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Abstract

We study risky inter-temporal choice in a large random student sample (n=721)
and a large rural sample (n=835) in Malawi. All respondents were exposed to the
same 20 Multiple Choice Lists with a rapid elicitation method that facilitated
the identification of near-future Certainty Equivalents of future risky prospects
placed 6, 12, and 24 months into the future. The probabilities of winning in the
risky future prospects varied and facilitated the estimation of probability weight-
ing functions for the risky prospects placed 6 and 12 months into the future.
The experiment is used to test whether decision errors can explain or be highly
correlated with hyperbolic discounting and non-linear (inverse-S-shaped) prob-
ability weighting. We find evidence that decision errors are strongly correlated
with hyperbolic discounting but do not find that decision errors are correlated
with the strong inverse-S-shaped probability weighting (w(p)) patterns in our
two samples. We find stronger S-shaped and more pessimistic w(p) functions for
6-month horizon risky prospects than for 12-month horizon risky prospects in
both samples. Both patience and optimism bias contribute to subjects taking
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higher risks related to more risky distant future prospects. This can lead to the
postponement of climate action.

Keywords: Decision errors, discounting, risky inter-temporal choice, probability
weighting, Malawi.

JEL Classification: C91 , C93 , D81 , D84 , D91.

1 Introduction

The psychology of probability weighting and hyperbolic discounting has until recently
been poorly understood (Enke & Graeber, 2023; Enke, Graeber, & Oprea, 2023;
O’Donoghue & Somerville, 2018). Hyperbolic discounting has frequently been asso-
ciated with present bias driven by immediate pleasure, addiction, or procrastination
and has often been modeled with a quasi-hyperbolic model. However, much evi-
dence shows that hyperbolic discounting persists after the removal of or control for
such present biases. Hyperbolic discounting functions have been used to describe
but not explain such increasing patience associated with extended time horizons.
The other phenomenon, non-linear probability weighting, most commonly associated
with over-weighting small and underweighting large probabilities, has been included
in Rank-Dependent utility theory (RDU) and Cumulative Prospect theory (CPT).
These theories are also mainly descriptive and do not provide any deeper explanations
for this behavioral phenomenon. However, the theory has been conveniently used to
“explain” why the same people may buy insurance and lottery tickets and, therefore,
are risk-averse in one context and risk-lovers in another.

The role of risk and time preferences as important elements to explain decision-
making under risk/uncertainty and over time has been acknowledged and subject to
much research. Much of this research chose to study one of the phenomena at the
time to keep complexity manageable. However, more recently, research has increas-
ingly focused on jointly assessing decisions under risk and over time. Fundamentally,
risk and uncertainty are about future outcomes that have not yet been revealed. The
distance into the future when the outcomes are revealed and how the delayed out-
comes are weighted against the known or unknown subjective probabilities matter for
the anticipated state-contingent decisions. Expected utility theory (EUT) links risk
preferences to the curvature of the utility function. Risk experiments have, therefore,
been proposed as the basis for estimating the curvature of the utility function, which
is needed to estimate time preferences. However, the assumptions of EUT are violated
in many behavioral studies in favor of other non-expected utility theories, such as
rank-dependent utility (RDU) and cumulative prospect theory (CPT) (Quiggin, 1982;
Tversky & Kahneman, 1992). In particular, non-linear probability weighting with an
inverse-S-shaped probability weighting function is a common, widespread empirical
characteristic (l’Haridon & Vieider, 2019; Vieider, Martinsson, Nam, & Truong, 2019).
Non-linear probability weighting also implies that the utility curvature will differ from
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the EUT case with linear probability weighting. Furthermore, recent literature indi-
cates that it may be questionable whether utility under risk and over time can be
assumed to be the same in curvature and has also found that utility in time may be
close to linear (Cheung, 2019).

Another strand of the literature on risk and time has demonstrated that decision
errors may cause biases in parameter estimates and low prediction power (Enke &
Graeber, 2023; Enke et al., 2023). They argue that making such inter-temporal deci-
sions is difficult, and subjects may, therefore, resort to simplifying heuristics that can
be inaccurate and lead to systematic errors. It is, therefore, important to use exper-
imental designs and estimation approaches that reduce or minimize and account for
and possibly control for such possible decision errors. Enke and Graeber (2023) have
introduced a model of cognitive uncertainty and measure such uncertainty as an indi-
cator of the noisiness and possible heuristic nature of people’s decisions. After an
experiment, they asked directly how certain subjects were about their decisions. These
perceived levels of uncertainty and awareness of one’s own limited cognitive abili-
ties and knowledge were then correlated with behavior in several experiments. They
found that cognitive uncertainty was associated with a more inverse-S-shaped proba-
bility weighting function. A follow-up paper by Enke et al. (2023) shows that choice
inconsistency and cognitive uncertainty may explain hyperbolicity in inter-temporal
decision-making.

In this paper, we investigate whether decision errors may explain or correlate with
the non-linear (inverse-S-shaped) probability weighting and the hyperbolic discounting
phenomena based on an integrated risk and time experiment implemented in two large
samples in the African context. To get important variation in cognitive skills, one of
the samples consists of university students in a nationally representative university in
Malawi (high education sample), and the other consists of rural respondents covering
smallholder households in six districts of the country (limited education sample). We
combine the money sooner or later approach (Cohen, Ericson, Laibson, &White, 2020)
with later risky prospects, thereby integrating decisions over time and under risk in
multiple Choice Lists (CLs).

We take a different approach to Enke and Graeber (2023); Enke et al. (2023) to
investigate their theory that decision errors can drive the phenomena we study. More
specifically, we use experiments that simultaneously require an integration of decisions
under risk and over time. This allows us to simultaneously assess whether non-linear
probability weighting and hyperbolic discounting correlate with the frequency of choice
inconsistencies across many binary experimental decisions and CLs. One advantage of
our approach is that, unlike Enke and Graeber (2023), we do not rely on the subjects’
own awareness and statement about their uncertainty and limitations.

We measure cognitive imprecision as the extent of consistency violations based
on the identified switch points between risky prospects and sure amounts based on
binary decisions in paired CLs that differ only in one parameter, the time horizon
or the probability of winning in the risky prospect. The switch point in a CL repre-
sents a proxy interval ([CEmin, CEmax]) for the true underlying near-future certainty
equivalent (CE) of the more distant-future risky prospect in each CL. We investi-
gate how time delay (6 and 12 months) affects probability weighting and discounting.
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Time delay may be associated with increasing cognitive uncertainty. This should have
several predictable effects based on the theory of Enke and Graeber (2023); Enke
et al. (2023). Based on 20 CLs, each used to obtain a near-future CE estimate of a
future risky or safe prospect, we carry out six paired CL consistency checks in time
and six paired CL consistency checks in probability at the subject level. The number
of consistency violations in time and probability are used as measures of subject-
level cognitive imprecision. We propose that this cognitive imprecision is a sign of
cognitive uncertainty. Based on Enke et al. (2023), we test the hypotheses that: a)
stronger hyperbolic discounting is associated with higher cognitive imprecision (more
consistency violations) in paired time prospects; b) stronger non-linear probability
weighting (over-weighting of low probabilities and under-weighting of large probabil-
ities) is associated with higher cognitive imprecision in paired probability prospects.
We also assess the correlation between our two cognitive imprecision measures and
add them to assess their combined effect or correlation with hyperbolic discounting
and non-linear probability weighting.

The main contributions of our paper are: a) We are the first to test whether
the subject-level number of paired-CL consistency violations can explain hyperbolic
discounting and non-linear (inverse-S-shaped) probability weighting based on a within-
subject multiple Choice List design that integrates decisions under risk and over time;
b) To our knowledge, we are the first to estimate probability weighting functions
for risky prospects placed 6 and 12 months into the future and compare how they
differ in a large (n=721) nationally representative university student (high education)
sample and a large (n=835) representative rural (low education) sample in a developing
country. Earlier studies on how delay affects risk tolerance have relied on relatively
small (student) samples and have not controlled for probability weighting (Noussair
& Wu, 2006) or variation in decision errors (Abdellaoui, Diecidue, & Öncüler, 2011;
Kemel & Paraschiv, 2023).

Both the student and the rural samples provide strong evidence of hyperbolic
discounting and inverse-S-shaped probability weighting (w(p)) functions. The w(p)
functions differ significantly between the 6-month and 12-month horizons in both sam-
ples, with the w(p) functions being less non-linear and more elevated in the 12-month
horizon than in the 6-month horizon, consistent with findings in earlier studies in
small student samples (Abdellaoui, Diecidue, Kemel, & Onculer, 2022; Abdellaoui et
al., 2011; Kemel & Paraschiv, 2023; Noussair & Wu, 2006). We find strong evidence
that the within-subject decision errors (number of consistency violations) correlate
with the discount rates and can explain a substantial share of the strong hyperbolic
discounting patterns observed in both samples. On the other hand, the decision errors
were not strongly correlated with the degree of inverse-S-shaped probability weight-
ing functions in our samples. Separate models for the shares of the two samples that
committed no probability-related decision errors reveal even stronger inverse-S-shaped
(and more pessimistic) w(p) functions in the 6-month time horizon than the full sam-
ple. These results reveal substantial risk aversion in a large share of the probability
region (p > 0.2; see Figures 3 and 6). In the 12-month horizon, the degree of risk
aversion is much lower, showing that both student and rural subjects are more opti-
mistic and, therefore, more risk-tolerant when the time horizon is extended from 6 to
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12 months. They are also more patient (have substantially lower discount rates) in the
12-month than the 6-month horizon, indicating that decision errors could not explain
all of the hyperbolic patterns. We show, however, that a survival constraint or limited
trust in future payments can explain a share of the remaining hyperbolic pattern in
line with the models of Halevy (2008) and T. Epper, Fehr-Duda, and Bruhin (2011);
T.F. Epper and Fehr-Duda (2024).

The rest of the paper is organized as follows. Part 2 explains the experimental
design and elicitation procedure. Part 3 explains sampling, data, and ethics. Part 4
outlines the theoretical basis and estimation strategy. The main results are presented
in Part 5 before we discuss and conclude in Part 6.

2 Experimental design

2.1 Overview and design of Choice Lists

An overview of the Time and Risk (TR) Multiple Choice Lists (MCLs) is given in
Table 1. The order of the CLs was randomized with the first six CLs (in random order)
for the elicitation of time preferences (simple design), presented first, then followed by
the remaining 14 CLs (in random order) that include both risk and time afterward.
An example of one of these 14 CLs is presented in Table 2.1 The respondents face an
overall risk. They are informed that each of them has a 10% chance of winning in the
games they will play, and each game out of 20 games (CLs) has an equal chance of
being selected as the real game for the lucky winners. They were informed that their
decisions could affect their payouts and that they, therefore, should be careful when
making their decisions. For the lucky winners, one random CL and one random row in
the CL were selected for real payout. Their choice on that row determined whether they
received the near-future safe amount or had to play the risky prospect with a delayed
payout if they were lucky enough to win. The experiment was, therefore, incentive-
compatible. Late payments were arranged through mobile banking for the students
and rural samples. One of the co-authors was in charge of this. There were budgetary
and logistical reasons for limiting the probability of winning in these games while at
the same time including an ambitious set of treatments in terms of variation in time
horizons, probabilities, and magnitude levels in the large student and rural samples.

CLs 1-6 assess the effect of time horizon (6, 12, and 24 months) and the effect of
five doubling (5x) the future amounts (from MKw 3000 to 15000). These CLs are con-
structed such that the list of near-future amounts is constant across time horizons in
lists 1-3 and 4-6, and the amounts in CLs 4-6 are everywhere 5x larger than for lists
1-3 to facilitate careful comparison of switch points across lists for stochastic domi-
nance assessment, the assessment of within-subject consistency of decisions by pairing
CLs by changing time horizon, and for assessment of utility curvature (diminishing
utility) associated with large future amounts.

A similar approach was used to facilitate a careful pair-wise comparison of deci-
sions for alternative time horizons in CLs 7-12 choices for p(win)=0.1 and 0.25 future

1An example experimental protocol in English is presented in Appendix A. The protocols were translated
into the local language chichewa used in the interviews.
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prospects and for CLs 13-18 for p(win)=0.75-0.9. These can also be paired with CLs
4-6 for p(win)=1 for consistency checks.

