST data set a threshold was set to maximum 10% missing values for the rows

with isolates. This was done to filter out isolates with potential errors since the loci represent

core genes that are expected to be in over 95% of isolates (Moura et al., 2016), errors can

happen during processing steps like sequencing or assembly of the genomes for the isolates.

This filtering did not filter out any isolates and to ensure the same number of isolates in the

cgMLST data set and the wgMLST data set this filtering was not done to the wgMLST data

set. Also, the wgMLST data set possibly contained several loci for accessory genes, that were

not expected to be present in high fractions of the isolates.

Further, columns containing loci with 10% or more missing values were filtered out to not

include loci that few isolates had alleles for. The loci that were filtered out were considered to

contribute with little genetic insight for the isolates. Because genes being absent might

contribute to genetic insight the remaining not-a-number values were kept and replaced with

the number -1 to give them a distinct value. As a last filtering step, a threshold was set to

minimum 15 isolates per source to filter out potential sources with a low number of isolates

for each data set. This threshold was set to ensure that the machine learning algorithms had

enough data to train on for each source, and was the same threshold set by Arning et al.

(2021).

2.3.3 Encoding the output class variable

Most of the Scikit-learn supervised machine learning methods for classification requires the

labels in the class variable to be encoded into numbers. The class variable holding the sources

labels for the isolates was therefore encoded with the LabelEncoder() function from Scikit-

learn’s module preprocessing to get one distinct number value for each source starting at the

number 0. The LabelEncoder() function is made for this purpose and does not assume any

order among the classes even though they are represented by numbers. The Scikit-learn’s

classifiers that will use the labels to train models are also designed to not infer any order from

the class variable used for the source labels.

34

The neural network method used was from the TensorFlow library. When classification

problems are solved with neural networks the output layer commonly uses a “softmax”

activation function. Therefore, neural network models for classification often require the

labels in the class variable to be one-hot encoded into vectors like the output of the “softmax”

activation function. The class variable holding the labels for the sources were one-hot

encoded using Scikit-learns OneHotEncoder() function from the preprocessing module to

obtain this for the neural networks.

2.4 Data exploration

Different techniques of data exploration were used to get a better understanding of the

cgMLST and wgMLST data sets. To get insight into the differences between how the two

ways of making schemas impact the number representation of the distinct allele types the

highest number values assigned to alleles in allelic profiles for each schema were compared.

Further, diversity was calculated for each locus to compare the two data sets, and groupings

and similarities among the isolates within each data set were examined by using k-mode and

agglomerative hierarchical clustering.

2.4.1 Differences in MLST methods and diversity of data

By using an external schema for cgMLST and making an internal schema for wgMLST the

nomenclatures for the different alleles were not harmonized, and to get an insight to how

different the two schemas numbered their distinct allele types the 5 highest number values

given to alleles were found for both the cgMLST and the wgMLST data sets. For each locus

the number of distinct alleles were counted, and the highest number counted was recorded for

each data set. This was done because the different representations of the data could impact

some of the machine learning methods.

Further, the diversities of the different loci were investigated for both the cgMLST and the

wgMLST data sets. The Shannon entropies were calculated for each locus in the data set. The

entropy() function from SciPy stats module was used to do the entropy calculations. The

35

diversities found in each data set were compared to get an insight into the information

captured by the two different MLST methods.

2.4.2 Clustering

Both k-mode clustering and hierarchical clustering were performed on the cgMLST and the

wgMLST data sets to look for clustering of the 5 sources or other similarities that grouped the

isolates within the data sets.

For k-mode clustering the KModes() function from the kmodes library was used. The code for

setting up the clustering function and using it on the data set is shown in Figure 9. The

number of clusters to look for was set to “5”, and the initialisation for the centroids was set to

“random”. The function was set to start over 10 times by default trying to find the best

random start. The seed “3” was chosen to ensure reproducibility of the random initialisations

of the centroids. K-mode clustering counts matching features between isolates and the

centroids to assign isolates to clusters based on similarity, then the centroids are updated to

represent the mode of the isolates assigned to it. The update of the centroids was done until

the isolates no longer were assigned to new centroids. The output was a list of the clusters the

isolates were assigned to.

Figure 9. Kode for k-mode clustering on MLST data set, with 5 clusters to assign isolates to, and a random start for the

centroids. The isolates were assigned based on count of matching features, and the centroids were updated using the mode

values of the isolates assigned to it.

The hierarchical clustering was accomplished using the SciPy library. The code for the

calculations and the clustering is shown in Figure 10. First, Hamming distances were

calculated between all isolates using the function pdist() with the distance metric set to

“hamming”, which measured normalised Hamming distances by finding the proportions of

differences between the features of two isolates and collecting all distances in a matrix. The

distances were turned into regular Hamming distances by multiplying the normalised values

36

by the number of features associated with the data set. The distance matrix was then input for

the linkage() function. The linkage functions method was set to “average”, and this decides

how distances are calculated when the distances no longer are between single isolates but

clusters. An average linkage means that the distance between clusters were calculated by

taking the average distances of the single isolates within the clusters. This distance was used

in the clustering to join clusters hierarchically. The hamming distances and linkage

calculations were used as input for the clustermap() function from seaborn which made a

heatmap of distances together with a dendrogram showing the linkage of the hierarchical

clustering. The isolates were coloured by their source labels to see if the isolates from the

same source clustered together.

Figure 10. Code for hierarchical clustering with heatmap for distances of MLST data set. Normalised Hamming distances

were first calculated, the distances were converted into regular Hamming distances before hierarchical clustering with

average linkage. Here the distances are calculated for the wgMLST data set.

2.5 Feature-selection

Before feature-selection the cgMLST and the wgMLST data sets were split 70/30 in training

and test data sets using Scikit-learns model.selection module’s function train_test_split(). The

37

function shuffles and randomly splits the isolates into the training and test data sets. The

source labels were taken into account by the train_test_split() function by setting the stratify

parameter to use the class variable holding the source labels when splitting. This ensured both

data sets had isolates from all the sources. The training and test data sets were fixed by setting

a seed to “3” in the function to ensure there was no data leakage between the training and test

data sets when calling the function more than one time. This is considered a good approach in

machine learning to make sure the test data set is not part of any model building and training,

so the test performance calculations stay as unbiased as possible (Raschka & Mirjalili, 2019,

pp. 11-14).

Several approaches to feature-selection were considered to try reducing the number of loci as

features without losing information they might give on the sources. The Shannon entropy,

earlier used for diversity measures, gives insight to the variety of values and information

within each feature, but high variety for a feature alone might not be a good enough criterion

for feature-selection as it does not give any information on the dependencies between a

feature and the sources. Mutual information, which is based on entropy, was found as a better

choice for feature-selection. Mutual information calculates the dependencies between two

variables, and is a measurement of reduction of uncertainty in one variable when the value of

another variable is known (Sherwin, 2010). Meaning that if the allele type of the locus in

question is known and it can give information on what the source might be there are a

dependency between the locus used as a feature variable and the class variable holding the

source labels. The more shared information there is between the variables, the higher the

mutual information is calculated to be. Mutual information can therefore help pick out the loci

with values having an association to the source.

2.5.1 Feature-selection using mutual information

Only the cgMLST data set was used to make smaller feature selected data sets. The cgMLST

data set was effectively speaking a subset of the wgMLST data set. The wgMLST data set

was therefore used further with all its features. The subsets of the cgMLST data set were used

to get an insight into how the different machine learning methods handled different number of

features, and to see if feature-selection could improve the model performance compared to the

cgMLST data set with all features.

38

The Scikit-learn function mutual_info_classif() from the feature_selection module was used

along with the SelectPercentile() function from the same module to calculate the mutual

information and to select the features with highest mutual information scores with the class

variable. The code with the use of the functions is presented in Figure 11. The

mutual_info_classif() calculated the mutual information shared between each feature and the

class variable holding the source labels of the isolates. In the mutual_inf_classif() function the

discrete_features option was set to “True” to state that the input data was categorical data.

Then the SelectPercentile() function, based on the mutual information scoring of the features,

selected the chosen percent of the features with the highest scores. Different feature selected

training data sets were made with the features equal to the 10, 20, 30, 40, and 50 percent of

the features with highest mutual information score in the original cgMLST training data set.

The SelectPercentile() function was also used to transform the test data set to have the same

features as the feature selected training data set before they were used to train and test

machine learning models.

Figure 11. Feature-selection on cgMLST training data set. The pBest object used the Select_percentile() function to select the

features with the highest score, the percent of features chosen was decided by the percentile threshold. The

mutual_info_classif() function calculates the features mutual information with the class variable holding the source labels

and gives each feature a score. In the Figure the percentile threshold is set to 50. The pBest was fitted to and transformed

the input training data to a training data set with the selected features. The pBest also transformed the test data set to have

the same features as the training data set.

39

For further exploration of the features, the 10 percent of the features with highest mutual

information score in the cgMLST training data set, were compared to the 10 percent of the

loci calculated earlier to have the highest Shannon entropy for the entire cgMLST data set, to

see if the loci with highest entropy also was among the features with highest mutual

information score.

2.6 Machine learning models for prediction

The three machine learning methods: Random Forest, Support Vector Machine and a neural

network were chosen to make models. These methods have different approaches for handling

categorical input data, and the number of features in the input data. The Random Forest

method was expected to handle both the categorical data and the high numbers of features

well and was used as a benchmark for this study. The wgMLST training data set, the cgMLST

training data set with all features and the different feature-selected cgMLST training data sets

were used as input to compare the predictive abilities the models gained from being trained on

data of different number of features and allelic profiles made by different MLST methods.

The predictive performance of a model was assessed by training it on the training data set and

using the test data set to evaluate the model’s predicting performance. The performances of

models trained on the different training data sets and with different machine learning methods

were then compared.

The sections below describe how the training and testing of models for the three different

methods were carried out.

2.6.1 Random Forest

The RandomForestClassifier() function from Scikit-learns ensemble module was used to

make the model. A seed was set to “2” for the function to make sure the training was

reproducible. This was necessary to avoid getting different decision trees each time the model

was run. Different seeds were tested during the training to see if the seed impacted the model

training performance before settling for one.

40

The GridSearchCV() function from Scikit-learns model selection module was used when

training the models to optimise the hyperparameter. The model’s hyperparameter for number

of decision trees was adjusted to find the optimal value. The grid search used 5-fold cross

validation repeated 10 times to evaluate the training performance of all hyperparameter values

tested. The set up for the grid search used with the Random Forest model and fitted with the

training data set is shown in Figure 12.

In the grid search the hyperparameter for number of decision trees was tested for the values

300, 400, 500, 600, 700 and 800. The impurity measure was not tested for different types but

set to “gini”. The optimal number of decision trees for the model was the number giving the

highest average weighted F1-score from the cross validation during training. The time used

for fitting the model with the grid search was recorded.

Figure 12. Setup for grid search to fit Random Forest model. The model and the hyperparameter grid for different number of

decision trees were input for the grid search. During training the grid search ran a 5-fold cross validation repeated 10 times

to get an average performance for each hyperparameter value tested. The hyperparameter value giving the highest

weighted F1-score was chosen as optimal for the model.

41

The Random Forest model fitted with the optimal hyperparameter was then used to predict the

sources in the test data set to evaluate the model. The F1-score for each source, weighted F1-

score and the macro F1-score were used to evaluate the model’s performance when predicting

the sources in the test data set.

2.6.2 Support Vector Machine

The Support Vector Machine model was made with the SVC() function from the module svm

in Scikit-learn. The model was set up for both scaled and unscaled input data. The model with

scaling was a part of a pipe with the Scikit-learns StandardScaler() function from the

preprocessing module. The pipe leads the input data through the StandardScaler() function

first and the output of the scaling is then used as input for the model. The StandardScaler()

function standardised the features by subtracting the average value and divide by the standard

deviation to centre and scale each feature to have a standard deviation of 1 before being input

for the model.

The same setup for optimising the hyperparameters for the model during training was done

using the GridSearchCV() function from Scikit-learns model selection module with 5-fold

cross validation repeated 10 times to evaluate the training performance of all hyperparameter

values and combinations of them. The hyperparameters optimised were the cost of

misclassification and the gamma for scaling of the kernel. The set up for the grid search used

with the Support Vector Machine model and fitted to the training data set is shown in Figure

13.

In the grid search the cost hyperparameter C was tested for the values 1.5, 2.0, 3.0, 3.5, 4.0,

5.0, 5.5 and 6.0, and the gamma hyperparameter for scaling the kernel was tested for the

values 0.0005, 0.001, 0.002, 0.003 and 0.005. The kernel was not tested for different types but

set to “rbf”. The optimal hyperparameter combination for the model was the one giving the

highest average weighted F1-score from the cross validation during training. The time used

for fitting the model to the training data set with the grid search was recorded.

