

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

A study of hourly electrical load

consumption forecasting approach

for industrial buildings using a

recurrent neural network

architecture

Atif Fazal
Data Science

May 15, 2023

1

i

Acknowledgements

The completion of this project marks the end of my study time at NMBU.

I would like to express my sincerest gratitude to my supervisor Tor Kristian Stevik for his

advice throughout the work in this project. Thanks to both Heidi Samuelsen Nygård and

Stig Ødegaard Ottesen for providing their advice during joint meetings. I would also like

to express my gratitude to Habib Ullah for providing constructive feedback regarding my

report during the finalization of this project.

Lastly, i thank my family for their continuous support throughout my years at NMBU. I

would like to emphasize the support provided to me by my older sister whose encouraging

words and advice was helpful.

Oslo, 14.05.2023

Atif Fazal

ii

Abstract

Increased focus on decarbonization involving electrification and usage of variable renewable

energy sources impose problems for the power grids. Power grids may suffer from increased

disturbances as the demand for electricity increases. To potentially mitigate power supply

disturbances, end users can help regulate the power grid by offering their flexibility in

exchange for economic incentives. Industrial buildings such as ASKO are adapting and

willing to offer their flexibility on the flexibility market.The methodology for developing

flexibility bids to be offered on the flexibility market consist of several steps. One of them

being accurate electrical load forecasts, these load forecasts are used as baseline estimates

when creating flexibility bids. Accurate electrical load forecasts can also contribute with

information during planning and power management leading to cost optimization in both

operative and maintenance related tasks.

This study investigates a deep learning approach to forecast hourly total electrical load

consumption profiles for ASKO facility, specifically a variant of the recurrent neural

network called long short-term memory network (LSTM). Three forecast models for time

series analysis were developed and evaluated - a single step recurrent neural network

with LSTM layers, a day-ahead recurrent neural network with LSTM layers predicting

24 hours into the future and a day-ahead recurrent neural network with LSTM layers

predicting 24 hours into the future for one of the buildings assessing model performance

and compared against another similar building. The data was provided by ASKO and

consisted of total load bought, sold, produced and total electrical consumption for 11

buildings belonging to ASKO. Consumption profiles were available both in aggregated and

disaggregated (separate profiles for all buildings) form. Data had to be treated before it

could be fed to the model. A framework for tuning the LSTM networks was implemented.

The models were subjugated to an extensive hyperparameter tuning process. The best

model developed was the single-step recurrent neural network with LSTM layers achieving

the R2 score of 0.94 and the MAE of 104.69. After obtaining the results the model

performance was assessed and the models show promising results. However, it has been

concluded that the presented models may not provide sufficiently accurate load forecasts

and a number of aspects may need further investigation.

Contents iii

Contents

1 Introduction 1
1.1 Research question . 3

2 Related work 4

3 Theory 5
3.1 Machine learning . 5

3.1.1 Time-series modelling . 6
3.1.2 Universal Machine learning workflow 7

3.2 Neural networks . 8
3.2.1 Single Neuron model . 9
3.2.2 Multilayer Neural Network (MLP) 11
3.2.3 Activation functions . 13
3.2.4 Loss functions and Error metrics 16
3.2.5 Recurrent neural network (RNN) 17
3.2.6 Model complexity . 20

4 Methodology 23
4.1 Exploratory data analysis . 23
4.2 Preprocessing . 26

4.2.1 Splitting data . 27
4.3 Deep Learning modelling using RNN architecture 28
4.4 Software . 36

5 Results 37
5.1 Exploratory data analysis results . 37
5.2 Single-step recurrent neural network (RNN) forecast results 40
5.3 Day-ahead recurrent neural network forecast (RNN) results 43
5.4 Day-ahead recurrent neural network forecast (RNN) results on a single

building (disaggregated data) . 46

6 Discussion 50
6.1 Interpreting the results . 50
6.2 Shortcomings of the work in this project 53
6.3 Further work . 54

7 Conclusion 56

References 57

iv List of Figures

List of Figures
3.1 Illustration of a Single-layer neural network architecture Figure from [17,

chapter 12] . 9
3.2 Concept of gradient descent. The algorithm starts from with random

weights and proceeds to locate the global minimum of the loss function.
The process of finding the global minimum can be described as climbing
down a hill Figure from [17, chapter 2] 10

3.3 Illustration of a multilayer neural network architecture, consisting of one
input layer, one hidden layer and an output layer Figure from [17, chapter
12, p.388]. 12

3.4 A selection of widely used activation functions and graph illustrations
Figure from [17, chapter 13, p.469]. 14

3.5 Illustration of sigmoid function and its derivative Figure from [22] 15
3.6 Illustration of a Recurrent neural network layer and its looping ability,

left side closed version while right side unfolded version Figure from [17,
chapter 16] . 18

3.7 Illustration of the LSTM memory cell structure. The horizontal line on top
oft he figure represents the flow of inormation. Forget, input, candidate and
output gates are illustrated as the yellow boxes Figure from [17, chapter 16] 19

3.8 Figure showing the cases of a model underfitting left most figure, overfitting
right most figure and a model with a good compromise which would be the
most ideal case when developing a machine learning model, middle figure.
Figure from [17, chapter 3]. 21

3.9 Visualisation of training and validation loss curves of a model overfitting
characterised by the validation loss increasing after a certain point, loss
along the y-axis and number of iterations along the x-axis Figure from [26] 22

4.1 Visualisation of total load consumption, time along the x-axis and load
(kw/h) along the y-axis . 24

4.2 Visualisation of total load consumption by year, time along the x-axis and
load (kw/h) along the y-axis . 25

4.3 Better visualisation of total load consumption using 2 months, time along
the x-axis and load (kw/h) along the y-axis 25

4.4 Figure showing how input data is split into a training set, validation set
and a test set used when training a machine learning model [17, chapter 6] 27

4.5 Summary of best single-step model showing each layer, input shape and
the number of parameters in the model 34

4.6 Summary of best day-ahead model showing each layer, output shape and
the number of parameters in the model 35

4.7 Summary of best day-ahead model for building 1 showing each layer, output
shape and number of parameters . 35

5.1 Heatmap showing daily electrical consumption 37
5.2 Heatmap showing hourly electrical consumption 38
5.3 Heatmap showing monthly electrical consumption 39
5.4 Best results of single step RNN model after tuning, hourly electrical

consumption predictions made on train set plotted against true values.
Hour along the x-axis and load (kw/h) along the y-axis. 41

List of Figures v

5.5 Best results of single step RNN model after tuning, train set predictions
plotted against true values zoomed in observing 2 weeks of hourly electrical
consumption. Hour along the x-axis and load (kw/h) along the y-axis. . . 41

5.6 Training and validation loss curves of the best performing single step RNN
model. Number of epochs along the x-axis and loss along the y-axis . . . 42

5.7 Best results of single step RNN model after tuning, hourly electrical
consumption predictions made on test set. Hour along the x-axis and
load (kw/h) along the y-axis. 42

5.8 Best results of multi.step RNN model after tuning, hourly electrical
consumption predictions made on train set plotted against true values.
Hour along the x-axis and load (kw/h) along the y-axis. 44

5.9 Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions made on train set plotted against true values,
closer look at prediction plotting 2 weeks of data. Hour along the x-axis
and load (kw/h) along the y-axis. 44

5.10 Training and validation loss curves of the best performing day-ahead RNN
model, number of epochs along the x-axis and loss along the y-axis . . . 45

5.11 Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions made on test set plotted against true values.
Hour along the x-axis and load (kw/h) along the y-axis. 45

5.12 Best results of day-ahead RNN model after tuning, hourly electrical
consumption for building 1 predictions made on train set plotted against
true values. Hour along the x-axis and load (kw/h) along the y-axis. . . . 47

5.13 Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions for building 1 made on train set plotted against
true values (closer look). Hour along the x-axis and load (kw/h) along the
y-axis. 47

5.14 Training and validation loss curves of the best performing day-ahead RNN
model trained of building 1 dataset, number of epochs along the x-axis and
loss along the y-axis . 48

5.15 Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions for building 1 made on test set plotted against
true values. Hour along the x-axis and load (kw/h) along the y-axis. . . . 48

5.16 Best results of day-ahead RNN model after tuning, hourly electrical
consumption for building 7 predictions plotted against true values. Hour
along the x-axis and load (kw/h) along the y-axis. 49

vi List of Tables

List of Tables
4.1 Time features included . 26
4.2 Python libraries used in this project . 36
5.1 Best performing single-step RNN model metrics 40
5.2 Best performing day-ahead RNN model metrics 43
5.3 Best performing day-ahead RNN model metrics for building 1 46

1

1 Introduction

The EU and Norway sharing similar ambitions, work together committed to reaching

the goal of being climate-neutral by 2050 an economy with net-zero greenhouse gas

emissions [1]. The worlds fossil-based energy consumption constitute 80 % (as of 2021

without including the electricity sector) [2]. Leading to climate change and environmental

degradation posing an existential threat to the world. As an initiative to decarbonize

the energy system EU declared the European green deal holding the objective of zero

greenhouse emission by 2050 at its heart [3]. Electrification is one solution used to mitigate

emissions and decarbonizing the energy system, since the efficiency of electrical technologies

are generally much higher than fossil-based [4]. Additionally, electrification goes hand

in hand with an increase of renewable energy sources thus reducing the greenhouse gas

emission. Eurostat defines renewable energy sources as energy sources that replenish

themselves naturally [5]. The main types of renewables are: hydropower, geothermal,

wind, solar. These renewables are considered clean energy sources. Hence, renewable

energy sources plays a critical role in the transition to clean energy and zero emission.

According to [6] they are responsible for over one-third of the CO2 emission reduction

between 2020 and 2030 under the net zero emissions by 2050 scenario. The deployment

of renewable energy sources has has to expand in order to get on track with the zero

emission goal [6].

Electrification leads to higher demand of electricity and increasing the renewable energy

sources impose problems for the power grids. Power grids become more vulnerable to

potential faults that can occur leading to issues that disturb the supply of electricity

[7]. The variable production from renewable energy sources is increasing, doing so may

cause more disturbances in the power grid in the form of increased intermittency. In

Norway, imbalances are handled by statnett that regulate the transmissions with reserves.

A reserve works as a source that offer up- or down- regulation at transmission level if

needed [8]. One solution to help regulate the power grid is to make it more "flexible" e.g.

through consumer flexibility. End users in the power system can offer their flexibility

(by for example reducing their electrical consumption) on the flexibility market for other

participants benefit in exchange for economic incentives thus helping to regulate the power

grid [9][10].