CLs 19 and 20 obey the same rule, with CL 20 having all five times (5x) the amounts
in CL 19. In expected returns in the risky prospects, these two CLs are also equivalent
to CLs 3 and 6, allowing the assessment of whether another layer of probabilities makes
a difference. CLs 11 and 12 also have special properties with risky and safe prospects
having the same time horizon, one week into the future. These two CLs can also reveal
the extent of risk-loving behavior in these low p(win) near-future prospects. In other
words, the whole set of CLs facilitates many pairwise comparison tests that can give
useful insights through aggregate and subject-level consistency checks. We return to
how we do this after we have explained the rapid elicitation procedure used to identify
the switch points in each CL.

Table 1 Time and risk preference choice list overview

CL No. P(good) FFT FFA P(good) NFT NFA
FFT months ETB NFT months ETB

1 1 24 3000 1 0.23 100-3000
2 1 6 3000 1 0.23 100-3000
3 1 12 3000 1 0.23 100-3000
4 1 24 15000 1 0.23 500-15000
5 1 6 15000 1 0.23 500-15000
6 1 12 15000 1 0.23 500-15000
7 0.1 12 15000 1 0.23 50-5000
8 0.25 12 15000 1 0.23 50-5000
9 0.1 6 15000 1 0.23 50-5000
10 0.25 6 15000 1 0.23 50-5000
11 0.1 0.23 15000 1 0.23 50-5000
12 0.25 0.23 15000 1 0.23 50-5000
13 0.9 24 15000 1 0.23 500-15000
14 0.75 24 15000 1 0.23 500-15000
15 0.9 6 15000 1 0.23 500-15000
16 0.75 6 15000 1 0.23 500-15000
17 0.9 12 15000 1 0.23 500-15000
18 0.75 12 15000 1 0.23 500-15000
19 0.5 12 6000 0.5 0.23 200-6000
20 0.5 12 30000 0.5 0.23 1000-30000

Note: FFT=far future time, FFA=far future amount, NFT=near future
time, NFA=near future amount, P(good)=probability of good outcome
for risky prospects.

2.2 The rapid elicitation procedure

We used a rapid elicitation procedure from a random starting point to elicit the switch
points in each CL. The rapid elicitation procedure has several purposes. It can help
avoid bias towards the middle and can help to control for potential starting point
bias. It reduces the number of binary questions presented to the respondents and is
time-saving. It simplifies the respondents’ decisions by presenting them with only two
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Table 2 Example of TR Choice List

CL Start Task Prob. Receive FFT= Choice Prob. Receive NFT= Choice
no. point no. win 12 months, MKw win 1 week, MKw

8 1 0.25 15000 1 5000
8 2 0.25 15000 1 4000
8 3 0.25 15000 1 3000
8 4 0.25 15000 1 2000
8 5 0.25 15000 1 1500
8 6 0.25 15000 1 1200
8 7 0.25 15000 1 900
8 8 0.25 15000 1 600
8 9 0.25 15000 1 300
8 10 0.25 15000 1 150
8 11 0.25 15000 1 50

options at the time: a risky prospect (kept constant within the CL) and a safe amount.
It is a paper-and-pencil procedure handled by experimental enumerators who fill in
the respondents’ decisions in the experimental protocol in both the student and rural
samples.2

The enumerators present each CL in the form of the risky prospect with the amount
that can be won (money on the table), the probability of winning (illustrated with
a 20-sided die), and the future point in time (months into the future) for potential
payout versus the safe amount for payout one week into the future. The enumerator
has identified (pre-filled) a randomized starting row (and thereby a safe amount) in
each CL. Therefore, the full CL with all the rows is not presented to the subject but
is used by the enumerator who fills the experimental protocol. The subject is asked
for her/his preference between the near future safe amount and the risky prospect. If
the subject prefers the risky amount, the enumerator has to go to the top of the CL
and offer the largest safe amount there versus the risky prospect as the second binary
choice offered. If the subject then prefers the safe amount, the enumerator offers an
intermediate safe amount in the middle row between the first random row (amount)
and the second maximum amount. The third decision helps narrow the range and
finally identify a switch point in the CL. If the subject in the first decision prefers the
safe amount, the enumerator goes to the bottom of the CL and offers the smallest safe
amount there versus the risky prospect. With a switch to a preference for the risky
prospect, the enumerator goes to the middle row between the bottom row and the
initial random starting row. Again, the narrowing goes on till the switch-point rows
are identified, and thereby, a Certainty Equivalent (CE) interval is identified for the
risky prospect. If the subjects prefer the risky prospect at the top of the CL, there is
no interior switch point in the CL, and the CE of the risky prospect is higher than
the safe amount at the top of the CL. At the bottom of the CL, if the respondent

2While the student sample could have responded to a computerized approach, the rural sample did not
have the skills to do this.
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prefers the safe amount, the CE is below this small amount. Here, we instructed the
enumerators to add a row to the CL by offering an amount half the size of the safe
amount at the initial bottom row in the CL. Further rows could be added to identify
a switch point and, thereby, a CE interval for the risky prospect.

3 Sampling, Data, and Ethics

3.1 Sampling

3.1.1 Student sample

This study used a student and a rural sample from a developing country, Malawi.
The student sample is from Lilongwe University of Agriculture and Natural Resources
(LUANAR). The sample is a stratified random sample of 721 students from 46 classes
with up to 16 students per class. The sample was stratified by study year and pro-
gram to cover a range of subject specializations. The student sample is nationally
representative because students come from all parts of the country. Most students are
BSc students, but a small share (0.028) are MSc students. About 30% of the students
study economics or business. The sessions took place during the coronavirus pandemic.
This necessitated strict corona-safety measures before, during, and after each session
to prevent the spreading of the virus.

3.1.2 Rural sample

The rural sample consisted of a stratified random sample of 835 subjects from 64
villages in two districts in the Central Region and four in the Southern Region of
Malawi. These two regions contain 89% of the population in the country, and our
sample should be a good representation of the large rural population dominated by
poor smallholder farming households in the country. Up to four family members per
household, all above 16 years of age, were included in our experiments. The sampling
strategy secured a larger variation in the age distribution than in the student sample
and a fairly large share of young individuals compared to a sample of household heads
only.

3.2 Data management

The data from the two samples have been managed and analyzed separately.
Researchers at LUANAR have taken responsibility for the data collection, cleaning,
anonymizing, and safe data storage. The data are intended for collaborative research
for the NMBU and LUANAR researchers involved in the project and for providing
opportunities for MSc and Ph.D. students in the two universities and possibly students
from elsewhere to learn and write papers and theses.

3.3 Ethical issues

1. Approval: Our experiments included only standard incentivized games that are
part of the toolkit of behavioral and experimental economists. As the two univer-
sities involved in this research did not have their own Institutional Review Boards
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for ethical approval of the experiments or the survey instruments at the time of
the project fieldwork, our project relied on the high standard used by Norwegian
researchers when implementing this kind of research. These guidelines are available
here:

https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-
and-theology/guidelines-for-research-ethics-in-the-social-sciences-humanities-law-
and-theology/

Norwegian researchers are required to follow these guidelines and the project
has followed these guidelines strictly. One challenge was that the project started
during the coronavirus pandemic. It necessitated very strict rules during the imple-
mentation of surveys and experiments to prevent the spreading of the virus and
ensuring that all coronavirus regulations were strictly followed through disinfecting
all equipment (such as tablets used for the data collection) and hands, use of face
masks, and appropriate distancing.

The project is a capacity-building and research collaboration project funded
under NORHED II by the Norwegian Agency for International Development
(NORAD). Funding is based on ethical approval by the NORAD staff in charge of
these projects.

2. Accordance: All the experiments were carried out following the relevant guidelines
and regulations.

3. Informed consent: Prior informed consent was obtained from all the students and
rural subjects after being introduced to the project, survey, and experiments.

4. Anonymity: All the subjects are granted anonymity. Personal identifiers are kept
separately from the data by the responsible data manager.

5. Conflicts of interest: The authors declare no conflicts of interest.

4 Theory: Cognitive limitations, decision-making,
and decision errors

We used incentivized experiments, and the theoretical idea is that the respondents aim
to make decisions that maximize their utility based on their information and how it
is interpreted. Respondents may make errors for many reasons, creating randomness
in their decisions. Even the best football players make many mistakes, although they
know the rules of their game very well.

Our starting point is that our brains have difficulties making quick and precise
mathematical judgments of numeric information. The numeracy skills and ability to
make correct calculations and judgments vary substantially across individuals. Such
skills are trainable, and subjects who have been through a longer formal education
and screening and selection into higher education institutions, such as universities, are
expected to be able to make more precise judgments and calculations for numerical
alternatives. When subjects are asked to make many binary choices between preferred
alternatives, we expect subjects with lower numeracy skills, those who are more uncer-
tain about their underlying preferences, and those who are less focused and motivated
for the tasks to make more errors. Therefore, the frequency of such errors at the sub-
ject level may indicate the cognitive imprecision of their decisions. In our experimental
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data, we investigate whether such errors due to cognitive imprecision can explain
hyperbolic discounting and non-linear probability weighting.

Our experiments were designed to make it simple for decision-makers to make
optimal decisions. They were further designed to help identify inconsistent choices
within subjects through simple paired tests in time and risk dimensions as indicators
of the degree of cognitive (im-)precision of their decisions. We have followed a strict,
standardized procedure (bisection and rapid elicitation), where each binary decision
relies on risk and/or time tradeoffs. Other studies have shown that the presentation of
such simple binary alternatives is more easily comprehended by subjects with limited
numeracy skills than more complex formats such as full Choice Lists, e.g., based on the
Holt and Laury (2002) design (Charness, Eckel, Gneezy, & Kajackaite, 2018; Charness
& Viceisza, 2016).

The standard approaches to deal with this kind of decision error have been to
use a random utility model or variants of models with Luce error and Fechner error
specifications (Fechner, 1860; Luce, 1959; McFadden, 1974). Such models have typi-
cally separated the error component from the deterministic structural component of
the model. Such models may have allowed for contextual errors that can vary sys-
tematically with experimental design elements, other contextual factors, and subject
characteristics. This can be one way of controlling for variation in the within-subject
tendency to make inconsistent decisions across many choice tasks.

However, such an approach does not guarantee that decision errors are indepen-
dent of the structural model parameters. Risk and time preferences are determined
in the deterministic part of such models based on the assumption that these prefer-
ences are uncorrelated with the factors affecting the decision errors. In this study, we
relax this assumption and allow decision errors to be correlated with the structural
variables in our models to investigate whether such errors may correlate with and pos-
sibly contribute to explaining hyperbolism and non-linear probability weighting that
do not have a good or solid theoretical explanation. Our exploratory study builds on
the recent literature investigating whether decision errors and cognitive uncertainty
can explain these phenomena. Recent literature tries to explain these phenomena as
outcomes of decision errors associated with imprecise perceptions and cognitive uncer-
tainty, building on psychophysics in psychology (Woodford, 2020). For example, Khaw,
Li, and Woodford (2021) suggest that decision errors associated with cognitive impre-
cision may explain small-stakes risk aversion or the so-called Rabin paradox (Rabin,
2000). Khaw et al. (2021) find that subjects making more random choices exhibit
greater small-stakes risk aversion based on a sample of 20 students at the University
of Columbia who responded to several 100 trials, all with a fixed p(win)=0.58 and
varying amounts in the games in a random order. Based on a similar approach, Fryd-
man and Jin (2022) study how risky choice is influenced by noisy lottery payoffs due
to information processing constraints in the brain. In two experiments, they first show
that more frequent decisions are associated with stronger responses to payoff incen-
tives and more rapid and precise responses. They associate decision errors with the
functional forms of the value function in Prospect Theory.

