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Abstract
With an increasing need for electricity in society and a more complex en-
ergy production mix, future electrical power systems require intelligent sys-
tems for efficient resource management. In order to realize the potential of
flexible resources in the power grid, robust and accurate prediction methods
are required. This thesis presents a case study of Oslo Airport Gardermoen
(OSL) to explore the potential of Long Short-Term Memory (LSTM) machine
learning models in predicting electricity demand, particularly focusing on
peak demand forecasting. The models are trained on data from 2022 and
2023, utilizing electricity consumption measurements and exogenous factors
including passenger numbers, outdoor temperature, and electricity prices.
The models demonstrate high accuracy in demand prediction, particularly
for peak hours.

To improve peak prediction capabilities, the thesis implements two main
strategies. First, models are trained using four different loss functions: Mean
Squared Error (MSE), Mean Absolute Percentage Error (MAPE), Negative
Log Likelihood (NLL), and a new proposed Weighted Mean Squared Er-
ror (WMSE). Second, a comprehensive grid search and cross-validation rou-
tine is performed to robustly determine the optimal model architectures.
The best-performing models are characterized by simple model architectures
with just 1 hidden layer and 64 or 128 units, suggesting that less complex
models can efficiently capture the patterns of the data. These models achieve
adequate MAPE scores, with the lowest being 4.53%.

The new proposed WMSE loss function emphasizes peak hours and signifi-
cantly enhances peak prediction reliability. Additionally, NLL enables prob-
abilistic outputs, offering valuable uncertainty estimations for practical ap-
plications. This thesis provides a robust and versatile framework adaptable
to various energy systems, enabling the development of optimized LSTM
models for efficient electricity demand forecasting.

The implications of this work extend beyond OSL, offering insights for man-
aging flexible resources for efficient and sustainable power system opera-
tion. The thesis highlights the promising potential in using advanced ma-
chine learning methods for energy management systems, and demonstrates
their ability in large-scale commercial buildings.
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Sammendrag
Med økende elektrifisering i samfunnet og mer kompleks energiproduksjon
trenger fremtidens kraftsystemer intelligente systemer for effektiv ressurs-
bruk. For å kunne bruke fleksible løsninger i kraftnettet er det et behov for
robuste og treffsikre prediksjonsmetoder. Denne masteroppgaven er en case-
studie av Oslo Lufthavn Gardermoen (OSL) som undersøker potensialet i å
benytte maskinlæringsmodeller basert på Long Short-Term Memory (LSTM)
for å predikere strømforbruk, med et spesielt fokus på forbrukstoppene. Mod-
ellene trenes på data fra 2022 og 2023, og bruker målinger av tidligere strøm-
forbruk og forklaringsvariabler som passasjertall, utetemperatur, og strøm-
priser. Modellene predikerer strømforbruket med god treffsikkerhet, særlig
med tanke på forbrukstoppene.

For å forbedre prediksjonene av toppene benyttes to hovedmetoder. Den
første er at modellene trenes med fire forskjellige tapsfunksjoner: Mean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE), Negative Log Likelihood
(NLL), og en ny foreslått tapsfunksjon Weighted Mean Squared Error (WMSE).
Den andre metoden er at det gjennomføres en omfattende grid search med
kryssvalidering for å finne optimaliserte modellarkitekturer. Modellene med
best ytelse har enkle modellarkitekturer bestående av bare 1 skjult lag og en-
ten 64 eller 128 noder, noe som antyder at mindre komplekse modeller er i
stand til å effektivt lære de underliggende mønstrene i datasettet.

Den nye tapsfunksjonen WMSE legger mer vekt på topplasttimene, og gir
en betydelig økning i pålitelighet når det kommer til prediksjon av toppene.
Videre gir NLL sannsynlighetsbaserte prediksjoner, som tilfører prediksjonene
et verdifullt usikkerhetsestimat for praktiske anvendelser. Metodikken i denne
oppgaven legger fram et robust og allsidig rammeverk for å utvikle opti-
maliserte modeller som kan forutsi strømforbruket for en rekke systemer
som OSL.

Betydningen av dette arbeidet går forbi case-studiet av OSL, og gir verdi-
full innsikt mot å benytte fleksible ressurser for effektiv og bærekraftig drift
av kraftsystemet. Resultatene understreker et lovende potensial for å bruke
avanserte maskinlæringsmodeller for effektiv styring av kraftsystemer, og
demonstrerer treffsikker anvendelse i store kommersielle bygg.
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Chapter 1

Introduction

1.1 Background

The global community is facing an alarming pace of global warming. Con-
temporary power systems need to undergo an extensive transition from carbon-
emitting resources to renewable energy, and several sectors of society such as
transportation and industry require electrification. In line with these global
initiatives, the Norwegian government has committed to reducing its green-
house gas emissions by at least 50% by 2030, compared to the levels recorded
in 1990 [1].

Driven by decreasing prices and political support, renewable energy sources
such as solar and wind are gaining prominence in the energy landscape.
The integration of renewables is likely to increase, which poses challenges
in maintaining stability and safe operation in the power grid. Achieving a
constant balance between generated and consumed energy becomes increas-
ingly difficult with the growing complexity of energy generation. The intro-
duction of new electrical loads, like electric vehicles (EVs), further intensifies
the demands on the power grid, complicating the problem [2].

To ensure an instantaneous balance between electricity supply and demand,
power grids must be capable of handling not only the total electricity con-
sumption but also peak power demands. Expanding the capacity of the grid
is a time-intensive and costly process. Therefore, it is essential to identify and
reduce peak power demands [3].

Thus, there is a need for intelligent systems and tools to schedule ahead and
optimize the use of available electricity sources in the power system. Fore-
casting of electricity demand is required for efficient operation of the power
grid. By gaining insight into future electricity needs, proactive measures can
be taken to avoid large peaks in power consumption [4]. Extensive research
has been done to successfully predict power demand, with accurate predic-
tion of the peaks recognized as both important and challenging [5].

While predicting electricity consumption is a complex task, technological ad-
vancements and the growing availability of data have paved the way for
promising results using machine learning. Machine learning models, requir-
ing no physical knowledge of energy systems, can provide successful pre-
dictions through training on historical data [6]. Long Short-Term Memory
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(LSTM) models, particularly renowned for effectively handling large time in-
tervals of data in time series predictions, have demonstrated enormous suc-
cess in forecasting time series [7]. Hence, the primary purpose of this thesis
is to research the effectiveness of utilizing LSTM algorithms for forecasting
electricity demand.

1.2 Motivation

This thesis contributes to the NeX2G research project [8], funded by the Nor-
wegian Research Council under grant number 320825. The objective of the
project is to investigate the flexibility potential in electric vehicles and other
facilities at Oslo Airport Gardermoen (OSL). Successful forecasting of elec-
tricity consumption is crucial for estimating flexibility potential. The thesis
focuses on developing a functional machine learning model for predicting
electricity consumption at the airport.

This thesis extends the research conducted by Kvisberg [9], which explored
the use of LSTM models to forecast electricity demand at OSL. While these
models successfully captured general consumption patterns, they were less
effective in predicting power peaks. Therefore, the aim of this thesis is to in-
vestigate methods for enhancing the peak prediction capabilities of the LSTM
models.

1.3 Problem Statement

The objective of this thesis is to develop a machine learning model that can
accurately predict electricity consumption at OSL, particularly focusing on
identifying future power peaks. The model utilizes an LSTM algorithm and
is trained using data from 2022 and 2023. It aims to forecast electricity usage
24 hours ahead.

To improve peak prediction in the LSTM models, this research employs two
primary strategies. First, the models are trained with four distinct loss func-
tions to evaluate their impact on performance. Among these, one function
enables probabilistic model outputs, while another is specifically weighted
to focus on peak hours. Second, a comprehensive optimization process is
conducted. A grid search is used to identify the optimal parameters for con-
structing the LSTM model architecture, and this process is carried out sepa-
rately for each loss function. This approach results in four distinct, yet op-
timized LSTM models. The performance of these models is assessed using
error metrics and empirical analysis, with special attention given to their ac-
curacy in predicting power consumption peaks.
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Chapter 2

Theory

2.1 Power Systems

This section presents key concepts in electric power systems. It begins by
outlining the general characteristics of electric power grids, then examines
electricity consumption patterns in buildings and industries. The final part
of the section explores the concept of flexibility within power systems.

2.1.1 The Power Grid

An electric power supply system is divided into three primary categories:
production, transmission, and consumption. Electricity is generated in the
production sector, distributed through the transmission grid, and spent by
the consumers. As many fundamental functions of modern society depend
on constant access to electricity, a reliable supply of electrical energy is cru-
cial [10].

The Norwegian power grid is divided into three levels. Firstly, the transmis-
sion grid connects producers and consumers in a nation-wide system and in-
terconnects the Norwegian grid with surrounding countries. The lines in the
transmission grid carry a high voltage of typically 300 or 420 kV with some
parts carrying 132 kV. In Norway, Statnett acts as the transmission system
operator (TSO). Next, the regional distribution grid commonly functions as a
link between the transmission grid and the distribution grids, and it carries
a voltage of 33 to 132 kV. Industrial consumers operating at higher voltages
and producers may be connected to this grid as well. Finally, the local dis-
tribution grid supplies electricity to smaller end users. It carries a voltage
of up to 22 kV, and commonly supplies voltages of 230 to 400 V to ordinary
customers. The regional and local distribution grids are managed by entities
known as distribution system operators (DSOs), which are commonly owned
by the municipalities and county authorities [10].

Since electricity is challenging to store, the production must be equal to the
demand at all times. This is known as the instantaneous balance in the power
system, and it is critical to ensure safe and reliable operation of the grid.
Aberrations from the instantaneous balance cause the frequency of the sys-
tem to deviate from the nominal 50 Hz [11]. This leads to instability in the
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system which can potentially result in damage and failure of electrical com-
ponents in the power grid [3].

Hence, the capacity of the power grid must be able to handle the instanta-
neous power demand. The peak demand determines the required capacity
of the grid, although large peaks occur a fraction of the time. The neces-
sary grid capacity also varies geographically, as some areas may have higher
electric power requirements than others. To accommodate increased power
demand, physical expansions can be made to enhance grid capacity, but this
approach is both expensive and time-consuming. An alternative is to imple-
ment measures to reduce large peaks, thereby optimizing the use of existing
capacity [12].

2.1.2 Electricity Consumption in Buildings and Industry

In Norway today, approximately 50% of electricity consumption occurs in
buildings, both residential and commercial, and is largely attributed to elec-
trical heating systems [1]. The Norwegian Water Resources and Energy Di-
rectorate (NVE) estimates that more efficient energy usage in buildings could
potentially reduce the total electricity consumption in Norway by as much as
10% [13]. Since the majority of building consumption in Norway is used for
heating, electricity usage is highly dependent on weather factors, a correla-
tion that is stronger in Norway compared to other countries [14].

Another 40% of electricity consumption in Norway is attributed to industrial
applications, including sectors such as petroleum production, manufacturing
plants, and data centers. The expected increase in electricity consumption in
the coming years is primarily due to these sectors [1]. This increase is a result
of industrial applications transitioning from carbon-emitting energy sources
to electrification, as well as the establishment of new industries [12].

Airports, in addition to hosting airplane traffic, need to facilitate a large va-
riety of services. As a result, they can resemble small cities with significant
electricity demands for heating, ventilation, and more. Implementing vari-
ous measures such as intelligent energy management systems could enable
significant reductions in electricity consumption [15]. Yildiz et al. [16] pro-
posed energy-saving projects for an airport in Turkey, and reported that the
energy consumption could be reduced by as much as 57%.

