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Objective carcass grading for bovine animals based on carcass length
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ABSTRACT

The aim of the study was to evaluate performance for beef carcass grading using a novel semi-
automatic method compared to human classifiers. The novelty was measuring carcass length as
a predictor. The grading is given as conformation and fat cover as defined by the EUROP
classification system. A training set was used to fit the model with predictors based on weight,
age, breed and sex, in addition to length. Prediction performance was evaluated for a test set
including carcasses graded by Norwegian classifiers, and a separate test set for carcasses graded
by international classifiers. The precision for conformation was high (Pearson correlation≥ 0.94)
for both test sets, but the precision for fat cover was lower (Pearson correlation range 0.30–
0.91). High correlation for conformation, together with low bias estimates, provides indication
that the objective method is equipped to replace the previous human classifier system for
conformation in Norway.

ARTICLE HISTORY

Received 8 December 2020
Accepted 16 March 2021

KEYWORDS

EUROP; beef; bovine animals;
prediction; fat; conformation;
carcass grading

Introduction

The proportion and content of lean meat, fat and bone

differs in carcasses of bovine animals (cattle). Mor-

phology, i.e. contours, are used as proxies and car-

casses are graded based on this morphology. The

classification strongly affects weight-based price

setting of the carcass, and thus the financial settle-

ment between livestock producer and abattoir. Classifi-

cation also provides information to slaughterhouses

that may be used to optimize carcass processing,

and contributes with valuable feedback for livestock

management. Finally, aggregated data from classifi-

cation might constitute important feedback to cattle

breeding companies. It is therefore important that

classification is fair and consistent across producers

and slaughterhouses, and across time and borders,

both national and international.

In Europe, classification is conducted in accordance

with the EUROP grid method (European Commission,

2013, 2017) which grades carcass conformation from E

(Excellent) to P (Poor) based on muscle volume, and

carcass fat cover from 1 (very thin fat layer) to 5 (very

thick fat layer). For both conformation and fat cover,

each grade can have a −/0/+ option, and for confor-

mation the regulations open for including a sixth

major class, S (Superior). In Norway, the −/0/+ option

is used, but not the S class for conformation.

Consequently, there are 15 groups for conformation

and 15 groups for fat cover.

The most common classification method is to use

certified classifiers who visually judge each carcass and

assign grades for conformation and fat cover based on

muscle volume and fat deposits. This method of classifi-

cation is subjective as humans are solely responsible for

classifying each carcass.

The potential for inconsistency of the classifiers is a

widely recognized shortcoming of visual classification,

although hard evidence for this is scarce (Craigie et al.,

2012). Thus, objective grading is preferable. In addition,

such indubitable processes would minimize grounds for

contest between parties and countries and create incen-

tives for continued trade between and within European

countries. Objective methods are often automatic or

semi-automatic, which might also reduce costs associ-

ated with carcass grading considerably.

Grading systems based on video image analysis (VIA)

have been present since the 1980s for bovine carcasses

(Craigie et al., 2012). The most prevalent systems in

Europe are the VBS 2000 system from the German man-

ufacturer E + V GmbH, the BCC-2/ BCC-3 systems from

the Danish manufacturer FrontMatec and the MAC-2/

MAC-S systems from the French manufacturer Norma-

class. These systems have been evaluated in different

studies (Borggaard et al., 1996; Allen & Finnerty, 2000;

Craigie et al., 2012; Wnęk et al., 2017). The European
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Commission has made detailed instructions for how to

authorize automated grading methods for beef car-

casses in EU (European Commission, 2017). FrontMatecs

BCC-3 is authorized under these regulations for use in

Denmark (Larsen & Christensen, 2019).

In Norway, all carcasses from bovine animals were

graded by human classifiers until January 2019, when

the method for classifying EUROP conformation, but

not fat cover, was replaced with a new semi-automatic

method, where the innovation was measuring carcass

length (Animalia, 2020). The instruments used for

length measurements are cheap compared to equip-

ment for VIA methods. The length data are used in an

algorithm along with weight, breed, age and sex as pre-

dictors for carcass conformation. The carcass grading is

undertaken by slaughterhouse employees who are

certified and regularly controlled by experts from Ani-

malia. The algorithm used in this study is a modified

version of the algorithm used in Norwegian slaughter-

houses post January 2019.

The aim of the present study is to evaluate the per-

formance of carcass grading for bovine animals, both

conformation and fat cover, based on a novel objective

method using carcass weight, length, age, sex and breed

information as predictors. The performance of the objec-

tive method is compared to human grading by a meth-

odology that utilizes repeated gradings of the same

carcass. This method is implementable on datasets

sampled in accordance with EU regulations for the

approval of automated grading methods (European

Commission, 2017).

Materials and methods

Material

Data from a total of 3825 beef carcasses were collected

from January 2018 to March 2020 at 24 slaughterhouses

across Norway. The data used in the algorithm were

sampled from three sources for all individual carcasses,

(i) measurements at the slaughterhouses, (ii) classifi-

cation by Animalia’s expert group and (iii) the animal

livestock registry (Mattilsynet, 2016), a nationwide regis-

ter of all bovine animals. These data are mostly entered

by livestock producers. Results and measurements from

classification in all slaughterhouses were transferred to

Animalia’s databases daily.

From the slaughterhouses each carcass was assigned

a unique ID and data were collected for, length (cm),

weight of warm carcass (kg) adjusted by a factor of

0.98 and date of slaughtering. Simultaneously as the

carcass was weighed by a calibrated and officially con-

trolled scale, the length was measured by a manually

operated laser (item number MTS04700412 Meats AS,

Bergen, Norway) that shot a beam perpendicular to the

carcass. The length was defined as the distance from

cranial edge of the first thoracic spinous process to the

lowest internal point of the hooks (fixed) where the

carcass was hung from the achilleas tendon (Figure 1).

All carcasses in the dataset were graded by one or

more Animalia expert classifiers, a group consisting of

five persons, all assigned a unique ID. Animalia experts

registered results for EUROP conformation (integer 1–

15, where P– equals 1, E+ equals 15) and fat cover

(integer 1–15, where 1– equals 1 and 5+ equals 15).

For conformation separate grades were assigned separ-

ately for back-, middle- and fore-parts, then an arith-

metic mean was applied. Most carcasses were graded

by one Animalia expert, but some were graded by two

up to all five, disparately. Finally, from the animal live-

stock registry, registrations of age (days), sex (male,

female or castrate) and breed based on pedigree back

to great-great-grandparents were collected. A total of

69 individuals were omitted from further analysis, as

they were either castrates or their sex was unknown,

leaving a dataset with data from a total of 3756 beef

carcasses.

Figure 1. Measurement of a carcass. The measuring starting
point is the cranial edge of the first thoracic spinous process
(green light on the carcass) to the bottom of the internal curva-
ture of the hook from which the carcass hangs.
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In addition to the Animalia dataset based on Animalia

expert classifiers, a dataset containing data from 10 car-

casses, that were graded by groups of international clas-

sifiers at a time, rather than each classifier individually,

was considered. These data, including data used as pre-

dictors, i.e. length, weight, breed, sex and age, were col-

lected in conjunction with a meeting to calibrate the

classifying skills of classifiers from the Nordic countries

held in Målselv in Norway during September 2019.

Method

The data were divided into a training set (n = 3622) and a

test set (n = 124), in addition, the international dataset

from the meeting with Nordic country classifiers was

used as a separate test set (n = 10). The training data

consisted of carcasses graded by one Animalia classifier

only. The international test set consisted of carcasses

from the Nordic calibration meeting, and the national

test set consisted of the carcasses that had been

graded by two or more Animalia classifiers. This

granted the benefit of testing the model’s validity in

regard to precision and biases.

The following linear regression model was fitted to

the training data set:

Y = b0 + bkxk + bt
bxb + bt

wzw + bt
lzl + bt

aza + e,

e � N(0, s2
e ),

(1)

where the response, Y, denotes either the mean (back-,

middle- and fore-part) conformation, or fat cover as

graded by Animalia experts. The intercept term is

given by β0 and the random error, e, is associated with

variance s2
e . The unit of Y is EUROP conformation and

EUROP fat group, hence the unit of s2
e is square of the

corresponding measurements.

The predictor variable xk is the relationship between

weight (kg) and cubic of length (m), known as Fulton’s

condition factor (Kurkilahti et al., 2002). Fulton’s condition

factor is invariant with size of a 3D object assuming that

shape and density are kept fixed. The vector xb represents

breed groups (n = 9) which were defined a priori, repre-

senting the 35 different breeds registered in the animal

livestock registry. An overview of the distribution of

breeds in the breed groups is given in Røe (2019). Breed

populations vary in size, and some breeds would not

have had enough individuals to be included in the ana-

lyses if treated as a single group. Thus, we chose to aggre-

gate breeds into breedgroupsbased on shared qualitative

traits, as to represent the variance that exists across the

spectrum of breeds in Norway. The elements of xb are

positive 1/16 fractions and sum to 1. The vectors zw, zl

and za of length 5, 5 and 7, respectively, are constructed

by evaluatingweight (kg), length (cm) and the natural log-

arithm of age (days) as squared B-spline functions using

knot sequences {100,275,450}, {150,190,230} and the

natural logarithmof {100,300,730,1460,3650}, respectively.

All z’s have positive elements which sum to one. The pre-

dictors weight, length and age were included because

they all have an effect on body composition, and

thereby, conformation score. Weight and length knots

were chosen to have equal space between each knot,

and so that the minimum and maximum knots were

within the minimum and maximum weight and length

in the dataset. The knots for age were chosen to corre-

spond to the thresholds between categories of cattle, for

example the threshold between a young bull and a bull

is 730 days of age. The model (Equation (1)) was fitted

to males and females separately. In order to achieve a pre-

dictionmatrix of full rank a restriction is applied so that the

elements of bb, bw , bland ba, all sum to zero.

A subset of 24 = 16 models where all combinations of

including or excluding the predictor variables breed (xb),

weight (zw), length (zl) and age (za) were tested.

Akaike information criterion (AIC) (Akaike, 1974) was

calculated for all models in the subset and used for

model selection, as the model with lowest AIC was

chosen. The procedure was conducted for both confor-

mation and fat cover as the response, and males and

females separately. This resulted in four models, i.e.

models for male conformation, male fat cover and

female equivalents.

Curating a pedigree can be taxing in regard to econ-

omic strain and is susceptible to mistakes in regard to

parentage. Therefore, omitting breed as a predictor

would be beneficial, barring negative effects on the pre-

cision of the model. Thus, reduced models excluding

breed, for the four combinations of response and sex,

were also evaluated. The models including breed are

referred to as the full model. The models omitting

breed are referred to as reduced models.

In order to evaluate prediction precision and predic-

tion bias, we applied the random effect model:

y′ ij = m+ ti + uij, ti � N(0, s2
t ), uij � N(0, s2

u), (2)

to the two test datasets. Here, y′ij, represents the differ-

ence between conformation/fat cover set by classifier j

for individual i (yij) and the associated predicted value

(ŷi), based on the fitted model of Equation (1).

The main effect, m, represents bias of the prediction

algorithm. If the model is biased towards low predictions

m is larger than 0 and vice versa. A bias equal to, or close

to zero is desired.
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Referring to Equation (2), the total random error for

individual i graded by classifier j is given by ti + uij. ti
denotes the random classification error caused by the

prediction model for individual i, with corresponding

variance s2
t . A small variance is associated with high pre-

cision for the prediction algorithm. uij is the random

error caused by classifier j for carcass i, with correspond-

ing variance s2
u.

The intraclass correlation coefficient, corr(yij,yik) = ρ

= s2
t / s

2
t + s2

u (Dean et al., 2017) is the proportion of

total misclassification explained by the prediction algor-

ithm. If ρ > 0.5, then human experts are more precise

than the prediction algorithm and vice versa. Parameter

estimates, and confidence intervals for m and ρ were cal-

culated in accordance with Dean et al. (2017). For unba-

lanced data, i.e. the national test set where number of

classifiers per carcass varies, confidence intervals regard-

ing m are approximate.

Detailed rules for how to authorize automated

grading methods for beef carcasses are given in annex

IV of supplementing Regulation (EU) No 1308/2013

(European Commission, 2017). Under these regulations,

points are reduced or given based on the disparity or

lack thereof between automatic grading results and

median human classifier results. For a new grading

method to be accepted it must achieve 60% of

maximal points on a test set consisting of at least 600

individuals (European Commission, 2017). Furthermore,

the bias must be within ±0.30 and ±0.60 for confor-

mation and fat cover, respectively. Finally, the slope of

regression of median grading by classifier and auto-

mated grading must be in range 1 ± 0.15 and 1 ± 0.30

for conformation and fat cover, respectively.

In order to indicate how the method would do

against the EU system’s formal requirements, % of

maximal points, bias and slope of regression for all

model combinations applied to both test sets were cal-

culated. For these calculations, results rounded to

closest integer for both classifier median and automatic

grading were used.

Data availability statement

The metadata and R-code used in the present study are freely
accessible at https://doi.org/10.18710/T9SXVF. Access to the
dataset with data used in the statistical analyses requires
approval from Animalia AS. All statistical analyses were
coded and executed in the software R (RStudio Team, 2020).

Results

Table 1 contains key statistics for the training and test

data sets. The most notable difference between datasets

are their sizes. In addition, the international test set is

balanced, i.e. all classifiers have graded all individuals,

whereas the national test set is unbalanced. Further-

more, mean conformation and fat were higher for the

national test set than the training set, for both males

and females. For males the standard deviations were

higher for the national test set compared to the training

set, for females vice versa.

When fitting the models in Equation (1), three out of

the four combinations for response and sex scored the

smallest AIC values when all predictor variables were

included. The exception was conformation for males,

where the model with lowest AIC value corresponded

to the full model excluding B-splines based on length

as a predictor. Three out of four combinations for the

reduced models, i.e. where breed was excluded a

priori, scored the lowest AIC when all other predictor

variables were included. The exception was the

reduced model for males with fat cover as response,

where B-splines based on length was excluded as a

predictor.

Based on results from training data, R2 values, i.e. the

proportion of variance explained by the models, for con-

formation were high (0.88–0.93), with corresponding

RMSE values for conformation in the range of 0.58–

0.77. R2 full model values for fat were 0.47 and 0.65 for

males and females respectively, while reduced model

values for fat were 0.28 and 0.49 for males and females

respectively. RMSE per breed group for full models had

a range of 0.30–0.42 for conformation and 1.49–2.90

for fat. RMSE per breed group for reduced models had

a range of 0.39–0.92 for conformation and 1.83–9.45

for fat.

Estimated error variances (ŝ2
e ) (based on Equation (1))

ranged from 0.34 to 0.59 for conformation, and from

1.25 to 3.57 for fat. The difference between full and

reduced model estimated error variances, i.e. an

expression of loss when breed is excluded as a predictor,

was larger between fat models (0.45 for males and 1.15

for females) than between conformation models (0.25

for males and 0.12 for females). Estimated error variances

for fat were lower for males than females, indicating a

somewhat better model fit for males.

The correlations between predicted values and obser-

vations for the two independent test sets are visualized

in Figure 2. Pearson correlations for conformation were

all high, 0.97 (national) and 0.96 (international) applying

the full model, and 0.94 and 0.94 with the reduced

model. For fat cover the correlations were much lower

for the national test set, 0.61 and 0.30 for the full and

reduced models. For the international test set corre-

lations were high (0.91 and 0.87), which might be an

artefact of small sample size (n = 10).
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Table 2 shows point estimates and confidence inter-

vals based on Equation (2) when applied to the two

test datasets. In general point estimates for biasedness

are fairly close to zero in the national test set, absolute

numbers less than 0.11 for conformation and less than

0.2 for fat. Corresponding 95% confidence intervals for

prediction bias (μ) embrace 0, except for the full model

with conformation as a response, indicating a significant

bias for this model. Bias estimates for the international

test set were consistently higher than for the national

test set, and only two out of four 95% confidence inter-

vals spanned 0.

The estimate for human classifier variance (s2
u) is

solely a function of the observations and independent

of the predictions. Consequently, these estimates are

the same for both the full and reduced model. Estimated

intraclass correlation coefficients (ρ) were consistently

higher for the national test set than the international

test set. None of the confidence intervals for ρ in the

national test set spanned 0.5, while three out of four

confidence intervals for ρ in the international test set

embraced 0.5. Full models had consistently lower corre-

lation estimates than their reduced counterpart, as the

estimated prediction algorithm variance (s2
t ) was lower

for the full model compared to the reduced model

both for conformation and fat.

Discussion

The most important results demonstrating the profi-

ciency of the algorithm are the high correlation, and

low level of bias between predicted and observed

values for conformation, shown in Figure 2. This indi-

cates that the majority of individual carcass grades will

not differ drastically from what would have been given

by human classifiers. The algorithm was even precise

for carcasses at the furthest ends of the EUROP range,

though this is a less certain result due to few obser-

vations. The precision in predicting conformation was

also reflected in the high amount of variation explained

by the conformation models (R2≥ 0.88), and low esti-

mated error variances (0.34–0.59) and low RMSE per

breed group (0.30–0.92), which showed that the

predictor variables chosen were well suited to predict

conformation.

Results indicated low bias for conformation predic-

tion. This is essential when it comes to the fairness and

longevity of the algorithm. A producer might experience

lower or higher settlements for individual carcasses than

if classed by a human, due to random error. However,

when the bias is low, these errors will cancel each

other out over time, and the total amount paid to that

producer would be close to or potentially the same as

if humans were still classifying.

Though bias estimates for conformation for the test

sets were low (range −0.05–0.31), the confidence inter-

vals for the full model conformation bias did not

embrace 0 and indicated a significant positive bias.

This implies that the full model underpredicts confor-

mation class. Nevertheless, point estimates for bias

were low (0.11 for the national test set and 0.31 for

the international) and consequently, the undesired sig-

nificant bias for conformation using the full model

does not reflect a large practical effect.

The precision of the full model for conformation was

very high, which is reflected in narrow C.I.’s for bias par-

ameter μ, with width 0.20 and 0.51 for the national and

international test sets respectively. For the reduced

model precision was slightly lower, but still high, yield-

ing marginally wider C.I.’s for bias, which for both the

national and international test set embraced 0. These

results strongly support that the algorithm is well

equipped to replace the old system for conformation,

at least in Norway. For conformation, the reduced

model seems to be a suitable candidate as its precision

is only marginally lower than the corresponding full

model precision.

Fat cover bias estimates for the national test set for

both the full and reduced models were close to zero,

with C.I.s that embraced zero. However, for the inter-

national test set bias point estimates were high, and

the C.I. for the reduced model did not embrace 0. Never-

theless, results show some clear patterns for fat predic-

tion. First and foremost, prediction precision for fat is

much lower than for conformation. This is reflected in

lower R2-values in the training data set and higher

Table 1. Descriptive statistics for the training and two test datasets, split into male and female subsets. The table gives the number of
unique observations and unique individuals. Furthermore, mean values ± standard deviations are given for conformation, fat cover,
weight, length and age.
Set Sex Observations (n) Individuals (n) Conformation (EUROP) Fat cover (EUROP) Weight (kg) Length (cm) Age (days)

Training Male 2140 2140 6.56 ± 2.20 6.90 ± 1.54 323 ± 80 204 ± 14 541 ± 174
Female 1482 1482 4.59 ± 2.12 7.67 ± 2.63 263 ± 72 207 ± 18 1400 ± 959

Test national Male 187 86 7.58 ± 2.25 7.41 ± 1.71 342 ± 64 202 ± 12 523 ± 96
Female 76 38 5.19 ± 1.94 8.14 ± 1.87 302 ± 54 211 ± 11 2149 ± 1173

Test international Male 35 7 6.63 ± 1.26 7.83 ± 2.12 316 ± 69 203 ± 12 565 ± 57
Female 15 3 3.33 ± 0.50 8.40 ± 2.03 277 ± 34 220 ± 10 1346 ± 465
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estimated prediction error variances (s2
t ) in the test sets.

RMSE per breed group was also higher for fat than con-

formation, with a wide range (1.49–9.45). The wide range

is due to one breed group whose RMSE (9.45) was 5.6

points above the breed group with the second highest

RMSE (3.82). The highest RMSE is due to a combination

of low sample size for that breed group, and the low pre-

diction precision of the reduced model for fat.

Norwegian pedigree is highly reliable, with an error of

only 3.3% when genotyping the most common breed in

Norway, Norwegian Red (Larsgard et al., 2019). There-

fore, including breed as a predictor in Norway gains

the advantage of increased precision, while suffering

little the consequence of faulty pedigrees. Breed is still

an unfavourable predictor as, in addition to breed

being costly to register, not all countries have detailed

pedigrees available. Excluding breed would therefore

make exportation of the new system more feasible.