2

Climate changes and the increased focus on electrification including new guidelines for

emissions require industrial building complexes such as ASKO to adapt. ASKO wants

to provide their flexibility on the flexibility market. The methodology for presenting

flexibility bids at the flexibility market consist of several steps. One of those steps are

accurate load forecast needed in order to create reliable flexibility bids. ASKO facility are

much like other industrial facilities, models capable of providing accurate electrical load

forecast are of great value and can contributing with information during planning and

power management leading to cost optimization in both operative and maintenance related

tasks. Accurate load prediction can also provide useful information in decision making for

future plans. Predicting load consumption is challenging, such data are complex and are

influenced by a range of factors like seasons, weekly variation with higher consumption

during working days as opposed to weekends and outside factors such as temperature.

Electrical load forecasting a type of time series, can be approached using various methods.

According to [11], the most frequently used time series forecasting methods can be divided

into three subcategories: statistical methods, machine learning methods and hybrid models.

In traditional approaches, statistical methods are used. These include Autoregressive

models, Moving Average models, Autoregressive integrated moving average model. Machine

learning methods include both shallow methods such as Support Vector Machines and

deep learning approaches such as Artificial neural network models. Hybrid models are

a combination of the different models utilizing the advantages of the models to improve

forecasts [11]. Deep learning a subset of machine learning methods are able to solve

complex problem. There are several advantages to applying a deep learning approach for

forecasting electrical load a few of them are listed in the following [12]:

• able to automatically learn features from data, useful when features are difficult to

define

• capable of handling large and complex data extracting useful insights from big data

• able to uncover non-linear relationships in data that would be difficult using

traditional methods

For the work in this project the choice of model falls on a variant of recurrent neural

network called long short-term memory (LSTM) network. There are two main reasons for

1.1 Research question 3

the choice of investigating LSTM networks in this project. Firstly, the choice is influenced

by the constant usage of LSTM networks in related work. Secondly, the choice is influenced

after reviewing machine learning theory. Deep learning methods such as the recurrent

neural networks and LSTM networks are specifically designed to handle sequential data

and model long term dependancies between data points. This allows the models to make

predictions using based on past information well suited for the problem of forecasting

electrical load consumption for ASKO facility explored in this project.

1.1 Research question

To summarize, in accordance with reducing gas emissions leading to an increased focus

on electrification requires industrial facilities such as ASKO to adapt. To help the power

grids in regulation related tasks and receiving economic incentives in exchange, ASKO

wants to provide their flexibility on the flexibility market. Developing flexibility bids

consist of several steps and one of those steps are accurate load forecasts needed in order

to create reliable flexibility bids. The main goal of this thesis is to evaluate the potential

of deep learning approaches to predict electrical load consumption. Specifically exploring

a variant of the recurrent neural network called long short-term memory (LSTM) network.

For the work in this project the following research questions are addressed:

• To what degree is the LSTM network able to capture the variance and learn the

electrical load consumption patterns of an industrial building complex?

• Does regularization techniques such as dropout increase model performance and

ability to generalize?

4

2 Related work

Reviewing literature addressing similar problems shows the constant appearance of deep

machine learning models especially the recurrent neural network variant with long short-

term memory layers.

[13] presents a recurrent neural network model using Long Short-Term memory (lstm)

layers, predicting the electrical load for a planned smart grid in a city. The proposed

model is compared against a traditional shallow machine learning technique, support

vector machines. Judging by the results presented in [13], the recurrent neural network

model with lstm layers outperforms the support vector machines model.

[14] investigates variables that affect the electrical load consumption. In this paper the

influence of weather factors on a residential buildings load consumption is studied. [14]

implements a recurrent neural network with lstm layers and measure the forecasting ability

of the model with and without weather variables. Findings show that adding weather

variables had a positive effect, improving the prediction accuracy of a buildings load

consumption.

[15] predicts the hourly electrical load consumption of different kinds of buildings

implementing a recurrent neural network with lstm layers. In order to evaluate the

model performance, multi-layered perceptron, random forest and support vector machines

were implemented. The recurrent neural network was shown to predict better compared

to the models, achieving lower prediction errors.

A novel approach for predicting electrical load consumption is described in [16]. The work

in this paper presents a hybrid model integrating convolutional neural network (cnn) and

a lstm network. The cnn part of the model is used to learn the features and data trends

while the lstm part of the network is used to model the long term dependancies in the

dataset. The hybrid model performance is compared against a recurrent neural network

with lstm layers, a radial basis function network and XGboost. Results show that the

proposed hybrid cnn-lstm model yield lower error metrics thus outperforming the other

models.

5

3 Theory

3.1 Machine learning

General machine learning

In the modern age of technology, data is one of the resources we have access to in vast

amounts both in structured and unstructured format. From this came the existence of

learning algorithms in the field of machine learning that convert data into knowledge.

Machine learning, a subfield of artificial intelligence utilizes self-learning algorithms to

create predictions. Using data and answers to learn the rules, a more efficient approach

as opposed to manually derive the rules and build models to analyze massive amounts

of data. The field of machine learning can be broken apart into three main branches:

supervised learning, unsupervised learning and reinforcement learning [17].

Supervised learning models capture patterns in a dataset that allow us to make predictions

on unseen data or future data. This subfield is defined by a models usage of labeled training

data, a set of features and the corresponding solution (target) as input to correctly classify

or predict future target values. Unsupervised learning handle unlabeled and unstructured

data using machine learning algorithms to analyze and cluster datasets. Here the main

goal is to discover patterns or data groups extracting meaningful information without

knowing the outcome variable. Reinforcement learning is similar to supervised learning

but differs with regard to knowing the solution (target). Models learn by trial and error

with the help of a reward function providing a measure of reward. For the work in this

thesis, we will focus on supervised learning.

Furthermore, supervised learning can be grouped into [17, chapter 1]:

• classification for predicting class labels - the goal is to predict categorical class labels

which can be understood as discrete class lables (e.g. email spam detection, where

an email can be classified as either "spam" or "not spam")

• regression - is the prediction of a continuous outcomes (e.g. predicting the math

test scores of students based on time spent on studying)

The focus of this thesis which is time series forecasting can be regarded as a supervised

6 3.1 Machine learning

regression problem.

There are a range of different supervised shallow machine learning models applicable for

solving classification and regression tasks. Examples of shallow machine learning models

are linear regression, logistic regression, support vector machines and tree based learning

algorithms such as decision trees. The main advantage of shallow methods over deep

learning methods lies in the fact that shallow methods are computationally less expensive

to train. However, shallow methods may not be able to capture complex patterns in data.

In contrast, deep learning methods are able to capture complex patterns and potentially

achieve higher accuracy requiring more computationall resources [18].

Deep learning methods are based on neural networks and multiple layers are connected

to one another as opposed to shallow methods consisting of one layer. The more layers

a model has the deeper the model is considered and is where the name "deep" learning

comes from. Deep learning methods are capable to learn meaningful representations of

the input data automatically by itself while shallow methods are not [19, chapter 1].

3.1.1 Time-series modelling

Time series date is a type of sequential data where each element in the data includes

a dimension for time. This means that each element depend on the previous element

and affect subsequent elements - it is therefore crucial to keep the order of the elements

as randomising the order would result in loss of information. Time series data such as

stock prices, voice or speech recordings are a type of sequential data with a dimension

for time [17, chapter 16]. There are types of time series data which do not have a time

dimension such as text data and DNA sequences. Non-sequential data are considered to

be independent and identically distributed (IID). This means that for non-sequential data

the order in which the data is presented to the model is irrelevant. However, time series

data violates the assumption of independence as subsequent data points are often highly

correlated.

Time series data can be divided into univariate or multivariate. Univariate time series

data consist of historical data of only one variable, such as historical data of a buildings

load consumption. In the second case, the dataset may include several variables that

might affect one another. Records of weather data from a weather station containing

3.1 Machine learning 7

multiple variables such as air temperature, atmospheric pressure, humidity, wind direction

etc. are measured at regular intervals and is an example of a multivariate dataset. Time

series forecasting predicts the future values of a series based on its recent values which can

either be univariate containing only one variable to be forecasted or multivariate using

additional variables with relation to the value to be predicted. For the work in this thesis

we will attempt to forecast ASKO load consumption using recent and current values.

Variables such as time features and air temperature are added to the dataset making it a

multivariate dataset.

3.1.2 Universal Machine learning workflow

The following subsection presents a universal blueprint that can be applied to any machine

learning problem [20].

Defining the problem:

• what is the nature of the problem, is it a binary or multiclass classification problem?

is it a regression problem? is it a clustering problem?

Collecting data:

• what is the data availability?

• collect and label data if needed

• check for data imbalance

• secure domain knowledge

Deciding on an evaluation protocol:

• how to measure the training process?

• maintaining a hold-out validation, if plenty of data is available

• k-fold cross validation, in case of dataset containing few data samples

Preparing and visualizing the data:

The first part of this step is referred to as exploratory data analysis, after collecting data

one would like it to be perfect which is not always the case. Therefore, it is important to

8 3.2 Neural networks

visualize data and distributions, identify outliers, handle missing and imbalanced data.

Preprocessing data and making sure it is in order is a crucial step as it directly impacts the

model development later on. Garbage in means garbage out. Preprocessing can consist of

multiple techniques such as feature selection for dimensionality reduction, feature encoding

and standardizing data so that each feature in the data is centered and scaled which is

done for faster model convergence. Preprocessed data is then split into a train and test set.

Using the train set to train and validate the model, and finally tested on the remaining

part of the data to assess if the model is able to generalize well on unseen data.

Model development:

Develop a simple model that beats a dumb baseline to achieve some statistical power.

After developing a simple model one should ask the following questions:

• is the model powerful enough?

• does it have enough layers and parameters to properly model the problem?

An ideal model would be at the border between underfitting and overfitting. To be able to

understand where that border is one should develop a model too complex in the training

phase. Identify overfitting by monitoring the training loss and validation loss.

Regularising the model and tuning model hyperparameters:

In this step the goal is to make the model as good as it can by repeatedly training, validating

and modifying the model. Machine learning models have several hyperparameters which

can be tuned to improve model performance such as activation function, loss function,

learning rate and optimization function. Furthermore, the model architecture such as the

number of units in a layer and the number of layers. Once a satisfying model is developed,

the final model is trained on all the available data and evaluating it once last time on

the test data. A final evaluation of the model is done using the predicted values and

comparing against the true values using performance metrics chosen.

3.2 Neural networks

Neural networks (NN) are a subset of machine learning and the heart of deep learning

algorithms(cite ibm what is a neural network).The concept of artificial neural netowrks

3.2 Neural networks 9

(ANN) were built upon hypotheses and models on how the brain works thus came the first

implementation in the 1950s namely Rosenblatt’s Perceptron model. However interest

soon faded due to inadequate solutions for training a Neural Network with multiple layers.

Today Neural Networks are more popular than ever thanks to major breakthroughs in the

previous decade [17, chapter 12].

