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Abstract 

In Norway, oat, along with wheat and barley, cons�tute one of the three major crops, valued as a 

break crop due to its minimal disease overlaps with the others. However, a significant threat to the 

cereal crops, par�cularly oats, is Fusarium head blight (FHB) disease, caused by the fungal pathogen 

Fusarium graminearum. FHB nega�vely impacts yield, quality, and germina�on ability, and it also 

generates a mycotoxin called deoxynivalenol (DON), which poses health risks to both humans and 

animals. The occurrence of Fusarium head blight is promoted by environmental condi�ons such as 

con�nuous precipita�on, warm summer, and prolonged harvest periods. Previous outbreaks of this 

disease have had severe consequences for the oat industry, resul�ng in reduced grain prices for 

farmers, diminished high-quality grains for millers and the feed industry, and lower-quality seeds with 

reduced germina�on capacity for seed producers. 

Developing resistant oat varie�es through tradi�onal breeding methods is �me-consuming and costly, 

involving extensive field trials and post-harvest analysis of DON content and germina�on poten�al. 

Recent ini�a�ves aimed at enhancing resistance in Norwegian oat varie�es have iden�fied poten�al 

sources of resistance and implemented field trials and analysis through the breeding company 

Graminor, even at a significant cost. Gene�c studies have revealed that resistance to Fusarium in oats 

is a highly quan�ta�ve trait influenced by numerous small-effect Quan�ta�ve Trait Loci (QTL). This 

makes it a promising candidate for genomic selec�on (GS), a DNA-based breeding technique. GS 

enables breeders to perform selec�on at earlier stages based on predicted breeding values calculated 

from sta�s�cal models and DNA markers. To effec�vely implement GS in the Norwegian breeding 

program, a set of training individuals must be genotyped and accurately phenotyped. This project 

aimed to introduce genomic selec�on into the Norwegian breeding program through three tasks. The 

first task involved evalua�ng strategies to op�mize training popula�ons and resulted in an ar�cle 

published in autumn 2022 which concluded that popula�on size and gene�c similarity between 

training and tes�ng popula�ons was the most important criteria to op�mize. Gene�c and phenotypic 

diversity was less important, but s�ll played a vital role as long as the other criteria were op�mized. 

The Predic�on core strategy worked best in balancing these op�miza�on criteria and resulted in 

significantly higher predic�on ability than random selec�on. An op�mized training popula�on was 

sown in mist irrigated and inoculated disease trials in two loca�ons (Staur and Vollebekk) in three 

years (2020, 2021 and 2023) and analysed for DON content and germina�on ability. Three valida�on 

popula�ons were also analysed in separate years in 2020, 2021 and 2022. Data were used in task 2 

and 3. The second task involved conduc�ng genome-wide associa�on mapping to pinpoint crucial 

regions for FHB resistance in Norwegian germplasm. This research successfully iden�fied 15 different 

QTL-regions, with five of them consistently validated in breeding material as having a substan�al 
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impact. The third task employed phenotypes, whole-genome markers, and the significantly 

associated QTL-regions from the associa�on mapping to predict the phenotypes of three dis�nct 

breeding popula�ons. Using these QTL-regions as fixed effects in GS, the project achieved moderately 

high accuracy in predic�ng DON and germina�on percentages, ranging between 0.44 and 0.47 for 

DON in the breeding popula�ons. Although the added QTL-regions enhanced accuracy individually 

and in a cross-valida�on setup within the training popula�on, their impact varied across different 

breeding popula�ons. 

The results of this thesis will facilitate Graminor's adop�on of GS for FHB resistance, reducing 

breeding costs and enabling screening in earlier genera�ons. Furthermore, it will serve as a 

founda�on for the implementa�on of GS for other traits, thereby enhancing the overall efficiency of 

oat breeding. 
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Norsk sammendrag 

Havre er blant de tre vik�gst kornslagene i Norge, og er anset som god art for vekstski�e med bygg 

og hvete fordi de har få sykdommer �l felles. Men, en sykdom som har potensielt store konsekvenser 

i alle kornslagene, og spesielt havre, er aksfusariose. Det er en sykdom forårsaket av sekksporesoppen 

Fusarium graminearum. Den reduserer avling, kvalitet, spireprosent og produserer et gi�stoff som 

heter deoxynivalenol (DON) som er skadelig for både mennesker og dyr. Gi�stoffet er strengt regulert 

i EU og Norge, og i år med store smiteutbrudd kan bøndene få redusert pris på levert korn. I 

utbruddene mellom 2008-2012 måte 30% av havrepar�ene forkastes på grunn av lav spireevne, og 

40% av leverte par�er fikk redusert pris på grunn av forhøyede DON verdier. Sammen med 

jordbearbeiding og god agronomisk praksis er bruk av resistente sorter en av de beste måtene å 

redusere risikoen for høyt smitepress.  

Utviklingen av resistente sorter tar lang �d og koster mye i form av fel�orsøk og analyser for DON og 

spireprosent. Nye forskningsprosjekter sate som mål å finne kilder �l resistens og implementere ny 

kunnskap for å forbedre resistensforedlingen. Disse studiene viste at resistensen i havre er kvan�ta�v 

med mange gener som hver for seg gir liten effekt. En foredlingsteknikk som kan tas i bruk for å 

effek�visere resistensforedlingen er genomisk seleksjon (GS). Dete er en metode som baserer seg på 

å bruke gene�ske og fenotypiske data for en populasjon �l å trene en sta�s�sk modell som skal kunne 

forutsi resistensen �l nyt foredlingsmateriale basert på kun gene�ske data. Dete vil gjøre det mulig å 

gjøre seleksjon av materiale i �dlige generasjoner og dermed øke seleksjonsintensiteten for 

Fusariumresistens. Dete kan også potensielt spare kostnader i fel�orsøk og analyser. Målet med 

dete prosjektet var å implementere genomisk seleksjon i det norske havreforedlingsprogrammet 

gjennom tre arbeidspakker. I arbeidspakke 1 ble det benytet en større samling foredlingslinjer og 

historiske sorter �l å evaluere forskjellige strategier for op�malisering av treningspopulasjoner. Dete 

resulterte i en ar�kkel som ble publisert i 2022 som konkluderte at de vik�gste parameterne å 

op�malisere var størrelse på populasjonen og den gene�ske likheten mellom trenings- og 

tes�ngspopulasjonen. Gene�sk og fenotypisk diversitet spilte mindre vik�g rolle, men hadde fortsat 

betydning git at de andre kriteriene var op�malisert. Det var strategien «Predic�on core» som klarte 

å balansere op�maliseringskriteriene best og strategien resulterte i signifikant høyere treffsikkerhet 

enn et �lfeldig utvalg. Dete arbeidet resulterte også i en op�malisert treningspopulasjon på 541 

genotyper som ble sådd ut i inokulerte Fusarium forsøk med dusjvanning for å gi gode forhold for 

infeksjon. Forsøkene ble gjennomført med to gjentak, på to steder (Vollebekk og Staur) i tre år (2020, 

2021 og 2022). Prøvene ble analysert for DON innhold og spireprosent. Data fra forsøkene ble brukt i 

arbeidspakke 2 and 3. Arbeidspakke 2 var å gjøre en assosiasjonskartlegging for Fusarium resistens og 
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resulterte i 48 signifikante markører fordelt over 15 områder på genomet. Resistente og motakelige 

alleler av disse områdene ble iden�fisert, hvorav fem ble validert med konsistent effekt over miljø og 

viste resistens i tre ulike valideringspopulasjoner. Disse resultatene ble brukt i arbeidspakke 3 hvor 

genomiske prediksjonsmodeller ble brukt som inkluderte effekten av de fem validerte gen områdene, 

samt resten av resultatene fra assosiasjonskartleggingen for å forutsi DON og spireprosent i de tre 

valideringspopulasjonene. Resultatet var modeller som gav moderat høy treffsikkerhet mellom 0.44 

og 0.47 for DON. Effekten av å bruke informasjonen fra assosiasjonskartleggingen varierte med 

egenskap og populasjoner, med i de fleste �lfellene ble treffsikkerheten høyere eller uforandret. Selv 

om inkludering av markører fra alle signifikante QTL resulterte i høyere treffsikkerhet i 

treningspopulasjonen, førte det �l lavere treffsikkerhet i valideringspopulasjonene. Resultatene i 

denne avhandlingen vil gi Graminor muligheten �l å implementere genomisk seleksjon for 

Fusariumresistens i havreforedlingsprogrammet. Arbeidet gir også et fundament for videre utvikling 

av genomisk seleksjon som seleksjonsmetode i planteforedling.   
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1. Introduc�on 

1.1. Oat produc�on and value 

Oats hold a significant posi�on among cereal crops in Norway, ranking third a�er wheat and barley. 

Tradi�onally in Norway, oats have primarily been u�lized as animal feed, accoun�ng for 

approximately 86% of their usage per 2021 (Opplysningskontoret for brød og korn, 2022). However, 

there has been a significant increase in human consump�on in Norway from approximately 3 kg per 

capita in 2001 to 7 kg in 2021. During the same period, oats occupied an average of 24% of the cereal 

area (SD 1.6; Sta�s�sk sentralbyrå, 2023a), while wheat encompassed 25% (SD 3.5) and barley 49% 

(SD 3.9). The average annual oat produc�on in the period was 280 thousand tons (SD 49.9; Sta�s�sk 

sentralbyrå, 2023b) and the average yield per hectare of 3.8 tons (SD 0.58; Sta�s�sk sentralbyrå, 

2023c). The produc�on of oats has faced a notable decline during the same �meframe, with an 

average decrease of 1990 tons per year, and a decrease in area of 1 048 hectares per year while the 

yield per hectare increased with only 0.03 tons per year. The shi� in consump�on paterns, 

characterized by increased human oat consump�on and a shrinking cul�va�on area, underscores the 

urgency of enhancing oat yields and quality in the years to come. Achieving this objec�ve will likely 

require more focus on both field management prac�ces and the development of new oat varie�es. 

Oats are widely recognized as a highly healthy food source with high degree of polyunsaturated faty 

acids, essen�al amino acids (Rafique et al., 2022), and dietary fiber. Among the dietary fibers found in 

oats, a significant por�on consists of the polysaccharide β-glucan, which has been demonstrated to 

have cholesterol-lowering proper�es, thereby reducing the risk of coronary heart disease (Mathews 

et al., 2020). β-glucan has also shown promise in improving glycemic control, which can significantly 

mi�gate health risks associated with diabetes (Pino et al., 2021). Oat in Norway is primarily consumed 

as part of breakfast cereals, porridge, pastry and bread. However, the poten�al for expanding the 

range of oat-based products is substan�al. Oats can serve as useful ingredient in culinary applica�ons, 

including oat-based milk (Basinskiene & Cizeikiene, 2020), noodles (Aydin & Gocmen, 2011) and meat 

subs�tutes (Ball et al., 2021) exemplifying the diverse possibili�es for incorpora�ng this nutri�ous 

grain into a wide array of dishes. One of the main quality criteria for both animal and human 

consump�on is low levels of mycotoxin content produced by different fungal pathogens belonging to 

the genus Fusarium.  
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1.2. Fusarium head blight 

Fusarium is a large genus of fungi that are commonly found in soil and o�en associated with plants. 

The taxonomy is complex, and more than 1000 species have been classified into the Fusarium genus. 

Most of them are harmless and live in the soil microbiome. Some, however, are pathogens that infect 

plant �ssues and cause Fusarum head blight (FHB) in cereals. In Norway, one of the most 

economically impac�ul species affec�ng oats is Fusarium graminearum (Bernho� et al., 2013), which 

also infect both wheat and barley. The impact of the disease comes from reduced yield (Salgado et 

al., 2015), quality (Havrlentová, 2021), germina�on ability (Tekle et al., 2013a) and produc�on of a 

mycotoxin called deoxynivalenol (DON; Sobrova et al., 2010), which is toxic to both humans and 

animals. Another significant species in Norway is Fusarium avenaceum, which is the most widespread 

species but produces mycotoxins with varying levels of toxicity. Fusarium langsethiae is another 

relevant species that primarily infects oats, producing the toxins HT2 and T2, which have been found 

to be more toxic than DON (European Food Safety Authority, 2017) but tends to cause less symptoms 

in the plants than F. graminearum. Fusarium infec�ons are highly influenced by environmental 

condi�ons. Factors such as high temperature and precipita�on during summer, and cold and wet 

condi�ons during harvest are strongly correlated with high DON concentra�on (Langseth & Elen, 

1997).  

1.2.1. Infec�on cycle and symptoms 

F. graminearum survives the winter as perithecia or sporodochia on plant residues (Trail, 2009). 

Perithecia are the results of sexual reproduc�on and produce wind dispersed ascospores, which 

under favorable condi�ons can spread for several kilometers (Keller et al., 2014). During the season, 

the fungus also produces asexual spores called conidia. These conidia form within structures called 

sporodochia, which develop on plant �ssue and soil debris. The conidia spores are primarily rain-

dispersed over short distances (Paul et al., 2004).  
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Figure 1: Frances Trail. Plant Physiology, Volume 149, Issue 1, January 2009, Pages 103–110, 

https://doi.org/10.1104/pp.108.129684. © 2009 American Society of Plant Biologists. 

F. graminearum is a hemibiotrophic pathogen characterised by both biotrophic and necrotrophic 

phases. When the spores land on suscep�ble plant �ssue, the fungus produces hyphae that grow in 

the intercellular space, and subsequently penetrates the cell walls. It is at this stage that DON 

interacts with the plant’s defence mechanisms, which induces cell death (Audenaert et al., 2013). 

This cell death provides the fungus with resources for con�nuous growth and propaga�on. The 

flowering stage of the plant is par�cularly vulnerable to infec�on, as the heads become the primary 

entry point for the disease. During this �me, the kernels are exposed with pollen �ssue, providing 

poten�al opportuni�es for the pathogen to establish itself and compromise the crop’s overall health 

and produc�vity. FHB can be observed in the plants as orange or pink mycelia in the heads (Figure 2). 

Infected seeds become small and shriveled reducing both yield and test weight. Indiges�on of 

mycotoxin accumulated in the seeds can cause inflamma�on in the intes�nes (Kang et al., 2019) 

which has several symptoms like nausea, diarrhea, headache, and fever (Sobrova et al., 2010). In oats 

most of the DON is concentrated in the husks (Brodal et al., 2020), which are removed during 

https://doi.org/10.1104/pp.108.129684
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processing for human consump�on, but not necessarily in the case of animal feed produc�on. 

Contaminated seed gets reduced germina�on ability, followed by seedling blight a�er sowing.  

 
Figure 2: Infected oat kernel with orange mycelia. Photo: Espen Sannes Sørensen. August 2023. 

1.2.2. Resistance and management 

The resistance to FHB is commonly characterized into five types (Hautsalo et al., 2018); (1) resistance 

to ini�al infec�on (Schroeder & Christensen, 1963), (2) resistance to spread of infec�on, (3) resistance 

to kernel infec�on, (4), tolerance (Mesterházy, 1995), and (5) resistance to DON accumula�on (Miller 

et al., 1985, Mesterházy et al., 1999), and as such Types 3-5 are confounded in Types 1 and 2. Types 1 

and 2 are usually measured visually as number of infected spikelets or with quan�ta�ve PCR to 

quan�fy the amount  of F. graminearum DNA. The differen�a�on between Type 1 and 2 is done in 

controlled environments where the plants are either spray inoculated (Type 1) or point inoculated 

(Type 2) (Miedaner et al., 2003, Geddes et al., 2008). Type 3 is usually measured as either number of 

shriveled seeds or reduc�on in germina�on ability. Type 4 is assessed as the reduc�on of grain yield 

and degree of kernel damage compared to amount of F. graminearum fungus or DON accumula�on. 

Type 5 focuses on the amount of DON in samples, typically as micrograms per kilogram (µg/kg) or 

parts per million (ppm). In addi�on to the above-men�oned resistance Types there are several 

passive avoidance mechanisms that play a role in reducing infec�on. Some of these mechanisms 

include the (i) forma�on of the panicle morphology with increased spacing between the spikelets, 
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which increases Type 2 resistance, (ii) �me of flowering which could ensure that the flowering 

finishes in periods with lower infec�on pressure, (iii) plant height which increases the distance from 

panicles to the conidia spores in the soil, and (iv) anther extrusion which is the ability to throw away 

the anthers a�er pollina�on since remaining anthers can serve as access points for the pathogen 

(Tekle et al., 2020). 

Effec�ve control of F. graminearum can be achieved through various field management and 

agronomic prac�ces. One approach is to minimize available plant material for the pathogen to 

reproduce. The plant debris can be removed physically, with increased �lling and enhanced 

decomposi�on (Leplat et al., 2013). Frequent crop rota�on with non-host crops like vegetables or 

protein crops has been shown to reduce the propaga�on of the pathogen (Dong et al., 2023). Some 

weed has also shown poten�al for propaga�ng F. graminearum (Matelionienė et al., 2022), therefore, 

good weed control would also contribute. A different approach is to make the plants as viable as 

possible to beter protect themselves from infec�on and tolerate the symptoms. This can be achieved 

by using cer�fied and healthy seeds, early sowing and sufficient fer�liza�on which makes the plants 

more robust before infec�on (Blandino et al., 2009, Arata et al., 2022, Mielniczuk & Skwaryło-

Bednarz, 2020). A more direct approach is to use fungicides to reduce the infec�on, which could 

reduce the mycotoxin levels by 50% if applied at the op�mal �me during flowering (Felleskjøpet agri 

SA., 2023). A final strategy is to treat the seeds post-harvest. The seeds that are to be u�lized for 

sowing can be treated chemically or non-chemically (Piñeros-Guerrero et al., 2019) to avoid reduced 

germina�on. The level of DON has been shown to increase during post-harvest storage (Portell et al., 

2020) and applying biological control like bacteria or yeast has shown to either convert the DON to 

less toxic products (Ji et al., 2016) or reduce the growth of the fungi (Podgórska-Kryszczuk et al., 

2022).  

1.3. Fusarium research in Norway 

1.3.1. Fusarium epidemics in oat farming 

The issue of Fusarium infec�on and mycotoxins started to become a significant problem in Norway 

during the period from 1980 to 2000. During this period, there was no�ceable increase in the levels 

of DON content in analyzed grains, par�cularly in oats, with mean values exceeding 1000 µg/kg, and 

some samples exceeded the EU limits of 1750 µg/kg for unprocessed oat (Langseth & Elen, 1997, 

European Commission, 2006). The main DON producing species at the �me were F. culmorum (Kosiak 

et al., 1997 and 2003) while F. graminearum was detected in smaller amounts in the main oat 

growing areas. This changed in the early 2000 as F. graminearum became more frequent in Norway 

(Bernho� et al., 2010) and resulted in elevated DON content. F. culmorum does not have a known 
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sexual stage in Norway (Kant et al., 2017), but F. graminearum does (Jørstad, 1945) enabling it to 

adapt and change in virulence and fitness (Becher et al., 2010). Recombina�on of isolates can also 

lead to resistance against fungicides (de Chaves et al., 2022), which emphasizes the need to develop 

resistant varie�es. A study on inoculated and naturally infected fields did not reveal any significant 

resistance in the varie�es at the �me (Elen et al., 2003), which ini�ated further research into 

resistance breeding.  

1.3.2. SafeGrains project 

The elevated DON content and increased frequency of F. graminearum led to the ini�a�on of the 

“SafeGrains” project (The research council of Norway, project # 178273, 2013-2016), which 

successfully established protocols for spawn inocula�on of F. graminearum (Tekle et al., 2018). These 

protocols were implemented at the Norwegian University of Life Sciences (NMBU) and Graminor 

plant breeding company. During the course of the project, a valuable partnership was established 

with the University of Minnesota (USA), providing NMBU with affordable access to mycotoxin analysis 

via gas chromatography (GS/MS). This partnership has provided the project partners with the 

opportunity to analyze a larger number of samples. One of the main objec�ves regarding oats was to 

assess the exis�ng varie�es and iden�fy new sources for resistance (Bjørnstad & Skinnes, 2008). This 

objec�ve was successfully achieved, leading to the removal of suscep�ble varie�es from the market 

by seed companies. This project also led to Graminor ini�a�ng crossing and field tes�ng for Fusarium 

resistance. Two studies on QTL mapping in oats were conducted (He et al., 2013, Bjørnstad et al., 

2017) which iden�fied several loci associated with FHB resistance and concluded that the resistance 

is caused by many small effect genes, and that there is a significant interac�on between the genes 

and environment.   

1.3.3. RESIFUS project 

A major FHB outbreak took place in the period between 2008 and 2012 (Bernho� et al., 2013, 

Sundheim et al., 2013). A substan�al 30% of seed lots were discarded due to low germina�on 

number in 2009 (Hofgaard et al., 2016), and 40% of the shipments of grain between 2010 and 2012 

exceeding regulated limits of DON content (Felleskjøpet agri SA, 2016). This led to the ini�a�on of the 

“RESIFUS” project in 2014 (The research council of Norway, project # 233908, 2018-2021). The 

primary focus of this project was the development of a core collec�on called “Havrebasis” designed 

to represent the diversity and historical evolu�on of northern European oat breeding, incorpora�ng 

poten�al resistance sources form Europe and North America. Throughout the project’s dura�on, this 

popula�on was systema�cally evaluated in field trials with inocula�on, concluding that the best 

sources of FHB resistance already existed in the Norwegian breeding material. Furthermore, the 
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project aimed to assess cost-effec�ve and high-throughput phenotyping methods, specifically the use 

of enzyme-linked immunosorbent assay (ELISA) and near-infrared spectroscopy (NIR) calibra�ons 

(Tekle et al., 2013b). These results were compared to the GS/MS data from University of Minnesota. 

The results from the NIR calibra�ons were successful, par�cularly during years with high disease 

pressure (Tekle et al., 2015). However, ELISA showed good correla�ons with GS/MS even with low 

disease pressure and was established as the main screening method for FHB resistance at Graminor. 

This prompted an increased tes�ng of breeding material.  

1.3.4. FHB resistance breeding at Graminor 

Graminor was heavily involved in both SafeGrains and RESIFUS projects resul�ng in thorough 

screening of the breeding material for mycotoxin content and germina�on ability and iden�fica�on of 

resistant varie�es and breeding lines used for future crossings. Oat is an inbreeding species; 

therefore, several genera�ons of self-pollina�on must occur a�er crossing before homozygous lines 

can be tested and phenotyped. The tradi�onal breeding strategy at Graminor has been to do shutle 

breeding with off-season nurseries in New Zealand allowing two genera�ons per year. Every second 

genera�on the most promising single panicles from each popula�on are selected and pooled 

together into the next genera�on un�l the popula�on reaches F7. Single panicles from F7 are selected 

for phenotypic analysis on single rows in F8, and the most promising lines for simple agronomic traits 

like height, earliness and overall impression are selected for small yield plots in F9. The small plots are 

then analyzed for yield, lodging and quality traits like test weight and thousand kernel weight. 

Approximately 300 of these (F10) lines are selected for replicated yield trials over several loca�ons and 

included in inoculated Fusarium trials at the research sta�ons, Vollebekk and Staur, with subsequent 

retes�ng in the next genera�ons. This results in a thorough screening and understanding of the FHB 

resistance of new varie�es with at least three years of field tes�ng in two loca�ons before they are 

considered for official variety tes�ng. This approach has been successful in providing Norway with 

highly resistant varie�es which dominate the Norwegian market per 2023. The content of DON and F. 

graminearum in analyzed samples from the Food safety department's surveillance program for 

mycotoxins has been reduced over recent years. In 2022 DON values in oat were the lowest since the 

surveillance started in 2002 (Bernho� et al., 2023). This reduc�on can be due to a combina�on of 

favorable weather, introduc�on of more resistant oat varie�es, and improved field management 

prac�ces. However, with higher temperature and increased rainfall, the future climate predic�ons are 

an�cipated to favor the pathogen (The Norwegian Centre for Climate Services, 2017), making ongoing 

breeding efforts to develop more resistant varie�es a crucial factor in comba�ng the next poten�al 

outbreak.   
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1.4. DNA-based breeding techniques in oat 

1.4.1. Oat gene�cs 

Oat (Avena sativa L.) is an allohexaploid species with a total of 21 different chromosome pairs divided 

equally into three diploid sub genomes called A, C and D. This gene�c makeup is thought to be the 

results of a fusion of a diploid wild oat named Avena longiglumis (AA; Kamal et al., 2022) and the 

tetraploid species Avena insularis (CCDD; Ladizinsky, 1998). The Avena genus contains approximately 

30 species. The total size of the genome of cul�vated hexaploid oat is es�mated to be between 11 

and 12.5 Gigabase pairs (Gbp; Yan et al., 2016, Peng et al., 2022). The oat genome is considered to be 

unstable with large chromosomal transloca�ons within chromosomes and between sub genomes 

(Jellen et al., 1994, Jellen et al., 1997, Chaffin et al., 2016). The complexity of the oat genome, 

characterized by its size, instability, and abundance of repeated sequences (Liu et al., 2019) has made 

the genome assembly and mapping challenging. The first physically anchored consensus map of oat 

was published in 2013 (Oliver et al., 2013) based on 985 gene�c markers. Subsequently, this map was 

updated by Chaffin et al. (2016) with a more extensive set of 7,202 SNP-markers providing a more 

comprehensive and detailed view of the oat genome. Recently three whole genome reference 

sequences were published in oats. The first reference genome map was published in 2021 of the 

American accession “OT3098” (Pepsico, 2021), followed by the Swedish variety “Sang” (Kamal et al., 

2022) and the Chinese hulless landrace “Sanfensan” (Peng et al., 2022). These reference genomes 

hold immense promise in enhancing gene annota�ons and facilita�ng more precise genome mapping 

efforts in the future.  

1.4.2. DNA-based breeding methods 

DNA-based breeding, also known as molecular breeding, has revolu�onized the field of plant 

breeding. This cu�ng-edge approach u�lizes gene�c informa�on and DNA markers to accelerate the 

development of new plant varie�es with desirable traits. By iden�fying specific DNA sequences 

associated with traits such as disease resistance, higher yields, or improved nutri�onal content, plant 

breeders can make more informed and precise breeding choices. This not only expedites the breeding 

process but also minimizes the need for extensive field trials and reduces the risk of undesirable traits 

being inadvertently introduced. Two important types of DNA-based methods used in plant breeding 

are marker-assisted selec�on (MAS) and genomic selec�on (GS). Both are established selec�on 

methods in plant breeding, relying on marker-trait associa�ons. The choice between them is heavily 

influenced by the complexity of the underlying gene�cs. The causal genes can be either qualita�ve, 

meaning that the observed trait is caused by a single gene, or quan�ta�ve caused by several genes. 

Many of the breeding traits like yield and quality are o�en caused by quan�ta�ve trait loci (QTL) 
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which can have large or small effects. In addi�on, the genotype by environment (G x E) interac�on 

can heavily influence the observed effect. MAS is typically beter suited for traits with a limited 

number of underlying key genes as they are easier to combine into a new variety, and less gene�c 

informa�on is needed to use MAS, making genotyping cheaper. This makes it more applicable in 

larger popula�ons early in the breeding cycle. GS is a powerful method for complex traits influenced 

by numerous gene�cs factors and environmental interac�ons and has o�en been found to 

outperform MAS for quan�ta�ve traits (Cerrudo et al., 2018). When traits are controlled by QTL of 

varying effect MAS and GS could be combined by adding marker effects into GS models (Merrick et 

al., 2021) or used in different genera�on of the breeding cycle. The goal of both methods is to make 

selec�ons as early as possible to screen material before phenotyping. It is therefore important to 

combine them with speed breeding strategies where more genera�ons per year are achieved in order 

to make the most of the increased selec�on intensity. Graminor is currently implemen�ng single seed 

decent (SSD) using greenhouse facili�es to reduce the �me from plan�ng to harvest. With SSD it is 

possible to increase the number of genera�ons per year to four or five (Kigoni et al., 2023).  

