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Over the past four decades, an increase in Dissolved Natural Organic Matter (DNOM) and colour, commonly
referred to as browning, has been noted in numerous watercourses in the northern hemisphere. Understanding the
fluctuations in DNOM quality is a prerequisite for gaining insights into the biogeochemical processes governing
DNOM fluxes. Such knowledge is also pivotal for water treatment plants to effectively tailor their strategies for
removing DNOM from raw water. The specific ultraviolet absorbance (sUVa) index has been a widely applied
measurement for assessing DNOM quality. The sUVa index is the UV absorbance (OD3s4) of water normalized for
DNOM concentration. We have used a long-term dataset spanning from 2007 to 2022, taken from the MalSe River
in South Bohemia, to model DNOM and the sUVa index. We have applied regression models with a process-
oriented perspective and have also considered the influence of climate change. Both DNOM and the sUVa
index is positively related to temperature, runoff and pH, and negatively related to ionic strength over the studied
period. Two distinct model approaches were employed, both explaining about 40% of the variation in sUVa over
the studied period. Based on a moderate IPCC monthly climate scenario, simulations indicate that both DNOM
and the sUVa index averages remain fairly stable, with a slight increase in winter season minima projected to-
wards the year 2099. A slight decline in summer season maxima is simulated for DNOM, while the sUVa summer
maximum remain stable. These findings suggest a robust resilience in both DNOM and the sUVa index against
anticipated changes in temperature and runoff for the MalSe River in South Bohemia.

1. Introduction etal., 2016; Monteith et al., 2007; Vogt et al., 2023). Common indicators

for DNOM levels include Ultraviolet (UV) absorbance at Ay54 nm (OD354)

Allochthonously produced Dissolved Natural Organic Matter
(DNOM) undergoes mineralization or becomes sequestered in catch-
ment soils, with only a small fraction reaching surface waters (e.g.,
Kalbitz et al., 2000; Schmidt et al., 2011; Kaiser & Kalbitz, 2012).
However, in recent decades, a widespread browning phenomenon,
known as brownification, has been observed in freshwater bodies across
the northern hemisphere, a phenomenon primarily attributed to an
increased influx of allochthonous DNOM into surface waters (Finstad

and the concentration of dissolved organic carbon (DOC). The wave-
length at Ag54 nm corresponds to a specific UV-C wavelength generated
by the low-pressure mercury lamps (Rubin, 2010). The specific ultra-
violet absorbance (sUVa) index, which normalizes the UV absorbance of
DNOM for the concentration of DOC, is often utilized to assess the
quality of DNOM. The ODas4 is strongly affected by ferric iron concen-
trations, particularly due to overlaps between the DNOM and iron UV
light absorbance (e.g., Turner and Miles, 1957; Poulin et al., 2014;
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Haaland et al., 2018; Solberg, 2022). The sUVa index was by Weishaar
et al. (2003) not found to accurately describe the reactivity of DNOM
from different sources, however more recently it has been demonstrated
by using a somewhat different approach that the sUVa index can be used
as a simple and versatile tool for distinguishing between aromatic
allochthonous and humic DNOM, from less aromatic autochthonous and
more fulvic DNOM, as well as anthropogenic dissolved organic matter
(Vogt et al., 2023). DNOM have an impact on surface raw waters and
aquatic ecosystems and DNOM with different sUVa index value have
also been reported to have had different impacts on mixotrophic algal
densities in both epi- and hypolimnion in DNOM rich lakes (Rohrlack,
2023; Eikebrokk et al., 2018; Thrane et al., 2014; Algesten et al., 2004;
Kirk, 1976). Moreover, the sUVa index is employed by drinking water
treatment plants as a metric for DNOM treatability and the potential for
disinfection byproduct formation (Fabris et al., 2008; Jaffé et al., 2008;
Eikebrokk et al., 2004; Kitis et al., 2001; El-Shafy & Griinwald, 2000;
Hua et al., 2015).