3.2.1 Single Neuron model

To understand the multilayer neural network. one must first understand the single neuron

model. Using Adaptive linear Neuron (Adaline) as an example let us explain the single

layer neural network architecture. A visualized representation of the Adaline algorithm

can be observed in Figure 3.1

Figure 3.1: Illustration of a Single-layer neural network architecture Figure from [17,
chapter 12]

The first step initializes weights in vector w to 0 or small random numbers. Subsequently

the Net input, z, is computed as a dot product of vector containing m weights w and x

where x is a vector of inputs fed to the model containing m features variables including

the bias. z can be defined as the following [17, chapter 2]:

z = w0x0 + w1x1 + · · ·+ wmxm = wTx (3.1)

Furthermore, the net input is passed through an activation function φ(z) and transformed:

φ(z) = φ(wTx) (3.2)

10 3.2 Neural networks

In Adaline the activation function is an identity function φ(z). The learning process

begins with optimizing the loss function in the case of Adaline defined as [17, chapter 2]:

J(w) =
1

2

∑
i

(yi − φ(zi))2 (3.3)

J(w) is the sum of squared errors(SSE) between true value and the calculated outcome of

the actvation function over i observations. To find the optimal weights that minimizes

the loss function, a simple optimization algorithm is used called gradient descent. The

process of gradient descent visualized in Figure 3.2, can be described as climbing down a

hill until a local or global minimum is reached.

Figure 3.2: Concept of gradient descent. The algorithm starts from with random weights
and proceeds to locate the global minimum of the loss function. The process of finding
the global minimum can be described as climbing down a hill Figure from [17, chapter 2]

An update of the weight vector is defined as [17, chapter 2]:

w := w + ∆w (3.4)

where:

∆w = −η∇J(w) (3.5)

In 3.5, η is the learning rate and J(w) is the gradient of the loss function. We take a step

in the negative direction of the loss function’s gradient until we reach a local or global

3.2 Neural networks 11

minimum, where the learning rate determines the size of the step. Choosing a learning rate

too large or small may result in risks of overshooting/undershooting the global minimum.

One would prefer to reach the global minimum. A more novel approach to computing

the gradient can be done by utilizing another gradient descent algorithm that build upon

the basic approach concept discussed. It is possible to advance performance by using for

example stochastic gradient descent (SGD).

To compute the gradient of the loss function, we take the partial derivative of the loss

function with respect to each weight [17, chapter 2]:

∆wj = −η ∂J
∂wj

= η
∑
i

(yi − φ(zi))xij (3.6)

These steps are then repeated updating the weights in the process until a stopping rule

is met for example the number of epochs(each time the data passes through the model).

Finally the last activations are passed to a threshold function which in this case outputs a

binary prediction, if the output value is greater than or equal to 0 a class label of 1 is

assigned and -1 otherwise [17, chapter 2].

3.2.2 Multilayer Neural Network (MLP)

Connecting multiple single neurons together formes a neural network, adding hidden layers

and output layers produces a multilayer neural network. How deep a network is depends

on the number of hidden layers in the network. An overview of how such a network is

represented can be observed in Figure 3.3

The multilayer neural network illustrated in Figure 3.3 consist of three layers: input layer,

hidden layer and an output layer. Here ali refers to the i-th activation unit in the l-th

layer, wl
i,j refers to the weight connecting unit i in l layer - with unit j in l-th layer and i

= 0 refer to the bias units.

Starting at the input layer data is fed into the network in vector form. Once the input

layer is in place, weights are assigned. The weights determine the importance of variables,

variables assigned larger weights contribute more to the output. Each unit of one layer

is connected to each unit of the next layer through weights, in Figure 3.3 these are the

lines denoted by wl
i,j. Inputs are multiplied by their respective weights and summed.

12 3.2 Neural networks

Figure 3.3: Illustration of a multilayer neural network architecture, consisting of one
input layer, one hidden layer and an output layer Figure from [17, chapter 12, p.388].

Furthermore, the sum is passed through a non-linear activation function. Passing data

from the input layer to the output layer is called feedforward propagation. Adding more

hidden layers to the network increases its capacity to learn complex non-linear structures.

A drawback of this is the increased model complexity prone to overfitting.

Taking the values of activations in the output layer, a prediction error is computed using

a loss function and the true values. An important aspect of neural networks such as the

MLP is the ability to send error from the last layers (output) to the first layers, called

backpropagation. Backpropagation is a computationally efficient approach to calculating

the partial derivative of complex loss functions (gradients) using the mathematical chain

rule [17, chapter 12]. The partial derivatives are used by the optimization algorithm,

e.g. gradient descent, to minimize the loss adjusting the weights thus lowering error and

increasing predictive performance.

The MLP learning procedure can be summarised in three steps [17, chapter 12]:

1. Feedforward propagation, sending data through the network in order to generate an

output

2. Compute error, based on the output an error is computed using a complex loss

function

3.2 Neural networks 13

3. Backpropagation, sending error back into the network and computing its derivative

with respect to each weight in order to update the model

3.2.3 Activation functions

For the network to be able to capture non-linear dependancies in data, one needs to

use non-linear activation function. Without non-linear activation function the network

will only perform linear operations such as dot product and addition [19, chapter 3].

An overview of different activation functions can be observed in Figure 3.4. Different

functions are used depending on the problem. For example, sigmoid activation function is

commonly used for binary classification problems, hyperbolic tangent (tanh) is similar to

sigmoid as both are considered s-shaped functions. Sigmoid range of output values are

between 0 and 1 while tanh ranges between -1 and 1. Thus its derivative can take on larger

values compared to sigmoid allowing for larger weight updates and faster convergence.

One popular and commonly used activation function is the Rectified Linear Unit(ReLU),

the function returns 0 if it receives any negative value and the same value back for any

positive value, it is known for being able to tackle the vanishing gradient problem due to

its derivative being 1 for positive values [17, chapter 13] [21].

14 3.2 Neural networks

Figure 3.4: A selection of widely used activation functions and graph illustrations Figure
from [17, chapter 13, p.469].

3.2 Neural networks 15

Vanishing gradient problem

The problem of the vanishing gradient can arise as more layers using certain activation

functions are added to the network, the gradients of the loss function will be close to

zero resulting in insignificant changes to the weights thus making the network unable to

properly learn [22]. Gradients are found using backpropagation mentioned in Chapter

3.2.2 . The vanishing gradient problem is commonly caused by the use of the sigmoid

function given by:

φsigmoid(z) =
1

1 + e−z
(3.7)

The output generated from this function is a number in a small range between 0 and 1.

The sigmoid function and its derivative can be observed in Figure 3.5.

Figure 3.5: Illustration of sigmoid function and its derivative Figure from [22]

As observed from the Figure 3.5, the derivative of the sigmoid function will be close to

0 as inputs become large or small. Therefore, small derivatives are multiplied together

and the gradient decreases as we propagate backwards into the network. One simple yet

effective solution to the vanishing gradient problem is to change the activation function

and use others such as Rectified Linear Unit.

16 3.2 Neural networks

3.2.4 Loss functions and Error metrics

A loss function is a quantity that will be minimized during training to evaluate how well

the network models the data i.e. a measure of success during training [19, chapter 3].

Taking the predicted values and the actual values, a distance score is computed. The

distance score can have a large value if the deviation between the prediction and true

target is large. Different loss functions yield different errors Therefore, choosing the

correct loss function is a crucial part when building the network. Binary crossentropy for

a binary classification problem, categorical for a many-class classification problem and

mean squared error (MSE), mean absolute error (MAE) for a regression problem. For the

work in this thesis functions used are desrcribed as follow [23]:

• mean squared error (MSE) - is measured as the average of squared difference between

predictions and actual observations [24], defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (3.8)

where n denotes the number of observations, yi denotes the true observation and ŷi

denotes the predicted values. Due to squaring, predictions that deviate further from

the true value are given larger errors thus given larger weights.

• mean absolute error(MAE) - is measured as the average absolute values of the

prediction error, defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.9)

• root mean squared error (RMSE) - is the square root of MSE:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.10)

• mean absolute precentage error (MAPE) - the average of the absolute differences

3.2 Neural networks 17

between acutal observations and predictions

MAPE =
1

n

n∑
i=1

|y
i − ŷi
yi

× 100| (3.11)

• coefficient of determination R2 - the accuracy of predictions:

R2 =

∑n
i=1(y

i − ŷi)2∑n
i=1(y

1 − yi)2
(3.12)

if predictions matches the true values perfectly R2 = 1, where y is the mean value

[25]

3.2.5 Recurrent neural network (RNN)

Standard neural network models such as the MLP assume that the data inputs are

independent of each other. Based on this independence assumption, the order in which

the data inputs are fed to the network is irrelevant. Such models are not capable to keep

information in memory about previously seen training examples (data inputs). Data inputs

are passed through the feedforward and backpropagation steps, updating the weights

independently of the order in which they are presented to the network [17, chapter 26].

Time series data, a type of sequential data that appear in a certain order, are not

independent of each other. Hence, the assumption of independence is not valid and data

has to be treated in a sorted order (in this case sorted along the time axis) which is done

in order to leverage information about previously seen training examples.The recurrent

neural networks architecture is specifically designed for modeling sequences, they are

networks with loops in them being able to remember past information when processing

new events. A simple one hidden layer case is presented in Figure 3.6

The input layer is denoted by x, hidden layer by h and output layer by o. Weight matrices

connecting the different layers are denoted by W along with a subscript which specify

layer. The difference between standard neural networks and RNNs lies in the fact that

each hidden unit in the hidden layers receives two set of inputs, the preactivation from the

input layer and the activations from the same hidden layer from the previous timestep,

t− 1. The weight matrix whh in Figure 3.6 is associated with the recurrent edge (loop)

18 3.2 Neural networks

Figure 3.6: Illustration of a Recurrent neural network layer and its looping ability, left
side closed version while right side unfolded version Figure from [17, chapter 16]

illustrated as the round arrow.The recurrent edge is the connection between the previous

time steps allowing to retain past information. The left hand side of Figure 3.6 presents

the architecture in a closed version and the right hand side of the figure in an unfolded

version. The activations of the hidden units at time step, t, can be calculated in the

following way [17, chapter 16]:

ht = φh(z
(t)
h) = φh(Wxhx

t + Whhh
(t−1) + bh) (3.13)

φh is the activation function and bh is the bias in the hidden layer. The backpropagation

step in RNNs can become complicated, i.e. the error is sent across the layers and the time

steps. Overall loss, L, is the sum of all the loss functions at times t = 1 to t = T . Problems

such as the vanish gradient and exploding gradient when computing the gradients of a

loss function mentioned in section 3.2.3 could arise leading to poor predictions. A way

of tackling such problems is the implementation of a certain layer called long short-term

memory(LSTM).

In some cases it would be enough to look at recent information to make predictions for the

present task. However, there might be relevant information going further back. Simple

RNNs might not be capable of handling such long-term dependancies. The solution are

LSTM layers, capable of learning information for long periods of time. The core idea

behind LSTM layers is the memory cell which replaces the standard hidden layer of RNNs.