2.1.3 Flexibility

Flexibility is defined by the Centre for Intelligent Electricity Distribution (CINELDI)
as the ability and willingness to modify production and/or consumption patterns, at
an individual or aggregated level, often in response to an external signal, in order to
provide a service to the power system or maintain stable grid operation [17].

Flexibility within the power system can be offered by various sectors. Elec-
tricity producers, like hydro power plants; energy storage solutions, such as
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batteries; and consumers, including industrial buildings, can all contribute to
this flexibility. This potential can be utilized to address challenges regarding
voltage quality, bottlenecks, and grid capacity [18].

To prevent bottlenecks, attrition of electrical components, and potential grid
failure, the transmission capacity must be capable of handling the peak power
for a certain line. If demand were allowed to occur freely, the peak demand
would be significantly larger than during most hours throughout the year,
resulting in poor management of grid resources. Thus, to better make use
of the available capacity, flexibility can be used to reduce the magnitude of
the peaks [19]. Different strategies for reducing peaks are shown in figure
2.1. Peak shaving refers to the practice of reducing the amount of energy
used during peak demand times. Conversely, valley filling means increasing
electricity use during periods of low demand. Load shifting involves trans-
ferring electricity usage from one period to another, typically from peak to
off-peak hours, and includes both peak shaving and valley filling. The ob-
jective is to level the overall demand curve by minimizing the discrepancy
between peak and off-peak demand.

FIGURE 2.1: Strategies for reducing peaks in the electric power
consumption. Reproduced from [20].

In Norway, the largest flexibility potential for buildings are assumed to be
connected to thermal storage. This includes systems such as water heaters,
cooling systems, and other loads that can be disconnected for short periods
of time without impacting user comfort [19]. To reduce the peak power con-
sumption of a building, strategies like load shifting, as depicted in figure 2.1,
can be applied. In turn, by reducing the peak consumption, the building is
providing the overall power system flexibility.

Another example of a flexible load is the charging of EVs, as it can be time-
shifted to periods of low demand and prices. Provided the vehicle is done
charging when it is needed, the comfort of the user has not been impacted
at all. In addition, a new technology called vehicle-to-grid (V2G) further
increases the flexibility potential of EVs. While normally the charging can
only go from the grid to the vehicle, V2G allows the charge to flow both
ways. As a result, EVs can act as batteries to supply the power grid in times
of high demand [19]. This could prove to be a significant flexibility tool,
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especially when managing several EVs together [21]. V2G solutions, along
with other technologies such as stationary batteries and hydrogen energy
storage, can help balance the intermittent nature of renewable energy sources
like solar and wind. They achieve this by charging during periods of high
energy production and discharging according to demand [22].

There are two primary types of flexibility. The first is explicit flexibility, which
is activated upon receving an external signal from a third party, such as a
grid company, system operator, or energy supplier. This activation could in-
volve either increasing or decreasing electricity production or consumption.
Entities providing explicit flexibility are typically compensated for their ser-
vice. Although this strategy can efficiently and reliably trigger a flexibility
response, it requires both technical and administrative coordination. Implicit
flexibility, in contrast, is triggered by price signals in the electricity market.
Producers, consumers, and battery owners themselves decide when and how
much flexibility to provide. The motivation behind offering flexibility here is
economic gain, which can automatically encourage participation [19]. In the
context of this thesis, implicit flexibility is the most relevant.

In Norway, the total electricity cost for consumers in the power grid is de-
termined both by the amount of energy and the power demanded. It con-
sists of several components: the power price, grid rental fee, and taxes to the
government. The power price [NOK] is a variable cost per unit of electric-
ity [kWh] consumed. The grid rental fee includes a fixed component and a
variable component. The fixed component varies based on the peak power
[kW] usage and is intended to cover the costs of operating the power grid.
The variable part, known as the energy component, is intended to offset the
marginal loss costs incurred in transmitting electricity to the customer and
increases with higher electricity usage [23]. The structure of the grid rental
fee, being influenced by peak power consumption, provides consumers with
a financial incentive to distribute their peaks more evenly.

The future power systems are often referred to as smart grids. These systems
are distinguished by their use of digital technology to enhance the efficiency
and reliability of electricity management. A central feature of smart grids
is the efficient management of flexible loads, which helps balance electricity
production and consumption while minimizing peak demand levels. A fun-
damental requirement for the effective functioning of smart grids is the ac-
curate prediction of electricity consumption patterns [24]. This accurate fore-
casting is essential for effective resource management, such as implementing
measures to reduce peak demand, as illustrated in figure 2.1.

2.2 Machine Learning

The following section will describe the relevant topics in machine learning.
The descriptions closely follow the explanations in [25] and uses the nota-
tions and illustrations of [26]. Unless specified, the following descriptions
are cited from these two sources.
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2.2.1 Fundamentals of Machine Learning

Machine learning (ML) evolved as a sub-field of artificial intelligence (AI)
tasks and is centered around self-learning algorithms that are able to extract
knowledge from data in order to make predictions. The initial applications
of machine learning algorithms were primarily in image classification, but
they have since been applied to a wide variety of problems. In this context,
learning means the ability of the algorithm to improve its output by incorpo-
rating new data. Machine learning is often divided into three different types:
supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning consists of learning a model from labeled training data
in order to make predictions about unseen or future data. The term super-
vised refers to a set of training data where the desired output of the model is
already known. Therefore, the training data consists of input data known as
features, and the desired output which is known as targets. The output of the
model is known as predictions, and the goal of the algorithm is to minimize
the error between the predictions and the targets. Further, unsupervised
learning deals with unlabeled data or data of unknown structure. These
techniques are used to extract meaningful information or patterns from data
without the help of a known outcome. An example of unsupervised learn-
ing is clustering, a method where data points that share a certain similarity
are grouped together without any prior knowledge of group memberships.
Finally, in reinforcement learning, the goal is to develop a system which im-
proves its performance based on its interactions with the environment. An
example of reinforcement learning is a chess engine, which attempts a series
of moves based on the state of the board and is rewarded according to its
performance.

In this thesis, the focus is on supervised learning, which can be further di-
vided into classification and regression. In classification, the goal is to predict
discrete class labels based on previous observations. In these problems, the
class memberships are unordered and can be binary or multiclass, and an ex-
ample of a classification model could be recognizing handwritten digits. In
regression, on the other hand, the goal is to predict a continuous value. An
example of a regression model could be predicting the air temperature the
next day.

2.2.2 Artificial Neural Networks

The basics of artificial neural networks can be explained with the Adaline
algorithm [27], which can be seen as a single-layer neural network. This
network consists of several input nodes, a single net input function, and an
activation function generating a single output. An Adaline algorithm for
binary classification is shown in figure 2.2.

The vector x signifies the input values of the algorithm, where the subscript
m refers to the number of features in the training data. In addition to x, there
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FIGURE 2.2: Illustration of the Adaline algorithm. The net
input of the network is calculated as the linear combination
of the weights and the inputs plus bias. The signal is then
passed through the algorithm to produce an output. Repro-

duced from [26].

is a bias unit with a constant value of 1. Through a net input function, a lin-
ear combination of x plus the bias unit and the weight vector w is calculated,
giving a single net input value z. Next, z is passed into an activation func-
tion. For Adaline, the output a of the activation function is the same as input
z, but this is not necessarily the case for other algorithms. The algorithm in
figure 2.2 also contains a unit step function squashing a into a binary output.
By removing the unit step function a would become the output ŷ of the algo-
rithm giving a continuous value, making it a regression algorithm. Since this
thesis uses regression models this will be the focus moving forward.

During model training, the weight vector w is updated based on an error
calculated by a loss function. The loss function is used to quantify the perfor-
mance of the algorithm by calculating the error between the predicted value
ŷ and the true value y. Through a technique called gradient descent, the
aim is to move in the opposite direction of the gradient of the loss function.
The gradient is found by calculating the partial derivatives of the loss func-
tion for each weight in the vector w. Although the Adaline algorithm can
be described as a simple single-layer neural network the same underlying
concepts apply to neural networks of more complex structures.

To introduce the multilayer neural network, a multilayer perceptron (MLP)
is depicted in figure 2.3. The MLP is a feedforward neural network, meaning
that the signals flow from one end of the network to another. The MLP in
figure 2.3 consists of one input layer, one hidden layer, and one output layer.
The hidden layer is fully connected to the input layer, and the output layer is
fully connected to the hidden layer. Neural networks containing more than
one hidden layer are referred to as deep artificial neural networks.
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FIGURE 2.3: Illustration of an MLP. For this neural network,
the input layer has m nodes corresponding to each input value
plus one bias. The hidden layer has d nodes plus one bias. The

output layer has t nodes. Reproduced from [26].

The learning process of an MLP is similar to that of the Adaline algorithm,
but the flow of information is more complicated. As seen in figure 2.3, the
node a(h)d receives a signal from every node in the preceding layer and has a

weight for every signal. Node a(h)d uses a linear combination of all the signals
and weights to create its own activation, which it passes on to the nodes in the
next layer. This happens for all the nodes in the hidden layer except for the
bias node a(h)0 , and in all other layers except for the input layer which simply
receives one input from each of the features in the data set with no weights.
Thus, signals from the training data are propagated forward through the net-
work to generate a prediction. Next, the loss function calculates the error be-
tween the prediction and the target value. Since the output in one layer is a
function of the activation of the preceding one, the error is sent backwards in
the network through a technique called the backpropagation algorithm. As
follows, the derivatives of the loss function with respect to each weight in the
network are found, and through gradient descent the model is updated. A
more detailed explanation going deeper into the mathematical operations of
backpropagation and the training of neural networks can be found in [26].

2.2.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of neural network which receives
sequential data as input. Sequential data could for instance be samples of
text or a time series, and is characterized by the order of the samples being a
significant attribute of the data. In order to handle multiple time steps RNNs
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allow information to flow through something called a recurrent edge, which
is illustrated in figure 2.4.

FIGURE 2.4: Illustration of the RNN concept. Unlike standard
feedworward neural networks, RNNs have a recurrent edge al-
lowing a flow of information between time steps. Reproduced

from [26].

In a standard feedforward network such as the MLP discussed in the pre-
vious section, information flows from the input layer to the hidden layer,
and from the hidden layer to the output layer. In an RNN, the hidden layer
receives information from the input layer of the current time step and the
hidden layer of the previous time step. Each hidden layer has weights asso-
ciated with both the preceding layer at the current time step and the hidden
layer at the previous time step. As a result, the RNN is able to keep a mem-
ory of past events. Similar to the MLP, an RNN can contain several hidden
layers. This is shown in figure 2.5, which also unfolds the recurrent edge to
illustrate how multiple time steps are connected.

FIGURE 2.5: Illustration showing a multilayer RNN unfolded,
displaying the flow of information between time steps in a

multi-layer structure. Reproduced from [26].

RNNs face significant challenges when dealing with longer sequences, pri-
marily due to the vanishing and exploding gradient problems [28]. RNNs
leverage a specialized form of backpropagation called backpropagation through
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time (BPTT). BPTT effectively unfolds the temporal layers of the network into
a traditional feedforward architecture, enabling the application of standard
backpropagation for weight updates. However, this process becomes prob-
lematic with lengthy sequences, as it involves multiplying a large number of
partial derivatives. This multiplication can lead to gradients that are exces-
sively large (exploding) or too small (vanishing), which makes the network
unable to learn long-term dependencies.

To mitigate these issues, one of the popular solutions is the LSTM algo-
rithm [28]. LSTMs are specifically designed to address the shortcomings of
traditional RNNs in learning long-term dependencies, offering a more ro-
bust architecture for handling extended sequences. The core component of
the LSTM is the memory cell, which is depicted in figure 2.6.

