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Sea louse (Lepeophtheirus salmonis) infestation of Atlantic salmon (Salmo salar) is
a significant challenge in aquaculture. Over the years, this parasite has developed
immunity to medicinal control compounds, and non-medicinal control methods
have been proven to be stressful, hence the need to study the genomic
architecture of salmon resistance to sea lice. Thus, this research used whole-
genome sequence (WGS) data to study the genetic basis of the trait since most
research using fewer SNPs did not identify significant quantitative trait loci. Mowi
Genetics AS provided the genotype (50 k SNPs) and phenotype data for this
research after conducting a sea lice challenge test on 3,185 salmon smolts
belonging to 191 full-sib families. The 50 k SNP genotype was imputed to
WGS using the information from 197 closely related individuals with sequence
data. The WGS and 50 k SNPs of the challenged population were then used to
estimate genetic parameters, perform a genome-wide association study (GWAS),
predict genomic breeding values, and estimate its accuracy for host resistance to
sea lice. The heritability of host resistance to sea lice was estimated to be 0.21 and
0.22, while the accuracy of genomic prediction was estimated to be 0.65 and
0.64 for array and WGS data, respectively. In addition, the association test using
both array and WGS data did not identify any marker associated with sea lice
resistance at the genome-wide level. We conclude that sea lice resistance is a
polygenic trait that is moderately heritable. The genomic predictions using
medium-density SNP genotyping array were equally good or better than
those based on WGS data.
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1 Introduction

In the production of Atlantic salmon, the challenge of ectoparasite infestation by sea
louse (Lepeophtheirus salmonis) persists, causing substantial economic loss annually. This
parasite feeds on the blood and tissue of salmon (Barrett et al., 2020), thus posing a
significant challenge to the production, welfare, and profitability of salmon farming (Gharbi
et al., 2015). Once infested, the host is predisposed to stress, anemia, stunted growth, and
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many other viral and bacterial infections, which may eventually lead
to death (Correa et al., 2017). Benchmark Animal Health and the
Norwegian Institute of Food, Fisheries, and Aquaculture Research
(NOFIMA) estimated the associated losses to sea lice by the
Norwegian aquaculture industry to be 6.6 billion Norwegian
kroner annually (approximately 565 million euros) (Benchmark
Animal Health, 2023).

To curtail this problem, some medicinal and non-medicinal
methods were adopted. The extensive dependence on a few
medicinal compounds due to various environmental laws resulted
in sea lice building resistance against these compounds (Aaen et al.,
2015). The first report of sea louse resistance to compounds such as
emamectin benzoate, hydrogen peroxide, benzoyl urea, and
pyrethroids in Norway was published in 2008 (Helgesen et al.,
2014; Aaen et al., 2015). However, since 2017, there has been an
increase in the use of non-medicinal methods such as delousing
lasers, warm water dips, mechanical removal, removal using a soft
brush, and plankton-shielding skirts to control sea lice. Although
safer for the environment, most of these methods are stressful for
salmon, affect their welfare, and, in some cases, increase post-
treatment mortality rates (Overton et al., 2019). However, it has
been observed that variation exists in the susceptibility of salmon to
sea lice, which indicates the presence of additive genetic variance.

This can be exploited by selective breeding for the genetic
improvement of this trait in the population (Tsai et al., 2016). To
achieve this, the genomic architecture that confers sea louse
resistance to salmon needs to be dissected using genome-wide
association study (GWAS). Other researchers (Tsai et al., 2016;
Correa et al., 2017) have used a different number of markers
(6 k–50 k SNPs) to study the association and estimate genomic
breeding values for sea louse resistance. This current research differs
because it uses whole-genome sequence (WGS) data to study the
trait of interest. Imputation was used to infer the genotypes of
missing data points and upscale ~50 k SNPs to WGS, thereby saving
costs associated with re-sequencing the genomes of thousands
of samples.

The objectives of this research are to (i) estimate the imputation
accuracy of genotypes in the sequenced population (with and
without the inclusion of pedigree information), (ii) carry out
genotype imputation for the challenged population from the
array (~50 k SNPs) to WGS, (iii) estimate the heritability of host
resistance to sea lice, (iv) carry out GWAS analysis to detect
quantitative trait loci (QTLs) associated with host resistance to
sea lice, and (v) carry out genomic prediction and estimate the
accuracy of the predicted genomic breeding values for sea louse
resistance in salmon using array and WGS data.