42

Figure 13. Setup for grid search to fit Support Vector Machine model. The model can be in a pipe for scaling of the input data

or without scaling. In the Figure the chosen model is the one with the pipe for scaling. The two hyperparameter grids were

for different hyperparameter values for the cost “C” and the kernel scaling “gamma”, one for the model without scaling and

one for the model in the pipe with scaling. Both grids were set up to test the same values for the hyperparameters. The

chosen hyperparameter grid in the Figure is the one for the model with the pipe. The model and its hyperparameter grid

were input for the grid search. During training the grid search ran a 5-fold cross validation repeated 10 times to get an

average performance for each hyperparameter combination tested. The hyperparameter combination giving the highest

weighted F1-score were chosen as optimal for the model.

43

The Support Vector Machine model fitted with the optimal hyperparameters was then used to

predict the sources in the test data set. The predicting performance on the test data set was

evaluated by calculating the F1-score for each source, and the weighted F1-score and the

macro F1-score for the model.

2.6.3 Neural network

The neural network model was built using the library TensorFlow’s module keras. The setup

of the shallow dense neural network that was made is presented in Figure 14. The model is

shallow because it only has one hidden layer, and dense because all nodes in the hidden layer

are fully connected to the next layer. The input dimension was equal to the number of features

in the training data set. The model had one dense hidden layer followed by a dropout layer.

The dense hidden layer used “relu” activation function as done in previous studies in the same

field by Arning et al. (2021). The output layer was a dense layer with 5 nodes, one for each

class of sources, with “softmax” activation function. To improve model performance the

optimiser “Adam” was used with the loss function “categorical cross-entropy” also similar to

the use by Arning et al. (2021) for their neural networks. The batch size was set to be equal to

the entire training data set, and the epochs, meaning the iterations for the training, were set to

200 with early stopping after 10 iterations with no improvement of the calculated loss. The

number of iterations was chosen by splitting the training data set into 80% training and a 20%

validation sets. The model where then trained 5 times on the 80% training data set to find the

approximate number of epochs where the weighted F1 performance score on the validation

data sets stopped increasing. By also setting an option for early stopping the risk of overfitting

was minimised. Neural networks need to be compiled or in other words put together to define

the model before use. The function KerasClassifier() from Scikit-learn’s wrappers module

was used to compile the model, this made it possible to compile the model seen in Figure 14

during a grid search. The model can then be compiled with different values for the

hyperparameters.

44

Figure 14. Setup for the shallow dense neural network. The model had an input dimension equal to the number of features in

the training data set, here set to the wgMLST data set, one hidden layer with “relu” activation function, one dropout layer,

and an output layer with 5 nodes and “softmax” activation function. The model was compiled with the “Adam” optimiser

using the “categorical cross-entropy” as loss function. The iterations were set to 200 with early stopping after 10 iterations

without improvement in the loss. The entire training data set is used as batch size.

The GridSearchCV() function from Scikit-learn’s model selection module, with 5-fold cross

validation, was used to determine the optimal hyperparameter value for number of nodes in

the hidden layer, the dropout rate for the dropout layer, and the learning rate for the optimiser.

The setup for the grid search is shown in Figure 15. Wider grids for the hyperparameter

optimalisation were tested for the grid search before settling on testing the number of nodes

for the values 70, 75 and 80, the dropout rate for the values 0.2 and 0.3, and the learning rate

for the values 0.001 and 0.0001. When testing wider grids high and low values for the

hyperparameters were tested together for two at the hyperparameter at the time, while the

third was one fixed value in the grid search until the values were narrowed down. The grid

search was computationally expensive and time consuming so finding fewer values to adjust

the hyperparameters, and only tuning 3 of the hyperparameters were decided as enough to not

increase the amount of computational resources and time consumption too much. The grid

search was run 5 times to get an average of the cross-validation’s weighted F1-scores because

of the stochasticity of neural networks. Several parameters in a neural network have a random

45

start value, and it was not possible to control this by setting a seed. The values will therefore

change a little bit every time the neural network is compiled even though the settings and

input are the same every time. The optimal values for the hyperparameter combination were

defined as the one giving the highest average weighted F1-score calculated for the 5 runs of

the grid search. The time used for fitting the model to the training data set with the grid search

was recorded. The hyperparameter combination with optimal values was chosen for the final

training of the model.

Figure 15. Setup for the grid search to fit the shallow dense neural network model. The model and the hyperparameter grid

for different values for the learning rate, nodes in the hidden layer and dropout rate are input for the grid search. During

training the grid search ran a 5-fold cross validation to get an average performance for each hyperparameter value

combination tested. The hyperparameter value combination giving the highest weighted F1-score was chosen as optimal for

the model.

The performance of the model fitted with the optimal values for the hyperparameters was

tested by predicting the sources in the test data set. Again, because of the stochasticity in

neural networks the final training and performance testing were repeated 30 times, and the

average performance for the predictions of the test data set was calculated. The performance

metrics used for evaluating the prediction performance were the F1-score for each source, the

weighted F1-score, and the macro F1-score.

46

2.6.4 Predicting sources for isolates from clinical cases

The models for the different machine learning methods trained on the cgMLST training data

set with all features and the wgMLST training data set were used to predict the sources for the

isolates from the clinical cases of listeriosis filtered out during data cleaning. These isolates

came from clinical human cases without known source for the infection. The trained machine

learning models were used to try and attribute them to one of the sources the models were

trained on. The results were used to compare the different machine learning methods used for

the models and the two MLST methods used to represent the data.

47

3.0 Results

3.1 Preprocessing and data cleaning

The data consisting of the 1097 genomes for the isolates from the sources meat processing

factories, salmon processing factories, rural and urban environments, dairy farms, slugs and

clinical cases were run through the software tools ALPPACA and chewBBACA to make

allelic profiles for the cgMLST and wgMLST data sets. After running the software tool

ALPPACA with the external cgMLST schema on the data set, the cgMLST data set consisted

of cgMLST profiles for the isolates. The software tool chewBBACA first constructed a

schema for wgMLST consisting of 4923 loci. Then the allele calling done by chewBBACA

made wgMLST profiles for the isolates and at the same time detected 32 paralogous genes.

Further, chewBBACA was used to remove the paralogous genes. After removing these genes,

the wgMLST data set consisted of the isolates with wgMLST profiles for 4891 loci.

Figure 16 shows a small illustration of a part of the cgMLST data set with one row for each

isolate with a unique SRA number for identification and one column for each locus. The

numbers in the cgMLST data set represent the allele types found in each isolate for each

locus. Some isolates had a flag in some of the columns instead of a number, and the “LNF”

indicated that no allele was found for that locus. The wgMLST data set was arranged in a

similar fashion.

48

Figure 16. Part of the output file for the cgMLST data set after the allelic profiles were made by ALPACCA. Each row is an

isolate with a unique SRA number for identification, the columns are the names of the loci from the Institute Pasteur Listeria

monocytogenes cgMLST schema, and the numbers represent the different allele types found at each locus for the isolates.

Some of the isolates has the flag “LNF” for missing locus instead of the allele type number. These, and other flags were as

described in the text further processed before analyses.

The output for the schema evaluation of the wgMLST schema gave an overview of the alleles

and loci that were found but did not count any problematic alleles. The summary statistic for

the evaluation is shown in Figure 17. The total number of loci and alleles are listed, and no

invalid alleles were found. The “Total alleles not multiple of 3” counts alleles that are not

complete because the sequence size are too small, but no threshold was set for size and the

default is 0, “Total alleles w/>1 stop codon” counts alleles with more than one stop codon,

“Total alleles wo/ start/stop codon” counts alleles missing start and stop codons, and “Total

alleles shorter than 0 nucleotides” counts alleles shorter than the value set for minimum

sequence length, but no minimum value was set and the default is 0.

49

Figure 17. Schema evaluation for wgMLST schema. Shown is the chewBACCA version that made the schema and the BLAST

score ratio used to cluster alleles of the same locus. The total number of loci and alleles are listed. All columns for problems

with the alleles show 0 alleles. “Total alleles not multiple of 3” indicates too short alleles based on a size threshold with

default value 0, “Total alleles w/>1 stop codons” indicates alleles with more than one stop codon, “Total alleles wo/

start/stop codons” indicate alleles without start and/or stop codons, “Total alleles shorter than 0 nucleotides”, indicates

alleles shorter than minimum sequence length with the default value 0, “Total invalid alleles” indicate the total number of

alleles found invalid.

The first cleaning steps removed flags and replaced the flags for missing alleles with “NaN”-

values in both data sets. Then the isolates with the source clinical cases were taken out of the

data sets, and thus the number of isolates per data set were reduced to 967 isolates. Filtering

based on missing values were used to prepare the data sets for machine learning. For the

cgMLST data set 14 loci were filtered out because 10% or more of the isolates had missing

values for the locus. After this filtering the cgMLST data set consisted of 1734 columns of

loci as features. In the wgMLST data set 2395 loci were filtered out using the same cutoff.

After the filtering the wgMLST data set consisted of 2496 columns of loci as features.

The threshold for filtering out sources with number of isolates below 15 did not filter out any

sources for any of the data sets since no isolates were filtered out during cleaning and all

sources originally were above 15 isolates per source.

50

3.2 Data exploration

3.2.1 Differences in MLST methods and diversity of data

When the allelic profiles for the cgMLST data set and the wgMLST data set were made two

different schemas were used, and exploration was done to get an insight to how different the

two schemas gave number values to the distinct alleles. The 5 highest number values given to

alleles were recorded and compared for both data sets. Also, for each locus the number of

distinct alleles was counted, and the highest number counted in each data set was recorded.

The highest number of distinct alleles counted among the loci in the cgMLST data set was 55,

for the wgMLST data set it was 77. The 5 highest number values for the allele types ranged

from 729 to 863 for the cgMLST profiles and 62 to 92 for the wgMLST profiles. The highest

number values for alleles in the two data sets is recorded in Table 4.

Table 4. The 5 highest number values assigned to allele types for the cgMLST and wgMLST data sets.

Data set The 5 highest number values assigned to allele types

cgMLST 863 860 773 731 729

wgMLST 92 69 63 62 60

The diversity was explored by calculating Shannon entropies for the loci in the cgMLST and

the wgMLST data sets. A bar plot of the distribution of the Shannon entropies among the loci

for both data sets is presented in Figure 18. The lowest entropy calculated was 0 for both data

sets, and the highest was 2.96 for the cgMLST data set and 3.10 for the wgMLST data set.

The average values were 1.86 for the cgMLST data set and 1.89 for the wgMLST data set.

51

Figure 18. Distribution of Shannon entropies for loci in the cgMLST and wgMLST data sets.

3.2.2 Clustering

The cgMLST and the wgMLST data sets were clustered using two different unsupervised

machine learning methods to look for grouping among the isolates within each data set. The

clustering was first performed using k-mode clustering. The number of clusters the model

tried to find was 5 to look for natural clustering of the 5 sources in the data sets. The

distribution of the sources within the clusters for the cgMLST data set is shown in Figure 19.

Cluster 3 was the cluster most clearly dominated by one source. This cluster had the source

meat processing factory for 97% of the isolates it contained. The cluster with the second

highest presents of isolates coming from the same source was cluster 2, where 69% of the

isolates had salmon processing factory as source. In the other clusters the isolates sources

were more of a mix.

52

Figure 19. K-modes for the cgMLST data set with 5 clusters and the sources distribution within them.

The distribution of the sources within the clusters for the wgMLST data set is shown in Figure

20. The wgMLST data set showed very much the same clustering as the cgMLST data set.

Also here cluster 3 was dominated by one source, and 91.8% of the isolates in the cluster had

the source meat processing factory. Cluster 2 had the second highest presents of isolates

coming from the same source with 72.3% of isolates with the source salmon processing

factory.

53

Figure 20. K-modes for the wgMLST data set with 5 clusters and the sources distribution within them.

Hierarchical clustering was also performed on the cgMLST and the wgMLST data sets. The

clustering was performed using Hamming distances, and a dendrogram of the clustering

together with a heatmap for the distances is presented in Figure 21 for the cgMLST data set.

The hierarchical clustering and heatmap showed a group of meat processing factory isolates

with high similarity presented as the largest black square in the heatmap. There was one

smaller group of mostly isolates with salmon processing factory as source displaying some

similarity. The rest of the isolates clustering and showing signs of similarities were a mix of

sources.