Moreover, omitting breed as a predictor is advantageous

even if breed information is available, as excluding breed

would negate problems associated with individuals

where pedigree is not known, or where pedigree infor-

mation is wrong. For these reasons, the decline in per-

formance if breed is omitted as a predictor was

evaluated through the reduced models.

Breed seems to be a more important predictor for fat

cover than conformation, especially in females. This is

reflected in substantially lower R2-values for fat predic-

tion in the training data set and higher estimated predic-

tion error variance in the test sets when comparing

males to females, and when comparing reduced to full

models. This observation is not particularly surprising

as some breeds are known to have unfavourable mean

fat cover grading compared to their conformity

grading (Hickey et al., 2007).

Bias estimates would indicate that the algorithm is

possible to use for fat cover prediction as well as confor-

mation, but Figure 2 shows that predicted values deviate

from the observed considerably. Though an unbiased

algorithm over time would ensure equal compensation

Figure 2. Predicted versus observed classifications for conformation (upper panels) and fat (lower panels) based on full (left panels)
and reduced models (right panels). The dotted line represents equal predicted and observed values. Grey squares are values from the
national test set and black triangles are values from the international test set. Pearson correlations for the corresponding national test
set (N) and international test set (I) are given in the upper left corner within each panel.
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as human classifiers, a ρ > 0.90 (Table 2) shows that

human classifiers are much better equipped to deter-

mine fat cover for now. This result was not surprising

as none of the predictor variables used in this study

reflect the amount of fat deposits a carcass has.

The VIA methods based on image techniques have

an advantage, as they gain information about the fat

cover from the image processing, and this is

reflected in their correlations for fat prediction being

higher than ours (Borggaard et al., 1996; Allen & Finn-

erty, 2000; Craigie et al., 2012; Wnęk et al., 2017).

However, this was not the case for correlation

between predicted and observed values for confor-

mation; our conformation correlation for the full

model for the national test set was marginally higher

than all the VIA methods. Our results showed a small

bias, which was also the case for the BCC-2 and the

VIAscan (Allen & Finnerty, 2000), though the method

of quantifying bias was different.

The objective, fully automatic, VIA methods based on

image techniques are suitable for larger slaughterhouses

that require faster processing, and where the purchase

cost of classification equipment matters less. For

smaller slaughterhouses the extra time allotted to

perform the length measurement is justified as each

individual carcass has high monetary value, and the pur-

chase cost of the equipment is relatively low. Hence, for

smaller slaughterhouses objective methods based on

measuring carcass length are more accessible than pre-

vious VIA-based objective classification methods.

The test data sets used in this study did not meet the

formal requirements for EU regulation for automatic

grading regarding sample size (requirement n = 600),

or number of independent classifiers per slaughter (n

= 5). The results (Table 2) strongly indicate that objective

grading of conformation based on carcass length would

meet formal requirements for EU approval if breed is

included as predictor, as bias, percentage points and

slope were within the limits noted by EU regulation

(European Commission, 2017). If breed is omitted as pre-

dictor results for percentage points (54.8% where 60% is

the limit) indicate that approval of the method for con-

formation might be hard to achieve. Results for slope

and bias are well inside requirements. Still, it might be

possible to achieve approval, partly as an effect of less

error variation associated with the human classifiers

when number of classifiers are increased to five per

carcass.

The good performance of the objective method

based on length measurement is further supported

by comparing conformation results to the BCC-3

(Larsen & Christensen, 2019); bias was lower (0.2 for

BCC-3) and slope was closer to one (1.09 for BCC-3)

for the method based on length measurement than

BCC-3. On the other hand, the percentage points for

BCC-3 at 76.3% were substantially higher than for

Table 2. Estimated population mean (μ), human classifier variance (s2
u), algorithm variance (s2

t ) and intraclass correlation (ρ) based on
Equation (2). Lower (C.I. 2.5%) and upper (C.I. 97.5%) confidence intervals are given for population mean and intraclass correlation.
Finally, the % of maximum achievable points (1240 and 100 points for the national and international test sets respectively), bias and
slope of regression line as defined in annex IV of supplementing Regulation (EU) No 1308/2013 (European Commission, 2017) is given.
All estimates and confidence intervals are given for the four model combinations defined by conformation or fat cover vs. full (F) or
reduced (R) models.
Data set Parameter Conformation (F) Conformation (R) Fat (F) Fat (R)

National μ Estimate 0.1056 −0.0504 −0.1779 0.0057
C.I. 2.5% 0.0035 −0.2006 −0.4268 −0.3079
C.I. 97.5% 0.2077 0.0998 0.0710 0.3194

s2
u Estimate 0.0985 0.0985 0.1643 0.1643

s2
t

Estimate 0.2843 0.6692 1.8884 3.0440
Ρ Estimate 0.7428 0.8718 0.9200 0.9488

C.I. 2.5% 0.6567 0.8242 0.8892 0.9287
C.I. 97.5% 0.8106 0.9075 0.9427 0.9635

EU regulations % Points 69.3 54.8 54.0 31.4
Bias 0.1210 −0.0645 −0.2097 0.0403
Slope 1.0130 0.9886 0.7833 0.4300

RMSEP Estimate 0.6232 0.8739 1.4410 1.7843
International μ Estimate 0.3097 0.1654 0.4075 0.9419

C.I. 2.5% 0.0556 −0.1879 −0.0926 0.1524
C.I. 97.5% 0.5638 0.5187 0.9077 1.7313

s2
u Estimate 0.1900 0.1900 0.5000 0.5000

s2
t

Estimate 0.1200 0.2676 0.5124 1.4258
Ρ Estimate 0.3872 0.5848 0.5061 0.7404

C.I. 2.5% 0.1222 0.3132 0.2305 0.5109
C.I. 97.5% 0.7309 0.8447 0.8037 0.9130

EU regulations % Points 88.0 84.0 84.0 38.0
Bias 0.1000 0.0000 0.4000 1.0000
Slope 0.9012 0.8841 1.4674 1.5833

RMSEP Estimate 0.6246 0.6741 1.0570 1.6311
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the length method 69.3% (full model) and 54.8%

(reduced model).

The good results for conformation are based on the

15 point system applied in Norway. As our range of

carcass conformation spans the same as a 5 point

system, which just omits the +/0/– option, it is likely

that analysing our results at a 5 point scale would

have little effect on conclusions, in a similar manner to

the VIA systems (Allen & Finnerty, 2000). As the S class

is not included in Norway, we have not taken this class

into consideration. However, results indicate that the

method functions well at the fringes (P and E) of the con-

formation scale, indicating that inclusion of S class

should be achievable.

Our results strongly indicate that approval for fat

cover grading is not achievable for the method based

on length measurement within EU regulations, as none

of the results are within the constraints for all three

requirements, i.e. bias, percentage points and slope. To

increase the precision for fat cover prediction an

additional measuring tool or technique would be ben-

eficial. Additional information from near-infrared (NIR)

spectroscopy (Chapman et al., 2020) or ultrasonography

(Teixeira et al., 2006) could potentially serve the purpose.

Such methods have the potential benefit, compared to

VIA and humans, of penetrating the soft tissue, in

order to give better predictions for total lean/fat ratio

of carcasses.

If semi-automatic methods of determining both fat

group and conformation scores were shown to be

precise, a natural next step would be to test if the

predictor variables used to predict fat group and con-

formation could be used to predict monetary carcass

value. The relationship between carcass value and

predictor variables was outside the scope of this

study as the purpose of this study was to evaluate

prediction precision for conformation and fat group

scores.

Castrates were excluded from statistical analyses as

there is a biological distinction between the castrates

and entire animals. If castrates were to be included,

they should be treated as a third sex, which was unachie-

vable in the present study due to lack of data. Further-

more, in 2020 castrates only make up 0.6% (Animalia

internal data) of the total population of slaughtered

cattle (n = 295,002) in Norway.

Due to the international data being sourced from a

conference, the sample size of the international test

set (n = 10) was small, but the results were included as

they shed light on the important issue regarding sys-

tematic differences between classifiers in different

countries.

Conclusion

The main purpose of this study was to evaluate if, and

how well, a semi-automatic grading method utilizing

carcass length measurements could predict EUROP

classes compared to human counterparts. The results

of this study show that, for conformation, the algorithm

functions at a level that is sufficient to replace the older,

more subjective system with human classifiers. As of

today, the method is not suitable for fat cover grading.

Additional measuring methods, like NIR or ultrasound

are candidates as additional information sources in

order to develop beef carcass grading method that is a

full-fledged, semi-automatic, objective and more afford-

able alternative to VIA methods.

Acknowledgements

This work was funded by the Research Council of Norway
under grant number 311394 and Animalia AS as a part of an
industrial doctorate degree for Andrew Heggli. The authors
acknowledge Nortura SA, the abattoirs, Animalia AS and the
Classification board.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Research Council of Norway
[grant number 311394].

ORCID

Hilde Vinje http://orcid.org/0000-0003-0318-0214

References

Akaike, H. (1974). A new look at the statistical model identifi-
cation. IEEE Transactions on Automatic Control, 19(6), 716–
723. doi:10.1109/TAC.1974.1100705

Allen, P. & Finnerty, N. (2000). Objective beef carcass classifi-

cation. A report of a trial of three VIA classification
systems. Dublin, Ireland: The Department of Agriculture,
Food and Rural Development, and the National Food
Centre, Teagasc.

Animalia. (2020). Klassifiseringshåndboka. Accessed 23
November 2020, available at: https://www.animalia.no/no/
kjott–egg/klassifisering/klassifiseringshandboka/ (In
Norwegian).

Borggaard, C., Madsen, N. T. & Thodberg, H. H. (1996). In-line
image analysis in the slaughter industry, illustrated by
beef carcass classification. Meat Science, 43, 151–163.
doi:10.1016/0309-1740(96)00062-9

120 A. HEGGLI ET AL.



Chapman, J., Elbourne, A., Truong, V. K. & Cozzolino, D. (2020).
Shining light into meat – a review on the recent advances in
in vivo and carcass applications of near infrared spec-
troscopy. International Journal of Food Science &

Technology, 55(3), 935–941. doi:10.1111/ijfs.14367
Craigie, C. R., Navajas, E. A., Purchas, R. W., Maltin, C. A., Bünger,

L., Hoskin, S. O., Ross, D. W., Morris, S. T. & Roehe, R. (2012). A
review of the development and use of video image analysis
(VIA) for beef carcass evaluation as an alternative to the
current EUROP system and other subjective systems. Meat

Science, 92(4), 307–318. doi:10.1016/j.meatsci.2012.05.028
Dean, A., Voss, D. & Draguljić, D. (2017). Design and Analysis of

Experiments (New York: Springer International Publishing).
doi:10.1007/978-3-319-52250-0.

European Commission. (2013). Regulation (EU) No 1308/2013 of

the European Parliament and of the Council of 17 December

2013 establishing a common organisation of the markets in

agricultural products and repealing Council Regulations

(EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001.
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=
CELEX:02013R1308-20190101.

European Commission. (2017). Supplementing Regulation (EU)
No 1308/2013 of the European Parliament and of the
Council as regards the Union scales for the classification of
beef, pig and sheep carcasses and as regards the reporting
of market prices of certain categories of carcasses a. https://
eur-lex.europa.eu/legal-content/SV/ALL/?uri=CELEX%
3A32017R1182.

Hickey, J. M., Keane, M. G., Kenny, D. A., Cromie, A. R. &
Veerkamp, R. F. (2007). Genetic parameters for EUROP
carcass traits within different groups of cattle in Ireland1.
Journal of Animal Science, 85(2), 314–3321. doi:10.2527/jas.
2006-263

Kurkilahti, M., Appelberg, M., Hesthagen, T. & Rask, M. (2002).
Effect of fish shape on gillnet selectivity: a study with
Fulton’s condition factor. Fisheries Research, 54(2), 153–
170.

Larsen, J. & Christensen, H. (2019). Report on test results from

BCC-3 in Holsted, Denmark 8-11 April 2019. Authorization

test of BCC-3. Copenhagen, Denmark: The Danish
Classification Board for Pork, Beef and Sheep.

Larsgard, A. G., Holtsmark, M. & Storlien, H. (2019). Buskap –

Retting av slektskap i kukontrollen. Accessed 08. February
2021, available at: https://www.buskap.no/asset/2019/
buskap-2019-07.pdf (In Norwegian).

Mattilsynet. (2016). Rapportering til Husdyrregisteret – Storfe |
Mattilsynet. Accessed 23 November 2020, available at:
https://www.mattilsynet.no/dyr_og_dyrehold/
produksjonsdyr/merking_og_registrering_av_
produksjonsdyr/rapportering_til_husdyrregisteret__storfe.
4942 (In Norwegian).

Røe, M. (2019). Go’Mørning 0219 – Klassifiseringssystemet
for storfe justeres fra nyttår. Accessed 08. February 2021,
available at: https://www.animalia.no/contentassets/
119187080f9e422e819e301c583e8a51/gm-2-2019-web-v2.
pdf (In Norwegian).

RStudio Team. (2020). RStudio (1.2.5033). RStudio: Integrated
Development for R. http://www.rstudio.com/.

Teixeira, A., Matos, S., Rodrigues, S., Delfa, R. & Cadavez, V.
(2006). In vivo estimation of lamb carcass composition by
real-time ultrasonography. Meat Science, 74(2), 289–295.
doi:10.1016/j.meatsci.2006.03.023

Wnęk, K., Gołębiewski, M. & Przysucha, T. (2017). Validation of
the first objective evaluation system for beef carcasses.
Canadian Journal of Animal Science, 98(1), 53–60. doi: 10.
1139/cjas-2016-0241

ACTA AGRICULTURAE SCANDINAVICA, SECTION A — ANIMAL SCIENCE 121





�

�

 

 

Paper II 

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



Carcase grading reflects the variation in beef yield – a multivariate
method for exploring the relationship between beef yield and carcase
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a b s t r a c t

Beef carcases in Europe are classified as a proxy for the quantity and ratio of tissues, commonly referred
to as yield. It is important that proxies accurately measure yield as they contribute to financial transac-
tions between abattoirs and producers. The main purpose of the study was therefore to examine the abil-
ity of EUROP carcase classification to explain the variation in yield. Furthermore, the effect of breed, as a
confounder, was also examined. A multivariate definition of yield separating the carcase into six product
categories was utilised as a response in a linear regression analysis. The conclusion was that EUROP and
carcase features explain the majority of yield variation. Breed has an effect on yield beyond what is
explained by carcase features including classification. The magnitude of the breed effects varies with
breed and product category.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Implications

The aim of this study was to evaluate and describe how changes
in conformation, fat cover, weight and category contribute to
change in yield, using a multivariate yield response that differenti-
ated between different types of lean. In addition, the effect of breed
as a confounding factor was studied. Our model explained the vari-
ance in the response, and breed was shown to contribute to resid-
ual variance independent of other predictor variables. These results
could be used as basis for discussing changes in classification in
Norway to improve the prediction of types of lean or to adjust
for breed variations in Norway.

Introduction

The yield of bovine carcases can be defined as the ratio, quantity
and distribution of tissue types a carcase consists of. It is an impor-
tant description of the carcase as it affects producers, abattoirs and
the market. The carcase yield is influenced by a multitude of fac-
tors, whose importance might vary between markets. The number
and types of cuts, once the carcase is processed to its smallest com-

ponents, are not uniform. Thus, identical carcases processed differ-
ently will have a different monetary value. In addition, the value of
beef varies across markets and also varies over time (Henchion
et al., 2014). Consequently, it is better to evaluate a carcase as a
function of its yield rather than its monetary value in one specific
market at a fixed point in time.

A classification system shall deliver a fair assessment of the
ratio and quantity of meat, fat and bone within the carcase, and
by proxy, the value of each carcase (Polkinghorne and Thompson,
2010; Delgado-Pando et al., 2021). Furthermore, a more detailed
assessment of cuts is needed to adjust for value differences
(Craigie et al., 2013) and thereby deliver a more precise assessment
for producers and the meat industry. The type of assessment could
depend on the market, e.g. differentiating between the value of
meat for trimmings and meat for cuts in Norway, or differentiating
between value of cuts using marbling assessment in the USA
(Polkinghorne and Thompson, 2010). A theoretical, perfect classifi-
cation system within each market would be one that can account
for all the variation in yield relevant to that market, including
any variation that could potentially come from other predictor
variables such as weight, category or breed. In practice, a suffi-
ciently functioning system explains the majority of the variation,
cost efficiently.

The EUROP system of classification (European Commission,
2017a and 2017b) was developed by experts from member states
in the European Union, based on the need of a common bovine
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classification system for all member states, upon request by the
Organisation for European Economic Co-operation. Furthermore,
the aim of the EUROP system for bovine carcases was to make a
system that could describe all kinds of conformation and degrees
of fatness by trained, expert human classifiers. Since EUROP was
developed under these demands and not specifically for the exact
yield from each carcase, the validity of the system in regard to
functioning as a determining factor for yield has been the subject
of study for decades (Kempster et al., 1982; Conroy et al., 2010;
Oliver et al., 2010; Craigie et al., 2012), with most studies focusing
on how well classification predicts yield. The definitions of yield in
these studies vary slightly, but are simpler than the definition used
in the present study, with one exception (Oliver et al., 2010), who
used meat yield and four commercial cut quality categories as the
response.

A common measurement for yield that has been used in several
studies (Bergen et al., 2003; Craigie et al., 2012; Delgado-Pando
et al., 2021) is a measure termed lean meat yield (LMY) or lean
meat percentage (LMP), which is usually defined as g/kg of lean
meat in relation to whole carcase weight. Carcase composition
(Drennan et al., 2008; Conroy et al., 2010) is another measure of
carcase yield that in addition to the ratio of meat, also includes
the ratio of fat and bone to whole carcase weight. As information
regarding fat and bone could be beneficial to abattoirs regarding
the processing of a carcase, and for animal breeding goals, carcase
composition is arguably a better response than just LMY.

Carcase composition describes more complexity than LMY, but
it would be beneficial to add even more complexity by differenti-
ating between high-value cuts and trimmings of different fat per-
centages. This would address the fact that different lean has
different value. Though this would be a more precise yield mea-
surement, it would change the response from single univariate to
a multivariate response. A major objective of the present paper is
to define the yield in a way which is complex enough to capture
the variance of carcases smallest components, but at the same time
simple enough for generalised patterns to be identified. In order to
price the carcase, and to decide how it is to be further processed,
actors in all markets will gather and utilise information for mea-
surable carcase features prior to meat cutting (Polkinghorne and
Thompson, 2010). This can include measurements of yield or meat
qualities such as marbling scores, or both.

In the present paper, we will utilise features defined by the
European Commission (European Commission, 2017a and 2017b)
within the EUROP system as example for such features. These fea-
tures include grading of conformation and fat group, carcase
weight, age and category. EUROP scores contribute significantly
to determining mercantile transactions between slaughterhouses
and producers (Fisher, 2007). In Norway, an increased EUROP score
increases the price paid per kg and an increased fat group score
decreases the price paid per kg (Nortura AS, 2022). As it stands
today, EUROP conformation might be viewed as an approximate
measurement of the relationship between soft tissue (meat and
fat) and bone, while fat group is the class of fat cover and reflects
the relationship between fat and meat within the soft tissue. These
two scores combined, form a basis for assessment of the total dis-
tribution of meat, fat and bones throughout the carcase.

In this study, a linear regression model with multivariate yield
(MVY) response, representing high-value cuts (HVCs), trimmings,
fat, bone & waste and percentage forepart, will be used with a
focus on interpretation rather than finetuning for prediction preci-
sion. This means the focus will be on describing the relationship
between carcase features/classification and the yield, rather than
minimising the prediction error for the yield based on the same
input. An improved understanding of these relationships will be
beneficial for producers and abattoirs, but also beneficial to breed-
ing programmes, and most importantly, understanding if the

EUROP classification system actually functions as intended. The
aim of study was to evaluate and describe how changes in confor-
mation, fat cover, weight and category contribute to change in
yield, i.e. the MVY. In addition, the effect of breed will be studied,
in order to estimate the degree to which breed accounts for vari-
ance in the MVY as a confounding factor.

Material and methods

Data

Data from bovine animals were collected between 2011 and
2021 by Animalia’s pilot plant. At the pilot plant, carcases are
deboned and weights are registered daily, with the primary pur-
pose of providing information for the Norwegian market regulation
authorities, the classification system, and other stakeholders. The
carcases were processed using two different commercial Norwe-
gian cutting patterns, both of them with similarities to UNECE

(United Nations Economic Commission for Europe) UNECE
Standards (2016), but with some differences. The two Norwegian
cutting patterns were similar enough to be arranged into merged
product categories in one cohesive data set.