FIGURE 1
Histogram showing the number of full-sibs per family in the challenged population. The families were ordered by increasing number of full-sibs.
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2 Methods

2.1 Description of the populations

Mowi Genetics AS provided the phenotype and genotype (50 k
SNPs) datasets for the 2017 year-class salmon population consisting
of 3,185 fish of 191 full-sib families challenge-tested for sea louse
infestation. The 191 full-sib families were produced by 83 sires and
182 dam, with an average of 17 full-sibs per family, as shown in
Figure 1. On the other hand, the whole-genome sequencing
genotype data on 197 individuals used for imputation were made
available by the CMSEdit project. The sequenced data comprise
individuals from the year-class 2012, 2013, 2014, 2016, 2017, and
2019 populations. The majority of the sequenced individuals were
siblings of the challenged individuals belonging to the 2017 year-
class, while others were related as parents and close relatives of the

challenged population according to the pedigree information
covering challenged and sequenced individuals provided by
Mowi. Supplementary Figure S1 shows the distribution of
genomic relationships for the sequenced populations, challenged
population, and between both populations.

2.2 Challenge test data

During the challenge test, which was conducted by Mowi AS in
4 tanks at Matre, Norway, a total of 3,185 salmon smolts belonging
to 191 full-sib families were infested with 45 copepodids per fish.
The tank parameters were supervised and recorded, including water
temperature, oxygen, and salinity. Regular monitoring was carried
out daily until most of the lice reached the chalimus I stage, and the
duration to reach the chalimus III stage varied from 12 to 40 days

TABLE 1 Descriptive statistics of the challenged population with louse count and body weight.

n Mean Median Min Max Std. deviation

Louse count 2,935 20.5 17 1 262 14.44

LogLC 2,935 2.89 2.89 0.69 5.57 0.59

Body weight (g) 2,935 109.61 104.6 35 265 32.48

FIGURE 2
Histogram showing the frequency distribution of (A) louse count and (B) logLC of louse count.
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from the start of the challenge test. The fish were anesthetized upon
the completion of the challenge test, and the records of sea louse
count and body weight were made available for this research.

A total of 250 observations with missing records for louse count
and body weight were discarded during data cleaning, reducing the
sample size to 2,935 fish with an average body weight of 109 g and a
louse count of 20.5, as shown in Table 1. Most fish in the population
had relatively low louse counts, while few had high counts, resulting
in a right-skewed distribution, as shown in Figure 2A. A log
transformation [logLC � loge(sea lice count + 1)] of these data
was carried out to normalize the distribution, as shown in
Figure 2B. The transformation formula adds a constant value of
1 to all sea louse counts, allowing the transformation of zero (0) sea
louse count if it exists.

2.3 Whole-genome sequence data

The generation of whole-genome sequence data on
197 individuals and their bioinformatic sequence analysis were
performed under the CMSEdit project (https://prosjektbanken.
forskningsradet.no/en/project/FORISS/294504). Whole-genome
resequencing was performed using the BGISEQ platform with
150 base pair paired end reads, and the raw sequence reads were
trimmed and filtered using Trimmomatic (Bolger et al., 2014).
Subsequently, quality sequence data were aligned to the most
recent Atlantic salmon reference genome sequence (assembly
Ssal_v3.1) using BWA-MEM version 0.7.13-r1126 (Li, 2013).
Then, the GATK (O’Connor and van der Auwera, 2017) pipeline
was used for variant discovery and genotype calling. SNPs with a
minor allele frequency (MAF) lower than 5% and Mendelian errors
were excluded.

The variant call data (*.vcf.gz files) were made available for this
research. Quality control was performed on the detected variants,
and only biallelic SNPs that had a minimum base quality of 30,
genotype quality of ≥20, maximum missing rate of 30%, minimum
read depth of 5, and Hardy–Weinberg equilibrium exact test
(p-value < 10e−25) were included.

2.4 SNP genotyping

The challenge-tested fish were genotyped using the custom-
developed 50 k SNP genotyping array (NOFSAL03, Affymetrix
Axiom array). The SNPs across the sequence and the custom-
developed 50 k SNP chip were searched for common SNPs. SNPs
with aminor allele frequency lower than 5% andMendelian errors were
excluded. The chromosome level information about the number of
SNPs obtained from the sequenced individuals and the overlapping
SNPs to the 50 k SNP chip is summarized in Supplementary Table S1.
The common SNPs found are regarded as array SNPs in the remaining
parts of this paper.