54

Figure 21. Clustering using the cgMLST data set showing a dendrogram of hierarchical clustering, with sources for the

clustered isolates shown by colour on the side, and a heatmap displaying the Hamming distances between the isolates.

A dendrogram of the clustering together with a heatmap for the distances for the wgMLST

data set is presented in Figure 22. The hierarchical clustering and heatmap of the wgMLST

data set also showed a group of meat processing factory isolates with high similarity

presented as the largest black square in the heatmap, and one smaller group of mostly salmon

processing factory isolates displaying some similarity in this plot.

55

Figure 22. Clustering using the wgMLST data set showing a dendrogram of hierarchical clustering with sources for the

clustered isolates shown by colour on the side, and a heatmap displaying the Hamming distances between the isolates.

3.3 Feature-selection

Before feature-selection the cgMLST and the wgMLST data sets were split into training data

and test data sets in a ratio of 70/30. After the split the training data sets consisted of 676

isolates, and the test data sets consisted of 291 isolates.

56

3.3.1 Mutual information

Using only the cgMLST training data set the mutual information was calculated for each

feature with the class variable holding the source labels giving a score for each feature. A bar

plot of the distribution of mutual information scores among the 1734 features is shown in

Figure 23. The lowest mutual information score was 0, and the highest 0.70. The average

mutual information score of the features was 0.36. The higher the mutual information was

calculated to be, the more information the feature shared with the class variable.

Figure 23. Distribution of the features mutual information score in the cgMLST training data set.

The 10, 20, 30, 40 and 50 percent of the features with the highest mutual information scores

were selected as separate cgMLST training data sets and used further to compare the

performance of the machine learning models based on the smaller subsets of the features in

the cgMLST data set. Table 5 shows the number of features in the feature selected data sets

along with the range of their mutual information score compared with the cgMLST data set

57

before feature-selection. All the feature selected cgMLST data sets had features with mutual

information scores above the average of 0.36.

Table 5. Feature selected cgMLST data sets compared to the cgMLST data set with all features. Showing percent, number of

features and range of mutual information score for the features in the data sets.

By comparing the 10 percent of the loci with the highest Shannon entropies calculated earlier,

with the 10 percent of the loci used as features with the highest mutual information score, it

was found that 142 of the 174 loci with highest entropies also were found among the features

with the 10 percent highest mutual information scores.

3.4 Machine learning models for prediction

3.4.1 Training models

Optimal model hyperparameters:

Different models were made by training them on the different training data sets and

optimising the hyperparameters with a grid search using cross validation. The optimal

hyperparameters found by the grid search are summed up in Table 6 for all models. The cross

validation in the grid search calculated average weighted F1-scores. The optimal

hyperparameter or combinations of hyperparameters, depending on the method for the model,

were the ones giving the highest average weighted F1-score.

Percent of features Number of features Range of mutual information score among

the features

10 174 0.57 - 0.70

20 347 0.52 - 0.70

30 520 0.47 - 0.70

40 694 0.42 - 0.70

50 867 0.37 - 0.70

All cgMLST 1734 0 - 0.70

58

Table 6. Random Forest, Support Vector Machine with and without scaling, and neural network models optimal

hyperparameters for models trained before and after feature-selection on the cgMLST training data set and on the wgMLST

training data set.

The number of decision trees found optimal by the grid search for the Random Forest models

ranges from 300-800. The time for running the grid search and finding the optimal

hyperparameter for a Random Forest model was between 2 to 6 minutes depending on the

number of features in the training data set.

For the Support Vector Machine models with scaling, the optimal hyperparameter value

determined by the grid search for the cost ranged from 2.0-5.5, and for the gamma it ranged

from 0.0005-0.005. The time for running the grid search and finding the optimal

hyperparameter combination for one model was from 1 to 10 minutes depending on the

number of features in the training data set.

Percent

Features/
Training
data set

Random Forest
(no. decision trees)

Support Vector

Machine
with scaling
(Cost and gamma)

Support Vector

Machine
without scaling
(Cost and gamma)

Shallow dense

neural
network
(Nodes, dropout rate,

learning rate)

10%
cgMLST

No. trees=600 Cost=4.0,
Gamma= 0.002

Cost =1.5,
Gamma =0.0005

Nodes =80,
Dropout =0.2

Learning =0.001

20%
cgMLST

No. trees =600 Cost =5.0,
Gamma = 0.001

Cost =2.0,
Gamma =0.0005

Nodes =80,
Dropout =0.2
Learning =0.001

30%
cgMLST

No. trees =800 Cost =3.0,
Gamma = 0.001

Cost =1.5,
Gamma =0.0005

Nodes =80,
Dropout =0.2
Learning =0.001

40%
cgMLST

No. trees =800 Cost =4.0,
Gamma = 0.001

Cost =1.5,
Gamma =0.0005

Nodes =75,
Dropout =0.2
Learning =0.001

50%
cgMLST

No. trees =500 Cost =2.0,
Gamma = 0.001

Cost =1.5,
Gamma =0.0005

Nodes =75,
Dropout =0.2
Learning =0.001

All
cgMLST

No. trees =400 Cost =2.0,
Gamma =0.0005

Cost =1.5,
Gamma =0.0005

Nodes =80,
Dropout =0.2
Learning =0.0001

All
wgMLST

No. trees =300 Cost =5.5,
Gamma =0.005

Cost =3.0,
Gamma =0.0005

Nodes =80
Dropout =0.2
Learning =0.0001

59

For the Support Vector Machine models without scaling, the optimal hyperparameter values

determined by the grid search for the cost were 1.5 for all models except two. The model

trained on the feature selected cgMLST training data set with 20 percent of the features had

the value 2.0 for the cost hyperparameter, and the model trained on the wgMLST training data

set had the value 3.0. The optimal value for the hyperparameter gamma was 0.0005 for all

models. The time for running the grid search and finding the optimal hyperparameter

combination for one model was from 1 to 11 minutes depending on the number of features in

the training data set.

For the shallow dense neural network, the optimal hyperparameter values determined by the

grid search for the number of nodes was either 75 or 80, and the dropout rate was 0.2 for all

models. The learning rate for the optimiser was 0.001 for all the models trained on feature

selected cgMLST training data sets, and 0.0001 for the model trained on the cgMLST training

data set with all features and the same for the wgMLST training data set. The grid search was

run 5 times for the shallow dense neural network models, and one run took from 10-15

minutes making the total time for one model 50-75 minutes depending on the number of

features in the training data set.

Training performance:

The training performance for the models fitted with the optimal hyperparameters are here

defined as the average F1-score calculated by the cross validation in the grid search for the

optimal hyperparameters, and they are shown in Figure 24. If the model always predicts

correct sources for all isolates during cross validation the weighted F1-score will be 1.0, so

the higher the score the better the model is at predicting. The plot in Figure 24 shows the

models training performance between the different machine learning methods and MLST

methods to represent the data, and across the different number of features in the training data

sets.

60

Figure 24. Results for training performance for the models. The x-axis shows the different training data sets with different

number of features. The y-axis is the value of the weighted F1-score calculated by the cross validation for the model with its

optimal hyperparameters. The different colours represent the different machine learning methods, the Support Vector

Machine is represented by both models with scaling of features and without, and the shape of the point indicates the MLST

method used to make the allelic profiles of the data.

A seed was set for reproducibility in the function for the Random Forest models, and different

seeds were tested to see if this had impact on the performance. The training performance of

the Random Forest models did not alter noticeably by changing the seed. The highest training

performance for the Random Forest method had a weighted F1-score of 0.851. This was the

performance of both the model trained on the cgMLST training data set with all features and

the model trained on the wgMLST training data set. The training performance of the Random

Forest models trained on cgMLST feature selected training data sets all had a weighted F1-

score within the range 0.838-0.842. The training performance of the Random Forest models

were stable with only small variation across the different training data sets as shown in Figure

24.

61

For the Support Vector Machine method with scaling, the highest training performance had a

weighted F1-score of 0.856. This was for the model trained on the feature selected cgMLST

training data set with 50 percent of the features. The model trained on the cgMLST training

data set with all features and the rest of the models trained on the cgMLST feature selected

training data sets had a training performance in the range of 0.817-0.851. The training

performance of the model trained on the wgMLST training data set was 0.854. Apart from

slightly lower performance for the model trained on the cgMLST feature selected data set

with 10 percent of the features, Figure 24 shows a stable training performance across the

different training data sets for the Support Vector Machine models with scaling.

The highest training performance for the Support Vector Machine method without scaling,

was a weighted F1-score of 0.858. This was the training performance of the model trained on

the wgMLST training data set, and the performance was notably higher than the other models.

The range for the weighted F1-scores for all the models trained on cgMLST training data sets

was 0.623-0.739. The trend seen in Figure 24 shows a declining training performance for the

models as the number of features increases in the cgMLST training data sets, before going up

again for the model trained on the wgMLST training data set.

For the shallow dense neural network, the highest training performance was a weighted F1-

score of 0.818. This was the score for both the model trained on the cgMLST feature selected

data sets with 30 percent of the features and 50 percent of the features. All the models trained

on cgMLST training data sets had a training performance with a weighted F1-score in the

range 0.801-0.818. The training performance drops down to a weighted F1-score of 0.760 for

the model trained on the wgMLST training data set. The trend in Figure 24 shows a stable

training performance for the models trained on cgMLST training data sets, but a drop in

performance for the model trained on the wgMLST data set.

3.4.2 Evaluating model predictions

The trained models fitted with their optimal hyperparameters were used to predict the sources

for the isolates in the test data set. The performances of the predictions were evaluated by

calculating the F1-score for each source along with the weighted F1-score and macro F1-

62

score. Confusion matrices were also made for the models trained on the cgMLST training data

set with all features and the wgMLST training data set to compare how well the models

trained on the different MLST profiles distinguish between the sources.

Confusion matrices:

Figure 25 shows the confusion matrices for the predictions of the isolates in the test data set’s

sources done by the different machine learning methods with models trained on all the

features in the cgMLST training data set. Because of the imbalance of isolates per source in

the data the matrices display the fraction of predicted isolates per total number of isolates in

the true source. The Random Forest model had a high rate of correct predictions for both the

isolates from meat processing factories and the salmon processing factories. The isolates with

sources dairy farms, and rural and urban environments had more incorrectly predicted isolates

than the meat and salmon processing factories. However, around half of the predictions were

correct for the isolates from dairy farms, and more for the rural and urban environments. The

isolates from dairy farms were most frequently incorrectly predicted to have rural and urban

environments as source, and the isolates from rural and urban environments were most

frequently incorrectly predicted to have salmon processing factory as source. The isolates

from slugs were incorrectly predicted more than they were correctly predicted, and they were

predicted incorrectly as isolates from all the other sources. The predictions of the Random

Forest model, the shallow dense neural network, and the Support Vector Machine with scaling

were very similar. The Support Vector Machine without scaling, predicted mostly meat

processing factory as source for all isolates and had a high rate of incorrect predictions.

63

Random Forest cgMLST

Shallow dense neural network cgMLST

Support Vector Machine with scaling cgMLST

Support Vector Machine without scaling cgMLST

Figure 25. Confusion matrices for the predictions of the isolates in the test data set done by the models trained with all

features in the cgMLST data set. The matrices show the fraction of predictions per source per the total number of isolates in

each true source. There is one confusion matrix for each of the models Random Forest, shallow dense neural network,

Support Vector Machine with scaling, and Support Vector Machine without scaling. The true sources of the isolates are the

rows and the model’s prediction are the columns in the matrix.

Figure 26 shows the confusion matrices for the predictions of the source for the isolates in the

test data set done by the different machine learning methods with models trained on the

wgMLST training data set. Also for these matrices the predicted source for the isolates in the

matrices are displayed as the fraction of predicted isolates per total number of isolates in the

true source. Adding more features and changing the MLST method did not alter the

predictions much for the Random Forest model, the shallow dense neural network model, or

the Support Vector Machine model with scaling. However, the predictions for the Support

Vector Machine model without scaling changed to the better when the model was trained on

64

the wgMLST training data set compared to the cgMLST training data set. The model

managed to correctly predict most of the isolates from meat and salmon processing factories,

and rural and urban environments. Around a third of the isolates with dairy farms as source

were also predicted correctly, and two thirds were incorrectly predicted as isolates from rural

and urban environments. Like the other models, this model could not predict the correct

source for the isolates from slugs either.

Random Forest wgMLST

Shallow dense neural network wgMLST

Support Vector Machine with scaling wgMLST

Support Vector Machine without scaling wgMLST

Figure 26. Confusion matrices for the predictions of the isolates in the test data set done by the models trained with the

wgMLST training data set. The matrices show the fraction of predictions per source per the total number of isolates in each

true source. There is one confusion matrix for each of the models Random Forest, shallow dense neural network, Support

Vector Machine with scaling, and Support Vector Machine without scaling. The true sources of the isolates are the rows and

the model’s prediction are the columns in the matrix.