These recent studies assume that decision errors are due to imperfect perceptions
and not limited optimization skills. Unlike these recent studies, we do not assume
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decision-makers have perfect optimization skills but imperfect perceptions. We also
consider the optimization skills and decision abilities to vary. We, therefore, do not
assume that decision-makers apply the Bayes rule based on their prior beliefs to com-
pute their posterior distributions of the payoffs in their choice sets. Rather, we allow
their heuristics to remain a black box. We acknowledge that we do not know the
prior beliefs of each subject, e.g., about their expected luck in the game. However,
our cognitive limitations framework allows for framing elements in the game to influ-
ence the decisions. We, therefore, allow for such priors in our structural models and
test whether they influence their decisions. We argue broadly that decision errors due
to imperfect perceptions, fuzzy preferences, or simple heuristics that lead to system-
atic errors may jointly or to varying degrees explain the hyperbolic discounting and
non-linear probability weighting phenomena.

We hope to gain insights by combining two samples with large differences in the
level of education but coming from the same cultural background to help us assess how
differences in educational level influence decision errors and possibly are associated
with hyperbolic discounting and non-linear probability weighting. University students
should have stronger numeracy skills and be able to make more consistent choices
than our less well-educated rural sample.

Decision errors could be caused by cognitive limitations related to knowing one’s
preferences (fuzzy preferences) and the ability to make comparisons of simple choice
alternatives in the confrontation with complex reality in the near and more dis-
tant risky and uncertain future where there are many unknowns. Uncertainty about
amounts alternatively received at different future points may also influence risk per-
ceptions through the probabilities we illustrated with a 20-sided die. We aim to test
the following hypotheses:

H1. Students commit fewer decision errors than the rural (low education) subjects.
H2a. The rural sample exhibits stronger hyperbolic discounting than the student

sample.
H2b. The rural sample exhibits a stronger inverse-S-shaped probability weighting

(w(p)) function than the student sample.
H3a. More time-related decision errors are associated with stronger hyperbolic

discounting in both samples.
H3b. More probability-related decision errors are associated with stronger inverse-

S-shaped w(p) functions in both samples.
We rely on structural econometric models to test these hypotheses. We use non-

parametric stochastic dominance tests to identify the subject-level consistency errors
of decisions across CLs. We outline these tests in the next section before we present
the structural econometric models.

4.1 Assessment of within-subject (in-)consistency across CLs
in the TR experiment

The subjects make a large number of binary decisions where the choice options are
between a future (risky) prospect R(X, t2, p) and a near future safe amount (C, t1, p =
1), where the risky prospect is drawn from a list of 20 CLs, and the first safe amount
is randomly drawn from a list of 11 safe amounts in the CL. A strictly standardized
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rapid elicitation (bisection) method is used to move from the random starting safe
amount in the CL to a final switch point, identifying the interval for the near future
Certainty Equivalent (CE) for the future risky prospect. Correctly identifying the CE
for the risky prospect relies on subjects having stable and clear perceptions, stable
preferences, and sufficient numeracy skills to avoid committing any decision errors
in the sequence of binary choices from the random starting row to the switch point
in the CL. Given their unobservable preferences, we cannot verify whether each CL
decision is correct or wrong. However, by comparing their identified near future CEs
for the 20 CLs, we can assess their across-CL CEs for consistency based on two simple
rationality requirements. These are positive discount rates and probability weighting
functions that are non-decreasing in the probability of winning. We have only included
the assessment of consistency violations at the subject level in this study as these are
our primary focus.3

From a theoretical perspective, we may expect that intertemporal decisions with a
longer time horizon lead to more fuzzy preferences and less consistent decisions. Longer
time horizons also introduce uncertainty that comes on top of the specified probabili-
ties in future risky prospects. We assume that this potential uncertainty increases with
time delay and should not change the ranking of paired CLs for consistency assessment.

The investigation of (in-)consistency in choices is made for pairs of CLs as follows.
We utilize the determined switch points in the two CLs. These represent the elicited
near-future CEs for the two associated risky prospects in the two CLs. We characterize
the risky prospect R by the amount that can be won (X), the probability of winning
(p), and the time horizon for the payout of the risky amount that can be won (t).
For the CL-pair to be compared, two characteristics are the same, while the third
is different. E.g., if we compare two CLs with different time horizons, one with a 6-
month horizon and one with a 12-month horizon, we expect CE(R(X, p, t = 6)) >
CE(R(A, p, t = 12)). This is based on the assumption that discount rates are non-
negative. A delay in the payout for a risky prospect will, therefore, always reduce its
near-future CE. Likewise, for two CLs that differ only in the probability of winning
(p): e.g., we expect CE(R(X, p = 0.9, t = t2)) > CE(R(X, p = 0.75, t = t2)). The
near-future CE of a risky prospect with a higher p, should be higher than for a risky
prospect with a lower p, ceteris paribus. This is based on the assumption that the
non-linear probability weighting function is non-decreasing in the p-interval [0, 1].4

The fact that the CEs are identified as intervals (CEmin, CEmax) may imply that
the true CE for the two paired CLs may fall within the same interval and/or the elicited
switch points fall between the same rows in the two CLs. We do not consider such cases
to represent inconsistent choices. Inconsistent choices for the pairs are represented by
cases where the CE interval is stated as higher, whereas it should be considered lower
by the nature of the risky prospects.

3Graphs assessing the sample-level stochastic dominance are available from the authors upon request.
4Decision errors may also be more likely if the w(p) function is flatter (intermediate probability levels) and

for subjects that are more probabilistically insensitive in this region. Such subjects should be less likely to
make errors in the near zero and near one range of probabilities, where they should be more probabilistically
sensitive. We tested for such inconsistencies in the probability range 0.1-0.9. We acknowledge that such
correlations make establishing causality between decision errors and inverse-S-shaped w(p) function difficult.
Nevertheless, subjects without such consistency errors should not have an inverse-S-shaped w(p) function
driven by such errors.
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Based on six paired CLs that differ only in the time horizon and six paired CLs
that differ only in the probability of winning, we identify two subject-level consistency
violation count variables (indices), viol6t and viol6p. We assess whether the two types
of violation counts by subjects are correlated with the discount rates and the non-linear
probability weighting parameters. More specifically, we use the viol6t (time-related)
errors to test the hypotheses about the hyperbolic discounting pattern and the viol6p
(probability-related) errors to test the hypotheses about stronger inverse-S-shaped
probability weighting function.

We cannot rule out that subjects with more violations also have systematically dif-
ferent risk and time preferences, which cannot be fully identified for such subjects. On
the other hand, we can assess whether the number of violations is a sign of cognitive
limitations that lead to higher errors and systematic correlations with the structural
discounting and risk response parameters. The size and direction of the correlations
with the structural model parameters facilitate the testing of our hypotheses. Con-
trolling for the number of violations may help reduce bias in the estimated underlying
latent variables. We are confident that subjects who do not commit such decision
errors should reveal less biased estimates of their preference parameters, given that
the structural models are correctly specified. However, the models with these consis-
tent decision-makers may also mask internal heterogeneity, which may be revealed by
including additional variables.

There are many possible reasons for consistency violations. Using structural mod-
els with contextual Luce errors allows us to partially separate the error sources and
the random and non-random components. The different sources include: a) subjects
may not know the near and far-future utilities that well, b) their precision in the
judgment and making of such decisions may be low, c) their numeracy skills may be
limited, making it hard to judge trade-offs in time (discounting) and risk (probability
of winning), d) they may be overwhelmed with many binary choices to make (they
may get bored or ignorant in their decisions and make random choices), e) they may
be affected by the initial random starting certain amount in each CL (starting point
bias), f) there may be interviewer bias, g) distant future prospects may be harder
to judge than near-future prospects as the inherent future uncertainty on top of the
stated future probability risks may become more dominant and blur the difference
between prospects.

We did not attempt to study or inquire about their specific decision heuristics.
However, some subjects gave some comments related to their decisions. Quite a
few responded that the distant future prospect was too far away and may indicate
difficulties in judging and valuing such prospects.

4.2 Econometric structural model integrating time and risk
decisions: Estimation strategy

We assume that the decision-makers aim to maximize the discounted probability-
weighted expected utility of the two binary options presented to them in each choice.
For simplicity and consistency with Cumulative Prospect Theory (CPT), we assume no
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integration of the decisions with background wealth.5 We construct structural models
with separate contextual Luce errors that are allowed to vary with CL characteristics.

The inter-temporal binary choice between the two time-dated prospects can then
be formulated as follows:

UA = e−δ(t1−t0)u(MA)

UB = e−δ(t2−t0)u(MB)
(1)

where δ is the exponential continuous time discount rate.6

Alternatively, the far-future prospect (MB = X) can be risky, while the near-future
prospect is a safe amount (MA = s). A risky prospect has a probability p < 1 of a
positive outcome and a 1-p probability of zero outcome. We allow subjective proba-
bility weighting for the risky prospects, giving weighted probability w(p) of winning
and weighted probability [1−w(p)] of not winning. The binary choice between a risky
far-future prospect and a certain near-future prospect is modeled as follows in net
present utility (NPU) terms:

NPUA = e−δ(t1−t0)u(s)

NPUB = e−δ(t2−t0)(w(p)u(X))
(2)

We are interested in the type of hyperbolic discounting that is not driven by
present bias. We eliminate potential present bias by avoiding present-time valuation
by offering the choices between:

NFUA = u(s)

NFUB = e−δ(t2−t1)(w(p)u(X))
(3)

The sizes of the discount rates for the longer time horizons (6, 12, and 24-month
horizons) that are of particular interest to us in this study capture the possible (degree
of) diminishing impatience.

By offering alternative amounts s till a switch point is reached between u(s) and
e−δ(t2−t1)(w(p)u(X)), we obtain a near-future Certainty Equivalent (CE) interval for
the far-future risky prospect captured by the near-future amounts s on the rows just
above and below the switch point in the CL.

While the RDU theory is typically framed in an atemporal setting, we apply it
in an intertemporal setting. We call the model a Discounted Rank Dependent Utility
(DRDU) model, acknowledging that we are not estimating a full CPT model as we
do not have CLs in the loss domain. The model nests DEU when w(p) = p and DEV

5This assumption may be relaxed but would require additional assumptions about the degree of asset
integration.

6For simplicity, we assume there is a single discount rate for each prospect. However, we will allow this
discount rate to be determined freely for each time horizon length. This means we strictly do not impose
any specific functional form assumption on the discounting function. By inspecting the discount rates for
the different prospects with alternative time horizons, we can assess, e.g., the pattern of increasing patience
(lower discount rates) with extended time horizons.
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when w(p) = p and utility is linear. We compare models based on discounted expected
value (DEV) vs. discounted rank-dependent expected value (DRDEV) vs. discounted
rank-dependent utility (DRDU) (linear vs. non-linear probability weighting and linear
vs. non-linear utility).

A unique element of our model is that we allow the w(p) to vary with time horizon 7

and the wt(p) function is modeled with a Prelec (1998) 2-parameter weighting function:

wt(p) = exp(−βt(− ln p)αt), αt > 0, βt > 0 (4)
where αt captures the time-horizon specific degree of (inverse) S-shape of the

weighting function with αt > (<)1, and the βt captures the time-horizon specific ele-
vation of the function, with βt < 1 giving more elevated (optimistic) and βt > 1 giving
less elevated (pessimistic) weighting of prospects. The function is strictly increasing
and continuous within the interval [0, 1]8.

For sensitivity and robustness analyses, we open for a potential non-linear utility
function in the form of a Constant Elasticity of Marginal Utility (CEMU) function9:

u(x) = (1− θ)−1((b+X)1−θ − 1) (5)
where θ captures the constant elasticity of marginal utility, b captures eventual

asset integration but we assume b = 0 in line with CPT. The utility function is linear
for θ = 0.10 As our primary focus is on discounting and probability weighting, we, for
simplicity, assume linear utility in our base models. As we included CLs with substan-
tial variation in the future amounts, we were able to do pair-wise non-parametric tests
for such non-linearity, see Appendix A. The linear utility assumption was preferable
in the student sample.11 In the rural sample, we found indications of weak concave
utility, see Appendix A. We ran models with CEMU-θ = 0.2 for the rural sample
as a robustness test. These models gave discount rates closer to those in the student
models with linear utility, see Table A3.