2.5 Genotype imputation

FImpute3 software (Sargolzaei et al., 2014) was used to perform
all genotype imputations as it allows for the optional inclusion of

pedigree information in its imputation process. The software
application uses an overlapping sliding window approach to
efficiently exploit relationships or haplotype similarities between
the target and reference individuals. First, the variant call format
(VCF) files containing the whole-genome sequence data on the
sequenced population were unzipped and then converted to the
FImpute3 input format. Then, population-based genotype
imputation was performed to impute data points with low-
quality scores (missing genotypes) across all chromosomes.

2.6 Estimation of imputation accuracy

Pearson’s correlation coefficient (r) was used to estimate the
imputation accuracy for the sequenced population, with and without
the inclusion of pedigree information. Using the k-fold cross-
validation (CV) method (Refaeilzadeh et al., 2009), the sequenced
population (197 individuals) was divided into 10 groups. For each
CV round, all the genotypes of individuals in a validation set, except
the 49,781 array SNPs, were masked, and the missing SNPs were
imputed using the genotype information about the individuals in a
training set. The imputed genotypes for all ten-fold were then
extracted, merged, and compared to the true genotypes. The
advantage of this validation method over the random sampling
method is that it allows all individuals to be used to train and validate
in different iterations. SNPs with poor imputation accuracy (r < 0.6)
were excluded, and the animal-based, SNP-based, and average
imputation accuracy (�r) per chromosome was estimated. The
genome-wide average imputation accuracy (W) was calculated by
summing the average imputation accuracies multiplied by the
number of SNPs on each chromosome and dividing by the total
number of SNPs for all chromosomes. The formula is written as

W � ∑n
i�1wi�ri∑n
i�1wi

,

where n is the number of chromosomes, wi is the number of SNPs on
chromosome i, and �ri is the average imputation accuracy of SNPs
on chromosome i. This is necessary to avoid bias in the
contributions of chromosomes to the genome-wide average
imputation accuracy (W).

2.7 Array to WGS imputation

After estimating the imputation accuracy, the genotype
information about the sequenced individuals was used to impute
the genotypes of the challenged individuals to WGS. Henceforth,
WGS refers to the imputed genotypes of the individuals in the
challenged population. The data were extracted and converted to
PLINK raw format (Purcell et al., 2007) for further analysis.

2.8 Estimation of genetic parameters

The additive genetic variance, residual variance, and heritability
were estimated using GCTA software (Yang et al., 2011). The
genomic estimate was computed using the “--reml” command
option of GCTA by implementing a univariate animal mixed model:
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y � μ + Xb + Zu + e,

where y is the vector of the observed phenotype (log LC), μ is the
overall mean of log LC, X and Z are assigned design matrices to the
respective vectors b and u, b is the vector of fixed effects (interaction
between tank*counter and body weight), u is the vector of random
additive genetic effects with u ~ N(0,Gσ2u), where σ2u is the additive
genetic variance, and e is the vector of random residual effects with
e ~ N(0, Iσ2e), where σ2e is the residual variance and I is an identity
matrix. The genomic relationship matrix (G) was computed
according to VanRaden (2008) as

G � ZZ′
2*∑Nsnp

i�1 pi 1 − pi( ),
where pi is the allele frequency of the second allele and Nsnp is the
total number of SNP markers. The fixed effects (interaction between
tank*counter and body weight) used in the model were tested
against the phenotype and confirmed to be significant. The
narrow sense heritability (h2) of sea louse resistance was
estimated using the following formula:

h2 � σ2a
σ2p
,

where h2 is the narrow sense heritability, σ2a is the additive genetic
variance, and σ2p is the phenotypic variance.

2.9 GWAS

Genome-wide association analysis was conducted using GCTA
software (Yang et al., 2011). This software application allows the
detection of SNPs that explain a substantial proportion of the
phenotypic variabilities for a complex trait. The “--mlma”
command option of GCTA initiated a linear animal mixed model:

y � μ + Xb + Zu +Mα + e,

where y is the vector of the observed phenotype (log LC), μ is the
overall mean of log LC, X and Z are incidence matrices to the
respective vectors b and u, b is the vector of fixed effects
(interaction between tank*counter and body weight), u is the
vector of polygenic effects with u ~ N(0,Gσ2u),M is the incidence
matrix of the candidate SNP containing marker genotypes coded
as 0, 1, or 2, α is the allelic substitution effect of the candidate
SNP, and e is the vector of random residual effects with
e ~ N(0, Iσ2e).