65

Test performance per source:

The plots in Figure 27 shows the different models ability to predict the source for the isolates

in the test data set per source. The plots show the F1-scores calculated per source for each of

the machine learning models trained on the different number of features and with allelic

profiles from the different MLST methods. The Random Forest, the shallow dense neural

network, and the Support Vector Machine method with and without scaling each have one

plot displaying the F1-scores for their models per source in the Figure.

Figure 27. Test performance results with F1- score per source after the models predicted the sources for the isolates in the

test data set. There is one plot for each machine learning method, the Support Vector Machine is represented by both the

models with scaling and without. The x-axis shows the different training data sets with different number of features, and the

shape of the point indicates the MLST method used to make the allelic profiles of the data. The colours represent the

different sources.

The Random Forest models had high performance scores for isolates from the food-associated

sources meat and salmon processing factory, the F1-scores for the models were in the range

66

0.920-0.948 for the isolates from meat processing factories, and 0.912-0.930 for salmon

processing factories. For the isolates with rural and urban environments as source the F1-

scores for the models were in the range 0.597-0.725, and for the isolates with dairy farms as

source the range was 0.500-0.579. For the isolates with slugs as source the F1-scores for the

models were low and in the range 0.222-0.250.

For the Support Vector Machine with scaling, the highest F1-scores were for the isolates from

the food-associated sources, meat and salmon processing factory. The range of the F1-scores

for the models was 0.904-0.936 for the source meat processing factory, and 0.904-0.960 for

the source salmon processing factory. For the isolates with rural and urban environments as

source the models had their F1-scores in the range 0.540-0.727. The F1-score for the

predictions of the isolates with dairy farms as source were in the range 0.471-0.634. For the

isolates with slugs as the source the F1-scores were low and equal to 0 for both the model

trained on the feature selected cgMLST training data sets with 10 percent features and 20

percent features. The rest of the models had the F1-score 0.250.

For the Support Vector Machine without scaling, the F1-scores for the isolates with meat

processing factories as source ranged from 0.768-0.951 for the models. For the isolates with

salmon processing factories as source, the F1-scores ranged from 0.784-0.943. For the isolates

with rural and urban environments as source, the F1-scores ranged from 0.256 -0.625 for the

models. The F1-score for the isolates with dairy farm as source were 0.500 for all models

apart from the model trained on the feature selected cgMLST training data set with 10 percent

features which had the score 0.424, and the model trained on the cgMLST training data set

with all features which had the score 0.400. The isolates with slugs as source had stable but

low predicting performance with the F1-score 0.25 for all models.

The F1-scores for the shallow dense neural network models also had highest scores for the

isolates from the food-associated sources. For meat processing factories the models F1-scores

were in the range 0.865-0.915, and 0.848-0.912 for isolates from salmon processing factories.

For the isolates with rural and urban environments as source the models had F1-scores in the

range 0.518-0.623. For the isolates with dairy farms as source the F1-scores were in the range

67

0.428-0.557 for the models. The predictive performance for the isolates with slugs as source

were low, and the F1-scores for all the models were in the range 0.056-0.200.

A table with all the test performances for the models as F1-scores per source can be viewed in

Appendix A.

Average test performance:

A plot of the weighted F1-scores and the macro F1-scores for the models are visualised in

Figure 28. The plot shows the comparison of the predictive performances of the models on the

test data sets between machine learning methods, and across the different numbers of features

in the training data sets and allelic profiles from the different MLST methods.

Figure 28. Test performance results with F1- weighted and F1-macro scores after the models predicted the sources for the

isolates in the test data set. The x-axis shows the different training data sets with different number of features. The y-axis is

the value of the weighted/macro F1-score calculated for the performance. The solid line shows the weighted F1-scores, and

the dashed line shows the macro F1-scores. The different colours represent the different machine learning methods, the

68

Support Vector Machine is represented by both the models with scaling and without, and the shape of the point indicates

the MLST method used to make the allelic profiles of the data.

The Random Forest method and the Support Vector Machine with scaling had the highest

performance scores for the different models. The Random Forest method had the most similar

performance between the models, and the Support Vector Machine model with scaling trained

on the feature selected cgMLST training data set with 40 percent of the features had the

highest recorded test performance, with a weighted F1-score of 0.871 and a macro F1-score of

0.686.

The highest test performance for the Random Forest method was for the model trained on the

wgMLST training data set and had a weighted F1-score of 0.869 and a macro F1-score of

0.685. The test performance of the Random Forest models trained on the cgMLST training

data sets before and after feature-selection all had a weighted F1-scores within the range

0.838-0.853 and a macro F1-score within the range 0.641-0.669. The test performance of the

Random Forest method was stable with only small variation across the models trained on the

different number of features in the cgMLST training data sets and had a peak in performance

for the model trained on the wgMLST training data set as shown in Figure 28.

For the Support Vector Machine method with scaling the highest test performance was for the

model trained on the feature selected cgMLST training data set with 40 percent of the

features, and it had a weighted F1-score of 0.871 and a macro F1-score of 0.686. The rest of

the models trained on the different cgMLST training data sets had a test performance in the

range of 0.822-0.855 for the weighted F1-score and a macro F1-score within the range 0.575-

0.674. The model trained on the wgMLST training data set had a weighted F1-score of 0.846

and a macro F1-score of 0.658. Figure 28 shows that the test performance for the Support

Vector Machine method with scaling had some variations in the performance for the different

models with a peak in performance for the model trained on the feature selected cgMLST

training data set with 40 percent of the features.

69

The highest test performance for the Support Vector Machine method without scaling was a

weighted F1-score of 0.856 and a macro F1-score of 0.653. This was the test performance of

the model trained on the wgMLST training data set, and the performance was notably higher

than for the other models. The test performances for the models trained on the different

cgMLST training data sets were in the range of 0.672-0.786 for the weighted F1-score and

0.492-0.587 for the macro F1-score. The trend seen in Figure 28 shows a declining test

performance for the models as the number of features increases for the models trained on

cgMLST training data sets.

For the shallow dense neural network, the highest test performance had a weighted F1-score

of 0.832 and a macro F1-score of 0.639. This was the score for the model trained on the

feature selected cgMLST training data set with 30 percent of the features. The rest of the

models trained on the different cgMLST training data sets had a test performance with the

weighted F1-scores in the range 0.791-0.830 and a macro F1-score in the range 0.574-0.636.

The test performance drops down to a weighted F1-score of 0.778 and a macro F1-score of

0.560 for the model trained on the wgMLST training data set. The trend in Figure 28 shows a

stable test performance across the models with a slight drop in performance for the model

trained on the feature selected cgMLST training data set with 10 percent features and a drop

for the model trained on the wgMLST training data set. The test performances for the shallow

dense neural networks were an average of performance after predicting the sources for the

isolates in the test data set 30 times. The average standard deviation for the weighted F1-

scores was 0.020, and the average standard deviation for the macro F1-score was 0.036. These

were the averages calculated for all the models using the shallow dense neural network as

method.

A table with all weighted and macro F1-scores for the test performance of the models can be

viewed in Appendix B.

3.4.3 Predicting sources for isolates from clinical cases

The sources for the isolates from the 130 clinical human cases of listeriosis were predicted

using the models for the different machine learning methods that were trained on the cgMLST

70

training data set with all features and the wgMLST training data set. The distribution of

prediction per source is presented in Figure 29. The full list of prediction for each isolate is

found in Appendix C.

Figure 29. The predicted sources for the 130 isolates from clinical human cases of listeriosis. The d istribution of prediction

per sources is shown for the models trained on the cgMLST training data set with all features and the wgMLST training data

set. The models are grouped by machine learning method, and the Support Vector Machine is represented both by models

with and without scaling. The colours indicate the predicted source.

Figure 29 shows that all models except the Support Vector Machine models without scaling

predicted at least a few isolates from the clinical cases to come from all the different sources.

The Support Vector Machine model without scaling trained on the cgMLST training data set

predicted all clinical isolates to have meat processing factories as source, and the model

trained on the wgMLST training data set did not predict any clinical isolates to have dairy

farm as source.

71

4.0 Discussion

The main aim of this study was to find out how supervised machine learning models could be

used to predict the source of a set of Norwegian Listeria monocytogenes isolates by using

their genomic data. Several models using different machine learning methods and two

different methods for making MLST allelic profiles to represent the data were used to

compare the predictive power between the different models. The three machine learning

methods Random Forest, Support Vector Machine and a neural network were used to train

models on cgMLST profiles before and after feature-selection and on wgMLST profiles. The

secondary object for the study was to investigate the information held by the data sets using

the diversity measure Shannon entropy and groupings of the isolates were explored using the

unsupervised machine learning methods k-mode and hierarchical clustering. This were done

because diversity and information are required for the machine learning models to find

patterns to classify the data by source. The models were trained on isolates from the sources

meat processing factories, salmon processing factories, rural and urban environments, dairy

farms, and slugs. Further, a couple of the models for each machine learning method were used

to predict the sources for a set of isolates from clinical human cases of listeriosis without

known sources.

Based on research on the different machine learning methods and earlier studies using

machine learning for source attribution with similar input data (Tanui et al., 2022; Wright &

König, 2019) the Random Forest method was anticipated to have the best performance among

the tested methods. In this study the method proved to have some of the highest and the most

stabile performances for the models across the different number of features in the training

data sets and with two different MLST methods used to represent the data. It showed no signs

of performance decline or enhancement due to the feature-selection. It can also be argued that

it was among the easiest methods to use, as Random Forest models requires few

hyperparameters to be tuned and a minimal amount of preprocessing of the data is required

for the model to handle the data (Raschka & Mirjalili, 2019, pp. 100-103; Wright & König,

2019). The Support Vector Machine method did manage to get higher test performance than

the Random Forest method for a few of the models, but overall had a more unstable

performance for the models with different training data sets. The Support Vector Machine

method was affected by the scale of the input data. By adding scaling for the Support Vector

Machine models they often had a performance close to or even better than the Random Forest

72

models but the models without scaling generally had poor performance. The input data was

categorical, and the values only represented category labels not numeric values, and by

performing scaling the label values would wrongly be treated as numeric values. The last

method that was implemented was a neural network which had a stable performance for most

of the models with different training data sets but had an overall lower performance than both

the Random Forest models and the Support Vector Machine models with scaling. The neural

network was also the hardest machine learning method to implement and had high cost, both

in time and computational resources. All the models implemented in this study were trained

on isolates with different sources, and the two food associated sources, meat and salmon

processing factories comprised 69% of the data set. All the models for the different machine

learning methods generally had the highest predicting performance for the isolates from the

food-associated sources. This indicated that machine learning might find patterns in allelic

profiles that could be used to classify at least the isolates with food-associated sources.

Listeriosis in humans is mainly a foodborne disease (Degré et al., 2010, pp. 223-226), this

means the models were getting highest performance for the most likely sources of listeriosis

in humans. Both the cgMLST and wgMLST data sets showed diversity among the isolates,

and the clustering done by the unsupervised machine learning methods displayed some

grouping of isolates with food-associated sources.

The data set in this study was not gathered with this study in mind and had as mentioned a

very skewed distribution of isolate per source as seen in Table 3, and this has likely affected

the results. There are only 24 isolates with slugs as source as opposed to 456 isolates with

meat processing factories as source. Taking measures to balance the classes might have given

the models higher predictive performance, and better performance for some of the not food-

associated sources. Measures to balance the data set could make the data set smaller by down-

sampling the largest classes giving the machine learning models less data to train on, which

might lead to poorer generalisation and performance. Measures to balance the data set by up-

sampling the smallest classes could introduce a lot of duplicates or be hard to implement

because the features might have dependencies between each other because they are genes. For

machine learning models imbalanced data sets can pose a problem as the models will be

biased towards predicting the largest class, because this often will give high accuracy

(Raschka & Mirjalili, 2019, pp. 211-221). There were no attempts to balance the classes in

this study and instead a performance metric suitable for imbalanced data sets was chosen to

73

take the imbalance into account. The different F1-scores factor in both the recall and the

precision of the model (Raschka & Mirjalili, 2019, pp. 211-221). Different F1-scores were

therefore deemed better for evaluating the performance for the models, because the F1-scores

are not only affected by correct predictions, but also incorrect predictions. The weighted F1-

score was the primary metric for model performance as it additionally weights in the

imbalance of the data set.