Each carcase processed at the pilot plant receives its own indi-
vidual ID. For each carcase information regarding age, gender,
breed, EUROP conformation and EUROP, fat group classification
scores, and weight per whole carcase were also documented.

Each carcase is separated into quarters and then further pro-
cessed into smaller cuts, trimmings of different fat (5, 14 and
21%), fat, bones, and waste. All cuts and trimmings were individu-
ally weighed and registered. Fat content of trimmings from the
forepart and backpart of the carcase with desired fat contents of
14 and 21% were measured using the QV500, a NIRS scanner
(Tomra Sorting Solutions, Asker, Norway). The original weights
for trimmings of 5, 14 and 21% and fat were standardised digitally
postdata collection. Either 5% trimmings or fat were added to 14
and 21% trimmings that had measured fat content lower or higher
than desired, respectively.

The cuts and trimmings from both cutting patterns (see meta-
data and R-code freely available at https://doi.org/10.18710/
TMSSJP for details) were aggregated into six disparate product cat-
egories with the objective of defining yield. The product categories
were high-value cuts (HVCs), trimmings containing 5, 14 and 21%
fat (named meat5, meat14 and meat21, respectively), fat and bone
& waste. The total weights of these six product categories consti-
tuted the basis for the creation of the response variable. The small-
est parts the carcases (n = 129 and n = 53 for the two cutting
patterns) were deconstructed into were combined to create each
product category. Product category weights, i.e. totals for the
whole carcase, were set to a minimum of 0.1 kg, in order to avoid
zeros in the log-odds response. Cuts that can be used without fur-
ther processing, and that were considered of potential high mone-
tary value, such as the tenderloin, were combined into the product
category HVC. Trimmings with 5% fat and some cuts only defined
in the most detailed cutting pattern, such as the flat iron filet, were
combined into the product category meat5. Trimmings with 14%
fat and 21% fat created self-titled product categories meat14 and
meat21. Fat was made into its own self-titled product category.
Bone and waste were combined into one product category, bone
& waste.

For each carcase, registrations of conformation and fat group
from EUROP classification (European Commission, 2013, 2017a
and 2017b, category and carcase weight were registered online
in the abattoir. EUROP conformation and fat group were registered
as integers from 1 to 15 corresponding to the fifteen-point EUROP
scale of five main categories each with ± variants. For conforma-
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tion, this corresponds to a scale from P� (1) to E+ (15). For fat
group, this corresponds to a scale from 1� (1) to 5+ (15). Weight
was registered in kilograms. Category refers to a combination of
age and gender, and is almost identical to categories specified by
the European commission (European Commission, 2013), the cate-
gories are calf, young bull, bull, steer, heifer, young cow and cow,
respectively. Details regarding categories and the minor differ-
ences to the definition given by the European commission are
given in Supplementary Table S1.

Breed information was collected from two sources, the animal
husbandry registry (Mattilsynet, 2022) and directly from the
slaughterhouses. Data from the slaughterhouses were restricted
to registration of the dominant breed. Consequently, individuals
registered as a specific breed might in fact partly be crossbreeds,
but for the analyses, these individuals were treated as pure breeds.
Data from the animal husbandry registry were more complex, with
pedigree recorded to the level of great-great-grandparents (F5).
Thus, the breed distribution of each individual is registered in
16ths, and treated as such in the analyses.

The original data set consisted of 1790 individuals. Individuals
with a deviation that was more than 2% between the total weight
of the six product categories and carcase weight registered before
processing were omitted. Furthermore, 11 individuals lacking suf-
ficient information regarding breed and four calves, 17 bulls and
eight steers were omitted from further analysis due to small sam-
ple sizes for these categories. This left a total of 1 687 individuals
for the analysis. Five different breeds, Norwegian red, Hereford,
Aberdeen Angus, Charolais and Simmentaler constituted their
own breed group. Limousin and Blonde d’Aquitaine were merged
into one breed group, and finally, one group with a combination
of breeds was labelled ‘‘Other”. The ‘‘Other” breed group consisted
mostly of individuals that were registered as mixed breed, but with
the breeds unknown, and some breeds with small sample sizes like
Holstein cattle, Jersey cattle and Simmental milk, Tiroler Grauvieh,
Dexter and Scottish Highland, and some Norwegian dual-purpose
breeds; Sidet trønder- og nordlandsfe, Telemarkfe, Dølafe, Rau-
kolle, Rødbroget dansk fe.

Statistical analysis

All statistical analyses were coded and executed in the software
RStudio (RStudio Team, 2020). Linear regression was used to anal-
yse the MVY outcome. The log-odds of the proportion of six pro-
duct categories were used as response, together with the log-
odds of the proportion made up by the forepart of the carcase,
resulting in a response vector (yi) of length seven.

The initial predictor variables were EUROP conformation and fat
group, (carcase) weight, and category. An approximate F-test based
on Wilks’ lambda (Mardia et al., 1979) was conducted to investi-
gate if the interaction between conformation and fat group, and
their second-degree polynomials were contributing significantly
to the regression model. The interaction and second-degree poly-
nomials for fat group and category were then included in the
model based on the outcome of Wilks’ test. The final model then
included the predictor variables EUROP conformation and fat
group, as well as their significant interaction and polynomials,
(carcase) weight, category, i.e.

yi ¼ b0 þ bcxci þ bf xfi þ bcf xcixfi þ bcpx
2
ci þ bfpx

2
fi þ bwxwi

þ
X4

j¼1
bcat
j xcatij þ ei; ei i:i:dN 0;Rð Þ; i ¼ 1; � � � ;1687;

where i represented the individual and j represented the category.
xci, xfi and xwi are the conformation, fat group and weight of carcase
i respectively. b0; � � � ;bw are regression parameters, each a vector of
length seven, representing intercept, conformation, etc. Finally,

bcat
1 ; � � � ;bcat

4 are each vector of length seven representing the effect
of category, where the category is given by xcatij , a binary variable

taking value 1 if animal i has category j and else taking value 0. Cat-
egory young bull was used as base category. Thus, the interpreta-

tion of bcat
j is the expected change in response when the category

is shifted from young bull to category j. The unexplained error for
individual i, ei, was assumed to be multivariate normally distributed
with expectation 0 and covariance matrix R. The residuals (êi) were

used to create an unbiased estimator for R with bR ¼
P

i
betibei= n� pð Þ

where n� pð Þ is the degrees of freedom for the residual. The corre-
lation matrix based on this estimate was also reported in the results
in order to simplify the interpretation.

Regression parameter estimates with corresponding P-values
based on t-tests were reported for all regression parameters. In
order to simplify the understanding of the effect of a change in
each of the independent variables, estimates for a standard indi-
vidual were calculated. A standard individual was considered a
young bull with the average values for conformation, fat group,
and weight. The estimates were transformed from the log-odds
to the percentage scale for easy interpretation. The estimated
effects of increasing conformation, fat group and weight by one
unit, based on this standard animal, were calculated and reported.
Furthermore, the effect of changing category was reported by
applying the same principle.

In addition to the prediction variables already included in the
linear model, it was of interest to investigate whether breed has
significant effect on yield. In order to conduct a formal test for
the effect of breed on yield, an approximate F-test based on Wilks’
lambda was also conducted on breed group. The effect was signif-
icant. However, breed group was omitted in the linear model as
predictor a priori, as it is viewed a confounding factor and corre-
lates with the other initial predictor variables. To evaluate the
effect of breed group, without the confounding effects of the other
predictors, a residual analysis was conducted with the residuals
from the linear model as response variables and breed group as
predictor variable. Based on the breed distribution for each animal,
i.e. the data from the animal husbandry register, mean residuals
were calculated for each breed group.

Results

Summary statistics for weight, conformation and fat group are
presented per category in Table 1. There were large differences in
sample size between the categories, with an overall unbalance
towards male cattle, and young bulls specifically being over-
represented in the data. Further, summary statistics for weight,
conformation and fat group are presented per breed group in
Table 2. There was disparity in sample sizes between the different
breed groups, with the most sampled breed group (n = 982) being
the Norwegian red and the least being Simmentaler (n = 46).

The results from the approximate F-test based onWilks’ lambda
showed that conformation and fat group interaction, second-order
conformation and second-order fat group all were significant as
predictor variables (P < 0.001, with approximate F-values at
18.09, 61.58 and 219.82, respectively). Thus, the interaction and
second-order polynomials were retained in the final linear regres-
sion model.

There was also a significant effect of breed group (P < 0.001 with
approximate F-value at 12.01), for the Wilks’ lambda test when the
other predictor variables were already included in the model. The
parameter estimates for the multivariate linear regression are
given in Tables 3 and 4. Table 5 shows predicted values for the per-
centage of a ‘‘standard individual”, i.e. category young bull. All
other values are in relation to this standard individual. As Table 5
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Table 1

Summary statistics by category for cattle carcass weight and EUROP classification scores. Results for carcase weight, EUROP conformation and fat group are on a 15-point scale
and are given as mean values ± SD. For the definition of categories, see Supplementary Table S1.

Item Young bull Heifer Young cow Cow

N 1067 111 237 272
Carcase weight (kg) 329.1 ± 58.11 232.7 ± 56.48 272.4 ± 57.85 297.7 ± 54.52
Conformation (EUROP) 6.9 ± 2.25 6.6 ± 1.84 4.3 ± 2.04 4.1 ± 1.96
Fat group (EUROP) 6.8 ± 1.5 7.7 ± 2.36 7.6 ± 2.54 7.8 ± 2.53

Table 2

Summary statistics by breed group for cattle carcass weight and EUROP classification scores. Results for carcase weight, EUROP conformation and fat group are on a 15-point scale
and are given as mean values ± SD.

Item Aberdeen Angus Charolais Hereford Limousin and Blonde d’Aquitaine Norwegian Red Other Simmentaler

N 54 241 68 138 982 158 46
Carcase weight (kg) 291.7 ± 86.49 351.9 ± 68.56 307.5 ± 55.58 352.4 ± 72.22 295.5 ± 52.10 293.9 ± 67.53 342.4 ± 60.19
Conformation (EUROP) 7.0 ± 1.62 8.7 ± 1.96 6.8 ± 1.75 9.4 ± 2.09 4.7 ± 1.49 6.0 ± 2.27 8.0 ± 1.45
Fat group (EUROP) 8.3 ± 2.88 7.2 ± 1.87 9.0 ± 2.45 6.6 ± 2.04 7.0 ± 1.81 6.7 ± 2.01 7.6 ± 1.78

Table 3

Regression parameter estimates from a linear regression with a multivariate yield from cattle carcases with t-values in brackets. Estimates with P-values <0.05 (t-test) are marked
with an asterisk (*). Regression parameter estimates are estimated based on log-odds of product categories. Columns are predictor variables in the model. Rows are product
categories. Conformation2 is the quadratic version of the predictor variable Conformation, and Fat group2 is the quadratic version of the predictor variable Fat group. C:F is the
interaction between conformation and fat.

Item Intercept Conformation Fat
group

C:F Conformation2 Fat
group2

HVC �1.7427
(�81.21)*

0.0417
(10.36)*

�0.0061
(�1.44)

�0.0010
(�2.68)*

0.0003
(1.35)

�0.0015
(�5.52)*

meat5 �2.5000
(�24.60)*

0.0697
(3.65)*

0.1227
(6.11)*

�0.0013
(�0.74)

�0.0004
(�0.36)

�0.0142
(�10.87)
*

meat14 �0.4681
(�12.14)*

�0.0056
(�0.78)

0.0215
(2.82)*

0.0004
(0.56)

0.0003
(0.68)

�0.0047
(�9.44)*

meat21 �2.9922
(�46.17)*

0.0168
(1.38)

0.1381
(10.77)*

0.0021
(1.89)

�0.0037
(�4.79)*

�0.0037
(�4.44)*

Fat �11.3203
(�28.47)*

�0.5029
(�6.73)*

1.5043
(19.13)*

0.0485
(7.23)*

�0.0013
(�0.27)

�0.0694
(�13.54)
*

bone&waste �0.6704
(�27.82)*

�0.0608
(�13.43)*

�0.0169
(�3.55)*

0.0023
(5.75)*

0.0000
(0.04)

�0.0007
(�2.25)*

forepart �0.0265
(�1.74)

�0.0141
(�4.92)*

0.0094
(3.13)*

�0.0001
(�0.27)

�0.0002
(�1.24)

�0.0006
(�2.91)*

Abbreviations: HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat, Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat.

Table 4

Regression parameter estimates from a linear regression with a multivariate yield from cattle carcases with t-values in brackets. Estimates with P-values <0.05 (t-test) are marked
with an asterisk (*). Regression parameter estimates are estimated based on log-odds of product categories. Columns are predictor variables in the model. Rows are product
categories. r2 is the estimated residual variance and R2 is the coefficient of determination per product category.

Item Weight Heifer Young
cow

Cow r2 R2

HVC �0.0003
(�6.63)*

0.0898
(11.30)*

0.0981
(16.38)*

0.1082
(18.15)*

0.0045 0.646

meat5 0.0004
(1.96)

�0.0386
(�1.02)

�0.2443
(�8.62)*

�0.1241
(�4.39)*

0.0999 0.486

meat14 �0.0001
(�1.77)

�0.1479
(�10.36)
*

�0.1065
(�9.90)*

�0.0387
(�3.61)*

0.0144 0.515

meat21 0.0000
(0.18)

0.1093
(4.56)*

0.0769
(4.26)*

�0.0443
(�2.46)*

0.0406 0.498

fat 0.0022
(2.83)*

0.6117
(4.16)*

0.6744
(6.08)*

0.6113
(5.53)*

1.5294 0.639

bone&waste �0.0004
(�8.08)*

�0.0205
(�2.30)*

0.0078
(1.15)

0.0346
(5.17)*

0.0056 0.783

forepart 0.0005
(17.41)*

�0.1028
(�18.23)
*

�0.1052
(�24.76)*

�0.1006
(�23.77)
*

0.0022 0.583

Abbreviations: HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat, Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat.
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values are percentage values, they are easier to interpret. Tables 3–
5 should therefore be seen in tandem for a full understanding of
the independent variables from the linear regression model and
their significance and effect on the response.

Based on Table 3 and also reflected in 4, an increase in confor-
mation was significantly associated with an increase in HVC and
meat5, and a decrease in fat, bone & waste and percentage forepart.
Higher conformation for the second-degree polynomial was signif-
icantly associated with a decrease in meat21. A higher fat group
classification was significantly associated with an increase in
meat5, meat14 and meat21, fat and percentage forepart, and a
decrease in bone & waste.

An increase in fat group for the second-degree polynomial was
significantly associated with a decrease in all product categories,
indicating that the main linear effect of fat group decreases for
extreme fat group registrations, i.e. both extremely lean and fat
carcases, for all product categories. The interaction between con-
formation and fat was significantly associated with a decrease in
HVC and an increase in fat and bone & waste. Weight had a signif-
icant negative effect on HVC and bone & waste, and a significantly
positive effect on percentage forepart. An overview over the
expected and observed proportions of the six product categories
as function of EUROP conformation and fat group is visualised in
Fig. 1.

Heifers, young cows and cows all had significantly positive
effect on HVC and fat, and a negative effect on meat5 (heifers
not significant) meat 14 and percentage forepart compared to
young bulls. Heifers and young cows had significantly positive
effect on meat21, while cows had significant negative effect on
meat21.

Results from the residual analysis displayed in Table 6 indicate
that Simmentaler and in particular Limousin and Blonde d’Aqui-
taine had a positive effect on HVC and meat5 compared to other
breed groups. Hereford and Aberdeen Angus also had a positive
effect on meat5, though not on HVC. Charolais had a positive effect
on bone&waste, whereas in particular Limousin and Blonde d’Aqui-
taine, but also Hereford had a significantly negative effect on the
percentage bone&waste. Limousin and Blonde d’Aquitaine also
had significant negative effect on the percentage forepart. Norwe-
gian red had a significantly positive, and substantial, effect esti-
mated to be 0.83% units, on fat. Norwegian Red was the only
breed group to have a significantly negative effect on HVC, and a
positive effect on fat and percentage forepart. However, these esti-
mates are small and significant mainly due to the large sample size
for Norwegian red.

The residual correlation matrix, illustrated in Fig. 2, revealed
that HVC had a moderately strong (�0.48) negative correlation
with percentage forepart. Meat21 had moderately strong negative
correlations to HVC (�0.35) and a strong negative correlation with
meat14 (�0.70).

Discussion

The results confirm that EUROP classification, including confor-
mation, fat group, weight and category, explains most of the yield
variation. This is important, as weight and sex are registered in
some form worldwide (Polkinghorne and Thompson, 2010) and
EUROP conformation and fat group represent physical characteris-
tics of the carcase which are interpretable also outside of Europe.
The most pertinent evidence of EUROPs’ ability to explain variation
was the moderately high coefficient of determination estimates
(>0.639) (Table 4) for HVC, fat, and bone & waste. These estimates
were generally slightly lower, but not notably different, from pre-
vious literature (Drennan et al., 2008; Jørgenvåg et al., 2009,
August; Conroy et al., 2010; Oliver et al., 2010) though previous lit-
erature focused on prediction. The comparatively lower coefficient
of determination estimates for meat14 and meat21 (0.515 and
0.498, respectively) might be explained by an overlap in the meat
they consist of, so more meat measured as one product category
could lead to less of the other. This explanation is supported by
the negative error correlation at –0.70 for these product categories.
The inverse relationship between meat14 and meat21 is reflected
in Fig. 1 where it is shown that more of the carcase consists of
meat14 and less meat21 for low-fat group scores and vice versa.
In other words, the plots associated with meat14 and meat21 are
tilted in opposite directions.

The data used in the study were collected for industrial pur-
poses and therefore not designed specifically for this study. If data
collection could have been designed specifically for the study, a
balanced distribution of breed crossed over categories would have
been preferable. Additionally, one single cutting pattern following
the UNECE standards (UNECE Standards, 2016) would have been
used. Nevertheless, such a large data sample that reflects the pop-
ulation, with detailed registrations for each carcase, collected over
a decade, constitutes a valuable resource for scientific analysis as
conducted in the present study. The data in this study, both the
yield and the classification, are based on Norwegian data, which
does not take into account eating quality. In addition, eating qual-
ity is not assessed as a part of the mercantile transaction between
producer and abattoirs in Norway. Consequently, eating quality
was not assessed in this study.

Conformation’s greatest effect was on HVC and bone & waste,
while the fat group affected meat5, meat21 and especially fat more
than conformation, meat14 approximately the same as conforma-
tion, and HVC and bone & waste to a lesser degree than conforma-
tion. This implies that though conformation and fat group are both
important for accurately reflecting yield, they describe different
aspects of the carcase. The coefficient of determination, in combi-
nation with estimated effects of conformation, fat group and
weight in line with prior expectations, gives strong credence to
EUROP‘s ability to explain yield variation.

Table 5

Predicted effects of conformation, fat group, weight, and category on expected yield. Results are based on evaluation of the linear regression model. Rows represent the product
categories. The first column shows predictions for a standard individual, i.e. a young bull with corresponding mean weight, conformity and fat group. The values in the columns
for conformation, fat group and weight all represent the expected change in percentage for the standard individual with an increase of one for the predictor in question. The
values in the columns representing category show the expected change if the category is changed from young bull.

Item Prediction Conformation Fat group Weight Heifer Young cow Cow

HVC 15.61 0.54 �0.45 0.00 1.22 1.34 1.48
meat5 14.25 0.68 �1.10 0.00 �0.46 �2.73 �1.45
meat14 35.69 0.03 �1.01 0.00 �3.32 �2.41 �0.88
meat21 10.12 �0.21 0.93 0.00 1.04 0.72 �0.40
fat 0.77 �0.14 0.98 0.00 0.64 0.73 0.64
bone & waste 22.26 �0.77 �0.19 �0.01 �0.35 0.13 0.60
forepart 51.79 �0.45 0.02 0.01 �2.57 �2.63 �2.51

Abbreviations: HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat, Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat.
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The estimated regression parameters (Table 3) for the fat poly-
nomial were all negative, with the interpretation being that the
relative effect on the response of a change in fat group is lower
for the carcases with very low or high-fat group classification, than
for carcases with fat groups close to average. The same logic can be
applied to the relationship between the conformation regression
parameter estimates, and its polynomial equivalent. However,
even if there is significant effect of the second-order polynomial
for conformation for some product categories, the overall impres-

sion, based on estimates and t-values (Table 3), is that most pro-
duct categories scale close to linearly with conformation, which
is also visible in Fig. 1.