1.4.3. Marker assisted selec�on 

Marker assisted selec�on is based on the establishment of strong linkage between specific molecular 

markers and the chromosomal loca�on of the gene(s) responsible for the trait in ques�on. These 

markers are found through two main methods: linkage mapping (LM) and genome-wide associa�on 

studies (GWAS). LM o�en uses biparental popula�ons with limited gene�c segrega�on to detect rare 

alleles with large effect, which limits the number of markers detected. (Nordborg & Weigel, 2008, 

Talukder et al., 2019). In contrast, GWAS involves a panel or collec�on of lines, capitalizing on the 

extensive recombina�on events that have occurred over �me, resul�ng in a larger number of markers 

detected with higher resolu�on (Nordborg & Weigel, 2008, Myles et al., 2009). In both LM and GWAS, 

gene�c signals that exceed a certain threshold are considered sta�s�cally significant, while other 

marker-trait associa�ons are typically excluded from further analysis. Consequently, in tradi�onal 

MAS, only a small number of markers are used for each trait because of the strict selec�on criteria 

used to iden�fy significant associa�on. There are several challenges with MAS. One is that markers 

detected with GWAS and LM tend to show larger effects than what is observed in breeding 

popula�ons. The second is a risk for linkage drag from unwanted QTL and phenotypes. Thirdly, 

mul�ple tes�ng requires very high significance thresholds in GWAS, resul�ng in that only the largest 

QTL are detected. Fourthly, the detected QTL may track only a limited frac�on of the total gene�c 

variance. If the QTL effects are too small as with FHB resistance in oat, there is a high risk that the 

effect of the remaining unselected resistance QTL will overshadow the effect selected for a single 

QTL.  
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1.4.4. Genomic selec�on 

Genomic Selec�on (GS) on the other hand, is a methodology that uses genotypic informa�on from 

the en�re genome and combines it with phenotypic data to make predic�ons for these traits 

(Meuwissen et al., 2001). GS holds great poten�al for improved gene�c gain in cereal breeding (Desta 

& Or�z, 2014, Crossa et al., 2017). This predic�on relies on a sta�s�cal model trained using data from 

a group of individuals with both phenotypic and genotypic informa�on, known as the “training 

popula�on”. This group is used to es�mate random effect of individual markers based on a prior 

distribu�on, which are then used to calculate the genomic es�mated breeding values (GEBV) for 

selec�on candidates (i.e., breeding lines) with only genotypic data. There are different kinds of 

models that have different assumed distribu�ons of marker effects (Meher et al., 2022). Some 

models can detect non-addi�ve marker effects (Raffo et al., 2022), such as genotype by environment 

interac�ons (Zhang et al., 2021). Covariates like associated marker informa�on, correlated traits, or 

weather parameters can be added to improve the models (Tolhurst et al., 2022). Accuracy of genomic 

predic�on depends on: (i) the number of markers that are well-distributed across the genome, (ii) 

precision of  phenotypic data, (iii) heritability of the traits, (iv) number of individuals in the training 

popula�on that is gene�cally and phenotypically diverse and closely related to the target popula�on, 

(v) genome size (bigger genomes imply more effects to es�mate), and, (vi) size of LD blocks along the 

genome (smaller LD blocks imply more independent effects to es�mate). A reduc�on in price of 

genotyping in recent years has made GS more available to breeding companies (Huang et al., 2014). 

Con�nuous efforts in both cost-effec�ve genotyping and high throughput phenotyping are essen�al 

for widespread adop�on of this powerful breeding approach. A previous study indicated that GS was 

favourable over MAS for FHB resistance in wheat (Arruda et al., 2016), which is also assumed in oat 

given similar gene�c complexity with mul�ple small effect QTL and high G x E (He et al., 2013). 

1.4.5. Genomic selec�on in oat 

In the early 2000s, gene�c research on oats u�lized various kind of marker systems, including 

Diversity array technology (DArT), Amplified Fragment Length Polymorphism (AFLP) and Short 

Sequence Repeat (SSR) markers (He et al., 2012). These marker systems, while effec�ve for genomic 

predic�on in oats (Asoro et al., 2011), were o�en costly to develop or did not detect sufficient 

number of polymorphisms across the genome. In contrast, other crops like wheat developed and 

used marker assays for single nucleo�de polymorphisms (SNP) that were cost-effec�ve and exhibited 

large number of polymorphisms that were abundant within the genome (Wang et al., 2014). The first 

commercially available SNP-chip in oat was developed in 2014, containing 4,975 polymorphic markers 

(Tinker et al., 2014). This SNP-chip was primarily used for gene mapping and, to a limited extent, for 
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genomic selec�on (Rio et al., 2021, Brzozowski et al., 2023). The limited adop�on of the SNP-chip in 

oats was likely due to insufficient marker counts for the large and complex oat genome, as well as its 

rela�vely higher cost compared to crops like wheat and barley. As a response, breeding companies in 

the Nordic countries developed an improved customized SNP-chip featuring 18,598 markers (20K SNP 

Chip), which proved valuable for genomic predic�on (Haikka et al., 2020a, Haikka et al., 2020b, 

Sørensen et al., 2023).  

1.4.6. Genomic selec�on to enhance Fusarium resistance 

Genomic predic�on for resistance to F. graminearum have been used successfully in wheat (Rutotski 

et al., 2012) and barley (Lorenz et al., 2012), where predic�on accuracies above 0.6 were shown. 

Different publica�ons have demonstrated improved predic�on accuracy through various strategies, 

including increasing training popula�on size (Lorenz et al., 2012), inclusion of correlated traits like 

days to heading and plant height (Schulthess et al., 2018), use of significant marker informa�on from 

associa�on studies (Rutotski et al., 2012, Alemu et al., 2023), and using models that include 

environmental effects (Zhang et al., 2021). In case of oats, there is one notable publica�on on GS for 

resistance to F. graminearum in oat (Haikka et al., 2020b). This study reported mean predic�on 

accuracies of 0.31 for DON, 0.47 for Fusarium infected kernels and 0.59 for germina�on capacity. The 

study employed a standard Genomic Best Linear Unbiased Predic�on (GBLUP) model. These results 

suggest that achieving moderate accuracy in FHB resistance predic�on in oats is possible, and the 

choice of phenotype for predic�on may play a significant role in the process. The quan�ta�ve nature 

of FHB resistance, availability of accurate field tes�ng and analysis, and reduced costs of genotyping 

makes GS a suitable op�on for FHB resistance breeding. 
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2. Thesis 

2.1. Background and main objec�ve 

FHB has significant implica�ons across all sectors of the cereal industry and especially for oat 

produc�on in Norway. Over the past two decades, oat crops have faced major epidemics. The 

reduc�on in both yield and quality directly affects the income for Norwegian farmers. Elevated 

mycotoxin levels make oat seed unsuitable for both human and animal consump�on, which increases 

the reliance on import. The reduced germina�on rates in infected seed also pose substan�al 

challenges for the seed companies and the overall oat produc�on sector, as imported varie�es may 

not be op�mally adapted to Norwegian condi�ons. In a global context with scarce food resources and 

unpredictable geopoli�cal dynamics affec�ng imports, it becomes crucial for Norway to maintain its 

capacity to produce its own food. Oats are well-suited to the Norwegian climate and play a pivotal 

role in achieving this goal.  

The Norwegian oat community has taken a comprehensive approach to tackle FHB in many ways, 

with ac�ve par�cipa�on from government to farmers alike. This approach has entailed an array of 

measures including increased surveillance on mycotoxins from the food and safety department to 

ensure a safer food supply. Funding for research related to FHB detec�on, treatments and gene�c 

research has also seen a significant increase, advancing our understanding of the disease. The 

Norwegian Plant Variety Board has increased focus on FHB resistance when evalua�ng new oat 

varie�es for the domes�c market. The plant breeding company Graminor has increased its efforts in 

tes�ng and research on FHB, resul�ng in some of the most FHB resistant varie�es in Europe. Despite 

these advancements, there is s�ll room for increased FHB resistance. Furthermore, as the markets 

are shi�ing towards new specialized oat products such as oat milk, meat subs�tutes and even beer it 

will be increasingly more important to maintain high FHB resistance as a breeding goal, as these 

products are vulnerable to mycotoxin contamina�on (Miró-Abella et al., 2017, Pascari et al., 2018). 

Genomic selec�on serves as a cost-efficient tool in this task, offering the poten�al to predict FHB 

resistance at earlier breeding stages, to eliminate the most suscep�ble breeding lines. However, 

predic�ng FHB resistance presents a challenging task due to its quan�ta�ve nature that is 

characterised by small effect loci and large genotype by environment interac�ons. The overall 

objec�ve of this PhD thesis is to develop predic�ve models for successful FHB resistance assessment 

in Graminor’s oat breeding material. This objec�ve will be achieved through a structured approach 

involving three work packages, each resul�ng in subsequent research papers:  
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Paper 1: The first paper aimed to evaluate different known op�miza�on strategies used for 

op�miza�on of training popula�ons for genomic predic�on, resul�ng in an op�mized training 

popula�on for further analysis in Paper 2 and 3. A large and diverse germplasm called oat breeding 

panel was used to ensure the representa�on of various gene�c backgrounds, and phenotypic data 

were collected from Graminor’s database. The evalua�on was done on a valida�on popula�on of 

breeding lines, and was based on predic�on ability, gene�c diversity, gene�c similarity with the 

valida�on popula�on and phenotypic variance of the selected training popula�ons. 

Paper 2: The second paper aimed to iden�fy loci significantly associated with FHB resistance. This 

was done by assessing the training popula�on developed based on findings in research Paper 1 in 

spawn inoculated and mist irrigated disease trials over two loca�ons and three years, analyse 

samples for DON content and germina�on percentage and undertake a genome-wide associa�on 

mapping.  

Paper 3: The third paper aimed to apply data from the training popula�on and the most important 

FHB resistance loci iden�fied in Paper 2 and evaluate the performance of genomic predic�on that 

include haplotype informa�on as fixed effects. The models were evaluated as cross-valida�on in the 

training popula�on and on three valida�on popula�ons. In addi�on, a selec�on was done with each 

model of the predicted elite material to validate the expected effect of the models on observed 

phenotypes and allele frequencies of the resistant haplotype alleles.  

2.2. Germplasm and phenotyping 

2.2.1. Oat breeding panel and Valida�on popula�on (Paper 1) 

A comprehensive oat breeding panel was developed, consis�ng of 1,124 varie�es and breeding lines 

that were tested as part of the RESIFUS project during the period between 2014 to 2018. Within this 

panel, the majority of lines (86%) were breeding lines and varie�es from Graminor while the rest of 

the material were from Sweden (8%), Netherlands (2%), Germany (2%) and Finland (1%). The 

remaining lines from America, Australia, Austria, Canada, Denmark, Poland and Slovakia contributed 

less than 1% each. The primary objec�ve of this larger popula�on was to serve as pool for selec�ng 

different sets of op�mized training popula�ons, which were subsequently used in genomic 

predic�on. Three different strategies were evaluated for their predictability on breeding material. 

Phenotypic data for the oat breeding panel were collected from all available yield trials and fusarium 

trials from 2014 to 2018 for each line accordingly. Phenotypes gathered for each trial were number of 

days from sowing to heading (DTH), and plant height (PH). The adjusted mean values derived from 

each trial were used as input data in a generalized linear model, enabling the calcula�on of overall 

adjusted means accoun�ng for the random effects of year and loca�on. A tes�ng popula�on of 257 
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F10 breeding lines was evaluated in five environmental condi�ons in 2019. This was used to gather 

predic�on ability data in order to evaluate the strategies. All lines were genotyped with a Nordic 

customized SNP-chip containing 18,598 markers (20K SNP-chip). The genotypic data obtained were 

filtered for missing values (<10%) and minor allele frequency (MAF >5%) in the oat breeding panel 

using a customized script in R sta�s�cal so�ware (R core Team, 2022) . The filtering process resulted 

in 3,022 polymorphic markers for subsequent analysis.  

2.2.2. Associa�on mapping-, Training- and Valida�on- popula�ons (Paper 2 and 3) 

A training popula�on of 541 genotypes was selected from the oat breeding panel to be used both for 

GWAS (Paper 2) and genomic predic�ons (Paper 3). This popula�on was chosen based on a 

combina�on of different op�miza�on criteria like gene�c diversity, phenotypic variance and gene�c 

similarity with the breeding material. The effect of the significant markers from the GWAS study, and 

the predic�on ability of genomic selec�on were evaluated within the training popula�on and on 

three valida�on popula�ons called V1, V2 and V3. V1 and V2 consisted of 242 F10 breeding lines from 

Graminor from the years 2020 and 2021, respec�vely. F10 lines were used as they had not yet been 

selected for fusarium resistance. V3 consisted of 230 lines where 112 were new F10 lines from 2022 

and the rest overlapped with the other valida�on popula�ons. Of the 118 remaining lines 88 were 

from V2, 22 were from V1 and 8 were from the tes�ng popula�on used in Paper 1. 

All material was sown in spawn inoculated and mist irrigated disease trials (Tekle et al., 2018) at 

Vollebekk (59.66°N, 10.75°E) and Staur (60.73°N, 11.10°E) research sta�ons between the years 2020 

and 2022. The training popula�on was tested in all six environments, while V1, V2 and V3 were tested 

in two environments each in 2020, 2021 and 2022 respec�vely. Phenotypes gathered for each trial 

were DTH, PH, DON accumula�on (ppm) quan�fied with ELISA, and germina�on ability quan�fied as 

the percentage of healthy germina�ons following the ISTA protocols (Interna�onal rules for seed 

tes�ng, 2021). The marker data from Paper 1 were filtered for missing values (<10%) and minor allele 

frequency based (MAF >5%) on the new training popula�on which resulted in 3071 polymorphic 

markers. Of these 2928 were the same as filtered from the Oat breeding panel. The marker data for 

V1-3 were obtained using a different customized 7K-SNP chip (Polley et al., 2023) containing 6,642 

markers which are the 6587 most polymorphic markers from the Nordic 20K SNP-chip and 55 new 

SNP-markers.  
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2.3. Methodology 

2.3.1. Op�miza�on strategies  

In Paper 1, the strategies for op�mizing training popula�ons for Paper 2 (GWAS) and Paper 3 

(genomic predic�on) were evaluated based on the selected training popula�ons’ ability to predict the 

phenotypes of the valida�on popula�on described in 2.2.1. These training popula�ons were also 

subjected to an analysis of their gene�c diversity, phenotypic variance and gene�c similarity in 

comparison to the tes�ng popula�on. The first strategy was called the Diversity Core and was based 

on the principle outlined by Franco et al. (2005). It is designed to maintain the same level of diversity 

and popula�on structure in smaller subsamples as found in the larger candidate popula�on. This 

strategy involves three key steps. In the first step a structure analysis is conducted on the candidate 

popula�on to iden�fy the most likely number of clusters that represent dis�nct gene�c grouping.  In 

the second step gene�c distances between each line within these iden�fied clusters are calculated 

using marker informa�on. This step helps to quan�fy the gene�c diversity within and between 

clusters. The final step involves performing 1000 random selec�ons within each cluster. The sample 

with the highest average distance to the other genotypes in the cluster is selected for the training 

popula�on. The number of genotypes selected from each cluster is propor�onal to the size and 

diversity of the respec�ve cluster.  

The second op�miza�on strategy, called Prediction Core, was based on the methodologies outlined 

by Rincent et al. (2012) and Akdemir & Isidro-Sanchez (2019). This strategy is designed to minimize 

the predic�on error variance (PEV) for the tes�ng popula�on while simultaneously maximising the 

gene�c diversity of the training popula�on for a selec�on criterion known as coefficient of 

determina�on (CD). The Predic�on Core strategy involves two main steps. In step one, a principal 

component analysis is carried out on the marker informa�on from both candidate and tes�ng 

popula�ons. The second step involves the use of the first 100 principal components as input in a 

selec�on algorithm. This algorithm calculates the PEV and CD values (Akdemir, 2018) which are the 

op�miza�on criteria. The op�miza�on process begins with the selec�on of a random sample, and the 

op�miza�on criteria for the selec�ons being calculated. Subsequently, one of the genotypes is 

replaced with another genotype that either increases the op�miza�on criteria or does not decrease 

it. This replacement process is repeated and con�nues un�l no further op�miza�on can be achieved.  

The third op�miza�on strategy called Phenotypic selection involves a straigh�orward approach: 

selec�ng an equal number of genotypes with the highest and lowest breeding values for each trait. 

Each of the strategy was replicated 20 �mes per popula�on size of 100, 200, 300, 400 and 500, except 

for Phenotypic selec�on that was repeated once per trait and popula�on. Predic�ons were 
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conducted with the BGLR package by Perez & Campos (2014) with the R sta�s�cal so�ware (R Core 

Team, 2022). Predic�on ability (PA) for each trait (PH and DTH) was calculated as the Pearson 

correla�on between predicted and observed phenotypes. Simultaneous pairwise comparison tests 

(Minitab, 2021) were performed to determine whether these strategies yielded outcomes 

significantly different from random selec�on. The gene�c diversity was measured as the expected 

heterozygosity for each locus, averaged across all loci. The gene�c similarity between training and 

tes�ng popula�on was calculated as the propor�on of shared alleles between the training and tes�ng 

popula�on. 

2.3.2. Genome wide associa�on mapping 

In Paper 2, a GWAS was conducted for the traits germina�on percentage (GP) and DON accumula�on 

(DON) for individual trials and overall values of the training popula�on. To account for the effect of 

DTH and PH, a regression analysis was performed, trea�ng GP and DON as separate response 

variables, and DTH and PH as explanatory variables. The GWAS was carried out using the “farmCPU” 

method developed by Liu et al. (2016) and implemented through the GAPIT3 package by Wang & 

Zhang (2021) with the R sta�s�cal so�ware (R Core Team, 2022).  

The farmCPU model was chosen because of its sta�s�cal power and its ability to adjust for the 

poten�ally confounded effect of kinship. Research, such as the study by Kaler et al. (2020), has shown 

that this model is less prone to false posi�ves and false nega�ves compared to alterna�ve models. In 

addi�on, it has proven to be the most efficient model for detec�ng resistance QTL for F. graminearum 

in wheat (Nannuru et al., 2022). The analysis was not adjusted for popula�on structure, as model 

selec�on analysis with GAPIT determined that zero principal components were the op�mal choice. To 

iden�fy significant markers, a false discovery rate of 0.05 was used as threshold (Benjamini & 

Hochberg, 1995).  

Significant markers were grouped together into QTL-regions based on their linkage disequilibrium 

(LD) with each other. These regions are from this point called haplotypes and are represented as the 

combina�on of significant markers from the GWAS. The haplotypes were analysed using a pairwise t-

test for each region to assess if the alleles exhibited significant differences from each other in terms 

of DON and GP. This was also extended to the three valida�on popula�ons using their overall 

phenotypic data. Resistant and suscep�ble alleles were iden�fied as those that most frequently 

exhibited significant lower or higher DON and GP than others within the GWAS popula�on. The 

validated haplotypes were determined as those who showed consistent and significant effect on DON 

and GP between the resistant and suscep�ble alleles across environments and popula�ons. The 

validated resistant alleles were further analysed through a stacking approach by grouping together 
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genotypes based on number of resistant haplotypes. This was done to inves�gate whether their 

combined presence led to an addi�ve reduc�on in DON content and increase in GP.  

2.3.3. Genomic predic�on 

In Paper 3 genomic predic�on was evaluated by incorpora�ng significant associated haplotypes 

iden�fied in the GWAS (Paper 2) as fixed effects to enhance predic�on accuracy with genomic 

predic�on. Bayesian ridge regression (BRR) served as the basic model for es�ma�ng marker effects. 

The overall DON and GP values of the training popula�on from the six environments tested were 

used to train the predic�on model. Predic�ons were conducted with the BGLR package by Perez & 

Campos (2014) with the R sta�s�cal so�ware (R Core Team, 2022). PA was acquired through 5-fold 

cross-valida�on for the training popula�on, repeated 30 �mes, and once for each valida�on 

popula�on (V1-3). PA was calculated as the Pearson correla�on between predicted and observed 

phenotypes. Haplotype informa�on was added to the basic model as a fixed effect, with a code 1 for 

resistance allele, -1 for suscep�ble alleles, and 0 for neither. In addi�on, two models were examined: 

one that evaluated the combined effects of the validated haplotypes, and another that considered all 

haplotypes from the GWAS. Within the training popula�on, the 30 replica�ons were subjected to 

pairwise t-test to determine whether they significantly differed from one another in terms of PA.  

A breeding scenario was designed, based on the real breeding situa�on of Graminor, in which the top 

30% of lines were chosen based on predicted DON values for further evalua�on. These selected 

genotypes underwent analysis to assess their observed phenotypes, including DON, GP, DTH and PH. 

In addi�on, their resistant allele frequencies for all haplotypes iden�fied in the GWAS were examined. 

This analysis served the dual purpose of confirming that the models performed as intended and 

iden�fying any unintended effects on the allele frequencies of different haplotypes. A selec�on based 

on observed DON values was done and analysed for allele frequency to see whether the resistant 

alleles increased as expected. 

2.4. Main results and discussions 

2.4.1. Evalua�on of strategies to op�mize training popula�ons for genomic predic�on in 

oat (Avena sa�va L.) (Paper 1) 

The objec�ve of this study was to evaluate various strategies for op�mizing training popula�ons for 

genomic predic�on, including Predic�on core, Diversity core, Phenotypic selec�on and Random 

selec�on. Among these strategies, Predic�on core yielded the most favourable results, showing 

higher predic�on accuracy than the others, par�cularly in larger popula�ons for both traits (Figure 3). 

It was the only strategy to show a significantly higher PA compared to Random selec�on. It also 
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demonstrated the highest gene�c diversity within popula�ons ranging from 200 to 500 individuals 

(Figure 4A) and displayed a higher degree of gene�c similarity to the tes�ng popula�on compared to 

most other strategies (Figure 4B). Furthermore, the Predic�on core showed higher phenotypic 

variance compared to Diversity core and Random selec�on.  

Diversity core, on the other hand, showed similar predic�on accuracy to Random selec�on. However, 

selected training popula�ons showed significantly higher gene�c diversity especially in smaller 

popula�ons. It is worth no�ng that despite the enhanced gene�c diversity, the gene�c similarity of 

the training and tes�ng popula�ons remained rela�vely low in all popula�on sizes compared to the 

other strategies (Figure 4B). This suggests that Diversity core might not be an op�mal strategy for the 

specific tes�ng popula�on used in the study, as it showed low gene�c diversity and striving for high 

gene�c diversity in the training popula�on appeared to reduce gene�c similarity between the 

training and tes�ng popula�ons.  

Phenotypic selec�on also performed reasonably well and close to Predic�on core for both traits. It 

yielded excep�onally high phenotypic variance, but, interes�ngly, the levels of gene�c diversity and 

similarity varied between the two traits. In summary, two main criteria emerged as essen�al for 

op�mizing our training popula�ons in our dataset: popula�on size and gene�c similarity, both 

showed significant posi�ve correla�ons with PA. Popula�on size showed robust correla�ons, with r-

values of 0.77 for DTH and 0.36 for PH. Gene�c similarity showed modest and similar correla�on, 

with r-values of 0.4 for DTH and 0.48 for PH. While gene�c and phenotypic diversity had non-

significant correla�on to PA for DTH, they displayed significant correla�on with r-values of 0.25 for 

both criteria for PH.  

The Random selec�on showed the lowest PA of all strategies for both traits for popula�on size 300-

500. It also showed the lowest gene�c diversity and phenotypic variance in all popula�on sizes. It did 

however show gene�c similarity slightly lower than the Predic�on core strategy in all popula�on 

sizes. 



19 
 

 
Figure 3: Average prediction abilities for (A) plant height (PH) and (B) days to heading (DTH) in oats 

for the different optimization strategies Prediction core (PreCo), Diversity core (DivCo), Phenotypic 

selection (PheSe) and Random selection (RanSe) across different training population sizes. 

 
Figure 4: (A) Mean genetic diversity and (B) Mean genetic similarity for the optimization strategies 

Diversity core (DivCo), Prediction core (PreCo), Phenotypic selection (PheSe) for plant height (PH) and 

days to heading (DTH) and Random selection (RanSe) in population size 100-500. 

This research confirms, as previous studies have shown, that the gene�c similarity between training 

and tes�ng popula�on is one of the most important factors to op�mize for achieving high predic�on 

ability (Lorenz & Nice, 2017, Zhang et al., 2017, Xiaogang et al.,2018). Higher PA were found with 

larger popula�on size for DTH (Figure 3B) which matches previous reports on effect of popula�on size 
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(Asoro et al., 2011, Zhang et al., 2017). But for PH smaller popula�on size gave higher PA (Figure 3A), 

which supports the idea that smaller training popula�ons suffice for highly heritable traits (Zhang et 

al., 2017, Kaler et al., 2022) like PH and DTH. It has been shown in previous studies that smaller 

op�mized training popula�on could lead to higher PA compared to larger popula�ons (Adeyemo et 

al., 2020) which is supported by this study. Several studies have highlighted the importance of having 

high gene�c diversity in the training popula�on (Crossa et al., 2016, Norman et al., 2018, Fernández-

González et al., 2023). However, these training popula�ons have been evaluated on diverse material, 

while this study evaluates op�miza�on on breeding material known to be low in gene�c diversity (He 

et al., 2012). Thus, gene�c diversity seems to be more important to increase in combina�on with 

increased gene�c similarity. A combina�on of both Diversity Core and Predic�on core could be 

advisable, as accoun�ng for popula�on structure and high gene�c diversity would make the training 

popula�on more robust over �me (Berro et al., 2019). 

This study could have been improved further to beter target some of the research ques�ons. To 

increase the accuracy of phenotyping and make the study more reliable all candidates for the training 

popula�on could have been sown together in the same trial, to get a balanced dataset. In addi�on, at 

least two more strategies should have been tested. One that maximises the gene�c diversity alone, 

more than the Diversity core does. The second one would use the Predic�on core algorithm to select 

only based on gene�c similarity, without increasing the gene�c diversity. Both of these strategies 

could have shed light on the true effect of maximising only gene�c diversity and gene�c similarity. 

The last improvement would be to use addi�onal valida�on popula�ons, to further inves�gate the 

stability of the training popula�on over several genera�ons of tes�ng popula�ons, an important 

aspect when applying genomic predic�on (Neyhart et al., 2017).    

2.4.2. Iden�fica�on of haplotypes associated with resistance to Fusarium graminearum 

in spring oat (Avena sa�va L.) (Paper 2) 

The GWAS analysis successfully iden�fied a total of 48 significant markers associated with FHB 

resistance, which include 24 for DON, 22 for GP and 2 for both.  36 of these were clustered into a 

total of 15 QTL-regions where the markers were in significant LD with each other. The markers in each 

region were further analysed together as one haplotype. Five of the 15 haplotypes were validated 

through a pairwise t-test between the most frequently resistance and suscep�bility alleles (Table 1). 

Validated haplotypes were located on linkage groups 1C, 7C-17A, 9D, 12D and 18D. The resistant 

alleles of these haplotypes showed a reduc�on of DON between 12 and 23% compared to the 

suscep�ble alleles for the overall values in the GWAS popula�on, and increased GP between 1.6 and 

4.2% (Table 1). The valida�on popula�ons mostly showed similar effects, with some inconsistencies 

for region 1C in V2 and 18D-1 in V1. The QTL-region 7C-17A-1 showed the most pronounced effects in 
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both DON and GP, and these effects remained rela�vely consistent across different environmental 

condi�ons and popula�ons. Similarly, the QTL region on 9D displayed consistent and highly significant 

reduc�ons in DON across all tested environments and popula�ons. 

Table 1: List of the five validated QTL-regions and the difference between the resistant and 

suscep�ble haplotypes in all years (2020, 2021 and 2022) and loca�ons (V = Vollebekk, S = Staur) of 

the GWAS panel including the overall values (Ov), and the overall values of the valida�on popula�ons 

(V1-V3). DON is shown as percentage difference between groups calculated as (difference in 

mean/average between groups) × 100 while GP is given as the difference in mean phenotypes. 

Posi�ve values mean that the suscep�ble haplotype has higher DON and lower GP than the resistant. 

Α < 0.05 = *, < 0.01 = ** and < 0.001 *** 

QTL 20S 20V 21S 21V 22S 22V Ov V1 V2 V3 
DON 

1C 8 5 8 6 24*** 11* 12* 43 -31 14 
7C-17A-1 17 31* 18 26 29* 19* 23** 32 6 33*** 

9D 22*** 19*** 14** 14** 19*** 12*** 16*** 16 17 15* 
12D 15 26** 19* 8 22** 15** 17*** NA 15 14 

18D-1 9 9* 11** 15** 14** 13*** 12*** 2 16* 14** 
GP 

1C 1.8 0.1 1.1 1.1 6.9*** 7.9*** 3.1*** 1.5 -1.8 5.6 
7C-17A-1 2.2 2.9 0.1 3.8* 4.9 9.4*** 4.2*** 4.0 0.6 12.2 

9D 2.9*** 0.9 0.5 -0.2 3.1* 2.7** 1.6*** 0.5 2.0 4.6* 
12D 5.3*** 0.6 -0.1 -0.7 3.7* 4.2** 2.1*** NA 2.7 5.2 

18D-1 2.4** 0.7 0.2 0.1 2.9** 3.2*** 1.6*** -0.2 2.2* 4.9** 

The cumula�ve impact of the five validated resistant alleles was found to have an addi�ve effect on 

enhancing resistance (Figure 5a and b). When adding just one resistant haplotype allele, a significant 

reduc�on in DON and an increase in GP were observed. These improvements were evident up to a 

total of three alleles. Interes�ngly, there was no significant difference between the effects of having 

three alleles and having four, but a significant improvement was observed when moving from three 

to five alleles. This indicates that when a certain level of resistance is achieved it requires 

considerably more resistance sources to improve further, but that this level of resistance is not 

unatainable. 