FIGURE 2.6: Illustration of the LSTM architecture, displaying
the flow of information in the memory cell. The cell state Ct is
regulated by a series of computational units called gates. Re-

produced from [26].

In an LSTM network, the memory cell plays a critical role, essentially taking
over the function of the hidden layer found in standard RNNs. The values
that flow along this part of the network are known collectively as the cell
state. One of the key features of the cell state is its ability to traverse through
all the time steps without being directly subjected to weight multiplication,
which is a significant factor in its ability to manage information flow effec-
tively. This flow is regulated by a series of computational units called gates.
There are several variants of the memory cell architecture in an LSTM net-
work, and the following explanations follow the one presented in [26].

The forget gate ft decides which information is retained or discarded. It pro-
cesses the previous hidden state ht−1 and the current input xt through a sig-
moid function, and then applies the resultant value to modify the previous
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cell state Ct−1. Next, the input gate it and a candidate value C̃t work together
to update the cell state. The input gate filters the incoming data (xt and ht−1)
through a sigmoid function, while the candidate value uses a tanh function
for the same inputs. The outputs of these two are then multiplied and added
to the cell state, leading to its update. Finally, the output gate is responsi-
ble for determining the update to the hidden units, forming the next hidden
state (ht). It processes ht−1 and xt through a sigmoid function, and the output
from this is multiplied by the tanh of the cell state. This complex mechanism
allows the LSTM to effectively navigate and address the challenges of van-
ishing and exploding gradients that are common in traditional RNNs [28].

2.2.4 The Learning Process

The learning process of a deep learning algorithm typically includes several
key components in addition to the model itself. The aim of the training phase
is to minimize the loss function, in which the parameters known as learn-
ing rate and epoch play a significant role. The learning rate controls how
much the weights of the model are updated with respect to the loss gradient,
and is therefore crucial for the convergence of the model to an optimal set of
weights. This convergence is represented in figure 2.7, where the significance
of the learning rate becomes evident. A too-small learning rate may cause
the algorithm to get stuck in a local minimum, while a too-large learning rate
can cause the algorithm to completely overshoot the global minimum. An
epoch refers to one complete pass through the entire data set. The number
of epochs therefore decides how many times the weights are adjusted, and
multiple epochs are often necessary for the algorithm to learn the patterns of
the data.

FIGURE 2.7: This illustration depicts the concept of conver-
gence in model training. The vertical axis represents the value
of the loss function, and the horizontal axis represents the value
of a weight coefficient. The objective of the learning process is
to find the value of the weight value that minimizes the loss

function. Reproduced from [26].
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2.2.5 Model Optimization

In machine learning, the primary goal is to find a function that accurately
predicts not just the data it is trained on, but also unseen data. This involves
splitting the full dataset into two sets: a training set for learning the model
weights and a validation set to estimate how well the model will perform on
new data.

The effectiveness of a model is judged on its ability to minimize errors in the
training set while also performing effectively on unseen data. A significant
difference in performance between these two sets indicates a problem. If the
model performs well on the training data but poorly on the test data, the
model is overfitting, often due to excessive complexity. Conversely, under-
performing on the training data but having a small error on the validation
set indicates underfitting, often due to a model being too simple. The model
complexity dictates how intricate the learned predictions can be. Balancing
this complexity is crucial, as it affects both overfitting and underfitting ten-
dencies. This is illustrated in figure 2.8. The best machine learning model for
a particular task is not always straightforward and can vary depending on
the specific needs of the problem.

FIGURE 2.8: Illustrations depicting underfitting, overfitting,
and the appropriate capacity of the model. The capacity of a

model is related to the complexity. Reproduced from [29].

Optimizing models involves tuning parameters that influence their complex-
ity and learning process. These parameters include the number of hidden
layers, the number of units in each hidden layer, the number of epochs, and
the learning rate, and are known as hyperparameters because they are set be-
fore the learning begins. Grid search is a popular method for hyperparameter
optimization. It aims to find the optimal set of hyperparameters through an
exhaustive search, where various values for different hyperparameters are
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systematically evaluated to find the best combination. Although this tech-
nique is simple, grid search can be computationally intensive as it requires
training and evaluating a large number of models. Another approach is the
random search, which randomly selects a limited number of combinations
within the specified range. While it does not test every possible combina-
tion like grid search, random search can be an efficient alternative, saving
computational resources.

Some hyperparameters can be optimized using alternative methods, like the
number of epochs. Since this hyperparameter influences how many times
the weights of the model are updated, it significantly impacts the model com-
plexity. This can be managed through a technique known as early stopping.
Early stopping halts the training process when the model performance on the
validation set stops improving. The point, as depicted in figure 2.9, is consid-
ered the optimal level of complexity for the model. Consequently, controlling
the number of epochs helps prevent both overfitting and underfitting.

FIGURE 2.9: Illustration displaying the optimal learning ca-
pacity of a model. The generalization error is a measurement
of the model performance on the validation set. Reproduced

from [29].

Regularization techniques are additional methods for preventing overfitting
in ML models, and involve setting specific hyperparameter values. A widely
used regularization technique in deep learning is dropout. The key idea be-
hind dropout is to randomly switch off a set of neurons in a layer during
training. This is done according to a probability value specified by the user.
The concept of dropout is illustrated in figure 2.10.

Here, the dropout probability is set to 0.5, meaning that half of the neurons
in a layer are randomly deactivated during training. Outside of the training
phase, however, all of the units are activated. The purpose of dropout is to
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FIGURE 2.10: Illustration showing the concept of the dropout
technique. During training, half of the units (nodes) are ran-
domly deactivated. When the model is evaluated, all units are

used. Reproduced from [26].

ensure that the model does not become too dependent on a single neuron.
Each forward pass during training effectively uses a different thinned-out
version of the network. This can be seen as a way of training a large ensemble
of networks, with the average of this ensemble being utilized during network
testing. Thus, dropout is a simple yet highly effective tool for improving the
generalization capability of deep neural networks.

A common approach to splitting a dataset for developing an ML model is
illustrated in figure 2.11. In this method, the dataset is divided into training
and validation sets for model development, with a separate test set reserved
for the final evaluation of model performance. However, a drawback of this
approach is that the estimation of model performance can be greatly influ-
enced by how the training dataset is split into training and validation sub-
sets. Consequently, the performance estimate might vary significantly with
different data partitions.

FIGURE 2.11: Illustration showing a common approach to split-
ting a dataset. Reproduced from [26].

In order to minimize the effects of randomness and variations in the data,
methods employing cross-validation are used. In these methods, the data
is divided into a number of partitions, ensuring that the model is trained
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and validated on all parts of the data. The concept is illustrated in figure
2.12. For each partition, a new model is trained and evaluated, with the
final performance being calculated as the average of the performance of each
model. As such, this approach is a robust way to evaluate a model. Empirical
evidence suggests that a good standard value for the number of partitions is
10 [30].

FIGURE 2.12: Illustration displaying the concept of cross-
validation. For each of the 10 iterations, a new model is trained
and evaluated. The final score is the average of all evaluations.

Reproduced from [26].

2.2.6 Error Metrics

To assess the performance of a model, it is essential to quantify the error
between its predictions and the actual values. There are various techniques
for this quantification, known as error metrics. Each error metric has distinct
characteristics and calculates the error in a different way. This section will
present the error metrics that are utilized both for evaluating performance
and as loss functions in this thesis.

The Mean Squared Error (MSE) is the average of the square of the error be-
tween the prediction and the true value, and is given by

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (2.1)

where n is the number of observations, yi is the true value for every obser-
vation i, and ŷi is the predicted value. Since MSE will give values in the unit
of yi squared, a more intuitive score can be given by the Root Mean Squared
Error (RMSE). RMSE is simply the root of MSE, and can be written as
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (2.2)

Another error metric is the Mean Absolute Error (MAE). This score is calcu-
lated as the mean of the absolute value of the difference between the predic-
tion and the true value, and can be calculated as

MAE =
1
n

n

∑
i=1

|yi − ŷi|. (2.3)

Further, the Mean Absolute Percentage Error (MAPE) is calculated as the
average of the absolute differences between predicted and true values, ex-
pressed as a percentage of the true values. The calculation is given by

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ . (2.4)

Following Trebbien [25], the Negative Log Likelihood (NLL) is included as a
loss function to enable a model to predict both the mean and standard devi-
ation of a Gaussian distribution. The calculation is given by

NLL =
1
n

n

∑
i=1

(
(yi − ŷi)

2

2σ2
i

+
1
2

ln(2πσ2
i )

)
, (2.5)

where ŷi is the predicted mean and σi is the predicted standard deviation.

2.3 Predicting Electricity Demand Using Machine
Learning

Data-driven approaches for predicting electricity demand have recently at-
tracted significant attention. Their ability to detect statistical patterns from
available datasets, as opposed to relying on on-site physical information, of-
fers a powerful advantage [6]. This section introduces a selection of articles
that explore methods similar to those in this thesis, particularly focusing on
short-term electricity demand prediction. Such predictions typically span a
time horizon ranging from a few hours to several weeks [31].

Torres et al. [32] utilized a deep LSTM network to predict electricity demand
for the Spanish power grid. They determined the optimal hyperparameters
through a random search, complemented by a metaheuristic named the coro-
navirus optimization algorithm, inspired by the propagation patterns of the
SARS-Cov-2 virus. Focusing on a 4-hour prediction horizon, their optimal
model achieved notably low prediction errors, surpassing the performance
of existing state-of-the-art methods.
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Slowik and Urban [24] aimed at developing a universal forecasting tool for
energy consumption, intended for enabling end-use consumers participating
in the smart grid energy market. They developed an LSTM model for short-
term energy demand prediction using data from a manufacturing plant. Their
proposed model had a simple architecture of 1 LSTM layer and 128 units,
making it suitable for computers with standard processing capabilities. This
design effectively balanced accuracy with computational demands, result-
ing in low prediction errors and demonstrating a practical trade-off between
precision and processing requirements.

Shao and Kim [33] proposed a novel deep LSTM model based on a multi-
channel architecture, enabling their model to effectively process several fac-
tors in parallel. Their model, named Multi-Channel LSTM with Time Lo-
cation (TL-MCLSTM), extracted information from power consumption, time
location, and customer behavior to predict electricity demand multiple steps
ahead. Utilizing two electric company datasets from Pennsylvania, New Jer-
sey, and Maryland, they developed their model, which demonstrated predic-
tion accuracy surpassing that of state-of-the-art models.

Hwang et al. [34] employed various machine learning methods, including
LSTM, to predict electricity demand for 28 commercial buildings. Their ap-
proach integrated a data-driven methodology with the physical characteris-
tics of the energy consumption of the buildings. This combination enhanced
the predictive capabilities of their models.

Rafi et al. [31] created a method for short-term electricity demand prediction
by integrating a convolutional neural network (CNN) with an LSTM net-
work. While CNNs are often used for image recognition, they have shown
promising results in time series analysis as well. Thus, [31] states that com-
bining CNN and LSTM is a strategic choice for minimizing forecast errors.
Their model, developed and validated using data from the Bangladesh power
system, achieved higher prediction accuracy than other commonly used mod-
els, including a standard LSTM model.
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Chapter 3

Case: Oslo Airport Gardermoen

Building on the work of Kvisberg [9], this thesis contributes to the NeX2G
project by exploring machine learning algorithms aimed at accurately pre-
dicting peak electricity demand at OSL. While the LSTM models from [9]
captured general demand patterns, they struggled with accurate peak pre-
dictions. This work aims at refining the LSTM models for better peak fore-
casting by employing two main strategies: training models with four differ-
ent loss functions to assess their impact on performance, and implementing
a comprehensive optimization method to identify the best model parame-
ters. Since an extensive data exploration regarding the same case is already
provided by [9], this part is kept brief in this thesis. Hence, this chapter con-
cisely presents the relevant patterns and characteristics of the data used in
this work.