The rise in DNOM concentrations over the recent decades, especially
pronounced from the early 1980 s to the early 2000 s, has been linked to
decreased acid rain deposition (Tipping & Hurley, 1988; Forsberg &
Petersen, 1990; Monteith et al., 2007; Haaland et al. 2007, 2010; de Wit
et al., 2021). Humic substances (HS) comprise a major brown to black
coloured portion of DNOM, and the solubility and mobility of HS in
dilute solutions increases with increasing pH, decreasing ionic strength,
and also the type ions present (e.g., de Wit, 1992; Yang et al., 2021). A
decrease in the ionic strength in dilute solutions results in a higher zeta
potential (a measure of electrostatic colloidal electrostatic or charge
interaction) and a thicker diffuse double layer (DDL; i.e. increasing the
Debye length), which will result in increased repulsion between colloids,
reduced flocculation, and less coagulation (e.g., Larsen, 2024). The DDL
thickness is also affected by cation valence, and according to the Hardy
Schulze rule the coagulating power of an electrolyte at a similar ionic
strength increases with the valency of the active ions (e.g., Derjaguin &
Landau, 1993; Verwey & Overbeek, 1948). It is however somewhat
comprehensive and expensive to calculate the ionic strength since it
requires molar concentrations and hence chemical analysis of all the
major ions. The conductivity is the sum of products of all ion activities
(a) with their specific conductivities (A) (i.e., Conductivity = X (a - A)).
Since the limiting molar conductivities do not differ that much (50 to
160 uS cm? mol™!), the conductivity is often linearly and strongly
correlated to the ionic strength. Although there is a notable exception for
H* (350 uS cm? mol’l), its influence is negligible when pH is high (i.e.,
pH above 6; Golterman & Clymo, 1969). The measured conductivity,
which is an easy parameter to measure (also in situ) with high accuracy
and precision, has therefore often been used as a proxy for the ionic
strength in modelling approaches in this context (e.g., Onsager, 1968;
Golterman & Clymo, 1969). Humic acids (HA) and fulvic acids (FA) are
major constituents of HS. The more coloured HA fraction is (opera-
tionally) defined as being soluble in water at neutral and alkaline pH.
Both fractions will gain increased thickness of the DDL and thus higher
solubility when the ionic strength is lowered in dilute solutions, while an
increase in pH will also increase the solubility of HA (i.e. Yang et al.,
2021; de Wit, 1992; Kipton et al., 1992). An increase in pH is expected to
increase ODgs4 and, consequently, the sUVa index value. While pH from
this might not be vital for models predicting DNOM developments if H"
is included in the ionic strength calculation, it remains important for
light absorbance models and, consequently, in a modelling approach for
the sUVa index.

Another explanatory driver influencing DNOM dynamics, beyond
those linked to DNOM solubility due to the previous long-term changes
in acid rain deposition, is climate change. Concentrations of DNOM and
UV absorbance in surface waters exhibit significant seasonal fluctua-
tions and interannual variations, driven by climate parameters such as
temperature and runoff (Finstad et al., 2016; de Wit et al., 2016;
Svensson et al., 2008; Futter et al., 2007; Hejzlar et al., 2003). In addi-
tion to the long-term decline in acid rain (Monteith et al., 2007; de Wit
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et al., 2007), continuing trends in climate parameters are thus recog-
nized as important explanatory drivers for the trends in DNOM and UV
absorbance (de Wit et al., 2023; Haaland et al., 2023).

Temperature increases, particularly during spring and fall, extend
the growing season, impacting catchment primary production (greening)
and the microbial degradation of soil organic matter (i.e. Finstad et al.,
2016). Changes in precipitation amount and intensity influence drought
and flood frequencies, thereby altering drainage patterns (i.e. Haaland
et al., 2010). During floods, shallow subsurface lateral soil water flow
flushes the uppermost organic-rich soil layers. Notably, these upper soil
layers exhibit high concentrations of humic-rich DNOM with high sUVa,
and low pH, differing substantially from those found in deeper
groundwater layers (Vogt et al., 2001). Thus, variations in solubility
controlled by ionic strength and pH of a soil solution, coupled with
differences in soil water flow paths, contribute to the observed temporal
patterns in DNOM and UV absorbencies. During droughts and freezing
soil temperatures limited drainage occurs from the upper DNOM-rich
soils, instead runoff would mainly be generated by subsoil and
groundwater discharge leading to lower sUVa index values in river
water (i.e. Tipping et al., 2022). Drought conditions in mires and
marshlands, on the other hand, can initiate the oxidation of sulphides to
sulphates, increasing ionic strength and lowering pH in surface waters
(Mosely et al., 2017; Massmann et al., 2003). Significant differences in
sUVa index values may also arise from variations in catchment land use,
and a forested sub-catchment often exhibits a higher sUVa index than a
sub-catchment dominated by arable land (Vogt et al., 2023).