A BLAST search in the GrainGenes database (Yao et al., 2022) against the OT3098 reference genome 

(PepsiCo, 2021) was conducted within the haplotypes using the marker flanking sequences which 

revealed several candidate genes (Paper 2, Supplementary Table S2). A total of 15 different genes 

were annotated with associa�on to disease resistance. Many of these genes have been previously 

reported to be associated with resistance to F. graminearum in both bread wheat (Kugler et al., 2013) 
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and durum wheat (Sari et al., 2019). Furthermore, these genes are o�en recognized as components 

of resistance gene clusters. The QTL-regions on 1C, 7C-17A-1 and 12D supported the concept of gene 

clusters, as evidenced by the high number of resistance gene copies found in these regions: 20, 16 

and 11 copies, recep�vely. An alterna�ve explana�on for the resistance observed in the 1C region 

relates to the poten�al presence of DON detoxifica�on genes, which were detected and described by 

Khairullina et al. (2022) as they are situated approximately 4 Mbp from the closest marker in the 

region.  

 

Figure 5: Boxplots of overall values from the GWAS population (Y-axis) for the traits DON 

accumulation in ppm (a), germination percentage (b), days to heading (c) and plant height (d) for 

genotypes grouped based on the number of validated resistant alleles they carry (X-axis). 

Three regions iden�fied in this study (5C, 9D and 7C-1) have also been detected in previous studies 

(He et al., 2013, Bjørnstad et al., 2017) while the remaining are novel QTL. However, the BLAST search 

revealed that the significant markers from their studies are possibly 100-300 Mbp away from the 

closest significant marker in this study. The region on 7C-1 did not even match the same chromosome 

on the reference genome. This could be due to the frequent re-arrangement of this specific LG (Jellen 

et al., 1994). It is worth no�ng that the gene�c maps and popula�ons used in those studies were 

based on mostly American accessions (Chaffin et al., 2016). However, in our study the popula�ons 

were a combina�on of Nordic breeding material and older Nordic varie�es (Sørensen et al., 2023), 
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and the map was based on the one developed by Chaffin et al. (2016) and updated with six biparental 

popula�ons from the Nordic breeding companies. This could explain why the referenced posi�ons do 

not match with our study. But the mapping done in this study is likely more relevant for further 

enhancing FHB resistance in the Nordic breeding programs. As of now, there is a Pan genome project 

in oat (Mascher, 2022) that can help in accurate physical mapping of the markers and shed light on 

the true dispersion of markers in the genome. It could also result in the detec�on of more markers, 

which is highly needed for both mapping and genomic predic�on. Fine mapping and func�onal 

studies of the QTL-regions discovered in this study would be a major breakthrough for FHB resistance 

research in oat and contribute to incorpora�on of durable FHB resistance in breeding material.  

There are several things that could have made this GWAS study beter. Firstly, ensuring high disease 

pressure in all experiments would have made the phenotypes more reliable, especially for GP in V1 

and V2. Secondly, using other models like BLINK for associa�on mapping could have resulted in beter 

marker detec�on as it has been described as more sta�s�cally powerful than farmCPU (Zhiwu Zhang 

Laboratory, 2023). Thirdly, add more FHB traits like (1) coun�ng number of infected kernels, (2) Near-

Infrared Hyperspectral Imaging, (3) degree of anther extrusion and (4) qPCR for quan�fica�on of 

Fusarium DNA. This could have revealed more regions and more of the gene�c characteriza�on of the 

underlying genes. Finally, a more gene�cally diverse popula�on should have been used with higher 

number of polymorphic markers, as the training popula�on was primarily op�mized for genomic 

predic�on. This could have mapped markers closer to the causal QTL as LD would have been smaller.  

2.4.3. Evalua�on of genomic predic�on models for FHB resistance in oat (Avena sa�va L.) 

with models that include significant haplotype informa�on (Paper 3) 

The five validated QTL-regions from the GWAS in Paper 2 were added as fixed effects in the genomic 

predic�on model. These markers were included both individually (model M1C, M7C-1, M9D, M12D 

and M18D-1), as well as collec�vely (model M5HT) and in combina�on with the other ten resistance 

alleles from the GWAS (model M15HT). The goal was to assess whether these markers-based models 

could improve PA compared to the Bayesian Ridge Regression (BRR) model in both the training 

popula�on and valida�on popula�ons. BRR was chosen as the basic model because it assumes that 

most markers have a small or close to zero effect on the phenotype, and that using a model that 

assumes some markers to have larger effect would undermine the purpose of adding significant 

marker informa�on as fixed effect. For the training popula�on, the results demonstrated higher PA 

for all single haplotype models for both traits, with the excep�on of M18D-1 (Figure 6). The model 

with the with the five GWAS-validated haplotypes (M5HT) showed significantly higher PA than any 

single haplotype model for both traits, while including all fi�een haplotypes (M15HT) showed 



24 
 

significantly higher PA than M5HT for both traits in the training popula�on. However, the results were 

more variable in the three valida�on popula�ons (V1, V2 and V3) (Figure 7), and consistent effect on 

PA across different popula�ons and traits was not always observed. Model M1C showed small 

differences with BRR with the highest increase in V1. M7C-1 showed consistent increase in PA in V1 

and V3 for both DON and GP. M9D showed increased PA in all popula�on for DON (Figure 7a), but in 

none for GP (Figure 7b). M12D showed reduced PA in all popula�ons and traits. M18D-1 showed 

almost no difference in PA with BRR for DON (Figure 7a) but increased it for GP in all popula�ons 

(Figure 7b). M5HT showed the highest PA in V1 for DON and V3 for GP, but reduced PA in V2 and V3 

for DON and V2 for GP. Furthermore, M15HT consistently showed notably lower PA in all popula�ons 

for both traits. These results show that the performance of these marker-based models varies 

between the training and valida�on popula�ons, and the choice of which markers to include in the 

model may depend on the specific trait and popula�on of interest. 

 
Figure 6: Prediction ability of log-transformed DON values (logDON; a) and Germination percentage 

(GP; b) in the training population using 5-fold cross-validation. Each model was replicated 30 times.  

 
Figure 7: Prediction ability of logDON (a) and GP (b) in the three validation populations for the 

different models with prediction ability on the y axis and populations on the x-axis (V1, V2 and V3). 

The different models are indicated by the colours specified in the figure. 
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In the selec�on process, the models consistently reduced DON and increased GP in the training 

popula�on, with increased effect with higher PA (Figure 8). There was no significant difference in 

observed DTH in selec�on. But for PH there were significantly higher plants in selec�on with M12D, 

M5HT and M15HT than with BRR with the tallest plant being observed with M15HT. However, the 

opposite was observed in the valida�on popula�ons, as M15HT consistently resulted in the shortest 

plants (Paper 3, supplementary Figure S1). This could indicate a non-random linkage between the 

QTL-regions and PH that could differ between the training and valida�on popula�ons, which in case 

would partly explain the difference in PA between the training and valida�on popula�on for M15HT. 

When assessing observed DON content in the valida�on popula�ons, a consistent trend emerged 

(Paper 3, Figure 4). Selec�ons made with the M5HT showed higher observed DON content, and this 

effect was even more profound in selec�ons with the M15HT model. This patern contradicts the 

findings in the training popula�on (Figure 8a and b), as the predic�on that increased PA with M5HT 

also showed higher DON values in selec�ons. The M12D model was the only single haplotype model 

that increased DON content in the valida�on popula�on V1 which matches the lower PA (Figure 7a). 

The M7C-1 and M18D-1 models consistently reduced DON content in selec�ons for valida�on 

popula�ons V2 and V3. However, this reduc�on in DON content was not reflected in an increase in PA 

for these models. In some instances, their PA remained similar to that of the BRR model, and in the 

case of M7C-1 in V2, the PA was lower. These observa�ons underscore the complex interplay 

between model selec�on, traits, and popula�ons, and shows that increased PA does not always result 

in beter observed phenotypes in elite material. 
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Figure 8: Average observed phenotypes of DON (a), Germination percentage (GP; b), Days to heading 

(DTH; c) and Plant height (PH; d) in populations selected based on 1/3 of genotypes with the lowest 

predicted logDON with each model in the 30 cross-validation replicates. 

A plausible explana�on for the varying effects between the models and between popula�ons is that 

when amplifying an assumed allele effect in the model it reduces the effect of other important QTL. 

This could lead to the unintended reduc�on of resistance alleles from other regions in selected elite 

material as highlighted in Figure 9. There it is shown that along with the significant increase of 

resistant alleles of targeted QTL-regions, there is also a significant reduc�on in other resistance alleles 

in different regions as with M1C, M9D, M12D and M18D-1. The inclusion of these effects is further 

amplified in the M5HT model. When using the M15HT model, the frequencies of most alleles 

increase, but not all. Notably, alleles in regions 5C-1 and 20D s�ll show a significant reduc�on 

compared to BRR, despite their effects being included in the model. It is important to note that the 

changes in allele frequencies in the valida�on popula�ons were inconsistent (Paper 3, Table 5). But 

the resistant alleles of the target regions always increased which showed that the models worked as 

intended in the valida�on popula�ons as well. A striking difference between the training and 

valida�on popula�ons is the change in allele frequencies on region 21D in selec�ons. Ini�ally, there is 

a significant increase with M5HT and M15HT in the training popula�on, but in the valida�on 

popula�ons, a consistent decrease is evident. This finding suggests that the QTL-region on 21D might 

play a more significant role than previously recorded in the GWAS. Another notable result from 
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analysing the valida�on popula�on is that specifically in V3 the frequency of the resistant alleles of 

12D and 18D-1 were reduced in alle single haplotype model, except for the ones where they were 

specifically targeted.  

HT M1C M7C-1 M9D M12D M18D-1 M5HT M15HT  

1C ***   **  *** *** 

 

2C       *** 
5C-1      *** *** 
5C-2       *** 
6C      **  

7C-1  ***    *** *** 
7C-2     ** *** *** 
9D   ***   *** *** 

12D **   ***  *** * 
15A       *** 

18D-1     *** ***  

18D-2      **  

19A *     *** *** 
20D   **    *** 
21D   ***   *** *** 

Figure 9: Difference between the fixed effect models and the base model BRR in frequencies of 

resistance haplotypes (HT) within populations selected based on the 1/3 lowest predicted DON values. 

The number are rounded up to the closest second decimal, and empty cells means that the difference 

was less than 0.005. p-values < 0.05 = *, 0.01 = ** and 0.001 = ***. 

Previous studies that include fixed effect of significant QTL for FHB resistance report increased 

predic�on accuracy (Rutkoski et al., 2012, Zhang et al., 2021, Alemu et al., 2023). In most cases 

several QTL are added simultaneously, which matches the results found in this study within the 

training popula�on as more QTL-regions significantly increased PA. This shows the added benefit of 

adding fixed effects of QTL with large effect as well as the small effect. However, the results from the 

valida�on popula�on reveal that this effect can be inconsistent and poten�ally have nega�ve impact 

on PA. Some studies have pointed out that there are poten�al risks of adding fixed effects to models, 

especially when the effects are rela�vely small (Poland & Rutkoski, 2016, Herter et al., 2019), as with 

Fusarium resistance in oat (He et al., 2013, Bjørnstad et al., 2017). 

There are several poten�al explana�ons to the difference between the training and valida�on 

popula�ons. The most important ones to consider are the rela�onship between the training and 

valida�on popula�ons, difference in LD between popula�on, gene interac�ons, the environmental 

effects and disease pressure. When there is high LD between two important QTL-regions, it means 

that their alleles appear together more o�en than expected based on their individual frequencies. 
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And if the alleles that segregate are resistant on one locus, and non-resistant on the other it would 

probably not increase PA as expected. When LD is high across chromosomes it is likely caused by 

family structure (Nei & Li, 1973) or epistasis (Lewon�n & Kojima, 1960). Ideally the QTL-regions used 

as fixed effects in GS models should not be in high LD with each other to avoid adding the effects of 

non-resistant allele through LD with targeted QTL-regions. LD between known QTL-regions should 

therefore be analysed in the breeding popula�on before performing genomic predic�on with fixed 

effects of QTL-regions. Another way that LD affects the results is that the LD between the markers 

and causal QTL detected in the GWAS could change due to recombina�on in the breeding material, 

making the assumed effect wrong and therefore ineffec�ve in increasing PA. The effect of gene 

interac�on and epistasis could have substan�al impact on PA (Wientjes et al., 2022). This has been 

described for FHB resistance in wheat (Kage et al., 2017), where transcrip�on factors of some genes 

affect the expression of others. The expression of certain genes could also have been affected by 

environmental effects as described in disease resistance in Arabidopsis thaliana (Macqueen & 

Bergelson, 2016) where different valida�on popula�ons were tested in separate years. A large 

varia�on in disease pressure between the years, has shown to affect gene expression of FHB 

resistance in wheat (Manghwar et al., 2021), which could also be the case in our study. When 

phenotypic selec�on was performed, most of the validated alleles increased in frequency (Paper 3, 

Figure 5), but not for all valida�on popula�ons. This indicate that there might be a difference in QTL 

effect between the popula�ons and years. 

The PA found in this study were moderately high for DON compared to another study on FHB 

resistance in oat (Haikka et al., 2020b). Similar PA were also shown across all three valida�on 

popula�ons. The general complexity of the oat genome, and especially FHB resistance makes it a trait 

difficult to predict. Four ways that could improve PA based on the current approach of added effects 

of significant markers are proposed. First is to differen�ate the effects of the alleles as the GWAS 

showed that each region and allele contributes different effects on resistance. This could be done by 

not using the presumed effects of resistant and suscep�ble haplotype allele that we have from the 

GWAS, and just use the marker informa�on. This would make the model able to calculate the effects 

of other marker combina�ons as well as the ones included as haplotypes in this study. A second is to 

use a model including epista�c effects, which could capture the poten�al gene interac�on for the 

trait (Raffo et al., 2022). Third is to analyse the LD between the poten�al QTL to include and use only 

the ones that have the lowest LD with other known QTL-regions. This could reduce the risk of co-

segrega�on between resistance and suscep�ble alleles of different loci. A fourth is to do more precise 

mapping of the causal QTL, and loca�ng markers very close them. This would reduce the risk of loss 

of LD between markers and QTL due to segrega�on in new breeding popula�ons. 
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Other aspects of improving PA include the following: (1) using models that include GxE interac�on like 

“RKHS” (Hu et al., 2023) as G x E is shown to have a significant effect on DON (He et al., 2013) and GP 

(Table 1), (2) use mul�-trait models that include effects of DTH and PH to improve PA (Gaire et al., 

2022, Zhang et al., 2022) as they have shown to correlate with both DON and GP (Figure 9), and (3) to 

increase the number of SNP markers used, as the approximately 3000 markers used in this study do 

not necessarily capture all small effect-QTL in the large oat genome. All improvements men�oned 

above could be used together in a mul�-trait-mul�-environment model (Gill et al., 2021) with fixed 

effect of significant markers.  

2.4.4. Fixed effects of QTL-regions and evalua�on of GS 

The effect of adding haplotype informa�on as fixed effect were expected to increase PA in general 

and the frequency of only the targeted resistant allele in selec�ons of elite material. But the 

significant reduc�on of other QTL alleles as a side effect as with 12D with M1C and 1C with M12D 

(Figure 9) poses the ques�on of how the QTL-regions are linked. If there is a linkage between the 

resistant allele of 1C and non-resistant alleles of 12D and vice versa, then that could be evident in the 

en�re popula�on and thus possible to account for when selec�ng markers for model improvement. 

Another explana�on could be that the effects of some of the resistant alleles are overes�mated in the 

BRR model, thus their effects are reduced when fixed effect of other alleles are added. This is 

indicated by the fact that there is a bigger increase of all five validated resistant alleles in selec�on 

with BRR than with phenotypic selec�on in the training popula�on (Paper 3, Figure 5). As PA is 

calculated as the correla�on between the predicted and observed phenotypes it could be argued that 

to achieve 100% accuracy of the models, the allele frequency in selec�ons should be the same with 

BRR as with phenotypic selec�on (Figure 5), thus the reduc�on of effects of non-targeted QTL with 

the single haplotype models could also increase PA. Another aspect of this is that the higher 

frequency of resistant alleles in selec�on with BRR over phenotypic selec�on indicates an increased 

selec�on intensity for these regions with GS, thus increasing gene�c gain faster. A drawback of this is 

that alleles can get fixated faster in the breeding material, or that rare alleles are lost due to gene�c 

dri�, both of which reduce the gene�c diversity of the breeding material, poten�ally hampering 

future gene�c gains with the same material (Wientjes et al., 2023).  

2.4.5. Implementa�on of genomic predic�on for FHB resistance 

The consistent PA found in this study makes it possible to apply the models in the Norwegian 

breeding program. However, per now the PA is not high enough to be given as much weight as 

phenotypic data. Thus, we recommend confirming resistances in phenotypic trials before official 

variety trials. A second benefit of this is that data from field trials could be used to improve the 
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predic�on models by adding new lines to the training popula�on. Four op�ons for implementa�on at 

Graminor based on the current breeding program as described in 1.3.4. can be suggested. First is to 

make genomic selec�on in the F10 genera�on as has been done previously with phenotypic selec�on. 

This would be cheap as there are few lines to genotype, and costs normally spent on phenotyping can 

be saved. Second is to make selec�on based on GS in F9. The number of lines in this genera�on is 

almost 10 �mes as high as F10 which increases the price for genotyping but would increase selec�on 

intensity for FHB resistance. The PA does not merit selec�ng the top 10% with high confidence, but 

could be used to discard the most suscep�ble, and then do phenotypic selec�on for other agronomic 

traits on the rest. A third applica�on would be to make selec�on in F8 where we have lines in single 

rows. Here are 10 �mes more genotypes than in F9 making genotyping even more expensive, and 

there are less traits to phenotype as they are sown in single rows. Here the model could be used to 

discard the most suscep�ble lines as there are many poten�ally favourable traits that is not observed, 

or to use models for other agronomical traits as well as FHB resistance. Finally, if the models improve 

it could be used to genotype single panicles in earlier genera�ons and use them as parents for new 

crossings. A�er a certain number of crossing cycles, the progeny is advanced to pure lines (Gaynor et 

al., 2017). This is a method of rapid improvements of gene�c gains but could be considered unreliable 

as predic�on are made on s�ll segrega�ng lines. This approach would be more applicable with more 

accurate models, and for more traits, which would reduce the risk of unfavourable genes and 

phenotypes accumula�ng in the germplasm. The use of fixed effects of QTL could be useful even if 

they do not improve PA in that it does increase the frequency of desirable alleles in the selec�ons. It 

can be viewed as a form of MAS within the GS framework and would be especially useful for alleles 

that are in low frequency in the popula�on as these could be lost in future genera�on due to gene�c 

dri�. But it would be advisable to only use markers with consistent large effect across popula�ons as 

it is expected based on this study that added QTL would be selected in disfavour of others. 
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Conclusion 

This study has provided valuable insights into the op�miza�on of training popula�ons in oats, as well 

as the applica�on of genomic predic�on models and the iden�fica�on of significant QTL-regions for 

FHB resistance: 

Training Popula�on Op�miza�on (Paper 1): The study successfully evaluated different strategies for 

training popula�on op�miza�on and iden�fied two main criteria for op�mizing training popula�ons: 

popula�on size and gene�c similarity between training and tes�ng popula�on. Gene�c and 

phenotypic diversity were less important as criteria by themselves. But the results indicate that no 

single criterion improved PA by itself, but in combina�ons. The Predic�on core strategy successfully 

balanced high gene�c similarity between training and tes�ng popula�on with rela�vely high gene�c 

and phenotypic diversity, resul�ng significantly higher PA than random selec�on with 0.09 higher 

average PA for PH in popula�on size 300 and 400. The findings from this study resulted in an 

op�mized training popula�on for future genomic predic�on and associa�on studies in the context of 

FHB resistance.  

Genome-Wide Associa�on Study (GWAS) of Fusarium resistance (Paper 2): A total of 15 significant 

QTL-regions associated with Fusarium resistance in oats were detected. Out of these, five QTL regions 

exhibited consistent effects across different environments and popula�ons. A haplotype analysis was 

conducted, enabling the iden�fica�on of both resistant and suscep�ble alleles within each region. 

Each of the five resistant alleles showed between 12 and 23% reduc�on in DON content compared to 

the suscep�ble allele. The cumula�ve effects of these five validated QTL-regions were found to 

collec�vely reduce the DON content by 38%. In addi�on, the study iden�fied several disease 

resistance genes within these regions that had previously been associated with resistance to F. 

graminearum in other crops. This research has affirmed that Fusarium resistance is a complex trait 

influenced by mul�ple QTL-regions across the genome, each with varying effects. The knowledge 

gained from this study is expected to assist breeders in making informed decisions when selec�ng 

parent plants for future crossings, thereby facilita�ng the combina�on of mul�ple resistant QTL 

regions. While the individual effects of the markers detected in the GWAS may be rela�vely small, this 

informa�on can be leveraged to enhance genomic selec�on models for FHB resistance. 

Genomic Predic�on Models for Fusarium resistance (Paper 3): The integra�on of fixed effects using 

the resistant alleles iden�fied in the GWAS improved the predic�on accuracy for both DON and GP in 

the training popula�on with average PA of 0.49 and 0.52 with the base model. Adding QTL 

informa�on increased PA with the highest when all GWAS results were included resul�ng in average 

PA of 0.55 and 0.56 for DON and GP respec�vely. The PA in the valida�on popula�ons were 
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moderately high with the base model when heritability of the trait was high, with PA for DON 

between 0.44 and 0.48. However, the individual effects of these resistant alleles in the valida�on 

popula�ons were inconsistent with different QTL outperforming BRR in different traits and 

popula�ons. The lowest PA was achieved when all QTL informa�on was added, emphasizing that 

results from GWAS are not necessarily the same in breeding popula�ons. It is therefore advisable to 

validate the effect of marker informa�on in breeding material before applica�on of markers in 

models. The reason for the inconsistency could possibly be due to differences in popula�ons or 

environmental factors, given that the three popula�ons were tested in different years. Moreover, the 

frequency of these resistant haplotype alleles revealed that enhancing the effect of specific QTL can 

downregulate the effect of other resistance alleles. This downregula�ng between popula�ons is likely 

influenced by non-random linkage and family structure, and subsequent co-segrega�on of resistant 

and non-resistant alleles at separate loci. Addi�onally, it is quite possible that the LD between 

markers detected in the GWAS, and the causal QTL has been par�ally broken due to recombina�on in 

subsequent breeding popula�ons. Therefore, it is advisable to thoroughly study the linkage between 

known resistance QTL-regions before integra�ng them into GS models to avoid uninten�onal nega�ve 

effects on predic�ons. 

High PA is achievable for FHB resistance in oat as long as there is a good rela�onship between the 

training and breeding material, the training popula�on is large and diverse enough, the traits are 

correctly assessed with low error rate and high heritability, there is enough marker informa�on to 

capture the small effects of resistance genes throughout the genome, and that the model used 

manages to capture the complex interplay of epistasis, G x E and popula�on structure within breeding 

programs. Adding fixed effects of significant markers can improve PA, but the markers effects from a 

GWAS are not necessarily the same in the breeding popula�on. More research into precise mapping 

and func�on of resistance genes would improve the reliability of this approach.  

 

 

 

 

 

 

 

 



33 
 

References 
Abrahamsen, U., Brodal, G. & Waalen, W. (2016) Virkning av ulike forgrøder på neste års avling av 
hvete. NIBIO BOK 2 (1) Jord- og Plantekultur 2016, 106-111. URL: htps://nibio.brage.unit.no/nibio-
xmlui/handle/11250/2577326. 

Adeyemo, E., Bajgain, P., Conley, E. J., Sallam, A. H., & Anderson, J. A. (2020) Op�mizing training 
popula�on size and content to improve predic�on accuracy of FHB-related traits in 
wheat. Agronomy, 10(4), 543. htps://doi.org/10.3390/agronomy10040543. 

Akdermir, D. (2018) STPGA: Selec�on of Training Popula�ons by Gene�c Algorithm. R package version 
5.2.1. htps://CRAN.R-project.org/package=STPGA. 

Akdemir, D. & Isidro-Sánchez, J. (2019). Design of training popula�ons for selec�ve phenotyping in 
genomic predic�on. Scientific reports 9(1446). htps://doi.org/10.1038/s41598-018-38081-6.  

Alemu, A., Ba�sta, L., Singh, P. K., Cepli�s, A., & Chawade, A. (2023) Haplotype-tagged SNPs improve 
genomic predic�on accuracy for Fusarium head blight resistance and yield-related traits in 
wheat. Theoretical and applied genetics, 136(4), 92. htps://doi.org/10.1007/s00122-023-04352-8. 

Arata, G, J. Mar�nez, M., Elguezábal, C., Rojas, D., Cristos, D., Dinolfo, M. I. & Arata, A. F. (2022) Effects 
of sowing date, nitrogen fer�liza�on, and Fusarium graminearum in an Argen�nean bread wheat: 
Integrated analysis of disease parameters, mycotoxin contamina�on, grain quality, and seed 
deteriora�on. Journal of Food Composition and Analysis, 107, 104364. 
htps://doi.org/10.1016/j.jfca.2021.104364. 

Arruda, M. P., Lipka, A. E., Brown, P. J., Krill, A. M., Thurber, C. Brown-Guedira, G. Dong, Y., Foresman, 
B. J & Kolb, F. L. (2016) Comparing genomic selec�on and marker-assisted selec�on for Fusarium head 
blight resistance in wheat (Triticum aestivum L.). Molecular Breeding, 36, 84. 
htps://doi.org/10.1007/s11032-016-0508-5. 

Asoro, F. G., Newell, M. A., Beavis, W. D., Scot, M. P. & Jannink, J-L. (2011) Accuracy and Training 
Popula�on Design for Genomic Selec�on on Quan�ta�ve Traits in Elite North American Oats. The 
Plant Genome, 4(2). htps://doi.org/10.3835/plantgenome2011.02.0007. 

Audenaert, K., Vanheule, A., Hö�e, M., & Haesaert, G. (2013) Deoxynivalenol: a major player in the 
mul�faceted response of Fusarium to its environment. Toxins, 6(1), 1–19. 
htps://doi.org/10.3390/toxins6010001.  

Aydin, E. & Cocmen, D. (2011) Cooking quality and sensorial proper�es of noodle supplemented with 
oat flour. Food Science and biotechnology, 20, 507-511. htps://doi.org/10.1007/s10068-011-0070-1.  

Ball, J. J., Wyat, R. P., Coursen, M. M., Lambert, B. D., & Sawyer, J. T. (2021) Meat Subs�tu�on with 
Oat Protein Can Improve Ground Beef Paty Characteris�cs. Foods, 10(12), 3071. 
htps://doi.org/10.3390/foods10123071. 

Basinskiene, L. & Cizeikiene, D. (2020) Cereal-Based Nonalcoholic Beverages. In C. M. Galanakis, Ed. 
Trends in Non-alcoholic Beverages, 63-99. Academic Press. htps://doi.org/10.1016/B978-0-12-
816938-4.00003-3.  

Becher, R., Hetwer, U., Karlovsky, P., Deising, H. B., & Wirsel, S. G. (2010) Adapta�on of Fusarium 
graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide 
resistance, virulence, and mycotoxin produc�on. Phytopathology, 100(5), 444–453. 
htps://doi.org/10.1094/PHYTO-100-5-0444.  

https://nibio.brage.unit.no/nibio-xmlui/handle/11250/2577326
https://nibio.brage.unit.no/nibio-xmlui/handle/11250/2577326
https://doi.org/10.3390/agronomy10040543
https://cran.r-project.org/package=STPGA
https://doi.org/10.1038/s41598-018-38081-6
https://doi.org/10.1007/s00122-023-04352-8
https://doi.org/10.1016/j.jfca.2021.104364
https://doi.org/10.1007/s11032-016-0508-5
https://doi.org/10.3835/plantgenome2011.02.0007
https://doi.org/10.1007/s10068-011-0070-1
https://doi.org/10.3390/foods10123071
https://doi.org/10.1016/B978-0-12-816938-4.00003-3
https://doi.org/10.1016/B978-0-12-816938-4.00003-3
https://doi.org/10.1094/PHYTO-100-5-0444


34 
 

Benjamini, Y. & Hochberg, Y. (1995) Controlling the False Discovery Rate: A Prac�cal and Powerful 
Approach to Mul�ple Tes�ng. Journal of the Royal Statistical Society: Series B (Methodological), 57, 
289-300. htps://doi.org/10.1111/j.2517-6161.1995.tb02031.x. 

Bernho�, A., Clasen, P. E., Kristoffersen, A. B., & Torp, M. (2010) Less Fusarium infesta�on and 
mycotoxin contamina�on in organic than in conven�onal cereals. Food additives & contaminants. 
Part A, Chemistry, analysis, control, exposure & risk assessment, 27(6), 842–852. 
htps://doi.org/10.1080/19440041003645761. 

Bernho�, A. Eriksen, G. S., Sundheim, L., Berntssen, M., Brantsæter, A. L., Brodal, G., Fæste, C. K., 
Hofgaard, I. S., Rafoss, T., Sivertsen, T. & Tronsmo, A. M. (2013) Risk Assessment of Mycotoxins. in 
Cereal Grain in Norway. Opinion of the Scientific Steering Committee of the Norwegian Scientific 
Committee for Food Safety; VKM (Norwegian Scientific Committee for Food Safety): Oslo, Norway, 
2013. URL: 
htps://vkm.no/english/riskassessments/allpublica�ons/riskassessmentofmycotoxinsincerealgraininn
orway.4.27ef9ca915e07938c3b2bad8.html.  