Percentage forepart is greatly affected by weight and category
(Table 4). The less weight the carcase has overall, the lower the
percentage of the carcase is composed of meat and fat, and thereby
the less difference between fore- and backpart due to bone making
up the majority of the weight. The significant effect of weight on
percentage forepart as seen by its large t-value (17.41) is due to

Fig. 1. Expected and observed proportions of the six product categories as function of EUROP conformation and fat group. HVC in upper left panel, meat5 in upper right panel,
meat14 in middle left panel, meat21 in middle right panel, fat in lower left panel and bone & waste in lower right panel. Percentage of whole carcase on the z-axis,
conformation on the y-axis, and fat group on the x-axis. The blue surface consists of predicted values in percentage based on a category young bull. The amaranth spheres
show observed values per individual. HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat, Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat.
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differences in weight between forepart and backpart being exacer-
bated the higher the weight. The t-values for weight in regard to
percentage forepart and in regard to bone & waste were large com-
pared to corresponding t-values for other predictor variables
(Tables 3 and 4). This is interpreted as weight having a greater
effect on bone & waste, and percentage forepart, than predictor
variables with lower t-values. The negative parameter estimate
associated with weight for bone & waste is interpreted as heavier
carcasses, having less bone and waste than can be accounted for
by conformation and fat group alone. Though the value of the car-
case based on EUROP classification ideally should scale with car-
case composition, not weight, t-values associated with weight as
a predictor collectively show that variation in yield is affected by
carcase weight.

The effects of the female categories, i.e. heifer, young cow and
cow are often considerable and significant (Table 4). One thing to
take into consideration though, is that the classification variables
are on a fifteen-point scale, while the category can only be changed
from young bull to a single other category. The effects of category
were expected as at the same EUROP classification level, different
categories will still have morphological variation. The differences

in ratio between product categories imply that a price difference
between categories is justified.

Category had varying sample sizes. This reflects the number and
the importance for the meat industry, where young bulls were
sampled the most. Cattle of categories with more muscle, less fat
and less bone have a larger market share, and thereby availability.
Bulls fit this description as they, in general, have more muscle than
cows, and young bulls specifically have relatively more muscle
than older bulls, while having less fat. This can be seen in the
weight of young bulls compared to the other categories (Table 1),
and their mean conformation being the highest, with the corre-
sponding standard deviation being similar to the other categories.
Their mean fat group also shows that they are relatively lean com-
pared to other categories.

The Wilks’ lambda test showed that breed group was significant
in addition to the variation explained by EUROP, weight and cate-
gory, which is an important result as it might be concluded that
breed affects yield, also after the controlling for EUROP, weight
and category. A potential concern in the interpretation of the
results of breed groups is that sire effects could potentially be
masked as breed group effects. This is considered unlikely in this
study as the time period for data collect spans a decade, and breed
groups had large (n � 46) sample sizes. Another concern regarding
breed groups are registrations of breeds at slaughterhouses. For the
residual analysis, the individuals with breed registrations from
slaughterhouses only were regarded as pure breeds, which is a
simplification that might lead to minor biases in the residual anal-
ysis. However, when comparing breed group set by slaughter-
houses with breed distribution registered in the animal
husbandry registry for individuals with double registrations, the
breed proportion in the animal husbandry registry corresponding
the slaughterhouse registrations exceeded 72% for all breed groups,
indicating reliable breed registrations also from the
slaughterhouses.

In order to evaluate how breed affects yield, the residual analy-
sis was needed. The most striking results are the mean residual in
HVC for the Limousin and Blonde d’Aquitaine breed group at 0.87
percent, the mean residuals for bone&waste for Charolais at 0.71
percent and Limousin and Blonde d’Aquitaine breed group at
�0.97 percent and finally the mean residual for fat for Norwegian
red at 0.83 percent (Table 6).

When a single cattle weighs hundreds of kilos, such a seemingly
small percentage difference can potentially result in a large differ-
ence in value, especially as the HVC, fat and bone&waste product
categories consist of the cuts with highest (HVC) and lowest (fat
and bone&waste) monetary value. Charolais seems to have an
opposite effect compared to Limousin and Blonde d’Aquitaine,
where the effect of Charolais is marginally less HVC and meat5,
and more fat, and in particular bone & waste than expected from
EUROP classification.

As breed significantly explains variation in yield as a confound-
ing factor, an inevitable consequence is that some carcases are

Table 6

Predicted effects of cattle breed group on expected yield. Results are based on the residual analysis. Rows represent the product categories. The values show the average
percentage residual for the breed group in question. Significant effects (P-values <0.05, t-test) are marked with an asterisk (*).

Item Norwegian red Other Hereford Charolais Aberdeen Angus Limousin and Blonde d’Aquitaine Simmentaler

HVC �0.09* 0.15 0.09 �0.16* 0.00 0.87* 0.43*
meat5 0.02 0.18 1.06* �0.08 0.59* 1.15* 0.87*
meat14 0.00 0.33 0.05 �0.04 0.33 0.17 0.05
meat21 0.23* 0.20 �0.33 0.38* 0.21 �0.45* �0.30
fat 0.83* 0.33 �0.06 0.17 �0.10 �0.02 �0.03
bone & waste 0.04 �0.44* 0.35* 0.71* �0.37 �0.97* 0.41
forepart 0.10* 0.24* �0.50* �0.13 0.01 �0.45* �0.26

Abbreviations: HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat, Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat.

Fig. 2. Illustration of the residual correlation matrix for product categories
percentage forepart from the yield of cattle carcases. Negative correlations with
red, positive correlations with blue. Non-significant (5% level) correlations are
shown with black ‘‘X”-s. HVCs = High-Value Cuts, Meat5 = Trimmings with 5% fat,
Meat14 = Trimmings with 14% fat, Meat21 = Trimmings with 21% fat, front-
part = percentage of the carcase that is forepart.
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expected to be paid more or less than their corresponding yield
value. It is beyond the scope of this study to examine how classifi-
cation should potentially tackle the effect of breed. However, the
results indicate that some regulation/adjustments of either classi-
fication or payment might be considered.

There were several challenges in regard to structuring the
response variable. The fact that our data set included data from
two different cutting patterns posed a challenge. If only carcases
treated with the most detailed cutting pattern were included, the
number of individuals in the data would have to be reduced by
390 individuals, who were processed under the less detailed cut-
ting pattern. This would have been especially problematic as these
individuals constituted the bulk (390 of 509) of the categories
young cow and cow. Excluding these carcases would skew the bal-
ance between males and females even more. Several solutions
were discussed, but in order to maintain an interpretable model
and results, the solution where product components only present
in the most detailed cutting pattern were changed to resemble pro-
duct components also present in the least detailed cutting pattern,
was chosen.

All fat group scores and majority conformation scores, i.e. for
animals slaughtered before 2019 when the objective conformation
classification method was implemented in Norway (Heggli et al.,
2021), are set by human classifiers. As no classification system, nei-
ther automatic/objective systems nor human classifiers are flaw-
less, some individuals will have an incorrect fat group and/or
conformation grade. Heggli et al. (2021) estimated the standard
deviation for fat group classified by Animalia experts to be 0.41,
an estimate that must be regarded an absolute lower bound for
the population of slaughterhouse classifiers. Classification errors,
will in general, lead to more unexplained variance, improved clas-
sification precision will lead to an even tighter relationship
between EUROP classification and the observed yield.

A source of variation that was not accounted for in the present
study was the variation from different butchers. This could be
partly solved by constructing the response for both sides of the car-
case and use carcase ID as a random (predictor) variable in a mixed
model. This was decided against as it complicated the ease of inter-
pretation of the results, which was an important aspect of the
study. Alternative methods for creating the responses, including
the centred log-ratio transformation (Aitchison et al., 2000; Gloor
et al., 2017), were considered, but rejected as they would inhibit
or at least complicate the interpretation of the results.

Conclusion

EUROP conformation and fat group were shown to significantly
explain the variation in yield, which indicates that the EUROP sys-
tem is a fair system in regard to mercantile transactions, with some
potential for improvements. Breed was shown to significantly
explain variation in yield as a confounding factor, indicating that
some breeds may be getting paid somewhat more, or somewhat
less than corresponds to their yield.
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Classification of breed
combinations for slaughter pigs
based on genotypes—modeling
DNA samples of crossbreeds as
fuzzy sets from purebred founders

H. Vinje1*, H. K. Brustad2, A. Heggli1,3, C. A. Sevillano4, M. Van Son5

and L. E. Gangsei1,3

1Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås,
Norway, 2Oslo Center of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway, 3Animalia
AS, Oslo, Norway, 4Topigs Norsvin Research Center, Beuningen, Netherlands, 5Norsvin SA, Hamar,
Norway

In pig production, the production animals are generally three- or four-way
crossbreeds. Reliable information regarding the breed of origin of slaughtered
pigs is useful, even a prerequisite, for a number of purposes, e.g., evaluating
potential breed effects on carcass grading. Genetic data from slaughtered pigs can
easily be extracted and used for crossbreed classification. In the current study, four
classification methods, namely, random forest (RF), ADMIXTURE, partial least
squares regression (PLSR), and partial least squares together with quadratic
discriminant analysis (PLS-QDA) were evaluated on simulated (n = 7,500)
genomic data of crossbreeds. The derivation of the theory behind PLS-QDA is
a major part of the current study, whereas RF and ADMIXTURE are known and
well-described in the literature. Classification success (CS) rate, square loss (SL),
and Kullback–Leibler (KL) divergence loss for the simulated data were used to
compare methods. Overall, PLS-QDA performed best with 99%/0.0018/0.002
(CS/SL/KL) vs. 97%/0.0084/0.051, 97%/0.0087/0.0623, and 17%/0.068/0.39 for
PLSR, ADMIXTURE, and RF, respectively. PLS-QDA and ADMIXTURE, as the most
relevant methods, were used on a real dataset (n = 1,013) from Norway where the
two largest classes contained 532 and 192 (PLS-QDA), and 531 and 193
(ADMIXTURE) individuals, respectively. These two classes were expected to be
dominating a priori. The Bayesian nature of PLS-QDA enables inclusion of
desirable features such as a separate class “unknown breed combination” and
informative priors for crossbreeds, making this a preferable method for the
classification of breed combination in the industry.

KEYWORDS

slaughter pigs, breed classification, crossbreeds, fuzzy classification, single-nucleotide

polymorphism, partial least squares, quadratic discriminant analysis, ADMIXTURE

1 Introduction

Several meat production livestock systems rely on crossbred animals. In pig production,

the production animals are generally three- or four-way crossbreeds (CBs). There are several

reasons for using CB in meat production, in particular to benefit from heterosis and breed

complementarity and to be flexible in creating different products for different markets
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(Smith, 1964; Dickerson, 1973; Sellier, 1976). In contrast to meat

production from other domestic animals, such as cattle, breed

information for production pigs is not logged through the

production chain, and hence, no, or at least incomplete, controls

exist for the breed combination of individual slaughtered pigs.

Verification of a true CB combination is beneficial at different

steps of the pig production chain. For instance, having control of CB

breed origin will allow for the inclusion of CB performance from

different sources after verification in the selection program of a pig

breeding company. Including CB performance is desirable for

achieving a sizable genetic progress for traits showing a genetic

correlation between PB performance and CB performance that is

lower than unity (Wientjes and Calus, 2017). Breed and

crossbreeding also have a significant effect on meat quality traits

(Kim et al., 2020) and the distribution of undesired mutations like

halothane and Rendement Napole genes (Hamilton et al., 2000). For

these reasons, verification of the breed of origin will be valuable for

abattoirs and retailers. Finally, it is natural to assume that breed

origin might be an unobserved nuisance factor for carcass grading;

see Gangsei et al. (2018) for an elaborating discussion. If CB

combinations were known for dissected carcasses, it would

facilitate the evaluation of potential biases regarding the grading

of different breed combinations.

The problem addressed in the current study is the classification

of breed combination for individuals in the CB population based on

genetic data, i.e., single-nucleotide polymorphisms (SNPs) from a

50-K SNP chip. Such genomic data have become cheaper and more

accessible due to rapid developments in technology, and the number

of application areas has exploded within different parts of the

natural sciences, including ancestry classification tasks.

Most methods used to infer breed combinations in pig

populations with genomic data were originally developed for

inferring human ancestry. ADMIXTURE (Alexander et al., 2009)

is one of the most popular methods used to classify individuals with

an unknown ancestry into discrete populations and was developed

for human populations but has been used extensively in pigs to trace

commercial (Huang et al., 2014) or indigenous pig breeds (Mujibi

et al., 2018; Dadousis et al., 2022; Kim et al., 2022; Yin et al., 2023).

Principal component-based algorithms for determining the ancestry

have also been developed, such as PCAdmix (Brisbin et al., 2012),

and applied in pig populations (Schleimer et al., 2022). As pig

breeding is far from human genetics, new methods are needed for

better classification. An approach has been developed to assign

alleles in three-way CB pigs to their PB of origin; the approach has

high accuracy, but as it infers local ancestry, it is highly

computationally demanding (Sevillano et al., 2016; Vandenplas

et al., 2016). Another study tried using random forest for this

purpose in pigs; however, the method did not accurately estimate

breed composition for the breeds in question with the available

markers (Chinchilla-Vargas et al., 2021). Recently, an interesting

study was published showing the advantage of partial least squares

regression (PLSR) and partial least square–discriminant analysis

(PLS-DA) for global ancestry identification of pig breeds (Miao

et al., 2023). The results showed that a wide range of breeds can be

discriminated using these methods and that alternatives to human-

developed methods can be beneficial for the pig industry. However,

the study was restricted to the classification of PBs and treated CBs

as similar to unknown breeds.

When assuming that grandparents are PB animals from a set of

known PBs with known origin, i.e., breed, there will always be a

possibility that CB individuals might have one or more grandparents

from breeds outside the set with predefined known breeds. Ideally,

classification methods should be able to identify such individuals

and classify them as an “unknown breed combination.” All the

aforementioned methods, except PLS-DA, lack the ability to

incorporate such a feature, and further elaboration is needed to

achieve this objective.

The novelty of the present study is to derive the theoretical basis

for partial least squares with quadratic discriminant analysis (PLS-

QDA) (Boulesteix, 2004; Hastie et al., 2009) used for CB

classification based on the following steps: i) PLS was used as a

replacement for PCA/MDS as the primary dimension reduction

method for SNP data, ii) additional variance was incorporated by

modeling the proportion of DNA inherited from each grandparent

as a random variable, and iii) the Bayesian nature of QDA was

utilized to incorporate informative priors for CB classes and the

possibility to include a class “unknown breed origin”. The variance

in proportion of inherited DNA was combined with breed-specific

variances for PBs in order to achieve CB-specific covariance matrices

for PLS components. CB-specific covariance matrices enable the use

of QDA as a replacement for the more common linear discriminant

analysis (LDA). An additional asset facilitated by PLS-QDA is

visualization of the behavior of decision boundaries in a low (<3)
dimensional space.

The overall aim of this study is to evaluate the crossbreed

classification of commercial finisher pigs based on genomic data

from a 50-K (Illumina) SNP chip. Two other well-known

classification methods, random forest (RF) and ADMIXTURE,

were compared with PLSR and PLS-QDA.

2 Materials and methods

2.1 Materials

2.1.1 Genomic data
The genotypes used in this study are data collected from the pig

breeding companies Norsvin (Norway) and Topigs Norsvin (the

Netherlands). Animals were genotyped using a custom GeneSeek

50-K (Illumina) SNP chip (Lincoln, NE, Unites States). Of these,

23,070 SNPs are used routinely by Topigs Norsvin and constitute the

raw SNP data in the current study. Based on PB animals (n = 4,014),

it was observed that from five different PBs (see details in the

following section), the minimum call rate was 0.997 and minor allele

frequency (MAF) was 0.045, well inside the limits used by Tusell

et al. (2020) at 0.9 for call rate and 0.01 for MAF.

For each SNP, the most frequent allele in 4,014 PBs was

identified. SNPs were coded into numeric vectors with zero for

the homozygous genotype of the most frequent allele at the SNP in

question, one for the heterozygote, and two for the homozygous

genotype of the least frequent allele.

Data from five PBs (n = 4,014) are used as training data for all

models. They also constitute the basis for data simulation; see the

paragraphs in the following section for details. PBs are Landrace

(abbreviation “L,” n = 1,000), Large White (“W,” n = 1,000), Duroc

(“D,” n = 1,000), and Hampshire (“H,” n = 14), which are
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dominating PBs in the Norwegian pig population. For the

exploration of uncertainty measures and generalizations of the

methods, a fifth breed, Pietrain (“P,” n = 1,000), not present in

Norway, was incorporated into the study. In the present study, the

term “breed” is used extensively. In practice, the PBs described

previously might be viewed as sub populations/lines primarily

present in the Norwegian pig population. In addition to the SNP

data from PB individuals, SNP data from 1,013 slaughter pigs with

unknown breed origin were used to examine model behavior.

2.1.2 Breeds and breed combinations
The focus of this study is to classify the breed combinations of

founders (F0 generation) observed in the commercial finisher pigs

(F2 generation) based on genotypes from the F2 generation. It is

assumed that all F0 individuals are PB.

When q PBs are present, there are q4 (625 for q = 5 and 256 for

q = 4) different unique breed permutations in the F2 generation. For

example, “LWDD” indicates L and W as the grandfather and

grandmother of the maternal line, respectively, and D as the

grandfather and grandmother at the paternal line, which is the

most common Norwegian finisher breed combination. The pure

breeds Duroc and Hampshire are typically the paternal line for

production pigs.

The q4 unique permutations constitute a total of ncomb � ( q + 4 − 1
4

)
(70 for q = 5 and 35 for q = 4) unique breed combinations when the

sequence of grandparents is not taken into account. Combinations

are given with letters in descending alphabetical order. For example,

the combination “DDLL” contains the permutations {“LLDD,”

“LDLD,” “LDDL,” “DDLL,” “DLLD,” “DLDL”}, etc.

2.2 Simulation of SNP data for crossbreeds

In order to test the accuracy of classification methods, CB data

with a known breed origin form a prerequisite. For the current study,

such data were nonexistent, and data simulation was used to obtain

relevant test datasets for the methods.

SNP data from the PBs (n = 4,014) were used as the input for the

simulation. The output was combinations of the SNP data in

accordance with known CB combinations. One simulated test set,

TestP−, originates from PBs omitting Pietrain. The other test set,

TestP+, consists of breed combinations with at least one Pietrain

grandparent. For each CB combination, we performed

100 simulations, resulting in 3,500 simulations for both test sets,

TestP− and TestP+.

Simulations were conducted using R packages and functions

described in Vigeland (2021). The first step in the simulation

procedure was to simulate an identical by descent (IBD) pattern

along the genome for an individual in the F2 generation, as shown in

Figure 1, based on a pedigree connecting the F0 and F2 generations.

An IBD pattern shows how different parts of an individual’s genome

are inherited through descent from previous generations, from

grandparents in the present study, using information on how the

chromosomes recombine. The recombination is a stochastic process

along the genome. A prerequisite for simulation of IBD patterns is a

recombination map which relates the cumulative genetic distance, in

centimorgans, to the cumulative physical distance, in bases, along

the genome. The genetic map provided by Tortereau et al. (2012)

was used as the basis for the recombination map.

The second step was to sample SNP data for the F2 individual,

conditional on the simulated IBD pattern and the CB combination

from the individual in question. Thus, the F0 generation was

randomly selected among the 4,014 PB individuals, and then,

their allele data (nucleotide bases A, C, T, and G) were

transferred to the F2 individual, in accordance with the simulated

IBD pattern for each SNP. Consequently, the simulated data are

different combinations of the original allele data from the

4,014 PB pigs.

2.3 Evaluation of classification results

The typical goal of classification is to assign an observation to

one out of a distinct set of classes. A problem arises when the goal is

to classify in between such distinct classes. We will regard the CB

pigs as such fuzzy sets (Zadeh, 1965), i.e., the class of CB pigs is

regarded as a continuum of grades of membership in the PB classes.

Four classification methods were tested: random forest (RF),

ADMIXTURE, partial least squares regression (PLSR), and partial

least squares with quadratic discriminant analysis (PLS-QDA); see

following sections for details. Only PB individuals were used for

training the four classification methods. We applied two different

training datasets, one consisting of all PB individuals and another

omitting the Pietrain data, referred to as TrainP+ and TrainP−,

respectively.