The Manhattan plot was used to visualize the results, plotting
− log10(pvalue) against the chromosomal position of each SNP. To
correct for multiple testing errors and avoid declaring non-
significant SNPs as significant (false positives), Bonferroni
(genome-wide and chromosome-wide threshold) correction was
computed with the formulas given below:

Genome − wide Bonferroni threshold � − log10
0.05
Nsnps

( ),
Chromosome − wide Bonferroni threshold

� − log10
0.05*Nchromosomes

Nsnps
( ).

SNPs whose − log10(pvalue) estimate surpassed the computed
thresholds were declared significant. Furthermore, a diagnostic
quantile–quantile (q-q) plot was used to compare the relationship
between the observed p-value and the expected p-value under the
null hypothesis of no association. Both plots used functions from the
qqman package (Turner, 2018) in R. The genomic inflation factor
(λ) of the q-q plot, which provides an insight into the spurious
association, was estimated using the following formula:

λ � median x2( )
0.456

,

where x2 is the chi-squared test.

2.10 Genomic prediction

For genomic prediction, families with less than 10 siblings were
excluded; this reduced the sample size from 2,935 to
2,875 individuals and full-sib families from 191 to 186. These
individuals were then assigned to five folds, each comprising
575 individuals. A 5-fold within-family cross-validation genomic
prediction analysis was conducted using the Bayesian generalized
linear regression (BGLR) package in R (Pérez and los Campos,
2014). The “--make-rel” option in PLINK was used to fit the
genomic relationship matrix (G-matrix) as covariances between
animals, and the reproducing kernel Hilbert space (RKHS) model
option was used in BGLR to estimate genomic breeding values. At
each iteration, the adjusted phenotypes of a fold were masked and
assumed unknown (validation set), while those of the other folds
were not masked (training set). In this way, each observation served
as training and validation at different times. Using the RKHS model,
the genomic breeding value for each masked individual in the
validation fold was predicted. The model used is the same as
described in the “Estimation of genetic parameters” section.

2.11 Accuracy of genomic prediction

The accuracy of genomic prediction (m) for each of the five
folds was estimated by dividing Pearson’s correlation coefficient
between the estimated breeding values and adjusted phenotypes
by the square root of heritability. This accuracy was estimated for
each of the five folds for the array and WGS data. In addition, the
accuracy of all folds was estimated by extracting and merging the
estimated breeding values of validation individuals for each
validation fold, which makes up predicted breeding values for
all samples. The predicted breeding values for all individuals were
then correlated with their true adjusted phenotypes and divided
by the square root of heritability. The accuracy and standard
error (SE) of the folds were estimated and reported as the
accuracy of the genomic prediction analysis. The formulas are
represented as

m � cor EBV, yadj( )		
h2

√ ,

SEm �
						
1 −m2

n − 2

√
,
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where EBV is the estimated breeding values, yadj is the phenotype
adjusted for fixed effects, h2 is heritability, SEm is the standard error
of the accuracy, m2 is the accuracy square, and n is the number of
observations.

3 Results

3.1 Imputation accuracy of WGS data

The chromosome-wise averages of imputation accuracies
(animal- and SNP-based) with and without pedigree
information are shown in Supplementary Table S2. As shown
in Figure 3, pedigree information in the imputation process did
not significantly improve the chromosome-wise SNP-based
average imputation accuracy (�r). In this case, the most
considerable difference between the average imputation
accuracy with and without the pedigree was observed on
chromosome 23, where the average accuracy with the pedigree
was higher by approximately 0.02. On the other hand, the average
imputation accuracy without the pedigree for chromosome
26 was higher than the average with the pedigree. Although,
for most chromosomes, the average imputation accuracy with
pedigree was higher than that without the pedigree, the
differences were negligible.

Supplementary Table S3 shows the number of SNPs per
chromosome that met the individual SNP-based imputation
accuracy threshold (r≥ 0.6) with and without the inclusion of
the pedigree. Although the number of SNPs that met

the threshold with the pedigree (3,176,724 SNPs) exceeded
those without pedigree (3,141,598 SNPs), the weighted
genome-wide average imputation accuracy (W) without the
pedigree was highest (0.85). Therefore, it was adopted for
imputation to WGS.

3.2 MAF and imputation accuracy

The minor allele frequencies were divided into 25 bins from 0 to
0.5 at 0.02 intervals. The average imputation accuracies of SNPs at
each MAF bin were calculated and plotted against their
corresponding MAF, as shown in Supplementary Figure S2. The
average imputation accuracies (�r) tend to increase with the minor
allele frequency. The lowest average accuracy was observed on
chromosome 26 with a value of 0.71 at a MAF of 0.02, while the
highest average accuracy was on chromosome 25 with a value of
0.91 at a MAF of 0.46. Other observed results fell between this
minimum and maximum threshold.