3.1 Oslo Airport Gardermoen

OSL is the largest airport in Norway, normally serving more than 28 million
passengers each year [35]. The location of OSL is in the municipalities Ul-
lensaker and Nannestad in Viken county. Avinor owns and runs the airport,
and supplies the data used in this thesis.

OSL, which includes two runways and a terminal building, also features a
range of operational and administrative structures. The airport requires elec-
tricity for multiple purposes, including lighting, transportation, heating ca-
bles, air conditioning, and other technical facilities and appliances [9]. In this
thesis, high-resolution electricity load measurements have been aggregated
into hourly values. The data utilized here does not represent the entire air-
port but is derived from one of the main measurement points at OSL.

Avinor pays both electricity prices and grid fees for their electricity usage,
where the latter includes consumption taxes, electric certificates, surcharges,
and a power component [36]. The power component is determined on a
monthly basis by the highest hourly power usage each month for the total
electricity consumption of the entire facility at OSL [9]. Reducing the highest
hourly power usage in a month can lead to cost savings.
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3.2 Electricity Consumption Data

As the aim of the thesis is to predict the electricity demand, the patterns and
characteristics of the measurements need to be examined. The data is a time
series spanning 12431 hours of measurements, beginning on March 1, 2022,
and concluding on July 31, 2023. Older data is available, but this start date
is chosen to minimize disruptions caused by the Covid-19 pandemic. The
following sections describe the relevant patterns seen across the data. Addi-
tional plots and statistical information regarding the electricity consumption
time series can be found in Appendix A.

Figure 3.1 presents the entire electricity consumption time series from begin-
ning to end as daily average values. Observing the series as a whole, clear
seasonal patterns in electricity consumption are evident. The consumption
reaches its peak in the winter, gradually decreases until summer, and starts
rising again during autumn.

FIGURE 3.1: The daily average electricity consumption for the
full time series.

Observing figure 3.2 reveals the average weekly pattern in the data set. Week-
days, i.e. Monday to Friday, exhibit similar consumption levels with two
distinct daily peaks. Weekends, however, show a different pattern. Satur-
days typically record the lowest overall consumption, while Sundays start
similarly but experience a significant increase in consumption during the af-
ternoon.

Figure 3.3 illustrates the average weekly electricity consumption for each
season. Here, spring is defined as March until May, summer is June until
August, autumn is September until November, and winter is December un-
til February. This figure highlights seasonal variations, with winter weeks
showing generally higher consumption levels and more pronounced peaks.
The other seasons appear to be similar in consumption level, with autumn
displaying the most pronounced peaks among them.
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FIGURE 3.2: The average weekly electricity consumption pat-
tern.

Figure 3.4 presents the average daily pattern of electricity consumption through-
out the time series. It reveals a distinct morning peak at 8 a.m., while the
timing of the second peak is more diffuse. Decomposing the average day
into seasonal averages, as shown in figure 3.5, explains why that is. The first
peak is consistent at 8 a.m. across all seasons, but the timing of the second
peak changes. In spring and summer, it occurs at 2 p.m., while in autumn
and winter, it shifts to 5 p.m. Conclusively, there are clear seasonal, weekly,
and daily patterns in this data. In order to robustly predict the electricity
demand, these components need to be captured successfully.

3.3 Other Variables

In this work, alongside electricity consumption data, several exogenous vari-
ables are utilized to provide additional information. Exogenous variables are
external factors not directly related to the predicted variable. In this case,
these include electricity price, outdoor temperature, and airport passenger
number, all provided by Avinor. However, as detailed in section 4.1.1, the
temperature data is substituted with data from the Norwegian Meteorologi-
cal Institute [37] at the same location. Table 3.1 lists the variables used in this
study. As indicated in the table, all variables have hourly time sampling, ex-
cept for the passenger numbers, which are weekly sums. Chapter 4 describes
how this disparity in time sampling is managed. While [9] used similar vari-
ables for their LSTM models, the inclusion of electricity price is new to this
work. However, a significant issue was identified regarding this variable. It
was discovered to actually be the electricity cost, which is a product of the
electricity consumption. This error was unfortunately discovered too late for
correction, and has inadvertently allowed the model to access information
that would be unavailable in a practical application. The implications of this
misstep are discussed in 5.3.3.
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FIGURE 3.3: Seasonal decomposition of the average weekly
electricity consumption pattern.

TABLE 3.1: The table shows the variables in the dataset and
their time sampling.

Variable name Time sampling

Electricity consumption [kWh/h] Per hour
Electricity price [NOK/kWh] Per hour
Passenger number Weekly sum
Outdoor air temperature [◦C] Hourly average

FIGURE 3.4: The average daily electricity consumption pattern.
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FIGURE 3.5: Seasonal decomposition of the average daily elec-
tricity consumption pattern.
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Chapter 4

Methods

This chapter describes the methods used to create the LSTM models for pre-
dicting electricity demand at OSL. The process involves cleaning the data,
manipulating variables, and preparing the data for the LSTM algorithm. To
set a benchmark, a baseline model is established. A grid search is conducted
for four different loss functions to identify the optimal model hyperparame-
ters. This approach results in four distinct yet optimized models, which are
then evaluated both empirically and through error metrics.

The data processing and machine learning programming implemented for
this thesis use Python. For building the LSTM models, the ML library Ten-
sorflow [38] is used with the interface Keras [39]. As described in Chapter
2, grid searches are computationally demanding. The Orion High Perfor-
mance Computing Center at NMBU provides the necessary computational
resources for these intensive tasks. For less demanding tasks, a Microsoft
Surface Pro 7 with an Intel(R) Core(TM) i7-1065G7 CPU (1.30GHz base, 1.50
GHz max speed), 16.0 GB RAM, and Windows 10 Home has been used. The
Python script employed for developing the models is made available through
GitHub [40].

4.1 Data Preparation

As presented in Chapter 3, the data set is a multivariate time series consist-
ing of hourly measurements of electricity consumption, electricity price, air
temperature, and weekly passenger numbers. To address the difference in
time sampling, each hour within a week is assigned the same corresponding
weekly passenger number. Prior to using this data in the LSTM models, it
requires cleaning and preparation. The subsequent section elaborates on the
techniques and methods used for this process.

4.1.1 Data cleaning

Data cleaning is an important step in the ML process, as it enables the algo-
rithm to learn the underlying patterns of the data without being disturbed by
measurement errors and discrepancies. In the air temperature data, there are
multiple constant-value intervals suggesting some kind of faulty measure-
ment. To deal with this, the entire air temperature time series from Avinor
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is replaced with measurements from the Norwegian Meteorological Institute
at the same location [37]. The new temperature series is devoid of damaged
intervals, except for just a total of 5 non-consecutive missing values that are
addressed using forward filling. The rest of the measurements in the data
set are considered to be generally highly reliable, and no further cleaning is
required.

4.1.2 Variable Manipulation

When preparing a data set for ML, variables can be transformed or created
to provide the algorithm with additional information. A key method em-
ployed is the deconstruction of the date and time for each sample into new
categorical variables. This is done to give the model a sense of time. These
variables include the hour of the day, month number, and weekday number,
which are then incorporated into the data set as one-hot encoded vectors.
For example, Sunday is represented by the index value 6 and thus encoded
as [0, 0, 0, 0, 0, 0, 1]. This one-hot encoding approach is critical to ensure the
algorithm does not misinterpret the numerical values of the days, avoiding
the incorrect assumption that a higher index value implies a greater day.

Additionally, following the approach used by Kvisberg [9], incorporating
previous electricity consumption as an input variable is considered benefi-
cial for the model. Consequently, each data sample is supplemented with
information on electricity consumption from 24 hours prior. This decision
is supported by the auto-correlation plot in figure A.5, which indicates that
electricity consumption data from the same time on the previous day could
be valuable for the predictions of the model. However, due to a coding er-
ror discovered late in the process, this time shift actually ended up being 48
hours, not 24. The potential implications of this discrepancy are discussed in
section 5.3.3.

The electricity consumption for the current hour is extracted from the data
set to serve as the target variable. This process results in a total of 78 fea-
tures, with 74 related to one-hot encoded categorical variables. The remain-
ing four features are the electricity price, air temperature, passenger number,
and the electricity consumption 24 hours prior. This set of features, being
a combination of the previous consumption, temporal variables, and exoge-
nous variables are commonly used in state-of-the-art ML models seen in the
literature [6].

4.1.3 Preprocessing for LSTM

The LSTM algorithm requires the data to be formatted in a specific way, ne-
cessitating some preprocessing. Firstly, the data is scaled using the MinMaxS-
caler [41] from the scikit-learn ML library. This process transforms all vari-
ables to values between 0 and 1, with 0 representing the minimum and 1
the maximum value of each variable. This scaling ensures that all variables
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are on an equal scale, allowing for their uniform interpretation by the LSTM
algorithm.

The input data for the LSTM model must be shaped as [samples, time steps,
features]. In this case, time steps denote the number of time points received
by the algorithm in a single input. The data is reshaped to allow the LSTM to
process the time series in 24-time-step windows, advancing the window by
one time step for each input. This model follows a many-to-one approach,
where 24 time steps of training features predict the target value at the final
time step. Therefore, to forecast 24 hours of electricity demand, the model
analyzes 24 separate samples, each containing a 24-hour feature sequence,
and produces a prediction for each of these sequences. This is possible due
to the day-ahead availability of both the electricity price and the outdoor air
temperature, which are used as input in the model. The choice of a 24-hour
sequence in the input is designed to capture the daily pattern in electricity
demand, and similar decisions regarding this option are common in the lit-
erature [32] [33].

4.2 The models

4.2.1 Loss Functions

Four distinct loss functions are utilized for developing the LSTM models.
Firstly, MSE is chosen for its common use in such models. Secondly, MAPE
is selected, which may influence the training differently due to its error be-
ing percentage-based. Thirdly, NLL is used for its capability to predict both
the mean and standard deviation of a Gaussian distribution. This adds a
probabilistic dimension to the predictions, potentially increasing the practi-
cal applicability of the models. Finally, a modified loss function is proposed
to specifically target the peaks. This function is designed as a weighted MSE
(WMSE), and is given by

WMSE =
1
N

N

∑
i=1

yi × (ŷi − yi)
2. (4.1)

Here, the squared difference between the true value yi and the predicted
value ŷi is multiplied with yi, thus increasing the error for large values of yi.
This function will therefore penalize the algorithm more heavily for incorrect
predictions of high values, potentially increasing the prediction accuracy for
the peaks. As the values of yi are scaled and lie between 0 and 1, this function
will automatically give more weight to hours with higher peak values.

4.2.2 Grid Search and Cross-validation

To determine the optimal hyperparameters for constructing the LSTM mod-
els, a comprehensive grid search is conducted. The hyperparameters under
consideration are the number of hidden layers n, the number of units in each
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hidden layer u, and the dropout probability following each hidden layer d.
Table 4.1 displays the values for each of the hyperparameters that are ex-
plored in the grid search. All 120 combinations of these values are tested for
each of the four loss functions, resulting in a total of 480 model variants. Each
specific variant is referred to as a configuration.

TABLE 4.1: Hyperparameter values tested in the grid search.
These include the number of hidden layers n, the number of
units per hidden layer u, and the dropout probability d follow-

ing each hidden layer.