The RDU model with linear utility has also been called the Yaari (1987)-dual
model. Here, we apply a discounted version of this model. We call it the Discounted
Rank Dependent Expected Value model (DRDEV). It is well suited for investigating
how discounting and probability weighting of future prospects are associated with the
time horizon and probability of winning. Our data allow us to estimate the wt(p)
function and the discount rates separately for t=6 and t=12 months and to measure
the hyperbolic effect as the gap in the discount rates in the 6- and 12-month models
while controlling for a change in the w(p) function. Usually, w(p) functions have been
estimated in the gains or loss domain. One of our contributions is to estimate it
separately for risky prospects placed 6 and 12 months into the future.

To test our hypotheses, we investigate how the three estimated parameters (dis-
count rate, Prelec α, and Prelec β) correlate with the number of consistency violations

7We have sufficient CLs to estimate the wt(p) function separately for the 6- and 12-month horizons based
on our within-subject 20 CL design.

8Alternative linear and non-linear models can be run by imposing constraints on the α and β parameters
as for DEU or DEV models with α = β = 1

9This is also often called a Constant Relative Risk Aversion utility function, but in our case, risk aversion
is (partially) captured through the probability weighting function.

10A recent literature has found that utility in time is close to linear (Cheung, 2019).
11We tested parametric models with concave utility for our student sample, but these models produced

implausible negative discount rates for the longest time horizon (24 months).
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in time- and probability-paired CLs and compare the results in the student and rural
samples. In particular, we investigate how the inconsistent CEs across time-paired
CLs are associated with hyperbolic discounting (widening gap between the 6-month
and 12-month discount rates as the number of violations increases). Second, we assess
whether the number of probability-paired CL consistency violations is associated with
a lower Prelec α (more inverse S-shaped w(p) function) (the degree of probabilistic
insensitivity). We also assess whether the number of consistency violations is associ-
ated with the Prelec β parameter in terms of pessimism or optimism bias, but we do
not have any hypothesis related to this.

Testing our hypotheses relies on framing our models into a stochastic choice frame-
work. There are alternative approaches to doing this. Luce error and Fechner error
specifications are the most commonly used. We tested both approaches with contextual
error specifications to allow for heteroskedasticity. We found the models with con-
textual Luce errors to perform the best with our experimental data.12 We, therefore,
proceed by estimating our binary choice data with the maximum likelihood estima-
tion approach with the contextual Luce error specification (Holt & Laury, 2002). We
return to the details of the contextual error specification below.

We constructed and estimated structural maximum likelihood models for the
binary choice data with the Luce error specification (Holt & Laury, 2002). The Luce
error specification allows respondents to make errors in their choices. The parameter
µ in the Luce specification captures the error probability.

∇DRDU =
NFU

1
µ

A

NFU
1
µ

A +NFU
1
µ

B

(6)

Equation (6) nests the discounted risky and certain prospects based on the alter-
native linear (DEV, DRDEV) and non-linear (DRDU) utility, probability weighting,
and discounting functions as special cases.

This gives rise to the following likelihood function where the discount rate (δt),
the Prelec αt, the Prelec βt, and the Luce error (µt) are all estimated as time-horizon
specific parameters that are allowed to vary with the number of time- and probability-
consistency violations (vt, vp).

lnL(δt(v
t, vp), αt(v

t, vp), βt(v
t, vp), µt(v

t, vp, CLp,t,m, Ed, sr);ChoiceCLp,t,m) =∑
i

((ln(Φ(∇DRDU)|Choicet,m = 1) + (ln(Φ(1−∇DRDU)|Choicet,m = 0)) (7)

where Choiceij = 1(0) denotes the choice of alternatively MA (near-future safe
amount) or MB (far-future risky amount) for each row in each CL. We use only the
two switch point rows in each CL. The safe amounts in these two rows represent the
upper and lower bounds for the near-future CE for this CL’s given risky and time-
delayed prospect. While estimation could be made directly on this CE interval, we

12The contextual Fechner error specifications that have often been recommended resulted in implausi-
ble w(p)-function parameter estimates, especially for the longer time horizon (12 months). The Prelec α
parameter became very large (>2), and the Prelec β parameter was very low (close to 0).
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estimate it as a binary choice closer to how the respondents made the binary decisions
around the switch point in the experiment.

Although we have a within-subject design, we allow separate estimations of the
structural parameters for each time horizon (6- and 12-month). The cognitive ability
to compare safe amounts in the near future with riskier amounts in the far future may
depend on the time horizon if hyperbolic discounting is associated with such cognitive
(in-)ability. To assess this, we allow the discount rate (δt) and probability weight-
ing parameters to vary with the subject-level indicators for the cognitive inaccuracy
(decision errors) in line with our hypotheses.

The structural parameters are, therefore, allowed to vary linearly with the decision
errors as follows:

δt = δt0 + δt1v
t
i + δt2v

p
i

αt = αt0 + αt1v
t
i + αt2v

p
i

βt = βt0 + βt1v
t
i + βt2v

p
i

(8)

where vt and vp represent the subject-level number of consistency violations in
time- and probability-paired CLs, and Memi represents the student memory index
(student sample only).

We allow for contextual heteroskedastic Luce errors and investigate how the Luce
error is related to the random order of the CL (CLr), enumerator dummies (Ed), the
consistency violation variables in some specifications, and the student memory variable
in some specifications of student models. The randomization of the order of the CLs
was used to control for order effects. There may be learning effects that reduce the error
in the process, but subjects may also become less focused after exposure to many CLs.
With 20 CLs per subject, we assess such possible dynamic effects by including dummies
for the CL order. We included dummies for enumerators randomly allocated to subjects
in each class/village. Although the enumerators received standardized training and
methods for implementing the experiment, there may be some variation in how they
executed their responsibilities. We could assess their relative performance by assessing
how enumerators possibly influenced errors in the experiment. In this paper, they just
represent additional controls in the error specification of the models. In Appendix D,
we also included discounted expected value (DEV) models with the p(win) in the risky
prospect in the CL (pCL) in the error specification. A CL with a higher probability of
winning is assumed to be associated with less uncertainty and, therefore, a lower error.

µtn = µt0 + µt1v
t
i + µt2v

p
i + µt3pCL + µt4s

r + µtn5CLr + µtn6E
d (9)

Our within-subject design with 20 CLs per subject allowed us to estimate the
probability weighting function parameters for two different time horizons, six and 12
months into the future. We estimated joint and separate models for these two time
horizons but found the separate estimation by time horizon preferable as the key
parameters of interest differed substantially across the models. Such a splitting by
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time horizon allowed us to assess the influence or correlation between the inconsistency
count variables in time- and probability-paired CLs on the different structural model
parameters for each time horizon. This also facilitated testing our hypotheses H2a,
H2b, H3a, and H3b.

We estimated the likelihood function with the Newton-Raphson optimization
algorithm13 while clustering errors at the subject level.

5 Results

5.1 Decision errors: Subject-level consistency violations

We made three subject-level paired consistency comparisons based on the identified
near-future CEs associated with CLs 1-3 and three subject-level paired consistency
comparisons for CLs 4-6.14 A subject may then make from zero to six such violations
for these time-paired CLs. The associated count variable is vt in the structural model
and viol6t in our tables with results.

We included consistency checks for CLs with risky future prospects in the flatter
p-domain (0.1− 0.9), given that we expect an inverse-S-shaped w(p) function. Based
on the CL overview in Table 1, such subject-level consistency checks were made for
CL pairs 7 and 8, 9 and 10, 11 and 12, 13 and 14, 15 and 16, 17 and 18, giving 6 CL-
paired tests. The subject-level count variable for the number of inconsistent choices is
vp in the structural model notation and viol6p in the tables and results.

Table 3 shows the shares of inconsistent responses by CL pair separately in the
student and rural samples. The shares of inconsistent responses are slightly higher in
the rural sample, as could be expected, but they are also high among students, in the
range of 0.168-0.265 and in the range of 0.199-0.323 in the rural sample. These ranges
indicate a quite even distribution of errors across the CL pairs. It shows that such low
accuracy in these binary decisions is common in both samples.

We assess the correlations between the CL-pair violations (Table 4 for students
and Table 5 for the rural subjects). The correlations in these tables demonstrate
that the errors tend to be closely correlated across CLs 1-3 and 4-6 in both samples,
demonstrating that the same subjects face problems when comparing time-paired CLs.
For the probability-paired CLs, the correlation coefficients are much lower.

The cumulative distribution of the viol6t and viol6p variables in the two samples
are presented in Figure 1. We see that only about 20-25% of the subjects had no
violations, with slightly higher shares for the students than for the rural subjects for
both variables. Fairly high shares of the subjects had only one consistency error in
both samples and across both types of consistency checks. The differences between the
rural and student samples are scrutinized further in the last two graphs in Figure 1,
showing the mean number of violations by type of violation and with 95% confidence
intervals, and the sample differences are further scrutinized by estimating Cohen’s ds
for the two errors. The Cohen’s ds are fairly small (0.15-0.22) although significantly

13We also tested the alternative Broyden-Fletcher-Goldfarb-Shanno optimization algorithm, which gave
identical results but sometimes resulted in some convergence problems.

14As there is no explicit risk associated with these CLs, these are equivalent to the Net Present Values
(NPV) of these future amounts one week into the future. With non-negative discount rates, the NPVs
should decline with the time horizon. If not, we consider it a consistency violation.

18



Table 3 The share of inconsistent responses in paired CL checks

Student sample Rural sample
Variable Obs Mean Obs Mean

Time inconsistencies (violations)

CL1-CL2D 721 0.168 835 0.199
CL1-CL3D 721 0.265 835 0.281
CL3-CL2D 721 0.264 835 0.313
CL4-CL5D 721 0.179 835 0.217
CL4-CL6D 721 0.250 835 0.259
CL6-CL5D 721 0.257 835 0.301

Probability inconsistencies (violations)

CL8-CL7D 721 0.251 835 0.297
CL10-CL9D 721 0.247 835 0.291
CL12-CL11D 721 0.243 835 0.225
CL14-CL13D 721 0.227 835 0.271
CL16-CL15D 721 0.227 835 0.299
CL18-CL17D 721 0.218 835 0.286

Table 4 Student sample: Assessment of error correlations across CL pairs

T-violation correlations
CL1-2D CL1-3D CL3-2D CL4-5D CL4-6D CL6-5D

CL1-2D 1.000
CL1-3D 0.336 1.000
CL3-2D 0.363 -0.174 1.000
CL4-5D 0.023 0.072 0.066 1.000
CL4-6D 0.075 0.002 0.070 0.358 1.000
CL6-5D -0.034 0.029 -0.034 0.372 -0.148 1.000

P-violation correlations
CL7-8D CL9-10D CL11-12D CL14-13D CL16-15D CL18-17D

CL7-8D 1.0000
CL9-10D -0.0199 1.0000
CL11-12D 0.0677 -0.0015 1.0000
CL14-13D 0.0597 -0.0268 0.1018 1.000
CL16-15D 0.0674 -0.0114 0.0941 0.029 1.000
CL18-17D 0.1130 0.0097 0.0540 0.066 0.002 1.000

different at the 5% level for both types of errors. Therefore, higher education has a
surprisingly low negative effect on the tendency to commit such inconsistency errors
when exposed to this experimental tool.

This subject-level variation in inconsistency counts should provide a good basis
for assessing whether such errors can contribute to explaining (correlate with) hyper-
bolic discounting and non-linear (inverse-S-shaped) w(p) functions. We inspected the
correlation coefficients between the viol6t and viol6p variables in our two samples
and found them low: 0.10 in the student sample and 0.12 in the rural sample. This
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Table 5 Rural sample: Assessment of error correlations across CL pairs

T-violation correlations
CL1-2D CL1-3D CL3-2D CL4-5D CL4-6D CL6-5D

CL1-2D 1.000
CL1-3D 0.302 1.000
CL3-2D 0.357 -0.232 1.000
CL4-5D 0.058 -0.013 0.128 1.000
CL4-6D 0.048 0.007 0.115 0.366 1.000
CL6-5D 0.073 0.031 0.065 0.340 -0.214 1.000

P-violation correlations
CL7-8D CL9-10D CL11-12D CL14-13D CL16-15D CL18-17D

CL7-8D 1.000
CL9-10D 0.034 1.000
CL11-12D 0.101 0.027 1.000
CL14-13D 0.011 0.073 -0.025 1.000
CL16-15D 0.050 0.036 0.005 0.049 1.000
CL18-17D 0.018 0.067 0.039 -0.040 0.049 1.000

indicates that difficulties in comparing prospects over time are not closely related to
difficulties in comparing prospects across different probability levels.