3.3 Estimation of genetic parameters

Using logLC as the phenotype, the heritability (h2) for sea louse
resistance in the challenged population was estimated to be
0.21 when 49,626 array SNPs were used and 0.22 when
3,141,598 WGS SNPs were used. The additive (σ2a) and residual
variance (σ2e) estimates and standard errors are also shown
in Table 2.

FIGURE 3
Bar plot comparing the chromosome averages of SNP-based imputation accuracy (�r) with and without pedigree.
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3.4 GWAS

The GWAS analysis results for the array (49,626 SNPs) and
WGS data (3,141,598 SNPs) showed no significant SNP affecting sea
louse resistance. As shown in Figure 4, one SNP on chromosome
7 surpassed the chromosome-wide Bonferroni threshold (4.52) for
the array data, but none reached the genome-wide Bonferroni
threshold (5.99). On the other hand, none of the SNPs of the
WGS data surpassed the Bonferroni chromosome-wide threshold
of 6.26 or the genome-wide threshold of 7.72. For the array data,
QTL signals were observed on chromosomes 5, 7, 12, 16, 18, 22, and
25, while WGS data had QTL signals on chromosomes 1, 7, 12, 15,
16, and 24. The p-values of the top 10 SNPs common to array and
WGS data are shown in Table 3. The top 10 SNPs with the lowest
p-values from WGS-based GWASs were unavailable on the array.
Still, their high significance affirms the power of imputation in
increasing the resolution in genomic regions. It is interesting to note
that 8 of the 10 SNPs are within ~60 Kbp, probably due to high
LD among them.

Supplementary Figure S3 shows the quantile–quantile plot of the
observed p-values against the expected p-values. It also confirms that
there are no significant associations since the observed p-values for
the top SNPs were below the expected p-values. The genomic
inflation factor (λ) values for the array and WGS were estimated
to be 1.00 and 0.99, respectively, which confirms the absence of
spurious associations.

3.5 Accuracy of genomic prediction

The accuracy of genomic prediction for each of the five-fold
cross-validation and all folds of the array and WGS data is shown in
Table 4. For the array and WGS, individuals in the third validation
fold had the best prediction accuracy of 0.721 and 0.715,
respectively. In comparison, the prediction accuracy for the fifth
validation fold was the lowest, with a prediction accuracy of
0.578 and 0.569, respectively. Overall, using WGS for genomic
predictions did not improve the accuracy of genomic prediction.

TABLE 2 Estimates of genetic parameters and their standard errors for logLC.

Component Whole-genome sequencing (WGS) Array SNP

σ2a 0.061 ± 0.009 0.058 ± 0.008

σ2e 0.218 ± 0.007 0.223 ± 0.007

h2 0.218 ± 0.028 0.206 ± 0.026

FIGURE 4
Manhattan plot of the array- and whole-genome sequence (WGS)-based genome-wide association study (GWAS) showing the − log10(pvalues) of
each SNP distributed across all autosomal chromosomes. The blue line is the chromosome-wide Bonferroni threshold, while the red line is the genome-
wide Bonferroni threshold.

Frontiers in Genetics frontiersin.org07

Onabanjo et al. 10.3389/fgene.2024.1381333

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1381333


4 Discussion

4.1 Genotype imputation accuracies

This research reported a genome-wide average imputation
accuracy (W) of 0.84 and 0.85 for the sequenced individuals,
with and without the inclusion of pedigree information. The
competitive performance of the imputation accuracy without
pedigree inclusion might be because imputation methods can
locate the most important haplotypes; therefore, including
pedigree information did not improve our accuracy. This report
is contrary to those of earlier studies (Huang et al., 2012; Sargolzaei
et al., 2014) that reported an increase in imputation accuracy with
the inclusion of pedigree information consisting of close relatives.
Manousi (2021) assessed the effect of the new Atlantic salmon
genome assembly on the imputation accuracy by comparing the

imputation reliability (r2) of Beagle (Browning and Browning, 2009)
and FImpute3 (Sargolzaei et al., 2014). Imputation reliabilities (r2) of
0.85 and 0.83 were reported for Beagle and FImpute3 (with
pedigree), respectively, after imputing from 44 k to 440-k SNP
density. This translates to Pearson’s correlation coefficient (r)
values of 0.92 and 0.91, respectively, which are higher than 0.84
(with pedigree) reported here.