An overview of how such a memory cell is represented can be observed in Figure 3.7

3.2 Neural networks 19

Figure 3.7: Illustration of the LSTM memory cell structure. The horizontal line on top
oft he figure represents the flow of inormation. Forget, input, candidate and output gates
are illustrated as the yellow boxes Figure from [17, chapter 16]

The horizontal line at the top of Figure 3.7 is called the cell state, Ct, it is an additional

flow carrying information across several time steps without being multiplied with any

weight factor. Past information is retained [17, chapter 16]. The LSTM have the ability

to discard or add information to the cell state, regulated by several gates. Gates consist of

a sigmoid neural net layer and an element-wise multiplication. The output of the sigmoid

layer (between 0 and 1) decides how much information should be let through. A value of

0 discards information while a value of 1 lets information trough. An LSTM layer has 3

gates, forget gate, input gate and output gate controlling the cell state.

The first step in a LSTM layer is to decide what information in the cell gate to keep or

forget. A sigmoid layer handles the decision, looking at h(t−1) and xt. The forget gate is

computed as follows[17, chapter 16]:

ft = σ(Wxfx
(t) + Whfh

(t−1) + bf) (3.14)

The next steps involves the decision on new information to store in the cell. This is

done in two parts, a sigmoid layer called input gate layer decides which values to update.

Following, a tanh layer that creates a vector of new candidate, C̃t values to be added to

the cell state. These steps are computed by the following equations [17, chapter 16]:

20 3.2 Neural networks

it = σ(Wxix
(t) + Whih

t−1 + bi) (3.15)

C̃t = tanh(Wxcx
(t) + Whch

t−1 + bc) (3.16)

The old cell state is updated into a new cell state, forgetting information decided by the

forget gate and adding new information decided by both input gate and new candidates,

using the following equation [17, chapter 16]:

C(t) = (C(t−1) � ft)⊕ (it � C̃t) (3.17)

where � refers to the element-wise multiplication and ⊕ refers to element-wise summation.

The output is computed which is based on a filtered cell state. Passing through a sigmoid

layer deciding on cell state output computed as follows [17, chapter 16]:

ot = σ(Wxox
t + Whoh

t−1 + bo) (3.18)

Finally, the cell state is put trough a tanh layer and multiplied with the output from the

sigmoid layer to only output chosen information with the following equation [17, chapter

16]:

h(t) = ot � tanh(C(t)) (3.19)

3.2.6 Model complexity

One important part of any machine learning model development is to make sure that the

model is able to capture general trends in the data. A machine learning model can in some

cases memorise specific patterns and noise in the training dataset. A direct consequence

of this happening would be poor predictions, meaning that the model would not be able

to predict well on unseen data. This is called overfitting and the model has high variance,

overfitting can be caused by having too many parameters leading to a model that is too

complex. Similarly, the opposite situation is called underfitting. The model is not able to

3.2 Neural networks 21

capture the general trends in the training dataset, leading to poor predictions on unseen

data. In the case of underfitting the model is not complex enough and suffers from high

bias [17, chapter 3]. The problems of overfitting and underfitting is illustrated by Figure

3.8.

Figure 3.8: Figure showing the cases of a model underfitting left most figure, overfitting
right most figure and a model with a good compromise which would be the most ideal
case when developing a machine learning model, middle figure. Figure from [17, chapter
3].

Cross-validation techniques are used during the machine learning model training process

to estimate the model generalization performance on new data. When tuning the model in

search for the best hyperparameter combinations, several models are fitted to the training

dataset. These models needs to be evaluated on unseen data using the validation dataset,

in order to select the best performing model. There are several cross-validation methods

such as [17, chapter 6]:

• holdout method - this method involves splitting the input dataset into three different

sets. Training, validation and test sets. The training dataset is used for training

the model, the validation dataset set is used during training to evaluate model

generalization performance and the final evaluation done on the unseen data, test

set.

• k-fold cross-validation - in this method the training dataset is split into random k

folds without replacement, where k - 1 folds are used for training the model and

one fold is used for evaluating model performance.

• Leave-one-out cross-validation - a special case of k -fold cross-validation where a

single training example is left out and used for testing during each training epoch.

22 3.2 Neural networks

For a model the loss and validation loss can be recorded for the training and validation

sets for every epoch during the training process. These values can be used to plot training

and validation loss curves to identify if a model is overfitting or underfitting when tuning

one or several parameters. Should training loss decrease over time and validation loss

decrease until a turning point and start increasing, the model is likely overfitting. Figure

3.9 show the training and validation loss curves for a model overfitting.

Figure 3.9: Visualisation of training and validation loss curves of a model overfitting
characterised by the validation loss increasing after a certain point, loss along the y-axis
and number of iterations along the x-axis Figure from [26]

Tuning the model complexity is an important part of model development to achieve a

good bias variance trade-off. To tackle the problem of overfitting, one can:

• reduce the number or layers

• reduce the number of units in layers

• add L1 and/or L2 regularisation, regularization penalizes extreme parameters

(weight) values [17, chapter 3]

• regularizing a neural network by adding dropout [17, chapter 15]

23

4 Methodology

4.1 Exploratory data analysis

This section covers the exploratory data analysis performed on the dataset before model

development. The goal of this part was to get familiar with the data.

The dataset provided by ASKO consisted of time series representing the hourly load

consumption profiles of 11 facilities including electrical load bought, sold, produced and

total consumption covering 2 years of historical data points between 01/01/2020 and

31/12/2021 - 17544 data points. The dataset can be divided into two main parts, the

aggregated portfolio of 11 buildings and the load profiles for each building separated.

Among these 11 buildings several have solar panels that are able to produce electrical

load hence the production column.

After importing the data into python from excel was it was viewed. Several columns

containing nan values were found, due to importing from excel format. These columns

were dropped. Furthermore, a datetime index was created from the timestamp column

in the dataset. The last two rows contained minimum and maximum values, these were

dropped. Initial investigation showed no missing values. However, after changing the

index frequency to hourly, two duplicate rows were discovered. The duplicate rows were

investigated and two of those rows did not have values resembling the preceding or

succeeding values. The two duplicate entries that had extreme values compared to the

other values were dropped. For the whole dataset two missing rows were identified. The

missing values were filled with the nearest preceding or succeeding row value for each

column. The dataframe consisted of 4 columns (load bought, sold, produced and total

consumption) and 17544 rows of data points. In this project the total consumption served

as the target value to be predicted and the the remaining columns load bought, sold and

produced served as explanatory variables.

The historical temperature values were imported. Temperature values imported from the

Frost API were available in 10 minute intervals. Therefore, the 10 minute values ranging

from 01/01/2020 and 31/12/2021 had to be resampled to hourly resolution using the

mean values of 10 minute resolution. The temperature values dataframe was concatened

24 4.1 Exploratory data analysis

with the ASKO dataset.

In the next step of the analysis, the data were plotted see Figures 4.1, 4.2, 4.3. The total

consumption profile is plotted to identify the general trend of this type of data. Inspecting

the figures, a seasonal behaviour can be observed. Furthermore, it can be observed that

the data is volatile with regular spikes (extreme high or low values) for both years. The

maximum consumption is recorded during the warmest period.

A further data investigation of the seasonal behaviour was conducted and plotted in the

form of heatmaps. The total consumption was resampled into different frequencies such

as monthly, daily and by hour of day. Monthly frequency heatmap was created in order

to address the seasonal component of the data, daily heatmap was created in order to

address which days had the highest electrical consumption and finally heatmap of hour by

day was created in order to address which hours during the day had the highest electrical

consumption.

Figure 4.1: Visualisation of total load consumption, time along the x-axis and load
(kw/h) along the y-axis

4.1 Exploratory data analysis 25

Figure 4.2: Visualisation of total load consumption by year, time along the x-axis and
load (kw/h) along the y-axis

Figure 4.3: Better visualisation of total load consumption using 2 months, time along
the x-axis and load (kw/h) along the y-axis

26 4.2 Preprocessing

4.2 Preprocessing

After investigating the seasonal behaviour of load consumption the dataset was expanded

to include several time feature variables in order to improve data quality fed to the model.

Time features assigned values and a brief explanation added to the dataset is presented in

table 4.1

Table 4.1: Time features included

Time feature Value Description
Hour 0 - 23 0 means 12 am and so forth

Day of the week 0 - 6 Monday = 0, Sunday = 6
Quarter 1 - 4 January, February and March assigned value 1 and so forth
Month 1-12 January assigned 1 and so forth
Year 2020 - 2021 Either year 2020 or 2021

Day of year 1 - 365 First day of the year assigned value 1 and so forth
Day of month 1 - 30 or 31 First day of the month assigned value 1 and so forth
Week of year 1 - 52 First week of the year assigned value 1 and so forth

One problem with time feature variables is that the model may not be able to extract

useful information other than the ascending order of data points [27]. Consider for example

the first day of a year assigned value 1 in contrast to the last day of the year assigned

value 365. The model may consider the last day of higher magnitude than the first. One

solution is to one-hot encode the time features increasing the dimensionality of the dataset.

To limit the increased dimensionality of the dataset and extract meaningful information

from these variables, the time feature variables were converted into sine and cosine values.

Each column of time features were converted into two.

The dataset was supplemented with the air temperature values to further enrich

information. Air temperature values were collected from a weather station close to

ASKO facility. Weather data was collected from the Frost API - a free access archive of

historical weather and climate data [28].

4.2 Preprocessing 27

4.2.1 Splitting data

A common practice when building a machine learning model is to estimate its performance

on data that the model has not seen before. For the model to be able generalize well on

unseen data techniques such as holdout cross-validation and k-fold cross-validation

are used [17, chapter 6]. In this project the split was done chronologically, as it is important

to keep the order of consecutive data points when analysing time series data. As the

chronological order of data matter, the hold out method was considered in this project.

The original dataset (illustrated as the top row in Figure 4.4) was split into separate

training and test data sets - the former used when training the model encompassing

90%, and the latter used to estimate the models ability to generalize consisting of the

remaining 10%. Furthermore, the training set was split into a training and validation set,

the validation set encompassing 10% of the training set. The validation set is used during

training to evaluate the model.

Figure 4.4: Figure showing how input data is split into a training set, validation set and
a test set used when training a machine learning model [17, chapter 6]

28 4.3 Deep Learning modelling using RNN architecture

4.3 Deep Learning modelling using RNN architecture

This section covers the methodology used to develop a machine learning model using the

RNN architecture.

After preprocessing and splitting the data, the input data set was scaled. A scaler function

was fitted to the training data and subsequently used to scaled the entire dataset. The

scaler function applied to the training data set was MinMaxScaler, translating each

feature individually between zero and one [29]. Feedforward artificial neural networks

take two-dimensional matrices of input data in of the shape (time steps, input features),

the RNN layer however processes sequences, it therefore requires 3D tensors as input of

the shape (batchsize, time steps, input features) [19, chapter 6]. To create 3D tensors

from the data set that the RNN layers can process, a generator provided by Keras was

used. Using the TimeSeriesGenerator the following parameters that determines the

3D tensor shape has to be specified [30]:

• data - the data points of input features

• target - the targets corresponding to data points in data

• length/lookback - the length of the previous time steps that the RNN layer

consideres

• batch size - the number of time series samples in each batch

The function takes in a sequence of data-points gathered at equal intervals and produces

batches of input features and the corresponding targets. Three generators were instantiated

to create batches of data from the training, validation and test sets. 3D tensor were made

from the scaled data in chronological order for training, validation and test sets of size

80%, 10% and 10%.