The preprocessing needed for the data was kept simple by using allelic profiles made with

MLST methods directly as features for the machine learning models. Allelic profiles were

made with both cgMLST and wgMLST. Several cgMLST schemas are already available for

public use, making it easy to generate cgMLST profiles for isolates for future predictions and

using the same schemas to make allelic profiles in different laboratories (Jolley et al., 2018;

Moura et al., 2016). Adding additional accessory genes found using wgMLST could enhance

the resolution and give better predictions if any of the accessory genes had a strong

association to the source of isolates. The research done by Liao et al. (2023) indicated that

some association can be found between certain accessory genes and source, as well as for

some of the core genes. The wgMLST schema was made internally. The schema evaluation of

the wgMLST schema is shown in Figure 17, and this assessment of the alleles that had been

included in the schema did not report any problematic alleles. By setting thresholds to filter

out loci with a lot of missing alleles, loci with little genetic insight for the data set in this

study could be filtered out. Missing the allele of a specific locus could also give information,

so loci with number of missing alleles below the threshold got their missing alleles encoded as

“-1” to keep them. This was done in a similar way by Arning et al. (2021) when allelic

profiles were used for source attribution of Campylobacter jejuni. After data cleaning the

wgMLST data set had 762 loci more than the cgMLST data set, and these were then assumed

to be the loci of accessory genes. Using allelic profiles directly introduced numbers

representing the categories for the different allele types in the loci. As already mentioned, this

was not assumed to be a large issue for the Random Forest method but could be problematic

for both the Support Vector Machine and the neural network. Additional encoding steps to

one-hot encode the features were considered but the high cardinality of the features made this

hard to implement without increasing the dimensionality a lot for the two data sets. Making

encoding or preprocessing steps to get numeric data instead of categorical data might have

given better predicting abilities for some of the models, however other similar studies have

74

had success with using allelic profiles directly earlier (Arning et al., 2021; Munck et al.,

2020; Tanui et al., 2022). Finding the simplest way to make machine learning models for

source attribution seemed like a good approach before adding what might be unnecessary

preprocessing steps.

Because some of the machine learning methods are sensitive to the range of the numbers in

the input data the cgMLST and the wgMLST data sets were explored by finding the highest

numbers assigned to the allele types in the profiles and comparing it with the highest number

of distinct alleles counted per locus. A difference between the two MLST schemas used when

assigning numbers to distinct allele types became clear. The cgMLST data set had a lower

count of distinct alleles per loci but had some very high numbers assigned to some of the

allele types compared to the wgMLST data set, as seen in Table 4. The external cgMLST

schema had 371020 different alleles and they were found and labelled by analysis of a larger

set of isolates than the data set in this study according to information given on the schema by

the nomenclature server Chewie (Mamede et al., 2021). The internally made wgMLST

schema had 67351 alleles according to the schema evaluation in Figure 17. So, it is only

natural that some of the numbers assigned to the allele types in the cgMLST profiles would

have higher values. It should be noted that the isolates with clinical cases as source were

among the input genomes when the wgMLST schema was made and evaluated, but not during

the data exploration. This causes a higher number of distinct alleles in the wgMLST schema

than in the wgMLST data set during exploration, but not in the same extent as for the

externally made cgMLST schema.

Further data exploration was done using Shannon entropy and unsupervised machine learning

for clustering. The Shannon entropy expresses the diversity in the data sets and was used as a

measure of information in the data sets. Having enough information in the data sets is

important to make it possible for machine learning models to find patterns. The distribution of

Shannon entropies for the loci in both the cgMLST and the wgMLST data sets can be seen in

Figure 18, and the two data sets had similar distribution of entropies. Adding the accessory

genes that the wgMLST data set contributed did not add any loci with notably higher entropy

than the cgMLST data set, and the average entropy hardly changed. Some loci with no

entropy were observed, and these had to have the same allele type value for all the isolates.

75

However, both data sets had numerous loci with diversity. Unsupervised machine learning

methods using k-modes and hierarchical clustering were used to look for groupings and

similarities between the isolates in the data sets. The results of the clustering are seen in

Figure 19-22. As is apparent, the results were quite similar for both MLST data sets. Both

clustering methods found a cluster with mostly isolates with meat processing factories as

source, and some smaller grouping of isolates with mostly salmon processing factories as

source. This means the allelic profiles for the isolates in those clusters were quite similar. The

metadata for the isolates reveals that the isolates from food processing factories are part of the

factories surveillance of bacteria. Quite few of the isolates are sampled from the same factory

which can make them closely related. This might be part of the reason for higher similarities

found for some groups of food-associated isolates. The findings by both the diversity

measuring and the unsupervised machine learning methods indicate the data sets have

captured information on the isolates, and this could be enough for machine learning models to

classify the isolates by source.

Both data sets were divided into training and test data sets before feature-selection to avoid

leaking information from the test data set to the model training. For feature-selection mutual

information was calculated for features in the cgMLST training data set with the class

variable holding the source labels giving each feature a mutual information score. The

wgMLST data set does presumably contain the same loci used as features in the cgMLST data

set, in addition to loci for accessory genes. Therefore, feature-selection was not performed on

the wgMLST data set. This can of course be a false assumption for some of the loci as two

different MLST schemas were used to define loci. As seen in Figure 23 several of the features

in the cgMLST training data set has mutual information with the class variable holding the

source labels. Features having mutual information with the class variable have a dependency

with the class variable, meaning that knowing the value of the feature gives some information

on the value of the class variable. A few features had no mutual information score, this is not

surprising because some of the loci used as features had no entropy either. The mutual

information scores were used to make different feature selected training data sets, all with

features having mutual information scores above the average for the features in the data set as

seen in Table 5. The loci with the 10% highest Shannon entropies in the cgMLST data set

were compared with the loci used as features in the feature selected cgMLST training data set

with 10% of the features. As stated in results section 3.3.1 a large amount of the loci with the

76

highest Shannon entropy were also found among the features with the highest mutual

information scores. This visualises the need for diversity to be able to use genomic data to

give information on the sources. The drawback of using methods to only measure

dependencies between two variables for feature-selection is that the information held by a

combination of features with the class variable is not calculated at all. Features might not have

information on all the sources, but a combination of features might have much more

information. Using mutual information for feature-selection might have deprived the machine

learning models of the opportunity to find some of these combinations in the feature selected

training data sets.

Using a grid search to find optimal hyperparameters for models during training can be time

and resource consuming depending on how many hyperparameters are tuned. The optimal

hyperparameters that were found can be seen in Table 6. The Random Forest method had a

low time consumption, up to 6 minutes, for training the model and only the hyperparameter

for number of decision trees was chosen to be tuned. The number of decision trees found as

optimal is hard to interpret because of the stochasticity of the Random Forest method, and

when different seeds were tested the model performance did not change but the optimal

number of decision trees did. Compared with the Random Forest method the Support Vector

Machine method both with and without scaling had a similar time consumption for training.

The two hyperparameters cost for misclassification and gamma to scale the kernel function

were chosen to be tuned. Different kernel functions could also have been tested, but to limit

this study only the rbf-kernel was used. When comparing the Support Vector Machine method

with and without scaling, the models without scaling chooses lower values for the

hyperparameters than the one with scaling. It looks like the models without scaling in this

study requires softer boundaries than the models which uses scaling. Softer boundaries meant

it allowed more misclassification (Raschka & Mirjalili, 2019, pp. 79-90). The neural network

had the most hyperparameters that can be tuned, but to lower the time and resources used to

make a neural network only three were tuned. The number of nodes in the hidden layer, the

dropout rate for the dropout layer and the learning rate of the optimiser were tuned. Even

when narrowing down the options for tuning hyperparameters, and not repeating the cross

validation in the grid search each neural network used around an hour to train. Each run of the

grid search was not that time consuming with these restrictions, but the stochasticity of the

models required the grid search to be run a few times to get an average training performance

77

to find the most optimal combination of hyperparameter values. Small learning rates, like the

ones seen in Table 7 as optimal, for the optimiser increase the risk of the optimiser only

leading the training of the model to a low, local loss value calculated by the loss function

instead of finding a lower, global loss value (Raschka & Mirjalili, 2019, pp. 421-422). The

neural network could possibly have gotten better performance by also tuning other

hyperparameter like the batch size. The grid search used in this study explores all

hyperparameter values given to it to find optimal combinations. The time and amount of

resources the grid search used for the Random Forest and the Support Vector Machine

methods were not that high, but this was not an equally good way of finding optimal

hyperparameter for a neural network. Other less exhaustive searches for optimal

hyperparameters could have made it easier to tune more hyperparameters without increasing

the cost of time and resources too much for the neural network.

The training performances measured in weighted F1-scores, seen in Figure 24, were quite

similar for each the different machine learning methods models with different training data

sets, except for the Support Vector Machine models without scaling. Those models had lower

training performance and more variety in the weighted F1-scores than the Support Vector

Machine models with scaling, the Random Forest, and neural network models. The difference

between training performance of the Support Vector Machine method with and without

scaling reflects the sensitivity to the scale of the input data for the Support Vector Machine

models in this study. The neural network method however seems less impacted by the scale of

the input data than the Support Vector Machine method, and the models only has a little lower

performance than the Random Forest models.

The training performance of the models gave a glimpse into the predicting power of the

models, but to assess the generalisation and get a performance measure closer to the true

performance, the models were evaluated by predicting the sources for the isolates in the test

data set. Differences between the cgMLST data set and wgMLST data set were explored by

making confusion matrices for the models trained on the two data sets. Only the models

trained on the cgMLST training data set with all the features were used to compare against the

models trained on the wgMLST training data set to not add the effect of feature-selection.

Only the Support Vector Machine models without scaling had any notable change in

78

performance between the method’s model trained on the cgMLST training data set with all

the features and the model trained on the wgMLST training data set. Figure 25 shows the

confusion matrices for the models trained on the cgMLST training data set with all features

for the different machine learning methods, while Figure 26 shows the same for the models

trained on the wgMLST training data set. The Support Vector Machine model without scaling

seems to be impacted by the difference in the features scale caused by the difference in the

assignment of numbers to allele types for the two MLST methods discussed earlier. The range

of values per feature was smaller in the wgMLST data set. This seems to cause the Support

Vector Machine model without scaling to go from bad predicting abilities to suddenly getting

the same predicting abilities as the Support Vector Machine model with scaling when trained

on the wgMLST training data set. The Figures 25/26 also shows a similar predicting ability

for isolates from each source between the Random Forest, Support Vector Machine with

scaling, and the neural network. Those models had good predicting abilities, with high rates of

correctly classified isolates for the isolates from the food-associated sources, meat and salmon

processing factories. The Random Forest and Support Vector Machine models with scaling

had a bit better predicting ability for the isolates from the source rural and urban environments

that the neural network. The isolates from rural and urban environments were most often

misclassified as isolates with salmon as source. The isolates with dairy farms were only

predicted correct about half of the time and often misclassified as isolates with rural and urban

environments as source instead for the Random Forest, Support Vector Machine with scaling,

and the neural network models. Isolates with the source slugs is clearly the hardest to predict

correctly for all the models. The imbalance in the data set might affect the predicting ability

for each source. The isolates from the largest sources in the data set were generally predicted

correctly more often than isolates from the smaller sources. However, the largest sources,

meat and salmon processing factory, were separated from each other quite well and generally

had few isolates from other sources wrongly predicted as from them.

The F1-score calculated per source for the models in Figure 27 showed much the same as the

confusion matrices but for all the models trained on the different training data sets. The

isolates from the two food-associated sources were clearly easiest to classify correctly. The

imbalance of the data set should also be kept in mind here when assessing the predicting

abilities per source, as the models would have been biased towards classifying the largest

sources. The not food-associated sources had much lower F1-scores with the lowest score for

79

the slugs with fewest isolates in the data set. It is a bit hard to conclude because of the class

imbalance but it could also indicate that the not food-associated sources might not have

equally restricted habitats for L. monocytogenes like the food-associated sources, making it

harder to find general patterns for isolates from those sources. The study by Liao et al. (2023)

found evidence that Listeria isolates from natural habitats such as soil had a range of factors

that impacted adaptations of isolates found there, and the factors may vary between different

places isolates are sampled from. The rural and urban environmental isolates in this study

were sampled from a variety of different places and with different soil types, this can possibly

give high diversity and less similarity within the isolates with environment as source.

The weighted F1-score, which weighs in the number of isolates per source, and the macro F1-

score, which takes the average of the F1-score for each source, are seen for the different

models in Figure 28. The different models in the Figure are the models trained on the different

numbers of features for the cgMLST training data sets and on the wgMLST training data set.

