
  

Abstract – The present global climate crisis necessitates 

urgent integration of sustainable and renewable energy 

resources, coupled with digital technology. Renewable 

energy stands out as a viable solution, and among the 

various renewable energy sources, wind power is believed to 

play a crucial role in this transition. In the era of industrial 

digitalization, implementing smart monitoring and operation 

becomes a vital step toward optimizing resource utilization. 

Consequently, the application of Digital Twins (DT) emerges 

as a promising approach to enhance power output in the 

wind energy sector. DTs for energy systems encompass 

multiple areas of study, such as smart monitoring, big data 

technology, and advanced physical modeling. While several 

frameworks exist for structuring DTs, few standardized 

methods have been established based on the experience 

gained from developing them. To address this gap, the 

present research aims to propose an integrative development 

framework for DTs, specifically tailored to the aerodynamics 

of wind turbines, to ensure their successful operation 

throughout the entire lifecycle, from aggregation to 

performing actions. A seven-step framework is presented, 

which identifies the potential components and methods 

required for the creation of a fully developed DT. The steps 

explored in the present work range from Assessment, Create, 

Communicate, Aggregate, Analyze, Insight, and Act steps 

needed for the full realization of DTs.  
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I.  INTRODUCTION 

 Climate change presents a significant threat to life on 

Earth, and the urgency for immediate action is crucial [1]. 

The transition to a low-carbon society is a long-term 

endeavor, with renewable energy emerging as a key 

contributor towards this objective. Unlike non-renewable 

energy derived from static energy stores, renewable 

energy is harnessed from renewable sources of energy 

flows, with the wind being a prominent category [2]. The 

IPCC's Mitigation Climate Change report identifies wind 

and solar energy as the technologies with the highest 

potential to reduce greenhouse gas emissions at the lowest 

cost. 

The recent emergence of digitalization and the shift 

towards digital technology necessitates the development 

of DT technology across all aspects of mechanical 

systems. This new paradigm requires collaborative efforts 

from various stakeholders, including industry and 

academia. In a review of DTs in the wind energy sector 

[3], the authors recommend that academia and research 

institutes contribute to the development of virtual and 

predictive twins accessible to society through open-source 

software. Similarly, collaboration is encouraged in 

building machine learning models using open-source 

software, citing the Python programming language as an 

example of how a large community can enhance a tool 

through additional features and bug fixes after its initial 

release. Developing a fully capable DT with high-fidelity 

modeling can be a time-consuming process due to its 

complexity [4][5]. However, utilizing open-source 

resources and frameworks for DTs can significantly 

reduce development time compared to each firm creating 

its proprietary DT from scratch. Thus, it is advantageous 

to leverage technology that is accessible to all interested 

parties. 

Established definitions related to Industry 4.0 and DT 

are hard to identify as many fields as possible of 

applications that exist. There exist different requirements 

and expectations of what a digital model should be 

capable of, before being classified as DT. Common 

criteria are real-time data exchange between the physical 

and digital system components and the ability to analyze 

and use the data to optimize the digital and physical 

systems. Some terms are often used to define the different 

instances of digital models. Therefore, this study presents 

an integrative framework for DT implementation in wind 

turbines, providing a systematic approach for developing 

DT models specifically designed for these systems. Each 

stage in the model construction process is meticulously 

described using schematics, ensuring a comprehensive 

understanding of the effective method for constructing 

these models. 

 

    II.  DIGITAL TWIN CONCEPT 

We begin by introducing the diverse definitions of DT 

and associated concepts found in the literature regarding 

model digitization. We elucidate the specific meaning 

attributed to each definition and explore their 

interpretations across different levels. This comprehensive 

comprehension will serve as a foundation for developing 

an integrative model for DTs. The concept of DT can be 

classified based upon its application area and also on how 

the dataflow occurs between physical system and its 

virtual representation [cite my DT PAPER HERE]. Based 

on the application area the different types of DTs are [6]: 

1. Digital Twin Prototype (DTP): A DTP consists of the 

informational sets (such as 3D models, Bills of 

Materials, Bills of Processes, etc.) which is 

imperative for describing and producing a physical 

version that emulates the virtual version. 
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2. Digital Twin Instance (DTI): A DT that represents its 

physical counterpart throughout its life cycle and is 

linked to a particular physical asset with the help of 

continuous digital thread (historical data, live data 

from sensors, tests and inspection). 