Bernho�, A., Christensen, E., Tukun, F-L., Gilbert, D., & Er, J. C. & Eriksen, G. (2023) The surveillance 
programme for feed and feed materials for terrestrial animals in Norway 2022, Norwegian Veterinary 
Institute. URL: 
htps://www.ma�lsynet.no/dyr_og_dyrehold/for/foranalyser_2022__mykotoksiner_og_sopp.50042/
binary/F%C3%B4ranalyser%202022%20-%20mykotoksiner%20og%20sopp. 

Berro, I., Lado, B., Nalin, R. S., Quincke, M., & Gu�érrez, L. (2019) Training Popula�on Op�miza�on for 
Genomic Selec�on. The plant genome, 12(3), 1–14. 
htps://doi.org/10.3835/plantgenome2019.04.0028.  

Bjørnstad, Å. & Skinnes, H. (2008) Resistance to Fusarium infec�on in oats (Avena sativa L.). Cereal 
research communications 36 (Suppl 6), 57–62. htps://doi.org/10.1556/CRC.36.2008.Suppl.B.9. 

Bjørnstad, Å., He, X., Tekle, S., Klos, K., Huang, Y-F., Tinker, N. A., Dong, Y. & Skinnes, H. (2017) Gene�c 
varia�on and associa�ons involving Fusarium head blight and deoxynivalenol accumula�on in 
cul�vated oat (Avena sativa L.). Plant Breeding, 136, 620– 636. htps://doi.org/10.1111/pbr.12502. 

Blandino, M., Reyneri, A., Colombari, G. & Pietri, A. (2009) Comparison of integrated field 
programmes for the reduc�on of fumonisin contamina�on in maize kernels. Field Crops 
Research, 111, 284–289. htps://doi.org/10.1016/j.fcr.2009.01.004. 

Brodal, G., Aamot, H. U., Almvik, M., & Hofgaard, I. S. (2020) Removal of Small Kernels Reduces the 
Content of Fusarium Mycotoxins in Oat Grain. Toxins, 12(5), 346. 
htps://doi.org/10.3390/toxins12050346. 

Brzozowski, L. J., Campbell, M. T., Hu, H., Yao, L., Caffe, M., Gu�érrez, L., Smith, K. P., Sorrells, M. 
E., Gore, M. A., & Jannink, J-L. (2023) Genomic predic�on of seed nutri�onal traits in biparental 
families of oat (Avena sativa). The Plant Genome, 00, e20370. htps://doi.org/10.1002/tpg2.20370.  

Cerrudo, D., Cao, S., Yuan, Y., Mar�nez, C., Suarez, E. A., Babu, R., Zhang, X., & Trachsel, S. (2018) 
Genomic Selec�on Outperforms Marker Assisted Selec�on for Grain Yield and Physiological Traits in a 
Maize Doubled Haploid Popula�on Across Water Treatments. Frontiers in plant science, 9, 366. 
htps://doi.org/10.3389/fpls.2018.00366.  

Chaffin, A. S., Huang, Y.-F., Smith, S., Bekele, W. A., Babiker, E., Gnanesh, B. N., Foresman, B. J., 
Blanchard, S. G., Jay, J. J., Reid, R. W., Wight, C. P., Chao, S., Oliver, R., Islamovic, E., Kolb, F. L., 
McCartney, C., Mitchell Fetch, J. W., Bea�e, A. D., Bjørnstad, Å., Bonman, J. M., Langdon, T., Howarth, 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1080/19440041003645761
https://vkm.no/english/riskassessments/allpublications/riskassessmentofmycotoxinsincerealgraininnorway.4.27ef9ca915e07938c3b2bad8.html
https://vkm.no/english/riskassessments/allpublications/riskassessmentofmycotoxinsincerealgraininnorway.4.27ef9ca915e07938c3b2bad8.html
https://www.mattilsynet.no/dyr_og_dyrehold/for/foranalyser_2022__mykotoksiner_og_sopp.50042/binary/F%C3%B4ranalyser%202022%20-%20mykotoksiner%20og%20sopp
https://www.mattilsynet.no/dyr_og_dyrehold/for/foranalyser_2022__mykotoksiner_og_sopp.50042/binary/F%C3%B4ranalyser%202022%20-%20mykotoksiner%20og%20sopp
https://doi.org/10.3835/plantgenome2019.04.0028
https://doi.org/10.1556/CRC.36.2008.Suppl.B.9
https://doi.org/10.1111/pbr.12502
https://doi.org/10.1016/j.fcr.2009.01.004
https://doi.org/10.3390/toxins12050346
https://doi.org/10.1002/tpg2.20370


35 
 

C. J., Brouwer, C. R., Jellen, E. N., Klos, K. E., Poland, J. A., Hsieh, T.-F., Brown, R., Jackson, E., Schlueter, 
J. A. & Tinker, N. A. (2016) A Consensus Map in Cul�vated Hexaploid Oat Reveals Conserved Grass 
Synteny with Substan�al Subgenome Rearrangement. The Plant Genome, 9: 
plantgenome2015.10.0102. htps://doi.org/10.3835/plantgenome2015.10.0102.  

de Chaves, M.A., Reginato, P., da Costa, B.S., de Paschoal, R. I., Teixeira, M. L. & Fuentefria, A. M. 
(2022) Fungicide Resistance in Fusarium graminearum Species Complex. Current Microbiology 79, 62. 
htps://doi.org/10.1007/s00284-021-02759-4.  

Crossa, J., Jarquín, D., Franco, J., Pérez-Rodríguez, P., Burgueño, J., Saint-Pierre, C., Vikram, P., 
Sansaloni, C., Petroli, C., Akdemir, D., Sneller, C., Reynolds, M., Tataris, M., Payne, T., Guzman, C., 
Peña, R. J., Wenzl, P. & Singh, S. (2016) Genomic Predic�on of Gene Bank Wheat Landraces. G3: 
Genes, Genomes, Genetics, 6(7), 1819-1834. htps://doi.org/10.1534/g3.116.029637. 

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de Los Campos, G., 
Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, 
X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017) Genomic Selec�on in Plant 
Breeding: Methods, Models, and Perspec�ves. Trends in plant science, 22(11), 961–975. 
htps://doi.org/10.1016/j.tplants.2017.08.011.  

Desta, Z. A. & Or�z, R. (2014) Genomic selec�on: genome-wide predic�on of plant improvement. 
Trends in Plant Science, 19(9). htps://doi.org/10.1016/j.tplants.2014.05.006.   

Dong, F., Chen, X., Lei, X., Wu, D., Zhang, Y., Lee, Y. W., Mokoena, M. P., Olaniran, A. O., Li, Y., Shen, G., 
Liu, X., Xu, J. H., & Shi, J. R. (2023) Effect of Crop Rota�on on Fusarium Mycotoxins 
and Fusarium Species in Cereals in Sichuan Province (China). Plant disease, 107(4), 1060–1066. 
htps://doi.org/10.1094/PDIS-01-22-0024-RE. 

Elen, O., Liu, W., Langseth, W., H Skinnes, H., Gullord, M. & Sungheim, L. (2003), Deoxynivalenol 
Content of Cereal Grain from Naturally Infected and Ar�ficially Inoculated Plants in Field Trials in 
Norway, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 53:4, 183-189. 
htps://doi.org/10.1080/09064710310015229. 

European commission. (2006) Commission regula�on (EC) No 1881/2006 of 19 December 2006. 
Se�ng maximum levels for certain contaminants in foodstuffs. Annex sec�on 2: Mycotoxins, 2.4. 
Deoxynivalenol, 2.4.2. Unprocessed durum wheat and oats. URL: 
htp://data.europa.eu/eli/reg/2006/1881/2023-01-01. 

European Food Safety Authority (EFSA), Arcella, D., Gergelova, P., Innocen�, M. L. & Steinkellner, H. 
(2017) Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA Journal, 15, 57. 
htps://doi.org/10.2903/j.efsa.2017.4972. 

Felleskjøpet Agri SA. (2016) Prognose for �lgang og forbruk av norsk korn for sesongen 2016/2017. 
URL: htps://www.�.no/Media/Files/prognose-for-�lgang-og-forbruk-av-norsk-korn-for-sesongen-
2016-2017. 

Felleskjøpet Agri SA. (2023) Plantevernkatalogen 2023, Page 26. URL: 
htps://ipaper.ipapercms.dk/TidRom/felleskjopet/plantevern/.  

Fernández-González, J., Akdemir, D. & Isidro y Sánchez, J. (2023) A comparison of methods for 
training popula�on op�miza�on in genomic selec�on. Theoretical and Applied Genetics, 136, 30. 
htps://doi.org/10.1007/s00122-023-04265-6. 

https://doi.org/10.3835/plantgenome2015.10.0102
https://doi.org/10.1007/s00284-021-02759-4
https://doi.org/10.1534/g3.116.029637
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2014.05.006
https://doi.org/10.1094/PDIS-01-22-0024-RE
https://doi.org/10.1080/09064710310015229
http://data.europa.eu/eli/reg/2006/1881/2023-01-01
https://doi.org/10.2903/j.efsa.2017.4972
https://www.fk.no/Media/Files/prognose-for-tilgang-og-forbruk-av-norsk-korn-for-sesongen-2016-2017
https://www.fk.no/Media/Files/prognose-for-tilgang-og-forbruk-av-norsk-korn-for-sesongen-2016-2017
https://ipaper.ipapercms.dk/TidRom/felleskjopet/plantevern/


36 
 

Franco, J., Crossa, J., Taba, S. & Shands, H. A. (2005) Sampling strategy for conserving gene�c diversity 
when forming core subsets. Crop Science. 45(3), 1035–1044. 
htps://doi.org/10.2135/cropsci2004.0292. 

Gaire, R., de Arruda, M. P., Mohammadi, M., Brown-Guedira, G., Kolb, F. L., & Rutkoski, J. (2022) 
Multi-trait genomic selection can increase selection accuracy for deoxynivalenol accumulation 
resulting from fusarium head blight in wheat. The plant genome, 15(1), e20188. 
https://doi.org/10.1002/tpg2.20188. 

Gaynor, R. C., Gorjanc, G., Bentley, A. R., Ober, E. S., Howell, P., Jackson, R., Mackay, I. J. & Hickey, J. 
M. (2017) A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines. Crop Science, 57: 
2372-2386. https://doi.org/10.2135/cropsci2016.09.0742.  

Geddes, J., Eudes, F., Tucker, J. R., Legge, W. G. & Selinger, L. B. (2008) Evalua�on of inocula�on 
methods on infec�on and deoxynivalenol produc�on by Fusarium graminearum on barley, Canadian 
Journal of Plant Pathology, 30:1, 66-73. htps://doi.org/10.1080/07060660809507497.     

Haikka, H., Knürr, T., Manninen, O., Pie�lä, L., Isolah�, M., Teperi, E., Mäntysaari, E. A. & Strandèn, I. 
(2020) Genomic predic�on of grain yield in commercial Finnish oat (Avena sativa) and barley 
(Hordeum vulgare) breeding programmes. Plant Breeding,139, 550-561. 
htps://doi.org/10.1111/pbr.12807. 

Haikka, H., Manninen, O., Hautsalo, J., Pie�lä, L., Jalli, M. & Veteläinen, M. (2020) Genome-wide 
Associa�on Study and Genomic Predic�on for Fusarium graminearum Resistance Traits in Nordic Oat 
(Avena sativa L.). Agronomy, 10(2), 174. htps://doi.org/10.3390/agronomy10020174. 

Hautsalo, J., Jalli, M., Manninen, O. & Veteläinen M. (2018) Evalua�on of resistance to Fusarium 
graminearum in oats. Euphytica, 214, 139. htps://doi.org/10.1007/s10681-018-2222-3.  

Havrlentová, M., Šliková, S., Gregusová, V., Kovácsová, B., Lančaričová, A., Nemeček, P., Hendrichová, 
J., & Hozlár, P. (2021) The Influence of Ar�ficial Fusarium Infec�on on Oat Grain 
Quality. Microorganisms, 9(10), 2108. htps://doi.org/10.3390/microorganisms9102108. 

He, X., & Bjørnstad, Å. (2012) Diversity of North European oat analyzed by SSR, AFLP and DArT 
markers. Theoretical and applied genetics, 125(1), 57–70. htps://doi.org/10.1007/s00122-012-1816-
8.  

He, X. Skinnes, H. Oliver, R. E., Jackson, E. W. & Bjørnstad, Å. (2013) Linkage mapping and 
iden�fica�on of QTL affec�ng deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena 
sativa L.). Theoretical and Applied Genetics, 126, 2655-2670. htps://doi.org/10.1007/s00122-013-
2163-0. 

Herter, C. P., Ebmeyer, E., Kollers, S., Korzun, V., Würschum, T., & Miedaner, T. (2019) Accuracy of 
within- and among-family genomic predic�on for Fusarium head blight and Septoria tri�ci blotch in 
winter wheat. Theoretical and applied genetics, 132(4), 1121–1135. htps://doi.org/10.1007/s00122-
018-3264-6.  

Hofgaard, I., Aamot, H., Torp, T., Jestoi, M., Latanzio, V., Klemsdal, S., Waalwijk, C., Van der Lee, T., & 
Brodal, G. (2016) Associa�ons between Fusarium species and mycotoxins in oats and spring wheat 
from farmers’ fields in Norway over a six-year period. World Mycotoxin Journal, 9, 365–
378. htps://doi.org/10.3920/WMJ2015.2003. 

Hu, X., Carver, B. F., El-Kassaby, Y. A., Zhu, L. & Chen, C. (2023) Weighted kernels improve mul�-
environment genomic predic�on. Heredity, 130, 82–91. htps://doi.org/10.1038/s41437-022-00582-
6. 

https://doi.org/10.2135/cropsci2004.0292
https://doi.org/10.1002/tpg2.20188
https://doi.org/10.2135/cropsci2016.09.0742
https://doi.org/10.1080/07060660809507497
https://doi.org/10.1111/pbr.12807
https://doi.org/10.3390/agronomy10020174
https://doi.org/10.1007/s10681-018-2222-3
https://doi.org/10.1007/s00122-012-1816-8
https://doi.org/10.1007/s00122-012-1816-8
https://doi.org/10.1007/s00122-013-2163-0
https://doi.org/10.1007/s00122-013-2163-0
https://doi.org/10.1007/s00122-018-3264-6
https://doi.org/10.1007/s00122-018-3264-6
https://doi.org/10.3920/WMJ2015.2003
https://doi.org/10.1038/s41437-022-00582-6
https://doi.org/10.1038/s41437-022-00582-6


37 
 

Huang, Y. F., Poland, J. A., Wight, C. P., Jackson, E. W., Tinker, N. A. (2014) Using Genotyping-By-
Sequencing (GBS) for Genomic Discovery in Cul�vated Oat. PLOS ONE, 9(7): 
e102448. htps://doi.org/10.1371/journal.pone.0102448.  

Interna�onal Rules for Seed Tes�ng, Chapter 5, (2021) i–5-56 (64) 

Jellen, E. N., Gill, B. S. & Cox. T. S. (1994) Genomic in situ hybridiza�on differen�ates between A/D- 
and C-genome chroma�n and detects intergenomic transloca�ons in polyploid oat species 
(genus Avena). Genome, 37(4): 613-618. htps://doi.org/10.1139/g94-087. 

Jellen, E. N., Rines, H. W., Fox, S. L., Davis, D. W., Phillips, R. L. & Gill, B. S. (1997) Characteriza�on of 
‘Sun II’ oat monosomics through C-banding and iden�fica�on of eight new ‘Sun II’ 
monosomics. Theoretical and Applied Genetics, 95, 1190–1195. 
htps://doi.org/10.1007/s001220050680.  

Ji, C., Fan, Y. & Zhao, L. (2016) Review on biological degrada�on of mycotoxins. Animal Nutrition, 2, 
127–133. htps://doi.org/10.1016/j.aninu.2016.07.003. 

Jørstad, I. (1945) Parasitsoppene på kultur- og nytevekster i Norge. I. Sekksporesopper 
(Ascomycetes) og konidiesopper (Fungi imperfec�). Tillegg C til Landbruksdirektørens melding for 
1943. Melding fra Statens plantepatologiske institutt. Nr. I., 50, 1–142. 

Kage, U., Yogendra, K. & Kushalappa, A. (2017) TaWRKY70 transcrip�on factor in wheat QTL-
2DL regulates downstream metabolite biosynthe�c genes to resist Fusarium graminearum infec�on 
spread within spike. Scientific Reports, 7, 42596. htps://doi.org/10.1038/srep42596.  

Kaler, A. S., Gillman, J.D., Beissinger, T. & Purcell, L.C. (2020) Comparing different sta�s�cal models 
and mul�ple tes�ng correc�ons for associa�on mapping in Soybean and Maize. Frontier of Plant 
Science, 10, 1794. htps://doi.org/10.3389/fpls.2019.01794. 

Kaler, A. S., Purcell, L. C., Beissinger, T. & Gillman, J. D. (2022) Genomic predic�on models for traits 
differing in heritability for soybean, rice, and maize. BMC Plant Biology, 22, 87. 
htps://doi.org/10.1186/s12870-022-03479-y.  

Kamal, N., Renhuldt, N. T., Bentzer, J. et al. (2022) The mosaic oat genome gives insights into a 
uniquely healthy cereal crop. Nature, 606, 113–119. htps://doi.org/10.1038/s41586-022-04732-y. 

Kang, R., Li, R., Dai, P., Li, Z., Li, Y., & Li, C. (2019) Deoxynivalenol induced apoptosis and inflamma�on 
of IPEC-J2 cells by promo�ng ROS produc�on. Environmental pollution, 251, 689–698. 
htps://doi.org/10.1016/j.envpol.2019.05.026. 

Kant, P., Reinprecht, Y., Mar�n, C. J., Islam, R., & Pauls, K. P. (2017) Comprehensive Biotechnology (M. 
Moo-Young, Ed.) (3rd ed., pp. 789-805). Pergamon. htps://doi.org/10.1016/B978-0-12-809633-
8.09244-X. 

Keller, M. D., Bergstrom, G. C., Shields & E. J. (2014) The aerobiology of Fusarium 
graminearum. Aerobiologia, 30, 123–136. htps://doi.org/10.1007/s10453-013-9321-3. 

Khairullina, A., Tsardakas Renhuldt, N., Wiesenberger, G., Bentzer, J., Collinge, D. B., Adam, G., & 
Bülow, L. (2022) Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases 
Involved in Deoxynivalenol Detoxification. Toxins, 14(7), 446. 
https://doi.org/10.3390/toxins14070446. 

https://doi.org/10.1371/journal.pone.0102448
https://doi.org/10.1139/g94-087
https://doi.org/10.1007/s001220050680
https://doi.org/10.1016/j.aninu.2016.07.003
https://doi.org/10.1038/srep42596
https://doi.org/10.3389/fpls.2019.01794
https://doi.org/10.1186/s12870-022-03479-y
https://doi.org/10.1038/s41586-022-04732-y
https://doi.org/10.1016/j.envpol.2019.05.026
https://doi.org/10.1016/B978-0-12-809633-8.09244-X
https://doi.org/10.1016/B978-0-12-809633-8.09244-X
https://doi.org/10.1007/s10453-013-9321-3
https://doi.org/10.3390/toxins14070446


38 
 

Kigoni, M., Choi, M. & Arbelaez, J.D. (2023) ‘Single-Seed-SpeedBulks:’ a protocol that combines 
‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-
advancement in oat (Avena sativa L.). Plant Methods, 19, 92. https://doi.org/10.1186/s13007-023-
01067-1.  

Kosiak, B., Torp, M. & Thrane, U. (1997) The occurrence of Fusarium SPP. In Norwegian Grain – A 
survey. Cereal research communications, 25, 595-596. htps://doi.org/10.1007/BF03543787.  

Kosiak, B. Torp, M., Skjerve, E. & Thrane, U. (2003) The Prevalence and Distribu�on 
of Fusarium species in Norwegian Cereals: a Survey. Acta Agriculturae Scandinavica, Section B — Soil 
& Plant Science, 53:4, 168-176. htps://doi.org./10.1080/09064710310018118. 

Kugler, K. G., Siegwart, G., Nussbaumer, T. Ametz, C., Spannagl, M., Steiner, B., Lemmens, M., Mayer, 
K. F. X., Buerstmayr, H. & Schweiger, W. (2013) Quan�ta�ve trait loci-dependent analysis of a gene co-
expression network associated with Fusarium head blight resistance in bread wheat (Triticum 
aestivumL.). BMC Genomics, 14, 728. htps://doi.org/10.1186/1471-2164-14-728. 

Ladizinsky, G. A. (1998) A new species of Avena from Siciliy, possibly the tetraploid progenitor of 
hexaploidy oats. Genetic Resources and Crop Evolution, 45, 263-269. 
htps://doi.org/10.1023/A:1008657530466.  

Langseth, W. & Elen, O. (1997) The occurrence of deoxynivalenol in Norwegian cereals—differences 
between years and districts, 1988–1996. Acta Agriculturae Scandinavica, Section B — Soil & Plant 
Science, 47(3), 176-184. htps://doi.org/10.1080/09064719709362458. 

Leplat, J., Friberg, H., Abid, M & Steinberg, C. (2013) Survival of Fusarium graminearum, the causal 
agent of Fusarium head blight. Agronomy of Sustainable Development, 33, 97-111. 
htps://doi.org/10.1007/s13593-012-0098-5.  

Lewontin, R. C. & Kojima, K. (1960) The Evolutionary Dynamics of Complex Polymorphisms. Evolution, 14(4), 
458–472. https://doi.org/10.2307/2405995. 

Liu, X., Huang, M., Fan, B., Buckler, E. S., & Zhang, Z. (2016) Iterative Usage of Fixed and Random 
Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS genetics, 12(2), 
e1005767. https://doi.org/10.1371/journal.pgen.1005767.   
Liu, Q., Li, X., Zhou, X., Li, M., Zhang, F., Schwarzacher, T., & Heslop-Harrison, J. S. (2019) The 
repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major 
repeat classes in whole-genome sequence reads. BMC plant biology, 19(1), 226. 
https://doi.org/10.1186/s12870-019-1769-z. 
 
Lorenz, A. J., Smith, K. P. and Jannink, J-L. (2012) Poten�al and Op�miza�on of Genomic Selec�on for 
Fusarium Head Blight Resistance in Six-Row Barley. Crop Science, 52, 1609-
1621. htps://doi.org/10.2135/cropsci2011.09.0503. 

Lorenz A. & Nice L. (2017) Training Popula�on Design and Resource Alloca�on for Genomic Selec�on 
in Plant Breeding. In: Varshney R., Roorkiwal M., Sorrells M. (eds) Genomic Selection for Crop 
Improvement. Springer, Cham. htps://doi.org/10.1007/978-3-319-63170-7_2.  

MacQueen, A. & Bergelson, J. (2016) Modula�on of R-gene expression across environments. Journal 
of experimental botany, 67(7), 2093–2105. htps://doi.org/10.1093/jxb/erv530.   

Manghwar, H., Hussain, A., Ali, Q., Saleem, M. H., Abualreesh, M. H., Alatawi, A., Ali, S., Munis, M. F. 
H. (2021) Disease Severity, Resistance Analysis, and Expression Profiling of Pathogenesis-Related 

https://doi.org/10.1186/s13007-023-01067-1
https://doi.org/10.1186/s13007-023-01067-1
https://doi.org/10.1007/BF03543787
https://doi.org./10.1080/09064710310018118
https://doi.org/10.1186/1471-2164-14-728
https://doi.org/10.1023/A:1008657530466
https://doi.org/10.1080/09064719709362458
https://doi.org/10.1007/s13593-012-0098-5
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1186/s12870-019-1769-z
https://doi.org/10.2135/cropsci2011.09.0503
https://doi.org/10.1007/978-3-319-63170-7_2
https://doi.org/10.1093/jxb/erv530


39 
 

Protein Genes a�er the Inocula�on of Fusarium equiseti in Wheat. Agronomy, 11(11):2124. 
htps://doi.org/10.3390/agronomy11112124.  

Mascher, M. (2022) Towards a pan-genome of hexaploid oat (abstract). International Oat Conference 
OAT 2022 Program book, page 57. URL: 
htps://issuu.com/interna�onaloat/docs/oat2022_program_book.  

Matelionienė, N., Supronienė, S., Shamshitov, A., Zavtrikovienė, E., Janavičienė, S. & Kadžienė, G. 
(2022) Weeds in Cereal Crop Rota�ons May Host Fusarium Species That Cause Fusarium Head Blight 
and Grain Weight Losses in Wheat. Agronomy, 12(11):2741. 
htps://doi.org/10.3390/agronomy12112741. 

Mathews, R., Kamil, A., & Chu, Y. (2020) Global review of heart health claims for oat beta-glucan 
products. Nutrition reviews, 78(Suppl 1), 78–97. htps://doi.org/10.1093/nutrit/nuz069.  

Meher, P. K., Rustgi, S. & Kumar, A. (2022) Performance of Bayesian and BLUP alphabets for genomic 
predic�on: analysis, comparison and results. Heredity 128, 519–530. htps://doi.org/10.1038/s41437-
022-00539-9. 

Merrick, L. F., Burke, A. B., Chen, X., & Carter, A. H. (2021) Breeding With Major and Minor Genes: 
Genomic Selec�on for Quan�ta�ve Disease Resistance. Frontiers in plant science, 12, 713667. 
htps://doi.org/10.3389/fpls.2021.713667.  

Mesterházy, A. (1995) Types and components of resistance to Fusarium head blight of wheat. Plant 
Breeding, 114: 377-386. htps://doi.org/10.1111/j.1439-0523.1995.tb00816.x.  

Mesterházy, Á., Bartók, T., Mirocha, C.G. and Komoróczy, R. (1999) Nature of wheat resistance 
to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118: 97-
110. htps://doi.org/10.1046/j.1439-0523.1999.118002097.x. 

Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001) Predic�on of total gene�c value using 
genome-wide dense marker maps. Genetics, 157(4), 1819–1829. 
htps://doi.org/10.1093/gene�cs/157.4.1819. 

Miedaner, T., Moldovan, M., & Itu, M. (2003) Comparison of spray and point inocula�on to assess 
resistance to fusarium head blight in a mul�environment wheat trial. Phytopathology, 93(9), 1068–
1072. htps://doi.org/10.1094/PHYTO.2003.93.9.1068. 

Mielniczuk, E. & Skwaryło-Bednarz, B. (2020) Fusarium Head Blight, Mycotoxins and Strategies for 
Their Reduc�on. Agronomy, 10, 509. htps://doi.org/10.3390/agronomy10040509.  

Miller, J. D., Young, J. C., & Sampson, D. R. (1985) Deoxynivalenol and Fusarium Head Blight 
Resistance in Spring Cereals. Journal of Phytopathology, 113: 359-
367. htps://doi.org/10.1111/j.1439-0434.1985.tb04837.x.  

Minitab, LLC. (2021). Minitab. Retrieved from htps://www.minitab.com 

Miró-Abella, E., Herrero, P., Canela, N., Arola, L., Borrull, F., Ras, R., & Fontanals, N. (2017) 
Determina�on of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography-
tandem mass spectrometry. Food chemistry, 229, 366–372. 
htps://doi.org/10.1016/j.foodchem.2017.02.078. 

Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Cos�ch, D. E., & Buckler, E. S. (2009) 
Associa�on mapping: cri�cal considera�ons shi� from genotyping to experimental design. The Plant 
cell, 21(8), 2194–2202. htps://doi.org/10.1105/tpc.109.068437. 

https://doi.org/10.3390/agronomy11112124
https://issuu.com/internationaloat/docs/oat2022_program_book
https://doi.org/10.3390/agronomy12112741
https://doi.org/10.1093/nutrit/nuz069
https://doi.org/10.1038/s41437-022-00539-9
https://doi.org/10.1038/s41437-022-00539-9
https://doi.org/10.3389/fpls.2021.713667
https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
https://doi.org/10.1046/j.1439-0523.1999.118002097.x
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1094/PHYTO.2003.93.9.1068
https://doi.org/10.3390/agronomy10040509
https://doi.org/10.1111/j.1439-0434.1985.tb04837.x
https://www.minitab.com/
https://doi.org/10.1016/j.foodchem.2017.02.078
https://doi.org/10.1105/tpc.109.068437


40 
 

Nannuru, V. K. R., Windju, S. S., Belova, T., Dieseth, J. A., Alsheikh, M., Dong, Y., McCartney, C. A., 
Henriques, M. A., Buerstmayr, H., Michel, S., Meuwissen, T. H. E., & Lillemo, M. (2022) Gene�c 
architecture of fusarium head blight disease resistance and associated traits in Nordic spring wheat. 
Theoretical and applied genetics, 135(7), 2247–2263. htps://doi.org/10.1007/s00122-022-04109-9.  

Nei, M. & Li, W. H. (1973) Linkage disequilibrium in subdivided popula�ons. Genetics, 75(1), 213–219. 
htps://doi.org/10.1093/gene�cs/75.1.213.  