The weighted F1-scores weights in the larges sources as most important, here being the food-

associated sources. The macro F1-score is an average of the F1-scores per source and the

predictions of isolates from each source are equally important. The models have already

shown some ability to predict isolates from the food-associated sources best, and this was also

reflected in the F1-scores where the weighted F1-scores always were higher than the macro

F1-score. The models with the Random Forest method showed high performance scores and

the most stable scores across the different training data sets for the models. The highest

performance for the Random Forest method was for the model trained on the data set with

most features, the wgMLST training data set. For the Support Vector Machine with scaling

and the neural network the performance was best for the models trained on around 30-40

percent of the features in the cgMLST training data set, and the performance looked like it

was affected some by higher or lower number of features for the training data sets. A slight

inconsistency in the otherwise apparent correlation between the weighted F1-score and the

macro F1-score were observed for the test performance of the Support Vector Machine

models with scaling trained on the feature selected cgMLST training data sets with 10 percent

and 20 percent of the features. This happened because the two models did not predict any

isolates with slugs as source. Because of the difference in calculating the F1-scores this

affected the macro F1-score more than the weighted F1-score. The Support Vector Machine

without scaling overall had the poorest performance, and the performance declined for the

80

models as the number of features increased for the cgMLST training data set for the model.

Then the model performance increased again to get a similar score as the Support Vector

Machine model with scaling when trained on the wgMLST training data set. Again, the

difference in the assignment of numbers to allele types for the two MLST methods likely

brought the features into a more similar scale for the wgMLST data set than the features in the

cgMLST training data sets, making it easier for the model without scaling to classify the

isolates correct. The lowest weighted F1-score recorded was 0.672, and it was for the Support

Vector Machine model without scaling trained on the cgMLST training data set with all

features. In comparison the best recorded weighted F1-score was 0.871, and it was for the

Support Vector Machine model with scaling trained on the cgMLST training data set with 40

percent of the features. The methods Random Forest and Support Vector Machine with

scaling had weighted F1-scores over 0.82 for all models. The neural network had mostly

models with weighted F1-scores above 0.80. Similar to the performance result in the study by

Tanui et al. (2022) and Arning et al. (2021) where different machine learning methods were

compared for source attribution using allelic profiles as input data, the ensemble learners like

Random Forest overall had the best performance also in this study. The Support Vector

Machine models showed potential of high performance but were sensitive to the scale of the

input data in this study. Making the performance of Support Vector Machine models between

studies harder to compare because the scale of the input data affects the performance a lot.

The neural network in this study was inspired by the shallow dense neural network in the

study by Arning et al. (2021), and the trend seen by comparing the neural network

performance with the performance of the Random Forest method in both studies comes out

quite similar. The neural networks performed poorer than the Random Forest models, but not

by that much. The exact performances might be a bit hard to compare because of differences

in methods and that the attribution of source are for different bacteria species but the trends

seen for the overall performance of the methods in this study is somewhat similar to what

earlier studies in the same field has found.

The different machine learning methods were used to predict the sources for isolates from the

clinical human cases. The chosen models were trained on the cgMLST training data set with

all features and the wgMLST training data set. The predictions were only done to investigate

the difference between the two methods of making MLST allelic profiles and not the effect of

feature-selection. The models using the Random Forest, the Support Vector Machine with

81

scaling and the neural network methods showed most similarity in frequency of predicted

sources. The Support Vector Machine model without scaling trained on the cgMLST training

data set did only predict meat processing factory as source for all the clinical isolates ,

meaning it heavily preferred predicting the largest source it was trained with. This was similar

to the predictions the model had on the test data set seen in the confusion matrix for the model

in Figure 25, where most isolates were predicted to be from meat processing factories. The

Support Vector Machine model without scaling trained on the wgMLST training data set did

not predict any clinical isolates to have the source dairy farm, but all other sources were at

least predicted ones. The infection source for the clinical cases were not known, but almost all

models did predict slugs as source for at least some of the isolates. This is not very likely to

be true but shows that machine learning models used for source attribution have the downside

that they always will make a prediction and it is only possible to predict sources the model is

trained on. This is similar to the limitations for the statistical model approaches to source

attribution, like the models using microbial subtyping methods, that only can calculate

probabilities for predefined sources (Pires et al., 2009).

82

5.0 Conclusion and future work

The methods used in this study shows that there are potential of using genomic data of

Listeria monocytogenes sampled in Norway for source attribution using machine learning.

Although the imbalance in the data set made it hard to conclude on the exact predicting

abilities for the machine learning methods. The data set in this study was not that large but

still had enough diversity to at least classify the food-associated sources using both cgMLST

and wgMLST allelic profiles to represent the genomes. It looked like the effect of the feature-

selection done in this study was small for the Random Forest method but had some effect for

the Support Vector Machine and the neural network methods. Of the machine learning

methods that were explored in this study the Random Forest method was the easiest to

implement and overall got the best results. The method was also the one best suited for the

categorical input data the MLST methods made. More research should be done to be able to

make a good enough model to be used in the search of the source during a listeriosis outbreak.

For future work a data set with more balanced classes should be tested. Since the optimal goal

is to make a model good at predicting sources for human clinical cases of listeriosis the

sources should primary be food-associated. Measures to balance the data set in this study

could also be attempted to see how that impacts the predictions compared to the imbalanced

data set. If possible, a larger data set should also be tested to capture a larger part of the

genetic diversity in the population. Better approaches to feature-selection could be

investigated by annotating the loci in the MLST schema and selecting loci based on the genes

associated with adaptations to the habitat like the ones found by Liao et al. (2023) for L.

monocytogenes. The neural network has a large potential to be improved as only a few of the

hyperparameters were tuned in this study. The tree-based ensemble learner Random Forest

did well in this study, and other ensemble learners could be tested to see if better performance

could be contained. Finally, a set of clinical isolates with known sources should be used to

validate model performance.

83

References

Altschul, S. F., Gish, W., Miller, W., Meyers, E. W., & Lipman, D. J. (1990). Basic Local Alignment
Search Tool. Journal of molecular biology, 215(3), 403-410.

https://doi.org/10.1006/jmbi.1990.9999
Arning, N., Sheppard, S. K., Bayliss, S., Clifton, D. A., & Wilson, D. J. (2021). Machine learning to

predict the source of campylobacteriosis using whole genome data. PLoS Genetics, 17(10).
https://doi.org/10.1371/journal.pgen.1009436

Bayliss, S. C., Locke, R. K., Jenkins, C., Chattaway, M. A., Dallman, T. J., & Cowley, L. A. (2023). Rapid

geographical source attribution of Salmonella enterica serovar Enteritidis genomes using
hierarchical machine learning. Elife, 12. https://doi.org/10.7554/eLife.84167

Castelli, P., De Ruvo, A., Bucciacchio, A., D'Alterio, N., Cammà, C., Di Pasquale, A., & Radomski, N.

(2023). Harmonization of supervised machine learning practices for efficient source
attribution of Listeria monocytogenes based on genomic data. BMC genomics, 24(1).

https://doi.org/10.1186/s12864-023-09667-w
Chambert-Loir, A. (2022). Information Theory : Three Theorems by Claude Shannon (1 ed., Vol. 144).

Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-21561-2

Degré, M., Hovig, B., & Rollag, H. (2010). Medisinsk mikrobiologi (3 ed.). Gyldendal.
Ditlefsen, A., & Egeland, E. S. (2023). listeria. Store norske leksikon. Retrieved 9. april 2024 from

https://snl.no/listeria
Fagerlund, A., Idland, L., Heir, E., Møretrø, T., Aspholm, M., Lindbäck, T., & Langsrud, S. (2022).

Whole-Genome Sequencing Analysis of Listeria monocytogenes from Rural, Urban, and Farm

Environments in Norway: Genetic Diversity, Persistence, and Relation to Clinical and Food
Isolates. Applied and Environmental Microbiolgy, 88(6). https://doi.org/10.1128/aem.02136-
21

Folkehelseinstituttet. (2023, 19. januar). Smittevernveileder.
https://www.fhi.no/sm/smittevernveilederen/sykdommer-a-a/listeriose---veileder-for-

helsepers/?term=
Graves, L. M., & Swaminathan, B. (2001). PulseNet standardized protocol for subtyping Listeria

monocytogenes by macrorestriction and pulsed-field gel electrophoresis. International

journal of food microbiology, 65(1), 55-62. https://doi.org/10.1016/S0168-1605(00)00501-8
Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal:

prokaryotic gene recognition and translation initiation site identification. BMC

Bioinformatics, 11(1). https://doi.org/10.1186/1471-2105-11-119
Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb

software, the PubMLST.org website and their applications. Wellcome Open Res, 3, 124-124.
https://doi.org/10.12688/wellcomeopenres.14826.1

Kapperud, G. (2018, 17. desember). Utbrudsveileder. Folkehelseinstituttet.

https://www.fhi.no/ut/utbruddsveilederen/?term=
Kaspersen, H., & Fiskebeck, E. Z. (2022). ALPPACA - A tooL for Prokaryotic Phylogeny And Clustering

Analysis. Journal of open source software, 7(79), 4677. https://doi.org/10.21105/joss.04677
Klug, W. S., Cummings, M. R., Spencer, C. A., & Palladino, M. A. (2013). Essentials of genetics (8th

ed.). Pearson.

Liao, J., Guo, X., Li, S., Anupoju, S. M. B., Cheng, R. A., Weller, D. L., Sullivan, G., Zhang, H., Deng, X., &
Wiedmann, M. (2023). Comparative genomics unveils extensive genomic variation between
populations of Listeria species in natural and food-associated environments. ISME

Communications, 3(1). https://doi.org/10.1038/s43705-023-00293-x
Linke, K., Rückerl, I., Brugger, K., Karpiskova, R., Walland, J., Muri-Klinger, S., Tichy, A., Wagner, M., &

Stessl, B. (2014). Reservoirs of listeria species in three environmental ecosystems. Applied
Environmental Microbiology, 80(18). https://doi.org/10.1128/AEM.01018-14

https://doi.org/10.1006/jmbi.1990.9999
https://doi.org/10.1371/journal.pgen.1009436
https://doi.org/10.7554/eLife.84167
https://doi.org/10.1186/s12864-023-09667-w
https://doi.org/10.1007/978-3-031-21561-2
https://snl.no/listeria
https://doi.org/10.1128/aem.02136-21
https://doi.org/10.1128/aem.02136-21
https://www.fhi.no/sm/smittevernveilederen/sykdommer-a-a/listeriose---veileder-for-helsepers/?term
https://www.fhi.no/sm/smittevernveilederen/sykdommer-a-a/listeriose---veileder-for-helsepers/?term
https://doi.org/10.1016/S0168-1605(00)00501-8
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.12688/wellcomeopenres.14826.1
https://www.fhi.no/ut/utbruddsveilederen/?term
https://doi.org/10.21105/joss.04677
https://doi.org/10.1038/s43705-023-00293-x
https://doi.org/10.1128/AEM.01018-14

84

Lupolova, N., Lycett, S. J., & Gally, D. L. (2019). A guide to machine learning for bacterial host
attribution using genome sequence data. Microbial Genomics, 5(12).

https://doi.org/10.1099/mgen.0.000317
Lyngstad, T. M., Lange , H., Brandal, L. T., Astrup, E., Eide, H. N., Johansen, T. B., Lund, H., Naseer, U.,

Amato, E., Grenersen, M. P., Lavoll, S. B., Jore, S., Soleng, A., Steinert, M., Grøneng, G. M.,
Salamanca, B. V., MacDonald, E., Nygård, K., & Feruglio, S. L. (2022). Årsrapport 2021:
Overvåkning av sykdommer som smitter fra mat, vann og dyr, inkludert vektorbårne

sykdommer [Yearly report].
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2022/2021_arsrapp_mat_vann
_dyr.pdf

Maiden, M. C. J., Jansen van Rensburg, M. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., &
McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics.

Nature reviews Microbiology, 11(10), 728-736. https://doi.org/10.1038/nrmicro3093
Mamede, R., Vila-Cerqueira, P., Silva, M., Carriço, J. A., & Ramirez, M. (2021). Chewie Nomenclature

Server (chewie-NS): a deployable nomenclature server for easy sharing of core and whole

genome MLST schemas. Nucleic Acids Research, 49(D1).
https://doi.org/10.1093/nar/gkaa889

Martin, C. J. M., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth,
K., Caugant, D. A., Feavers, I. M., Achtman, M., & Spratt, B. G. (1998). Multilocus Sequence
Typing: A Portable Approach to the Identification of Clones within Populations of Pathogenic

Microorganisms. Proceedings of the National Academy of Science of the U S A, 95(6), 3140-
3145. https://doi.org/10.1073/pnas.95.6.3140

Maury, M. M., Tsai, Y.-H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., Criscuolo, A.,

Gaultier, C., Roussel, S., Brisabois, A., Disson, O., Rocha, E. P. C., Brisse, S., & Lecuit, M.
(2016). Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity.