5.2 Discounting and probability weighting by time horizon

Most empirical studies of probability weighting have focused on estimating these
functions either in the gains or loss domains for current risky prospects. Our first
contribution is to estimate probability functions for future risky prospects with two
different time horizons in the gains domain, with potential payouts 6 months and
12 months into the future for our two samples. We use the DRDU structural model
outlined and impose the constraint that utility is linear (DRDEV or discounted dual
Yaari (1987)-models). We include the control variables, enumerator FE and CL-order
FE, in the noise (Luce error) equation. We have 6 CLs with a 6-month time horizon
and 8 CLs with a 12-month horizon in the within-subject design in each sample. We
estimate the population-averaged discount rates and the Prelec probability weight-
ing functions separately for each sample’s two alternative time horizons. The model
results are presented in Tables 6 (student sample) and 7 (rural sample). Graphs of the
estimated w(p) functions are presented in Figures 3a and b.

Tables 6 and 7 show that the estimated discount rates are much lower for the
12-month horizon than for the six-month horizon, demonstrating a strong hyperbolic
discounting or diminishing impatience pattern in both samples. Table 6 shows an
annualized continuous time discount rate of 104.4% in the six-month model and 43.1%
in the 12-month model. We also see that the students have significantly lower discount
rates than the rural sample (124.9% in the six-month model and 58.3% in the 12-month
model).

For the student sample, we find that the w(p) function is more strongly inverse-
S-shaped in the six-month than the 12-month model and that it is more elevated
(optimistic) in the 12-month horizon (Figure 3a based on models in Table 6). This
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Fig. 1 Student and rural samples: Subject-level number of Time- and Probability consistency vio-
lations in the TR games.

indicates that students are more patient and optimistic when judging risky prospects
with payouts 12 months into the future than for risky prospects with payouts 6 months
into the future. We find a similar tendency in the rural sample, but the level of opti-
mism was higher in the 6-month horizon compared to the student sample and similar
to that in the 12-month horizon.

Therefore, the rural sample appears less patient but more optimistic than the
student sample. Figures 2a and 3a show the differences across the samples and time
horizons. The rural sample has more elevated and less non-linear sample-averaged
w(p) functions.

In the next section, we investigate whether these patterns are correlated with the
extent of consistency violations in the two samples.
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Table 6 Student sample: DRDEV-models: Discounting and
probability weighting by time horizon

(1) (2)
EQUATION VARIABLES 6 months 12 months

Discount rate Constant 1.044*** 0.431***
(0.028) (0.024)

CEMU-θ Constant 0.000 0.000
Prelec α Constant 0.518*** 0.669***

(0.045) (0.044)
Prelec β Constant 1.044*** 0.876***

(0.047) (0.044)
Luce error Constant 3.299*** 4.409***

(0.790) (0.756)
CL order FE Yes Yes
Enumerator FE Yes Yes

Observations 8,246 11,016
Log-likelihood -5511 -7369
N clusters 720 720

Cluster-corrected standard errors in parentheses, clustering on
subjects. *** p<0.01, ** p<0.05, * p<0.1.

5.3 Cognitive limitations, time discounting, and probability
weighting

5.3.1 Student sample

Table 8 presents the results for the student sample’s 6- and 12-month horizons with
the viol6t and viol6p variables. We tested for possible non-linear relationships for these
two variables but found no significant non-linear relationships. Interestingly, the sign
for the viol6t variable goes opposite in the two models. A higher number of violations
is associated with significantly higher discount rates in the 6-month model and a sig-
nificantly lower discount rate in the 12-month model. We predicted these relationships
in Figure 4 (viol6t) to understand these effects better. Figure 4 demonstrates that a
larger number of violations is associated with a larger gap between the 6-month and
the 12-month discount rates, indicating that more decision errors are associated with
stronger hyperbolic discount rates.

For the Prelec α parameter, only one of the consistency violation variables (viol6t)
is significant (only at the 10% level) in the 6-month model. Moreover, the sign of the
variable is positive such that fewer violations are associated with a more non-linear
w(p) function as the constant term for the Prelec α parameter is as low as 0.347 in
this 6-month model. The consistency violations cannot explain the large deviation of
Prelec α from +1. For Prelec β, both viol6t and viol6p are significant in the six-month
model and with negative signs, indicating that more decision errors are associated with
more optimistic (more elevated) probability weighting. Figure 5 presents the predicted
effects of decision errors on the Prelec β in the six-month student model.

We estimated separate DRDEV models for the sub-sample that did not commit
any time consistency errors (viol6t = 0). The first two models in Table 9 present the
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Table 7 Rural sample: DRDEV-models: Discounting and
probability weighting by time horizon

(1) (2)
EQUATION VARIABLES 6 months 12 months

Discount rate Constant 1.249*** 0.583***
(0.038) (0.031)

CEMU-θ Constant 0.000 0.000
Prelec α Constant 0.613*** 0.703***

(0.052) (0.050)
Prelec β Constant 0.874*** 0.860***

(0.053) (0.042)
Luce error Constant 4.136*** 3.627***

(0.754) (0.675)
CL order FE Yes Yes
Enumerator FE Yes Yes

Observations 9,112 12,316
Log-likelihood -6149 -8284
N clusters 828 830

Models based on switch point rows in each CL. Cluster-
corrected standard errors in parentheses, clustering on sub-
jects. *** p<0.01, ** p<0.05, * p<0.1.

results for this sub-sample consisting of 196 students. A discount rate reduction from
91% for the six-month model to 50% in the 12-month model indicates that there is still
a remaining hyperbolic effect in this sub-sample, but the gap (41%) is substantially
lower than in Table 6 (61%= 104% - 43%).

It has been suggested that the hyperbolic effect could also be due to survival
uncertainty or limited confidence related to receiving more distant future prospect
payments (T. Epper et al., 2011; T.F. Epper & Fehr-Duda, 2024; Halevy, 2008). We
do not have any data on such perceptions of survival or confidence in receiving future
payments. We expected that the students would have high confidence in their own
survival the next year, even though we carried out the experiment during the third
wave of the coronavirus pandemic. On the other hand, their confidence in receiving
the payment one year into the future could be lower. We decided to try to calibrate
the models above with the extra survival probability and see how its size would affect
the discount rates in the six- and 12-month models, assuming the w(p) functions
do not change and that the combined survival (survP ) and risk probabilities are
multiplicative for the distant future (w(p)∗w(survP )). Table 10 contains the calibrated
model results for the sample that did not commit any t-violations with survP = 0.9
in Models (1) and (2) and with survP = 0.75 in Models (3) and (4). We see a stronger
relative reduction in discount rates in the six-month models than in the 12-month
models. Therefore, the discount rate gaps for the six- versus 12-month horizon models
are further reduced to 24% with survP = 0.9 and to about 13% with survP = 0.75.

In Figures 2b and 2c, we predicted the w(p) function based on the estimated Prelec
parameters for the 196 students with viol6t = 0 and the 160 students with viol6p = 0
for the 6- and 12-month horizons. The viol6t = 0 group is substantially more risk
averse in the 6-month horizon and more optimistic (less risk averse) in the 12-month
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Fig. 2 Student sample: Population-average w(p) functions vs. sub-samples with viol6t=0 and vs.
sub-sample with viol6p=0 for 6- and 12-month horizons

horizon perspective. We see the same tendency for the viol6p = 0 group, but the gap
between the six-month and 12-month w(p) functions is smaller. We can be confident
that these estimates are not biased due to decision errors in contrast to Figure 3a,
which contains the estimated w(p) functions for the full sample.

5.3.2 Rural sample

We will now investigate how the variation in consistency violations is related to the
discount rates and the w(p) function in the rural sample. First, we tested a comprehen-
sive model that included linear and squared viol6t and viol6p in all three equations.
However, we found only linear viol6t significant (in most equations). We, therefore,
only include these simpler models in Table 11. Table 11 shows that viol6t is signifi-
cant, with a positive sign in the 6-month model and significant and negative in the
12-month model. These slope effects are similar to those for the student sample and
should give a similar predicted pattern to Figure 4 for the student sample but with a
slightly stronger downward slope for the 12-month model. Therefore, the number of
consistency violations in the time dimension is associated with a strong increase in the
degree of hyperbolic discounting in both samples. Like in the student sample, those
not committing any such decision errors also had significantly lower discount rates in
the 12-month horizon than in the six-month horizon model.

Table 11 shows that for the Prelec α parameter, there is a strong positive and sig-
nificant correlation with viol6t and a negative and significant correlation with viol6p
from an intercept level of Prelec α=0.52. Therefore, those not committing any deci-
sion errors exhibit a strong inverse-S-shaped w(p) function, and probability-related
errors (viol6p) make this worse in the 6-month model. However, these error terms are
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Fig. 3 Rural sample: Uncorrected vs. Error-corrected w(p)-functions vs. error-free sub-samples by
time horizon

Fig. 4 Student sample: Predicted discount rates by time horizon and number of consistency viola-
tions in paired time CLs
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Table 8 Student sample: TR consistency violations, student
memory index, discounting, and probability weighting
(DRDEV models)

(1) (2)
EQUATION VARIABLES 6 months 12 months

Discount rate viol6t 0.067*** -0.061**
(0.024) (0.024)

viol6p -0.029 -0.028
(0.025) (0.041)

Constant 0.978*** 0.558***
(0.063) (0.083)

CEMU-θ Constant 0.000 0.000
Prelec α viol6t 0.095* -0.069

(0.049) (0.044)
viol6p 0.013 0.001

(0.032) (0.111)
Constant 0.347*** 0.732**

(0.084) (0.313)
Prelec β viol6t -0.203*** 0.015

(0.034) (0.079)
viol6p -0.098*** 0.031

(0.032) (0.072)
Constant 1.491*** 0.794***

(0.090) (0.105)
Luce error viol6t 0.045 0.065

(0.122) (0.067)
viol6p 0.357**

(0.159)
CL-order FE Yes Yes
Enumerator FE Yes Yes
Constant 3.208*** 4.055***

(0.778) (0.918)

Observations 8,246 11,016
p 0.000346 0.0322
chi2 15.94 6.869
Log-likelihood -5505 -7359
N clusters 720 720

Cluster-corrected standard errors in parentheses, clustering on
subjects. *** p<0.01, ** p<0.05, * p<0.1.

insignificant in the 12-month model, where the intercept term is substantially higher
(0.79).

The models for the sub-sample of rural respondents that did not commit any errors
in the time-related CL pairs (viol6t=0) are presented in Table 12, models (1) and
(2), with w(p) functions in Figure 3. We see a longer time horizon (12 months) is
associated with more patience and optimism for the rural sample, as was the case for
the student sample.