Neyhart, J. L., Tiede, T., Lorenz, A. J., & Smith, K. P. (2017) Evalua�ng Methods of Upda�ng Training 
Data in Long-Term Genomewide Selec�on. G3, 7(5), 1499–1510. 
htps://doi.org/10.1534/g3.117.040550. 

Nordborg, M. & Weigel, D. (2008) Next-genera�on gene�cs in plants. Nature 456, 720-723. 
htps://doi.org/10.1038/nature07629. 
 
Norman, A., Taylor, J., Edwards, J., & Kuchel, H. (2018) Op�mising Genomic Selec�on in Wheat: Effect 
of Marker Density, Popula�on Size and Popula�on Structure on Predic�on Accuracy. G3, 8(9), 2889–
2899. htps://doi.org/10.1534/g3.118.200311. 
 
Oliver, R. E., Tinker, N. A., Lazo, G. R., Chao, S., Jellen, E. N., et al. (2013) SNP Discovery and 
Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny 
with Model Species. PLOS ONE, 8(3): e58068. htps://doi.org/10.1371/journal.pone.0058068. 
 
Opplysningskontoret for brød og korn. (2022, August 3) Fakta om havre. Brød og Korn. Retrieved 
October 7, 2023. From htps://brodogkorn.no/oppskri�_tema/havre/. 
 
Pascari, X., Ramos, A. J., Marín, S. & Sanchis, V. (2018) Mycotoxins and beer. Impact of beer 
produc�on process on mycotoxin contamina�on. A review. Food Research Interna�onal, 103: 121-
129. htps://doi.org/10.1016/J.FOODRES.2017.07.038. 
 
Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004) Rain Splash Dispersal of Gibberella zeae 
Within Wheat Canopies in Ohio. Phytopathology, 94(12), 1342–1349. 
htps://doi.org/10.1094/PHYTO.2004.94.12.1342. 
 
Peng, Y., Yan, H., Guo, L. et al. (2022) Reference genome assemblies reveal the origin and evolu�on of 
allohexaploid oat. Nature Genetics, 54, 1248–1258. htps://doi.org/10.1038/s41588-022-01127-7. 

PepsiCo. (2021). OT3098 v2 Hexaploid Oat. URL: htps://wheat.pw.usda.gov/jb?data=/ggds/oat-
ot3098v2-pepsico. 

Perez, P., & Campos, G., (2014) Genome-Wide Regression and Predic�on with the BGLR Sta�s�cal 
Package. Genetics, 198(2), 483-495. htps://doi.org/10.1534/gene�cs.114.164442. 

Pino, J. L., Mujica, V. & Arredondo, M. (2021) Effect of dietary supplementa�on with oat β-glucan for 
3 months in subjects with type 2 diabetes: A randomized, double-blind, controlled clinical trial. 
Journal of Functional Foods, 77, 104331. htps://doi.org/10.1016/j.jff.2020.104311.  

Piñeros-Guerrero, N., Maldonado-Archila, G. and Gómez-Caro, S. (2019) Effect of thermal and in vitro 
fungicide treatments on pathogens of the genus Fusarium associated with maize seeds. Agronomía 
Colombiana, 37(3), 228–238. htps://doi.org/10.15446/agron.colomb.v37n3.80302. 

Podgórska-Kryszczuk, I., Solarska, E., & Kordowska-Wiater, M. (2022) Biological Control of Fusarium 
culmorum, Fusarium graminearum and Fusarium poae by Antagonis�c Yeasts. Pathogens 11(1), 86. 
htps://doi.org/10.3390/pathogens11010086. 

https://doi.org/10.1007/s00122-022-04109-9
https://doi.org/10.1093/genetics/75.1.213
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.1038/nature07629
https://doi.org/10.1534/g3.118.200311
https://doi.org/10.1371/journal.pone.0058068
https://brodogkorn.no/oppskrift_tema/havre/
https://doi.org/10.1016/J.FOODRES.2017.07.038
https://doi.org/10.1094/PHYTO.2004.94.12.1342
https://doi.org/10.1038/s41588-022-01127-7
https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico
https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1016/j.jff.2020.104311
https://doi.org/10.15446/agron.colomb.v37n3.80302
https://doi.org/10.3390/pathogens11010086


41 
 

Poland, J., & Rutkoski, J. (2016) Advances and Challenges in Genomic Selec�on for Disease 
Resistance. Annual review of phytopathology, 54, 79–98. htps://doi.org/10.1146/annurev-phyto-
080615-100056.  

Polley, A., Plieske, J., Grafarend-Belau, E., Manninen, O., Vetelainen, M., Cepli�s, A., Vallenback, P., 
Alsheikh, M., Gnad, H. & Ganal, M. W. (2023) A new 7K SNP genotyping array for oat. Oat newsletter, 
60:4. URL: htps://oatnews.org/oatnews_pdfs/2020/oatnews_2023_Ganal.pdf. 

Portell, X., Verheecke-Vaessen, C., Torrelles-Ràfales, R., Medina, A., Oten, W., Magan, N., & García-
Cela, E. (2020) Three-Dimensional Study of F. graminearum Colonisa�on of Stored Wheat: Post-
Harvest Growth Paterns, Dry Mater Losses and Mycotoxin Contamina�on. Microorganisms, 8(8), 
1170. htps://doi.org/10.3390/microorganisms8081170. 

R Core Team. (2022) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. 

Raffo, M. A., Sarup, P., Guo, X., Liu, H., Andersen, J. R., Orabi, J., Jahoor, A., & Jensen, J. (2022) 
Improvement of genomic predic�on in advanced wheat breeding lines by including addi�ve-by-
addi�ve epistasis. Theoretical and applied genetics,135(3), 965–978. htps://doi.org/10.1007/s00122-
021-04009-4. 

Rafique, H., Dong, R., Wang, X., Alim, A., Aadil, R. M., Li, L., Zou, L., & Hu, X. (2022) Dietary-
Nutraceu�cal Proper�es of Oat Protein and Pep�des. Frontiers in nutrition, 9, 950400. 
htps://doi.org/10.3389/fnut.2022.950400. 

Rincent, R., Laloë, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Rodríguez, V. M., Moreno-
Gonzalez, J., Melchinger, A., Bauer, E., Schoen, CC., Meyer, N., Giauffret, C., Bauland, C., Jamin, P., 
Laborde, J., Monod, H., Flament, P., Charcosset, A. & Moreau, L. (2012) Maximizing the Reliability of 
Genomic Selec�on by Op�mizing the Calibra�on Set of Reference Individuals: Comparison of 
Methods in Two Diverse Groups of Maize Inbreds (Zea mays L.). Genetics, 192(2), 715-728.  
htps://doi.org/10.1534/gene�cs.112.141473. 

Rio, S., Gallego-Sánchez, L., Mon�lla-Bascón, G., Canales, F. J., Isidro Y Sánchez, J., & Prats, E. (2021) 
Genomic predic�on and training set op�miza�on in a structured Mediterranean oat popula�on. 
Theoretical and applied genetics, 134(11), 3595–3609. htps://doi.org/10.1007/s00122-021-03916-w. 

Rutkoski, J., Benson, J., Jia, Y., Brown-Guedira, G., Jannink, J-L. & Sorrells, M. (2012) Evalua�on of 
Genomic Predic�on Methods for Fusarium Head Blight Resistance in Wheat. The Plant Genome, 
5. htps://doi.org/10.3835/plantgenome2012.02.0001. 

Salgado, J. D., Madden, L. V., & Paul, P. A. (2015) Quan�fying the effects of fusarium head blight on 
grain yield and test weight in so� red winter wheat. Phytopathology, 105(3), 295–306. 
htps://doi.org/10.1094/PHYTO-08-14-0215-R. 

Sari, E., Cabral, A. L., Polley, B., Tan, Y., Hsueh, E., Konkin, D. J., Knox, R. E., Ruan, Y., & Fobert, P. R. 
(2019) Weighted gene co-expression network analysis unveils gene networks associated with the 
Fusarium head blight resistance in tetraploid wheat. BMC genomics, 20(1), 925. 
htps://doi.org/10.1186/s12864-019-6161-8. 

Schroeder, H. W. & Christensen, J. J. (1963) Factors Affec�ng Resistance of Wheat to Scab Caused by 
Gibberella zeae. Phytopathology, 53, 831-838. 

Schulthess, A. W., Zhao, Y., Longin, C. F. H. & Reif, J. C. (2018) Advantages and limita�ons of mul�ple-
trait genomic predic�on for Fusarium head blight severity in hybrid wheat (Triticum 

https://doi.org/10.1146/annurev-phyto-080615-100056
https://doi.org/10.1146/annurev-phyto-080615-100056
https://oatnews.org/oatnews_pdfs/2020/oatnews_2023_Ganal.pdf
https://doi.org/10.3390/microorganisms8081170
https://www.r-project.org/
https://doi.org/10.1007/s00122-021-04009-4
https://doi.org/10.1007/s00122-021-04009-4
https://doi.org/10.3389/fnut.2022.950400
https://doi.org/10.1534/genetics.112.141473
https://doi.org/10.1007/s00122-021-03916-w
https://doi.org/10.3835/plantgenome2012.02.0001
https://doi.org/10.1094/PHYTO-08-14-0215-R
https://doi.org/10.1186/s12864-019-6161-8


42 
 

aestivum L.). Theoretical and Applied Genetics, 131, 685–701. htps://doi.org/10.1007/s00122-017-
3029-7. 

Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., & Kizek, R. (2010) Deoxynivalenol and its 
toxicity. Interdisciplinary toxicology, 3(3), 94–99. htps://doi.org/10.2478/v10102-010-0019-x. 

Sta�s�sk sentralbyrå, Sta�s�cs Norway (2023, February 21) 04607: Areal av korn- og oljevekster (F) 
2001 - 2021. ssb.no. Retrieved October 7, 2023. From htps://www.ssb.no/statbank/table/04607/. 

Sta�s�sk sentralbyrå, Sta�s�cs Norway (2023, February 21) 07479: Kornavling (1 000 tonn) 1989 - 
2022. ssb.no. Retrieved October 7, 2023. From htps://www.ssb.no/statbank/table/07479. 

Sta�s�sk sentralbyrå, Sta�s�cs Norway (2023, February 21) 07480: Kornavling per dekar (kg) 1989 - 
2022. Ssb.no. Retrieved October 7, 2023. From htps://www.ssb.no/statbank/table/07480/. 

Sundheim, L., Brodal, G., Hofgaard, I.S. & Rafoss T. (2013) Temporal Varia�on of Mycotoxin Producing 
Fungi in Norwegian Cereals. Microorganisms, 1(1):188-198. 
htps://doi.org/10.3390/microorganisms1010188. 

Sørensen, E. S., Jansen, C., Windju, S., Crossa, J., Sonesson, A. K., Lillemo, M., & Alsheikh, 
M. (2023) Evalua�on of strategies to op�mize training popula�ons for genomic predic�on in oat 
(Avena sativa). Plant Breeding, 142(1), 41–53. htps://doi.org/10.1111/pbr.13061. 

Talukder, Z. I., Ma, G., Hulke, B. S., Jan, C. C., & Qi, L. (2019) Linkage Mapping and Genome-Wide 
Associa�on Studies of the Rf Gene Cluster in Sunflower (Helianthus annuus L.) and Their Distribu�on 
in World Sunflower Collec�ons. Frontiers in genetics, 10, 216. 
htps://doi.org/10.3389/fgene.2019.00216.  

Tekle, S. Skinnes H. & Bjørnstad, Å. (2013) The germina�on problem of oat seed lots affected by 
Fusarium head blight. European Jorunal of Plant Pathology, 135, 147-158. 
htps://doi.org/10.1007/s10658-012-0074-6. 

Tekle, S., Bjørnstad, Å., Skinnes, H., Dong, Y. & Segtnan, V. H. (2013) Es�ma�ng Deoxynivalenol 
Content of Ground Oats Using VIS-NIR Spectroscopy. Cereal Chemistry, 90, 181-
185. htps://doi.org/10.1094/CCHEM-07-12-0084-R. 

Tekle, S., Måge, I., Segtnan, V. H. and Bjørnstad, Å. (2015) Near-Infrared Hyperspectral Imaging 
of Fusarium-Damaged Oats (Avena sativa L.). Cereal Chemistry, 92, 73-
80. htps://doi.org/10.1094/CCHEM-04-14-0074-R. 

Tekle, S., Lillemo, M., Skinnes, H., Reitan, L., Buraas, T. & Bjørnstad, Å. (2018) Screening of Oat 
Accessions for Fusarium Head Blight Resistance Using Spawn-Inoculated Field Experiments. Crop 
Science, 58: 143-151. htps://doi.org/10.2135/cropsci2017.04.0264.  

Tekle, S., Stråbø, S. S., He, X., Dong, Y. & Bjørnstad Å. (2020) Varia�on in Anther Extrusion and Its 
Impact on Fusarium Head Blight and Deoxynivalenol Content in Oat (Avena sativa L.). Agronomy, 
10(3), 354. htps://doi.org/10.3390/agronomy10030354. 

The Norwegian Centre for Climate Services (NCCS). Hanssen-Bauer, I., Førland, E. J., Haddeland, I., 
Hisdal, H., Mayer, S., Nesje, A., Nilsen, J. E. Ø., Sandven, S., Sandø, A. B., Sorteberg, A. & Ådlandsvik, B. 
(2017) Climate in Norway 2100 – a knowledge base for climate adapta�on. URL: 
htps://www.miljodirektoratet.no/publikasjoner/2017/mai-2017/climate-in-norway-2100--a-
knowledge-base-for-climate-adapta�on/.  

https://doi.org/10.1007/s00122-017-3029-7
https://doi.org/10.1007/s00122-017-3029-7
https://doi.org/10.2478/v10102-010-0019-x
https://www.ssb.no/statbank/table/04607/
https://www.ssb.no/statbank/table/07479
https://www.ssb.no/statbank/table/07480/
https://doi.org/10.3390/microorganisms1010188
https://doi.org/10.1111/pbr.13061
https://doi.org/10.3389/fgene.2019.00216
https://doi.org/10.1007/s10658-012-0074-6
https://doi.org/10.1094/CCHEM-07-12-0084-R
https://doi.org/10.1094/CCHEM-04-14-0074-R
https://doi.org/10.2135/cropsci2017.04.0264
https://doi.org/10.3390/agronomy10030354
https://www.miljodirektoratet.no/publikasjoner/2017/mai-2017/climate-in-norway-2100--a-knowledge-base-for-climate-adaptation/
https://www.miljodirektoratet.no/publikasjoner/2017/mai-2017/climate-in-norway-2100--a-knowledge-base-for-climate-adaptation/


43 
 

The research council of Norway. (2013) Safe grains: Mycotoxin preven�on through resistant wheat 
and oats. URL: htps://prosjektbanken.forskningsradet.no/en/project/FORISS/178273.  

The research council of Norway. (2018) Resistenskilder, resistensmekanismer og seleksjonsmetoder 
mot Fusarium og mykotoksiner i havre. URL: 
htps://prosjektbanken.forskningsradet.no/en/project/FORISS/233908.  

Tinker, N. A., Chao, S., Lazo, G.R., Oliver, R. E., Huang, Y-F., Poland, J. A., Jellen, E. N., Maughan, P. J., 
Kilian, A. & Jackson, E. W. (2014) A SNP Genotyping Array for Hexaploid Oat. The Plant Genome, 7: 
plantgenome2014.03.0010. htps://doi.org/10.3835/plantgenome2014.03.0010. 

Tolhurst, D. J., Gaynor, R. C., Gardunia, B., Hickey, J. M., & Gorjanc, G. (2022) Genomic selec�on using 
random regressions on known and latent environmental covariates. Theoretical and applied 
genetics, 135(10), 3393–3415. htps://doi.org/10.1007/s00122-022-04186-w.  

Trail, F. (2009) For Blighted Waves of Grain: Fusarium graminearum in the Postgenomics Era. Plant 
physiology, 149, 103-10. htps://doi.org/10.1104/pp.108.129684. 

Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., Maccaferri, M., Salvi, S., Milner, S. G., 
Ca�velli, L., Mastrangelo, A. M., Whan, A., Stephen, S., Barker, G., Wieseke, R., Plieske, J., Lillemo, M., 
Mather, D., Appels, R., Dolferus, R., Brown-Guedira, G., Korol, A., Akhunova, A. R., Feuillet, C., Salse, J., 
Morgante, M., Pozniak, C., Luo, M-C., Dvorak, J., Morell, M., Dubcovsky, J., Ganal, M., Tuberosa, R., 
Lawley, C., Mikoulitch, I., Cavanagh, C., Edwards, K. J., Hayden, M. & Akhunov, E. (2014) 
Characteriza�on of polyploid wheat genomic diversity using a high-density 90 000 single nucleo�de 
polymorphism array. Plant Biotechnology Journal, 12, 787-796. htps://doi.org/10.1111/pbi.12183.  

Wang, J. & Zhang, Z. (2021) GAPIT version 3: Boos�ng power and accuracy for genomic associa�on 
and predic�on. Genomics, Proteomics & Bioinformatics, 19(4), 629-640. 
htps://doi.org/10.1016/j.gpb.2021.08.005. 

Wientjes, Y. C. J., Bijma, P., Calus, M. P. L., Zwaan, B. J., Vitezica, Z. G. & Heuvel, van den J. (2022) The 
long-term effects of genomic selec�on: 1. Response to selec�on, addi�ve gene�c variance, and 
gene�c architecture. Genetics Selection Evolution 54, 19. htps://doi.org/10.1186/s12711-022-00709-
7. 

Wientjes, Y. C. J., Bijma, P., van den Heuvel, J., Zwaan, B. J., Vitezica, Z. G., & Calus, M. P. L. (2023) The 
long-term effects of genomic selec�on: 2. Changes in allele frequencies of causal loci and new 
muta�ons. Genetics, 225(1), iyad141. htps://doi.org/10.1093/gene�cs/iyad141.  

Xiaogang, L., Hongwu, W., Hui, W., Zifeng, G., Xiaojie, X., Jiacheng, L., Shanhong, W., Wen-Xue, L., 
Cheng, Z., Boddupalli, M, P., Olsen, M, S., Changling, H., Yunbi, X. (2018) Factors affec�ng genomic 
selec�on revealed by empirical evidence in maize. The Crop Journal, 6(4), 341-352. 
htps://doi.org/10.1016/j.cj.2018.03.005.  

Yan, H., Mar�n, S. L., Bekele, W. A., Lata, R. G., Diederichsen, A., Peng, Y., & Tinker, N. A. (2016) 
Genome size varia�on in the genus Avena. Genome, 59(3), 209–220. htps://doi.org/10.1139/gen-
2015-0132. 

Yao, E., Blake, V. C, Cooper, L., Wight, C. P., Michel, S., Cagirici, H. B., Lazo, G. R., Birket, C. L., Waring, 
D. J., Jannink, J-L., Holmes, I., Waters, A. J., Eickholt, D. P. & Sen, T. Z. (2022) “GrainGenes: A Data-Rich 
Repository for Small Grains Gene�cs and Genomics”, Database, Volume 2022, 
baac034. htps://doi.org/10.1093/database/baac034. 

https://prosjektbanken.forskningsradet.no/en/project/FORISS/178273
https://prosjektbanken.forskningsradet.no/en/project/FORISS/233908
https://doi.org/10.3835/plantgenome2014.03.0010
https://doi.org/10.1007/s00122-022-04186-w
https://doi.org/10.1104/pp.108.129684
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1016/j.gpb.2021.08.005
https://doi.org/10.1186/s12711-022-00709-7
https://doi.org/10.1186/s12711-022-00709-7
https://doi.org/10.1093/genetics/iyad141
https://doi.org/10.1016/j.cj.2018.03.005
https://doi.org/10.1139/gen-2015-0132
https://doi.org/10.1139/gen-2015-0132
https://doi.org/10.1093/database/baac034


44 
 

Zhang, A., Wang, H., Beyene,Y., Semagn, K., Liu, Y., Cao, S., Cui, Z., Ruan, Y., Burgueño, J., Vicente, F. S., 
Olsen, M., Prasanna B. M., Crossa, J., Yu, H. & Zhang, X. (2017) Effect of Trait Heritability, Training 
Popula�on Size and Marker Density on Genomic Predic�on Accuracy Es�ma�on in 22 bi-parental 
Tropical Maize Popula�ons” Frontiers of plant science, 8. htps://doi.org/10.3389/fpls.2017.01916.  

Zhang, W., Boyle, K., Brule-Babel, A., Fedak, G., Gao, P., Djama, Z. R., Polley, B., Cuthbert, R., 
Randhawa, H., Graf, R., Jiang, F., Eudes, F., & Fobert, P. R. (2021) Evalua�on of Genomic Predic�on for 
Fusarium Head Blight Resistance with a Mul�-Parental Popula�on. Biology, 10(8), 756. 
htps://doi.org/10.3390/biology10080756.  

Zhang, J., Gill, H. S., Brar, N. K., Halder, J., Ali, S., Liu, X., Bernardo, A., St. Amand, P., Bai, G., Gill, U. S., 
Turnipseed, B. & Sehgal, S. K. (2022) Genomic predic�on of Fusarium head blight resistance in early 
stages using advanced breeding lines in hard winter wheat. The Crop Journal, 10(6), 1695-1704. 
htps://doi.org/10.1016/j.cj.2022.03.010. 

Zhiwu Zhang Laboratory, Washington State University. (2023) User manual for Genomic Associa�on 
and Predic�on Integrated Tool, Version 3. Page 14. URL: 
htps://zzlab.net/GAPIT/gapit_help_document.pdf.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.3389/fpls.2017.01916
https://doi.org/10.3390/biology10080756
https://doi.org/10.1016/j.cj.2022.03.010
https://zzlab.net/GAPIT/gapit_help_document.pdf


 
 

 

 
 

                                Paper II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





OR I G I N A L A R T I C L E

Evaluation of strategies to optimize training populations for
genomic prediction in oat (Avena sativa)

Espen Sannes Sørensen1,2 | Constantin Jansen1 | Susanne Windju1 |

Jose Crossa4 | Anna Kristina Sonesson3 | Morten Lillemo2 | Muath Alsheikh1,2

1Graminor AS Ridabu, Ridabu, Norway

2Department of Plant Science, Norwegian

University of Life Sciences, Ås, Norway

3Nofima AS, Ås, Norway

4International Maize and Wheat Improvement

Center, Texcoco, Mexico

Correspondence

Espen Sannes Sørensen, Department of Plant

Science, Norwegian University of Life

Sciences, Ås, Norway.

Email: espen.sorensen@nmbu.no

Funding information

Research Council of Norway and Graminor,

Grant/Award Number: 286606

Abstract

Genomic selection is a promising breeding methodology that could increase selection

accuracy and intensity and reduce generation interval. As the cost of genotyping

decreases, it will be important to optimize training populations for costly phenotypic

experiments for many complex traits. The aim of this research was to evaluate differ-

ent optimization strategies, by using historical data from the Norwegian oat breeding

programme at Graminor. In this paper, we focus on the optimization criteria: genetic

diversity, phenotypic variance and genetic similarity between the training and testing

populations. The four training population strategies—prediction core, diversity core,

phenotypic selection and random selection—were applied to an oat candidate popu-

lation of 1124 lines. An independent testing population was used to calculate the

mean prediction abilities for the traits days to heading and plant height. Moreover,

the strategies were tested in three independent wheat populations. The results

showed that prediction core was the most promising strategy to select training

populations with high genetic similarity to the testing set, high genetic diversity,

and high phenotypic variance, which resulted in higher prediction ability across

population sizes and traits.

K E YWORD S

genetic diversity, genetic similarity, optimization criteria, phenotypic variance, prediction ability,
training population

1 | INTRODUCTION

The genetic gains per year of conventional breeding have been esti-

mated to be 1% (Li et al., 2018). With the introduction of new molecu-

lar DNA-based technologies, breeders can increase selection accuracy

and intensity and reduce the generation interval. This increased

breeding efficiency (Heffner et al., 2010; Bhat et al., 2016; Xu et al.,

2020) is key to increasing food production in the future. A

promising marker-based breeding technique is genomic selection (GS;

Meuwissen et al., 2001, Crossa et al., 2017, Wang et al., 2018), which

uses whole-genome DNA markers and phenotypic information of a

training population to predict the marker effects of a specific trait

using statistical models. The marker effects are used to predict the

breeding values of non-phenotyped individuals called testing popula-

tion. GS has become a more available breeding methodology in recent

years. As genotyping costs continue to decrease, cost of phenotyping

will become the limiting factor of GS (Bhat et al., 2016).

Although GS in plant breeding was considered challenging

(Desta & Ortiz, 2014), it has been successfully implemented in cereal

crops, for example, wheat and barley (Ankamah-Yeboah et al., 2020;
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Larkin et al., 2019), and has great potential for improved selection for

yield and disease resistance in oats (Haikka, Knürr, et al., 2020;

Haikka, Manninen, et al., 2020; Mellers et al., 2020). Genomics-

resources and marker systems were for a long time limited in oats due

to the complexity of the oat genome and reduced research invest-

ments compared with other major crops (Latta et al., 2019). However,

the development of the 6K-SNP chip (Tinker et al., 2014) made GS

more available for implementation in oat breeding and has already

been implemented in Nordic breeding programmes (Ceplitis, 2014).

The composition of the training population highly affects the pre-

diction ability, which is crucial for successful implementation of GS

(Akdemir & Isidro-Sánchez, 2019; Berro et al., 2019; Crossa

et al., 2016). The main criteria for training population optimization are

(i) population size, (ii) genetic diversity, (iii) phenotypic diversity (Isidro

et al., 2015), (iv) genetic relationship between the training and testing

population (Crossa et al., 2014), and (v) degree of population structure

(Werner et al., 2020). Some of these criteria could be more important

than others for different traits, populations, and species (Crossa

et al., 2010). Optimizing the training population is especially useful

when phenotyping costs are high in traits with low heritability and in

cases of high genotype by environment interaction. High heritability is

also related to high prediction ability but is not something we try to

optimize in this study.

By using the criteria mentioned above we have evaluated three

different strategies for training population optimization. The first

strategy preserves the genetic diversity and population structure from

a larger population in smaller training populations (Crossa et al., 2016;

Franco et al., 2005). The second strategy uses the genetic relationship

between the training and testing population to identify individuals

that have the lowest mean prediction error variance (PEV; Rincent

et al., 2012, Isidro et al., 2015). The third strategy is based on selecting

training populations with high phenotypic variation for a specific trait.

The goal of this study was to use historical data and breeding

lines from the Norwegian oat breeding programme at Graminor, to

develop an optimal training population for further research. The strat-

egies mentioned above were applied to a large candidate population,

with an independent breeding population as testing population. The

main hypothesis is that an optimization strategy will give higher pre-

diction abilities than a random selection. The optimization criteria

genetic diversity, phenotypic diversity, and genetic similarity between

training and testing population were analysed in all strategies. A

wheat dataset from CIMMYT was used to validate the strategies in a

completely independent breeding germplasm. The outcome of this

study could contribute to the implementation of GS in commercial

plant breeding programmes.

2 | MATERIALS AND METHODS

2.1 | Germplasm

Oat lines in this study were provided by Graminor plant breeding

company and are listed in Table S1. Summary of the number of lines,

SNP-markers, environments, and heritability is given in Table 1.

Table 2 shows the number of lines tested in each location and year,

and Table S8 shows the percentage of overlapping lines between

the environments. All lines have been evaluated for the traits days

to heading (DTH) and plant height (PH) by Graminor and the Norwe-

gian University of Life Sciences from yield trials that were a random-

ized complete block design with plot size of 1.5 m � 5 m, and

irrigated disease trials that were an alpha lattice design (Patterson &

Williams, 1976) with plot size of 1.5 m � 1.25 m. Spatial variation

was analysed by using nearest neighbour for yield trials (Cover &

Hart, 1967) and alpha lattice for the disease trials. Plant height was

collected by measuring the height of the plant from the ground to

the top of the head 2–3 weeks after heading. Days to heading were

recorded as the number of days from sowing until the date when

50% of the heads have emerged more than 50% from the flag leaf.

The training population candidates consisted of 65% F9 and 16%

F10–F12 breeding lines from Graminor, and 19% are a collection of

diverse material from Europe, North America and Australia. The test-

ing population consisted of 257 Graminor F9 breeding lines from

2019. The F9 lines were tested for at least one year at three locations,

the F10–F13 lines were tested for at least two years at four locations,

and the diverse materials were tested for at least two locations in

2016 and one in 2017.

2.2 | Phenotypic data

The phenotypic data used in the genomic prediction models come

from a two-stage analysis. The first stage is the calculated adjusted

mean values from field designs to account for the effect of replicate

and block. The second stage is to use adjusted mean values in mixed

linear models to account for the environmental effects of year, loca-

tions and experiment within the same environment. The following

models were used in stage two:

y¼b0þb1xgþb2xlþb3xyþb4xlyþe ð1Þ

TABLE 1 Summary description of oat germplasm, genotypic data
and phenotypic data used in this study

Training

population

Testing

population

Population size 1124 257

Number of SNP markers 3022 3022

Locations 4 4

Years 5 1

Heritability of plant height .71 .82

Heritability of days to

heading

.62 .90

Note: The number of years and locations refers to the phenotypic trials of

the training population candidates, which were used to calculate the

heritability of the traits.
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y¼b0þb1xgþb2xlþb3xt xlð Þþe ð2Þ

y¼b0þb1xgþb2xlþe ð3Þ

In the equations (Equations 1–3) y is the response phenotype, b0 the

intercept, b1-b4 are coefficients, xg the fixed effect of genotype, xl the

random effect of location, xy the random effect of year, xt the random

effect of trial, xly the interaction between year and location, xt (xl) the

effect of experiment nested in location, and e the error term.