Hyperparameter Values
n {1, 2, 3, 4, 5}
u {32, 64, 128, 256}
d {0, 0.1, 0.2, 0.3, 0.4, 0.5}

To ensure statistical validity and to account for seasonal variations in the data
set, a cross-validation method is employed. The data is partitioned into 10
folds, enabling each of the 480 model configurations to be tested on subsets
across the entire data series. The choice of 10 folds is, as described in section
2.2.5, based on empirical evidence from [30]. In each fold, 80% of the dataset
is designated for training, 10% for validation, and the remaining 10% for
testing. The validation and test sets are consecutive 20% segments of the
time series, progressively moving from the beginning to the end over the 10
folds. This method of splitting the data is based on common practices found
in related literature.

The performance metrics used are RMSE, MSE, MAE, and MAPE, which are
standard in related literature and allows for comparison between different
research projects [32] [6]. Additionally, WMSE is used for model evaluation.
Although it is not a real error metric, it can be useful to compare its value be-
tween different models. Given that WMSE provides values on a cubed scale,
the cubic root WMSE (R3WMSE) is used for a more intuitive comparison be-
tween models, which is given by

R3WMSE = 3

√√√√ 1
N

N

∑
i=1

yi × (ŷi − yi)2. (4.2)

Each of the 480 models is therefore tested on the 10 folds across the time se-
ries, and the final performance score of a model configuration is calculated
as the average of its performance across all the folds. For each model, the
average scores for all error metrics, along with the corresponding standard
deviations, are calculated. Ultimately, the best-performing model configura-
tions for each loss function are identified and evaluated.
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Additionally, a naive baseline model is included for comparison. This base-
line model predicts the electricity consumption throughout a day as the aver-
age consumption of the previous day, providing a basic benchmark for error
comparison with LSTM models.

4.2.3 Other Decisions and Parameters

Besides the hyperparameters listed in table 4.1, there are several additional
parameters that influence the LSTM model. These include the learning rate,
which is managed by the Keras implementation of the Adam optimizer [42].
The optimizer coordinates the training algorithm of the model, and Adam
is a standard choice. The learning rate starts at the default Adam value of
0.001 and is adjusted during training. Further, as described in Chapter 2, the
number of epochs is crucial for preventing both overfitting and underfitting.
The epochs are handled through early stopping, where the training process
is stopped if the validation loss does not improve. In this case, if the vali-
dation loss does not improve for 100 epochs the training will stop and the
model will revert back to its best performing point. Finally, the batch size is
set to 64. The batch size determines the number of input samples that are
passed to the model at once during training, and its value can have a signifi-
cant impact on the training dynamics. As it is seen in the literature as a good
starting point for batch size, 64 is chosen and kept static through this work.
The parameters discussed in this section could also be managed as hyperpa-
rameters and optimized through a grid search. However, examining all of
them in such detail is beyond the scope of this thesis.



29

Chapter 5

Results and discussion

In this chapter, the results of this work are presented and discussed. The
performance of the models is evaluated using various error metrics, and the
best-scoring models are tested on a subset of the data. Additionally, the re-
sults are compared to similar works in the literature. The significance and
potential applications of the findings are also explored. Finally, the limita-
tions of this thesis are acknowledged and discussed.

5.1 Grid Search Results

To determine the best model configuration for each loss function, a grid
search with cross-validation is performed as described in section 4.2.2. The
best-scoring model for each loss function in each metric is shown in table 5.1.
In addition, the scores of the baseline model are included for reference.

TABLE 5.1: Table showing results from grid search and cross-
validation for model optimization. Columns represent various
loss functions used during training, while rows correspond to
different error metrics. Each cell displays the average score and
standard deviation for the best-performing model under each
combination of loss function and error metric. Additionally, the
number of hidden layers n, number of units u, and dropout
probability d are provided for these models. Models achieving
the lowest score for each error metric are highlighted in bold.

Model-NLL Model-MAPE Model-MSE Model-WMSE Baseline

RMSE 248.43± 80.08 394.50± 156.48 212.17± 38.51 213.95± 42.76 442.57
n=1, u=64, d=0.0 n=1, u=128, d=0.3 n=1, u=128, d=0.5 n=1, u=64, d=0.0

MSE 67488 ± 45147 170801± 67498 46350 ± 15789 47420 ± 18939 195872
n=1, u=64, d=0.0 n=5, u=64, d=0.4 n=1, u=128, d=0.5 n=1, u=64, d=0.0

MAE 201.19± 65.22 299.64± 71.15 171.95± 32.16 173.78 ± 36.59 365.95
n=1, u=64, d=0.0 n=5, u=64, d=0.4 n=1, u=128, d=0.5 n=1, u=64, d=0.0

MAPE 5.42 ± 1.98 8.13 ± 1.76 4.53 ± 0.77 4.59 ± 0.76 10.10
n=1, u=64, d=0.0 n=5, u=64, d=0.4 n=1, u=128, d=0.5 n=1, u=64, d=0.0

R3WMSE 608.65 ± 123.99 830.86 ± 210.77 555.38 ± 76.83 557.86± 88.34 888.86
n=1, u=64, d=0.0 n=1, u=128, d=0.4 n=1, u=128, d=0.5 n=1, u=64, d=0.0
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As seen in the table, all of the models outperform the baseline reference
model, meaning that they at least perform better than using the average con-
sumption of the previous day as the prediction. They all reproduce a sinu-
soidal pattern corresponding to the day-to-day electricity consumption cycle,
as shown by figures 5.1, 5.2, and 5.3. Moreover, the models appear to recover
the fundamental aspects of the data described in Chapter 3, such as the dual
peak shape seen across a typical day and the characteristic patterns seen on
weekend days. These observations indicate that the models generate sensible
predictions of the electricity demand.

As all of the models are tested on 10 folds, meaning 10 iterations with the
same starting conditions and covering the entire data set, the models giving
the lowest average scores are the ones that perform best on the time series
as a whole. This method ensures that the best-scoring models are the ones
that best handle temporal variation and seasonality, and hence are the most
generalized and robust. The results shown in 5.1 display that the MSE model
with 1 hidden layer, 128 units, and 0.5 dropout probability achieves the low-
est averages in all error metrics. For the WMSE and NLL loss functions, the
best models both have 1 hidden layer, 64 units, and 0.0 dropout probability.
The best MAPE model varies between three different configurations depend-
ing on the error metric. From this point, the models representing each of the
loss functions will be referred to as Model-MSE, Model-WMSE, Model-NLL,
and Model-MAPE.

These results have a statistical nature and must be analyzed accordingly. For
one model to be better than another, there must be a statistically significant
difference. For instance, the error scores of Model-WMSE are consistently
higher than those of Model-MSE across all metrics. However, since the av-
erage scores of Model-WMSE fall well within one standard deviation of the
mean scores of Model-MSE, this difference is not significant, and their perfor-
mances can be considered equivalent. This is based on the reasoning that the
standard deviations represent the uncertainty in calculating the mean val-
ues. Therefore, when the average scores of Model-WMSE are within the
uncertainty intervals of the Model-MSE scores, there is not enough statis-
tical evidence to claim that one model is better than the other. Comparing
Model-MSE to Model-NLL, the average error scores of the latter are higher
but still within one standard deviation of the Model-MSE averages for all
error metrics, except for MSE and MAPE. This suggests some evidence that
Model-NLL might perform worse than Model-MSE and Model-WMSE, al-
though their performances could still be considered equivalent. In the case
of Model-MAPE, however, the error averages lie outside one standard devi-
ation of the mean values of Model-MSE for all metrics. Consequently, the
error metric performance of Model-MAPE is considered significantly worse
than the other models.

The three models Model-MSE, Model-WMSE, and Model-NLL are thus sta-
tistically similar in their error metric performance, and they are similar in
their architecture as well. They all have 1 hidden layer, and either 64 or 128
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units. The dropout probabilities are either 0.0 or 0.5, but these values affect
the model training and not the actual structure. Considering the possible
combinations from table 4.1, these architectures are relatively simple. Given
the thoroughness of the grid search and cross-validation used to evaluate the
models, this observation suggests that for this specific problem, a simpler
model tends to perform better.

To evaluate the performance of these models relative to all models included
in the grid search, the distribution statistics of the grid search results are pre-
sented in table 5.2. A comparison of these statistics with the results in table
5.1 provides context for the best models within the entire grid search. Com-
paring the lowest scores with the bottom 25% of the distribution indicates
that a significant portion of the models perform close to the best ones. For
instance, looking at the RMSE statistics, 25% of the models have errors lower
than 269.85, and 50% have errors lower than 310.03. Given that the lowest
RMSE score, achieved by Model-MSE, is 212.17 with a standard deviation
of 38.51, it is likely that a significant amount of models have scores that are
similar.

TABLE 5.2: Table presenting the distribution statistics for all
models evaluated during the grid search, categorized by each

error metric.

RMSE MSE MAE MAPE R3WMSE

Median 310.03 105595 257.54 6.81 706.34
Minimum 212.17 46351 171.95 4.53 555.38
Maximum 1188.30 6019255 987.47 25.35 1735.00
25% 269.85 79507 221.79 5.90 644.05
75% 428.27 205188 332.32 8.78 873.34

To reflect on why the best-performing models have simple architectures, the
descriptions of model complexity in section 2.2.5 are relevant. The optimal
complexity of a machine learning model for a specific task is one that neither
overfits nor underfits the data. In this work, a comprehensive grid search and
cross-validation have been employed to optimize model complexity for pre-
dicting electricity demand at OSL. If these techniques are successful, it sug-
gests that the optimal model complexity for this task is relatively simple, in-
dicating that the patterns in the data are not overly complex. Furthermore, a
simpler model might be more effective for generalized predictions across var-
ious seasonal and temporal variations compared to a more complex model.
A comprehensive analysis of how model complexity affects performance is
possible, but it is considered to be outside the scope of this thesis.

As already noted, the optimal configuration of Model-MAPE shifts between
three variants depending on the error metric. This is different from the other
three models, which all have a single configuration performing best on all
metrics. This observation, along with the significantly worse performance
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compared to the others, implies that Model-MAPE is unable to learn the pat-
terns of the data in a stable manner. Moreover, when considering the uncer-
tainty intervals represented by the standard deviations of the error metrics,
the performance of Model-MAPE does not show a significant improvement
over the baseline model, which has a very simple and naive design. This
comparison highlights the poor performance by Model-MAPE.

5.2 Model Testing

In this section, the four model configurations selected from table 5.1 are tested
and evaluated. Using the first 80% of the data set for training, the next 10%
for validation, and the final 10% for testing, the four models are trained as
described in Chapter 4. The test set contains seven full weeks of electricity
consumption during the summer of 2023. To display the different behaviors
of the models, the predictions on week 7 of the test period are displayed.
This is not necessarily the best nor worst week for any of the models, but it is
chosen as the target week as it displays the trends seen across the full period.

In the following sections, the predictions of Model-MSE, Model-WMSE, and
Model-NLL on week 7 of the test period are displayed. The predictions of
Model-MAPE are left out as its performance is highly underwhelming com-
pared to the other models. Upon observing the prediction plots, it is clear
that this model is unable to learn the complexities of the data. Unlike the
other models, its prediction pattern is softly shaped with no sharp corners
and is thus completely missing the dual-peak characteristic of the daily con-
sumption pattern. The Model-MAPE prediction plot for the target week can
be found in Appendix B.