Models for UV absorbance and DOC concentrations serve as proxies
for DNOM. Many of these rely on regression relationships and incor-
porate conceptually based parameters that influence DNOM abundance
and solubility in soil solutions. Various models have been introduced to
analyse temporal variations in DOC concentrations and light absorption
(colour) in surface water systems, i.e., Monteith et al. (2023), Haaland
et al. (2010), Hruska et al. (2009), Monteith et al. (2007), de Wit et al.
(2007), Evans et al. (2006), and Hejzlar et al. (2003). The complex
spatial heterogeneity of catchment properties and land use poses chal-
lenges for modelling. However, recognizing the drivers governing tem-
poral changes in ODss4 and DOC concentration in a watercourse is
feasible through the utilization of high-resolution long-term monitoring
data coupled with a robust process-oriented approach. However, there is
a noticeable gap when it comes to models addressing changes in the
quality of DNOM, particularly those reflecting alterations in the sUVa
index. Since sUVa is determined by normalizing ODys4 to the DOC
concentration, modelling sUVa can be accomplished indirectly by
simulating both ODjs4 and DOC. Alternatively, a direct modelling
approach for sUVa is also feasible. In both cases, it is essential to
interpret the simulation output with caution and within the consider-
ations outlined above.

2. Material and methods
2.1. Study area

The study was conducted within the South Bohemian region of the
Czech Republic, utilizing data from the Malse River. The Malse River is
the main water source to the Rimov reservoir, a drinking water supply
for South Bohemia constructed in the 1970 s (Znachor, 2022). The
reservoir spans a 13 km stretch of the Malse River (Fig. 1) and is the
principal raw water source for the Plav drinking water treatment plant
(Orderud et al., 2023), providing tap water to approximately 450,000
customers. The water chemistry of the Malse River has been monitored
regularly since the late 1960 s, and the Rimov reservoir has been inte-
grated into the Czech long-term ecological research (LTER) network
since 1997 (Church et al., 2022).

The dataset utilized for this study covers the period from 2007 to
2022 and comprises weekly average water chemistry data obtained from
samples collected at the main river site in Poresin, situated above the
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Fig. 1. The catchment of Rimov reservoir, displaying land use patterns and the locations of sampling sites, within the South Bohemian region of the Czech Republic.
Data was collected from the profile Malse Pofesin. Two major sub-catchments, Cerna Licov and Malse Soutok, contribute about 93% of the water draining to Malse
Poresin. Sampling sites also have measurements of temperature and runoff. See also https://porca.shinyapps.io/ Rimov_map_II/ for climate information.

reservoir inlet (MalSe Potesin, 48.7886422 N, 14.5168044E; Fig. 1). The
total catchment area above MalSe Pofesin encompasses 437 km?, pre-
dominantly comprising 51 % forest, 46 % agricultural areas, 2 % urban
areas, and 1 % surface water (Hejzlar et al., 2023).

DOC concentrations at Malse Poresin have earlier been modelled in
detail by Hejzlar et al. (2003). Since the mid-1980 s, there has been a
positive increasing trend in the DOC concentration at MalSe Pofesin,
leading to a brownification in the Rimov reservoir (Znachor et al., 2018).
This rise has primarily been attributed to the decline in acid deposition
(Hejzlar et al., 2003). Currently, the acid emissions in Europe are
levelling off (Schopp et al., 2003; Grennfelt et al., 2020). Instead, since
the mid-1980 s, there has been an increasing trend in air temperature in
the Czech Republic, including the Malse basin (Zahradnicek et al.,
2021). Climate change, with its effects on primary production (catch-
ment greening), and alterations in hydrological regimes, is anticipated to

further contribute to the brownification process in north European water
sources (Crapart et al., 2023; de Wit et al., 2021; Finstad et al., 2016;
Larsen et al., 2010; Haaland et al. 2007).

2.2. Chemical analyses

Water samples were analysed following ISO standard procedures at
the Biology Centre CAS Institute of Hydrobiology in Ceské Budé&jovice.
Major anion concentrations were determined using ion chromatog-
raphy. pH and conductivity were measured in the laboratory, while
temperature and runoff were recorded on-site. Alkalinity was deter-
mined through Gran titration.

For the determination of Dissolved Organic Carbon (DOC) concen-
trations, 0.45 pm filtered samples were analysed using a total organic
carbon analyser (Shimadzu TOC 5000A). UV absorbance at 254 nm
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(ODys4) was measured in a 1 cm quartz cuvette using a double-beam
UV/VIS spectrophotometer (Shimadzu UV-2700). The sUVa index was
computed by normalizing UV absorbance to DOC concentrations (cm ™!
at 254 nm / mg C L™1). Data statistics are presented in Table 1.

2.3. Regression models

Regression analysis has been used in predicting the development of
DNOM concentration and the sUVa index. The regression model set-up is
similar to the ones used by Haaland et al., (2010). The structure is
simple, transparent, and not overparameterized. There are several po-
tential drivers for ODy54, DOC, and hence also the sUVa index. To be able
to identify the most important ones, the response parameters were
recognized using Principal Component Analysis (PCA).