For the two simulated test sets, TestP+ and TestP−, breed

combinations were classified using all four aforementioned

methods trained on the two training sets (TrainP− and TrainP+),

leading to a total of 16 (“four methods” × “two training data

FIGURE 1

Illustration of how a chromosome pair is inherited IBD from the
F0 to F2 generation. The genomes recombine from the F0 to
F1 generation and then to the individual in the F2 generation,
visualized by the combination of colors of the chromosomes.
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sets” × “two test data sets”) combinations of methods, training, and

test data. For each combination, 3,500 individuals were classified,

i.e., 35 “CB combinations” × 100 “individuals per combination”. The

real data from CBs with unknown breed origin (n = 1,013), denoted

“TestR”, were classified using ADMIXTURE and the PLS-QDA

method. The results were used to examine the effect of an

informative prior distribution in the latter and whether the

methods provided useful and credible results in a practical setting.

All breed combinations might be represented by a vector Δ of

length q (q = 4 in TrainP− and q = 5 in TrainP+) whose elements are

the proportions of grandparents from each of the q PBs, in

alphabetic order, i.e., “D,” “H,” “L,” “P,” and “W.” For example,

an individual with breed combination DDLW will have

Δ � 1
4[2 0 1 0 1]t. Consequently, the elements of Δ are quarters,

which sum to 1. All four classification methods give predictions

for Δ which denoted Δ̂. Even if the elements of Δ are quarters, the

predictions are proportions, i.e., 0≤ δ̂
j

new ≤ 1 and ∑q
j δ̂j � 1, but the

elements (δ̂j) are not necessarily in quarters.

Two statistics are calculated for the evaluation of different

methods based on simulated data where the true breed

combinations (Δ) are known. The square loss for a new

prediction is given by ∑q
j(δj − δ̂j)2, and the Kullback–Leibler

divergence (Kullback and Leibler, 1951) is the divergence

between the two multinomial distributions for 4Δ with

probability vectors Δ and Δ̂, respectively.

Hard classifications for RF, ADMIXTURE, and PLSR were

achieved by choosing the breed combination with either the

shortest Kullback–Leibler divergence or minimal square loss. For

PLS-QDA, the hard prediction is the CB class with largest posterior

probability.

2.4 Classification methods

2.4.1 ADMIXTURE and random forest
ADMIXTURE (Alexander et al., 2009) is an algorithm and

software tool for the maximum likelihood estimation of

individual ancestries, usually used for humans but also possible

to apply to other species like pigs. ADMIXTURE 1.3 software (avid

H. Alexander et al., 2020) was used for this analysis in a supervised

mode with K-values set to 4 (for TrainP−) and 5 (for TrainP+).

RF is a widely used classification method built on the theory of

tree-structured classifiers. An RF consists of a collection of K tree-

structured classifiers, where K is usually a large number. In the end,

all trees vote for their preferred class and RF classifies to the class

with most votes (Breiman, 2001; Hastie et al., 2009). The Hampshire

data were oversampled in the tree-growing process, inversely

proportional to their abundance compared to other breeds

(1,000/14). RF analysis was conducted via the “randomForest”

package (Liaw and Wiener, 2022) in R. Only training data were

used for tuning hyper parameters, with the out-of-bag (OOB) error

as the performance measurement. The major hyper parameters to tune

are the number of drawn candidate variables in each split (mtry), the

number of observations drawn for each tree (sample size), node size, and

number of trees (K) (Probst et al., 2019).We usedmtry � 151 ≈

�����
23070

√
,

number of trees K = 100, sample size 100, and node size 1, which gave

OOB errors equal to 0 for both TrainP+ and TrainP−.

2.4.2 Partial least squares regression
Partial least squares (PLS) is a supervised method where breed

information is taken into account. Wold et al. (2001) offers an

overview over the fundamental principles of PLS. The basic idea of

PLS regression (PLSR) is to find the multidimensional directions in

the predictor variable space, i.e., the SNP (X) that explains the

maximum multidimensional variance direction in the response,

i.e., the breed (Y).

We apply a multivariate response matrix Y (n × q) for the PLS

regression. Each row in the response consists of the Δ vector for the

PB in question. As all individuals in the training data are PB, all

elements of Y ∈ {0, 1}, i.e., dummy variables for the breed.

In principle, all predictor variables, i.e., SNPs, are included but

assigned different weights, defined by the loading matrix P (p × m).

The score matrix T = XP, a n × m matrix, defines the relevant

subspace of X, where m is the number of relevant components.

We usedm = q − 1 where the reasoning is that two breeds will be

well separated on one axis/component, three breeds by two axis, or

in general q breeds by m = q − 1 axis/components, where each PB

should represent one node point, and one node point only, in them-

dimensional space spanned by the scores.

A frequently used method for dimension reduction is principal

component analysis (PCA) (Pearson, 1901). In contradiction to PLS,

PCA is an unsupervised method, not taking breed information into

account when constructing the scores. For comparison of the two

methods, the first four scores from PCA and PLS are compared and

evaluated against the prerequisite that each PB should represent one

node point, and one node point only, in the space spanned by the

scores.

PLSR predictions might yield results whose elements are larger

than 1 or smaller than 0. These elements were truncated to 1 − 10−10

and 10−10, respectively, for the evaluation of Kullback–Leibler

divergence.

The R-package “pls” (Liland et al., 2021) was used for fitting PLS

and PCA models. The response (Y as described previously),

predictors (X as described previously), and number of

components (q = 4 for TrainP+ and q = 3 for TrainP−) were the

data/parameters used as inputs for fitting the PLS and PCA models.

2.4.3 Partial least squares with quadratic
discriminant analysis

The principles of classification and discriminant analysis (DA)

are given in Hastie et al. (2009). The goal is to find a posterior

probability for different classes (CBs):

P K|x( ) � f k x( )πk∑ncomb+1
l�1 f l x( )πl

, (1)

where fk(x) is the class-conditional density of x (observed SNPs),

assuming that the SNP sample is from an individual of class K, and

πk is the prior probability of class K.

For PLS-DA, x is replaced with t, i.e., the PLS score vector.

Furthermore, a common assumption is to assume that fk(t) is

(multivariate) normally distributed with different mean

parameters (μk). When variance is assumed to be constant

among classes, the method is known as linear discriminant

analysis (LDA), which is notably applied on PLS scores (PLS-

LDA) (Boulesteix, 2004). In the present study, we assume
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different variance parameters Σk for each class, which is known as

quadratic discriminant analysis (QDA) (Hastie et al., 2009). Initially,

this assumption is applied to the scores of the PB individuals, i.e., the

PLS scores (tj) for PB individuals are assumed to be multivariate

normal:

tj ~ Nm μj,Σj( ), j � 1, . . . , q, (2)

where q is the number of PBs.

For the problem in the present study, only data from PB animals

are used for training, and we lack observations, i.e., score vectors, for

all CB classes. In order to implement CB classes, we need to find the

class-conditional densities (fk(x)) for CB classes, without having the

realization of score vectors for these classes. In addition, we included

a class “unknown,” i.e., an unknown breed combination, leading to

ncomb + 1 possible classes. The inclusion of the “unknown” class is

possible for PLS-QDA, due to its Bayesian nature, where possible CB

combinations are defined a priori, in contradiction to RF and PLSR.

A natural assumption is to assume that the scores of CB animals

are distributed as linear combinations in accordance with the

proportion of inherited DNA from the PB F0 generation. Let θ, a

vector of length q, represent the proportion of DNA material in an

F2 individual inherited from grandparents of different F0 PB

individuals. Then, 0 ≤ θj ≤ 1, j = 1, . . ., q, and ∑q
jθj � 1. Under

the assumption that θ is known for a CB individual, it is natural to

model t � ∑q
jθjt

j, where t
j is the score associated with PB class j.

Using standard proprieties of the normal distribution, we have

t | θ ~ Nm ∑q
j�1

θjμj,∑q
j�1

θ2j Σj
⎛⎝ ⎞⎠. (3)

The proportion of DNA inherited from each grandparent is not

exactly equal to a quarter. Thus, θ might be viewed as a random

variable with E(θ) = Δ and defined variance V(θ). By applying the

law of total expectation (Adam’s law) and variance (Eve’s law), we

find that

E t( ) � Eθ ∑q
j�1

θjμj
⎡⎢⎢⎣ ⎤⎥⎥⎦ � ∑q

j�1
δjμj � μ1 . . . μq[ ]Δ � μ+Δ,

V t( ) � Eθ ∑q
j�1

θ2jΣj
⎡⎢⎢⎣ ⎤⎥⎥⎦ + Vθ μ+θ[ ] � ∑q

j�1
V θjj( ) + δ2j( )Σj + μ+V θ( )μ+t,

(4)

where V (θjj) is the jth diagonal element of V (θl) and the columns of

the m × q matrix μ+ are given by the q expectation vectors (μj) for

PBs. We will assume, even if it is an approximation, that the

marginal distribution for t is multivariate normal with

expectation and variance as given in Eq. 4, i.e.,

t ~ Nm μ+Δ,∑q
j�1

V θjj( ) + δ2j( )Σj + μ+V θ( )μ+t⎛⎝ ⎞⎠. (5)

Ordinary least squares (OLS) estimates are used for μj and Σj,

i.e., sample means and sample covariance for the PB PLS score

vectors from the training datasets. In addition, V(θ) needs to be

estimated. This was done by assuming that θ is Dirichlet distributed

with the concentration parameter α0Δ; consequently, E(θ) = Δ, and

V(θ) � 1
α0+1 (d(Δ) − ΔΔ

t), where d(Δ) is the diagonal matrix with Δ

on the main diagonal. Then, the only unknown parameter is α0,

which was estimated by the method of moments on simulated data.

A total of 1,000 simulations of θ, applying Δ as a vector of quarters,

was conducted by IBD simulation (Vigeland, 2021); see Section 2.2

for details. The diagonal elements of the simulated variance have

expected values 3(16α0 + 16)−1 leading to α̂0 � 3(16V̂arθ)−1 − 1,

where V̂arθ is the mean diagonal element of the empirical

variance based on simulated data, which is affected by several

factors, including the genetic map (Tortereau et al., 2012).

We assumed that the class-conditional density of t for the

unknown breed (f′unknown′
(t)) was uniform over the q − 1-

dimensional space spanned by the range of PB score vectors.

We use two different prior distributions, i.e., πk in Eq. 1, a “flat prior”

for different breed-combinations, i.e., π1 � . . . � πncomb+1 � 1
ncomb+1 and an

informative prior where πk is set equal to the proportion of pig litters of

crossbreed k among all pig litters in Norway in 2021 (Langaker et al.,

2021). The PLS-QDA soft prediction is given by Δ̂ � ∑ncomb
k�1 ΔkP(K|x),

where P(K|x) is the posterior probability for class K, and Δk is the

associated breed proportion vector; see Eq. 1. For the class unknown, we

used Δ = 0q.

PLS-QDA models were fitted and evaluated in RStudio (Posit

team, 2023) with custom functions, where the package “mvtnorm”

(Genz et al., 2023) was used extensively. Codes are available at

GitHub (Gangsei et al., 2023), a repository which also contains codes

for replicating results, tables, and figures in the present study. For a

more extensive exploration of the classification results presented in

this article, an R-Shiny app has been made available (Gangsei, 2023).

3 Results

3.1 Comparing PCA and PLS

For visualization of the data, both PCA and PLS were conducted

on the TrainP+ data. The results are shown in Figure 2. For both

PCA and PLS, first and second components both split the three

breeds Duroc, Landrace, and Pietrain in a similar way. Component

3 manages to separate Large White from the other breed classes for

both PCA and PLS approaches. The difference lies in the last, small

breed (n = 14) Hampshire. The fourth component from the PCA

mainly spans within variation of Pietrain and Hampshire, i.e., the

breed with a small sample size cluster from the other breeds but does

not represent its own node point in the four-dimensional space

spanned out by the first four PCA components. In contradiction, the

fourth component from PLS manages to distinguish this pig breed

with its own node point even with a small sample size. As CBs are

regarded fuzzy sets, each PB should represent node points in them =

q − 1 dimensional space spanned by the scores in order to prevent

equal center points (μ) for different breed combinations. PCA fails to

incorporate this prerequisite for the unbalanced dataset, and

hence, PCA is not included in further analysis. The total

variance explained (R2) by the first four components in TrainP+

was 34.4% and 34.9% of the X-matrix for PLS and PCA,

respectively. For both PLS and PCA, R2
> 99.1% for all PBs

except Hampshire, which had R2 = 90.6% and 5.0% for PLS and

PCA, respectively. For TrainP−, the cumulative R2 values for three

components were 32.1% and 32.5% (for X with PLS and PCA),

> 99.2% for all PBs except Hampshire with R2 = 91.1% and 5.9%

for PLS and PCA respectively.
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3.2 Classification of simulated data

3.2.1 Comparing methods
Table 1 displays an overview of the classification results based on

the simulated data, for soft and hard classification with both the

Kullback–Leibler divergence and the square loss. In general, PLS-

QDA performed best as it managed to correctly classify 6,901 and

6,892 (KL-dist and Sq-loss, respectively), or 99% average, out of the

total of 7,000 individuals when trained with Pietrain (TrainP+) and

tested for all combinations (TestP+ and TestP−). Similar results for

ADMIXTURE and PLSR are 6,744 and 6,826 (97% average), and

6,768 and 6,840 (97% average), respectively. RF, by far, performed

worst as it only correctly classified 458 and 2073 (17% average)

individuals.

Soft classification results for different methods are visualized in

Figure 3. The figure shows results based on all breed combinations

except Hampshire in the first column. All methods have best

precision for PBs, i.e., PB proportion for breed j (δj = 1), or

when PB is not present at all, i.e., δj = 0. For δj, at 0.25, 0.5, and

0.75, the classification precision decreases with increasing δj for PLS-

QDA, indicating that PB proportions of 0.75 are most poorly

classified with PLS-QDA. Hampshire results are of particular

interest as only 14 individuals were present in the training data

compared to 1,000 individuals for the four other breeds. Even if RF

performs poorest overall, it is more noticeable for Hampshire than

the other breeds as the Hampshire proportions are heavily

underestimated by RF. To some extent, this is also the case for

PLSR, while ADMIXTURE and PLS-QDA seem to yield unbiased

estimates also for Hampshire proportions.

3.2.2 Effect of omitting breed from training data
All methods performed well when trained and tested on their

respective “alike” datasets, as well as when trained with Pietrain and

tested without, as shown in the second row in Table 1.

Contrary to prior expectations, there do not appear to be

large differences in the classification precision for TestP−

depending on whether Pietrain is included in the training

data (TrainP+) or not (TrainP−). When evaluated as the

proportion of correct classified individuals, the results are

marginally better with TrainP+ compared to TrainP−, in

particular, for ADMIXTURE and PLSR. However, the average

Kullback–Leibler divergence and square loss are, in general,

marginally smaller with TrainP− compared to TrainP+.

Consequently, including Pietrain in the training data does not

seem to impair the model’s classification ability, even for CBs

without Pietrain.

3.2.3 Pietrain regarded as an unknown breed
To get an understanding of how inclusion of unknown breeds,

i.e., breeds not present in the training data, in CB combinations

FIGURE 2

Score plots for pure breed animals based on the four primary scores using principal component analysis (PCA) displayed in the upper panels and
partial least squares (PLS) displayed in the lower panels. Pietrain pigs are represented in red, Duroc in yellow, Landrace in magenta, Large White in cyan,
and Hampshire in black.
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affects the classification results for PLS-QDA, results for the

combination TrainP− TestP+ were evaluated and are presented

in Table 2. For this combination, Pietrain might be regarded as

an “unknown breed” and, ideally, all individuals in TestP+ should be

classified as “unknown” for the model based on TrainP+. In Table 2,

“P” is still the abbreviation for Pietrain, but the combinations are

generalized, i.e., “XXXX” = “DDDD,” “HHHH,” “LLLL,”

“WWWW” (PB), “XXXY” = “DDDH,” . . ., “WWWL,” i.e., three

grandparents of the same breed, etc. Most of the CB blends with

Pietrain are recognized and classified as an “unknown” breed. PB

Pietrain (“PPPP”), almost PB Pietrain (“PPPX”), and the CB of one

Pietrain together with three of the four other classes (“PXYW”) are

more likely to be classified as a mix of all the other four PB

combinations (“XYLK”) with 100%, 46%, and 32% classified as

“XYLK,” respectively. A likely explanation is that the center point for

“DHLW” is close to origo, with a large associated generalized

variance.

3.3 General PLS-QDA results

The Bayesian method PLS-QDA, which might be regarded as a

refinement of PLSR, performs best and also has more flexibility in its

modeling, e.g., it can easily be implemented with an unknown breed

combination. The support for classifying to “unknown” can be

adjusted by changing the associated prior probability πUnknown.

Changing πUnknown has some similarities to changing the

significance level for hypothesis testing. If the support for an

unknown breed is lowered, i.e., πUnknown is decreased, fewer

individuals will be classified as “unknown breed,” i.e., the

probability of classification to a “real CB class” is increased, with

the disadvantage that the probability of incorrect classification is

increased. The analogy to hypothesis testing is that the higher

significance level increases the probability of rejecting the null

hypothesis but also increases the risk of doing a type I error.

Consequently, if it is of huge importance to avoid incorrect

classifications, πUnknown should be increased and vice versa.

Another feature which is unique for PLS-QDA is the possibility

to use an informative prior. The effect of the informative prior on

classification results for the real data, TestR, with PLS-QDA, trained

on TrainP+, is shown in Table 3. The effect of the informative prior

is conspicuous and as expected a priori. The number of individuals

classified to the two dominating CB classes i.e., “DDLW” and

“HHLW,” i.e., typically F1 commercial (“LW”) maternal line and

Duroc (“DD”) or Hampshire (“HH”) paternal lines, increases, in

particular, at the expense of the number classified as “unknowns.”

PLS-QDA with an informative prior and ADMIXTURE yields close

to similar results for the real data, with one exception, the “unknown

group,” which is natural since classifying to “unknown” is not a

feature in ADMIXTURE.

Estimates for μj and Σj in Eq. 2 are PB-specific means and

covariances based on the PLS scores. The PLS scores for PBs used

for these calculations are shown in the two lower panels in Figure 2. μj
and Σj for CBs are linear combinations of μj’s and Σj’s for PBs, as shown

in Eq. 5.

A crucial success factor for PLS-QDA is the incorporation of

additional variance in CB covariance due to the stochastic nature of

the proportion of DNA inherited from grandparents. Table 4 shows

average matrix determinants at the log scale for the theoretical

covariance matrices, as given in Eqs 4, 5. The size of the

TABLE 1 Evaluation of prediction errors for soft predictions as mean ± standard deviations and hard predictions given as numbers of correct classifications as the

total number and % (n = 3,500 for TestP+ and TestP−) based on Kullback–Leibler divergences and quadratic errors, crossed over the two training (TrainP+ and

TrainP−) sets and test sets (TestP+ and TestP−).

Combination Method RF ADMIXTURE PLSR PLSQDA

TrainP+ TestP+ KL-dist (soft) 0.31 ± 0.2 0.072 ± 0.088 0.038 ± 0.038 0.0015 ± 0.013

KL-dist (hard) 300 (8.6%) 3,326 (95%) 3,438 (98%) 3,458 (99%)

Sq-loss (soft) 0.061 ± 0.033 0.01 ± 0.01 0.0084 ± 0.0093 0.0016 ± 0.012

Sq-loss (hard) 1,208 (35%) 3,404 (97%) 3,424 (98%) 3,455 (99%)

TrainP+ TestP− KL-dist (soft) 0.46 ± 0.24 0.053 ± 0.063 0.064 ± 0.08 0.0024 ± 0.016

KL-dist (hard) 158 (4.5%) 3,418 (98%) 3,330 (95%) 3,443 (98%)

Sq-loss (soft) 0.075 ± 0.041 0.0073 ± 0.0092 0.0084 ± 0.0096 0.002 ± 0.015

Sq-loss (hard) 865 (25%) 3,422 (98%) 3,416 (98%) 3,437 (98%)

TrainP−TestP+ KL-dist (soft) 12 ± 16 12 ± 16 12 ± 16 9.6 ± 16

KL-dist (hard) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Sq-loss (soft) 0.29 ± 0.26 0.28 ± 0.29 0.26 ± 0.27 0.37 ± 0.24

Sq-loss (hard) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

TrainP−TestP− KL-dist (soft) 0.3 ± 0.18 0.048 ± 0.065 0.056 ± 0.081 0.0024 ± 0.017

KL-dist (hard) 595 (17%) 3,400 (97%) 3,208 (92%) 3,445 (98%)

Sq-loss (soft) 0.05 ± 0.035 0.0077 ± 0.0098 0.0085 ± 0.0098 0.0025 ± 0.021

Sq-loss (hard) 1,627 (46%) 3,408 (97%) 3,406 (97%) 3,434 (98%)
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determinant of the covariance matrix is referred to as the generalized

variance byWilks (1932) andmight be viewed as a scalar describing the

size of the covariance matrix in question. The generalized variance

increases with an increasing number of PBs in the CB combination. For

comparison, the log scale determinants of empirical variances from

predicted scores, i.e., tsim = X
sim
P, where Xsim is the matrix of simulated

SNPs, are shown in the same table. The results showdeterminants of the

same size for both training sets, except for PBs where the variance based

on empirical scores is smaller.