After preparing the 3D tensors using TimeSeriesGenerator, the data was ready to

be fed to the model for training. In the next step a framework for automating the

tuning process of the recurrent neural network was set up using the KerasTuner API

[31]. The main goal of the tuning process was to develop a hyperparameter combination

that yielded the best model performance based on the metrics passed as arguments when

instantiating the tuner. The KerasTuner API offer several tuners e.g. RandomSearch

4.3 Deep Learning modelling using RNN architecture 29

and Hyperband, however the BayesianOptimization tuner was chosen. This tuner

is an informed search method able to learn from previous iterations. Instead of testing

hyperparameter combinations at random, it investigates the search space and converges

to the optimal hyperparameters based on promising hyperparameter combinations from

previous iterations [32].

The most important part when defining a BayesianOptimization tuner is to define a

function that builds the machine learning model to be tuned. The code for defining a

search space and building a model is presented in code Listing 1. The function takes an

instance of keras HyperParameter class hp as an argument [33].

1 # imports

2 from keras . models import Sequent i a l

3 from keras import l a y e r s

4 from ten so r f l ow . keras . op t im i z e r s import RMSprop , Adam

5 from sk l e a rn . met r i c s import mean_absolute_error ,

mean_squared_error , mean_absolute_precentage_error , r2_score

6 from ten so r f l ow . keras . l o s s e s import MeanSquaredError

7 from keras_tuner . eng ine . hyperparameters import HyperParameters

8

9 # In s t a n s i a t e hyperparameter c l a s s

10

11 hp = HyperParameters ()

12

13 de f build_model (hp) :

14 """

15 This func t i on d e f i n e s the search space f o r the tuner , and bu i l d s

a network a r c h i t e c t u r e based on the hyperparameters

combinat ions passed as an argument . F ina l ly , r e tu rn s a

compiled model .

16 """

17 model_lstm = Sequent i a l ()

18

19 # This part o f the build_model d e f i n e s the search space with

30 4.3 Deep Learning modelling using RNN architecture

the hyperparameter c l a s s

20

21 lstm_1_units = hp . Int (’ lstm_1_units ’ ,

22 min_value = 50 , max_value = 350 , s tep = 50)

23 dropout_layer_1 = hp . Choice (’ dropout_layer_1 ’ ,

24 va lue s = [0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 5])

25 layer_2 = hp . Boolean (’ layer_2 ’)

26 lstm_2_units = hp . Int (’ lstm_2_units ’ ,

27 min_value = 50 , max_value = 350 , s tep = 50)

28 dropout_layer_2 = hp . Choice (’ dropout_layer_2 ’ ,

29 va lue s = [0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 5])

30 opt imize r = hp . Choice (’ opt imize r ’ ,

31 [’adam ’ , ’RMSprop ’])

32 l ea rn ing_rate = hp . Float (’ l ea rn ing_rate ’ ,

33 min_value = 1e−5, max_value = 1e−2, sampling = ’

l og ’)

Listing 1: Python code for building a model part 1

The HyperParameter class was used to define a search space, a search space is a grid

of hyperparameters values that the tuner draws hyperparameter combinations from. As

shown in the code example above, the search space included several parameters of the

RNN layer:

• lstm_1_units - the number of units in the first LSTM layer ranging between 50 -

350 in steps of 50

• dropout_layer_1 - the dropout rates for the dropout layer ranging between 0 for

no dropout and 0.5 for max dropout rate

• layer_2 - a boolean value, True or False, if the values is True another LSTM layer

is added to the network

• lstm_2_units - the number of units in the second LSTM layer ranging between

50 - 350 in steps of 50

• dropout_layer_2 - the dropout rates for the second dropout layer ranging between

4.3 Deep Learning modelling using RNN architecture 31

0 for no dropout and 0.5 for max dropout rate.

• optimizer - the optimising algorithm to be used, choices between Adam and

RMSprop

• learning_rate - the learning rate used by the optimizer minimum value 0.00001

and max value 0.01

1 # This part o f the build_model code bu i l d s the model

a r c h i t e c t u r e with the s p e c i f i e d search space

2

3 model_lstm . add (l a y e r s .LSTM(un i t s = lstm_1_units ,

4 return_sequences = layer_2 ,

5 input_shape = (lookback , x_train . shape [−1]) ,

6 a c i t v a t i o n = ’ tanh ’ ,

7 r e cu r r en t_ac t i va t i on = ’ s igmoid ’ ,

8 recurrent_dropout = 0 ,

9 un r o l l = False ,

10 use_bias = True))

11

12 model_lstm . add (l a y e r s . Dropout (dropout_layer_1)

13

14 i f (layer_2 == True) :

15 model_lstm . add (l a y e r s .LSTM(un i t s = lstm_2_units ,

16 a c t i v a t i o n = ’ tanh ’ ,

17 r e cu r r en t_ac t i va t i on = ’ s igmoid ’ ,

18 recurrent_dropout = 0 ,

19 un r o l l = False ,

20 use_bias = True))

21

22 model_lstm . add (l a y e r s . Dropout (dropout_layer_2))

23

24 model_lstm . add (l a y e r s . Dense (1 , a c t i v a t i o n = ’ s igmoid ’))

25

32 4.3 Deep Learning modelling using RNN architecture

26 hp_optimizer = opt imize r

27

28 i f hp_optimizer == ’adam ’ :

29 hp_learning_rate = learn ing_rate

30

31 i f hp_optimizer = ’RMSprop ’ :

32 hp_learning_rate = learn ing_rate

33

34 # compi l ing the model

35 model_lstm . compi le (hp_optimizer ,

36 l o s s = ’mse ’ ,

37 met r i c s = [’mae ’ , ’mse ’]

38 re turn model_lstm

Listing 2: Python code for building a model part 2

The second part of the function building the model is shown in Listing 2. The code

defines at least one LSTM layer. If a second LSTM layer is chosen it is added. Finally, an

output layer is added. Furthermore, the model is compiled with the chosen metrics and

returned.

Note, some of the layer parameters were fixed. In order to utilize a GPU runtime provided

by the Kaggle enviorment to speed up the training and tuning process, these were held

fixed. Due to hardware limitations speeding up the process was important as the tuning

process ran for several hours despite utilizing GPU runtime. The LSTM layer activation

function had to be fixed to ’tanh’ activation, the recurrent activation to ’sigmoid’, recurrent

dropout rate to 0, unroll to False and use bias set to True according to [34].

The code for defining the BayesianOptimization tuner is presented in Listing 3 [35].

Parameters that needs to be specified when creating a tuner are as follows: hypermodel -

the machine learning model that should be tuned, the objective function - in this project

it was set to the loss computed on the validation set, max trials - the total number of

trials to test drawing hyperparameter from the search space, execution per trial - the

number of executions per trial for a set of hyperparameters tested.

4.3 Deep Learning modelling using RNN architecture 33

1 from keras_tuner . tuner s import Bayes ianOptimizat ion

2

3 tuner_lstm = Bayes ianOptimizat ion (build_model ,

4 ob j e c t i v e = " va l_los s " ,

5 max_trials = 50 ,

6 execut ions_per_tr ia l = 1 ,

7 d i r e c t o r y = ’ / kagg le /working ’ ,

8 project_name = ’ rnn−lstm−tuner ’)

Listing 3: Python code for for defining a BayesianOptimization tuner

1 from ten so r f l ow . keras . c a l l b a ck s import EarlyStopping

2

3 ear ly_stopping = EarlyStopping (monitor = ’ va l_los s ’ , pa t i ence =

16 , mode = ’min ’)

4

5 # Run the hyperparameter search

6 tuner . s earch (x_train_gen ,

7 epochs = 80 ,

8 va l idat ion_data = x_val_gen ,

9 s h u f f l e = False ,

10 c a l l b a c k s = [ear ly_stopping] ,

11 steps_per_epoch = 200)

Listing 4: Python code for starting the tuner search for hyperparameter

The code for running the search is presented in Listing 4. A keras callback object was

initialised, EarlyStopping. The EarlyStopping callback is responsible for stopping the

training process when the monitored metric has stopped improving [36], in this project

the validation loss. The patience argument is the number of epochs with no improvements

after which the training will be stopped, set to 16 epochs.

The arguments the search methods takes are the training and validation data (training

and validation data were yielded by the TimeSeriesGenerator, the number of epochs to

run the training process for in each trial and finally the callback objects. When using the

34 4.3 Deep Learning modelling using RNN architecture

TimeSeriesGenerator one does not have to specify the steps per epoch or validation

step arguments as they are passed by the generator automatically.

Parameters that the TimeSeriesGenerator takes which determine the shape of the 3D

tensors were manually tested. Lookback, batch size were fixed at 336 and 32.

After testing several hyperparameter combinations, the tuner returns the best

hyperparameter combination that yielded the lowest validation loss. The best model itself

is also returned and can be saved and loaded to be used for later [37].

Finally, the best model derived from the tuner was re-trained, evaluated and used to make

predictions on the training and test data sets. Inverse scaling had to be applied on the

output from the model to revert the scaling and restore the original scale. Furthermore,

a range of different metrics such as MAPE, RMSE, MAE and R2 score were computed

using the ground truth (actual values) and the predicted values. Additionally, results were

plotted to visually assess model performance by observing the match between the ground

truth and predicted values.

The model summary of the best performing models for the single-step and day-ahead

models is provided by Figure 4.5, Figure 4.6 and 4.7 respectively.

Figure 4.5: Summary of best single-step model showing each layer, input shape and the
number of parameters in the model

4.3 Deep Learning modelling using RNN architecture 35

Figure 4.6: Summary of best day-ahead model showing each layer, output shape and
the number of parameters in the model

Figure 4.7: Summary of best day-ahead model for building 1 showing each layer, output
shape and number of parameters

36 4.4 Software

4.4 Software

Experiments in this project were conducted in an online python enviorment provided by

Kaggle 1 and Google Colaboratory2. Kaggle and Google Colaboratory provide a jupyter

notebook service and access to computational resources such as GPU runtimes.

Experiments were conducted using Python version 3.7.12 and libraries are listed in Table

4.2.

Table 4.2: Python libraries used in this project

Library Version
Numpy 1.21.6

Matplotlib 3.5.3
Pandas 1.3.5

Tensorflow 2.11.0
Keras 2.11.0

Scikit-learn 1.0.2

1https://www.kaggle.com/
2https://colab.research.google.com/

https://www.kaggle.com/
https://colab.research.google.com/

37

5 Results

This chapter presents the results from the exploratory data analysis, including the

prediction results from the modelling and tuning done in this thesis.