3. Results

The water quality measured at MalSe Poresin indicates a fairly high
pH (6.6-7.9 with a calculated mean of 7.3; Table 1), and the water also
has some buffer capacity (197-813 umol. L! alkalinity). Concentrations
of DNOM (2.6-14.1 mg C L'l), the sUVa index value (0.021 to 0.050),
and also the conductivity (76-201 pS cm’l) indicates some variation in
water quality, which is also expected and for example due to seasonal
variations in climate and catchment activity (Vogt et al., 2023). The
Principal Component Analysis (PCA) performed on the MalSe Poresin
dataset is shown in Fig. 2. The deduced drivers for the OD354, DOC, and
sUVa as response parameters in the PCA, include pH, conductivity, and
major inorganic anions, along with a variable representing the per-
centage of water originating from different sub-catchments (CL%). The
primary principal components, PC1 and PC2, collectively explain 62 %
of the variance within the dataset. Notably, along the PC1 axis, OD2s4,
DOC concentration, and the sUVa index value exhibit high loadings,
suggesting a gradient indicative of DNOM mobility. Conversely, PC2 is
associated with the impact of hydrological soil water flow paths, evi-
denced by substantial loadings of fluctuations in discharge (InQ), along
with strong gradients in pH and carbonate alkalinity. The latter signifies
the gradients in the soil profile, with relative high acidity in the organic-
rich top horizons and high pH and alkalinity in the groundwater.

PC1 reveals an inverse relationship between conductivity (Cond),
reflecting the ionic strength (I) of the soil solutions, and the OD354, DOC
concentration, and the sUVa index. Furthermore, these parameters are
positively related to soil temperature (Tsoil) and runoff (InQ). The
mechanistic influence of Cond, Tsoil, and InQ as explanatory parameters
on sUVa, as the response parameter, can be conceptually rationalized by
their combined effects on DNOM solubility, the production of DNOM
from primary production and the microbial degradation of soil organic
matter, as well as changes in soil water flow-paths from the upper soil
organic-rich layers abundant in DNOM (DOC and OD3s4). This contrasts
with deeper groundwater soil layers characterized by higher pH and
carbonate alkalinity (Vogt et al., 1990).

Bicarbonate (HCOj3), sulphate (SO%’), chloride (CI), and nitrate

Table 1

Weekly averages of major anions and water quality data for Malse Poresin for the
years 2007-2022. The water is characterized by a high pH and bicarbonate
alkalinity. Mean pH value is determined based on the H' concentration.

Analysis Unit n Mean Minimum Maximum
Alk umol L! 762 571 197 813

S07 mg L 762 13.7 8.4 19.6

NO3 mg L! 762 1.3 0.5 2.8

cr mg L 762 7.1 2.5 21.4

pH 762 7.3 6.6 7.9

Cond uS cm ! 762 130 76 201

DOC mg CL? 762 5.7 2.6 14.8
ODas4 em™! - 100 765 0.5221.5 8.6 58.3

sUVa em™' /mgCL? 765 0.037 0.021 0.050
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Fig. 2. Principal component analysis (PCA) of data for water chemistry in
Malse River at Malse Pofesin. The data are weekly averaged measurements in
water samples collected between 2007 and 2022. CL (%) is the percentage of
water at Mal3e Pofesin originating from Cern4 Li¢ov, one of the two major sub-
catchments draining to MalSe Pofesin.

(NO3) emerge as significant anions with a negative correlation to DOC,
OD3s4, and the sUVa value along PC1. This correlation can be attributed
to diverse temporal variations in the sources of runoff, such as the
presence of HCO3 from groundwater, NO3 and SO from agricultural
activities and (more pronounced in the earlier stages) from acid rain,
and also processes like the oxidation of sulphides in mires and marsh-
lands during drought conditions (Mosely et al., 2017; Massmann et al.,
2003).

The correlations between the sUVa and its primary drivers, as
deduced from the PCA - i.e., soil temperature, runoff, and conductivity,
are shown in Fig. 3. Additionally, correlations with ODy54 and DOC
concentrations are included. While the relationship between the sUVa
index and ODgs4 or DOC concentrations inherently intertwines, it re-
mains valuable to highlight the relative roles of these proxies in
measuring high and low sUVa index values.

Consistent with PCA findings, the sUVa index exhibits significant (p
< 0.01) positive correlation with soil temperature, runoff, and a nega-
tive correlation with conductivity (Fig. 3). The sUVa index demonstrates
a stronger association with ODgs4 (r> = 0.40) than with DOC concen-
trations (R% = 0.16). Notably, since runoff from the organic-rich topsoil
is only possible when catchment soils are water-saturated and not
frozen, the sUVa index attains its highest values during the wet summer
and early autumn seasons.