The behavior of classification results, center points (μ), and

associated covariance (Σ) for CBs of different complexities and

different settings for the informative prior and support for

unknown breed (πUnknown) can be explored in the R-Shiny app

(Gangsei, 2023).

4 Discussion

The overall aim of this study was to evaluate crossbreed

classification of commercial finisher pigs based on genomic data

from a 50-K (Illumina) SNP chip, with the four different methods,

namely, RF, ADMIXTURE, PLSR, and PLS-QDA. The novelty was

to implement PLS-QDA as an alternative method with several

beneficial features to analyze the genomic SNP data.

PLS was used as an alternative dimension reduction method to

PCA due to its additional features. Subsequent theoretical

deductions led to the extended method, PLS-QDA. For

comparison, two methods not built on dimension reduction were

also executed: the model-based ADMIXTURE, which is a well-

functioning software application for ancestry classification, and the

FIGURE 3

Densities for elements in the soft classifications (Δ̂). The left column represents results obtained from breeds Duroc, Landrace, Pietrain, and Large
White, and the right column represents results fromHampshire. The rows represent the four differentmethods, i.e., RF, ADMIXTURE, PLSR, and PLS-QDA.
The curves show empirical densities for δ̂j for δj = 0/4, 1/4, . . ., 4/4, with colors black, red, blue, green, and magenta, respectively. Densities are based on
results from models trained on the training set TrainP + and applied to both simulated test sets, i.e., TestP+ and TestP−. Vertical lines represent the
true proportions, i.e., δj.
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well-known classification method RF. The classification results, for

all methods on the two simulated test sets with and without an

additional breed, show that PLS-QDA had the highest accuracy and

that PLSR and ADMIXTURE are both methods that meet prior

expectations to classification accuracy.

It was observed, naturally, that all methods have best precision

for the classification of individual elements, δj in Δ, when the

element is associated with a PB, i.e., δj = 1, or when the PB is

not present at all, i.e., δj = 0. For PLS-QDA, it was observed that the

classification precision for δj was decreased at 0.25, 0.5, and 0.75,

indicating that PB proportions at 0.75 are most poorly classified with

PLS-QDA. A similar pattern is not evident for ADMIXTURE;

however, the results for PB proportions at 0.75 are approximately

equal for PLS-QDA and ADMIXTURE.

PLS-QDA has some advantages compared to ADMIXTURE and

PLSR. First, it performs best when tested on the simulated data, even

if this is by small margins, but more important is its ability to

incorporate an unknown breed combination. The results presented

in Table 2 show that the PLS-QDA method is capable of classifying

CBs with Pietrain grandparents as “unknowns” to a large degree.

The exception is PB Pietrain, almost PB Pietrain (“PPPX”), and the

CB of one Pietrain together with three of the four other classes

(“PXYW”), where many individuals were classified as a mixture of

the four other PBs. Consequently, classification results with four

different PBs should be interpreted with caution as it may be an

unknown purebred not seen in the training set. Some

misclassifications of CBs with other levels of Pietrain

grandparents also occur; however, in general, the method

TABLE 2 Proportions (in %) of the predicted breed combination, i.e., maximum posteriori probabilities with PLS-QDA, for the model trained without Pietrain

(TrainP−) vs. true breed combinations for the simulated test set with Pietrain (TestP+). Breed combinations are generalized, i.e., “XXXX” = {“DDDD,” “HHHH,”

“LLLL,” “PPPP,” “WWWW”} (PB), “XXXY” = {“DDDH”, . . ., “ZZZL”}, i.e., three grandparents of the same breed, etc.

Predicted combination (%)

Unknown XXXX XXXY XXYL XXYY XYLK n

True combinations PPPP 0 0 0 0 0 100 100

PPPX 54 0 0 0 0 46 400

PPXX 100 0 0 0 0 0 400

PPXY 80 0 0 0 0 20 600

PXXX 66 28 6 0 0 0 400

PXXY 68 0 17 8 6 0 1,200

PXYL 41 0 0 27 0 32 400

TABLE 3 Predicted breed combinations for the test set containing real data based on models trained on all data (TrainP+). Predictions as posterior maximums

applying the informative and flat prior to the PLS-QDAmethod and hard predictions based on the square loss for ADMIXTURE. The last columns show differences

in the total number classified to different CBs for PLS-QDA with and without informative priors and ADMIXTURE. The group “other combinations” contains sums

for breed combinations with fewer than 10 predictions for any of the methods.

Number of breed combinations Difference between methods

Flat Informative ADMIXTURE Inf. vs. Adm Adm. vs. Flat Inf. vs. Flat

DDLW 497 532 531 1 34 35

HHLW 169 192 193 −1 24 23

Unknown 118 70 0 70 −118 −48

LLWW 41 44 46 −2 5 3

DDLL 43 43 53 −10 10 0

LLLL 38 39 41 −2 3 1

LLLW 23 24 22 2 −1 1

HHLL 17 16 36 −20 19 −1

DLPW 16 0 0 0 −16 −16

LWWW 10 0 11 −11 1 −10

HLLW 0 0 14 −14 14 0

Other combinations 41 53 66 −13 25 12
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performs reasonably well for these combinations, in particular for

individuals with 50% Pietrain grandparents.

Another advantage PLS-QDA has in comparison to the other

methods is the possibility to use different prior distributions for the

CB populations. These priors might change in time and space, for

instance, in other target populations, e.g., countries with other

dominating breed combinations. By assigning high prior weight

to the unknown breed group, more individuals will be classified as

unknowns at the expense of the known CBs. As argued in the results,

the interpretation of the prior weight for an unknown breed has

similarities to the interpretation of the significance level in

hypothesis tests, i.e., a higher significance level/lower prior for

unknown breed not only leads to increased strength for

classifying a known CB/reject the null hypothesis, but also an

increased possibility of misclassification/type I errors. This is a

desirable feature enabled by the Bayesian nature of QDA and, to

the best of our knowledge, a novelty in classification of crossbreed

pigs.

A main result is that, at least for unbalanced data, PLS is

preferable over PCA as PLS fulfills the prerequisite of assigning

one node point in the q − 1-dimensional space to each PB, which is,

thus, a necessity for classification purposes and, in addition, is a

considerable advantage for visualization. This is illustrated in

Figure 2 where PLS assigns one PB to each node point in the q −

1-dimensional space defined by the scores. This is a prerequisite for

the PLS and PLS-QDA methods as CBs are considered blends in a

space where the PBs represent the extremes. For purely practical

purposes, this might have been solved by having a more balanced

dataset, i.e., the same number of Hampshires as for the other breeds.

However, the insight has significance since new breeds might fairly

easily be added to the model without the need for observations from

a large number of individuals when PLS is used.

It should be recognized that PLS, at least for genomic data such

as the data used in the present study, fulfills the need for dimension

reduction, with better results than PCA in the sense of more dense

and dispersed clusters of PBs for the first m PCA/PLS components.

As a key finding of the present study, we highlight that PLS might be

used as a complementary method for dimension reduction of SNP

data under the assumption that a “supervising” feature in the present

study “breed,” is available.

An important feature of a general method is the stability when

exposed to new or unknown breeds that are not included in the PB

F0 generations. The results show that both PLS-QDA and PLSR, as

well as ADMIXTURE, are flexible in the sense that new PBsmight be

added to the training data without substantial loss with respect to

classification accuracy, even if some of the included PBs are not

present in the target population. As strongly anticipated,

classification performance for breeds not included in training

data was poor. However, the results showed marginal

deterioration when the method was trained with the new breed,

TrainP+, and classified without, TestP−. Hence, the disadvantage of

training on a variety of PBs is small even if the possible crossbreed

combinations are well known a priori. Consequently, for all

methods, other PBs might be included in the training data, with

small or even negligible loss of classification precision in populations

where one or more of PBs is not present. The possibility of adding

new PBs to the model without the need for a large sample size for

PBs in question is a highly desirable feature for PLSR, PLS-QDA,

and ADMIXTURE.

RF performed, by far, the poorest for classification of the

simulated data, in particular for CBs, including Hampshire. This

is in line with prior assumptions as Hampshire was hugely

underrepresented in the training data. RF is built on tree

prediction, where a considerable number of trees collectively

favor the class with the highest probability. With few

observations in the training datasets, Hampshire will most likely

not be included in the training of all tree models, and therefore, RF

will give a skewed result and suffer when presented with a small class

in the test data. RF performance depends on the tuning of hyper

parameters. In the present study, hyper parameters were tuned to

values giving OOB errors at 0 in the training set and at the same time

yielded small computational cost. It is not unlikely that RF

performance could be improved more by extensive tuning of the

hyper parameters based on the model’s performance on the

TABLE 4 Mean ± standard deviation for covariance matrix determinants using a logarithmic scale, crossed over generalized breed combinations i.e., “XXXX” =

{“DDDD,” “HHHH,” “LLLL,” “PPPP,” “WWWW”} (PB), “XXXY” = {“DDDH,” . . ., “ZZZL”}, i.e., three grandparents of the same breed, etc., and if Pietrain is included in the

analysis or not. The column “mixed normals” is based on Σ in the likelihood function, and the column “Simulated data” is based on empiric covariances from

simulated data.

Generalized breed combination Mixed normals Simulated data

P+ XXXX (n = 5) 5 ± 1.3 2.4 ± 0.63

XXXY (n = 20) 5.8 ± 0.72 5.4 ± 0.48

XXYL (n = 30) 7.1 ± 0.38 7.8 ± 0.45

XXYY (n = 10) 5.5 ± 0.45 6 ± 0.36

XYLK (n = 5) 9.1 ± 0.25 9.7 ± 0.26

P− XXXX (n = 4) 4 ± 1.2 2 ± 0.51

XXXY (n = 12) 5.3 ± 0.62 4.8 ± 0.48

XXYL (n = 12) 7 ± 0.3 7.3 ± 0.19

XXYY (n = 6) 5.2 ± 0.45 5.5 ± 0.39

XYLK (n = 1) 9.3 ± NA 8.7 ± NA
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simulated test data. However, as models for all methods were fitted

based on training data only, the same principle should be applied to

RF. The results show that for the present study, RF is a sub-optimal

classification method, most likely due to the unbalanced data

structure. This could also be adjusted in favor of RF if operated

with more balanced data, but as argued previously, it is beneficial

with methods that perform well on unbalanced data and balanced

for generalization purposes. The three other methods, at least PLS-

QDA and ADMIXTURE, seem to be robust against the unbalanced

training dataset and without extensive hyper parameter tuning.

Two different measures, namely, square loss and

Kullback–Leibler divergence, were both used for two purposes:

comparing the accuracy of soft predictions between methods, and

transformation of soft predictions to hard predictions for RF,

ADMIXTURE, and PLSR. Formally, the transformations from

soft to hard predictions based on the square loss and

Kullback–Leibler divergence are just discriminant classification

performed on the soft predictions, Δ̂, with a flat prior for CBs.

The square loss corresponds to LDA, and Kullback–Leibler is an

alternative discriminant function. The results from both methods

are quite similar but differ marginally. We view it as a strength that

the evaluation of the results seems to be affected to a negligible

degree by the choice of distance measurement.

The purely practical applications for the models included in the

present study are limited to breed and breed combinations for the

five PBs included, i.e., Duroc, Hampshire, Landrace, Large White,

and Pietrain. However, through the results and principles, we show

that both ADMIXTURE and PLSR/PLS-QDA are methods where

other PBs might be fairly easily included, even when PB data for new

breeds are scarce, which are key findings in the study. Another

limitation to the study is the unbalanced training set, containing

only 14 pigs of the breed Hampshire. This has been seen as an

opportunity to evaluate the methods in amore realistic setting than a

balanced dataset would provide. Therefore, it has been kept this way

intentionally instead of pruning the data by, for instance, taking out

Hampshire as PB.

In the present study, breed combinations, not breed

permutations, were used as classifying units. Variation in the

percentage of DNA material inherited from PB animals is

affected by different breed permutations under the same breed

combination. By only considering combinations, potential

information associated with different permutations might be lost.

For example, consider the combination “LLWW” consisting of the

six permutations “LLWW”, “LWLW”, “LWWL”, “WLLW”,

“WLWL”, and “WWLL”. When calculating mean (μj) and

covariance (Σj) for CBs (see Eq. 5), the assumption is that the

proportion of DNA inherited from grandparents, i.e., θ, was

Dirichlet distribution with the concentration parameter α0Δ,

leading to V(θ) � 1
α0+1 (d(Δ) − ΔΔ

t), where Δ represents the

breed combinations in the F0 generation. This assumption seems

reasonable for all permutations; however, for the two permutations

“LLWW” (F1 commercial maternal line) and “WWLL”, both with

two PB individuals in the F1 generation, we know that the

proportion of DNA inherited from the two PBs in question is

50% exactly, which is not the case for the other four

permutations. Consequently, for “LLWW” and “WWLL”, θ = Δ

= [0 0 ½ ½ 0]t (i.e., zero variance for θ). For the four other

permutations, it is natural to assume non-zero variance for θ.

The consequence, referring to Eq. 5, is that covariance, Σj,

associated with permutations “LLWW” and “WWLL” should be

smaller than the other permutations, as all elements including V(θ)

in Eq. 5 should be excluded for these permutations. This information

might be possible to utilize in order to, at least to some extent,

distinguish different breed permutations under the same breed

combination. However, the strength of classifying different

permutations is likely to be low as the means, i.e., μj in Eq. 5 are

unaffected by V(θ). The effect of permutation clustering within

combinations is easy to observe for real data classified as breed

combination “HHLZ” in the 3D Shiny app (Gangsei, 2023). These

individuals cluster inside their associated limiting spheres. From

prior information, it is overwhelmingly likely that the only

permutation existing within this combination is the crossing of

the Hampshire paternal and TN70 maternal lines, which also

highlights that permutations might be identified by an

informative prior.

The software program used for the simulation of data in the

study was developed with a primary area of application for the

human genome, in particular kinship analyses and forensic genetics.

Due to the genetic map provided by Tortereau et al. (2012), it was

possible to apply the software application to the pig genome in a

realistic manner. The genetic map is averaged over sex and four

different breed combinations (“pedigrees”) containing PBs Large

White, Meishan, Yorkshire, Berkshire, Duroc, and Landrace. The

recombination rates varied between breed combinations and sexes

(Tortereau et al., 2012). Consequently, the use of an average genetic

map in the present study is an approximation. However, the effect of

variations in the genetic map is assumed to be of minor importance

as it will only have limited effects on the parameter α0 scaling the

variance of the proportion of the inherited genomic material from

the four grandparents (θ). Higher recombination rates would yield

larger values for α0 and lower variance for θ. In the present study, α0
was kept constant at its estimated value at 73.58. A possible topic for

future research is to evaluate the effects of changing this value and

thereby the covariance matrices for CBs.

A challenge with the SNP data is that they only contain

information regarding the two nucleobases that are present at

each SNP but no information regarding whether the nucleobases

originate from the paternal or maternal line. For homozygote SNPs,

this data structure causes no problems. For heterozygote SNPs, the

two nucleobases were randomly assigned to the maternal or paternal

chromosomes of the F0 generation when assigning the nucleobases

to a simulated IBD chromosome structure.

For the simulation study, breed permutations were drawn

randomly within each breed combination. A topic for future

studies might be to design simulations for different breed

permutations and apply a classification model for permutations

based on theoretically different variances, in order to classify

permutations within the same combination. Such studies would,

to the best of our understanding, be of more theoretical than

practical interest.

The simulation study provides SNP simulations for CBs and

behaves as a credible realization for SNP data in real CB individuals.

This is supported, although not proved, by the fact that simulated

data are distributed in accordance with the model, both regarding

expected values and variances. Consequently, it is reasonable to

assume that the evaluation of methods based on the simulated
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results, to a great extent, describes the real precision and reliability

for different methods and breed combinations. To explore how PLS-

QDA and ADMIXTURE behave when applied to a real example, the

trained PLS-QDA and ADMIXTURE models were tested on real

data, TestR. The distribution of CB classes was in accordance with

prior knowledge, i.e., the dominating CBs were “DDLW” and

“HHLW”, even when using the flat prior for PLS-QDA. The flat

vs. informative prior results for the PLS-QDAmethod appear to be a

textbook example of how an informative prior might be utilized in a

Bayesian setting. The inclusion of the informative prior has a

substantial effect by allocating more individuals to breed

combinations known to be dominating a priori, at the expense of

the “unknown” class and CBs known to be rare a priori. Still, the

informative prior does not totally dominate the classification results.

ADMIXTURE classifies closer to PLS-QDA with informative priors,

which may indicate that the method is adequate in adjusting for

actual populations. The prior information can neither be added nor

changed. This result again advocates for ADMIXTURE as a reliable

method for classification. It could be interesting to see how the two

different methods, PLS-QDA with informative priors and

ADMIXTURE, behave on real data from other real situations

with other CB combinations.

Some of the real data are classified to CBs containing Pietrain,

even if Pietrain should not be present in the Norwegian pig

population. The CBs with Pietrain are “DLPW” and “HLPW”,

i.e., four breed combinations. Inclusion of some genetics of

Pietrain origin cannot be totally ruled out in Norway; however,

for the last 15–20 years, the policy of breeding companies operating

in Norway has been to avoid using Pietrain genetics. From the

simulation results, we observed that PB individuals from different

breeds were not part of the training set and were generally classified

as four-breed combinations. Consequently, the four-breed

classification results should be interpreted with care as they

might, in fact, be PBs or close to PB individuals, from breeds not

included in the training dataset. In Norway, at least the Mangalica

breed is present and, in fact, a possible candidate for these

classifications. A natural development of the work presented in

this study would be to incorporate Mangalica as a new PB in the

training data.

The results in this study can beneficially be used for generalization

to other problems in several ways. The simulation tool showed an

excellent generalization from humans to pigs and can be generalized

to other breeds/populations/countries or to other species with

genomic data available in the form presented in the current study.

Prior knowledge of recombination rates, i.e., the study of Tortereau

et al. (2012), was essential for the present study, both in the simulation

and in order to estimate V(θ) and thereby Σ. If similar information

regarding recombination rates is available, the methods described in

the present study might be transferred to similar problems for other

species, assuming that genomic data are available.

Another interesting topic, which falls outside the scope of this study,

is to consider other responses than breeds. For instance, a feature such

as color could be treated in a similar way, where some colors are viewed

as references, i.e., the counterpart to PBs in the current study and other

color combinations as blends, i.e., the counterpart to CBs.

ADMIXTURE and RF were tested as possible candidate

methods. Other candidates could also have been included, for

instance, different classification methods that deal better with

unbalanced data. Although RF failed as a real candidate,

ADMIXTURE performed well for both simulated data and

real data. Thus, the result of this study confirms

ADMIXTURE’s suitability as a standard software program for

classifying genetic origins, not only for human ancestry. Kim

et al. (2022) indicate how ADMIXTURE, in combination with

PCA, behaves nicely and provides useful information for both

classification and visualization in a pig population.

Partial least squares with linear discriminant analysis (PLS-

DA) has recently been shown to perform well on other problems

with similar SNP data (Miao et al., 2023). The derivation of PLS-

QDA for CBs was initiated and conducted prior to the

publication by Miao et al. (2023). However, PLS-QDA might

be viewed as an elaboration of PLS-DA utilized in Miao et al.

(2023) in the sense that i) PLS-QDA was applied to CB

classification in contrast to PLS-DA used for PB classification

only, and ii) the derivation of CB-specific covariance matrices is

a prerequisite for QDA and novel to the present study. In

particular, a research topic for further analysis could be to

apply PLS-QDA and simulation of CBs to the data used in Miao

et al. (2023) where the number of PBs was much higher than

that in the present study (n = 91).

The main focus of the study was to evaluate the PLS-based

methods, in particular to derive equations for the expected

values μ’s and covariances used in the likelihood functions

for CBs. Another important objective was to show that PLS

extends and improves classification in a more robust way for

unbalanced data and when faced with unknown breed

combinations, which is a reality when working with real data

from slaughterhouses.