In addition, Yoshida et al. (2018) reported the imputation
accuracy (r) ranging between 0.74 and 0.98, having tested
different imputation scenarios. They performed genotype
imputation to 50 k SNPs using FImpute2.2 software (Sargolzaei
et al., 2014) with varying SNP densities (500, 3 k, and 6 k) and
varying numbers of reference and validation animals in the Atlantic
salmon population. Our findings agree with the imputation accuracy
range found by Yoshida et al. (2018), although the sample size and
number of SNPs used were lower. Kijas et al. (2017) used a multi-

TABLE 3 Top 10 SNPs according to the p-values of the array- and whole-genome sequence (WGS)-based genome-wide association study (GWAS).

Chr SNP A1 A2 MAF Se Array p-value WGS p-value

Ssa07 HG993266.1_45156870 T G 0.093 0.030 2.244e-05 1.955e-05

Ssa12 HG993271.1_26109621 T G 0.285 0.025 3.812e-05 1.185e-04

Ssa16 HG993275.1_2299421 A G 0.393 0.019 9.519e-05 1.150e-04

Ssa18 HG993277.2_4439352 T C 0.383 0.018 9.543e-05 7.139e-05

Ssa05 HG993264.1_31252801 C T 0.074 0.037 1.800e-04 1.193e-04

Ssa22 HG993281.1_16838003 G T 0.479 0.018 1.906e-04 4.458e-04

Ssa09 HG993268.2_140287766 T G 0.474 0.019 2.431e-04 2.949e-03

Ssa25 HG993284.1_5222628 C T 0.385 0.018 3.141e-04 5.088e-04

Ssa05 HG993264.1_32056685 T C 0.235 0.023 3.187e-04 2.192e-04

Ssa05 HG993264.1_32056935 T C 0.095 0.034 3.225e-04 2.014e-04

Significant SNPs from WGS-based GWAS

Ssa16 HG993275.1_2670854 T G 0.418 0.018 - 1.095e-06

Ssa16 HG993275.1_2652565 T C 0.419 0.018 - 1.096e-06

Ssa16 HG993275.1_2650283 C T 0.424 0.018 - 2.676–06

Ssa16 HG993275.1_2695572 C A 0.487 0.018 - 3.187e-06

Ssa16 HG993275.1_2666638 T C 0.424 0.018 - 3.535e-06

Ssa16 HG993275.1_2695854 A G 0.487 0.018 - 3.841e-06

Ssa16 HG993275.1_2698184 G C 0.424 0.018 - 4.375e-06

Ssa12 HG993271.1_20073710 T C 0.287 0.018 - 4.399e-06

Ssa15 HG993274.1_35023984 A G 0.085 0.032 - 4.988e-06

Ssa16 HG993275.1_2671264 G T 0.424 0.018 - 5.002e-06

Ssa, Salmo salar chromosome; A1 and A2, minor and major alleles; MAF, minor allele frequency; se, standard error.

TABLE 4 Accuracy of genomic predictions and their standard error.

Fold 1±SEm Fold 2±SEm Fold 3±SEm Fold 4±SEm Fold 5±SEm All Folds±SEm

Array 0.676 ± 0.014 0.654 ± 0.014 0.722 ± 0.013 0.605 ± 0.015 0.578 ± 0.015 0.645 ± 0.014

Whole-genome sequence (WGS) 0.676 ± 0.014 0.663 ± 0.014 0.715 ± 0.013 0.587 ± 0.015 0.569 ± 0.015 0.641 ± 0.014
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generation reference population of Tasmanian Atlantic salmon to
carry out imputation from 5 k to 78 k. They reported a high
genotype imputation accuracy of 0.89–0.97, while Tsai et al.
(2017) reported an imputation accuracy (r) of 0.62–0.90 in UK-
farmed salmon.

It should be noted that the accuracies reported for the sequenced
population in this study do not infer the imputation accuracy of the
challenged population that was imputed to WGS as the true
sequence genotypes of these individuals would be required to
estimate their accuracy. However, the average genomic
relationship between the challenged and sequenced populations
and within the sequenced population is very similar, as shown in
Supplementary Figure S1, suggesting that the imputation accuracy
derived from sequenced and challenged individuals might be close to
the accuracy of imputation in large datasets. The imputation
accuracies reported in all these salmon studies were relatively
high, further confirming the relevance of genotype imputation in
saving costs relating to high-density genotyping or re-sequencing of
a large number of animals in the aquaculture industry.