Nature Genetics, 48(3), 308-313. https://doi.org/10.1038/ng.3501
Moura, A., Criscuolo, A., Pouseele, H., Maury, M. M., Leclercq, A., Tarr, C., Björkman, J. T., Dallman,

T., Reimer, A., Enouf, V., Larsonneur, E., Carleton, H., Bracq-Dieye, H., Katz, L. S., Jones, L.,

Touchon, M., Tourdjman, M., Walker, M., Stroika, S., . . . Brisse, S. (2016). Whole genome-
based population biology and epidemiological surveillance of Listeria monocytogenes.
Nature Microbiologi, 2(2). https://doi.org/10.1038/nmicrobiol.2016.185

Mughini-Gras, L., Kooh, P., Fravalo, P., Augustin, J.-C., Guillier, L., David, J., Thébault, A., Carlin, F.,
Leclercq, A., Jourdan-Da-Silva, N., Pavio, N., Villena, I., Sanaa, M., & Watier, L. (2019). Critical

Orientation in the Jungle of Currently Available Methods and Types of Data for Source
Attribution of Foodborne Diseases. Frontiers in Microbiology, 10.
https://doi.org/10.3389/fmicb.2019.02578

Munck, N., Njage, P. M. K., Leekitcharoenphon, P., Litrup, E., & Hald, T. (2020). Application of Whole‐
Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium.

Risk Analysis, 40(9), 1693-1705. https://doi.org/10.1111/risa.13510
Nemoy, L. L., Kotetishvili, M., Tigno, J., Keefer-Norris, A., Harris, A. D., Perencevich, E. N., Johnson, J.

A., Torpey, D., Sulakvelidze, A., Morris, J. G., & Stine, O. C. (2005). Multilocus Sequence

Typing versus Pulsed-Field Gel Electrophoresis for Characterization of Extended-Spectrum
Beta-Lactamase-Producing Escherichia coli Isolates. Journal of Clinical Microbiology, 43(4),
1776-1781. https://doi.org/10.1128/JCM.43.4.1776-1781.2005

NicAogáin, K., & O'Byrne, C. P. (2016). The Role of Stress and Stress Adaptations in Determining the
Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Frontiers

Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01865
Painset, A., Björkman, J. T., Kiil, K., Guillier, L., Mariet, J.-F., Félix, B., Amar, C., Rotariu, O., Roussel, S.,

Perez-Reche, F., Brisse, S., Moura, A., Lecuit, M., Forbes, K., Strachan, N., Grant, K., Møller-

Nielsen, E., & Dallman, T. J. (2019). LiSEQ - whole-genome sequencing of a cross-sectional
survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe.
Microbial Genomomics, 5(2). https://doi.org/10.1099/mgen.0.000257

https://doi.org/10.1099/mgen.0.000317
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2022/2021_arsrapp_mat_vann_dyr.pdf
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2022/2021_arsrapp_mat_vann_dyr.pdf
https://doi.org/10.1038/nrmicro3093
https://doi.org/10.1093/nar/gkaa889
https://doi.org/10.1073/pnas.95.6.3140
https://doi.org/10.1038/ng.3501
https://doi.org/10.1038/nmicrobiol.2016.185
https://doi.org/10.3389/fmicb.2019.02578
https://doi.org/10.1111/risa.13510
https://doi.org/10.1128/JCM.43.4.1776-1781.2005
https://doi.org/10.3389/fmicb.2016.01865
https://doi.org/10.1099/mgen.0.000257

85

Pires, S. M., Evers, E. G., Pelt, W. v., Ayers, T., Scallan, E., Angulo, F. J., Havelaar, A., & Hald, T. (2009).
Attributing the Human Disease Burden of Foodborne Infections to Specific Sources.

Foodborne Pathog and Disease, 6(4), 417-424. https://doi.org/10.1089/fpd.2008.0208
Raschka, S., & Mirjalili, V. (2019). Python machine learning: machine learning and deep learning with

Python, scikit-learn, and TensorFlow (Third edition ed.). Packt Publishing.
Rasko, D. A., Myers, G. S. A., & Ravel, J. (2005). Visualization of comparative genomic analyses by

BLAST score ratio. BMC Bioinformatics, 6(1). https://doi.org/10.1186/1471-2105-6-2

Sherwin, W. B. (2010). Entropy and Information Approaches to Genetic Diversity and its Expression:
Genomic Geography. Entropy, 12(7), 1765-1798. https://doi.org/10.3390/e12071765

Silva, M., Machado, M. P., Silva, D. N., Rossi, M., Moran-Gilad, J., Santos, S., Ramirez, M., & Carriço, J.

A. (2018). chewBBACA: A complete suite for gene-by-gene schema creation and strain
identification. Microb Genom, 4(3). https://doi.org/10.1099/mgen.0.000166

Tanui, C. K., Benefo, E. O., Karanth, S., & Pradhan, A. K. (2022). A Machine Learning Model for Food
Source Attribution of Listeria monocytogenes. Pathogens, 11(6).
https://doi.org/10.3390/pathogens11060691

Tortora, G. J., Case, C. L., & Funke, B. R. (2004). Microbiology : an introduction (8th , international
ed.). Benjamin Cummings.

Wright, M. N., & König, I. R. (2019). Splitting on categorical predictors in random forests. PeerJ, 7.

https://doi.org/10.7717/peerj.6339

https://doi.org/10.1089/fpd.2008.0208
https://doi.org/10.1186/1471-2105-6-2
https://doi.org/10.3390/e12071765
https://doi.org/10.1099/mgen.0.000166
https://doi.org/10.3390/pathogens11060691
https://doi.org/10.7717/peerj.6339

86

Appendix A

Test performance of models when predicting sources for isolates in test data set given in the

metrics F1-score per source. Because of the 30 times each of the shallow dense neural

network models predicted the sources for the isolates in the test data set the metrics are an

average and comes with a standard deviation (SD).

F1-score

dairy farm

F1-score

meat
processing
factory

F1-score

rural/urban
environment

F1-score

salmon
processing
factory

F1-score

slugs

Training

data set

Machine

Learning
method

0.50980392156
8627

0.92830188679
2453

0.59701492537
3134

0.92146596858
6387

0.25 cgMLST
10%

Random
Forest

0.52380952380
9524

0.92307692307
6923

0.66666666666
6667

0.91191709844
5596

0.25 cgMLST
20%

Random
Forest

0.57894736842

1053

0.91970802919

708

0.67567567567

5676

0.93048128342

246

0.2222222222

22222

cgMLST

30%

Random

Forest

0.56410256410
2564

0.92307692307
6923

0.65714285714
2857

0.92146596858
6387

0.2222222222
22222

cgMLST
40%

Random
Forest

0.5 0.92936802973

9777

0.68571428571

4286

0.91578947368

421

0.2222222222

22222

cgMLST

50%

Random

Forest

0.56521739130
4348

0.93536121673
0038

0.67605633802
8169

0.91752577319
5876

0.25 cgMLST all Random
Forest

0.57777777777

7778

0.94776119402

9851

0.72463768115

942

0.92708333333

3333

0.25 wgMLST Random

Forest

0.47058823529
4118

0.92418772563
1769

0.53968253968
254

0.93989071038
2514

0 cgMLST
10%

Support
Vector
Machine

(scaling)

0.54166666666
6667

0.90441176470
5882

0.60869565217
3913

0.91397849462
3656

0 cgMLST
20%

Support
Vector
Machine

(scaling)

0.54901960784
3137

0.90566037735
8491

0.6 0.90425531914
8936

0.25 cgMLST
30%

Support
Vector

Machine
(scaling)

0.56 0.93382352941
1765

0.72727272727
2727

0.96 0.25 cgMLST
40%

Support
Vector

Machine
(scaling)

0.63414634146
3415

0.91791044776
1194

0.61176470588
2353

0.95555555555
5556

0.25 cgMLST
50%

Support
Vector

Machine
(scaling)

0.61538461538
4615

0.93632958801
4981

0.6 0.93258426966
2922

0.25 cgMLST all Support
Vector

Machine
(scaling)

0.58823529411

7647

0.93181818181

8182

0.59770114942

5287

0.92063492063

4921

0.25 wgMLST Support

Vector
Machine
(scaling)

0.42424242424

2424

0.84905660377

3585

0.46808510638

2979

0.94318181818

1818

0.25 cgMLST

10%

Support

Vector
Machine
(without

scaling)

87

0.5 0.82035928143
7126

0.39024390243
9024

0.89820359281
4371

0.25 cgMLST
20%

Support
Vector

Machine
(without
scaling)

0.5 0.81065088757

3964

0.35 0.90243902439

0244

0.25 cgMLST

30%

Support

Vector
Machine
(without

scaling)

0.5 0.79883381924
1983

0.35 0.86792452830
1887

0.25 cgMLST
40%

Support
Vector
Machine

(without
scaling)

0.5 0.79420289855
0725

0.3 0.85350318471
3376

0.25 cgMLST
50%

Support
Vector

Machine
(without
scaling)

0.4 0.76750700280

112

0.25641025641

0256

0.78378378378

3784

0.25 cgMLST all Support

Vector
Machine
(without

scaling)

0.5 0.95094339622
6415

0.625 0.93922651933
7017

0.25 wgMLST Support
Vector
Machine

(without
scaling)

0.42780595289

0216

SD: 0.08848844

0.88226608984

6595

SD: 0.01070012

0.51849426883

7158

SD: 0.05787652

0.90056364361

048

SD: 0.02449498

0.1385773485

77349

SD:0.1045266

cgMLST

10%

Shallow

dense
neural
network

0.49780411293

009

SD: 0.06187045

0.90748972669

9629

SD: 0.01159470

0.62289352520

7063

SD: 0.05566155

0.90677552799

697

SD: 0.02278989

0.1478297628

29763

SD:0.1392345

cgMLST

20%

Shallow

dense
neural
network

0.55720208872

926

SD: 0.06912250

0.91095110996

0107

SD: 0.01343732

0.61472419826

0828

SD: 0.04872228

0.91246083492

9638

SD: 0.02417597

0.2002682502

6825

SD:0.1089546

cgMLST

30%

Shallow

dense
neural
network

0.54453254344

5449

SD: 0.09150846

0.91482280989

1932

SD: 0.01542516

0.61251415194

2703

SD: 0.05822710

0.90664667036

5792

SD: 0.01865160

0.2002874902

8749

SD:0.1191153

cgMLST

40%

Shallow

dense
neural
network

0.53302861961
2741

SD: 0.06707779

0.91417331567
8132

SD: 0.01642146

0.61010041982
2425

SD: 0.06172945

0.90393072086
92

SD: 0.02593997

0.1873024198
0242

SD:0.1332037

cgMLST
50%

Shallow
dense
neural
network

0.50381514515
6786

SD: 0.06710917

0.90662751629
661

SD: 0.01532435

0.60122469726
0195

SD: 0.07445505

0.89604579616
0917

SD: 0.01831366

0.1573596773
59677

SD:0.1383040

cgMLST all Shallow
dense
neural

network

0.47160231029
8928

SD: 0.09738710

0.86480910171
3828

SD:0.03293494

0.60046639373
456

SD: 0.04789428

0.84842844032
134

SD: 0.04664354

0.0555555555
555556

SD:0.1026470

wgMLST Shallow
dense
neural

network

88

Appendix B

Test performance of models when predicting sources for isolates in test data set given in the

metrics weighted F1-score and macro F1-scores. Because of the 30 times each of the shallow

dense neural network models predicted the sources for the isolates in the test data set the

metrics are an average and comes with a standard deviation (SD).