3. Digital Twin Aggregate (DTA): An aggregation of all 

the DTIs, of a particular system or system of systems. 

4. Digital Twin Environment: It refers to fully 

integrated, multidisciplinary physics application 

space for operating a DT for predictive (to estimate 

the future behavior) or interrogative (to understand 

the historical or current state) purposes. 

 

Figure. 1. shows the DT classification on the basis of data 

flow and the various classes are described below. 

1. Digital Model: The digital model is defined as a 

virtual representation of a physical asset that 

accurately describes its predetermined set of 

behaviors. The digital model does not exchange data 

automatically with its physical counterpart, and new 

information must be manually added [7]. 

2.  

 
Fig. 1. Different concepts related to Digital Twin [8] 

 

3. Digital Shadow: A digital shadow is defined to 

provide an accurate depiction of a physical asset or 

process by automatically receiving near-real-time 

data from the physical system. It possesses the 

capability to evaluate data from a comprehensive 

database. 

4. Digital Generator: It differs from digital shadow in 

the sense that the flow of information from the virtual 

to the physical space is automatic, while from 

physical world to virtual the information has to be 

manually fed. 

5. Digital twin (DT): In [3], a consensus definition of a 

DT is presented based on input from various authors 

and industrial partners. It is described as a virtual 

representation of a physical asset or process enabled 

through data and simulators for real-time prediction, 

optimization, monitoring, control, and informed 

decision-making. The phrasing of this definition 

suggests that the physical asset is not a part of the DT 

system. However, in [4], the physical space is 

included in the DT, incorporating key features such 

as data acquisition, pre-processing, and actuators. 

Besides these 4 classes, two more classification are found 

in some of the literature. 

6. Digital Sibling: The term digital sibling is used when 

discussing risk assessment and "what-if" analysis. In 

[9], it is defined as offline mode of the DT used for 

conducting scenario analysis. 

7. Digital Thread: The digital thread pertains to the 

product information gathered by the DT throughout 

the product's lifecycle, which is connected to Product 

Lifecycle Management (PLM). The digital thread can 

be utilized in the development of the product's next 

generation, holding information about the 

performance and design of the physical asset [3]. 

 

Digital Twin capability levels for wind energy 

Wind Turbines are cyber-physical systems (CPS), 

meaning that they consist of both the physical/ hardware 

elements (such as Blades, tower, Nacelle, generator) and 

cyber/ software elements (such as control system, etc.). 

While building a DT of a CPS, the physical elements are 

represented by a digital model, while the cyber elements, 

can be included directly in the DT, which can then be 

used for modeling, simulating, and optimizing the CPS. 

The DTs can be used during entire life cycle of the 

system, for example during design phase they can be used 

for virtual testing, while during manufacturing they can 

simulate the production process. However, it is during the 

operational phase, that DT offers the maximum benefit as 

it can be utilized to continuously reflect the past, present 

and future health of the system/asset, which in turn can be 

used to formulate inspection and maintenance plans. 

Besides this, DTs also allow analyst to perform complex 

and safety critical simulations, in order to calculate the 

dynamic risk, before such an event happens in real life. 

The operators can then take necessary decisions in order 

to mitigate the dynamic risk estimated by the DT, and 

thus maintain risk and safety at the industry regulated 

levels. [8] 

Ensuring acceptable quality requires both the DT results 

and the developer's capabilities. The requirements for the 

DT encompass several aspects, including the quality of 

data, computation models, presentation of results in the 

user interface, and the functionality of the DT throughout 

its lifetime. [10] provides the functional elements in a 

DT's capability into six distinct levels, ranging from 0 to 

5. These levels are described herein and are associated 

with the potential capabilities of a wind turbine's DT [11]. 

Standalone (0): This level involves describing the 

physical system without real-time data connectivity. It 

includes data modeling for contextualization and 

structure, providing a preview of the wind turbine and its 

surroundings before installation. It also allows for the 

simulation of the turbine in a local environment, 

considering various locations, heights, and weather data. 

Descriptive (1): At this level, the DT utilizes real-time 

sensor data and historical data to describe the current state 

of the physical system. It notifies the user of events and 

provides live and historical sensor data on variables such 

as velocity, pressure, temperature, vibration, power 

generation, and humidity/density. The turbine's real-time 

representation includes notifications for critical conditions 

or changes. 

Diagnostic (2): The DT supports condition monitoring 

and troubleshooting through diagnostic information. It 

provides indicators that offer vital information about the 



 

turbine's condition without requiring physical inspection. 