4.2 Relationship between the MAF and
imputation accuracy

The relationship between theMAF and imputation accuracy was
observed by dividing SNPs into 25 bins according to their MAF. The
average imputation accuracy (�r) is the average of Pearson’s
correlation (r) between the true and the imputed genotypes for
SNPs belonging to a particular bin. Imputation accuracy increased
with an increase in MAF, which corresponds with the findings of
Pausch et al. (2013), Tsai et al. (2017), and Jiang et al. (2022). They
all reported increasing imputation accuracy for known variants.

Although it was observed that the imputation accuracy slightly
decreased in some bins as the MAF increased, this could be due to
the low number of SNPs in those bins, resulting in sampling errors.

4.3 Genetic parameters

The heritability of sea louse resistance in the population of
Norwegian Atlantic salmon studied in this research was estimated to
be 0.21 and 0.22 for array and WGS data, respectively. These
findings are consistent with the reports obtained by several
researchers. Aslam et al. (2023) studied salmon belonging to
year-classes 2018 and 2022 from the Mowi Genetics population,
and they reported a heritability of 0.25 and 0.20. In addition, Fraslin
et al. (2023) studied three different year classes (2017–2019) of
salmon from the Benchmark genetics population. Salmon from each
year class was divided into two, raised, and challenge-tested with the
predominant lice species in two locations (Chile and Iceland). They
reported heritability ranging from 0.10 to 0.21 for salmon challenged
with L. salmonis in Iceland and 0.15 to 0.26 for salmon challenged
with Caligus rogercresseyi in Chile.

Furthermore, Gharbi et al. (2015) reported a heritability of
0.30 in a Scottish salmon population. Rochus et al. (2018)
reported an estimated heritability of 0.29 when louse count
phenotype data were log-transformed and 0.17 when they were
not. Some low heritability values have also been reported for host

resistance to sea lice. Correa et al. (2017) reported an estimated
heritability of 0.12, while Kjetså et al. (2020) and Odegård et al.
(2014) estimated the heritability of sea louse resistance to be 0.14.

The differences observed in the heritability estimated and
reported by various researchers could be due to the species of
salmonoid and sea lice studied, phenotype transformation, the
difference in population or year class, the type of model used,
the type of challenge tests (land-based or sea cages) carried out,
experimental design, and pedigree versus genomic estimates. All
heritability estimates reported in these various studies fall in the low-
to-moderate heritability range and, therefore, suggest that the trait of
interest can be improved by selective breeding.

4.4 GWAS

GWASs employ a statistical approach to map variants (from
SNP arrays or WGS data) associated with traits of interest (The
Wellcome Trust Case Control Consortium, 2007). This requires the
availability of genotypes of thousands to millions of variants and
phenotypes for a reasonable number of individuals within a
population (Altshuler and Daly, 2007). In humans, this method
has identified close to 200,000 SNPs associated with complex traits
and diseases (Buniello et al., 2019).

Our findings of the association test using the array and WGS
data in this study did not identify any SNP on the genome-wide level
to be in association with the sea louse resistance trait, indicating that
the trait is likely polygenic. Although one SNP on chromosome 7 of
the array was observed to have a chromosome-wide significance,
none was observed in WGS data. In addition, it was observed that
both array and WGS scenarios had strong signals on chromosomes
7, 12, and 16. If these regions are studied, they might harbor putative
genes that affect sea louse resistance.

Our result of no significant genome-wide QTL for sea louse
resistance agrees with the findings of Tsai et al. (2016), Correa et al.
(2017), and Fraslin et al. (2023). On the other hand, Aslam et al.
(2023) recently found significant QTLs for sea louse resistance after
studying 2 year classes (2018 and 2022) of salmon, with the latter
year class being offspring of the former. They reported strong signals
across chromosomes 2, 5, 11, and 25. In addition, Rochus et al.
(2018) studied louse resistance in the North American salmon
population. They used the forward multiple linear regression and
a linear mixed model and detected QTLs on different chromosomes.
The latter identified two QTLs located on chromosomes 1 and 23,
respectively, while the former identified 70 SNPs, many of which
might be due to not correcting for the population structure. The
differences in reports could be due to the sample size, population of
salmon studied, population structure, and the type of challenge test
(land-based or sea cages).

The similar outcome of both GWAS scenarios as against our
expectations of the better performance of WGS data might be due to
various reasons. One such reason could be due to the over-
correction of effects, which was put in place to avoid spurious
associations. As shown in Supplementary Figure S3, our lambda
values were a bit deflated. Another reason could be due to the strict
Bonferroni correction method adopted in our analysis to correct for
multiple testing problems. This method divides the adopted p-value
(0.05 in this case) by the total number of SNPs, which is over
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3 million for WGS. This results in a genome-wide significance
threshold that might be difficult for any SNP to surpass.
Therefore, considering the close relationships in these
populations, the 50 k array data would perform optimally, and
imputation to higher densities might be necessary in a more distant
population.