Equation (1) was used on plant height in the training population,

Equation (2) on days to heading in both training and testing popula-

tion, and Equation (3) on plant height in the testing population.

Plant height and days to heading were normalized with different

models because data collected from the irrigated disease trials

differed for days to heading compared with the other trials in the

same year and location, so the factor of experiment was added to

the model. The factor of experiment also contains the effect of year

as the same experiments are only tested for one year. For plant

height, it was sufficient to use year and location as factor. Material

with phenotypic values two standard deviations from the mean

were excluded as the distribution became skewed.

2.3 | Heritability

The broad sense heritability (h2) was calculated as

h2 ¼VG=VP ð4Þ

where VG is the variance of genotype and VP is the variance of pheno-

type. VP is equal to the VG + Ve, where Ve is the variance of error. VG

was estimated using the xg term using the following mixed

linear model:

y¼b0þb1xgþb2xlþb3xt xlð Þþe ð5Þ

where y is the response phenotype, b0 is the intercept, b1–b3 are

coefficients, xg is the random effect of genotype, xl is the fixed effect

of location, xt (xl) is the fixed effect of trial nested in location, and e is

the error using the Minitab software (Minitab, 2010). This calculation

accounts for the fixed effect of environment, leaving only the effect

of genotype and error in Equation (4).

2.4 | Genotyping

All lines were genotyped with a customized, unpublished 20 k SNP

chip. The genetic data were analysed and filtered with a 10% missing

values threshold and 5% MAF based on the training population

candidates, resulting in 3022 polymorphic markers. The missing

marker data were imputed with the ‘impute’ function and ‘means’
method with the package ‘e1071’ in the R statistical software

(Meyer et al., 2021).

2.5 | Experimental design

Each optimization strategy was repeated 20 times for each population

size of 100, 200, 300, 400 and 500. Average prediction ability was

calculated as the average correlation between predicted and observed

breeding values of the testing population. Bayesian ridge regression

(BRR) was used to compute the marker effects, and the ‘BGLR’ func-
tion of the ‘BGLR’ package in the R software (Pérez & de los

Campos, 2014) was used to calculate the genomic estimated breeding

values of the testing population. The number of iterations were set to

30,000 and the burnin to 15,000.

2.6 | Training population optimization strategies

This study aimed to optimize known training population criteria. Each

strategy was compared with a random selection. The correlation

between the optimization criteria and the prediction abilities were

calculated and tested for significance with ANOVA.

2.6.1 | Phenotypic selection

Phenotypic selection aims to maximize phenotypic variation in the

training populations and is abbreviated to PheSe for the rest of the

paper. Based on the MLM output data (Figure 1), equal proportions

of lines with the most extreme highest and lowest adjusted breeding

values were selected for the PheSe populations. This was done once

for each population size and not replicated 20 times like the other

strategies. A similar approach was proposed by Zhao et al. (2012) in

a slightly different premise. They argue that a fraction of the training

TABLE 2 Number of lines tested in each year and location for the training population candidates

Year Bjørke (60.80�N, 11.20�E) Staur (60.73�N, 11.10�E) Rød (59.34�N, 10.89�E) Vollebekk (59.66�N, 10.75�E)

2014 304 304 304 34

2015 136 153 136 93

2016 174 344 174 289

2017 407 440 407 260

2018 337 356 337 357

2019 257 257 257 257
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population should consist of inferior material to increase prediction

accuracy (Zhao et al., 2012).

2.6.2 | Prediction core

The prediction core strategy aims to optimize the genetic relationship

between the training and testing population by minimizing the PEV of

the testing population, while also maintaining high diversity in the

training population, which is done by calculating an optimization

criterion called coefficient of determination (CD; Laloë, 1993). In the

rest of the paper prediction core is abbreviated to PreCo. The strategy

was published in 2012 by Rincent et al. (2012) and made into an R

package by Akdemir (2018).

PreCo populations were selected by performing principal compo-

nent analyses (PCA) on the genetic markers of the training and testing

populations (Akdemir et al., 2015). The first 100 principal components

(PCs) were used as input for a selection algorithm using the function

‘GenAlgForSubsetSelection’ in the R package ‘STPGA’, which starts

off with a random sample, calculates the CD values and replaces one

genotype at the time until it finds one that increases or gives the same

the CD value. This process is repeated until no further increase in CD

values is achieved (Akdemir, 2018). CDMEAN2 was used as selection

criterion. The arguments of the function were set to npop = 300,

nelite = 20, niterations = 5000, and minitbefstop = 1000. ‘Npop’
refers to the number of crosses in the testing population, and ‘nelite’
refers to the number of parents used. We chose higher parameters

than required in order to give the algorithm more power and better

solutions. The ‘niterations’ argument is the maximum number of

iterations the selections algorithm use to find the optimal solution,

whereas the ‘minitbefstop’ argument is the number of equal solution

required for the algorithm to stop before the maximum is reached.

2.6.3 | Diversity core

The diversity core strategy aim to preserve the genetic diversity and

population structure from the total candidate population in smaller

populations (Crossa et al., 2016; Franco et al., 2005). Hereafter,

diversity core is abbreviated to DivCo.

DivCo populations were selected by performing a structure

analysis with the software STRUCTURE (Hubisz et al., 2009), and the

structure harvester (Earl & vonHoldt, 2012) to determine the optimal

number of clusters. A dendrogram was created with the ‘hclust’
function which performs a hierarchical clustering of a distance matrix

based on the genetic markers. The Ward.D2 method was used in the

F IGURE 1 Phenotypic distribution of the training population candidates and testing population for days to heading and plant height after
applying the models in Equations (1)–(3) [Color figure can be viewed at wileyonlinelibrary.com]
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clustering to ensure that the within-group distance is low, and the

between-group distance is high (Ward, 1963). The dendrogram was

separated into the optimal number of clusters from the structure

analysis with the ‘rect.hclust’ function in R, which isolates the clusters

with the highest genetic distance to each other (Figure 2a). Figure 2b

shows the four clusters in the PCA.

The mean distance (MD) of each cluster was summed up, and the

number of genotypes selected from each cluster were proportional to

sum of MD from all clusters. A stratified random sampling was done

1000 times in each cluster, and the subsamples with the highest

average mean distance were selected for the DivCo populations.

2.6.4 | Random selection

Random selection was included as a control to represent random

unoptimized training populations and is abbreviated to RanSe for the

rest of the paper. Populations were selected by using the ‘sample_n’
function from the ‘dplyr’ package in the R software (Wickham

et al., 2021), which randomly selects a given number of random

rows from a dataframe.

2.7 | Statistical analysis

ANOVA was used to identify significant effects of optimization

strategy on prediction ability, and the equation is stated as:

y¼b0þb1x1þb2x2þb3x12þe ð6Þ

where y is the response prediction ability, b0 the intercept, b1–b3 are

coefficients, x1 the fixed effect of optimization strategy, x2 the fixed

effect of population size, x12 the interaction between population size

and optimization strategy, and e the error term.

A Tukey pairwise comparison test was used for each pair of strat-

egies to identify if they were significantly different from each other.

Bootstrapping was also used to calculate the significant

differences between the strategies within each defined population

size. Bootstrapping was used because the PheSe strategy was not

replicated. The sample closest to the mean prediction ability in each

strategy and population size was compared with each other. The

bootstrapping was conducted by removing a random set of lines from

the testing population and calculating the prediction ability of the

remaining lines in the testing population for both training populations.

The procedure was done using the R package ‘GRousellet/bootcorci’
(Rousselet et al., 2019) and the function ‘twocorci.ov’ by removing a

random set of lines from the testing population, and calculating the

prediction ability for the remaining lines. The bootstrapping was done

with a significance level of α = .05 and 2000 iterations.

2.8 | Optimization criteria

The genetic diversity was calculated as the mean expected heterozy-

gosity by using the R package ‘diveRsity’ and the function ‘Divbasic’
in the R software which calculates the frequencies of the alleles of

each marker using the formula (2)*p*q, where p and q is the frequen-

cies of the different alleles. Then then mean 2pq is calculated for all

markers (Keenan et al., 2013).

F IGURE 2 (a) Dendrogram of the training population candidates separated into four clusters. The height of the dendrogram is given as the
total sum of squares between individuals and each cluster (b) principal component analysis of the training population candidates separated into
four clusters [Color figure can be viewed at wileyonlinelibrary.com]
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The genetic similarity between the training and testing popula-

tions was calculated as the proportion of shared alleles per pair of

populations based on the allele frequencies, summed and averaged

across all loci. The calculations were done by using the R package

‘PopGenReport’ and the function ‘pairwise.propShared’ in the R

software (Adamack & Gruber, 2014).

The Phenotypic variance was calculated by using the ‘var’
function of the ‘base’ R software.

2.9 | Wheat (Triticum aestivum) validation sets

Four different datasets were provided by CIMMYT to validate the

results of this study and is described in Table 3. The largest were

chosen as the training population candidates, whereas the rest were

used as testing populations.

3 | RESULTS

3.1 | Prediction ability

For plant height (Figure 3a), RanSe and DivCo showed similar predic-

tion abilities of .26 using population sizes 300–500, whereas the pre-

diction abilities of PheSe and PreCo were higher at .33 and .35,

respectively. PreCo performed significantly better than DivCo in size

300 and 400, whereas PheSe performed significantly better than

DivCo at size 400 and RanSe at 400 and 500 (Table 4). PreCo per-

formed approximately .025 points better than PheSe in size 200–500,

but this difference was not significant. The prediction ability of all

TABLE 3 Summary description of wheat germplasm, genotypic
data and phenotypic data used in this study (Montesinos-L�opez
et al., 2019)

Training population

candidates

980 lines

Testing population 1 766 lines

Testing population 2 775 lines

Testing population 3 964 lines

Number of SNP markers 9285

Locations 6 per year for each population

Years 4, 1 year per population

Traits Plant height, days to heading and grain

yield

F IGURE 3 Average prediction abilities for (a) plant height (PH) and (b) days to heading (DTH in oats for the different optimization strategies
prediction core (PreCo), diversity core (DivCo), phenotypic selection (PheSe) and random selection (RanSe) across different training population
sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Significant p-values values from bootstrapping tests for
plant height for the optimization strategies prediction core (PreCo),
diversity core (DivCo), phenotypic selection (PheSe) and random
selection (RanSe)

Optimization strategies Population size p < .05

DivCo vs. PreCo 300 .036

DivCo vs. PreCo 400 .018

DivCo vs. PheSe 400 .019

RanSe vs. PheSe 400 .038

RanSe vs. PheSe 500 .046

Note: Days to heading had no significant differences in bootstrapping.
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lines plateaued at size 300, with a slight decrease in larger populations

for PreCo and PheCo as the prediction ability of the total candidate

population was .33 (data not shown).

For days to heading (Figure 3b), all strategies performed similarly

for population sizes 100–300 but differed more for population sizes

400 and 500, where the PreCo showed the highest prediction ability

followed by PheSe, DivCo and RanSe. However, none of these differ-

ences were significant in a bootstrapping test. Prediction ability

increased linearly with population size with a maximum of .44 for

PreCo at size 500. Using all lines in the candidate population resulted

in a prediction ability of .49 (data not shown).

3.2 | ANOVA

The ANOVA results (Table 5) showed that population size contributed

to about 62% of the variation in prediction ability for days to heading

and 20% for plant height. Optimization strategy contributed to less

than 2% of the variation for days to heading, and 21% for plant height.

Both factors were significant for both traits, whereas the interaction

term was not significant. The PreCo populations yielded significantly

higher prediction ability than RanSe for days to heading, and signifi-

cantly better than DivCo and RanSe for plant height (Table 6). No

other significant differences were detected using the Tukey test.

3.3 | Genetic diversity, similarity and phenotypic
variance

The optimizations criteria (Figures 4 and 5) showed that the RanSe

populations had the lowest phenotypic and genetic diversity, and

intermediate genetic similarities. DivCo populations had high genetic

diversity, low genetic similarity, and intermediate phenotypic diversity.

PreCo populations had the highest genetic diversity, high genetic simi-

larity, and high phenotypic diversity. PheSe populations had very high

phenotypic diversity for both traits, intermediate genetic diversity for

days to heading and low for plant height, and the highest genetic

similarity for plant height and the lowest for days to heading.

There was a significant positive correlation between prediction

ability and genetic similarity for both traits, with r values of .48 for

plant height and .4 for days to heading. There was also a significant

positive correlation between prediction ability and genetic and

phenotypic diversity for plant height, but with a low r of .25 for both

criteria. Population size had a high significant positive correlation with

prediction ability with r values of .77 for days to heading and .36

for plant height.

3.4 | Wheat validation results

Population size had a significant large effect on the variation in predic-

tion ability for all three testing populations in all traits (Table 7). Selec-

tion strategy showed a significant contribution in two out of the three

TABLE 5 ANOVA for oats with
prediction ability as response variable
and population size (size), optimization
strategy (strategy) and the interaction
term Size*Strategy as factors for days to
heading and plant height

Source df Contribution Adj SS Adj MS F-value p-value

Days to heading

Size 4 61.51% 0.187 0.047 28.95 <.001

Strategy 3 1.65% 0.022 0.007 4.45 .004

Size*Strategy 12 1.56% 0.020 0.002 1.05 .404

Error 285 35.27% 0.461 0.002

Plant height

Size 4 20.33% 0.074 0.019 5.25 <.001

Strategy 3 21.43% 0.392 0.131 37 <.001

Size*strategy 12 3.23% 0.059 0.005 1.4 .167

Error 285 55.01% 1.007 0.004

TABLE 6 Results from the pairwise comparisons of the prediction
abilities of the four optimization strategies prediction core (PreCo),
diversity core (DivCo), phenotypic selection (PheSe) and random
selection (RanSe) for the traits days to heading and plant height

Strategies compared Difference in means p-values

Days to heading

PheSe DivCo 0.007 .980

PreCo DivCo 0.009 .384

RanSe DivCo �0.012 .177

PreCo PheSe 0.002 1.000

RanSe PheSe �0.019 .740

RanSe PreCo �0.020** .002

Plant height

PheSe DivCo 0.068 .062

PreCo DivCo 0.080** <.001

RanSe DivCo 0.010 .673

PreCo PheSe 0.013 .968

RanSe PheSe �0.058 .140

RanSe PreCo �0.071** <.001

*p < .05.**p < .01.
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populations for days to heading, and one out of the three populations

for plant height and grain yield. In all cases of with non-significant

contribution of selection strategy for prediction ability of days to

heading and plant height, the Size � Strategy interaction term

was significant. For grain yield prediction, the error term was always

non-significant.

DivCo were the best strategy in terms of prediction ability in

three of four significant pairwise comparisons in testing population

1 (Table S5), PreCo were best in three of four comparisons in popula-

tion 2 (Table S6), and PheSe were best in three of five comparisons in

population 3 (Table S7). Full ANOVA tables are available in Tables S2–

S4 along with plots of the mean prediction ability for the optimization

strategies (Figure S1).

4 | DISCUSSION

Our study compared three training population optimization strategies

(prediction core, diversity core and phenotypic selection) to random

selection. The training population criteria optimized were genetic

diversity, phenotypic variance and genetic similarity. The four strate-

gies were validated for their prediction ability, that is, their ability to

predict the phenotypes of a given testing population, and analysed for

their genetic diversity, genetic similarity between the training and

testing population, and phenotypic diversity.

The broad sense heritability was high for the traits days to

heading (.62) and plant height (.71) which is expected for these

traits. Studies have shown that smaller training populations are

needed for traits with high heritability (Kaler et al., 2022; Zhang

et al., 2017), and others have shown that high prediction ability can

be achieved for plant height and days to heading with small training

populations (Baertschi et al., 2021; Haikka, Knürr, et al., 2020). A

study done on unbalanced agronomic traits showed that the stan-

dard broad sense heritability calculation overestimates the heritabil-

ity (Schmidt et al., 2019), which is also likely true for the dataset of

this research. This can explain the relatively low prediction abilities

in this study. But the overestimation does not likely affect the

ranking of the strategies as an adjustment of the heritability as

suggested by Schmidt et al. (2019) would shrink the heritability for

both traits equally. There are also large G � E effects on unbalanced

data, which could also have contributed to the low prediction

abilities. The observation that the maximum prediction ability was

reached at population size 300 for plant height, whereas it was not

yet reached at size 500 for days to heading is likely an effect of the

difference in heritability between the two traits.

The main factors effecting the prediction abilities were population

size and genetic similarity, which has been highlighted as important

training population criteria in several studies (Liu et al., 2018;

Lorenz & Nice, 2017; Zhang et al., 2017). Genetic and phenotypic

diversity were however less important since increasing these criteria

alone would decrease the genetic similarity as the testing population

has low genetic diversity. Other studies also found that genetic

diversity is more important when population structure is present

(Berro et al., 2019; Isidro et al., 2015). One study on diversity core

and prediction core found that they gave similar prediction abilities

(Crossa et al., 2016), which is different from what this study con-

cludes. But in their study, the authors used diverse landrace popula-

tions with a much higher degree of genetic diversity and population

structure. These populations are better suited for the diversity core

strategy than the more narrow breeding population used in this study.

F IGURE 4 (a) Mean genetic diversity and (b) mean genetic similarity for the optimization strategies diversity core (DivCo), prediction core
(PreCo), phenotypic selection (PheSe) for plant height (PH) and days to heading (DTH) and random selection (RanSe) in population size 100–500
[Color figure can be viewed at wileyonlinelibrary.com]
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Another study (Akdemir et al., 2015) showed that the prediction core

consistently gave better prediction abilities than random selection

across population sizes and different traits, which is similar to the

results as presented in this paper.

4.1 | Diversity core

The diversity core strategy worked as intended. It produced training

populations with similar genetic diversity as the total candidate popu-

lation and selected relatively equal number of lines from all four clus-

ters. DivCo populations performed very similar to RanSe in both traits

and all population sizes (Figure 3). DivCo populations showed lower

genetic similarity than RanSe (Figure 4b), which along with the fact

that it showed intermediate genetic and phenotypic diversity

(Figures 4a and 5a,b) explains the low prediction abilities. The DivCo

strategy is not optimal for our data because of the lack of population

structure and genetic diversity in the testing population. Further

research on this strategy in populations with more diversity and popu-

lation structure would be useful to properly evaluate it. However,

when exotic material is introduced into a breeding programme DivCo

could be more useful. As the DivCo strategy does not depend on a

specific testing population it is reasonable to think that it would give

more stable prediction abilities.

F IGURE 5 Mean phenotypic diversity of the optimization strategies diversity core (DivCo), prediction core (PreCo), phenotypic selection
(PheSe) and random selection (RanSe) in population size 100–500 for the traits (a) plant height (PH) without PheSe, (b) days to heading (DTH)
without PheSe, (c) plant height with PheSe and (d) days to heading with PheSe [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Prediction core

The PreCo strategy worked as intended and produced training popu-

lations highly related to the testing population (Figure 4b). The PreCo

populations also showed high genetic diversity (Figure 4a) and rela-

tively high phenotypic variance (Figure 5a,b). This is likely because CD

values in addition to minimizing PEV also maintains high genetic dis-

tance between individuals in the training population. The combination

of high values for the three optimization criteria, and especially the

genetic similarity likely explains why PreCo gave the highest predic-

tion abilities. For the sake of this study, it would have been useful to

also include populations only selected based on the PEV values. This

would likely have decreased the genetic and phenotypic diversity. The

PreCo strategy with the CD criteria works well when you know the

genotypes you want to predict. However, further research is needed

into the PreCo strategy to see whether these prediction abilities are

stable across different testing populations. If the testing population is

a good representation of the genetic diversity of the breeding

programme, then the training population should work for the next

breeding cycles as well.

4.3 | Phenotypic selection

The PheSe strategy selected training populations with very high phe-

notypic variance (Figure 5c,d). The days to heading populations

showed similar genetic diversity as DivCo, but also the lowest genetic

similarity (Figure 4). The plant height populations showed low genetic

diversity but the highest genetic similarity. Both PheSe populations

gave relatively high prediction abilities, indicating that phenotypic var-

iance is an important criterion to optimize, despite their low genetic

diversity in the plant height populations, and low genetic similarity in

the days to heading populations. This can be either due to overfitting

of the marker effects or increased diversity for the relevant markers.

Our study suggests that PheSe is a good strategy for selecting training

populations when no genotype data is available, and that the inclusion

of material with low breeding value is important to increase prediction

accuracy. In our study we maximized this by selecting 50% lines with

low breeding values, whereas Zhao et al. concludes that 30% is

enough to ensure high accuracy without underfitting of marker

effects (Zhao et al., 2012).

4.4 | Wheat validation

The wheat validation sets were inconclusive in determining which

strategy works best, as they rank differently in the different testing

populations for different traits. We can see that DivCo worked best

in population 1, PreCo in population 2 and PheSe in population

3. We did not do any further analysis into the optimization

criteria of the wheat datasets. Further research can show why the

optimization strategies worked differently for the different testing

populations. A likely reason could be that the phenotypic data for

the three populations were collected from different years, which

increases the G � E effect. It is shown that the correlation between

environments can vary a lot for the same trait (Cooper &

DeLacy, 1994), which could explain the low prediction abilities in

the validation sets.

TABLE 7 p-values and contribution
percentage from ANOVA with prediction
ability as response variable population
size (size), optimization strategy (strategy)
and the interaction term Size*Strategy as
factors

Source

Days to heading Plant height Grain yield

Contribution p-value Contribution p-value Contribution p-value

Validation set 1

Size 12.86% <.001 36.65% <.001 29.77% <.001

Strategy 1.57% .034 5.61% <.001 .44% .395

Size*Strategy 20.60% <.001 13.70% <.001 2.85% .151

Error 64.98% 44.04% 66.95%

Validation set 2

Size 19.55% <.001 45.35% <.001 25.18% <.001

Strategy .23% .648 .14% .666 20.05% <.001

Size*Strategy 4.23% .049 4.75% .001 .74% .864

Error 75.99% 49.76% 54.03%

Validation set 3

Size 28.50% <.001 50.9 5% <.001 9.99% <.001

Strategy 8.20% <.001 .22% .502 1.17% .143

Size*Strategy 1.34% .628 2.70% .037 3.76% .132

Error 61.96% 46.12% 85.09%

Note: The traits analysed were days to heading, plant height and grain yield. The wheat data used for

training and testing populations are described in Section 2.7.
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4.5 | Conclusion

Of the three strategies analysed, prediction core had the highest

average prediction ability in most population sizes for both traits and

produced training populations with high genetic diversity, high genetic

similarity to the testing population and high phenotypic variance

compared with random selection. Genetic similarity along with

population size were the most important criteria to optimize in the

training populations. More research is needed to evaluate how well

the prediction core strategy works over several breeding cycles, but

our research points to prediction core as the best strategy to optimize

training populations in cereals.
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Abstract 

Fusarium head blight (FHB) is the predominant disease in oat in Norway caused by the fungus 

Fusarium graminearum. It causes yield loss, reduced seed quality, reduced germina�on ability and 

accumula�on of deoxynivalenol (DON). The FHB resistance is quan�ta�ve, and most genes have small 

effect. Markers with verified effect in the breeding program could further enhance the resistance 

breeding. This study aims to use a large and diverse popula�on of 541 lines to iden�fy quan�ta�ve 

trait loci (QTL) associated to FHB resistance in a genome wide associa�on study (GWAS) and verify 

their effect in independent breeding material. The material has been tested in six environments over 

three years and two loca�ons in spawn inoculated and mist irrigated disease trials. The traits tested 

were germina�on ability and DON accumula�on. A total of 15 significant QTL-regions were detected 

across 12 different linkage groups. Haplotypes for each region was constructed and the effect of the 

alleles in each environment were calculated, which iden�fied the most likely resistant and suscep�ble 

alleles. Five QTL-regions were validated showing consistent effect in the GWAS popula�on and the 

breeding material. Stacking of the resistant alleles of these regions from zero to five showed 

significant decrease in DON values and increased germina�on ability. The haplotype informa�on of a 

set of historical and modern Nordic varie�es were analysed, and the results could be used to select 

parents for future crossings. The validated haplotypes from this study can be used either to do 

marker assisted selec�on (MAS) or improve genomic predic�on models in breeding programs.  
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1. Introduction 

Oats is one of the most important cereal crops in Norway and is considered a good break crop in 

rota�on with barley and wheat, as they have few diseases in common (Abrahamsen et al., 2016). But 

one disease that infects all crops and pose major economic challenges, especially in oat, is Fusarium 

head blight (FHB) (Bernho� et al., 2013). FHB is caused by a wide range of Fusarium species. In 

Norway, Fusarium graminearum stands as the main species responsible for FHB in oats (Hofgaard et 

al., 2016). This disease reduces yield, seed quality, germina�on capacity (Tekle et al., 2013) and 

produces the mycotoxin deoxynivalenol (DON). DON is known to induce inflamma�on in the 

intes�nes in both humans and animals (Kang et al., 2019). To mi�gate health risks, Norway and the 

EU have set a threshold of 1.75 ppm DON for unprocessed oat (Commission regula�on, 2006).  

The need for resistant oat varie�es in Norway is underscored by three key factors. Firstly, the 

temperate and humid condi�ons during Norwegian summers create favorable condi�ons for fungal 

growth and spore produc�on of F. graminearum (Xu et al., 2008). Secondly, the available fungicides 

have limited effect, providing only 30-50 % reduc�on in DON content when applied at the op�mal 

�ming (Felleskjøpet Agri SA, 2023). Thirdly, F. graminearum is shown to have the ability to sexually 

reproduce in Norway (Aamot et al., 2015), which heightens the risk that the pathogen adapts and 

gains resistance to fungicides which could improve aggressiveness, virulence, and mycotoxin 

produc�on (Becher et al., 2010, de Chaves et al., 2022).  

Fusarium resistance can be divided into five primary classes (Hautsalo et al., 2018); (i) resistance to 

ini�al infec�on (Schroeder & Christensen, 1963), (ii) resistance to disease spread, (iii) resistance to 

kernel infec�on, including germina�on ability (Mesterházy, 1995), (iv) tolerance (Mesterházy, 1995), 

and (v) resistance to mycotoxin accumula�on (Miller et al., 1985, Mesterházy et al., 1999). 

Addi�onally, there are several passive avoidance mechanisms which exhibit strong correla�on with 

FHB resistance. Two key mechanisms are plant height (PH), where taller plants increase the distance 

from the ini�al conidia spores from the soil to the heads (Hautsalo et al., 2020), and days to heading 

(DTH), which affects the risk of plants flowering at the �me of high disease pressure. (Tekle et al., 

2018).  

Previous inves�ga�ons that aimed to detect resistance QTL in oat found several QTL focusing on the 

traits FHB severity, DON accumula�on and Germina�on ability (He et al., 2013, Bjørnstad et al., 2017 

& Haikka et al., 2020). The present study aims to iden�fy and validate QTL along with linked markers 

for implementa�on in marker-assisted selec�on. This will be achieved through a comprehensive 

genome-wide associa�on study (GWAS) focusing on DON accumula�on and germina�on percentage. 

The study employs a large and diverse germplasm, subjected to disease trials conducted across 
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mul�ple environments. Furthermore, the inves�ga�on seeks to determine the presence of QTL in 

independent breeding popula�ons.  

2. Materials and methods 
2.1. Materials 
2.1.1. GWAS panel 

The GWAS panel used in this study consisted of 541 oat lines and cul�vars selected from a larger pool 

of 1,124 by using a combina�on of selec�on strategies evaluated by Sørensen et al. (2023). These 

strategies were based on marker informa�on and was used to ensure that the GWAS panel had high 

rela�onship to the breeding material (Akdemir et al., 2015), and high gene�c diversity (Franco et al., 

2005). Addi�onally, lines that exhibit resistance and suscep�bility based on historical data from 

Graminor’s databases were included.  Lines with very long and short straw as well as naked varie�es 

were excluded to avoid associa�on between the traits and FHB resistance. In total, 440 lines were 

from Norway, 40 from Sweden, 26 from Germany, nine from Netherlands, nine from Finland, eight 

from Canada, five from USA, two from Austria, one from Denmark and one from Australia 

(Supplementary Table S1).  

2.1.2. Validation populations 

Three breeding popula�ons (V1, V2 & V3) were used to validate significant markers from the GWAS 

analysis. V1 and V2 consisted of 242 F10 breeding lines from Graminor from the years 2020 and 2021 

respec�vely. F10 lines were used as they have not yet been selected for Fusarium resistance. V3 

consisted of 230 lines where 112 were F10 lines from 2022, 88 were F11 from V2, 22 were F12 from V1 

and 8 were F13 from a breeding popula�on from 2019.   