5.2.1 Model-MSE

The predictions of Model-MSE on the targeted week 7 are shown in figure
5.1. As seen here, the predictions are in general following the actual con-
sumption closely, but are for several days unable to fully reach the large af-
ternoon peak. This observation is largely true for the entire test period, but
the peaks are generally underestimating more than what is seen in week 7.
Model-MSE appears to capture the overall patterns more accurately than the
other models, but often fails to reach the large peaks. Moreover, the peaks
are rarely over-estimated. The low-points of the electricity consumption are
generally not predicted correctly, but as these are not the focal point of this
thesis they will not be studied as closely as the peaks.

5.2.2 Model-WMSE

Figure 5.2 shows the predictions from Model-WMSE on the target week.
Compared to Model-MSE, this model clearly predicts larger values for the
peaks. This observation indicates that the WMSE loss function can indeed
affect the peak prediction of a model. The results do, however, show that
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FIGURE 5.1: Predictions for week 7 in the test set using Model-
MSE.

the predictions of Model-WMSE have a tendency to be overestimated. The
peaks of the actual values in 5.2 are generally overlapped by the model fore-
cast, but the predictions are higher than the actual values on multiple occa-
sions. Although this is not consistent throughout the entire seven-week test
period, the general trend shows that Model-WMSE tends to predict larger
values and simpler patterns, which are more likely to overestimate the de-
mand compared to Model-MSE. The patterns are less accurate, but the pre-
dicted peaks are closer to the peaks of the actual values. To determine which
of the two models provides the best predictions, it is necessary to consider
whether overestimating or underestimating the demand is more detrimental.

FIGURE 5.2: Predictions for week 7 in the test set using Model-
WMSE.
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5.2.3 Model-NLL

In figure 5.3, the week 7 forecast from Model-NLL is shown. As the NLL loss
function enables the model to predict the mean and standard deviation of a
Gaussian distribution, the prediction of Model-NLL contains more informa-
tion than the other models. In figure 5.3, this prediction is illustrated by three
graphs. One line for the mean value, and two lines indicating one full stan-
dard deviation above and below the mean. In a Gaussian distribution, about
68% of values lie within one standard deviation of the mean [43]. Conse-
quently, Model-NLL predicts there is a 68% probability that the actual value
falls within the dotted lines in figure 5.3, with the most likely value being
the mean. Thus, the model can indicate the uncertainty of its own predic-
tion, where the size of the standard deviation reflects the level of uncertainty.
Observations from week 7 show that the actual values are mostly within one
standard deviation of the mean, but the predicted mean values often under-
estimate the actual electricity consumption. Similar observations are noted
throughout the rest of the test period. Therefore, although the predictions of
Model-NLL seem to be less accurate compared to Model-MSE and Model-
WMSE, they provide additional information that could be useful in practical
applications.

FIGURE 5.3: Predictions for week 7 in the test set using Model-
NLL.

5.2.4 Model-MSE vs. Model-WMSE

In this section, the performance of Model-MSE and Model-WMSE are com-
pared. These two models are chosen since they have the lowest average error
scores according to table 5.1, and because they can potentially display the ef-
fects of introducing a weighted loss function. As described in Chapter 4, the
WMSE loss function is a modification of MSE. This modification is studied
by comparing the two models. Figure 5.4 shows the average predicted days
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for both Model-MSE and Model-WMSE in comparison to the true average
day across the entire 7-week test period.

FIGURE 5.4: Comparison of the average predicted days for
Model-MSE and Model-WMSE for the full test set

Figure 5.4 shows that, on average, Model-WMSE predicts higher values than
Model-MSE, particularly at the peaks. However, as these graphs represent
averages over the entire test period, they do not capture the complete picture.
The objective is to predict the electricity demand on a day-to-day basis, not as
an average over an extended period. Nevertheless, Figure 5.4 does suggest
that introducing a weighted loss function can have a substantial impact on
the prediction patterns

Figure 5.5 presents the best and worst prediction days for Model-MSE and
Model-WMSE, employing a method similar to that of [32] in their evaluation
of an LSTM model. The predictions for the entire test period are divided
into individual days, with MAE calculated to determine the most and least
accurate day predictions. On their best days, both models achieve accurate
predictions that closely match the actual values. However, Model-WMSE
more accurately predicts peak values than Model-MSE. On the worst days,
the differences between the models are more pronounced. Model-MSE fails
to capture the actual pattern, significantly underestimating peak values. By
contrast, Model-WMSE overestimates substantially but more effectively cap-
tures the demand pattern, especially at peak times. It is important to consider
which type of error is more critical in practical applications.

5.3 General Discussion

5.3.1 Comparison to Similar Literature

In this section, the results from this work are compared to similar research
in the literature. The comparison is done using the MAPE metric when
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FIGURE 5.5: The best and worst predicted days for Model-MSE
and Model-WMSE, as measured the MAE metric.

available, as it provides a scale-independent metric. Relevant differences in
methodology are discussed.

Torres et al. [32] achieved MAPE scores under 1.5% for their LSTM models,
notably lower than the 4.53% by Model-MSE in this study, as shown in ta-
ble 5.1. A key advantage for Torres et al. lies in their data quantity: 9 years
at 10-minute intervals, compared to the approximately 1.5 years at hourly
intervals used here. This substantial difference suggests that more exten-
sive training data can significantly enhance model performance. The finer
resolution of their data might also contribute to the improved pattern recog-
nition of the model. Their data, covering the entire electricity consumption
of Spain, is also on a much larger scale, potentially reducing the impact of
random noise on the model. Furthermore, Torres et al. employ a more intri-
cate hyperparameter search technique, allowing different numbers of units
and dropout rates for each hidden layer and including learning rate in their
search. Despite using a random search rather than a full grid search, this
approach enables them to explore more complex model architectures, poten-
tially leading to a more finely tuned model. Their model makes predictions
using only the previous consumption as input, suggesting that exogenous
variables are not necessarily required for accurate forecasting. Their model
used 168 time steps in the input sequences, corresponding to 28 hours, which
is 4 hours more than in this work.

Shao and Kim [33] predicted the electricity demand 12 hours ahead for re-
gions in Pennsylvania, New Jersey, and Maryland. Their TL-MCLSTM model,
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a variant of an LSTM model, achieved an average MAPE score of 3.13%,
which is better than the results of this work. Notably, their model only uti-
lized one LSTM layer with 20 units, and no hyperparameter optimization
was performed. These high-performing results along with the simple LSTM
architecture suggest that the multi-channel structure of their method allowed
the model to efficiently learn several aspects of the data in parallel in order
to make accurate predictions. In this way, their model was able to efficiently
utilize power consumption data, time location, and consumer behavior. This
could indicate that there are more efficient ways of handling exogenous vari-
ables than what is done in this thesis. Further, they use two data sets cover-
ing 7 and 14 years, which is considerably longer than in this thesis. The time
sampling of the data used was hourly measurements, similar to this work,
but as [32] they are on a much larger scale. Like this work, they also utilized
24-hour input sequences.

Rafi et al. [31] employed a CNN-LSTM fusion model to predict the electricity
demand for the Bangladesh power grid. Predicting 24-hour intervals, their
model achieved an average MAPE score of 3.22%, which is 1.31% better than
the best result in this work. Their dataset spans nearly 6 years with a half-
hour sampling interval. Instead of conducting a hyperparameter optimiza-
tion routine, they focused on evaluating the impact of integrating a CNN into
the model. Their findings demonstrate that the inclusion of a CNN enhances
performance compared to a standard LSTM model, which achieved a MAPE
of 7.55%. The specifics of this LSTM architecture are not detailed, but it is still
outperformed by the models in this thesis, indicating the effectiveness of the
methods used here in improving predictive accuracy. Unlike in this study,
Rafi et al. did not use any exogenous variables in their model.

Slowik and Urban [24] predicted the electricity demand for a manufacturing
plant with a 4-hour prediction horizon. They used a simple LSTM with 1
layer and 128 units, and achieved an MAE score of 0.0464 W. This error value
shows a very high prediction accuracy considering that the median value
in the consumption data is 82668.418 W. There are, however, major differ-
ences between their approach and the work in this thesis. For instance, their
data set contains electricity consumption measurements over 24 hours with
a time sampling of 10 seconds, adding up to 8640 data points. This is a much
higher resolution than what is used in this work, which likely is beneficial
for more accurate predictions. In addition, the nature of the data is different
than OSL, as they are taken from a factory which exhibits different consump-
tion patterns. They also use no exogenous variables, unlike this work. Three
different network architectures were tested, and the LSTM with 1 layer and
128 units performed best.
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5.3.2 Implications and Applications

To assess the implications of the results in this work, it is important to con-
sider the specific application within the NeX2G project. The models devel-
oped are intended for predicting significant future peaks in electricity de-
mand at OSL, enabling the activation of flexible energy resources to flatten
these peaks, as noted in [8]. The primary goal for the consumer in this con-
text is to reduce costs by flattening consumption peaks, making peak detec-
tion a critical aspect of the model. In this scenario, underestimating a peak is
more harmful than overestimating. Therefore, Model-WMSE might be better
suited for this particular challenge due to its tendency to predict higher peak
values.

Successfully predicting peaks is the most crucial function of the model, but
accurately forecasting general consumption patterns is also highly valuable.
Flexible resources like water heaters and V2G systems require careful plan-
ning for smooth operation without compromising usage and comfort. There-
fore, precise estimates of overall consumption patterns are still essential for
effectively shifting electrical loads over time without impacting user experi-
ence.

The results from Model-NLL highlight the potential for predicting the mean
and standard deviation of a Gaussian distribution. As previously mentioned,
this feature allows the model to estimate its own prediction uncertainty, en-
hancing trust in practical applications and aiding consumers in making better-
informed decisions. For example, high uncertainty in peak predictions could
lead to a more conservative approach, such as reserving additional energy
capacity for larger-than-expected peaks. Conversely, a peak prediction with
low uncertainty is likely to be more reliable. This additional information
could be highly beneficial for efficiently managing flexible resources.

The use of probabilistic loss functions like NLL in LSTM models, while not
common in literature, shows potential. Wang et al. [44] developed a prob-
abilistic load forecasting model utilizing a pinball loss-guided LSTM. This
approach demonstrated high performance in forecasting for both residen-
tial and commercial buildings, indicating the effectiveness of probabilistic
models in load forecasting scenarios. The use of NLL in this study is in-
spired by the work of Trebbien [25], who employed this loss function in an
LSTM model for predicting electricity prices and achieved high-performance
results. The probabilistic dimension introduced by using NLL as a loss func-
tion was found to be highly beneficial for the practical applications of their
model.

The results from Model-WMSE and Model-NLL suggest that using a weighted
loss function and a loss function that predicts the mean and standard de-
viation of a Gaussian distribution could both be advantageous for predict-
ing electricity demand peaks. Model-WMSE more effectively captures peaks
compared to other models, while Model-NLL provides additional informa-
tion useful for managing peaks. Combining these two concepts into one loss
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function could potentially offer the benefits of both in a single model. Ex-
ploring this new combined loss function, however, falls outside the scope of
this thesis and is recommended for future research.

Since the electricity cost paid by customers in Norway is influenced by the
largest power peak, as described in section 2.1.3, consumers have an eco-
nomic incentive to identify large future peaks and apply strategies like load
shifting for peak reduction. Robust and accurate predictions are essential for
identifying these peaks. Therefore, the use of predictive models, like those
developed in this work, could be highly beneficial for consumers looking to
reduce their electricity costs.

The LSTM models developed in this work have potential applications be-
yond just OSL. Any energy-consuming system looking to flatten its electricity
consumption peaks and offer implicit flexibility to the grid, through the use
of flexible energy resources, would benefit from an accurate demand fore-
cast that successfully predicts peaks. Since these models are developed using
data from a large commercial building like OSL, the methodology is most rel-
evant to similar settings, including other large commercial buildings such as
shopping malls, universities, and other airports. As highlighted in Chapter 2,
buildings hold significant flexibility potential, and robust electricity demand
predictions using ML models are central for unlocking this potential.