5 Conclusion

In the present study, it has been shown that PLS-QDA, PLSR, and

ADMIXTURE are well suited methods for the crossbreed classification

of pigs based on genomic data from a 50-K (Illumina) SNP chip from

purebred grandparents. ADMIXTURE is a well-proven method that is

suited for ancestry classification tasks with genetic SNP data. It

originates from kinship in humans but proved to work nicely and

was easy to transfer to pigs. Themethod of themain focus in the present

paper, PLS-QDA, has some advantages compared to the othermethods.

It has the highest classification accuracy, which supports the inclusion

of an “unknown breed combination” class and an informative prior.

Finally, it facilitates informative visualization in 3D format. Accurate

CB classification has important applications, in particular, related to

research and development topics in the pig industry, including breeding

progress, carcass grading, meat yield, and quality. Another important

contribution from the current study is to incorporate the stochasticity in

the proportion of inherited DNA from ancestors as a feature utilized for

PLS-QDA as an extension of PLS-DA.
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Abstract 

Porcine carcase classification in Europe is determined by the lean meat percentage 

of each carcase. Carcases that receive the same classification score can still have 

morphological variation that affects the potential value of the carcase, such as the 

difference in the ratios between primal cuts. In addition, finishing pigs are often 

crossbreeds, and breed combination could potentially affect yield variation outside of 

the variation explained by classification. The main aim of the study was to examine 

the ability of EUROP classification (i.e., lean meat percentage, LMP) from optical 

probes to explain several yield variables including lean meat percentage, fat 

percentage, bone percentage, and ratio between primal cuts, while taking into 

account factors such as carcase weight, breed combination, operator, and carcase 

side. A secondary aim was to examine if and how yield is affected by 

gender/castration category. Results showed that lean meat- and fat percentage were 

highly negatively correlated and well explained by LMP from optical probes with R2 

(marginal) at 66% and 67% respectively. Bone and waste percentage (marginal R2 at 



29%) and ratios between primal cuts were only to a small degree explained by LMP 

and weight, with marginal R2 in the range 5-15%. Furthermore, results showed that 

breed combination had substantial, though not large effect on ratios between primal 

cuts. We conclude that information regarding LMP and weight alone is far from 

sufficient to predict ratios between primal yields in a meaningful way.  

 

Keywords: pigs, grading, LMY, EUROP, crossbreed 

Introduction 

Yield can be defined as the ratio, quantity and distribution of tissue types within an 

animal carcase. Carcases are usually classified as an indirect method of yield 

measurement. Finisher pigs in Europe are classified (European Commission, 2013) 

based on one criterion, lean meat percentage (LMP), which is defined as the 

proportion of the total weight of the carcase that is made up of lean meat weight. 

LMP is a determining factor in price setting, thus it is important that it accurately 

reflects the yield the abattoirs get from the carcase. Consequently, LMP and yield are 

important to producers, abattoirs, breeding companies and the meat industry as a 

whole.  

Legislation (European Commission, 2017) requires that instruments used for 

estimation of LMP are quality assured through total or partial dissection (Walstra & 

Merkus, 1996) or computed tomography (CT) (European Commission, 2017; Olsen 

et al., 2017). LMP is determined by optical probe (Engel et al., 2012; Gangsei et al., 

2018) or ultrasound instruments (Font i Furnols & Gilbert, 2009). In Norway, the 

Hennessy Grading Probe 7 (HGP7) (Hennessy Grading Systems, Auckland, New 

Zealand. Web page: hennessy-technology.com) is the optical probe used for 



classifying pigs (Gangsei et al., 2018; Røe, 2021) and the Autofom III (FrontMatec, 

Kolding, Denmark. Web page: frontmatec.com) is the ultrasound alternative 

(Brøndum et al., 1998; Font i Furnols & Gilbert, 2009; Røe, 2021). Slaughterhouses 

in all countries that are subject to the EUROP regulations will have an LMP prediction 

available for all pork carcases. This prediction should in principle be independent of 

country and instrument used for grading. Consequently, LMP is a natural predictor to 

use for carcase yield.   

Lean meat-, fat- and bone percentage are common measurements of yield for both 

bovine and porcine carcases, and are used as proxies for the potential value of a 

carcase. For porcine carcases in particular, primal cuts (Choi et al., 2018; Marcoux et 

al., 2003) are common commercial commodities with differing prices. The value of 

the carcase is especially affected by the ratio between primal cuts (Marcoux et al., 

2007), and the value of the primal cuts varies over time, and by season. For this 

reason, the ability to predict weight of primal cuts has been studied (Choi et al., 2018; 

Dorleku et al., 2023; Lisiak et al., 2014), but the prediction of percentage primal cuts 

(Janiszewski et al., 2018) seems to be sparse, though it is important as it contributes 

to the value of the carcase.  

As the monetary value of both primal cuts and pig carcases as a whole can vary over 

time and across markets, it is better to primarily examine the relationship between 

carcass grading and yield measurements, as this enables easier comparison 

between studies. Monetary value at a specific time in a specific market has limited 

use, and can potentially be calculated additionally or separately. It would be 

beneficial to include percentage primal cuts as yield measurements in addition to 

lean meat-, fat- and bone percentage when examining the relationship between 

classification and yield. The more yield variation relevant to the potential value of the 



carcase that can be explained, the better, as this would be an indicator that the 

classification is a better judgement of potential value of the carcase, regardless of 

market.  

In the present study, yield is defined by seven variables, each registered per half of 

the carcase based on weight data from pig carcases. Three of the yield variables are 

the lean meat-, fat-, and bone and waste percentage. Waste is a small percentage of 

each carcase and similarly to bone, it is of little value, and is therefore combined with 

bone percentage. In addition, primal cut percentages (forepart, loin, belly and 

hindpart) are used as yield variables. 

processes 

carcases daily on assignment from the Norwegian market regulation authorities for 

the purpose of providing information to the regulation authorities, the classification 

system and other stakeholders. The processing is done using a commercial cutting 

pattern (CCP). Gangsei et al. (2018) showed that LMP calculated based on CCP is 

highly correlated to the LMP from manual dissection (MD) (  = 0.88) and CT (  = 

0.91) specified by the European Commission (2017). It is important to note that in 

any reference method for calculating LMP, MD included, there are sources of 

inaccuracy (Nissen et al., 2006; Olsen et al, 2017).  

In addition to LMP, carcase weight and gender/castration category (immunologically 

castrated pigs (I.C.s), gilts, surgically castrated pigs) are potentially important 

predictor variables for yield as they are both commonly registered variables and are 

known within the industry to have an effect on yield. It is also important to study how 

variation in yield is explained by breed, as classification ideally should function the 

same regardless of breed. Finishing pigs in Norway are mainly crossbreeds whose 



breed are not registered during production. Recently, in Vinje et al., (2023), genetic 

data was used to predict the breed combination for individual crossbred finishing pigs 

in Norway. The use of breed information based on genetic data to determine breed 

combination of crossbred finishing pigs in studies regarding yield is a novel 

contribution to the study of porcine yield and should be of benefit to pig breeding 

companies as well as abattoirs.     

The aim of this study is to evaluate how well lean, fat, and bone and waste yield (%), 

as well as primal cut yield (%), might be explained by LMP, while taking into account 

carcase weight, carcase side, the effect of different breed combinations and 

operators (butchers). A secondary aim is to study how the yield is affected by 

gender/castration category, i.e., between finisher pigs that were immunocastrated, 

gilts or surgically castrated. 

 

Material and methods 

Data 

Data from 3669 finishing pigs 

2012 and 2023. The processing of and data collection from pig, lamb, cattle and 

reindeer carcases is done at the pilot plant (Gangsei et al., 2018; Heggli et al., 2023) 

for the primary purpose of providing information for the Norwegian market regulation 

authorities, the classification system, and other stakeholders, and as such the data 

from the processed finisher pig carcases in this study were not collected specifically 

for this study. Each carcase was slaughtered and split into left and right halves at the 

abattoir. Each abattoir registered the LMP of each carcase, either by use of the 



optical probe Hennessy Grading Probe 7 (HGP7), the Autofom III using ultrasound, 

or both. In addition to LMP, the abattoirs registered carcase number, slaughter date, 

category and warm carcase weight, which was adjusted by a two percent reduction, 

which is the standard adjustment in Norway to approximate cold carcase weight. 

Once the pilot plant received each carcase, each side was registered and weighed 

before being cut using a commercial cutting pattern (CCP) as detailed in Gangsei et 

al., (2018), with one exception. Most carcases had the entire tenderloin removed 

from one side of the carcase (n = 1972), some from both sides of the carcase (n = 

220), and a few did not have the tenderloin removed before sectioning (n = 16). The 

forepart, middle section and hindpart were each separated into progressively smaller 

parts. In every step of the process, all parts and trimmings were registered and 

weighed, until the smallest part weight (SPW) was obtained. 

The smallest parts were divided into seven categories; (i) cuts and trimmings that 

were considered lean meat, (ii) fat, (iii) bone, (iv) cuts and trimmings including fat that 

were scanned to measure their fat percentage, (v) cuts with meat and fat that were 

not scanned, (vi) cuts with meat, fat and bone that were not scanned, and (vii) waste. 

Fat percentage measurements were done using QV500, a NIR scanner (Tomra 

Sorting Solutions, Asker, Norway). The trimmings from the forepart were scanned in 

three groups, two groups from the upper and one group from the lower forepart. The 

middle section trimmings were all scanned together to ensure enough trimmings to 

get an accurate measurement, and the same applied to trimmings from the hindpart. 

The weight of one side of the carcase minus the feet and jowl was compared to the 

sum of the SPW registrations as part of the data screening process. The weight of 

the side of the carcase minus the feet and jowl with be referred to as side half 

carcase weight. Any half carcase side that had an absolute difference of more than 



two percent between the sum of SPWs and corresponding side half carcase weight 

was excluded from further analysis. SPWs were aggregated into four categories (the 

forepart, loin, belly and hindpart) to calculate the weight of each primal cut. The 

primal cut weights were used to calculate the percentage each primal cut constituted 

of its corresponding half carcase, i.e., primal cut weight divided by side half carcase 

weight. This variable will be referred to as primal cut percentage (PCP). 

The SPWs were also aggregated into total lean weight, fat weight and "bone and 

waste" weight per half carcase. The weight of cuts and trimmings that were scanned 

each had their registered weight multiplied by the measured fat percentage to 

calculate the fat content, or multiplied by one minus the fat percentage to calculate 

the lean content. The lean weight of these cuts and trimmings was added to the 

weight of other SPWs that were lean meat to calculate the total lean weight of the 

half carcase. The fat weight of the cuts and trimmings was added to the weight of 

other SPWs that were fat to calculate the total fat weight of the half carcase. The 

weight of cuts that consisted of meat and fat, or meat, fat and bone, but not scanned, 

were separated into meat, fat and bone weight by the same method as stated in 

Gangsei et al., (2018) and added to the total lean meat, fat, and bone and waste 

weight of the half carcase, respectively. These aggregated weights were then half 

carcase lean-, fat-, and bone and waste weight. 

The lean-, fat-, and bone and waste weights were each divided by the side half 

carcase weight to calculate the percentage of the half carcase that consisted of lean, 

fat and "bone and waste". Any individuals that had no registration or a weight of zero 

for any of the aggregated variables, or no category information were removed from 

the data set. This resulted in a post cleaning data set with a sample of 5235 half 

carcases from 3018 individuals.  



 

Finisher pigs are generally three- or four-way crossbreds, but the breed information 

for production pigs is not registered through the production chain. To include breed 

as a potential associated variable in the model, genetic DNA data were used to 

statistically classify the breed combinations following the PLS-QDA method described 

in (Vinje et al., 2023) from 693 individuals (1302 half carcases) where the genotyping 

data was available.  

Statistical analysis 

In order to explore the relationship between yield in its seven categories (i)-(vii) and 

predictors, seven mixed effect regression models were fitted, with one yield category 

at a time as response variable. LMP, weight, the interaction between LMP and 

weight, gender/castration category, breed and side were used as fixed predictors. 

LMP and weight were centered, whereas their interaction was standardised to zero 

mean and unit variance. Operator, individual and breed status were added as 

random prediction factors in the model. The mixed effect regression model includes 

two observations for each response for each individual, one for each carcase side. In 

addition, carcase side (right or left) is added as a fixed effect to measure the 

systematic difference between sides of the carcase. The individual carcase will be 

added as a random effect to separate unexplained error variation based on the 

individual and variation within individual that is due to discrepancies between the left 

and right side of the carcase. 

 

 

 



The mixed model is formalised in Equation (1) below.  

   (1) 

,  

 

 

k = 1, 2 (side)  

l = 1, 2, 3 (cat) 

 is the response for carcase side k from individual i, of category l, processed by 

operator j.  was one of the seven variables; lean-, fat-, bone and waste 

percentage, or one of the four PCPs. The vector term  contains fixed effects for 

the specific individual i, i.e., the intercept, LMP, carcase weight and the interaction 

between carcase weight and LMP. The intercept might be interpreted as the average 

for the response in question for an individual with no breed data, as LMP and weight 

are centred, and their interaction standardised. In addition, the breed combination for 

individual i, as fractions of breeds Duroc, Hampshire, Landrace and Large White, see 

Vinje et al. (2023) for details, is added as fixed predictors with corresponding 

regression parameters.  

For each individual a random intercept, , and a random slope, , term is 

added. The interpretation of the random intercept is the random effect of the 

individual, whereas the random error (  is the effect of the two different carcase 

sides after the effect of individual is accounted for. The random slope is additional 

variance added to the individual proportional to the degree of unknown breed , 

which is the proportion of unknown breed combination for individual i. For individuals 

categorized in accordance with Vinje et al. (2023),  (  is the posterior 



, whereas for the 2325 individuals without 

breed information,  = 1. 

The parameter  is a fixed effect representing the systematic effect of carcase 

side defined so that . Hence, the interpretation of  is the change 

in the response,  , when left side is compared to the right side of the carcase. 

The same principle was applied to categories, i.e.,   

Each half carcase was processed by one or several operators out of the ten potential 

operators. Operator was treated as a factor and the operator that processed the 

highest number of SPWs for a particular half carcase was registered as the operator 

for that half carcase. The interpretation of  is thereby the random effect of 

operator j on the response .  

Three coefficient of determination (R2) values were calculated. Two were according 

to the method for linear mixed models (LMM) from Nakagawa et al., (2013; 2017). 

The marginal R2 value was calculated by 

 

 

and the conditional R2 value was calculated by  

 

 

with  defined as 

 



The interpretation of the marginal R2 value is the variance explained by the fixed 

effects in the model, while the interpretation of the conditional R2 value is the 

variance explained by the fixed and random effects. 

A natural interpretation of  would be the unexplained error for side k and 

individual i.  Due to the model assumption of independence between  and  the 

sum  is normal with mean 0 and variance  . The decomposition of 

the total unexplained error into one part by individual ( ) and one by side ( ) 

leads to an interpretation of  as the random error that differs between sides for 

individual j and  as the random error for the individual that does not differ between 

sides from individual j.  

Even if breed is known, and there is no random effect of operator, it will be 

impossible to achieve more precise predictions than allowed for by . 

Furthermore, in the interest of describing the average over the two sides, i.e., the 

average response for the individual in question, the prediction precision is limited by 

. Consequently, an additional coefficient of determination (R2), denoted limiting 

 for the individual in question was calculated by 

�

, which might be interpreted as the maximum part of the variance at individual level, 

which might be explained by the fixed effects LMP, weight, category and unknown 

breed together with the random effect operator. 

The adjusted intraclass correlation coefficient for LMMs as defined in Nakagawa et 

al., (2010; 2017) was calculated by  

 



The adjusted ICC is the proportion of random variance accounted for by the between 

group variance while omitting other non-zero variance from other random variables 

(Nakagawa et al., 2017), such as confounding factors, in this case, operator variance. 

Between group variance in the present study is between individual variance, and thus 

the adjusted ICC gives the random variance accounted for by the between individual 

variance and gives an estimate as to how much of the random variance is explained 

by the individual as opposed to the sides of the carcase. 

 

interpretation is the amount of total random error explained by the operator and was 

calculated by:     

 

 

All statistical analyses were coded and performed in Rstudio software (Rstudio 

Team, 2020). Estimates are reported for fixed effect regression parameters, i.e.,  

and  and approximate p-values from (Student-)t tests applying Satterthwaite s 

method (Giesbrecht & Burns, 1985; Hrong-Tai Fai & Cornelius, 1996) via the R-

package   (Kuznetsova, Brockhoff & Christensen, 2017). Furthermore, sum 

of squares from regression associated with LMP, weight, their interaction, side, 

category and breed and associated approximate p-values from F(isher)- test with 

Satterthwaite s method are reported. Sums of Squares is calculated by the so-called 

ANOVA type I method in order to distinguish the attitude for different factors. An 

adjusted sum of squares for breed, with adjustment factor , in order to 



compensate for individuals without breed information, and thereby comparable to the 

other factors without missing data, is also reported.  

 

Results 

Summary statistics are presented in Table 1 for all categories. Castrates and gilts 

had similar sample sizes, while I.C.s had a smaller sample size. All categories had 

similar mean weight, though I.C.s had a larger SD than the other categories. 

Measured LMP was higher for, and similar between, gilts and I.C.s, and lower for 

castrates. Primal cut weights were similar between categories, with the largest 

difference being between forepart weight for gilts and I.C.s.  

 

Table 1 

Summary statistics by category with mean values ±SD for LMP measured by HGP7, 

weight per carcase measured at the abattoirs, and percentages of Lean, Fat and 

Bone, and percentages of the four primal cuts. 

Category Castrate Gilt I.C.             

N 1494 1373 151 

LMP 58.7 ±3.1 60.8 ±3.0   60.4 ±2.9 

Weight 81.2 ±7.7 80 ±7.8 80.1 ±11.3 

Lean 62.5 ±3.7 65.1 ±3.7 65.7 ±3.3 

Fat 20.6 ±4.2 17.7 ±4.3 15.8 ±4.2 

Bone & Waste 16.8 ±1.1 17.2 ±1.2 18.5 ±1.6 

Forepart 31.2 ±0.9 30.9 ±0.9 32 ±1.2 

Loin 19.1 ±0.9 19.1 ±0.9 18.4 ±1 

Belly 17 ±0.9 16.8 ±0.9 16.7 ±1.1 

Hindpart 32.8 ±1.0 33.2 ±0.9 32.8 ±1.2 

1 I.C.: Immunologically castrated pigs. 



Table 2 shows variance component estimates for random variables ID, operator and 

the error, as well as , , , and .  was 

moderately high, 66 % and 67 % respectively, for lean- and fat percentage, but lower, 

29%, for bone and waste percentage. The same pattern applied to the , at 

96.8%, 97.6% and 83.4% for lean-, fat- and bone and waste percentages 

respectively. Thus, the increase from  to  was larger for bone and 

waste percentage than lean- and fat percentage. The large values for  means 

that results from the two sides are highly correlated for these responses, which is 

illustrated in the two upper panels in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2  

Variance component estimates for the fixed effects ( ), unknown breed ( ), 

individual ( ), operator ( ) and the error ( ), the estimates for the adjusted 

intraclass correlation coefficient ( ) and intraclass correlation coefficient for 

operators ( ), and the marginal ( ), the limited ( ), and 

conditional ( ) coefficient of determination for all seven response variables 

based on model (1).  

Response 

variable 
         

Tissue 

Percentages 
          

Lean 10.547 0.675 4.333 0.099 0.514 0.894 0.020 0.659 0.720 0.968 

Fat 14.171 0.921 5.537 0.132 0.517 0.915 0.021 0.673 0.731 0.976 

Bone and 

Waste              
0.479 0.257 0.599 0.129 0.279   0.682 0.128 0.285 0.573 0.834 

Primal Cut 

Percentages 

  
    

    

   Forepart 0.113 0.048 0.544 0.025 0.355 0.605 0.027 0.105 0.244 0.670 

   Loin 0.049 0.061 0.384 0.091 0.421 0.477 0.102 0.049 0.327 0.576 

   Belly              0.158 0.047 0.376 0.110 0.363 0.508 0.129 0.151 0.447 0.652 

   Hindpart         0.170 0.072 0.519 0.030 0.404 0.562 0.031 0.144 0.329 0.657 

 

 

 

 

 



For PCPs   were low (in the range from 5% to 15%), especially for the 

forepart and hindpart. For PCPs  takes values around 50% (range 48% to 

61%) as opposed to  values for lean- and fat percentages at around 95%, 

which is well reflected in Figure 1. The interpretation is that for PCPs the variance 

between sides in one individual is of approximately the same magnitude as the 

unexplained variance explained by the individuals for PCPs. As a consequence of 

the relatively large variances associated with side, , for PCPs were at 

relatively low levels, in the range 58% to 67%, whereas the difference between 

 and  is more perspicuous for PCPs than for lean- and fat 

percentages. Even though  are at substantially higher levels than  

for PCPs they are still at low levels, range 24 to 33%, except for belly percentage 

where  is a little higher at 45%.  