The hyperbolic effect, measured as the gap in annualized discount rates in the 6-
and 12-month models, is reduced from 67% for the full sample (Table 7) to 43% for
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Fig. 5 Predicted Prelec β by number of consistency violations (viol6t and viol6p) in 6-month horizon
DRDEV models

Table 9 Student samples without consistency errors (viol6t=0 or viol6p=0), models
with switch point rows only

(1) (2) (3) (4)
EQUATION VARIABLES 6-month 12-month 6-month 12-month

viol6t=0 viol6t=0 viol6p=0 viol6p=0

Discount rate Constant 0.910*** 0.499*** 0.982*** 0.443***
(0.052) (0.038) (0.051) (0.048)

CEMU-θ Constant 0.000 0.000 0.000 0.000
Prelec α Constant 0.507*** 0.743*** 0.546*** 0.648***

(0.045) (0.083) (0.058) (0.071)
Prelec β Constant 1.278*** 0.836*** 1.200*** 1.002***

(0.078) (0.066) (0.091) (0.080)
Luce error Constant 2.189*** 2.915*** 2.869*** 3.425***

(0.395) (0.618) (0.807) (1.093)
CL-order FE Yes Yes Yes Yes
Enumerator FE Yes Yes Yes Yes

Observations 2,266 2,986 1,876 2,466
Log-likelihood -1519 -1986 -1253 -1646
N clusters 196 196 160 160

Cluster-corrected standard errors in parentheses, clustering on subjects. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table 10 Student sample (n=196) without consistency errors (viol6t=0) without and with
a survival or payment uncertainty rate

(1) (2) (3) (4)
EQUATION VARIABLES 6-month 12-month 6-month 12-month

survP=0.9 survP=0.9 survP=0.75 survP=0.75

Discount rate Constant 0.635*** 0.397*** 0.398*** 0.270***
(0.100) (0.054) (0.142) (0.071)

CEMU-θ Constant 0.000 0.000 0.000 0.000
Prelec α Constant 0.507*** 0.743*** 0.507*** 0.743***

(0.045) (0.083) (0.045) (0.083)
Prelec β Constant 1.278*** 0.836*** 1.278*** 0.836***

(0.078) (0.066) (0.078) (0.066)
Luce error Constant 2.189*** 2.915*** 2.189*** 2.915***

(0.395) (0.618) (0.395) (0.618)
CL-order FE Yes Yes Yes Yes
Enumerator FE Yes Yes Yes Yes

Observations 2,266 2,986 2,266 2,986
Log-likelihood -1519 -1986 -1519 -1986
N clusters 196 196 196 196

Models (1) and (2) assume a survival (or payment probability) rate of 0.9, models (3) and
(4) assume a survival rate of 75% one year into the future as added risk on future payments.
Cluster-corrected standard errors in parentheses, clustering on subjects. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.

the viol6t = 0 sample (n=200) in Table 12 and to 62% for the viol6p = 0 sample
(n=146) in Table 12.

We explored further by simulated prediction of survival probability or payment
risk on the discount rates following the same approach as for the student sample. The
models with survP = 0.9 and 0.75 are presented in Table 13. We see that the discount
rate gap is reduced to 31 and 25% for the viol6t = 0 and with survP = 0.9 and 0.75.

Figures 4b, 4c, and 4d show the predicted w(p) functions for the ”intercept zero
error” (4b) models in Table 11, the viol6t = 0 sample (196 subjects) (4b), and the
viol6p = 0 sample (160 subjects) (4b), based on the estimated models in Table 12.

Those not committing any decision errors are more pessimistic in the six-month
model, but time-related errors are associated with a less pessimistic (lower Prelec β)
w(p), while probability-related errors pull in the direction of more optimism in the
12-month model.

In both samples, those committing more mistakes are relatively more optimistic.
In the 12-month models, all were substantially more optimistic. Those demonstrating
the highest level of cognitive ability to make consistent decisions have a strong inverse-
S-shaped and quite pessimistic (risk averse) w(p) function in the 6-month horizon. As
for the student sample, the rural subjects, also those committing few errors, had a
less non-linear and more optimistic w(p) function for the more distant 12-month time
horizon.
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Table 11 Rural sample: TR consistency violations and
parameter bias: Models including switch point rows only from
CLs

(1) (2)
EQUATION VARIABLES 6 months 12 months

Discount rate viol6t 0.069*** -0.085**
(0.025) (0.035)

viol6p -0.017 -0.017
(0.033) (0.033)

Constant 1.145*** 0.739***
(0.099) (0.095)

CEMU-θ Constant 0.000 0.000
Prelec α viol6t 0.163*** -0.035

(0.046) (0.042)
viol6p -0.097** -0.010

(0.038) (0.052)
Constant 0.520*** 0.794***

(0.093) (0.110)
Prelec β viol6t -0.191*** 0.074

(0.039) (0.056)
viol6p -0.084 -0.088**

(0.058) (0.042)
Constant 1.340*** 0.875***

(0.117) (0.125)
Luce error viol6t 0.361** 0.403*

(0.166) (0.211)
viol6p -0.002 0.176

(0.284) (0.289)
CL-order FE Yes Yes
Enumerator FE Yes Yes
Constant 3.433*** 2.320*

(0.757) (1.186)

Observations 9,088 12,284
p 0.00902 0.0385
chi2 9.417 6.517
Log-likelihood -6127 -8254
N clusters 826 828

Cluster-corrected standard errors in parentheses, clustering on
subjects. *** p<0.01, ** p<0.05, * p<0.1.

6 Discussion

We have estimated discount rates and probability weighting functions for a large
university student sample (high education) and a large rural (low education) sample
in an African context (Malawi). We were inspired by the recent literature that has
suggested that the behavioral phenomena described as hyperbolic discounting and
non-linear (inverse-S-shaped) probability weighting may be the outcome of systematic
decision errors (cognitive noise and uncertainty) Enke and Graeber (2023); Enke et al.
(2023). We used an innovative experimental design comprising 20 Choice Lists (CLs)
with integrated decisions combining risk and time with a rapid binary choice eliciting
procedure as a basis for the identification of within-subject decision errors and for
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Table 12 Rural samples without consistency errors (viol6t=0 or viol6p=0)

(1) (2) (3) (4)
EQUATION VARIABLES 6-month 12-month 6-month 12-month

viol6t=0 viol6t=0 viol6p=0 viol6p=0

Discount rate Constant 1.061*** 0.630*** 1.243*** 0.624***
(0.058) (0.044) (0.064) (0.056)

CEMU-θ Constant 0.000 0.000 0.000 0.000
Prelec α Constant 0.521*** 0.777*** 0.738*** 0.936***

(0.066) (0.086) (0.114) (0.115)
Prelec β Constant 1.156*** 0.815*** 1.094*** 0.798***

(0.089) (0.083) (0.118) (0.134)
Luce error Constant 3.315*** 2.525*** 4.074*** 3.350***

(0.379) (0.421) (0.590) (0.589)
CL-order FE Yes Yes Yes Yes
Enumerator FE Yes Yes Yes Yes

Observations 2,186 2,978 1,566 2,112
Log-likelihood -1470 -1990 -1053 -1418
N clusters 199 200 145 146

Cluster-corrected standard errors in parentheses, clustering on subjects. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1.

Table 13 Rural sample (n=200) without consistency errors (viol6t=0) with alternative
survival or payment uncertainty rates of 0.9 and 0.75

(1) (2) (3) (4)
EQUATION VARIABLES 6-month 12-month 6-month 12-month

SurvP=0.9 SurvP=0.9 SurvP=0.75 SurvP=0.75

Discount rate Constant 0.863*** 0.550*** 0.700*** 0.446***
(0.097) (0.055) (0.127) (0.070)

CEMU-θ Constant 0.000 0.000 0.000 0.000
Prelec α Constant 0.521*** 0.777*** 0.521*** 0.777***

(0.066) (0.086) (0.066) (0.086)
Prelec β Constant 1.156*** 0.815*** 1.156*** 0.815***

(0.089) (0.083) (0.089) (0.083)
Luce error Constant 3.315*** 2.525*** 3.315*** 2.525***

(0.379) (0.421) (0.379) (0.421)
CL-order FE Yes Yes Yes Yes
Enumerator FE Yes Yes Yes Yes

Observations 2,186 2,978 2,186 2,978
Log-likelihood -1470 -1990 -1470 -1990
N clusters 190 200 199 200

Models (1) and (2) assume a survival (or payment probability) rate of 0.9, models (3) and
(4) assume a survival rate of 75% one year into the future as added risk on future payments.
Cluster-corrected standard errors in parentheses, clustering on subjects. Significance levels: ***
p<0.01, ** p<0.05, * p<0.1.
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joint estimation of discount rates and probability weighting functions 6 and 12 months
into the future. Subject-level decision errors were recorded based on paired CLs that
differed only in time horizon or probability. We have stated several hypotheses and
will summarize and discuss the test results here.

Hypothesis H1. Students commit fewer decision errors than the rural (low educa-
tion) subjects. We cannot reject this hypothesis as the difference in mean time- and
probability-related errors significantly differed in the two samples. However, the dif-
ferences in the mean number of errors for the two samples were surprisingly small
(Cohen’s ds 0.15-0.23), indicating a surprisingly small effect of higher education on
the propensity to commit errors with our experimental tool.

Hypothesis H2a. The rural sample exhibits stronger hyperbolic discounting than the
student sample. While we found weak evidence in this direction, we found a strong
hyperbolic pattern in both samples. The gaps between the annualized discount rates
in the rural versus student samples were 67% and 61%.

Hypothesis H2b. The rural sample exhibits a stronger inverse-S-shaped w(p) func-
tion than the student sample. We have to reject this hypothesis. Tables 6 and 7 show
that the Prelec α parameters are slightly lower for the student sample than for the
rural sample both in the six- and the 12-month models.

Hypothesis H3a. More time-related decision errors are associated with stronger
hyperbolic discounting in both samples. We find strong evidence in support of this
hypothesis in both samples. Decision errors, therefore, appear to contribute to the
apparent diminishing impatience with an extended time horizon. However, we found
that the sub-samples that did not commit any decision errors also exhibited dimin-
ishing impatience, although to a lower degree. This may indicate that there is more
than one explanation for the phenomenon.

Hypothesis H3b. More probability-related decision errors are associated with
stronger inverse-S-shaped w(p) functions in both samples. We have to reject this
hypothesis. While the results are a bit mixed, the subjects that did not commit
any probability-related decision errors have stronger inverse-S-shaped w(p) functions,
especially in the six-month horizon models.

Overall, we found that future optimism bias is associated with more inconsistent
decisions for our subjects. Our findings indicated that the w(p)-function parameters
were more sensitive to the decision error variables in the 6-month than in the 12-month
models, with more decision errors associated with stronger optimism in the 6-month
horizon. Optimism was stronger in the 12-month horizon models but did not vary
significantly with the number of decision errors except for p-violations in the rural
sample.

This is the first study to estimate such probability weighting functions for different
time horizons both in the lab (student sample) and in the field (rural sample) in
a developing country (Malawi). Our findings are consistent with earlier studies that
state that subjects become more risk-tolerant when the outcomes occur further into
the future. It may appear surprising that people become more optimistic and willing
to take risks related to more distant future prospects when uncertainty should grow
with distance into the future. We are not sure about the psychology and heuristics
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behind this finding. It requires further research. This result remains strong for the sub-
samples of students and rural subjects that did not make any decision errors in our
experiment. We cannot, therefore, blame it away on decision errors. Why are the more
rational (more consistent) decision-makers fairly risk-neutral regarding risky prospects
with payouts one year into the future but strongly risk-averse in risky prospects with
a payout six months into the future? This is a striking result that we cannot explain.

We find the same result for both the student and rural samples. The result that
delay is associated with higher risk tolerance is not a new finding (Abdellaoui et al.,
2011; Coble & Lusk, 2010; Kemel & Paraschiv, 2023; Noussair & Wu, 2006; Shelley,
1994). Shelley (1994) found that subjects were more risk-tolerant towards large distant
future losses. Noussair and Wu (2006) found the same without considering probability
weighting, based on an incentivized experiment with a fairly small student sample
(63 undergraduate students in Emory University, Atlanta). Coble and Lusk (2010)
found the same in a sample of 47 undergraduate and graduate students in the US and
associated this with a less concave utility function (lower risk aversion). Abdellaoui
et al. (2011) also found subjects more risk tolerant in delayed lotteries. A difference
between their study and ours is that they also delayed the time for the lottery. We
played out the lottery immediately after the games were played, but the payouts would
occur at different times. In our experiment, the subjects had a 10% chance of winning
in the game in a randomly drawn CL out of 20 CLs. Nevertheless, our results are
strikingly similar to those of Abdellaoui et al. (2011). They found that utility curvature
does not explain the result, which the probability weighting function absorbed. Their
finding is that time delay results in probabilistic optimism and, therefore, higher risk
tolerance for delayed lotteries. They had a small sample (52 undergraduate students
from a university in Turkey), and one may wonder about the external validity of their
results. Our finding of similar results in two large samples, including a university
student sample and a rural sample with limited education, attests to their results’
external validity. Furthermore, we find that decision errors do not drive the result as
the result is even strengthened when we limit our analysis to the sub-samples that did
not commit any time-horizon-related decision errors.