Remote inspection of turbine faults is also possible at this 

level. 

Predictive (3): This level involves predicting future states 

or performance and supporting prognostic capabilities. 

The DT can predict wind conditions, and power 

generation, and estimate the remaining time until 

component failure. 

Prescriptive (4): The prescriptive level goes beyond 

prediction and provides recommendations based on "what 

if" scenarios, risk analysis, and uncertainty quantification. 

It offers recommendations on, for example, when to start 

the turbine or carry out maintenance activities. 

Autonomous (5): At the highest level, the DT operates as 

a closed control loop, replacing the user in decision-

making and executive control actions on the system. This 

level includes power optimization through a control loop 

with a Maximum PowerPoint Tracker. 

 

      

III.  PROPOSED FRAMEWORK 

This section provides an integrative framework 

developing a DT based on the high-order framework 

shown in Figure 2. The essential steps that are outlined 

are Create, Communicate, Aggregate, Analyze, Insight, 

and Act.  

 
Fig. 2. DT development framework with the steps from Create to Act. 

 

Create: The creation step encompasses a dual 

significance. On one hand, in the physical domain, it 

entails the installation of numerous sensors on the actual 

asset. On the other hand, in the digital realm, it involves 

the development of Computer-Aided Design (CAD) 

models that faithfully replicate the entire structure. Thus, 

the initial phase of designing the Digital Twin (DT) 

entails generating a standalone CAD model of the 

physical asset, such as a wind turbine, without any 

connectivity. Subsequently, functionalities and 

connections are incrementally incorporated until the DT 

reaches an acceptable capability level for its specific 

application. At this stage, the model does not need to be 

highly accurate since it does not provide real-time 

predictions and does not play a critical role in the future 

operation of the wind turbine. The precise prediction of 

aerodynamic performance for a wind turbine using an 

unconnected virtual model (Standalone DT) may not be 

achievable, but it does offer other benefits to the user (see 

Figure 3).  
 

 
Fig. 3. In the assessment step, an unconnected virtual model with 

optional fidelity is made based on resource and site assessments. 
 

For aerodynamic monitoring the sensors that can be 

placed for the data acquisition can be of wind speed, 

direction, and meteorological data such as air temperature, 

humidity, and pressure is necessary. These values can be 

measured from the nacelle using anemometers, wind 

vanes, and temperature, humidity, and pressure sensors. 

Additionally, temperature and humidity sensors can help 

detect ice formation, and if feasible, sensors can be placed 

on the blades. Li-DAR technology can be used to obtain 

insight into upwind conditions, such as wind speed, to 

support the control of the mechanical system (e.g., active 

yaw system) Structural monitoring can be achieved using 

accelerometers, strain gauges, vibration sensors, and 

Micro-Electro-Mechanical sensors (MEMS) mounted on 

both the support structure and blades Accelerometers are 

considered one of the most promising approaches for 

remote sensing technologies. The design and 

implementation of structural monitoring in an offshore 

wind farm are presented in [12], which includes the use of 

various accelerometers, both wired and wireless.  Hence, 

finding suitable sensor technology for the specific wind 

turbine and location (blade or structure) is crucial. 

Communication: In the communication system the 

physical system is created, sensor data can be transmitted 

using wireless communication technology for temporary 

or long-term storage. Communication between the 

system's components can utilize various protocols. 

Communication protocols serve as tools that enable the 

supervising entity (whether it be a human or an AI 

algorithm) to effectively communicate with the IoT 

sensors. Both communication and data representation 

protocols are necessary for seamless and efficient data 

exchange (see Figure 5). 

Aggerate and Analyze:  The main objective of the DT is 

to aggregate models for the aerodynamic performance of 

a specific wind turbine within a particular location with a 

high level of accuracy. This is achieved by combining 

empirical physical equations, numerical simulations, and 

experimental flow characteristics into a comprehensive 

multiscale model (see Figure 6, 7). The purpose of this 

aggregation is to create a robust and reliable 

representation of the wind turbine's aerodynamic 

behavior, considering various factors and variables at 

different scales. 



 

 
Fig. 4. The create step consists of physical sensors, data acquisition 

hardware and CAD models. 

 

 
Fig. 5. The tools applied in the communication step allow data 

transferring between the physical and digital-physical systems. 