Weighted F1 Macro F1 Training data set Machine

Learning
method

0.837787224461517 0.64131734046412 cgMLST 10% Random Forest

0.841427855302648 0.655094042399742 cgMLST 20% Random Forest

0.850484210319517 0.665406915787698 cgMLST 30% Random Forest

0.845956037848951 0.657602107026191 cgMLST 40% Random Forest

0.845115462852424 0.650618802272099 cgMLST 50% Random Forest

0.853425714178275 0.668832143851686 cgMLST all Random Forest

0.868764583254354 0.685451997260077 wgMLST Random Forest

0.825799050867908 0.574869842198188 cgMLST 10% Support Vector Machine
(scaling)

0.82216299932156 0.593750515634024 cgMLST 20% Support Vector Machine
(scaling)

0.825377735428704 0.641787060870113 cgMLST 30% Support Vector Machine
(scaling)

0.871215888417223 0.686219251336898 cgMLST 40% Support Vector Machine
(scaling)

0.855365906640973 0.673875410132504 cgMLST 50% Support Vector Machine

(scaling)

0.854051438477478 0.666859694612504 cgMLST all Support Vector Machine
(scaling)

0.84573202321681 0.657677909199207 wgMLST Support Vector Machine

(scaling)

0.785518024212375 0.586913190516161 cgMLST 10% Support Vector Machine
(without scaling)

0.755517504091641 0.571761355338104 cgMLST 20% Support Vector Machine
(without scaling)

0.747693071452767 0.562617982392842 cgMLST 30% Support Vector Machine
(without scaling)

0.73145512296674 0.553351669508774 cgMLST 40% Support Vector Machine
(without scaling)

0.719144617613928 0.53954121665282 cgMLST 50% Support Vector Machine
(without scaling)

0.67182315596506 0.491540208599032 cgMLST all Support Vector Machine
(without scaling)

0.856304577399829 0.653033983112686 wgMLST Support Vector Machine
(without scaling)

0.791301984243847

SD: 0.01708532

0.573541460752359

SD: 0.03233507

cgMLST 10% Shallow dense neural

network

0.822932932850653

SD: 0.01533288

0.616558531132703

SD: 0.03831344

cgMLST 20% Shallow dense neural

network

89

0.831554651657008

SD: 0.01695529

0.639121296429617

SD: 0.03253973

cgMLST 30% Shallow dense neural
network

0.830284143563328

SD: 0.02051635

0.635760733186673

SD: 0.04210286

cgMLST 40% Shallow dense neural
network

0.82760352848658

SD: 0.01929962

0.629707099156984

SD: 0.03148468

cgMLST 50% Shallow dense neural

network

0.81747624612366

SD: 0.01819976

0.613014566446837

SD: 0.03733560

cgMLST all Shallow dense neural

network

0.777869903412436

SD: 0.03540770

0.559866637023205

SD: 0.03799800

wgMLST Shallow dense neural
network

90

Appendix C

The predictions of the sources for the isolates from clinical human cases made by the models

trained on the cgMLST training data set with all features and the wgMLST training data set.

SRA_no Random

Forest

cgMLST

Random

Forest

wgMLST

Support

Vector

Machine

(scaling)

cgMLST

Support

Vector

Machine

(scaling)

wgMLST

Support

Vector

Machine

(without

scaling)

cgMLST

Support

Vector

Machine

(without

scaling)

wgMLST

Shallow

dense

neural

network

cgMLST

Shallow

dense

neural

network

wgMLST

ERR2522

241

salmon salmon rural/urban rural/urban meat rural/urba

n

dairy farm salmon

ERR2522
242

salmon salmon rural/urban salmon meat salmon salmon salmon

ERR2522
243

salmon salmon meat salmon meat salmon salmon meat

ERR2522

244

salmon meat rural/urban rural/urban meat rural/urba

n

rural/urba

n

meat

ERR2522
245

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522

246

salmon salmon salmon salmon meat rural/urba

n

salmon salmon

ERR2522
247

meat meat meat meat meat meat meat meat

ERR2522
248

meat meat meat meat meat meat meat meat

ERR2522
249

rural/urba
n

rural/urba
n

meat rural/urban meat rural/urba
n

salmon slugs

ERR2522
250

rural/urba
n

rural/urba
n

meat rural/urban meat rural/urba
n

meat slugs

ERR2522
251

rural/urba
n

salmon rural/urban rural/urban meat rural/urba
n

meat salmon

ERR2522
252

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
253

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

salmon meat

ERR2522
254

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
255

rural/urba
n

rural/urba
n

meat rural/urban meat rural/urba
n

salmon slugs

ERR2522
256

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
257

meat meat meat meat meat meat salmon meat

ERR2522
258

salmon salmon salmon salmon meat rural/urba
n

salmon salmon

ERR2522
259

dairy farm dairy farm rural/urban salmon meat rural/urba
n

salmon rural/urba
n

ERR2522
260

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
261

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522

262

meat meat meat meat meat meat meat meat

ERR2522
263

salmon salmon salmon salmon meat meat meat salmon

ERR2522
264

meat meat rural/urban rural/urban meat rural/urba
n

slugs salmon

ERR2522

265

meat meat dairy farm meat meat rural/urba

n

meat meat

ERR2522
266

meat meat meat meat meat rural/urba
n

meat meat

91

ERR2522

267

salmon salmon rural/urban rural/urban meat rural/urba

n

salmon salmon

ERR2522
268

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
269

meat meat meat meat meat meat meat meat

ERR2522
270

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
271

salmon salmon salmon meat meat rural/urba
n

salmon salmon

ERR2522
272

dairy farm dairy farm rural/urban rural/urban meat rural/urba
n

rural/urba
n

dairy farm

ERR2522
273

meat meat meat rural/urban meat rural/urba
n

meat meat

ERR2522
274

slugs slugs slugs slugs meat slugs meat slugs

ERR2522

275

salmon salmon salmon salmon meat rural/urba

n

salmon meat

ERR2522
276

salmon salmon salmon salmon meat meat salmon salmon

ERR2522

277

meat meat meat meat meat meat salmon salmon

ERR2522
278

salmon salmon salmon salmon meat salmon salmon meat

ERR2522
279

salmon salmon salmon salmon meat rural/urba
n

salmon salmon

ERR2522
280

salmon salmon salmon meat meat rural/urba
n

salmon salmon

ERR2522
281

salmon meat rural/urban rural/urban meat rural/urba
n

rural/urba
n

meat

ERR2522
282

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

salmon meat

ERR2522
283

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
284

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522

285

salmon meat rural/urban rural/urban meat rural/urba

n

dairy farm salmon

ERR2522
286

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
287

meat meat meat meat meat meat dairy farm meat

ERR2522
288

meat meat meat meat meat rural/urba
n

meat meat

ERR2522
289

meat meat meat meat meat meat meat meat

ERR2522
290

salmon salmon meat rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522
291

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

salmon dairy farm

ERR2522
292

salmon salmon rural/urban salmon meat salmon salmon salmon

ERR2522

293

meat meat rural/urban rural/urban meat rural/urba

n

salmon salmon

ERR2522
294

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
295

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522

296

dairy farm dairy farm rural/urban dairy farm meat rural/urba

n

salmon dairy farm

ERR2522
297

salmon salmon salmon salmon meat meat salmon salmon

ERR2522
298

salmon rural/urba
n

salmon rural/urban meat rural/urba
n

salmon dairy farm

ERR2522

299

rural/urba

n

rural/urba

n

rural/urban rural/urban meat rural/urba

n

salmon meat

92

ERR2522

300

salmon meat rural/urban rural/urban meat rural/urba

n

rural/urba

n

meat

ERR2522
301

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522
302

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

salmon meat

ERR2522
303

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

meat

ERR2522
304

rural/urba
n

meat rural/urban rural/urban meat rural/urba
n

meat meat

ERR2522
305

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
306

salmon salmon salmon rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522
307

dairy farm dairy farm rural/urban dairy farm meat rural/urba
n

rural/urba
n

dairy farm

ERR2522

308

salmon salmon rural/urban rural/urban meat rural/urba

n

dairy farm salmon

ERR2522
309

meat meat meat rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522

310

meat meat meat rural/urban meat rural/urba

n

meat meat

ERR2522
311

meat meat meat meat meat meat meat meat

ERR2522
312

salmon salmon meat salmon meat meat salmon salmon

ERR2522
313

salmon meat rural/urban rural/urban meat rural/urba
n

salmon meat

ERR2522
314

dairy farm dairy farm dairy farm dairy farm meat meat dairy farm rural/urba
n

ERR2522
315

rural/urba
n

rural/urba
n

rural/urban salmon meat rural/urba
n

rural/urba
n

salmon

ERR2522
316

meat meat meat rural/urban meat rural/urba
n

salmon salmon

ERR2522
317

meat meat salmon rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522

318

rural/urba

n

rural/urba

n

rural/urban rural/urban meat rural/urba

n

rural/urba

n

rural/urba

n

ERR2522
319

salmon salmon salmon meat meat rural/urba
n

salmon salmon

ERR2522
320

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
321

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
322

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
323

dairy farm dairy farm dairy farm dairy farm meat meat dairy farm dairy farm

ERR2522
324

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
325

salmon salmon salmon salmon meat salmon meat meat

ERR2522

326

slugs slugs rural/urban rural/urban meat rural/urba

n

salmon salmon

ERR2522
327

salmon salmon rural/urban rural/urban meat rural/urba
n

dairy farm salmon

ERR2522
328

salmon salmon salmon rural/urban meat rural/urba
n

meat rural/urba
n

ERR2522

329

salmon salmon salmon rural/urban meat rural/urba

n

salmon rural/urba

n

ERR2522
330

slugs slugs salmon rural/urban meat rural/urba
n

salmon meat

ERR2522
331

salmon salmon salmon rural/urban meat rural/urba
n

meat rural/urba
n

ERR2522

332

dairy farm dairy farm rural/urban salmon meat rural/urba

n

rural/urba

n

dairy farm

93

ERR2522

333

dairy farm dairy farm meat salmon meat rural/urba

n

meat salmon

ERR2522
334

salmon salmon meat salmon meat salmon salmon meat

ERR2522
335

salmon salmon salmon salmon meat rural/urba
n

salmon salmon

ERR2522
336

meat meat salmon rural/urban meat rural/urba
n

salmon dairy farm

ERR2522
337

salmon salmon salmon salmon meat salmon meat salmon

ERR2522
338

salmon salmon meat salmon meat salmon salmon salmon

ERR2522
339

rural/urba
n

rural/urba
n

salmon rural/urban meat rural/urba
n

meat rural/urba
n

ERR2522
340

salmon salmon salmon rural/urban meat rural/urba
n

salmon meat

ERR2522

341

dairy farm dairy farm dairy farm rural/urban meat rural/urba

n

meat dairy farm

ERR2522
342

rural/urba
n

rural/urba
n

rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522

343

salmon salmon salmon rural/urban meat rural/urba

n

salmon rural/urba

n

ERR2522
344

rural/urba
n

rural/urba
n

salmon rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522
345

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
346

salmon salmon salmon salmon meat salmon meat meat

ERR2522
347

salmon salmon salmon rural/urban meat rural/urba
n

salmon rural/urba
n

ERR2522
348

salmon salmon salmon rural/urban meat rural/urba
n

rural/urba
n

salmon

ERR2522
349

dairy farm dairy farm dairy farm dairy farm meat rural/urba
n

salmon dairy farm

ERR2522
350

meat meat meat rural/urban meat rural/urba
n

meat meat

ERR2522

351

salmon salmon salmon rural/urban meat rural/urba

n

salmon rural/urba

n

ERR2522
352

salmon salmon salmon rural/urban meat rural/urba
n

salmon meat

ERR2522
353

salmon salmon salmon salmon meat salmon salmon salmon

ERR2522
355

meat salmon rural/urban rural/urban meat rural/urba
n

salmon meat

ERR2522
356

dairy farm dairy farm rural/urban rural/urban meat rural/urba
n

meat rural/urba
n

ERR2522
357

dairy farm dairy farm rural/urban rural/urban meat rural/urba
n

meat rural/urba
n

ERR2522
359

salmon salmon rural/urban salmon meat salmon salmon salmon

ERR2522
360

meat meat rural/urban rural/urban meat rural/urba
n

rural/urba
n

rural/urba
n

ERR2522

361

dairy farm dairy farm dairy farm dairy farm meat rural/urba

n

salmon dairy farm

ERR2522
362

salmon salmon salmon meat meat rural/urba
n

salmon salmon

ERR2522
363

salmon salmon salmon salmon meat salmon meat salmon

ERR2522

364

salmon meat rural/urban rural/urban meat rural/urba

n

rural/urba

n

meat

ERR2522
365

meat meat meat meat meat meat salmon meat

ERR2522
366

salmon meat rural/urban rural/urban meat rural/urba
n

rural/urba
n

meat

ERR2522

367

salmon salmon meat rural/urban meat rural/urba

n

meat meat

94

ERR2522

368

rural/urba

n

rural/urba

n

rural/urban rural/urban meat rural/urba

n

rural/urba

n

rural/urba

n

ERR2522
369

slugs slugs slugs slugs meat slugs meat slugs

ERR2522
370

meat meat rural/urban rural/urban meat rural/urba
n

slugs salmon

ERR3047
199

salmon dairy farm rural/urban rural/urban meat rural/urba
n

rural/urba
n

salmon

ERR3446
056

rural/urba
n

rural/urba
n

rural/urban salmon meat rural/urba
n

dairy farm salmon