2.2. Field trials 

Field experiments with the GWAS panel were conducted for three years from 2020 to 2022 in two 

loca�ons, Vollebekk (59.66°N, 10.75°E) and Staur (60.73°N, 11.10°E). The GWAS panel trials were 

abbreviated as 20S, 20V, 21S, 21V, 22S & 22V for the individual years and loca�ons, and Ov for the 

overall trial analysis.  V1, V2 and V3 were tested in one year each, 2020, 2021 and 2022 respec�vely 

in both loca�ons. The experimental design of the GWAS panel, V1 and V2 was alpha la�ce with two 

replicates and sub-block size of 5. The experimental design of V3 was randomized complete block 

with two replicates (RCBD). All material were sown in spawn inoculated and mist irrigated disease 

trials (Tekle et al., 2018). 



5 
 

2.3. Phenotyping 

All plots were scored for DTH as the number of days from sowing to at least 50% of the heads had 

emerged, and PH as the number of cen�meters from the ground to the top of the plants. DON was 

measured on milled seed samples with husks as parts per million (ppm) at Graminor with an 

Agraquant Deoxynivalenol Plus (0.25/5), 96 Wells ELISA kit developed by Romer Labs Ltd. 

Germina�on ability was measured at Graminor as percentage of germinated seeds (GP) using the 

“between paper” method described in point 5.6.2.1.1 of the ISTA protocol (ISTA, 2021). Two 

replicates of 50 seeds were used per plot. Plas�c bags were used to retain moisture. Sample were 

stored in 5-10°C for 7 days, and approximately 20°C for 6-8 days before analysis. The papers used 

were of size 220 X 400 mm and 200 x 400 mm with a capillary capacity of 80 mm/10 min. DON and 

GP were collected for all trials except GP for V3 Staur in 2022.  

2.4. Phenotypic data analysis 

The Best linear unbiased es�mators (BLUE) were calculated for each genotype in each trial and across 

trials (overall), with the META-R so�ware (Alvarado et al., 2016) using the models listed in 

Supplementary Table S4. The GWAS analysis was performed on data from single trials and overall, 

while the analysis for V1-3 only the overall values were used. Outliers were not excluded from the 

dataset. The BLUE DON values (Figure 1a) were log transformed to obtain close to normally 

distributed values (Figure 1b) (West, 2022) for the GWAS analysis. Both BLUE values of GP (Figure 1d) 

and logDON values were adjusted for the effect of DTH and PH to avoid false associa�on to the 

correlated traits, by performing a regression analysis with GP and DON as response variables 

separately, and DTH and PH as explanatory variables (Nannuru et al., 2022). The resul�ng adjusted 

DON (AdjDON) (Figure 1c) and GP (AdjGP) (Figure 1e) have zero correla�on with PH and DTH and R2 

of 0.95 and 0.94 with the unadjusted logDON and GP overall values. AdjDON and AdjGP are used as 

phenotypes in the subsequent GWAS analysis.  

2.5. Genotyping and data preparation 

All lines of the GWAS panel were genotyped with a customized, unpublished 20K SNP-chip containing 

18,598 markers including all markers from the publicly available 6K SNP-chip (Tinker et al., 2014). The 

gene�c data were filtered with a threshold of 10% for missing values/heterozygotes and 5% MAF 

based on the GWAS panel, resul�ng in 3071 polymorphic markers. V1-3 were genotyped using a 

different customized 7K-SNP chip (Polley et al., 2023) containing 6,642 markers where 6587 were the 

most polymorphic markers from the Nordic 20K SNP-chip. An unpublished consensus map was used 

to assign markers to linkage groups (LG) represen�ng the 21 oat chromosomes. The map is an 



6 
 

updated version of the gene�c map developed by Chaffin et al. (2016), updated with six biparental 

popula�ons from the Nordic breeding programs. Linkage disequilibrium (LD) between each pair of 

markers was calculated using the TASSEL sta�s�cal so�ware (Bradbury et al., 2007).  

2.6. GWAS analysis 

The GWAS was performed for the traits AdjGP and AdjDON for individual environments and overall 

values with the “farmCPU” method (Liu et al., 2016) in the GAPIT3 package (Wang & Zhang. 2021) 

with the R sta�s�cal so�ware (R Core Team, 2022). FarmCPU were chosen over MLMM based on the 

QQ-plot results (Supplementary Figure S2). FarmCPU has proven more efficient compared to other 

models for F. graminearum resistance in wheat (Nannuru et al., 2022). This method is considered 

sta�s�cally powerful, it avoids overfi�ng and reduce the number of false posi�ve and nega�ves 

compared to other models (Kaler et al., 2020). The GWAS was not corrected for popula�on structure 

as a “model selec�on” approach in GAPIT revealed that zero principal components were op�mal, and 

a visual inspec�on of a PCA plot of the marker data supported this (Supplementary Figure S1). 

Markers with FDR adjusted p-value less than 0.05 were considered significant and were calculated as 
𝑝𝑝∗𝑛𝑛
𝑟𝑟

 where p is the p-value, n is the number of markers tested, and r is the rank of the marker from 

lowest to highest p-value (Benjamini & Hochberg. 1995).  

2.7. QTL-regions and Haplotype analysis 

QTL-regions were determined as the significant markers from the GWAS that were on the same LG 

and in significant LD with each other. Markers that were not in LD on the same LG were considered as 

a separate region. Regions with only one marker from single experiments were not analysed further, 

while single marker detected using the overall data were retained. Haplotypes from each region were 

then formed by adding the significant SNP-marker informa�on in the region together from lowest to 

highest cen�morgan posi�on on the consensus map. 

The haplotype alleles for each QTL region were analysed in each environment of the GWAS panel and 

the overall values of V1-3 with a Games-Howell simultaneous pairwise comparison test (Games & 

Howell, 1976) using Minitab sta�s�cal so�ware (Minitab, 2021) on the unadjusted DON and GP. 

Higher number allelic varia�ons in the regions equals higher number of comparisons. This was done 

to determine which allele had significantly (p < 0.05) lower DON and higher GP than others in each 

environment. The ones that most frequently showed to significantly resistant than other in the same 

region were designated the resistant allele, and similar for the suscep�ble allele. Resistant alleles that 

showed consistently lower DON and higher GP than the suscep�ble allele across environments and 

popula�ons were considered validated. The effects were summarized as percentage difference in 
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DON to get similar scales across environments. This was calculated as the difference in mean divided 

by the average between the alleles mul�plied by 100. 

2.8. Allele stacking and analysis of historical varieties 

QTL-regions validated from the haplotype analysis were further analysed for their addi�ve effect on 

the phenotypes DON and GP. Games-Howell tests were performed to see if there were significant 

decrease of DON and increase in GP with increased number of resistant alleles. This was done only in 

the overall GWAS panel. DTH and PH were also analysed to see if the resistant alleles had any effect 

on these traits. 

To evaluate the trend of resistant alleles through �me, and possibly iden�fy resistance sources for 

crossings, a set of 74 varie�es were selected to represent the most important Norwegian material 

from the last century (Supplementary Table S3). Each variety were given a year as an approxima�on 

of the year they became inbred lines determined as six years before release or six years a�er crossing 

depending on available informa�on about the variety. The dataset was assembled in groups of 

different �me periods, and the number of genotypes carrying different number of resistant and 

suscep�ble alleles were summarized and averaged for each �me period.  

2.9. BLAST search  

Markers in the validated QTL-regions were BLASTED against the reference genome of OT3098 

(PepsiCo, 2021) in the GrainGenes database (Yao et al., 2022). This reference genome was chosen 

because it contains more annota�ons with informa�on on gene func�on than other reference 

genomes. When the markers got more than one chromosome hit the lowest average E-value among 

the markers determined which chromosome they were assigned to. The region between the markers 

and 10 Mbp in each side were inves�gated for annotated genes described with an effect on disease 

resistance.  

3. Results 
3.1. Phenotypic correlations 

PH showed significant posi�ve Pearson correla�on to GP in Staur and Vollebekk 2020, while the 

correla�on was significantly nega�ve in 2022 (Table 1). The overall values were non-significant and 

close to zero, as was most other trials. DTH showed significant posi�ve correla�on to DON in four 

experiments, significant nega�ve correla�on with GP in three, with r values of 0.2 and -0.25 

respec�vely for the overall values of DON and GP. DON showed significant nega�ve correla�on to GP 
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in five of six experiments and the overall values, with r values between -0.13 in Vollebekk 2020 and -

0.69 in Staur 2022.  

Table 1: Pearson correlation between the BLUE values of traits plant height (PH), days to heading 

(DTH), DON accumulation in ppm (DON) and Germination percentage (GP) from each experiment 

(20S, 20V, 21S, 21V, 22S, 22V) and the overall values (Ov) of the GWAS panel and their level of 

significance level with α > 0.05 = *, > 0.01 = ** and > 0.001 ***. 

 20S 20V 21S 21V 22S 22V Ov 

PH v DON -0.23*** 0.10* 0.03 -0.04 0.05 -0.02 -0.05 

PH v GP 0.10* 0.15*** -0.04 -0.05 -0.03 -0.20*** -0.06 

DTH v DON 0.00 0.29*** 0.15*** 0.33*** 0.05 0.14** 0.21*** 

DTH v GP -0.03 0.01 -0.16*** -0.34*** 0.08* -0.34*** -0.25*** 

DON v GP -0.34*** -0.13** -0.02 -0.28*** -0.69*** -0.49*** -0.52*** 

DTH v PH 0.30*** 0.29*** 0.38*** 0.10* 0.29*** 0.25*** 0.30*** 

 

Trial statistics are shown in the supplementary Table S5. The heritability was relatively high for both 

DON and GP in all environments except for the GP of 2020 Vollebekk, while the overall heritability 

were 0.79 for DON and 0.62 for GP which were higher than any individual experiment. The genotype 

effect was significant below 0.05 for both traits in all experiments. The overall values of AdjDON and 

AdjGP were close to normally distributed (Figure 1c and e). 

 

Figure 1: Distribution of overall phenotypic values of the GWAS panel for the traits DON values in ppm 

(a), logtransformed DON values(logDON) (b), logtransformed DON values adjusted for effect of days 

to heading and plant height (AdjDON) (c), Germination percentage (GP) (d) and Germination 

percentage adjusted for effect of Days to heading and plant height (AdjGP) (e) with number of 

genotypes in the Y-axis and phenotypic values in the X-axis. 
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3.2. GWAS analysis and QTL-regions. 

A total of 48 significant markers for FHB resistance were detected, 24 for adjDON, 22 for adjGP and 

two for both. Six LGs (3C, 4C, 8A, 10D, 11A and 14D) had only one significant marker for one trait 

from a single experiment and were not analyzed further. Four unmapped markers were detected, 

three of them were in LD with the significant markers on LG 1C. The unmapped markers were 

analyzed further. Two markers on 19A and 21D were excluded from further analysis as they were not 

in significant LD with the other markers in the LGs. The remaining 36 markers were assembled into 15 

QTL-regions (Table 2). The markers on 5C, 7C-17A and 18D were split into separate QTL-regions as 

there were no significant LD between them.  

Table 2: QTL-regions determined from significant markers from either single environment or overall 

GWAS for the traits log-transformed DON and GP adjusted for effect of days to heading and plant 

height (AdjDON& AdjGP). The table includes the size of the region in cM (Span), number of SNPs 

detected (n-SNP), the number of experiments they were detected in (n-exp), the traits associated to 

the region (Trait) and the range of -10log-transformed p-value of the markers (-LOG(p)). The R-HT is 

the most frequently resistant allele in the number of significance tests (R-HT tests), and the most 

frequent susceptible allele (S-HT) from the same number of tests (S-HT) 

QTL/LG Span(cM) n-SNP n-Exp Trait -LOG(p) R-HT R-HT 
tests 

S-HT S-HT 
tests 

1C 89-92.8 4 3 AdjGP & AdjDON 3.84-14.22 ACAG 19/24 GTCA 10/24 
2C 74.2 2 2 AdjGP 3.86-6.04 TC 3/4 CA 3/4 

5C-1 48.7-52.4 3 2 AdjGP & AdjDON 4.07-4.73 CAC 5/10 TGA 6/10 
5C-2 86.6 1 1 AdjGP 4.42 C 6/6 T 6/6 
6C 48.7-65.3 2 2 AdjGP 5.3-6.43 CA 2/3 CG 2/3 

7C-17A-1 28.7-72 3 3 AdjGP & AdjDON 3.69-4.94 CGA 18/25 TGG 11/25 
7C-17A-2 74.9 1 1 AdjDON 4.32 G 1/1 A 1/1 

9D 21.3-35.4 3 4 AdjGP & AdjDON 5.2-5.42 CTC 11/17 TCT 17/17 
12D 51-61.1 3 2 AdjGP & AdjDON 4.15-4.93 GGC 19/23 TGT 12/23 
15A 87.9 1 1 AdjGP & AdjDON 5.12 A 4/4 G 4/4 

18D-1 25-45.9 3 3 AdjDON 4.8-6.54 AGT 10/10 GTC 10/10 
18D-2 97.7-99.5 2 2 AdjGP & AdjDON 4.33-4.87 TG 4/5 CG 3/5 
19A 30-54.1 2 2 AdjDON 5.11-5.31 AA 3/5 CG 3/5 
20D 39.6-70.9 2 2 AdjGP 4.09 TG 4/9 CT 5/9 
21D 41.9-87.8 4 3 AdjGP & AdjDON 4.02 AACC 10/13 AACT 5/13 
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3.3. Haplotype analysis and ANOVA validation. 

The haplotype analysis revealed that of the 15 QTL-regions detected in the GWAS, five (1C, 7C-17A-2, 

9D, 12D and 18D-1) showed a consistent effect and significant difference in unadjusted DON and GP 

in comparisons between the resistant and suscep�ble alleles for the overall phenotypes and at least 

two individual experiments. They also showed the same effect in at least two of three valida�on 

popula�ons (Table 3). Of these five, 9D stands out posi�vely, because the difference between the 

resistant and suscep�ble alleles were highly significant for DON in all experiments in the GWAS panel 

and V3 with an effect of 12-22% reduc�on in DON content.  

Table 2 shows which alleles were the most frequently resistant (R-HT) and suscep�ble (S-HT) in the 

significance tests. Some QTL-regions had low number of significant comparisons (2C, 6C, 7C-17A-2, 

15A, 18D-2 and 19A). Others had low frequency of resistant or suscep�ble alleles (1C, 5C-1, 7C-17A-1, 

12D, 20D and 21D). Some combina�ons of markers were missing in the popula�ons; hence all allelic 

varia�ons were not tested in this study. 

Table 3: List of the five most significant QTL-regions and the difference between the resistant and 

susceptible alleles listed in Table 2 in all environments of the GWAS panel (20S, 20V, 21S, 21V, 22S, 

22V and Ov) and the validation populations (V1-3). DON is shown as percentage difference between 

alleles ((difference in mean / average between groups) × 100)) while GP is given as the difference in 

mean percentage points. α < 0.05 = *, < 0.01 = ** and < 0.001 *** 

QTL 20S 20V 21S 21V 22S 22V Ov V1 V2 V3 

DON 

1C -8 -5 -8 -6 -24*** -11* -12* -43 31 -14 

7C-17A-1 -17 -31* -18 -26 -29* -19* -23** -32 -6 -33*** 

9D -22*** -19*** -14** -14** -19*** -12*** -16*** -16 -17 -15* 

12D -15 -26** -19* -8 -22** -15** -17*** NA -15 -14 

18D-1 -9 -9* -11** -15** -14** -13*** -12*** -2 -16* -14** 

GP 

1C 1.8 0.1 1.1 1.1 6.9*** 7.9*** 3.1*** 1.5 -1.8 5.6 

7C-17A-1 2.2 2.9 0.1 3.8* 4.9 9.4*** 4.2*** 4.0 0.6 12.2 

9D 2.9*** 0.9 0.5 -0.2 3.1* 2.7** 1.6*** 0.5 2.0 4.6* 

12D 5.3*** 0.6 -0.1 -0.7 3.7* 4.2** 2.1*** NA 2.7 5.2 

18D-1 2.4** 0.7 0.2 0.1 2.9** 3.2*** 1.6*** -0.2 2.2* 4.9** 
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3.4. Allele stacking. 

The number of validated resistant alleles showed a reduc�on from a mean DON of 5.47 ppm with 

zero resistant alleles to 3.71 ppm with five (Figure 2a). GP increased from 71.5% for the group with 

zero resistant alleles to 76.4% for the one with five (Figure 2b). Both DON and GP had a linear 

increase in resistance from zero to five alleles, and R2 between phenotype and number of alleles were 

0.17 and 0.13 for overall DON and GP respec�vely which were both highly significant with p < 0.001 

(data not shown). There was no significant reduc�on in DON from zero to one resistant allele, but 

there was a significant reduc�on from one to two, and two to three. But no significant reduc�on from 

three to four or five. For GP there were significant increase from zero to one, one to two, and two to 

three alleles, and from three to five, but not from three to four or four to five. The number of 

resistant alleles did not affect the PH (Figure 2d), but for DTH there were significant reduc�ons from 

one, two and three to five alleles with approximately one day difference between one and five (Figure 

2c). 

 

Figure 2: Boxplots of overall values from the GWAS panel for the traits DON accumulation in ppm 

(DON) (a), Germination percentage (GP) (b), days to heading (DTH) (c) and plant height (PH) (d) with 

phenotypes in the Y-axis and the number of resistant alleles from Table 3 in the X-axis. n equals the 

number of lines that carry different number of alleles. 
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3.5. Analysis of historically important varieties. 

The five validated haplotypes from Table 3 were analysed in a subset of material that includes older 

important Nordic varie�es from 1895 to 1999 and modern Norwegian varie�es from 2001 to 2017. 

The full list of varie�es and their haplotypes are listed in Supplementary Table S3. The analysis 

showed that the average number of resistant alleles (Figure 3a) increased from 1.3 in the period of 

1895-1920 to 3.1 in 2001-2009 with a small dip down to 2.7 in 2011-2017. In the oldest varie�es 70% 

had one or less resistant alleles, while for most of the modern varie�es none had less than two. The 

number of suscep�ble alleles (Figure 3b) has been reduced from an average of 1.7 in the period 

1895-1920 to 0.3 in 2001-2009 with a small increase to 0.4 in 2011-2017. In the oldest varie�es 60% 

had two or more suscep�ble alleles while 65% of the varie�es from 2001-2017 had zero. There was 

almost no difference in resistant allele frequencies between the periods 1991-1999 and 2001-2009 

with an increase in average of 0.2, while the number of suscep�ble alleles was reduced with an 

average of 0.5 in the same period.  

 

Figure 3: Number of resistant (a) and susceptible (b) alleles listed in Table 3 present in a selection of 

historical Nordic lines from 1891 to 2017. Each column represents a time period of approximately 

when the cultivars became inbred lines. The left Y-axis is the frequency in percentage and the right is 
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the average numbers of alleles. The different colours are the different number of alleles, and the solid 

line is the mean number of alleles in each period. 

3.6. Candidate genes 

Based on BLAST searches in the OT3098 reference genome (PepsiCo, 2021) several disease resistance 

related genes were iden�fied within the five QTL-regions. The QTL-regions 1C, 7C-17A-1, 9D, 12D and 

18D-1 spanned 21.2, 47.3, 4.1, 23.2 and 4.2 Mbp, respec�vely. The genes found in these regions are 

named RGA1-5, RPM1, RPS2, Pik-1, 2 & 6, RPP13, At3g14460, At1g50180, EDR2 and EDR4. QTL region 

1C contained 20 candidate genes which is the highest among the regions with 16 of them close to the 

first marker. Region 7C-17A-1, 12D, 9D and 18D-1 contained 16, 11, five and three candidate genes 

respec�vely. The third SNP in the 7C-17A-1 haplotype did not match the same chromosome as the 

other two but a homologue, so it appears to not be part of the same QTL region. The full list of 

candidate genes found in each LG is listed in Supplementary Table S2. 

4. Discussion 
4.1. Quality of data  

The phenotypic data showed a highly significant nega�ve Pearson correla�on between DON and GP 

(Table 1) which is expected from previous studies (Tekle et al., 2012, Tekle et al., 2018, Hautsalo et al., 

2020). It was expected that the agronomic traits DTH and PH would be highly correlated to DON and 

GP (Moreno-Amores et al., 2020), which was the case for DTH but not for PH. This could be because 

the tallest varie�es are also oldest and more suscep�ble either due to few resistant alleles or late 

heading. The disease pressure varied between the experiments, but this did not affect the difference 

in ranking as the Pearson correla�on between the trials remained high for DON. The CV values for 

DON ranged between 20 and 43% for the individual experiments which shows that there is a large 

varia�on in DON contents within the trials. But given that the CV values are smaller than similar 

studies in oat (32.6-63.2) (Yan et al., 2010, Haikka et al., 2020), and that the heritability measures 

were rela�vely high means that the experiments were successful which ensured a good expression of 

gene�c varia�on. GP had generally lower heritability than DON.  

4.2. Comparison with previous QTL studies 

The results from this study can be compared to three mapping studies on resistance to F. 

graminearum in oat. The first (He et al., 2013) used two biparental popula�ons based on crosses 

between accessions derived from Avena sterillis, North American varie�es and a Norwegian variety. It 

detected QTL in three LG that might correspond to our results on 5C, 7C-17A and 9D. The second 

study (Bjørnstad et al., 2017) used mostly North American breeding lines with a few varie�es from 
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Northern Europe. They detected QTL on 6C, 7C-17A and 9D that might correspond to our results. The 

third (Haikka et al., 2020) used most Finnish breeding lines and varie�es. They did not detect any 

significant markers, but they did detect low p-values in regions on 1C and 9D poten�ally 

corresponding to our results. To summarize, there is ample evidence to support a major QTL for FHB 

resistance on 9D and 7C-17A based on our results and previous research. The remaining QTL-regions 

appear to be novel, except for regions on 1C, 5C and 6C which might have been detected in previous 

studies. More precise mapping of physical posi�on of markers is needed to properly evaluate the 

overlapping regions in these studies.  

A recent study from Norway suggests that the ranking of cul�vars is partly similar in accumula�on of 

DON and HT2+T2 which is the mycotoxin produced by Fusarium langsethiae (Hofgaard et al., 2022). 

There was however evidence to suggests that some resistance is specifically associated to DON or 

HT2+T2. A recent GWAS study on F. langsethiae detected a significant QTL on LG 14D (Isidro-Sanchez 

et al., 2020). This QTL were not significant in our study and could therefore be considered specific to 

F. langsethiae. 

4.3. Candidate genes 

There were several different disease resistance genes within the QTL-regions, and some of them were 

grouped together in smaller clusters. Networks of QTL as a defense response to F. graminearum have 

been previously reported in bread wheat (Kugler et al., 2013) and durum wheat (Sari et al., 2019) 

which also find the same genes as this study, specifically RGA1, RGA2, RGA4, RPP13 and At3g14460. A 

study of the F. graminearum fungus indicated the presence of AVR-Pik effector genes that helps in the 

infec�on of plant �ssues (Hao et al., 2020). A different study claimed that the Pik-1 and Pik-2 genes 

work as defence genes against these effectors in rice (Maidment et al., 2023) Both of which were 

present in the QTL-regions of this study.  

A recent study on possible DON detoxifica�on genes in oat found two candidates named AsUGT1 and 

AsUGT2 (Khairullina et al., 2022). These are UDP-Glucotransferases and were annotated in the Sang 

reference genome (Kamal et al., 2022) found in the GrainGenes database (Yao et al., 2022). The 

loca�on of these genes does match one of the possible physical posi�ons of the QTL-region on 1C 

from the BLAST search, but not the same as the one where 20 resistance genes were annotated.  

4.4. Implications for resistance breeding 

The stacking of the five resistant alleles indicates that a plateau of resistance is reached in the 

material with the stacking of three of validated resistance alleles, as further significant increase of 

resistance requires more than one allele. The analysis of the Nordic material shows that the number 
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of resistant alleles were low in the oldest varie�es (1885-1920) and increased to almost three (1990-

1999). But it did not increase further when breeding for FHB resistance with inoculated trials started 

in Norway (2001-2009). But the number of suscep�ble alleles were reduced to almost zero. It is 

possible that the screening of material for fusarium resistance resulted in reduc�on in most 

suscep�ble material, and that breeding priori�es changed to other traits like yield and quality. 

Increase in resistance before 2001-2009 probably did not come from targeted breeding against F. 

graminearum, although it is likely that highly suscep�ble genotypes would have been discarded due 

to visible symptoms in epidemic years. It is also likely that selec�on for yield and test weight in years 

with high disease pressure would have improved the FHB resistance. Future breeding strategies could 

be to select crosses based on the haplotype informa�on provided in this study, use MAS to select for 

the QTL with largest effect in early genera�ons and use genomic predic�on to select for both small 

and large effect QTL using genome wide SNP arrays.  

4.5. Conclusion 

This study iden�fied 15 significant QTL-regions involved in Fusarium resistance in oats, validated five 

that showed consistent effect across environments and popula�ons and iden�fied resistant and 

suscep�ble haplotype alleles. The addi�ve effects of the five QTL-regions reduced the DON content 

by 38%. Several genes associated with resistance against F. graminearum in other crops were found 

to be located within these regions. Our study has confirmed that Fusarium resistance is made up of 

mul�ple QTL across the genome with varied effects. An approach to resistance breeding could be to 

use MAS to select for the QTL with larger effects in early genera�ons and to develop genomic 

predic�on models and make selec�ons that include QTL with both large and small effects. The 

haplotype informa�on provided in this study could also be used to select crosses for improved 

fusarium resistance. 
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Table S2: Name of the genotypes used in the GWAS analysis, country of origin and name of 

population. 