5.1 Exploratory data analysis results

Eelectricity consumption has a seasonal behaviour being highly correlated with seasons.

Some days may have high consumption while other days have lower. In order to address

this heatmaps were created of data in different frequencies. Data was first resampled and

aggregated to daily level and can be observed in Figure 5.1. As expected, working days

have a higher electrical consumption than weekdays.

Figure 5.1: Heatmap showing daily electrical consumption

Data was then resampled and aggregated on a hourly frequency. Hourly electrical

consumption profiles are visualized in Figure 5.2. The highest electrical consumption can

38 5.1 Exploratory data analysis results

be observed during business hours from 8 a.m to 4 p.m and peak between 9 a.m to 12 p.m.

Figure 5.2: Heatmap showing hourly electrical consumption

Finally data was resampled and aggregated on a monthly frequency. Monthly electrical

consumption profiles are visualized in Figure 5.3. Seasonal patterns of electrical

consumption can be observed from Figure 5.3. In 2020 the peak months were June, July

and August, June recording the highest consumption during the hottest period of the

year. The same pattern can be observed for 2021. Extremely hot or cold season have the

highest electrical consumption.

5.1 Exploratory data analysis results 39

Figure 5.3: Heatmap showing monthly electrical consumption

40 5.2 Single-step recurrent neural network (RNN) forecast results

5.2 Single-step recurrent neural network (RNN)

forecast results

The RNN model has been trained to forecast ASKO facility electrical consumption one

hour ahead, feature variables include electricity purchased, electricity generated using

solar panels, electricity sold, time variables and air temperature values collected from a

weather station close to the facility. Performance metrics for the model achieving the

lowest validation loss score in the hyperparameter tuning process are presented in Table

5.1, for both train and test data. The model was trained on electrical consumption time

series data with a temporal resolution of 1 hour. Batchsize was set to 32 with lookback set

to 336, each sequence fed to the model had a length of 336 looking back at 2 weeks of prior

data points before making a prediction. The best set of hyperparameters from the model

tuning process consist of a LSTM layer with 250 units, tanh activation function and a

dropout rate of 0.0. A second LSTM layer was included in the model tuning process with

units set to 250, tanh activation function and a dropout layer with rate of 0.5. Optimizer

was set to "Adam" with a learning rate of 0.001.

Table 5.1: Best performing single-step RNN model metrics

Data MAE MAPE RMSE R2

Train 145.25 0.0506 197.78 0.90
Test 104.69 0.0439 149.09 0.94

Training prediction are visualised in Figure 5.4 and Figure 5.5. Each Figure show the

predictions made by the model for electrical consumption time series data. For a more

zoomed in visualization see Figure 5.5. Missing predictions at the beginning of the plot

is caused by the lookback parameter, the number of samples in each sequence. Target

sequence is shifted ahead determined by the lookback parameter, thus predictions will

lack 336 (2 weeks) first time steps as well as time steps at the end chosen as validation

data. It can be observed that the model struggles to capture spikes in the data (time

steps where consumption is either extremely high or low). Time series such as electrical

consumption data are highly volatile and predicting spikes accurately may be challenging.

The model is however able to follow the seasonal behaviour to some extent observed in

Figure 5.5.

5.2 Single-step recurrent neural network (RNN) forecast results 41

Figure 5.4: Best results of single step RNN model after tuning, hourly electrical
consumption predictions made on train set plotted against true values. Hour along the
x-axis and load (kw/h) along the y-axis.

Figure 5.5: Best results of single step RNN model after tuning, train set predictions
plotted against true values zoomed in observing 2 weeks of hourly electrical consumption.
Hour along the x-axis and load (kw/h) along the y-axis.

Training and validation loss learning curves for the best performing tuned RNN model

can be observed in Figure 5.6. Validation loss is slightly lower than the training loss and

continuously decreasing per epoch. Number of epoch were set to 200, it can be observed

that the model stopped training after 58 epochs. This is due to the EarlyStopping

callback not recognizing further improvement thus stopping training to prevent overfitting.

Predictions made on the test set are visualised in Figure 5.7, the figure shows hourly

electrical consumption predictions made on test set. The model performance on test set

were greater than on the train set observed in Table 5.1. Test results observed in figure

5.7 confirms that the model is able to predict patterns and peaks better, overestimating

42 5.2 Single-step recurrent neural network (RNN) forecast results

or underestimating slightly.

Figure 5.6: Training and validation loss curves of the best performing single step RNN
model. Number of epochs along the x-axis and loss along the y-axis

Figure 5.7: Best results of single step RNN model after tuning, hourly electrical
consumption predictions made on test set. Hour along the x-axis and load (kw/h) along
the y-axis.

5.3 Day-ahead recurrent neural network forecast (RNN) results 43

5.3 Day-ahead recurrent neural network forecast

(RNN) results

The day-ahead RNN model has been trained on the same data set as the single-step RNN

model, now forecasting several steps ahead. Parameters outside of the model such as data

transformations and LSTM input shape were fixed. Batchsize parameter fixed at 32 and

lookback fixed at 336. The model achieving the lowest validation loss score during the

hyperparameter tuning process are presented in Table 5.2.

The best set of hyperparameters from the model tuning process for day-ahead RNN

included the LSTM layer with 300 units, a dropout layer with dropout rate of 0.3, a

second LSTM layer with 50 units, the activation function in both layers were fixed to

¨tanh¨ and finally ¨Adam¨ optimizer with learning rate set to 0.00010105.

Table 5.2: Best performing day-ahead RNN model metrics

Data MAE MAPE RMSE R2

Train 177.64 0.0669 265.73 0.83
Test 202.97 0.0782 268.41 0.78

Predictions made on the traning set by the day-ahead RNN model are visualised in figure

5.8 and 5.9. For a closer look at the predictions see figure 5.9. One can notice from

Figure 5.9 that the prediction quality is lower as the prediction time frame increases

compared to the single-step RNN model. Despite not being able to properly predict peaks

in the data, the model is able to follow the general trend to some extent.

The training and validation loss curves for the best performing day-ahead model are

visualised in Figure 5.10. Validation loss is slightly lower than training loss as observed

from the figure. Training was stopped after 49 epochs by the EarlyStopping callback

due to inadequate improvement rate. Both training and validation curves in the figure

show spikes throughout the training procedure while continuously decreasing.

The predictions on test set is visualised in Figure 5.11. The model performance on

the test set is worse than on the training set. The model is not able to capture peaks,

overestimating or underestimating target values. This means that the model is not able

to generalize well to unseen data. Furthermore, this can be confirmed by performance

44 5.3 Day-ahead recurrent neural network forecast (RNN) results

metrics shown in Table 5.2, the training set has better performance metrics as opposed to

the test set. However, the model is still able to follow trends to some extent.

Figure 5.8: Best results of multi.step RNN model after tuning, hourly electrical
consumption predictions made on train set plotted against true values. Hour along
the x-axis and load (kw/h) along the y-axis.

Figure 5.9: Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions made on train set plotted against true values, closer look at
prediction plotting 2 weeks of data. Hour along the x-axis and load (kw/h) along the
y-axis.

5.3 Day-ahead recurrent neural network forecast (RNN) results 45

Figure 5.10: Training and validation loss curves of the best performing day-ahead RNN
model, number of epochs along the x-axis and loss along the y-axis

Figure 5.11: Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions made on test set plotted against true values. Hour along the
x-axis and load (kw/h) along the y-axis.

46
5.4 Day-ahead recurrent neural network forecast (RNN) results on a single building

(disaggregated data)

5.4 Day-ahead recurrent neural network forecast

(RNN) results on a single building (disaggregated

data)

The results of hyperparameter tuning of the day-ahead RNN model are presented in

Figure 5.12. This model is trained on a different dataset than the aggregated dataset for

the 11 buildings. From the 11 buildings, the dataset for building number 1 was chosen to

investigate if the predictions improve. Batchsize parameter was fixed at 32 and lookback

at 336. The model achieving the lowest validation loss score during the tuning process are

presented in table 5.3.

The best combination of hyperparameters derived from the tuning process include the

LSTM layer with 256 units, a dropout layer with dropout rate of 0.5, a second LSTM

layer with 4 units, activation in both these layers were held fixed to "tanh" and finally

"Adam" optimizer with learning rate set to 0.0002776.

Table 5.3: Best performing day-ahead RNN model metrics for building 1

Data MAE RMSE R2

Train 24.37 37.35 0.82
Test 26.67 34.70 0.85

For a closer look at the training prediction made on the training set see Figure 5.13. The

model experiences the same problems as the one trained on aggregated dataset. Observing

Figure 5.13, the model is not able to predict peaks. However, it is able to follow the

trend in the dataset to some extent.

The training and loss curves for the best performing day-ahead model for building 1

are presented in Figure 5.14. Loss decreased continuously, however, the validation loss

exibits spikes. The EarlyStopping callback stopped training after 30 epoch to prevent

overfitting.

Predictions made on test set are visualised in Figure 5.15. The model display the same

characteristics of the previous model tuned for aggregated dataset, not being able to

capture peaks yet follows the trend to some degree.

Another experiment was conducted to investigate if the model tuned on one of the building

5.4 Day-ahead recurrent neural network forecast (RNN) results on a single building
(disaggregated data) 47

datasets is applicable for another building dataset. The results for predicting on the

building 7 dataset with the same model parameters is visualised in Figure 5.16. It can be

observed from Figure 5.16, the model produces poor predictions. As expected, the model

trained on building 1 is unable to properly predict the load consumptions for another

building due to the load consumptions between the buildings being very different.

Figure 5.12: Best results of day-ahead RNN model after tuning, hourly electrical
consumption for building 1 predictions made on train set plotted against true values.
Hour along the x-axis and load (kw/h) along the y-axis.

Figure 5.13: Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions for building 1 made on train set plotted against true values
(closer look). Hour along the x-axis and load (kw/h) along the y-axis.

48
5.4 Day-ahead recurrent neural network forecast (RNN) results on a single building

(disaggregated data)

Figure 5.14: Training and validation loss curves of the best performing day-ahead RNN
model trained of building 1 dataset, number of epochs along the x-axis and loss along the
y-axis

Figure 5.15: Best results of day-ahead RNN model after tuning, hourly electrical
consumption predictions for building 1 made on test set plotted against true values. Hour
along the x-axis and load (kw/h) along the y-axis.

5.4 Day-ahead recurrent neural network forecast (RNN) results on a single building
(disaggregated data) 49

Figure 5.16: Best results of day-ahead RNN model after tuning, hourly electrical
consumption for building 7 predictions plotted against true values. Hour along the x-axis
and load (kw/h) along the y-axis.

50

6 Discussion

In the previous chapter, performance of various models were presented using performance

metrics such as MAE, RMSE, MAPE and the R2 score. Assessing model performance

with error metrics alone may not be sufficient enough. One needs to observe the match

between the predicted values and the observed values. Evaluating model train score versus

the test score tells us if the model has been able to learn the trends in the data and if

the model can generalize well. A good model would yield better test scores compared to

training scores. Contrary, a better train score than test score indicates overfitting and

leads to poor predictions.