The incorporation of conductivity data to model DNOM concentra-
tions has been a common practice in various models (e.g., Monteith
et al., 2007; Haaland et al., 2023). However, the solubility of DNOM is
also somewhat dependent on pH (Yang et al., 2021). At Malse Poresin,
the pH ranges between 6.6-7.9, indicating a relatively high pH level.
Notably, the pH tends to be lower in the upper organic rich soils, which
contribute significantly to river flow during periods of high InQ (Vogt
et al., 1990). Consequently, a relatively weak but anticipated negative
relationship along PC1 exists between pH and both ODy54 and DOC, as
well as the sUVa index. Given the distinct impact of pH on HA compared
to FA fractions, it becomes intriguing to explore the incorporation of
both pH and conductivity in a regression model for the sUVa index.

Temporal fluctuations in anionic composition can also be linked to
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Fig. 3. The sUVa index plotted against key inferred drivers, i.e., soil temperature, runoff, and conductivity measured at Malse Pofesin from 2007 to 2022. Panel
d showcases the non-linear correlation between the sUVa index and OD,s4, as well as DOC concentrations.

variations in runoff from distinct sub-catchments. The two primary sub-
catchments draining into Malse Poiesin are Cerna Licov and Malse
Soutok (Fig. 1). The correlation between conductivity, the sUVa index,
and the sum of major anions (2(SO%, NO3, CI', HCO3) measured at Malse
Poresin and the its two main (93 %) sub-catchments is illustrated in
Fig. 4. Significantly lower conductivity is measured in the more forested
Cerna Licov (Fig. 4a). As anticipated, in line with the study by Vogt et al.
(2023), the sUVa index value is higher in the more dilute water from the
more forested Cerna Licov compared to Malse Soutok (Fig. 4b). Ac-
cording to the PCA (Fig. 2), both the CL% and sUVa exhibit slight pos-
itive loadings along both PCl and PC2. However, the positive
correlation is very weak (r2 = 0.01), probably attributed to a seemingly
small temporal variation in differences between runoff amounts from
Cerna Licov and Malse Soutok (Fig. 4c).

Temperature, runoff, conductivity, and pH were selected as explan-
atory parameters in the regression models based on the above deduc-
tion. The monitoring data for these model parameters at Malse Poresin

from 2007 to 2022 are presented in Fig. 5. For an indirect sUVa
modelling approach using a model for OD2s54 normalized for a model for
DOC concentration, we employed the following regression set-up for the
ODgs4:

ODgs4 = Ky +ky-(Q -T2

n soil) : (pHCI ) : (CondUCtiVitydl ) (@D)]

The regression model structure set-up chosen is comparable to
regression model setup has been previously adopted by Haaland et al.,
(2010). Likewise for the DOC concentration:

DOC = K + ky+ (Q2-T%

soil) . (pch) (CondUCﬁVitydz) 2

The parameters K and k serve as adjusting factors for values and units
of measurement. Weekly averaged measurements were utilized,
employing a straightforward mean of runoff amounts (Q, mm d*) over
the sampling period, as opposed to incorporating a lag in runoff, with
the only modification being a simple adjustment to mitigate the impact
of runoff peaks:

250 0.050 14
. a b 12 c
"é 200 a 0.045 L 3 Malse Soutok
";: : x T . — 10 em=(erna Licov
2 150 $ 0.040 % - g
z £ O £
3 . s ok £ 6
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Fig. 4. Differences between water characteristics from the two primary sub-catchments for MalSe Poresin. Panel a illustrates the variances in conductivity, while
panel b shows fluctuations in the sUVa plotted against major anions in water samples collected at Cerna Licov (crosses), MalSe Soutok (open squares), and Malse
Poresin (filled circles). Panel c displays the runoff from Cerna Licov (black line) and Malse Soutok (grey line). The dataset comprises samples collected every third

week throughout the years 2021 and 2022.
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Fig. 5. Weakly averaged data from 2007 to 2022 of DOC concentration, OD,s4 values, conductivity and pH in water sampled at MalSe Pofesin, along with calculated
sUVa index level, modelled soil temperature (Ts.;; Eq. (4), and runoff (Qy,; Eq. (3).

Qn =In(Q) +y 3)

Here y is a positive integer keeping the Qj, expression > 0. This is
done because Eq. (1) and Eq. (2) uses exponents. y is set to 3.

The soil temperature (Ts;) is derived from measured air temperature
and an empirical soil temperature model for the catchment soils:

4

Tairy.2 is the mean air temperature for today and the two previous
days, and Tairsys the mean air temperature measured between the
previous 3-23 days. kr is an empirical catchment specific constant and is
for the MalSe Poresin catchment set to —2.0 °C (based on Hejzlar et al.,
2003, 2023). z is a positive integer set to 9 in order to keep the soil
temperature T, expression positive by reasons as described for Qp,
above. Fliom this the sUVa index can be calculated using sUVa = Eq. (1) -
Eq. (2) .