We may wonder what difference the timing of the risk resolution makes compared to
the timing of payouts for the risky prospects. Abdellaoui et al. (2022) made an explicit
study of this. They considered cases where a lottery could be a) resolved and paid
immediately, b) resolved and paid later, and c) resolved immediately but paid later.
Our experiment belongs to the last category. Noussair and Wu (2006) and Abdellaoui
et al. (2011) compared cases a) and b) and showed that b) was associated with more
risk tolerance than a). Our contribution is finding the same in the case of c). The
timing of the resolution, whether it is immediate or delayed, seems to be less important
than the timing of the payout for the effect on risk tolerance. Abdellaoui et al. (2022)
compared cases b) and c). They found a general preference for early resolution of the
risk, and this preference increased with the probability of winning. They also found
that the probability weighting dominated the utility-related effects of temporal risk
on preferences and suggested that a linear relationship (U0 = Ut) between the utilities
at the alternative points in time is adequate based on a comprehensive assessment of
alternative transformation functions.
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Kemel and Paraschiv (2023) experimented on risk attitudes with immediate versus
delayed outcomes while excluding discounting as a covariate in their design. Their
sample consisted of 70 undergraduate students from the University of Paris. They also
found that delayed outcomes were associated with higher risk tolerance and that this
effect largely came through the probability weighting function in the form of a more
elevated (optimistic) function for delayed prospects.

We used models with linear utility as the main models in our analysis because the
concave utility was found to lead to negative discount rates for our data’s longest time
horizon (2 years). After selecting the sub-samples that did not commit any decision
errors, our result was similar: the subjects were more optimistic in the 12-month than
in the six-month horizon models (Tables 10 and 12). We found the degree of optimism
to be even stronger in the rural sample than in the student sample. This is striking
as these rural subjects live in an environment with frequent severe climate shocks
and poverty. A recent study in Ethiopia found that poor rural subjects became more
willing to take risks after being exposed to a severe climate shock (drought) (Holden
& Tilahun, 2024).

The rural sample had higher discount rates than the student sample. We investi-
gated the effect of imposing a survival rate or limited trust in receiving payment of late
outcomes as proposed by Halevy (2008). Including such survival constraints resulted
in a substantial reduction in the discount rates, especially in the six-month horizon
models (Tables 10 and 13). We showed with simulations that such survival constraints
or additional risks associated with future payments also may contribute to explaining
the hyperbolic pattern in the data in line with the findings of (T. Epper et al., 2020,
2011; T.F. Epper & Fehr-Duda, 2024; Halevy, 2008).

Our study also provides an interesting finding related to earlier studies finding
that certain future outcomes are discounted more heavily than uncertain future out-
comes(Andreoni & Sprenger, 2012; T.F. Epper & Fehr-Duda, 2024). Our data reveal
the same result if we assume linear probability weighting and linear utility (DEV mod-
els). The discount rate is then strongly positively correlated with the probability of
winning. However, when we allow non-linear probability weighting, this positive and
significant result disappears and can even turn in the opposite direction in DRDEV
models (see models in Tables B4-B11 in Appendix B). This is, therefore, not a robust
result but may be a result of not considering non-linear probability weighting. We,
therefore, assumed that discounting was independent of the probability of winning in
our DRDEV models, which form the backbone of our analyses.

7 Conclusion

In our cognitive limitations approach, we allow errors because of prior beliefs, impre-
cise and unstable preferences due to uncertainties, and calculation errors due to
limited numeracy skills. We have used an experiment with many binary decisions in
a within-subject design to measure the consistency in decision-making related to sim-
ple preference ranking of prospects over risk and time. We have used the frequency of
decision errors in the form of consistency violations to assess whether such errors can
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explain hyperbolic discounting and non-linear (inverse-S-shaped) probability weight-
ing. If decision errors are the sole reason for these phenomena, subjects not committing
such errors should not exhibit these phenomena. On the other hand, if decision errors
associated with cognitive limitations are one of several reasons for these phenomena,
these phenomena may be positively correlated with the frequency of decision errors
but only partially explain these. Our results indicate that decision errors as measures
of cognitive limitations explain a large part of the hyperbolic discounting pattern.
Uncertainty about future payments may possibly contribute to explaining an addi-
tional part of the hyperbolic pattern. However, when it came to the inverse-S-shaped
probability weighting, we did not find that the frequency of decision errors in our
experiment could explain this phenomenon, which remained persistent and strong for
those not committing any decision errors in the high-education student sample and
the low-education rural sample. While the student sample, on average, made fewer
decision errors than the rural sample, Cohen’s ds for the differences in error-making
in time and probability comparisons were small, in the range of 0.15-0.23. This shows
a weak influence of formal schooling on subjects’ ability to make consistent decisions
across a large number of binary choices.

Many types of decisions are associated with substantial delays before the outcomes
of the decisions materialize. Climate change policies represent one example of this.
People’s time and risk preferences may substantially impact their attitudes toward
future climate change risks. Our study focuses on the delayed outcomes materializing
six months to two years after the decisions were taken and mostly on decisions with
payout 6 and 12 months into the future. These horizons fit well with the annual cycles
of students and rural agricultural households in our two samples. The decisions to
invest in agricultural production must be made early in the rainy season before the
weather has been revealed.15 Exposure to such climate shocks and information about
climate change and the need for adaptation to climate change imply that they must
make decisions over risk and time that are vital for survival. A better understanding
of their decisions is important for climate and agricultural policies that can better
facilitate adaptation to climate change.

Our study reveals two counter-acting elements regarding people’s motivation to
invest in the future: their discounting behavior related to risky returns and how
they weigh future risks. A hyperbolic discounting function should indicate increasing
patience related to the receipts of future returns and a willingness to invest when far
future returns are relatively low. This may indicate a stronger willingness to invest in
future climate change mitigation. Our finding that hyperbolic discounting, to a large
extent, may be an experimental artifact due to decision errors gives reason to be cau-
tious about assuming that hyperbolism can help promote climate action. Lack of trust
in future returns to the investment may further eliminate the hyperbolic pattern in
discount rates. After correcting decision errors, our study revealed that the average
discount rates of students and rural household members remained high in the six- to
12-month perspective. The fact that their risk tolerance increased substantially in the

15Rainfed agriculture, which dominates in Malawi, is exposed to climate risks in terms of droughts and
floods that may occur between the time of cultivation and planting and the harvesting five to six months
later. With only one rainy season per year, rural households must plan for a full year for production and
consumption.
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12-month horizon compared to the 6-month horizon indicates considerable optimism
in the longer horizon and substantial risk aversion in the shorter 6-month perspective.
This finding is consistent across our two large samples, and similar results have been
found in several other studies with relatively small student samples in the US and
Europe, attesting to their external validity. This indicates that people are less worried
about the distant future, which could cause a laissez-faire attitude and a tendency
to postpone actions. While procrastination behavior has been associated with present
bias, our study indicates that optimism bias related to future outcomes may result
in a similar tendency to procrastinate actions related to more distant future risks. In
Malawi, such optimism bias may lead to insufficient climate actions and adaptations
to prevent catastrophic future outcomes.
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Abdellaoui, M., Diecidue, E., Öncüler, A. (2011). Risk preferences at different time
periods: An experimental investigation. Management Science, 57 (5), 975–987,

Andreoni, J., & Sprenger, C. (2012). Risk preferences are not time preferences.
American Economic Review , 102 (7), 3357–76,

Charness, G., Eckel, C., Gneezy, U., Kajackaite, A. (2018). Complexity in risk elic-
itation may affect the conclusions: A demonstration using gender differences.
Journal of risk and uncertainty , 56 , 1–17,

Charness, G., & Viceisza, A. (2016). Three risk-elicitation methods in the field-
evidence from rural senegal. Review of Behavioral Economics, 3 (2), 145–171,

Cheung, S.L. (2019). Eliciting utility curvature in time preference. Experimental
Economics, 1–33,

Coble, K.H., & Lusk, J.L. (2010). At the nexus of risk and time preferences: An
experimental investigation. Journal of Risk and Uncertainty , 41 (1), 67–79,

Cohen, J., Ericson, K.M., Laibson, D., White, J.M. (2020). Measuring time
preferences. Journal of Economic Literature, 58 (2), 299–347,

35



Enke, B., & Graeber, T. (2023). Cognitive uncertainty. The Quarterly Journal of
Economics, 138 (4), 2021–2067,

Enke, B., Graeber, T., Oprea, R. (2023). Complexity and time (Tech. Rep.). National
Bureau of Economic Research.

Epper, T., Fehr, E., Fehr-Duda, H., Kreiner, C.T., Lassen, D.D., Leth-Petersen, S.,
Rasmussen, G.N. (2020). Time discounting and wealth inequality. American
Economic Review , 110 (4), 1177–1205,

Epper, T., Fehr-Duda, H., Bruhin, A. (2011). Viewing the future through a warped
lens: Why uncertainty generates hyperbolic discounting. Journal of Risk and
Uncertainty , 43 (3), 169–203,

Epper, T.F., & Fehr-Duda, H. (2024). Risk in time: The intertwined nature of risk
taking and time discounting. Journal of the European Economic Association,
22 (1), 310–354,

Fechner, G.T. (1860). Elemente der psychophysik (Vol. 2). Breitkopf u. Härtel.
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Table A1 Certainty Equivalent statistics for each sample by CL (mean,
median, and standard deviations

Student sample n=721 Rural sample n=835
CL No. CE-Mean CE-p50 CE-SD CE-Mean CE-p50 CE-SD

1 766 450 734 885 450 908
2 1192 1050 844 1235 1050 1002
3 965 750 791 1073 750 954
4 3475 2250 3848 3667 1000 4438
5 5561 5250 4354 5235 3750 4789
6 4474 3750 4001 4465 2250 4565
7 1417 1050 1495 2069 1050 2080
8 1612 1050 1537 2176 1350 2044
9 1447 1050 1453 2217 1350 2030
10 1723 1050 1567 2350 1750 2059
11 1888 1050 1759 2889 2500 2316
12 2305 1750 1825 3172 3500 2257
13 3508 2250 3690 3800 2250 4279
14 3041 2250 3483 3517 1000 4133
15 4545 3750 3782 4692 2250 4492
16 3996 2250 3594 4500 2250 4355
17 4463 3750 3963 4370 2250 4432
18 3700 2250 3574 4199 2250 4366
19 2087 1500 1689 2060 1500 1920
20 10215 7500 8760 10317 7500 9882
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Appendix A Certainty Equivalent statistics by CL

The CLs are constructed to facilitate pairwise consistency checks for the CEs. CLs 1-
3 have far future and near future amounts that are one-fifth in value of those in CLs
4-6. All the amounts are the same within CLs 1-3 and within CLs 4-6. Similarly, CLs
19 and 20 have values in CL 19 that are one-fifth of CL20. As both these lists have
a p(win)=0.5, their expected values for near and far future amounts are identical to
those for CLs 1-3 and 4-6, respectively. These differences in amount levels provide an
opportunity to assess the concavity of the utility function. With linear utility, the near
future CEs should be one-fifth in CLs 1-3 vs. CLs 4-6 and for CL19 vs. CL20.

To more easily compare and assess whether the linear utility is a reasonable
assumption, we compare CLs 1-6 and CLs 19-20 after multiplying all values in CLs
1-3 and 19 with five. We compare the means, medians, and standard deviations for
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Table A2 Adjusted Certainty Equivalent statistics for each sample by CL (mean,
median, and standard deviations

Student sample n=721 Rural sample n=835
CL No. FFT CE-Mean CE-p50 CE-SD CE-Mean CE-p50 CE-SD

1 24 3830 2250 3670 4423 2250 4542
4 24 3475 2250 3848 3667 1000 4438
3 12 4823 3750 3957 5365 3750 4768
6 12 4474 3750 4001 4465 2250 4565
2 6 5962 5250 4220 6175 5250 5008
5 6 5561 5250 4354 5235 3750 4789
19 12 5218 3750 4224 5150 3750 4799
20 12 5108 3750 4380 5158 3750 4941

Fig. A1 Rural subjects with high cognitive ability: Estimated w(p) functions by time horizon

these after this adjustment in Table A2, where we have reorganized the CLs’ order to
pair CLs with the same time horizon.