The dataset had to be treated before it could be fed to the model. Duplicate rows that had

the same time stamp were removed. The duplicate values chosen for removal were the ones

not resembling the nearest preceding and/or succeeding values. Consecutive time steps

are often highly correlated and these extreme values were therefore dropped. Furthermore,

temperature values were only available in 10 minute resolution. These were resampled to

hourly using the mean values. To further enrich information about seasonality several time

feature variables were extracted from the date time index. Considering that the model

may not be able to extract useful information other than the ascending order of the data

points these had to be transformed. One choice was to create dummy variables, this would

greatly increase the dimensionality of the dataset (several columns for one time feature

variable). To limit this increase it was decided to use another approach which would

leverage the seasonal information without only extracting the information of ascending

data points. The time feature columns were transformed into sine and cosine values

limiting the increase to two columns per time feature and leveraging useful information

about the seasonal variability in the data.

6.1 Interpreting the results

The model that preformed the best in this project was the single-step RNN model. The

train scores seem good and when predicting on the test set the scores improves. A desired

outcome when developing machine learning models. However, observing Figure 5.4 the

model is not able to predict peaks well. Looking at the plot, the model is able to predict

6.1 Interpreting the results 51

the colder months well. The warmer months contain more volatile time steps. This is

probably due to ASKO facility having to use more power because of cooling equipment

to e.g. cool frozen food products. Prediction accuracy drops for these months as the

model is not able to properly capture these volatile values. This may explain the good

test scores, note the prediction on the test set falls on a period that the model is able to

predict well. The model predicts better on a period of time that maintains a constant

trend. Furthermore, the loss plot presented in Figure 5.6 demonstrates a good fit. The

loss curves decrease to a point of stability and there is a minimal gap between both curves.

Good forecast are of importance to ASKO facility, they are to be used as baseline to

create accurate flexibility bids. Inaccurate forecasts will lead to inaccurate flexibility bids.

These flexibility bids may require forecast estimates several hours ahead. A model that

predicts further into the future was therefore developed.

Considering the day-ahead forecasts, for a given hour t, the prediction are now made for

hour t + shift (shift = hours ahead to forecast in this case 24). The model predicts 24

hours into the future. Time series data points are often highly correlated with the previous

time steps. Considering that the prediction time frame increases, the correlation between

the previous time steps decreases. The dependancies between the previous time steps

and the time step to be predicted becomes less clear and unstable leading to unstable

predictions. Observing the day-ahead forecasts confirms this, the scores worsen compared

to the single-step model. The results look similar to the previous model however, now much

more inaccurate. It can be observed that the prediction performance drops significantly

despite tuning the model predicting 24 hours ahead. Overall performance decreases as

the prediction time frame increases even for the colder periods that the single-step model

was able to predict well. The model struggles to capture peaks and valleys throughout

training and test sets. The performance metrics for the training set is better than the test

set, this may indicates that the model is overfitting and has become too familiar with the

patterns and noise in the training set unable to generalize well to unseen data. Observing

the loss plot presented in Figure 5.10, there is no clear indication of overfitting. The

curve exhibits spikes and a small gap between the loss and validation loss can be observed

closing towards the end. Based on the metrics, the model seem to overfit despite using

techniques such as dropout and EarlyStopping to tackle the problem. The best model

52 6.1 Interpreting the results

predicting 24 hours ahead was therefore subjected to manual tuning in an attempt to

reduce overfitting. Several approaches to reduce the complexity of the model were tested

such as reducing the number of units in the layers, removing layers, adding more dropout

and different learning rates. However, doing so would would worsen model performance.

Again, this might be due to the fact that the prediction time frame is increased leading to

unstable predictions.

A model for predicting load consumption for one of the buildings was developed in an

attempt to estimate if the forecasting performance increased. Judging by the results

presented in 5.4 they improved albeit by small numbers. The model trained on the

dataset for building 1 show improved metrics on both the train and test set and better test

set results, this could be coincidental and retraining the model may show otherwise. It can

be observed from Figure 5.13, that the model is able to predict peaks better. Looking at

the whole plot presented in Figure 5.12, the model is exhibiting the same characteristics

as the previous model. The model is not able to the predict extreme values occurring

during the summer months well, however, still able to make good predictions when the

trend is constant. Furthermore, observing Figure 5.15 the model is able to predict peaks

and the seasnoal behaviour to some extent but not fully reaching any peak or valley.

6.2 Shortcomings of the work in this project 53

6.2 Shortcomings of the work in this project

A few shortcomings of the current approach that may affect the model performance of

the machine learning models come to mind. First of all the train, validation and test

split. In this project the max possible amount of training data (90%) was chosen. The

reason behind this choice was that we wanted the model to be able to have as much

data as possible to train and learn the patterns in the data set. During warmer months

the electrical load becomes more volatile. For the model to be able to see this type of

variation twice during training 90% was chosen for training. Spikes in the validation loss

curves can be observed for the day-ahead models in both Figure 5.10 and Figure 5.14.

These spikes can be a direct consequence of the increased prediction time frame. However,

several other reasons come to mind. These spikes may occur if the validation set is not

representative for the whole training set. This means that the validation set has too few

samples compared to the training set. In this case the model performance can suffer

because the validation set does not provide enough information to evaluate the models

ability to generalize during training. Finally, the spikes could be due to the batch size

being set to 32.

For the work in this project the inputs features fed to the model were load bought, sold,

produced, sine and cosine time feature variables and temperature values. The actual

historical total load consumption was solely used as the target feature to be predicted

and not included in the feature set of the model. It might be useful to supplement the

input dataset with more weather related features than the outside temperature e.g. solar

irrandiance.

One of the disadvantages of deep learning models is that the these model can become

computationally expensive. The experiments in this project were conducted in an online

jupyter notebook environment provided by Kaggle and Google Colaboratory to speed up

the training and tuning process utilizing gpu runtimes. However, the runtime on the gpus

were limited and the tuning process had to be adjusted accordingly. In the early stages

of training and tuning, it was observed that computations were switched to local cpu

runtime instead of the faster gpu runtime. This led to an increased training and tuning

process, to counter this some parameters were held fixed in order to properly utilize the

gpu runtime [34].

54 6.3 Further work

An experiment to estimate the model performance of a model trained and tuned on one

of the datasets (on building 1) and applied on another (on building 7) was conducted. As

expected a model trained and tuned on one of the datasets is not applicable to another

dataset. The reason for this is that the load consumption profiles of all the buildings are

very different. Some of the buildings have extremely low consumption while other have

high consumption. Some have solar panels that produce electricity while other do not.

If one were to consider predicting on a disaggregated level (each dataset separately), 11

different models have to be trained and tuned. Developing 11 different models for each of

the datasets is a time consuming process.

Finally, it could be that the problem lies with the dataset. The dataset with only the

historical load consumption of a building might not be sufficient enough for a model to

learn and predict properly. Adding input variables that directly impact the target feature

to be predicted can improve model performance significantly.

6.3 Further work

Starting with the train, validation and test split. A potential improvement of the current

approach would be to investigate different data splits. The training, validation and test

set are split chronologically, this results in the test set falling onto a period that has a

constant trend compared to warmer months having more volatile time steps. As stated

before it would be interesting to test the model performance on the periods it is not able

to predict well. This can be done by increasing the dataset keeping two years for training

and the remaining full year for testing to fully assess model performance. The work in

this project handled time series data and the hold out method for cross validation was

therefore used. However, a different cross validation technique could be explored such as

cross-validation on a rolling basis described in [38]. The spikes in the validation curves for

the day-ahead models could be due to a smaller valiadtion set compared to training set.

Increasing the validation set may improve model performance.

The work in this project did not include the target feature in the input feature set when

training the model. The historical total load consumption was treated exclusively as the

target to be predicted. Load bought, sold and produced were used to explain the total

load consumption that served as the target. Including the target feature in the input

6.3 Further work 55

feature space may provide additional information to the model and thus improve model

performance.

Further extension of the work in this project could be to change and/or expand the

hyperparameter search space. This might yield a more robust model able to generalize

better at the cost of requiring computational resources. Some of the hyperparameters such

as the activation functions in the LSTM layers for the models were held fixed to properly

utilize gpu runtimes. Additionally, it was not possible to use recurrent dropout in the

LSTM layers (used for tackling overfitting problems). Using the proposed framework to

automatically tune the hyperparameters with a more expansive search space may provide

a more robust model. In the tuning process the max trial per hyperparameter combination

was set to 1 to reduce training time. For a more robust model the tuning process should

run a combination of hyperparameters more than once.

None of the models presented in this project were able to predict peaks and valleys well,

especially with the increased prediction time frame. The problem could lie with the

dataset, a potential extension would be to gather meaningful feature variables that explain

the target value properly. An extension of the input feature space discussed during the

work in this project was the gate activity at the facility. The gate activity at the facility

is believed to be able to explain some of the load consumption for the buildings and might

provide valuable information for the input to the models.

Finally, it could be worth exploring other forecasting approaches. Traditional statistical

approaches such as ARIMA (Autoregressive integrated moving average). A novel deep

learning approach combining convolutional layers with RNN LSTM layers to create a

hybrid neural network described in [16].

56

7 Conclusion

The work in this project explored a deep learning approach, specifically a variant of

recurrent neural network called long short-term memory network capable of learning long

term dependancies. This model was applied to the problem of forecasting hourly total

electrical load consumption for 11 industrial buildings belonging to ASKO, using the

historical load consumption profiles consisting of load bought, sold, produced and total load

consumption. Three modelling approaches were investigated - a single-step recurrent neural

network, a day-ahead recurrent neural network predicting 24 hours ahead into the future

and a day-ahead model predicting 24 hours ahead into the future for one of the buildings

to estimate forecasting ability and compared against another. A framework for tuning

the hyperparameters using a predefined search space of hyperparameter combinations

was implemented. Despite subjecting the models to an extensive hyperparameter tuning

process, none were able to predict periods of volatile time steps well. The best model

developed was the single-step recurrent neural network reaching the R2 score of 0.94,

MAE of 104.69, MAPE of 0.0439 and RMSE of 149.09. Hence, the models developed

may not provide sufficiently accurate predictions to be used as baseline estimations for

flexibility bid creations even more so if the goal is to predict further into the future.

However, the models developed show promising results when forecasting hourly electrical

load consumption. Finally, potential improvements of the current approach and alternative

approaches are suggested.

Bibliography 57

Bibliography
[1] 2050 long-term strategy. URL https://climate.ec.europa.eu/eu-action/

climate-strategies-targets/2050-long-term-strategy_en. Accessed : 2023-05-10.

[2] Total energy consumption. URL https://yearbook.enerdata.net/total-energy/
world-consumption-statistics.html. Accessed : 2023-05-10.