Teon = [0.53-(Tair0,2 + kT) + 0.45~(Tair3723 + kr)] +2z

The temporal variation in ODy54 and DOC at a given site often ex-
hibits a robust linear correlation (Shi et al., 2022). This pattern is also
evident in the analysed dataset, where the linear regression coefficient
(R%) was 0.94. Consequently, the slope of the regression line is
frequently employed in a straightforward transfer calculation to esti-
mate DOC concentration from optical ODy54 measurements (Shi et al.,
2022). However, the quotient of OD2s4 and DOC concentration, i.e., the
sUVa index, is not a constant due to temporal fluctuations in aromaticity
resulting from temporal variations in the sources of DNOM and its sol-
ubility. Hence, we have also conducted direct modelling of the sUVa
index using a regression model set-up similar to the ones used for Eq. (1)
and Eq. (2):
sUVa = K3 +k3’(Q;1ng'Tb3

%3 ). (pH®)-(Conductivity™) (5)

The parameterization of the models was carried out utilizing the
least sum of squares option in the Solver application provided in
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Microsoft Excel. The data input used for fitting the model comprised odd
years within the dataset, i.e., 2007, 2009, and so forth, up to 2021. The
best-fit parameters obtained from odd years were compared with a best-
fit parameterization performed using data input from all years (i.e.,
2007, 2008, 2009 ... 2022). Both approaches yielded similar results, as
the simulations based on models parameterized using the two different
sets of data showed strong correlations (R? ranging from 0.975 to 0.994;
Fig. 6).

The results for calibration for constants and coefficients in Eq. (1),
Eq. (2), and Eq. (5) are presented in Table 2. Approximately 71 % of the
variations in weekly averaged UV absorbance measurements at Malse
Poresin between 2007-2022 are explained by Eq. (1). Similarly, Eq. (2)
explains about 62 % of the variations in the DOC concentration (Fig. 6).
The direct approach sUVa regression model (Eq. (5)) accounts for about
41 % of the variation within the dataset (Fig. 6). The indirect estimate
for sUVa (i.e., Eq. (1) - Eq. (2) '1) was not expected to have a similarly
high R? since it involves the quotient of two modelled parameters.
Nevertheless, due to the good simulation abilities for both OD3s4 via Eq.
(1) and DOC concentration via Eq. (2), the indirect sUVa model
explained about 40 % of the sUVa index variation.

The modelled OD5s54 and DOC concentration using Eq. (1) and Eq.
(2), respectively, are shown in Fig. 7. The indirect and direct modelled
values for sUVa (depicted by orange lines) are shown in Fig. 8a and b,
respectively. While the seasonal fluctuations, characterized by higher
index values during summer and lower values during the winter season,
appear to be well-modelled, there are instances where certain high and
low peaks in the sUVa index are not accurately captured (Fig. 8). Re-
sidual distribution plots are shown in Fig. 9.

As the pH coefficient in Eq. (2) is close to zero (Table 2), the inclu-
sion of pH in the DOC model does not significantly enhance the
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Table 2

Model constants and coefficients for regression models for OD2s4 (Eq. (1)), DOC
(Eq. (2)) and the sUVa index (Eq. (5)). The parameterization was conducted
using the Solver application in Microsoft Excel incorporating all data within the
dataset (see text).

Model Parameter K k Qun Tsoil Cond pH
Eq. (1) ODgs4 7.6 11 0.95 0.85 -0.79 0.40
Eq. (2) DOC 2.8 0.52 1.1 0.88 —0.32 —0.09
Eq. (5) sUVa 0.025 0.032 0.16 0.23 -1.0 1.6

explanatory power of the model. However, the pH coefficients are pos-
itive for both ODys4 and the sUVa index. This could be attributed, in
part, to the enhanced solubility of the less soluble and more UV-
absorbing HA fractions of DNOM with an increasing pH compared to
the FA fraction (Yang et al., 2021). Consequently, an increased pH, along
with a lowered ionic strength in the upper soil layers, might also
contribute to an increase in the sUVa index.