 



Fig. 1. Scatterplot of registration from right side vs. left side of carcases for the six 

 Shoulder   

 

correlated   

 

dotted lines show the one-to-one relationship.    

 

 was generally low, in particular for lean-, fat-, shoulder- and ham 

percentages ( <3%). For bone and waste, loin- and belly percentages 

s were still small, but marginally larger, in the range 10% to 13%.  

 

Regression parameter estimates and their respective p-values are shown in Table 3a 

and Table 3b. The main effects of measured LMP and weight had a significant, 

negative effect on fat percentage, and a significant, positive effect on lean- and bone 

and waste percentage. The interaction between LMP and weight is significant 

negative for lean- and bone and waste percentages, and significant positive for fat 

percentage. 

 

Most parameter estimates for LMP, weight and their interaction were non-significant 

for PCPs. LMP had a significant, but small, negative effect on belly percentage, and a 

slightly higher, significant, positive effect on hindpart percentage, i.e., fatter pigs tend 

to have more belly and less hindpart. 

 



There is a significant effect of category for all response variables. If all other 

predictors are held constant I.C.s will on average be leaner than gilts which in turn 

will be leaner than castrates. The difference for lean percentage between I.C.s and 

castrates is approximately 1% unit, where the associated counterparts is that I.C.s 

have approximately 1.5% units less fat and 0.8% units more bone and waste than 

castrates with gilts in a middle position.  

 

For PCPs the differences are largest between gilts and I.C.s with castrates in a 

middle position. If all other predictors are held constant I.C.s will on average have 

approximately 1.2% more shoulder, 0.5 % less loin, 0.3% less belly and 0.4% less 

hindpart compared to gilts. Castrates are in the middle position, but are closer to gilts 

than I.C.s.  

 

There is considerable effect of breed combinations. If all other predictors are held 

constant the expected lean-, and bone and waste percentages will increase when 

proportion of Duroc increases, and decrease with proportion of Large White (Z-line). 

The effect on fat percentages is the opposite. The effects of Hampshire proportions 

are small and not significant, whereas Landrace proportion has a positive effect on 

expected lean percentage and negative effect on expected bone and waste 

percentage. If these estimates were to be applied on purebreds, effects had been 

considerable with expected differences between Duroc and Z-line approximately 3%, 

5%, and 2% units for lean-, fat- and bone and waste percentages respectively.  

 

For the PCPs the effect of Duroc is positive on expected shoulder and hind part 

percentages and negative on belly- and loin percentages. Landrace is the contrast of 



Duroc with higher expected percentages for loin and belly and lower for shoulder- 

and hind part percentages. Hampshire has a significant negative effect on belly and 

positive effect on hind part percentages. Finally, large white (Z-line) has a positive 

effect on expected percentage of loin and negative effect of expected hind part 

percentage. It is important to note (Table 2) that for PCPs the estimates for , i.e., 

the extra variance added to individuals with unknown breed, is considerable, 

proportions from 30% (belly) to 125% (loin) compared to , the estimated variance 

explained by the fixed factors. Consequently, for the PCPs,  is an important 

part of  for individuals with known breed, and only small parts of the variance are 

explained by measured LMP and weight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3a  

Regression parameter estimates and p-values for seven response variables based 

on the same linear mixed model (1) that was fitted seven times for each univariate 

response. Columns are fixed predictor variables in the model, rows are response 

variables. LMP:Weight is the interaction between LMP and weight. Gender/castration 

category and side are modeled so the sum of the parameter estimates is 0. 

Response 

variable 

Intercept LMP Weight LMP:Weight Castrates Gilts Left 

Side 

Tissue 

Percentages 
   

 
 

  

Lean 
64.004 

(0.000) 

1.294 

(0.000) 

0.252 

(0.003) 

-2.337 

(0.001) 

-0.715 

(0.000) 

-0.152 

(0.059) 

-0.082 

(0.000) 

Fat 
18.375 

(0.000) 

-1.542 

(0.000) 

-0.310 

(0.001) 

3.272 

(0.000) 

1.254 

(0.000) 

0.544 

(0.000) 

0.053 

(0.000) 

Bone and 

Waste              

17.622 

(0.000) 

0.241 

(0.000) 

0.051 

(0.162) 

-0.882 

(0.004) 

-0.536 

(0.000) 

-0.385 

(0.000) 

0.019 

(0.016) 

Primal Cut 

Percentages 
       

   Forepart 
31.368 

(0.000) 

0.029 

(0.514) 

-0.002 

(0.595) 

-0.005 

(0.985) 

-0.133 

(0.000) 

-0.533 

(0.000) 

-0.060 

(0.000) 

   Loin 
18.884 

(0.000) 

-0.043 

(0.298) 

0.000 

(0.989) 

0.142 

(0.587) 

0.096 

(0.002) 

0.212 

(0.000) 

0.063 

(0.000) 

   Belly              
16.771 

(0.000) 

-0.144 

(0.000) 

-0.022 

(0.463) 

0.307 

(0.220) 

0.077 

(0.010) 

0.095 

(0.001) 

0.119 

(0.000) 

   Hindpart         
32.973 

(0.000) 

0.159 

(0.000) 

0.041 

(0.228) 

-0.457 

(0.109) 

-0.042 

(0.209) 

0.226 

(0.000) 

-0.118 

(0.000) 

 

 

 

 

 

 



Table 3b  

Regression parameter estimates and p-values for seven response variables based 

on the same linear mixed models (1) that was fitted seven times for each univariate 

response. Columns are fixed predictor variables in the model, rows are response 

variables. Each breed is a fraction of the breed combination for each individual.  

Response variable Duroc Hampshire Landrace Z-line 

Tissue Percentages    
 

Lean 
1.298 

(0.000) 

-0.346 

(0.498) 

1.660 

(0.000) 

-2.150 

(0.000) 

Fat 
-2.023 

(0.000) 

0.469 

(0.414) 

-0.897 

(0.031) 

3.164 

(0.000) 

Bone and Waste       0.714 

(0.000) 

-0.133 

(0.519) 

-0.770 

(0.000) 

-1.014 

(0.000) 

Primal Cut 

Percentages 
    

   Forepart 
1.003 

(0.000) 

-0.025 

(0.902) 

-0.835 

(0.000) 

-0.219 

(0.356) 

   Loin 
-0.523 

(0.000) 

-0.101 

(0.585) 

0.542 

(0.000) 

0.661 

(0.002) 

   Belly              
-1.060 

(0.000) 

-0.501 

(0.005) 

0.530 

(0.000) 

0.418 

(0.045) 

   Hindpart              
0.579 

(0.000) 

0.637 

(0.002) 

-0.230 

(0.116) 

-0.862 

(0.000) 

 

 

 

 

 

 

 



Table 4  

Sum of Squares (ANOVA type I) associated with different regression factors with 

approximate p- value based on F-test in parentheses. Columns represent factors in 

the model, rows are response variables. The last column gives only an adjusted Sum 

of Squares for breed in order to adjust for individuals with missing data.  

Response 

factors 

LMP Weight LMP:Weight Gender/castration 

Category 

Side Breed Breed 

Adjusted 

Tissue 

Percentages 
   

 
 

  

Lean 
2998.01 

(0.000) 

  10.00 

(0.000) 

   3.89 

(0.006) 

  38.16  

(0.000) 

  34.06 

(0.000) 

  27.77 

(0.000) 

121.73  

Fat 
3079.52 

(0.000) 

  87.77 

(0.000) 

   8.32   

(0.000) 

  99.22 

 (0.000) 

  14.25  

(0.000) 

  26.36  

(0.000) 

115.58  

Bone and 

Waste            

170.59 

(0.000) 

159.92 

(0.000) 

  4.37 

(0.000) 

 78.46  

(0.000) 

  2.04 

(0.007) 

 25.91 

(0.000) 

113.61  

Primal Cut 

Percentages 
       

   Forepart 
  3.290 

(0.002) 

33.225 

(0.000) 

  0.097 

(0.601) 

 93.062  

(0.000) 

17.294 

(0.000) 

30.464 

(0.000) 

133.555  

   Loin 
 8.805 

(0.000) 

36.673 

(0.000) 

 0.617 

(0.226) 

21.289  

(0.000) 

17.653 

(0.000) 

19.494 

(0.000) 

85.459  

   Belly            
184.532 

(0.000) 

23.769 

(0.000) 

 0.152 

(0.518) 

  3.244  

(0.012) 

69.421 

(0.000) 

33.304 

(0.000) 

146.005  

   Hindpart      
176.614 

(0.000) 

14.904 

(0.000) 

0.583 

(0.229) 

 26.394  

(0.000) 

64.560 

(0.000) 

  9.898 

(0.000) 

 43.394  

 

 

 

 

 



Discussion 

The primary aim of the study was to evaluate how the yield, i.e., lean, fat and bone 

and waste percentages, as well as primal cut percentages, could be explained by 

LMP and weight, also considering side of the carcase, gender/castration category, 

and breed combination. The carcase characteristics used in the models, including 

LMP, weight, and category are important as they are commonly registered in several 

countries worldwide (Delgado-Pando et al., 2021) and therefore allow understanding 

and comparisons outside the confines of Europe and its classification system.  

 

The results showed that yield was explained almost perfectly for lean (  = 

0.968), fat (  = 0.976) and bone and waste (  = 0.834) based on the 

conditional coefficients of determination (Table 2). The marginal R2 values (Table 2), 

i.e., the total variance explained by the fixed variables in the models, showed a poor 

(PCPs and bone and waste) to moderately high (lean- and fat percentage) ability to 

explain total variance depending on the yield variable in question. Lean and fat 

percentage were the highest (>0.65), while bone and waste, and the PCPs were low 

(<0.285). Previous studies have achieved higher R2 values for lean percentage 

(Bohrer et al., 2023; Goenaga, Lloveras & Améndola, 2008). However, prediction 

variables in these studies were not LMP given by the probes as in this study, but 

rather fat depth and meat depth variables based on measurements by the probes. 

Goenaga achieved an R2 of 0.79, but does not specify if this is for a 

calibration/training set or a validation/test set. Bohrer achieved an R2 of 0.75 when 

calculated for the validation/test set, but had a lower R2 (0.63) for the 

calibration/training set than in the current study. The R2 for the calibration/training set 



is arguably more comparable to the marginal R2 value calculated in the current study, 

as this study did not use a validation/test set.  

 

As the fixed effect variance not only includes variance from LMP and carcase weight, 

but also variance from side, category and breed combination, it is important to 

understand how much of the fixed effect variance, and consequently the marginal R2, 

is affected by side, gender/castration category and breed combination. Though the 

effect of side on lean and fat percentage was significant, compared to LMP, weight 

and their interaction its effect was small, with the largest estimated systematic 

difference between the left and right side of the carcase being 0.164 (Table 3a). This 

was also reflected in the high correlation between the two sides of the carcase 

(Figure 1), and comparatively low sum of squares (Table 4). 

 

Both gender/castration category and breed have significant effects (Table 3a & 3b), 

which is in line with Gangsei et al., (2018) and Engel et al., (2012). Though both 

castrates and gilts appear to have lower lean percentage than I.C.s, the effect was 

not significant for gilts. Both castrates and gilts seemed to have significantly more fat 

than I.C.s. The lack of significant difference between I.C.s and gilts for lean 

percentage could be due to I.C.s having a lower sample size than the two other 

gender/castration categories. Kress et al. (2020) had a larger sample size and 

similarly did not find any significant difference between gilts and I.C.s, though their 

study also had fewer I.C.s than gilts. The differences between I.C.s and castrates in 

this study are congruent with the findings between I.C.s and castrates in meta-

analyses by Batorek et al. (2012) and Nautrup et al. (2018). Though the effect of 

gender/castration category on lean- and fat percentage is significant (Table 3a), the 



effect is small compared to the combined effect of LMP, weight and their interaction. 

This is especially clear when comparing the sum of squares between 

gender/castration category and LMP (Table 4).  

 

The effect of breed on lean- and fat percentage (Table 3b) was significant for Duroc, 

Landrace and Z-line, but small compared to the combined effect of LMP, weight and 

their interaction (Table 3a). This was also reflected when comparing the sum of 

squares (Table 4) between breed and LMP, even when the sum of squares for breed 

was adjusted for the individuals with missing breed data. Though parameter 

estimates for Duroc, Landrace, and Z-line are comparable to the parameter estimates 

for LMP, weight and their interaction, the scale of the variables differ, and thus LMP, 

weight and their interaction have a greater effect. Based on results discussed, it is 

likely that the majority of variance in the fixed effect variance for lean and fat 

percentage (Table 2) is due to LMP, weight and their interaction, and consequently, 

the majority of the proportion of total variance explained as illustrated by the marginal 

R2 for lean and fat percentage is due to LMP, weight and their interaction.  

 

The primary aim of porcine carcase grading is differentiating between carcases of 

varying levels of leanness, not prediction of PCPs. Nevertheless, PCPs are an 

important factor for evaluation of the yield. If ordinary EUROP carcase grading is 

sufficient for precise PCP prediction it would have been a valuable asset. As of today, 

PCP prediction is a feature offered by for instance the Autofom carcase grading 

system (Choi et al., 2018; Janiszewski et al., 2018). Based on results from the 

current study, LMP and weight alone have small to negligible effect for explaining 

variances in primal cut proportions. This is especially apparent for the differences in 



sum of squares between breed and LMP and weight (Table 4) for the forepart and 

loin. It is also apparent when comparing the parameter estimates between LMP and 

weight (Table 3a) and breed (Table 3b) for PCPs.   

 

For primal cuts there is considerable variance between left and right sides, with 

Pearson correlations as low as between 0.48 and 0.64 between sides (Figure 1). The 

relatively low correlations between left and right sides might partly be a result of real 

differences, but most likely differences occur due to inaccuracies either when 

carcasses are split in two at the slaughterhouses, or in the cutting process. 

Consequently, it might be argued that  in particular is the most important 

measurement for evaluating primal percentages as this measurement omits the 

variance between the two halves of a carcase.  

 

The   values for PCPs in the range 5% (loin) to 15% (belly) show that 

information from carcase grading alone, i.e., predicted LMP and carcase weight, 

contains almost no information for precise prediction of PCPs. Even though   

was highest for the belly, prior expectations were that the belly percentage to a larger 

degree could be predicted from LMP, as leaner carcases are known to have lower 

belly PCP than fatter carcases (Kongsro et al., 2017, Pulkrábek et al., 2006). The 

 values for PCPs were in the range 24% (forepart) to 48% (belly). This is an 

improvement compared to , but  shows that even on an individual 

level, PCPs are difficult to predict without further information.   

 

Regarding the effect of sex, I.C.s. differed considerably from gilts and castrates, 

where the shoulder part in particular was larger at the expense of the other cuts. A 



larger shoulder/forepart is a typical characteristic of male pigs (Lei et al., 2023), as 

tends to be the case with male mammals in general (McPherson & Chenoweth, 

2012). Consequently, this characteristic might be viewed as I.C.s preserving more of 

the typical male physiology than castrates, which are the middle category compared 

to gilts. I.C.s having a larger shoulder than castrates is consistent with previous 

literature (Nautrup et al., 2018). Documentation of difference in shoulder size for I.C.s 

compared to gilts is sparce, with Kress et al. (2020) showing no significant difference. 

In the present study, the difference between I.C.s and castrates/gilts is substantial for 

shoulder PCP, with estimated effect at 1.2% units. Consequently, the yield not only 

on individual level, but also on population level would be heavily affected if surgical 

castration is to be replaced with immunological castration. The total effect of this 

change would have to be considered with other aspects including, but not limited to, 

intramuscular fat content, growth rate, and concentration of androstenone and 

skatole (Nautrup et al., 2018). 

 

The results from the current study does not support the findings in Ko et al. (2023) 

who reported larger belly yield from castrates than gilts in the Korean pig population, 

which is very comparable to the Norwegian population in the sense that the 

crossbreed with Duroc as the paternal line and crossing of Landrace and Yorkshire 

as the maternal line is the dominating finisher pig. The reason for this discrepancy is 

unclear. One explanation is that Ko et al. (2023) used PCP from Autofom III as 

responses on an immense data set (350 179 pigs), whereas the current study is 

based on a smaller dataset (3018 individuals), and the responses, PCPs, are based 

on manual butchering.  

 



The effects of breeds are considerable, however, the interpretations should be 

conducted with some care. Firstly, only a fraction of the pigs have predictions for their 

breed combinations, predictions which fortunately are subject to little uncertainty 

(Vinje et al., 2023). The interpretation of breed effects is as if the individuals in 

question are purebred animals, which are only rare exceptions, most of the 

individuals are crossbreds. Breed has an effect on both tissue percentages and 

PCPs. The most striking effect of Yorkshire Z-line and Duroc was on tissue 

percentages. High proportion of Duroc genetics yields more lean, and bone and 

waste, and less fat than predicted by LMP grading and weight alone, whereas the 

opposite is true for carcases with high proportion of Yorkshire Z-line. It might be 

argued that the breed information should be part of the regression equation for LMP, 

at least LMP based on HGP7. However, this is unfeasible, as reliable data for breed 

combination of individual pigs is not present at the slaughter line.   

 

For the PCPs the typical paternal breeds, Duroc and Hampshire, seem to have larger 

shoulder and hindpart, and less loin and belly, than accounted for by LMP and weight 

alone. It is worth noting that this might be explained by the length of the back, or 

number of vertebras, which differs among individuals and breeds, with Duroc on 

average having a lower total number of vertebras (28.72) than Landrace (29.78) (Van 

Son, et.al, 2019). 

  

The effects of operator were mainly small, with a small exception for the tissue 

category bone and waste with� �at 0.128, and for PCPs from loin and belly 

with� �at 0.102 and 0.129, respectively. The interpretation of operator effect 

is that some of the operators systematically tend to register lower/ higher values for 



the response in question than other operators, all other factors assumed fixed. In 

particular for the loin/belly PCPs is natural to assume that different operators have 

slightly different opinions on where to conduct the saw cut between loin and belly, a 

cut which is not anatomically well defined. The  is the measurement of 

random effect of operators, not the precision of operators. Consequently, the 

variance between sides, represented by the error variance, , might still to some 

extent be an effect of operator inaccuracies.  

 

The current study does not aim at evaluating Autofom performance, but to evaluate 

to which extent LMP from the HGP7 and weight alone or in combination with 

gender/castration category and breed might explain variance in primal cut 

percentages. The scientific literature documenting Autofom performance for PCP 

prediction is scarce, however Janiszewski et al. (2018) documented that Autofom to a 

great extent is capable of predicting PCPs. In Janiszewski et al. (2018) a slightly 

different definition of primal cuts is applied, with the shoulder split in t

vertheless, they report R2 at 0.42 (neck), 0.68 (shoulder), 

0.81 (belly), 0.82 (ham/ hindpart) and 0.93 (loin) for PCPs. Results in Janiszewski et 

al. (2018) are from one breed combination and the same producer, where the same 

environment and feeding management were applied to all pigs. Hence, variation due 

to breed, and potential other environmental factors are removed from carcases used 

in Janiszewski et al. (2018). However, the results are obtained only by evaluating 

halve carcases, i.e., the left sides. Thus, it is hard to directly compare results from 

Janiszewski et al. (2018) to R2 statistics reported in the current study, but it is obvious 

that Autofom adds substantial information for PCP prediction. 

 



The Autofom data for Norwegian pigs are scarce, and LMP from Autofom and HGP7 

and lean percentage are all highly correlated with Pearson correlations in the range 

0.799 to 0.815. However, in future studies these data (n = 216), and if possible, even 

more data should be evaluated with suitable methods like Partial Least Squares 

(PLS) regression to evaluate Autofom prediction precision for PCPs. Another topic of 

interest is to evaluate if the breed effects on tissue percentages are, if not removed, 

at least reduced.  

Conclusion 

EUROP classification in the form of lean meat percentage from the HGP7 explains 

yield to varying degrees. Most importantly, lean meat percentage and fat percentage 

based on processed carcases were explained to a moderately high degree, though 

some of the variance can be attributed to carcase weight, gender/castration category, 

breed, operator and carcase side. Bone and waste percentage, as well as all PCPs, 

were poorly explained by lean meat percentage from the HGP7.   

 

Gender/castration category generally had a significant effect on all yield variables, 

though the effect was greater on lean-, fat-, and bone and waste percentage, than on 

the PCPs.  
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