Table A2 indicates that the linear utility assumption is reasonable for the student
sample, as the median CEs match perfectly. The mean values for the students point
in the direction of a weak concave utility. For the rural sample, we have stronger
indications of utility being concave. This may also be one reason for the finding of
higher discount rates in the rural sample than in the student sample in our DRDEV
models with linear utility.

Figure A1 presents the adjusted CE cumulative distributions for the 12-month
horizon CLs 3, 6, 19, and 20 as an additional inspection for the rural sample. While
CLs 3 and 6 indicate concave utility, CLs 19 and 20 do not.

Based on CLs 1-6 evidence for the rural sample, we also run DRDU models for
the rural sample without consistency violations (n=200) with a CEMU-θ=0.2, see
Table A3. The results are with two alternative survival/future payment risk rates.
This concave utility function brought the sample discount rates down and more closely
to the levels of the student sample models with linear utility in the models with the
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Table A3 Rural sample (n=200) without consistency errors (viol6t=0): DRDU models
(CEMU-θ=0.2) with a survival or payment uncertainty rates of 0.9 and 0.75

(1) (2) (3) (4)
EQUATION VARIABLES 6-month 12-month 6-month 12-month

SurvP=0.9 SurvP=0.9 SurvP=0.75 SurvP=0.75

Discount rate Constant 0.644*** 0.331*** 0.482*** 0.227***
(0.097) (0.055) (0.126) (0.070)

CEMU-θ Constant 0.200 0.200 0.200 0.200
Prelec α Constant 0.523*** 0.781*** 0.523*** 0.781***

(0.067) (0.086) (0.067) (0.086)
Prelec β Constant 0.926*** 0.654*** 0.926*** 0.654***

(0.072) (0.067) (0.072) (0.067)
Luce error Constant 2.660*** 2.024*** 2.660*** 2.024***

(0.304) (0.337) (0.304) (0.337)
CL-order FE Yes Yes Yes Yes
Enumerator FE Yes Yes Yes Yes
Constant 1.041*** 0.869*** 1.041*** 0.869***

(0.242) (0.239) (0.242) (0.239)

Observations 2,186 2,978 2,186 2,978
Log-likelihood -1470 -1990 -1470 -1990
N clusters 199 200 199 200

Models with concave utility and survival constraints by time horizon. Can be compared with
Table 13 (models with linear utility). Cluster-corrected standard errors in parentheses, clustering
on subjects. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

survival constraint (Tables 9 vs. 10). The hyperbolic effect remained stronger in the
rural sample.

Appendix B Discounted Expected Value (DEV)
models for all time horizons

Tables B4 (student sample) and B5 (rural sample) present Discounted Expected Value
models for each time horizon (6, 12, and 24 months) with contextual Luce errors.
They demonstrate the sharp decline in discount rates (hyperbolic discounting) as time
horizons are extended. With the 24-month horizon, the discount rate is close to zero
in the student sample. Imposing a concave utility function would make these long-
term discount rates negative. We have, therefore, retained a linear utility function in
all models presented in this paper.

It has been found that certain outcomes are discounted more heavily than risky
ones (T.F. Epper & Fehr-Duda, 2024; Keren & Roelofsma, 1995). We investigate this
in the DEV framework below in Tables D8 and D9. We see in both tables (five of six
models) that the p(win) is significantly positively correlated with the discount rate in
line with this. We may, however, wonder whether this phenomenon is associated with
non-linear probability weighting. We investigate this by allowing for a one-parameter
Prelec w(p) function. Tables B8 and B9 test what happens to the sign and significance
of the p(win) variable. We see that the sign changes in the opposite direction in two
of the three models in Table B8 and is only weakly significant and positive in one of
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Table B4 Student sample: Discounted Expected Value models

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate Constant 1.059*** 0.404*** -0.054
(0.025) (0.025) (0.036)

Luce error probwin1 -1.691*** -1.614***
(0.237) (0.279)

Constant 4.903*** 6.183*** 4.427***
(0.835) (0.884) (0.711)

Observations 8,246 11,016 5,594
Log-likelihood -5520 -7377 -3704
N clusters 720 720 718

Cluster-corrected standard errors in parentheses, clustering on subjects.
*** p<0.01, ** p<0.05, * p<0.1.

the models in Table B9. We interpret this cautiously as a sign that this phenomenon
is not a robust finding independent of whether probability weighting is non-linear.
Allowing for the 2-parameter Prelec w(p) function is also tested in Tables B10 and
B11. This further strengthens the evidence that non-linear probability weighting is the
basic reason for the apparent phenomenon that certain outcomes are discounted more
heavily than risky ones. The models generate implausible results when the time horizon
is 6 months (very low Prelec α and the discount rates becoming strongly negatively
correlated with p(win), opposite of the DEV model). The results are similar if we
run these models for the sample that did not commit any decision errors (viol6t=0).
We interpret the risk-dependent discount rate result as an artifact associated with
not considering non-linear probability weighting of risk. Consequently, all our main
DRDEV models assume that the discount rate does not vary with risk.
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Table B5 Student sample: Discounted Expected Value models

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate viol6t 0.000 -0.047** -0.068**
(0.024) (0.019) (0.032)

viol6p -0.057*** -0.035* -0.086**
(0.021) (0.018) (0.039)

Constant 1.137*** 0.513*** 0.084
(0.059) (0.043) (0.067)

Luce error probwin1 -1.689*** -1.574***
(0.240) (0.252)

Constant 4.975*** 6.147*** 4.234***
(0.828) (0.839) (0.742)

Observations 8,246 11,016 5,594
p 0.0157 0.00992 0.000201
chi2 8.304 9.226 17.02
Log-likelihood -5518 -7375 -3699
N clusters 720 720 718

Cluster-corrected standard errors in parentheses, clustering on subjects.
*** p<0.01, ** p<0.05, * p<0.1.

Table B6 Student sample: Discounted Expected Value models

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate viol6t 0.000 -0.054*** -0.067*
(0.025) (0.020) (0.034)

viol6p -0.056*** -0.023 -0.086**
(0.022) (0.020) (0.039)

probwin1 0.361*** 0.383*** -0.022
(0.053) (0.044) (0.281)

Constant 0.845*** 0.228*** 0.104
(0.083) (0.057) (0.283)

Luce error viol6t 0.068 0.089
(0.078) (0.069)

viol6p 0.251***
(0.064)

probwin1 -1.177*** -1.007***
(0.239) (0.279)

Constant 4.494*** 5.073*** 4.237***
(0.863) (0.951) (0.746)

Observations 8,246 11,016 5,594
p 0 0 0.000516
chi2 59.97 83.77 17.66
Log-likelihood -5514 -7364 -3699
N clusters 720 720 718

Cluster-corrected standard errors in parentheses, clustering on subjects.
*** p<0.01, ** p<0.05, * p<0.1.
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Table B7 Rural sample: Discounted Expected Value models

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate Constant 1.197*** 0.553*** -0.022
(0.034) (0.032) (0.041)

Luce error probwin1 -2.756*** -2.510*** 0.061
(0.338) (0.372) (0.865)

Constant 6.642*** 6.173*** 2.936***
(0.866) (0.787) (0.998)

Observations 9,112 12,316 6,508
Log-likelihood -6150 -8283 -4343
N clust 828 830 831

Models including only switch point rows. Cluster-corrected standard
errors in parentheses, clustering on subjects. *** p<0.01, ** p<0.05, *
p<0.1.

Table B8 Rural sample: Discounted Expected Value models: Decision
error (viol6t) correlation with discount rates

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate viol6t 0.019 -0.075*** -0.117***
(0.020) (0.022) (0.030)

Constant 1.165*** 0.674*** 0.159***
(0.051) (0.051) (0.057)

Luce error probwin1 -2.769*** -2.725*** 0.348
(0.339) (0.391) (1.282)

Constant 6.630*** 6.239*** 2.625
(0.875) (0.733) (1.787)

Observations 9,088 12,284 6,492
p 0.339 0.000752 0.000113
chi2 0.915 11.36 14.91
Log-likelihood -6133 -8258 -4327
N clusters 826 828 829

Models including only switch point rows. Cluster-corrected standard
errors in parentheses, clustering on subjects. *** p<0.01, ** p<0.05, *
p<0.1.
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Table B9 Rural sample: Discounted Expected Value models with
p(win) dependent discount rates and time-related decision error
correlations, with Luce error correlated with p(win)

(1) (2) (3)
EQUATION VARIABLES 6-month 12-month 24-month

Discount rate viol6t 0.020 -0.078** -0.122***
(0.021) (0.030) (0.035)

probwin1 0.457*** 0.316*** 0.415**
(0.055) (0.071) (0.184)

Constant 0.800*** 0.448*** -0.212
(0.072) (0.053) (0.180)

Luce error probwin1 -2.235*** -2.592*** 0.514
(0.336) (0.657) (1.344)

Constant 6.238*** 6.141*** 2.404
(0.885) (1.102) (1.657)

Observations 9,088 12,284 6,492
p 0 5.43e-05 0.00208
chi2 70.03 19.64 12.35
Log-likelihood -6130 -8255 -4327
N clusters 826 828 829

Probwin included in the Luce error. Cluster-corrected standard errors in
parentheses, clustering on subjects. *** p<0.01, ** p<0.05, * p<0.1.
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Table B10 Student sample: Discounted Rank Dependent
Expected Value models with 1-parameter Prelec w(p) and
p(win) dependent discount rates, with Luce error
correlated with p(win)

(1) (2)
EQUATION VARIABLES 6-month 12-month

Discount rate viol6t -0.003 -0.054***
(0.017) (0.019)

viol6p -0.031 -0.024
(0.026) (0.020)

probwin1 -0.034 0.089*
(0.082) (0.049)

Constant 1.150*** 0.443***
(0.104) (0.059)

Prelec alpha viol6t -0.058 -0.020
(0.037) (0.034)

viol6p 0.000 -0.032
(0.032) (0.022)

Constant 0.644*** 0.709***
(0.132) (0.065)

Luce error viol6t -0.102*** 0.070
(0.024) (0.073)

viol6p 0.341*** 0.262***
(0.047) (0.064)

probwin1 -0.557** -0.692**
(0.227) (0.315)

Constant 3.534*** 4.836***
(0.848) (0.971)

Observations 8,246 11,016
p 0.684 0.00420
chi2 1.491 13.21
Log-likelihood -5503 -7359
N clust 720 720

Probwin included in the discount function and the Luce
error. Cluster-corrected standard errors in parentheses, clus-
tering on subjects. *** p<0.01, ** p<0.05, * p<0.1.
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Table B11 Rural sample: Discounted Rank Dependent
Expected Value models with p(win) dependent discount
rates, with Luce error correlated with p(win)

(1) (2)
EQUATION VARIABLES FFT=6 FFT=12

Discount rate probwin1 0.067 0.086*
(0.061) (0.046)

Constant 1.141*** 0.523***
(0.057) (0.044)

CEMU-θ Constant 0.000 0.000
Prelec α Constant 0.514*** 0.587***

(0.045) (0.040)
Prelec β Constant 1.000 1.000

(0.000) (0.000)
Luce error probwin1 -0.140*** -0.087*

(0.051) (0.051)
startptno 0.042*** 0.038***

(0.007) (0.006)
Constant 1.012*** 1.017***

(0.110) (0.120)

Observations 50,970 69,142
p 0.274 0.0592
chi2 1.196 3.558
Log-likelihood -25218 -33303
N clust 828 830

Probwin included in the Luce error. Cluster-corrected stan-
dard errors in parentheses, clustering on subjects. ***
p<0.01, ** p<0.05, * p<0.1.
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