[3] A european green deal. URL https://commission.europa.eu/strategy-and-policy/
priorities-2019-2024/european-green-deal_en. Accessed : 2023-05-10.

[4] Electrification. URL https://www.iea.org/reports/electrification. Accessed : 2023-05-10.

[5] Glossary:renewable energy sources. URL https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=Glossary:Renewable_energy_sources. Accessed :
2023-05-10.

[6] Renewables. URL https://www.iea.org/reports/renewables. Accessed : 2023-05-10.

[7] Evaluation of fast frequency reserves, 2018. URL https://www.
statnett.no/om-statnett/nyheter-og-pressemeldinger/Nyhetsarkiv-2018/
fleksibelt-forbruk-bidrar-til-stabilitet-og-verdiskapning-i-det-nordiske-kraftsystemet/.
Accessed : 2023-05-10.

[8] The power market - energifakta norge. URL https://energifaktanorge.no/
norsk-energiforsyning/kraftmarkedet/. Accessed : 2023-05-10.

[9] What is flexibility and how can it contribute to the power grid
system?, . URL https://blogg.sintef.no/sintefenergy-nb/smartgrids/
hva-er-fleksibilitet-og-hvordan-kan-det-bidra-til-nytte-i-kraftsystemet/. Accessed
: 2023-05-10.

[10] Local flexibility solutions in statnetts regulating power market.
URL https://www.statnett.no/for-aktorer-i-kraftbransjen/nyhetsarkiv/
lokale-fleksibilitetslosninger-testes-i-statnetts-regulerkraftmarked/. Accessed :
2023-05-10.

[11] Mahmoud A. Hammad, Borut Jereb, Bojan Rosi, and Dejan Dragan. Methods and
models for electric load forecasting: A comprehensive review. Logistics Sustainable
Transport, 11:51–76, 02 2020. doi: 10.2478/jlst-2020-0004.

[12] Advantages and disadvantages of deep learning. URL https://www.geeksforgeeks.org/
advantages-and-disadvantages-of-deep-learning/. Accessed : 2023-03-04.

[13] Md. Rashidul Islam, Abdullah Al Mamun, Md. Sohel, Md. Lokman Hossain, and
Md. Mofij Uddin. Lstm-based electrical load forecasting for chattogram city of
bangladesh. In 2020 International Conference on Emerging Smart Computing and
Informatics (ESCI), pages 188–192, 2020. doi: 10.1109/ESCI48226.2020.9167536.

[14] Yizhen Wang, Ningqing Zhang, and Xiong Chen. A short-term residential load
forecasting model based on lstm recurrent neural network considering weather features.
Energies, 14(10), 2021. ISSN 1996-1073. doi: 10.3390/en14102737. URL https:
//www.mdpi.com/1996-1073/14/10/2737.

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://www.iea.org/reports/electrification
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Renewable_energy_sources
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Renewable_energy_sources
https://www.iea.org/reports/renewables
https://www.statnett.no/om-statnett/nyheter-og-pressemeldinger/Nyhetsarkiv-2018/fleksibelt-forbruk-bidrar-til-stabilitet-og-verdiskapning-i-det-nordiske-kraftsystemet/
https://www.statnett.no/om-statnett/nyheter-og-pressemeldinger/Nyhetsarkiv-2018/fleksibelt-forbruk-bidrar-til-stabilitet-og-verdiskapning-i-det-nordiske-kraftsystemet/
https://www.statnett.no/om-statnett/nyheter-og-pressemeldinger/Nyhetsarkiv-2018/fleksibelt-forbruk-bidrar-til-stabilitet-og-verdiskapning-i-det-nordiske-kraftsystemet/
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet/
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet/
https://blogg.sintef.no/sintefenergy-nb/smartgrids/hva-er-fleksibilitet-og-hvordan-kan-det-bidra-til-nytte-i-kraftsystemet/
https://blogg.sintef.no/sintefenergy-nb/smartgrids/hva-er-fleksibilitet-og-hvordan-kan-det-bidra-til-nytte-i-kraftsystemet/
https://www.statnett.no/for-aktorer-i-kraftbransjen/nyhetsarkiv/lokale-fleksibilitetslosninger-testes-i-statnetts-regulerkraftmarked/
https://www.statnett.no/for-aktorer-i-kraftbransjen/nyhetsarkiv/lokale-fleksibilitetslosninger-testes-i-statnetts-regulerkraftmarked/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-deep-learning/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-deep-learning/
https://www.mdpi.com/1996-1073/14/10/2737
https://www.mdpi.com/1996-1073/14/10/2737

58 Bibliography

[15] Xin Wang, Fang Fang, Xiaoning Zhang, Yajuan Liu, Le Wei, and Yang Shi. Lstm-
based short-term load forecasting for building electricity consumption. In 2019 IEEE
28th International Symposium on Industrial Electronics (ISIE), pages 1418–1423,
2019. doi: 10.1109/ISIE.2019.8781349.

[16] Shafiul Hasan Rafi, Nahid-Al-Masood, Shohana Rahman Deeba, and Eklas Hossain.
A short-term load forecasting method using integrated cnn and lstm network. IEEE
Access, 9:32436–32448, 2021. doi: 10.1109/ACCESS.2021.3060654.

[17] Sebastian Raschka and Vahid Mirjalili. Python machine learning : machine learning
and deep learning with python, scikit-learn, and tensorflow 2 / Sebastian Raschka,
Vahid Mirjalili. Expert insight. Packt Publishing, Limited, Birmingham, third edition
edition, 2019 - 2019. ISBN 9781789958294.

[18] What are the differences between a shallow network and a deep network. URL https:
//www.mlexpert.io/machine-learning/interview-questions/shallow-and-deep-networks.
Accessed : 2023-03-30.

[19] Francois Chollet. Deep Learning with Python. Manning Publications Co., USA, 1st
edition, 2017. ISBN 1617294438.

[20] Oliver Tomic. Applied machine learning ii, lecture notes: Dat300 - 5 - universal
workflow of machine learning. November 2021.

[21] Sebastian Ruder. An overview of gradient descent optimization algorithms. URL
https://arxiv.org/abs/1609.04747.

[22] The vanishing gradient problem - chi - feng wang. URL https://towardsdatascience.
com/the-vanishing-gradient-problem-69bf08b15484. Accessed : 2023-01-10.

[23] Time series forecast error metrics you should know, . URL https://towardsdatascience.
com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27. Accessed : 2023-
01-10.

[24] Common loss functions in machine learning. URL https://towardsdatascience.com/
time-series-forecast-error-metrics-you-should-know-cc88b8c67f27. Accessed : 2023-01-
13.

[25] Evaluation metrics for regression models, . URL https://medium.com/analytics-vidhya/
evaluation-metrics-for-regression-models-c91c65d73af. Accessed : 2023-01-10.

[26] What is a learning curve in machine learning. URL https://www.baeldung.com/cs/
learning-curve-ml. Accessed : 2023-03-27.

[27] Cyclical features encoding, it’s about time!, . URL https://towardsdatascience.com/
cyclical-features-encoding-its-about-time-ce23581845ca. Accessed : 2023-03-15.

[28] Frost api. URL https://frost.met.no/index.html. Accessed : 2023-03-14.

[29] Minmaxscaler documentation. URL https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html. Accessed : 2023-03-15.

[30] Timeseriesgenerator documentation. URL https://www.tensorflow.org/api_docs/
python/tf/keras/preprocessing/sequence/TimeseriesGenerator. Accessed : 2023-03-15.

https://www.mlexpert.io/machine-learning/interview-questions/shallow-and-deep-networks
https://www.mlexpert.io/machine-learning/interview-questions/shallow-and-deep-networks
https://arxiv.org/abs/1609.04747
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://medium.com/analytics-vidhya/evaluation-metrics-for-regression-models-c91c65d73af
https://medium.com/analytics-vidhya/evaluation-metrics-for-regression-models-c91c65d73af
https://www.baeldung.com/cs/learning-curve-ml
https://www.baeldung.com/cs/learning-curve-ml
https://towardsdatascience.com/cyclical-features-encoding-its-about-time-ce23581845ca
https://towardsdatascience.com/cyclical-features-encoding-its-about-time-ce23581845ca
https://frost.met.no/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/TimeseriesGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/TimeseriesGenerator

[31] Keras api documentation. URL https://keras.io/api/keras_tuner/. Accessed : 2023-
03-15.

[32] Grid search vs random search vs bayesian optimization. URL https://
towardsdatascience.com/grid-search-vs-random-search-vs-bayesian-optimization-2e68f57c3c46.
Accessed : 2023-03-16.

[33] Keras hyperparameter documentation. URL https://keras.io/api/keras_tuner/
hyperparameters/. Accessed : 2023-03-16.

[34] Lstm layer documentation. URL https://www.tensorflow.org/api_docs/python/tf/
keras/layers/LSTM. Accessed : 2023-03-16.

[35] Bayesian optimization tuner documentation. URL https://keras.io/api/keras_tuner/
tuners/bayesian/. Accessed : 2023-03-16.

[36] Earlystopping documentation. URL https://keras.io/api/callbacks/early_stopping/.
Accessed : 2023-03-16.

[37] Keras guide documentation. URL https://keras.io/guides/keras_tuner/getting_
started/#query-the-results. Accessed : 2023-03-16.

[38] Cross validation in time series. URL https://medium.com/@soumyachess1496/
cross-validation-in-time-series-566ae4981ce4. Accessed : 2023-04-15.

https://keras.io/api/keras_tuner/
https://towardsdatascience.com/grid-search-vs-random-search-vs-bayesian-optimization-2e68f57c3c46
https://towardsdatascience.com/grid-search-vs-random-search-vs-bayesian-optimization-2e68f57c3c46
https://keras.io/api/keras_tuner/hyperparameters/
https://keras.io/api/keras_tuner/hyperparameters/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://keras.io/api/keras_tuner/tuners/bayesian/
https://keras.io/api/keras_tuner/tuners/bayesian/
https://keras.io/api/callbacks/early_stopping/
https://keras.io/guides/keras_tuner/getting_started/#query-the-results
https://keras.io/guides/keras_tuner/getting_started/#query-the-results
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4

	Introduction
	Research question

	Related work
	Theory
	Machine learning
	Time-series modelling
	Universal Machine learning workflow

	Neural networks
	Single Neuron model
	Multilayer Neural Network (MLP)
	Activation functions
	Loss functions and Error metrics
	Recurrent neural network (RNN)
	Model complexity

	Methodology
	Exploratory data analysis
	Preprocessing
	Splitting data

	Deep Learning modelling using RNN architecture
	Software

	Results
	Exploratory data analysis results
	Single-step recurrent neural network (RNN) forecast results
	Day-ahead recurrent neural network forecast (RNN) results
	Day-ahead recurrent neural network forecast (RNN) results on a single building (disaggregated data)

	Discussion
	Interpreting the results
	Shortcomings of the work in this project
	Further work

	Conclusion
	References