 

 
Fig. 6. Schematics of an analysis stage in DT. The dotted lines represent 

data transfer in the time-demanding numerical simulation using Full 
Order Models, and the solid lines show the real-time simulation loop. 

 

Analysis should be conducted to validate the quality of 

the monitoring and simulation data, utilizing methods 

such as Blade Element Momentum (BEM), Reynolds- 

Averaged Navier-Stokes (RANS) [13], and Large Eddy 

Simulation (LES) [14]. This analysis step is equally 

crucial as the choice of modeling technique in the 

previous step, as it significantly impacts the quality of the 

virtual real-time model. In addition to post-processing 

simulation results, Data-Driven Modeling (DDM), such as 

machine learning (ML), can be employed to simulate 

physical relationships either entirely or partially. This 

approach is known as Hybrid Analysis and Modeling 

(HAM). Utilizing DDM and ML techniques allows for the 

incorporation of data-driven insights into the modeling 

process, enhancing the accuracy and reliability of the 

virtual model [15]. 

Insight: Upon fully updating the virtual model, the 

simulation and analysis results can be seamlessly 

integrated into the chosen platform during the assessment 

phase (see Figure 8). Although there are limited resources 

discussing the specific methods of virtualizing analysis 

results, it is likely because many analyses software 

already incorporate this functionality.  

 

 
Fig. 7. The aggregate showing connection of virtual and real world. 

 

 
Fig, 8. Visualization of the physical system, where the left part shows 

live 3D model using a game engine, and the technical data can be 

represented in a monitoring screen in a web application. 
 

Act: By utilizing the visualization provided by the insight 

platform, a human user can acquire valuable knowledge 

for decision-making and effectively plan future actions 

based on predictive or prescriptive decision trees. 

Consequently, the user should be able to interact with the 

system state through a user-friendly interface. To achieve 

an autonomous decision tree, an additional supervising 

entity such as artificial intelligence (AI) is required to 

close the control loop through model-based decision-

making. As illustrated in Figure 9, it should be possible 

for the human user to detach the AI as a supervisor and 

directly act upon the predictions derived from the 

analysis. 

The figure shows a control loop, which can be modeled 

and executed quite easily in software like OpenModelica, 

or Python Flask. 
 

 
Fig. 9. Conceptual model a control loop implementation for autonomous 

DT. 

    



 

IV.  CONCLUSION 

 In conclusion, this study highlights the potential of 

digital twins (DTs) as a promising approach to enhancing 

power output in the wind energy sector. The research 

aimed to create a conceptual development framework for 

DTs. The proposed seven-step framework, including 

Assessment, Create, Communicate, Aggregate, Analyze, 

Insight, and Act, provides a comprehensive guide for the 

development of DTs in the wind power domain. The steps 

are summarized as herein. Create: In this step, the 

physical system is established, and data acquisition 

through IoT sensors is implemented. The data collected 

during this stage will serve as the foundation for 

subsequent steps. Communicate: The data acquired in the 

create step is then communicated and stored securely. 

This involves implementing a security system to protect 

the DT, defining protocols for data exchange and 

semantics, and ensuring accessible storage for the 

collected data. Aggregate: The Aggregate step involves 

utilizing models and computational software to simulate 

the behavior of the wind turbine and its surrounding 

environment. This requires input data from the Create step 

and high-fidelity modeling for aspects such as 

aerodynamic performance, power generation, and 

structural loads. Analyze: Once the simulation models are 

developed in the Aggregate step, the Analyze step focuses 

on data validation, model validation, and data-driven 

modeling. The collected data is validated for quality, and 

simulation models are validated for accuracy. Data-driven 

modeling techniques, such as machine learning and neural 

networks, can be employed to enhance the simulation 

results. Insight: The Insight step involves creating a real-

time virtual model and visualizing technical data, 

predictions, and scenarios. The virtual model is updated 

with real-time information, allowing users to observe and 

analyze various parameters and scenarios using 

visualization tools like game engines. Act: The final step, 

Act, is enabled by a user interface that provides access to 

data, models, and insights generated in the previous steps. 

Through the user interface, users can perform actions on 

the physical wind turbine system using the 

communication and actuators within the DT. 

Overall, the Create, Communicate, Aggregate, 

Analyze, Insight, and Act steps form a continuous cycle 

where data is acquired, processed, analyzed, and 

visualized, leading to informed actions on the physical 

wind turbine system, while also facilitating feedback and 

improvement of the DT itself. 
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