4. Discussion

Both the indirect and direct sUVa index models are indicating that
sUVa is positively related to temperature, runoff and pH and negatively
related to conductivity at Malse Poresin (see Eq. (5)). Still, low and high
sUVa index values are found when UV absorbance (i.e., DNOM) is ditto
low and high (Fig. 2). The lowest sUVa values occur during low flow
winter and early spring (Figs. 6 and 7), while the highest are found
during the wet summer and early autumn. The baseflow runoff is mainly
constituted by groundwater, characterized by high pH and conductivity,
and low content of DNOM, while the high runoff comprises more water
from the topsoil layers, typically having low pH and conductivity, and
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Fig. 6. Comparison of model performance between those parameterized (par.) using data from odd years only compared to models parameterized using all years of
the 2007-2022 dataset. The two methods exhibit very similar performance. Linear regressions between measured data and the simulated values by different models
are also shown. The models explain approximately 70-71% (ODas4; Eq. (1)), 61-62% (DOC concentration; Eq. (2)), and 40-41% (sUVa index; Eq. (5)) of the

variation in the measured values.
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Fig. 7. Model performance for Eq. (1) (ODas4; blue line) and Eq. (2) (DOC concentration; green line) using data from water sampled at Malse Poresin. Measured data
are weekly averaged measurements between 2007-2022 (grey lines). The models explain approximately 71% (OD4s4) and 62% (DOC concentration) of the measured
variations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(1). Eq. (2) 1 (a) and Egq. (5) (b) with data from water sampled at MalSe Poresin. The

measured data consists of weekly averaged measurements from 2007 to 2022 (grey lines). The models explain approximately 40% (Eq. (1) - Eq. (2) ') and 41% (Eq.
(5)) of the observed variation in the sUVa index values. Similar to ODys4 and DOC concentration the sUVa index value tends to peak during summer and early
autumn, while reaching its lowest levels during winter and early spring. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

high content of DNOM. Fluctuations in soil water flow paths thus explain
the seasonal variation in DNOM, but not the sUVa. The pH in ground-
water is high while it is low in the topsoil. Based on the effects of the pH

on the solubility of HA and FA, one would imply that the sUVa in the
groundwater and topsoil be high and low, respectively — which is not the
case. Still, the models do indicate that sUVa is positively related to pH.
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Fig. 9. Histograms showing the model residual distribution for water data samples at Malse Poresin (2007-2022) using Eq. (1) (ODays4; blue line), Eq. (2) (DOC
concentration; green line), and Eq. (5) (sUVa index; orange line). The residuals are following a normal distribution. The superimposed Bell curves are generated using
the residual data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

This illustrates the antagonistic roles of the different governing pro-
cesses, such as hydrology and solubility, on the sUVa. There is thus the
need to include all the explanatory variables in the model. Since the
sUVa index has an impact on aquatic ecosystems and is also used by
drinking water treatment plants in assessing DNOM reactivity and
treatability (Eikebrokk et al., 2004), understanding the potential im-
pacts of climate change on the sUVa index is of significant importance.

Czechia is experiencing an accelerated water cycle, marked by
higher temperatures and more precipitation (Vargas Godoy et al., 2024).
Less snow and earlier snowmelt with an increase in runoff during winter
and consequently less runoff in spring has also been found when
comparing data from the previous reference period (1961-1990) to the
present (1991-2020) (Vargas Godoy et al., 2024). Anticipating future
changes in runoff for catchments facing concurrent temperature and
precipitation increases poses a considerable challenge (e.g., Fallah et al.,
2020; Zaitchik et al., 2023). However, projections for Czechia indicate
that, with the predicted rise in temperatures and a corresponding surge
in evapotranspiration, surpassing precipitation increments, a decrease
in runoff and an escalation in drought occurrences are likely (Vargas
Godoy et al., 2024).

For the studied area, climate predictions for the period 2070-2099,
based on a moderate IPCC climate scenario (SSP2-4.5/CMIP6; Eyring
et al., 2016; Meinshausen et al., 2020), suggest an average annual
temperature increase of about 2.5-4 °C, with most pronounced effects
expected from July to September (Holtanova et al., 2022). Another
research project, evaluating runoff trend from small, forested catch-
ments in Czechia (the GEOMON network), used the Aladin-Climate/CZ
regional climate model with the IPCC SRES A1B scenario (somewhat
comparable to the more recent IPCC RCP6.0 scenario) and the BROOK90
hydrological model. This study predicted an annual decline in runoff of
around 35 %, with a notable decrease in summer and a slight increase in
winter until 2071-2100, in comparison to the reference period of
1994-2011 (Lamacova et al., 2014).

By using climate data inputs based on moderate climate predictions,
which include higher temperatures and a hydrological regime charac-
terized by drier springs and summers, we can generate moderate pre-
dictions for future UV absorbance, DOC concentration and sUVa index
value at Malse Poresin. The selected input data includes seasonal air
temperature and runoff for 2070-2099, compared to present (year
2023) values, as shown in Table 3. Model simulations, using Eq. (1), Eq.
(2) and Eq. (5) with input data reflecting gradual monthly changes in

Table 3

air temperature and runoff from present (year 2023) to year 2099, are
shown in Fig. 10. Average weekly values for the last five years from the
dataset sampled at MalSe Poresin (2007-2022) were used as selecting
input data for conductivity and pH.