The main strength of the methodology in this work lies in its applicability
to a wide range of systems similar in purpose and characteristics to OSL. It
ensures that the hyperparameters of the LSTM model are tuned to each spe-
cific system, which might require different model structures than those used
for OSL. Furthermore, the cross-validation technique ensures that the mod-
els are robustly evaluated across seasonal and temporal variations, favoring
those with the lowest average error scores. This approach verifies that the
models can handle diverse temporal conditions. Consequently, this method-
ology offers a versatile and robust framework for building LSTM models to
predict electricity demand for various purposes.

Building on this, the methods presented in this thesis have demonstrated
their effectiveness in systems like OSL, characterized by distinct cyclical con-
sumption patterns. While there are variations between weekdays and sea-
sons, most days at OSL follow regular patterns. However, in scenarios where
consumption patterns are irregular and non-stationary, such as in hotels, a
different approach may be required. This is illustrated in the work of Chen
et al. [45], where they developed a clustering-based hybrid method combin-
ing fuzzy c-means (FCM) and support vector regression (SVR) for predicting
hotel electricity demand. These consumption patterns are more complex and
irregular, necessitating methods equipped to handle such variability.

A relevant consideration is the accessibility of the methods used in this study.
The comprehensive grid search model optimization routine carried out here
requires substantial computing resources. These were provided by the Orion
High Performance Computing Center at the Norwegian University of Life
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Sciences, as employing such intensive techniques on standard computing de-
vices is not viable. However, the need for high-performance computing di-
minishes once the models are optimized and trained. A trained LSTM model
for an electric system can be effectively operated on standard devices with-
out the need for extensive computing power. The need to re-train the model
arises only if there are significant changes in the physical conditions of the
system that lead to a notable change in the patterns of electricity consump-
tion. If the consumption patterns of the system are cyclical and stable, the
LSTM model would not require frequent re-training.

5.3.3 Limitations

In the development of LSTM models for predicting electricity demand, it
is important to recognize and address several limitations to improve their
robustness and accuracy. The results from this work show that each model
has weaknesses that could be addressed through further optimization efforts.

A major limitation in this work is the confusion between electricity price and
cost. The models are intended to use the hourly electricity price for the next
day, a readily available metric, as a feature. However, they actually use elec-
tricity cost, which is dependent on consumption and cannot be known in
advance. The specific details of how this variable is calculated are unknown
to the author, as they are based on a confidential electricity deal regarding
Avinor, but it is known to include consumption data. This means the models
inadvertently have access to information about the demand they are trying
to predict, potentially influencing their accuracy. The exact impact of this er-
ror on the results remains unclear, but it raises concerns about the predictive
integrity of the models.

Another limitation is that due to a coding error, the models currently use elec-
tricity consumption data from 48 hours ago, instead of the intended 24 hours.
The impact of this error depends on whether the electricity consumption at a
given time is more correlated with its value from 24 or 48 hours earlier. This
can be assessed using the auto-correlation function, as depicted in figure A.5.
The figure indicates that electricity consumption is highly correlated with its
value at the same time each day, but this correlation diminishes over sev-
eral days. This suggests that the data from 24 hours earlier might be more
beneficial for the model than data from 48 hours ago.

As identified in section 5.3.1, this study uses considerably less data than sim-
ilar research, representing a notable limitation. Despite this, the performance
achieved here, while not as high as in these other studies, is still compara-
ble. This suggests that the methodology used in this work holds promising
potential, especially if applied to larger data sets similar to those in other
research.

The quality of the input data is critical to the performance of ML models,
which warrants greater emphasis in this work. Data cleaning, noise reduc-
tion, and outlier detection are vital preprocessing steps. Given the limited
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size of the dataset used here, these steps become even more important. No-
table outliers in the electricity consumption data, as seen in figure A.1, can
disrupt model training and performance. Addressing these outliers using
interpolation techniques can help maintain data integrity. Techniques like
wavelet transforms, as utilized in related studies by [46] and [47], have proven
effective in reducing data noise. Implementing such methods could signif-
icantly enhance data quality, thereby potentially improving the predictive
abilities of the models.

The structural formulation of the dataset also heavily impacts the perfor-
mance of the model. The size of the lookback window, which determines
the number of past observations considered for predicting future values, di-
rectly influences the number of weights in the LSTM model. This is due to
the fact that each time step in the network is associated with its own hidden
layers and weights, as described in Chapter 2. Thus, the lookback window
size is a key factor for the model complexity and must be carefully consid-
ered when developing an LSTM model. Furthermore, the size of the predic-
tion window, or how many hours ahead the model forecasts from a single
input sequence, also influences the performance of the model. The size of
the prediction window determines the size of the model output, which in-
fluences how the LSTM algorithm responds to the input data. Throughout
this work, a 24-hour rolling lookback window with hourly predictions has
been used, but further variation testing is recommended for optimal model
development.

Furthermore, batch size, learning rate, and the number of epochs are critical
parameters that should ideally be optimized. As detailed in Chapter 4, this
work employs a constant batch size of 64, utilizes the Adam optimizer to
set the learning rate, and implements early stopping to manage the epochs.
Optimizing these parameters as hyperparameters, through a grid search like
the one conducted for hidden layers, units, and dropout probability, could
potentially result in more finely tuned models.

Another potential limitation arises from using multiple loss functions under
the same conditions, which might not be equally effective across all func-
tions. For instance, the underperformance of the Model-MAPE compared to
others suggests that a single setting may not be universally optimal. Differ-
ent loss functions may require different settings for batch size, learning rate,
and epochs to function most effectively.

Concerning the cross-validation, the approach used in this work deviates
from the standard preference for time series analysis. Typically, training data
for time series is kept as consecutive measurements to maintain the tempo-
ral sequence. However, due to data constraints, all available data is used for
training in each fold. As a result, when validating on an earlier part of the
series, the model has already been exposed to subsequent data, which can
potentially introduce look-ahead bias and is not standard practice. In this
work, maintaining a sufficient amount of training data for all folds was seen
as more important than avoiding look-ahead bias.
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Furthermore, while the hyperparameter values listed in table 4.1 have been
tested, it is possible to explore a more comprehensive range of values. Doing
so may lead to hyperparameters that are more optimally tuned than those
presented in this work.

Although a full grid search is thorough, it may not always be necessary due
to its computational intensity. A random search could be a more efficient al-
ternative, offering the potential to achieve comparable results while conserv-
ing resources. This approach could allow the exploration of more complex
model architectures, as demonstrated in [32]. This is not a limitation of this
work, but provides a guideline to reduce the training time in the future.

In this work, categorical variables are represented as one-hot encoded vec-
tors, leading to a high-dimensional feature space. These vectors are sparse,
typically filled with zeros and a single one. This ‘curse of dimensionality’
can hinder neural network performance, as noted by [26]. Embedding layers
offer a solution by condensing information into a lower-dimensional space.
However, they introduce additional parameters that require optimization,
which was outside the scope of this thesis.

In the data, passenger number data is sampled weekly, limiting the amount
of information it can contribute. In contrast, other variables are recorded at
an hourly rate. For optimal model performance and to align with the tempo-
ral resolution of other data, it would be ideal for passenger numbers to also
be available at an hourly resolution.

Addressing these limitations in future work could lead to more refined mod-
els and more accurate predictions of electricity demand.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis aimed to investigate the potential for predicting electricity de-
mand at Oslo Airport Gardermoen (OSL), particularly focusing on accurate
peak prediction. Following the work of a previous master thesis at NMBU
[9], LSTM algorithms were used to develop ML models to predict the power
demand 24 hours ahead. The models were trained using electricity con-
sumption data from OSL for the years 2022 and 2023. Besides electricity
consumption measurements, exogenous variables like electricity price, out-
door air temperature, and passenger numbers at the airport were used by the
models. The results demonstrated that these models could provide accurate
forecasts for future electricity demand, showing promising improvement in
peak prediction.

To improve peak prediction capabilities specifically, two main strategies were
employed. First, the models were trained using four different loss functions:
MSE, MAPE, NLL, and a new proposed weighted MSE loss function. Sec-
ond, a comprehensive grid search was performed to determine the optimal
hyperparameters for the models. Cross-validation was used to robustly eval-
uate model performance across the entire time series. The models with the
lowest average error scores from the cross-validation were deemed the best
for each loss function.

The best-performing model, trained using the MSE loss function, achieved
a MAPE score of 4.53%. Models trained with WMSE and NLL produced
comparable scores of 4.59% and 5.42%, respectively. However, the model
trained with MAPE performed significantly worse, with a score of 8.13%.

The results displayed promising results regarding the use of NLL and WMSE
as loss functions. WMSE, designed to focus more on peak hours, predicted
larger peak values compared to MSE, resulting in more reliable peak predic-
tions, at the cost of slightly reduced accuracy. This resulted in a more reliable
prediction of the large peaks at the expense of slightly less accurate predic-
tions. Moreover, NLL added a probabilistic dimension to the predictions.
While less accurate than the models trained with MSE and WMSE, the NLL
model demonstrated the ability to estimate its own prediction uncertainty,
providing additional practical value.
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The grid search optimization revealed that the best models all had relatively
simple architectures, with 1 hidden layer and either 64 or 128 units. This
suggested that simpler models could provide the most generalizable predic-
tions across seasonal and temporal variations. This observation implied that
the patterns of the data are not overly complex, and a simple model is more
fitting for this particular problem.

A main strength of this thesis lies in the methodology, which offers a robust
and versatile framework for developing ML models to predict electricity de-
mand. This approach can be applied to a variety of energy systems similar to
OSL, enabling the development of optimized LSTM prediction models made
for each particular system. These models are designed to perform well across
various temporal and seasonal variations.

The models developed in this thesis show promising potential for predict-
ing electricity demand patterns and peaks. Such models could assist various
consumers like OSL in identifying future power peaks, thereby enabling ef-
ficient management of flexible resources such as electric vehicles or heating
systems. By employing peak-reducing strategies, consumers can lower their
largest power peaks and consequently reduce electricity costs, as costs are
influenced by peak power usage.

For electric power systems as a whole, implementing such strategies could
reduce peak demand. Since the power grid must handle peak demand, these
strategies could enable more efficient use of existing grid resources.

6.2 Future work

While the LSTM models developed in this thesis produced promising results,
they were not performing as well as some other models seen in the literature.
Therefore, there are aspects of this work that can be improved to further en-
hance the applicability of the models in predicting electricity demands for
facilities such as OSL.

A notable limiting factor of this work when compared to the literature is the
limited amount of data used. While other research articles use multiple years
of measurements, this work utilized about 1.5 years of hourly measurements,
primarily to avoid disruptions arising from the Covid-19 pandemic. Utiliz-
ing a more extensive dataset could likely enhance the quality of the model
training.

In future work, more emphasis could be placed on data cleaning and noise
reduction. Enhancing the quality of training data could significantly improve
the performance of the models. For instance, techniques such as wavelet
transforms have been reported in the literature as effective for reducing noise
in measurements.

The concept of utilizing weighted loss functions can be more extensively in-
vestigated in future work. The WMSE loss function utilized in this thesis is
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a simple design to explore the concept. More sophisticated variations can be
developed.

Furthermore, using loss functions such as NLL which enables a probabilis-
tic prediction is a promising concept to improve the practical applicability
of the model. However, further investigation is needed to enhance predic-
tion accuracy. Combining the concepts of WMSE and NLL to create a model
that provides probabilistic outputs focused on peak predictions could be an
interesting area for future research.