4.5 Accuracy of genomic prediction

Over the years, genomic selection (Meuwissen et al., 2001) has
proven to be a valuable tool for the improvement of animal
populations. It became popular and widely adopted after the
advent of affordable genome-wide SNP chips in 2008 and has
provided a lasting solution to traditional breeding problems such
as long generation intervals, slow genetic gain, and the high cost of
maintaining animals. This methodology allows for the selection of
progenies with good estimated breeding values using phenotype and
genotype information about parents and other closely related
animals. Therefore, it is paramount to accurately predict
estimated breeding values to select the best offspring that will be
the parents of the next generation for the continuous improvement
of the animal population.

This study reported the accuracy of a 5-fold within-family cross-
validation scheme for genomic prediction. The assessment of each
fold showed that for the array and WGS data, individuals in the third
fold had the best prediction accuracy of 0.722 and 0.715, respectively.
In contrast, individuals in the fifth fold had the lowest prediction
accuracy of 0.578 and 0.569. The variation observed in the prediction
accuracy across foldsmay be due to the variation in the number of sibs
per family. Some families had more sibs in the training fold than
others; therefore, the breeding values of their sibs in the validation set
were predicted more accurately. This finding agrees with the
conclusion obtained by Fraslin et al. (2022), who studied the
impact of the genetic relationship between the training and
validation populations in Atlantic salmon. They concluded that a
close genetic relationship between training and validation individuals
enhances the accuracy of genomic prediction.

Tsai et al. (2017) performed a 5-fold cross-validation and
reported the estimated genomic prediction accuracy of 0.58 and
0.60 for sea louse resistance when using imputed and true genotypes.
In addition, Aslam et al. (2023) reported an accuracy of 0.60 and
0.58 for the 2 year classes studied, while Fraslin et al. (2022) reported
a prediction accuracy of 0.39 and 0.49 for the 2010 and
2014 populations, respectively. Tsai et al. (2017) and Fraslin et al.
(2022) estimated the accuracy by dividing the correlation between
the predicted genomic breeding values and the phenotype by the
square root of heritability. In contrast, this study estimated the
accuracy by dividing the correlation between the predicted genomic
breeding values and the adjusted phenotypes by the square root of
heritability. This formula using the adjusted phenotype for fixed
effects rather than the unadjusted phenotype is better because the
unadjusted phenotype consists of fixed, random effects of animals
and residuals. Therefore, estimating the accuracy by calculating the
correlation between the estimated breeding values and phenotypes
provides a lower accuracy estimate. Using the adjusted phenotype
provides better accuracy as it gets us closer to estimating the effect
of markers.

One might expect that using the WGS data would provide a
higher accuracy of genomic prediction accuracy than the 50 k SNP
array, but this is not the case for the result presented herein. In fact,
the accuracy of genomic prediction for all validation with the array
was slightly higher than that with the WGS (0.645 and 0.641,
respectively). This is because aquaculture species unlike other
farmed species are characterized by high fecundity that provides
aquaculture breeding programs with thousands of full-sib families
for sibling-testing schemes. These siblings share large genomic
segments that are effectively captured by low- and medium-
density (5,000) SNPs, and the estimate of genomic prediction
using these SNPs has been reported to be as effective as using
high-density panels (Tsai et al., 2016; Vallejo et al., 2017; Robledo
et al., 2018; Yoshida et al., 2018). However, this high accuracy using a
low-to-medium number of SNPs might only be observed in sibling-
testing schemes. When the relationship between the training and
validation populations is more distant, a higher SNP density would
provide better prediction accuracy (Tsai et al., 2016; Tsairidou et al.,
2020). Therefore, it could be more advantageous to impute from
low-(500)-to-medium density (5,000) SNPs or medium-(5,000)-to-
high density (50 k) SNPs for genomic prediction in
aquaculture species.

5 Conclusion

The inclusion of pedigree information in genotype imputation
did not improve the average genome-wide imputation accuracy.
Host resistance to sea lice is a moderately heritable trait that can be
improved with selective breeding. The high signals observed across
the chromosomes with no significant associated QTL detected
confirm the polygenic nature of host resistance to sea lice.
Finally, the 50 k SNP data for this study were sufficient to
conduct GWAS analysis and accurately predict genomic breeding
values for sea louse resistance trait.
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