The regression models project a stable mean value for UV absorbance
and DOC concentrations from present to 2099. This aligns with recent
findings for DOC concentrations by Hejzlar et al. (2023). A slight
decrease is anticipated during the summer season, attributed to the drier
summers resulting in less drainage trough the more organic-rich topsoil
(Hongve et al. 2003; Hagedorn et al., 2000; Table 3). Similarly, a slight
elevation in the lowest concentrations during the winter season (Fig. 10)
can be ascribed to increased runoff in the increasingly wetter winter
season, coupled with low evapotranspiration leading to more substantial
drainage through the organic-rich soil top horizon (Vargas Godoy et al.,
2024; Table 3). The sUVa index value are also simulated to remain
stable, with only a small increase in the winter season sUVa minima
(from about 0.0335 to 0.0340). The simulations for the sUVa index value
are very similar and exhibit not significantly differences (p < 0,01) when
using either the indirect calculation via the quotient of OD254 and DOC
concentration vs. the direct model for the sUVa index (Eq. (5); Fig. 10c
and d).

4.1. Early warning set-up for sUVa index values

The sUVa index can be accurately simulated if soil temperature,
runoff, pH and conductivity are measured (Eq. (5)). All these parame-
ters can be conveniently logged in situ. Predictive correlations also exist
between low and high OD254 measurements and similarly low and high
sUVa index values (Fig. 3d). Installing a simple single wavelength (SW)
devise for in situ ODy54 measurements is straightforward, robust and
relatively inexpensive (Shi et al., 2022). Using a regression model set-up
similar to that of ODys4, with weekly averaged measurements of ODjs4,
pH and conductivity sampled at Malse Poresin between 2007-2022 as
input parameters, and following the parametrization procedure as
described above, the sUVa index is well explained (R? = 0.47). While the
sUVa index and the ODjs54 measurements from Malse PoreSin are
intercorrelated, in situ ODy54 measurements from a well calibrated SW
devise should provide accurate readings of ODys54 similar to those ob-
tained with a laboratory spectrophotometer (Table 1; Shi et al., 2022). A
similar approach can be applied using more advanced multi-wavelength
(MW) devise capable of differentiating ferric iron UV absorbance from

Input data for monthly changes in air temperature and runoff for MalSe Poresin between present (year 2023) until year 2099. Data has been selected from model

approaches using moderate climate scenarios (see text).

Month J F M A J J A S (o) N
Air temperature (C) 2.5 2.5 2.5 2.5 3.5 4.0 4.0 4.0 3.5 3.0
Runoff (Changes %) 0 -20 —40 —40 —40 —40 —40 -20 -10 10
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Fig. 10. Simulated future UV absorbance (OD3s4), DOC concentrations, and sUVa index value. A moderate IPCC climate scenario until 2070-2099 has been used
(Holtanova et al., 2022; see text). OD,s4 and DOC has been modelled using Eq. (1) and Eq. (2), respectively. The sUVa indexes have been modelled using the quotient
between Eq. (1) and Eq. (2) (graph c), and the direct sUVa regression model Eq. (5) (graph d). Fairly stable maximum sUVa values during summer season and a

slightly higher minima during winter season are simulated.

the DNOM contribution. Logging equipment should be placed strategi-
cally within a river network to provide early warnings, especially to
entities such as drinking water treatment plants. A pilot in Rimov
reservoir, run by the large Plav Drinking Water Treatment Plant should
be considered. This would help gaining experience on location of and
operating loggers as part of a larger system, providing data on economic
and regulatory aspects in addition to technology. Also learning-knowl-
edge processes in connection with running and using data from the
system should be addressed. Results from the pilot should be discussed
with other drinking water treatment plants in the area, focussing how
the system can be adopted and adapted to fit other, and especially
smaller plants.

5. Conclusion

The seasonal dynamic sUVa index in the MalSe River, situated in the
South Bohemian region of the Czech Republic, exhibits a distinctive
pattern. The index attains its highest values during the summer and
early autumn, while registering its lowest levels in winter and early
spring. A robust predictive model for DNOM and the sUVa index has
been established through simple multiple linear regressions, incorpo-
rating soil temperature, runoff, pH, and conductivity as explanatory
parameters. Under a moderate climate scenario, projections suggest a
slight decrease in DNOM for summer season maxima and a minor in-
crease in winter season DNOM minima from present time onward until
the year 2099. Furthermore, the sUVa index is anticipated to remain
stable, with only a slight increase in winter season sUVa minima.
Recognizing the significance of the sUVa index in influencing aquatic
ecosystems and water treatment processes, the implementation of an

10

early warning system, using strategically positioned loggers within the
river network could prove beneficial.
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