Investigating other types of algorithms expanding on the LSTM algorithm is
also a possibility for future studies. For instance, models that fuse CNN with
LSTM have been reported in the literature to produce high-performance re-
sults. Additionally, the use of LSTM models with multi-channel architectures
to better handle exogenous variables is seen as a promising concept.

Besides LSTM algorithms, the literature also reports high-performance re-
sults from other machine learning methods, such as Gated Recurrent Units
(GRUs) and standard feedforward neural networks. Investigating these al-
ternative techniques is a possible direction for future work.
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Appendix A

Attachments for Chapter 3

FIGURE A.1: Hourly electricity consumption measurements for
the entire time series.
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FIGURE A.2: Density plot of electricity consumption data,
showing the distribution of values across the entire time series.

FIGURE A.3: Box plot for each month, showing the monthly
value distribution of the electricity consumption.
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FIGURE A.4: Box plot for every hour, showing the hourly value
distribution of the electricity consumption.

FIGURE A.5: Auto-correlation function applied to electricity
consumtion data, showing how the time series correlates with

itself over time
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Appendix B

Attachments for Chapter 5

FIGURE B.1: Predictions for week 7 in the test set using Model-
MAPE.
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FIGURE B.2: Training and validation loss curves for Model-
MSE.
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FIGURE B.3: Training and validation loss curves for Model-
NLL.
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FIGURE B.4: Training and validation loss curves for Model-
WMSE.
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FIGURE B.5: Training and validation loss curves for Model-
MAPE. Note that the training and validation losses are on dif-
ferent scales. The author was unfortunately unable to retrieve

a plot with separate axes for the two losses.
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FIGURE B.6: Predictions for the entire test set using Model-
MSE.

FIGURE B.7: Predictions for the entire test set using Model-
WMSE.



Appendix B. Attachments for Chapter 5 55

FIGURE B.8: Predictions for the entire test set using Model-
NLL.

FIGURE B.9: Predictions for the entire test set using Model-
MAPE.
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[22] B. Bibak and H. Tekiner-Moğulkoç. “A comprehensive analysis of Ve-
hicle to Grid (V2G) systems and scholarly literature on the application
of such systems”. In: Renewable Energy Focus 36 (Mar. 2021), pp. 1–20.
DOI: 10.1016/j.ref.2020.10.001.

[23] Nettleie - NVE. URL: https://www.nve.no/reguleringsmyndigheten/
kunde/nett/nettleie/ (visited on 01/10/2024).

[24] M. Slowik and W. Urban. “Machine Learning Short-Term Energy Con-
sumption Forecasting for Microgrids in a Manufacturing Plant”. en.
In: Energies 15.9 (May 2022), p. 3382. DOI: 10.3390/en15093382. URL:
https://www.mdpi.com/1996-1073/15/9/3382 (visited on 01/06/2024).

[25] J. Trebbien. Explainable Artificial Intelligence and Deep Learning for Analy-
sis and Forecasting of Complex Time Series: Applications to Electricity Prices.
Master thesis, University of Cologne. Mar. 2023.

[26] S. Raschka and V. Mirjalili. Python Machine Learning. Third Edition.
Packt Publishing, 2019.

https://www.regjeringen.no/contentassets/5f15fcecae3143d1bf9cade7da6afe6e/no/pdfs/nou202320230003000dddpdfs.pdf
https://www.regjeringen.no/contentassets/5f15fcecae3143d1bf9cade7da6afe6e/no/pdfs/nou202320230003000dddpdfs.pdf
https://www.regjeringen.no/contentassets/5f15fcecae3143d1bf9cade7da6afe6e/no/pdfs/nou202320230003000dddpdfs.pdf
https://doi.org/10.3390/en9050349
https://doi.org/10.1016/j.buildenv.2021.108632
https://doi.org/10.1016/j.buildenv.2021.108632
https://linkinghub.elsevier.com/retrieve/pii/S0360132321010234
https://linkinghub.elsevier.com/retrieve/pii/S0360132321010234
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2681944/01-2020%2b-%2bCINELDI-rapport.pdf?sequence=2&isAllowed=y
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2681944/01-2020%2b-%2bCINELDI-rapport.pdf?sequence=2&isAllowed=y
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2681944/01-2020%2b-%2bCINELDI-rapport.pdf?sequence=2&isAllowed=y
https://www.fornybarnorge.no/contentassets/72d407b08a0045b59de36c5545a58069/bruk-av-fleksibilitet-i-nettselskap-2021.pdf
https://www.fornybarnorge.no/contentassets/72d407b08a0045b59de36c5545a58069/bruk-av-fleksibilitet-i-nettselskap-2021.pdf
https://www.fornybarnorge.no/contentassets/72d407b08a0045b59de36c5545a58069/bruk-av-fleksibilitet-i-nettselskap-2021.pdf
https://doi.org/10.6100/IR771935
https://doi.org/10.1016/j.rser.2020.109963
https://doi.org/10.1016/j.ref.2020.10.001
https://www.nve.no/reguleringsmyndigheten/kunde/nett/nettleie/
https://www.nve.no/reguleringsmyndigheten/kunde/nett/nettleie/
https://doi.org/10.3390/en15093382
https://www.mdpi.com/1996-1073/15/9/3382


Bibliography 58

[27] B. Widrow et al. “An Adaptive "Adaline" Neuron Using Chemical "Memis-
tors"”. In: Stanford Electron Labs, Stanford University 1553-2 (1960). Tech-
nical Report.

[28] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: MIT
Press 9.8 (1997), pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.

[29] I. Goodfellow et al. Deep Learning. MIT Press, 2016. URL: https://www.
deeplearningbook.org/ (visited on 12/28/2023).

[30] R. Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection”. In: vol. 12. Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI). 1995,
pp. 1137–1143.

[31] S. H. Rafi et al. “A Short-Term Load Forecasting Method Using Inte-
grated CNN and LSTM Network”. In: IEEE Access 9 (2021), pp. 32436–
32448. DOI: 10.1109/ACCESS.2021.3060654.

[32] J. F. Torres, F. Martínez-Álvarez, and A. Troncoso. “A deep LSTM net-
work for the Spanish electricity consumption forecasting”. In: Neural
Computing and Applications 34.13 (July 2022), pp. 10533–10545. DOI: 10.
1007/s00521-021-06773-2. URL: https://doi.org/10.1007/s00521-
021-06773-2 (visited on 12/28/2023).

[33] X. Shao and C. S. Kim. “Multi-Step Short-Term Power Consumption
Forecasting Using Multi-Channel LSTM With Time Location Consider-
ing Customer Behavior”. In: IEEE Access 8 (2020), pp. 125263–125273.
DOI: 10.1109/ACCESS.2020.3007163.

[34] J. Hwang, D. Suh, and M.-O. Otto. “Forecasting Electricity Consump-
tion in Commercial Buildings Using a Machine Learning Approach”.
In: Energies 13.22 (Nov. 2020), p. 5885. DOI: 10.3390/en13225885.

[35] L. Engerengen, E. Tandberg, and I. S. Kristiansen. Oslo lufthavn Garder-
moen. Aug. 2023. URL: https://snl.no/Oslo_lufthavn_Gardermoen
(visited on 12/28/2023).

[36] R. G. Tveitane. Fleksibilitet i parkerte elbiler ved næringsbygg : en casestudie
av Oslo lufthavn Gardemoen. Master thesis, NMBU. 2021.

[37] Meteorologisk Institutt. Norsk Klimaservicesenter. Aug. 2023. URL: https:
//seklima.met.no/ (visited on 08/11/2023).

[38] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org. 2015. URL: https://
www.tensorflow.org/.

[39] F. Chollet et al. Keras. 2015. URL: https://keras.io (visited on 01/07/2024).

[40] S. Grøtan. LSTM models. https://github.com/Siggmeister/LSTM-
models/tree/main.

[41] sklearn.preprocessing.MinMaxScaler. URL: https://scikit-learn/stable/
modules / generated / sklearn . preprocessing . MinMaxScaler . html
(visited on 01/07/2024).

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://doi.org/10.1109/ACCESS.2021.3060654
https://doi.org/10.1007/s00521-021-06773-2
https://doi.org/10.1007/s00521-021-06773-2
https://doi.org/10.1007/s00521-021-06773-2
https://doi.org/10.1007/s00521-021-06773-2
https://doi.org/10.1109/ACCESS.2020.3007163
https://doi.org/10.3390/en13225885
https://snl.no/Oslo_lufthavn_Gardermoen
https://seklima.met.no/
https://seklima.met.no/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
https://github.com/Siggmeister/LSTM-models/tree/main
https://github.com/Siggmeister/LSTM-models/tree/main
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


Bibliography 59

[42] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: (2014). DOI: 10.48550/ARXIV.1412.6980.

[43] G. G. Løvås. Statistikk for universiteter og høgskoler. 4th edition. Univer-
sitetsforlaget, 2018.

[44] Y. Wang et al. “Probabilistic individual load forecasting using pinball
loss guided LSTM”. en. In: Applied Energy 235 (Feb. 2019), pp. 10–20.
DOI: 10.1016/j.apenergy.2018.10.078. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0306261918316465 (visited on 01/11/2024).

[45] Y. Chen, H. Tan, and U. Berardi. “Day-ahead prediction of hourly elec-
tric demand in non-stationary operated commercial buildings: A clustering-
based hybrid approach”. In: Energy and Buildings 148 (Aug. 2017), pp. 228–
237. DOI: 10.1016/j.enbuild.2017.05.003.

[46] D. Chi. “Research on electricity consumption forecasting model based
on wavelet transform and multi-layer LSTM model”. In: Energy Re-
ports. 2021 International Conference on New Energy and Power Engi-
neering 8 (July 2022), pp. 220–228. DOI: 10.1016/j.egyr.2022.01.169.

[47] G. Memarzadeh and F. Keynia. “Short-term electricity load and price
forecasting by a new optimal LSTM-NN based prediction algorithm”.
In: Electric Power Systems Research 192 (Mar. 2021), p. 106995. DOI: 10.
1016/j.epsr.2020.106995.

https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1016/j.apenergy.2018.10.078
https://linkinghub.elsevier.com/retrieve/pii/S0306261918316465
https://linkinghub.elsevier.com/retrieve/pii/S0306261918316465
https://doi.org/10.1016/j.enbuild.2017.05.003
https://doi.org/10.1016/j.egyr.2022.01.169
https://doi.org/10.1016/j.epsr.2020.106995
https://doi.org/10.1016/j.epsr.2020.106995


 

 

 


	Introduction
	Background
	Motivation
	Problem Statement

	Theory
	Power Systems
	The Power Grid
	Electricity Consumption in Buildings and Industry
	Flexibility

	Machine Learning
	Fundamentals of Machine Learning
	Artificial Neural Networks
	Recurrent Neural Networks
	The Learning Process
	Model Optimization
	Error Metrics

	Predicting Electricity Demand Using Machine Learning

	Case: Oslo Airport Gardermoen
	Oslo Airport Gardermoen
	Electricity Consumption Data
	Other Variables

	Methods
	Data Preparation
	Data cleaning
	Variable Manipulation
	Preprocessing for LSTM

	The models
	Loss Functions
	Grid Search and Cross-validation
	Other Decisions and Parameters


	Results and discussion
	Grid Search Results
	Model Testing
	Model-MSE
	Model-WMSE
	Model-NLL
	Model-MSE vs. Model-WMSE

	General Discussion
	Comparison to Similar Literature
	Implications and Applications
	Limitations


	Conclusion and Future Work
	Conclusion
	Future work

	Attachments for Chapter 3
	Attachments for Chapter 5
	Bibliography