Name Origin Population 
Kareela Australia GWAS panel 
Elison Austria GWAS panel 
Eneko Austria GWAS panel 
AC_Assiniboia Canada GWAS panel 
CDC_Boyer Canada GWAS panel 
CDC_Nasser Canada GWAS panel 
CDC_Orrin Canada GWAS panel 
Hi Fi Canada GWAS panel 
Leggett Canada GWAS panel 
Pro Fi Canada GWAS panel 
Sol Fi Canada GWAS panel 
Palu Abed Denmark GWAS panel 
Akseli Finland GWAS panel 
Aslak Finland GWAS panel 
Fiia Finland GWAS panel 
Hannes Finland GWAS panel 
Marika Finland GWAS panel 
Roope Finland GWAS panel 
Steinar Finland GWAS panel 
Yty Finland GWAS panel 
Aarre Finland GWAS panel 
Aragon Germany GWAS panel 
Bauer Germany GWAS panel 
Bessin Germany GWAS panel 
Breeding line 1 Germany GWAS panel 
Breeding line 2 Germany GWAS panel 
Breeding line 3 Germany GWAS panel 
Breeding line 4 Germany GWAS panel 
Breeding line 5 Germany GWAS panel 
Breeding line 6 Germany GWAS panel 
Breeding line 7 Germany GWAS panel 
Breeding line 8 Germany GWAS panel 
Breeding line 9 Germany GWAS panel 
Breeding line 10 Germany GWAS panel 
Caddy Germany GWAS panel 
Canary Germany GWAS panel 
Curly Germany GWAS panel 
Delfin Germany GWAS panel 
Flemingsplus Germany GWAS panel 
Kaplan Germany GWAS panel 
Moby Germany GWAS panel 
Neklan Germany GWAS panel 



 
 

Poseidon Germany GWAS panel 
Proxy Germany GWAS panel 
Revisor Germany GWAS panel 
Scorpion Germany GWAS panel 
Symphony Germany GWAS panel 
Breeding line 11 Netherlands GWAS panel 
Breeding line 12 Netherlands GWAS panel 
Breeding line 13 Netherlands GWAS panel 
Breeding line 14 Netherlands GWAS panel 
Breeding line 15 Netherlands GWAS panel 
Breeding line 16 Netherlands GWAS panel 
Breeding line 17 Netherlands GWAS panel 
Liberto Netherlands GWAS panel 
Mustang Netherlands GWAS panel 
Avetron Norway GWAS panel 
Biri Norway GWAS panel 
Breeding line 18 Norway GWAS panel 
Breeding line 19 Norway GWAS panel 
Breeding line 20 Norway GWAS panel 
Breeding line 21 Norway GWAS panel 
Breeding line 22 Norway GWAS panel 
Breeding line 23 Norway GWAS panel 
Breeding line 24 Norway GWAS panel 
Breeding line 25 Norway GWAS panel 
Breeding line 26 Norway GWAS panel 
Breeding line 27 Norway GWAS panel 
Breeding line 28 Norway GWAS panel 
Breeding line 29 Norway GWAS panel 
Breeding line 30 Norway GWAS panel 
Breeding line 31 Norway GWAS panel 
Breeding line 32 Norway GWAS panel 
Breeding line 33 Norway GWAS panel 
Breeding line 34 Norway GWAS panel 
Breeding line 35 Norway GWAS panel 
Breeding line 36 Norway GWAS panel 
Breeding line 37 Norway GWAS panel 
Breeding line 38 Norway GWAS panel 
Breeding line 39 Norway GWAS panel 
Breeding line 40 Norway GWAS panel 
Breeding line 41 Norway GWAS panel 
Breeding line 42 Norway GWAS panel 
Breeding line 43 Norway GWAS panel 
Breeding line 44 Norway GWAS panel 
Breeding line 45 Norway GWAS panel 
Breeding line 46 Norway GWAS panel 
Breeding line 47 Norway GWAS panel 



 
 

Breeding line 48 Norway GWAS panel 
Breeding line 49 Norway GWAS panel 
Breeding line 50 Norway GWAS panel 
Breeding line 51 Norway GWAS panel 
Breeding line 52 Norway GWAS panel 
Breeding line 53 Norway GWAS panel 
Breeding line 54 Norway GWAS panel 
Breeding line 55 Norway GWAS panel 
Breeding line 56 Norway GWAS panel 
Breeding line 57 Norway GWAS panel 
Breeding line 58 Norway GWAS panel 
Breeding line 59 Norway GWAS panel 
Breeding line 60 Norway GWAS panel 
Breeding line 61 Norway GWAS panel 
Breeding line 62 Norway GWAS panel 
Breeding line 63 Norway GWAS panel 
Breeding line 64 Norway GWAS panel 
Breeding line 65 Norway GWAS panel 
Breeding line 66 Norway GWAS panel 
Breeding line 67 Norway GWAS panel 
Breeding line 68 Norway GWAS panel 
Breeding line 69 Norway GWAS panel 
Breeding line 70 Norway GWAS panel 
Breeding line 71 Norway GWAS panel 
Breeding line 72 Norway GWAS panel 
Breeding line 73 Norway GWAS panel 
Breeding line 74 Norway GWAS panel 
Breeding line 75 Norway GWAS panel 
Breeding line 76 Norway GWAS panel 
Breeding line 77 Norway GWAS panel 
Breeding line 78 Norway GWAS panel 
Breeding line 79 Norway GWAS panel 
Breeding line 80 Norway GWAS panel 
Breeding line 81 Norway GWAS panel 
Breeding line 82 Norway GWAS panel 
Breeding line 83 Norway GWAS panel 
Breeding line 84 Norway GWAS panel 
Breeding line 85 Norway GWAS panel 
Breeding line 86 Norway GWAS panel 
Breeding line 87 Norway GWAS panel 
Breeding line 88 Norway GWAS panel 
Breeding line 89 Norway GWAS panel 
Breeding line 90 Norway GWAS panel 
Breeding line 91 Norway GWAS panel 
Breeding line 92 Norway GWAS panel 
Breeding line 93 Norway GWAS panel 



 
 

Breeding line 94 Norway GWAS panel 
Breeding line 95 Norway GWAS panel 
Breeding line 96 Norway GWAS panel 
Breeding line 97 Norway GWAS panel 
Breeding line 98 Norway GWAS panel 
Breeding line 99 Norway GWAS panel 
Breeding line 100 Norway GWAS panel 
Breeding line 101 Norway GWAS panel 
Breeding line 102 Norway GWAS panel 
Breeding line 103 Norway GWAS panel 
Breeding line 104 Norway GWAS panel 
Breeding line 105 Norway GWAS panel 
Breeding line 106 Norway GWAS panel 
Breeding line 107 Norway GWAS panel 
Breeding line 108 Norway GWAS panel 
Breeding line 109 Norway GWAS panel 
Breeding line 110 Norway GWAS panel 
Breeding line 111 Norway GWAS panel 
Breeding line 112 Norway GWAS panel 
Breeding line 113 Norway GWAS panel 
Breeding line 114 Norway GWAS panel 
Breeding line 115 Norway GWAS panel 
Breeding line 116 Norway GWAS panel 
Breeding line 117 Norway GWAS panel 
Breeding line 118 Norway GWAS panel 
Breeding line 119 Norway GWAS panel 
Breeding line 120 Norway GWAS panel 
Breeding line 121 Norway GWAS panel 
Breeding line 122 Norway GWAS panel 
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Breeding line 125 Norway GWAS panel 
Breeding line 126 Norway GWAS panel 
Breeding line 127 Norway GWAS panel 
Breeding line 128 Norway GWAS panel 
Breeding line 129 Norway GWAS panel 
Breeding line 130 Norway GWAS panel 
Breeding line 131 Norway GWAS panel 
Breeding line 132 Norway GWAS panel 
Breeding line 133 Norway GWAS panel 
Breeding line 134 Norway GWAS panel 
Breeding line 135 Norway GWAS panel 
Breeding line 136 Norway GWAS panel 
Breeding line 137 Norway GWAS panel 
Breeding line 138 Norway GWAS panel 
Breeding line 139 Norway GWAS panel 
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Breeding line 143 Norway GWAS panel 
Breeding line 144 Norway GWAS panel 
Breeding line 145 Norway GWAS panel 
Breeding line 146 Norway GWAS panel 
Breeding line 147 Norway GWAS panel 
Breeding line 148 Norway GWAS panel 
Breeding line 149 Norway GWAS panel 
Breeding line 150 Norway GWAS panel 
Breeding line 151 Norway GWAS panel 
Breeding line 152 Norway GWAS panel 
Breeding line 153 Norway GWAS panel 
Breeding line 154 Norway GWAS panel 
Breeding line 155 Norway GWAS panel 
Breeding line 156 Norway GWAS panel 
Breeding line 157 Norway GWAS panel 
Breeding line 158 Norway GWAS panel 
Breeding line 159 Norway GWAS panel 
Breeding line 160 Norway GWAS panel 
Breeding line 161 Norway GWAS panel 
Breeding line 162 Norway GWAS panel 
Breeding line 163 Norway GWAS panel 
Breeding line 164 Norway GWAS panel 
Breeding line 165 Norway GWAS panel 
Breeding line 166 Norway GWAS panel 
Breeding line 167 Norway GWAS panel 
Breeding line 168 Norway GWAS panel 
Breeding line 169 Norway GWAS panel 
Breeding line 170 Norway GWAS panel 
Breeding line 171 Norway GWAS panel 
Breeding line 172 Norway GWAS panel 
Breeding line 173 Norway GWAS panel 
Breeding line 174 Norway GWAS panel 
Breeding line 175 Norway GWAS panel 
Breeding line 176 Norway GWAS panel 
Breeding line 177 Norway GWAS panel 
Breeding line 178 Norway GWAS panel 
Breeding line 179 Norway GWAS panel 
Breeding line 180 Norway GWAS panel 
Breeding line 181 Norway GWAS panel 
Breeding line 182 Norway GWAS panel 
Breeding line 183 Norway GWAS panel 
Breeding line 184 Norway GWAS panel 
Breeding line 185 Norway GWAS panel 



 
 

Breeding line 186 Norway GWAS panel 
Breeding line 187 Norway GWAS panel 
Breeding line 188 Norway GWAS panel 
Breeding line 189 Norway GWAS panel 
Breeding line 190 Norway GWAS panel 
Breeding line 191 Norway GWAS panel 
Breeding line 192 Norway GWAS panel 
Breeding line 193 Norway GWAS panel 
Breeding line 194 Norway GWAS panel 
Breeding line 195 Norway GWAS panel 
Breeding line 196 Norway GWAS panel 
Breeding line 197 Norway GWAS panel 
Breeding line 198 Norway GWAS panel 
Breeding line 199 Norway GWAS panel 
Breeding line 200 Norway GWAS panel 
Breeding line 201 Norway GWAS panel 
Breeding line 202 Norway GWAS panel 
Breeding line 203 Norway GWAS panel 
Breeding line 204 Norway GWAS panel 
Breeding line 205 Norway GWAS panel 
Breeding line 206 Norway GWAS panel 
Breeding line 207 Norway GWAS panel 
Breeding line 208 Norway GWAS panel 
Breeding line 209 Norway GWAS panel 
Breeding line 210 Norway GWAS panel 
Breeding line 211 Norway GWAS panel 
Breeding line 212 Norway GWAS panel 
Breeding line 213 Norway GWAS panel 
Breeding line 214 Norway GWAS panel 
Breeding line 215 Norway GWAS panel 
Breeding line 216 Norway GWAS panel 
Breeding line 217 Norway GWAS panel 
Breeding line 218 Norway GWAS panel 
Breeding line 219 Norway GWAS panel 
Breeding line 220 Norway GWAS panel 
Breeding line 221 Norway GWAS panel 
Breeding line 222 Norway GWAS panel 
Breeding line 223 Norway GWAS panel 
Breeding line 224 Norway GWAS panel 
Breeding line 225 Norway GWAS panel 
Breeding line 226 Norway GWAS panel 
Breeding line 227 Norway GWAS panel 
Breeding line 228 Norway GWAS panel 
Breeding line 229 Norway GWAS panel 
Breeding line 230 Norway GWAS panel 
Breeding line 231 Norway GWAS panel 



 
 

Breeding line 232 Norway GWAS panel 
Breeding line 233 Norway GWAS panel 
Breeding line 234 Norway GWAS panel 
Breeding line 235 Norway GWAS panel 
Breeding line 236 Norway GWAS panel 
Breeding line 237 Norway GWAS panel 
Breeding line 238 Norway GWAS panel 
Breeding line 239 Norway GWAS panel 
Breeding line 240 Norway GWAS panel 
Breeding line 241 Norway GWAS panel 
Breeding line 242 Norway GWAS panel 
Breeding line 243 Norway GWAS panel 
Breeding line 244 Norway GWAS panel 
Breeding line 245 Norway GWAS panel 
Breeding line 246 Norway GWAS panel 
Breeding line 247 Norway GWAS panel 
Breeding line 248 Norway GWAS panel 
Breeding line 249 Norway GWAS panel 
Breeding line 250 Norway GWAS panel 
Breeding line 251 Norway GWAS panel 
Breeding line 252 Norway GWAS panel 
Breeding line 253 Norway GWAS panel 
Breeding line 254 Norway GWAS panel 
Breeding line 255 Norway GWAS panel 
Breeding line 256 Norway GWAS panel 
Breeding line 257 Norway GWAS panel 
Breeding line 258 Norway GWAS panel 
Breeding line 259 Norway GWAS panel 
Breeding line 260 Norway GWAS panel 
Breeding line 261 Norway GWAS panel 
Breeding line 262 Norway GWAS panel 
Breeding line 263 Norway GWAS panel 
Breeding line 264 Norway GWAS panel 
Breeding line 265 Norway GWAS panel 
Breeding line 266 Norway GWAS panel 
Breeding line 267 Norway GWAS panel 
Breeding line 268 Norway GWAS panel 
Breeding line 269 Norway GWAS panel 
Breeding line 270 Norway GWAS panel 
Breeding line 271 Norway GWAS panel 
Breeding line 272 Norway GWAS panel 
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Breeding line 276 Norway GWAS panel 
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Breeding line 288 Norway GWAS panel 
Breeding line 289 Norway GWAS panel 
Breeding line 290 Norway GWAS panel 
Breeding line 291 Norway GWAS panel 
Breeding line 292 Norway GWAS panel 
Breeding line 293 Norway GWAS panel 
Breeding line 294 Norway GWAS panel 
Breeding line 295 Norway GWAS panel 
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Breeding line 297 Norway GWAS panel 
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Breeding line 300 Norway GWAS panel 
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Breeding line 311 Norway GWAS panel 
Breeding line 312 Norway GWAS panel 
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Breeding line 376 Norway GWAS panel 
Breeding line 377 Norway GWAS panel 
Breeding line 378 Norway GWAS panel 
Breeding line 379 Norway GWAS panel 
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Breeding line 1108 Norway Validation population 3 
Breeding line 1109 Norway Validation population 3 
Breeding line 1110 Norway Validation population 3 
Breeding line 1111 Norway Validation population 3 
Breeding line 1112 Norway Validation population 3 
Breeding line 1113 Norway Validation population 3 
Breeding line 1114 Norway Validation population 3 
Breeding line 1115 Norway Validation population 3 
Breeding line 1116 Norway Validation population 3 
Breeding line 1117 Norway Validation population 3 
Breeding line 1118 Norway Validation population 3 
Breeding line 1119 Norway Validation population 3 
Breeding line 1120 Norway Validation population 3 
Breeding line 1121 Norway Validation population 3 
Breeding line 1122 Norway Validation population 3 
Breeding line 1123 Norway Validation population 3 
Breeding line 1124 Norway Validation population 3 
Breeding line 1125 Norway Validation population 3 
Breeding line 1126 Norway Validation population 3 
Breeding line 1127 Norway Validation population 3 
Breeding line 1128 Norway Validation population 3 
Breeding line 1129 Norway Validation population 3 
Breeding line 1130 Norway Validation population 3 
Breeding line 1131 Norway Validation population 3 
Breeding line 1132 Norway Validation population 3 
Breeding line 1133 Norway Validation population 3 
Breeding line 1134 Norway Validation population 3 
Breeding line 1135 Norway Validation population 3 
Breeding line 1136 Norway Validation population 3 
Breeding line 1137 Norway Validation population 3 
Breeding line 1138 Norway Validation population 3 
Breeding line 1139 Norway Validation population 3 
Breeding line 1140 Norway Validation population 3 
Breeding line 1141 Norway Validation population 3 
Breeding line 1142 Norway Validation population 3 
Breeding line 1143 Norway Validation population 3 
Breeding line 1144 Norway Validation population 3 
Breeding line 1145 Norway Validation population 3 
Breeding line 1146 Norway Validation population 3 



 
 

Breeding line 1147 Norway Validation population 3 
Breeding line 1148 Norway Validation population 3 
Breeding line 1149 Norway Validation population 3 
Breeding line 1150 Norway Validation population 3 
Breeding line 1151 Norway Validation population 3 
Breeding line 1152 Norway Validation population 3 
Breeding line 1153 Norway Validation population 3 
Breeding line 1154 Norway Validation population 3 
Breeding line 1155 Norway Validation population 3 
Breeding line 1156 Norway Validation population 3 
Breeding line 1157 Norway Validation population 3 
Breeding line 1158 Norway Validation population 3 
Breeding line 1159 Norway Validation population 3 
Breeding line 1160 Norway Validation population 3 
Breeding line 1161 Norway Validation population 3 
Breeding line 1162 Norway Validation population 3 
Breeding line 1163 Norway Validation population 3 
Breeding line 1164 Norway Validation population 3 
Breeding line 1165 Norway Validation population 3 
Breeding line 1166 Norway Validation population 3 
Breeding line 1167 Norway Validation population 3 
Breeding line 1168 Norway Validation population 3 
Breeding line 1169 Norway Validation population 3 
Breeding line 1170 Norway Validation population 3 
Breeding line 1171 Norway Validation population 3 
Breeding line 1172 Norway Validation population 3 
Breeding line 1173 Norway Validation population 3 
Breeding line 1174 Norway Validation population 3 
Breeding line 1175 Norway Validation population 3 
Breeding line 1176 Norway Validation population 3 
Breeding line 1177 Norway Validation population 3 
Breeding line 1178 Norway Validation population 3 
Breeding line 1179 Norway Validation population 3 
Breeding line 1180 Norway Validation population 3 
Breeding line 1181 Norway Validation population 3 
Breeding line 1182 Norway Validation population 3 
Breeding line 1183 Norway Validation population 3 
Breeding line 1184 Norway Validation population 3 
Breeding line 1185 Norway Validation population 3 
Breeding line 1186 Norway Validation population 3 
Breeding line 1187 Norway Validation population 3 
Breeding line 1188 Norway Validation population 3 
Breeding line 1189 Norway Validation population 3 
Breeding line 1190 Norway Validation population 3 
Breeding line 1191 Norway Validation population 3 
Breeding line 1192 Norway Validation population 3 



 
 

Breeding line 1193 Norway Validation population 3 
Breeding line 1194 Norway Validation population 3 
Breeding line 1195 Norway Validation population 3 
Breeding line 1196 Norway Validation population 3 
Breeding line 1197 Norway Validation population 3 
Breeding line 1198 Norway Validation population 3 
Breeding line 1199 Norway Validation population 3 
Breeding line 1200 Norway Validation population 3 
Breeding line 1201 Norway Validation population 3 
Breeding line 1202 Norway Validation population 3 

 

 

Figure S4: Plot of the first two principal components of the marker information for the GWAS panel 

sorted into their region of origin.  



 
 

 

Figure S5: QQ-plots from GWAS analysis using Overall AdjDON data with the FarmCPU model (a) and 

the MLMM model (b) showing the deviation between the expected (X-axis) and observed (Y-axis) -

log10 p-values. 

Table S3: Candidate genes for fusarium resistance found within the validated QTL regions from Table 

3. 

QTL regions 1C 7C-17A-1 9D 12D 18D-1 
Distance between SNPs 21.2 Mb 47.3Mb 4.1Mb 23.2Mb 4.2Mb 

Copies of disease related genes 
Putative disease resistance protein RGA1 6 0 2 1 0 
Putative disease resistance protein RGA2 0 5 0 2 0 
Putative disease resistance protein RGA3 1 0 0 0 0 
Putative disease resistance protein RGA4 2 0 0 1 0 
Putative disease resistance protein RGA5 2 3 0 1 1 
Disease resistance protein RPM1 1 1 1 1 0 
Disease resistance protein RPS2 1 0 0 3 0 
Disease resistance protein Pik-1 0 0 0 0 1 
Disease resistance protein Pik-2 3 3 0 1 0 
Putative disease resistance protein 
RPP13-like protein 1 

1 1 1 1 0 

Putative disease resistance protein 
RPP13-like protein 4 

0 0 0 0 1 

Disease resistance protein Pik6-NP 1 0 0 0 0 
Putative disease resistance protein 
At3g14460 

1 2 0 0 0 

Enhanced disease resistance EDR4 1 0 0 0 0 
Disease resistance protein At1g50180 0 1 0 0 0 
Enhanced disease resistance EDR2-like 0 0 1 0 0 

 



 
 

Table S3: List of varieties with historical importance to the Norwegian germplasm with their name, 

country of origin, approximate year of F10 generation, and validated QTL region from Table 3 with 

their haplotypes. The letters correspond to one of the four nucleotides A, T, C, G, while N is unknown 

identity. 

Name Origin Year 1C 7C-17A-1 9D 12D 18D-1 
Probsteier Denmark 1891 GCAG CGA TNT GAC GTC 

Milton USA 1894 GTCA CGA TCT GAC GTC 
Stormogul Sweden 1895 GCAG TAA TCT TAT AGT 

Svala Sweden 1900 GCAG CGG CTC GAC AGT 
Seger Sweden 1902 GTCA CGA TTT TAT GTC 
Fyris Sweden 1905 GTCA CGG CTC GGT GTC 

FØRÆDLADDALAHAVR Sweden 1907 GTCA CGA TTT TAT AGT 
Grenader Norway 1912 GTCA CGA TCT GAC GTC 

ThorsMøystad Norway 1913 GCAA CGG TCT TGT AGT 
Gullregn_II Sweden 1914 GTCA CGA TCT GAC GTC 

Perle Norway 1914 GCAG CGG CTC GAC AGT 
Stjærn Sweden 1914 GTCA CGA TTT TAT GTC 
Vasa Finland 1917 GTCA CGA TTT GAC GTC 

Engelbrekt Sweden 1918 GTCA CAA TCT TGT GTC 
Nidar Norway 1918 GCAG CGG CTC GGT AGT 
Kytø Finland 1919 GTCA CGA TTT GAC GTC 

Hvit_Odal Sweden 1920 GTCA CGG CTT TGT AGT 
Orn Sweden 1920 GTCA CAA CTC GGC AGT 

KlockExtra Denmark 1927 GCAG CGA TTT TAT GTC 
Bambu Sweden 1928 GTCA CAA TTT TAT GTC 

Hird Norway 1934 GTCA CGG TTT GGC AGT 
Sol_II Sweden 1936 GTCA CAA CTC GGC AGT 

PaluAbed Denmark 1939 GTCA CGG CTT GAT AGT 
Blenda Sweden 1944 GCAG CGA TTT GGC AGT 
Norum Norway 1944 GCAG CGG CTC TAT AGT 

Voll Norway 1950 GNCN CGG CTC GGC AGT 
Hannes Finland 1958 GTCA TGA TCT GAC GTC 

Titus Sweden 1958 GTCA CGA TTT TAT AGT 
Pol Norway 1961 GCAG TGA TCT TAT GTC 

Selma Sweden 1962 GTCA CAA CTT GAC GTC 
Gråkall Norway 1966 GTCA CGG CTC GGC AGT 

Sang Sweden 1968 GTCA CGA CTC GAC GTC 
Svea Sweden 1970 GTCA CGA CTC GGC AGT 

Mustang Netherlands 1974 GTCA CGA TTT GGC AGT 
Moholt Norway 1976 GTCA CGG CTC GAC AGT 

Kapp Norway 1980 ACAG TGA TCT GGC AGT 
Lena Norway 1980 GTCA CAA CTC GAC GTC 

Magne Sweden 1981 GTCA CGA TTT GGC AGT 
Martin Norway 1982 ACAG CGA TCT GGC GTC 



 
 

Frigg Sweden 1983 GCAG CGA TCT GAC AGT 
Freja Sweden 1985 ACAG CAA TCT GGC AGT 
Grane Norway 1986 GCAG CGG CTT GAC AGT 
Munin Norway 1986 GCAG CGA TCT GGC GTC 

Matilda Sweden 1988 ACAG CGA TTC GGC GTC 
Bikini Norway 1991 GCAG CGA CTC GGC AGT 
Biri Norway 1991 GTCA CAA CTC GGC AGT 

Belinda Sweden 1992 ACAG CGA CTC GGC AGT 
Hugin Norway 1993 GTCA CAA CTT GGC AGT 

Ingeborg Sweden 1998 GCAG TGG TCT GAC AGT 
Roverud Norway 1998 GCAG CAG CTC GAC AGT 
Eidsvoll Norway 1999 GCAG CGA TCT GGC AGT 

Flisa Norway 1999 GTCA CAA CTC GAC GTC 
Gere Norway 1999 ACAG CGA TCT GGC AGT 

Hurdal Norway 1999 ACAG CAG CTC GGC AGT 
Nudist Norway 2001 GCAG CGA CTC GGC AGT 

Ringsaker Norway 2002 GTCA CAA CTC GGC AGT 
Nes Norway 2003 GCAG CGA CTC GGC AGT 
Odal Norway 2003 ACAG CGA CTC GGC AGT 
Haga Norway 2004 GCAG CAA CTT GAC AGT 

Skarnes Norway 2004 GCAG CAA CTC GGC AGT 
Vinger Norway 2004 GCAG CGA CTT GGC AGT 
Hurum Norway 2007 GCAG CGA CTC GAC GTC 
Avetron Norway 2008 ACAG CAA CTT GAC AGT 
Gimse Norway 2008 ACAG CGA TCT GGC AGT 
Dovre Norway 2009 GTCA CAA CTC GAC AGT 
Våler Norway 2009 ACAG CGA CTC GGC AGT 
Årnes Norway 2009 GCAG CGG CTC GAC AGT 
Staur Norway 2012 GCCG CAA CTC GGC AGT 

Bingen Norway 2014 GCAG CGA CTC GAC GTC 
Mo Norway 2014 NCAG CGA CTC GAC AGT 

Ridabu Norway 2014 GCAG CGA CTC GAC GTC 
Brandval Norway 2016 ACAG CGA TCT GGC AGT 
Romedal Norway 2016 GCAG CAA CTT GGC AGT 
Vallset Norway 2016 GCAG CGA CTT GGC AGT 

 

 

 

 

 

 

 

 



 
 

Table S4: Models for calculating BLUE-values for each field design where µ is the mean, ε is the error 

which is assumed to be independent and normally distributed with a mean of zero and variance of σ2, 

and Yijkl is the phenotype of the ith environment (Env) of the jth replication (Rep) of the kth incomplete 

block (Block) of the lth genotype (Gen) for the multiple environment models. For the single 

environments models Yijk is the phenotype of the ith replicate (Rep) of the jth incomplete block (Block) 

of the kth genotype (Gen). 

Experimental design Model to calculate BLUE-values 

Single trial alpha Yijk = µ + Repi + Blockj (Repi) + Genk + εijk [Eq.1] 

Overall trials alpha Yijkl = µ+Envi+Repj (Envi)+Blockk(Envi Repi )+Genl+Envi×Genl+εijkl [Eq.2] 

Single trials RCBD Yik = µ + Repi + Genk + εik [Eq.3] 

Overall trials RCBD Yijkl = µ + Envi + Repj (Envi) + Genl + Envi × Genl + εijkl [Eq.4] 

 

Table S5: Trial statistics of individual experiments (20S, 20V, 21S, 21V, 22S, 22V) and overall (Ov) for 

the traits DON and GP including broad sense Heritability (H2), Variance (Var) and significance level 

(Sig) of the factors Genotype (Gen), Environment (Env) Genotype x Environment (Gen x Env), and 

Residual (Res), Grand Mean and Coefficient of variance (CV). 

Statistics 20S 20V 21S 21V 22S 22V Ov 
DON 

H2 0.69 0.68 0.49 0.73 0.59 0.67 0.79 
Gen Var 2.41 1.39 0.62 0.48 2.57 3.31 1.08 
Env Var       6.00 

GenxEnv Var       0.71 
Res Var 2.18 1.33 1.29 0.37 3.51 3.24 1.99 

Grand Mean 3.45 3.78 3.04 2.01 6.13 9.11 4.59 
CV 42.78 30.44 37.35 30.10 30.56 19.77 30.75 

Gen Sig 2.26E-38 1.98E-30 2.17E-13 1.36E-44 2.13E-20 2.32E-31 3.87E-150 
Env Sig       0.02 

GenxEnv Sig       5.31E-38 
GP 

H2 0.47 0.20 0.41 0.57 0.57 0.61 0.62 
Gen Var 17.15 3.90 12.60 23.85 33.02 35.24 8.51 
Env Var       27.61 

GenxEnv Var       12.01 
Res Var 38.85 32.01 35.69 36.48 48.95 44.30 39.53 

Grand Mean 79.11 80.19 74.98 70.43 69.06 65.19 73.14 
CV 7.88 7.06 7.97 8.57 10.13 10.21 8.60 

Gen Sig 1.88E-12 0.02 2.51E-08 4.74E-19 3.90E-19 1.41E-21 4.07E-50 
Env Sig       0.08 

GenxEnv Sig       2.69E-30 
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Abstract 

Fusarium head blight (FHB) is the predominant disease in oat in Norway caused by the fungus 

Fusarium graminearum. It causes yield loss, reduced seed quality, reduced germina�on ability and 

accumula�on of deoxynivalenol (DON). The FHB resistance is quan�ta�ve, and most genes have small 

effect. A previous GWAS study iden�fied five QTL-regions with large effect associated with FHB 

resistance validated across environments and popula�ons. This study aims to use these QTL regions 

as fixed effects to improve genomic predic�on for DON and Germina�on ability in oat. A large and 

diverse training popula�on of 541 lines was sown in field trials for three years and two loca�ons 

obtain accurate phenotypic data. The trials were spawn inoculated and mist irrigated to ensure a high 

and even disease pressure. The results showed rela�vely high predic�on ability for both DON and 

germina�on ability, both in the training popula�on and in three valida�on popula�on, especially 

when heritability of the trait was high. The added effect of QTL-regions increased predic�on ability 

individually and collec�vely in the training set but showed inconsistent results in the valida�on 

popula�ons where predic�on ability some�me was reduced compared to a basic model. A selec�on 

of elite material iden�fied that the targeted resistant alleles did increase in frequency, but that some 

of the other resistance alleles from the GWAS were reduced in selec�ons indica�ng that there might 

be a linkage between the resistant and non-resistant alleles of these QTL-regions due to the family 

structure of the popula�ons. The complexity of FHB resistance in oat with mul�ple small effect QTL, 

several types of resistance, high GxE interac�on, correlated traits and poten�al epista�c effects 

emphasise the need to develop more complex models in order to capture these effects. The results 

from this study will be used for implementa�on of genomic selec�on in the Norwegian breeding 

program.  
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1. Introduction 

In Norway, oat is one of the three major crops along with wheat and barley (Sta�s�sk sentralbyrå, 

2023). Oat has been considered a good break crop in rota�on with barley and wheat as they have few 

diseases in common (Abrahamsen et al., 2016). There are several diseases that impacts oat 

produc�on in Norway like powdery mildew and leaf blotch, However, Fusarium head blight (FHB) has 

been highlighted the major disease with big economic impact on the en�re oat industry (Bernho� et 

al., 2013). FHB is a fungal disease caused by several different Fusarium species, and causes yield loss, 

reduced seed quality and germina�on ability, and accumula�on of mycotoxins that are harmful to 

both humans and animals. The most important Fusarium pathogen in Norway is Fusarium 

graminearum, which produces the mycotoxin deoxynivalenol (DON) for which the EU and Norway 

have set a limit on unprocessed grain to 1750 µg/kg, and farmers gets reduced price if the shipments 

exceed the limits. In the period of 2010-2012 there were high infec�on pressure and elevated DON 

content, which caused approximately 40% of the shipments these years to exceed this limit 

(Felleskjøpet agri SA, 2016). The available fungicides in Norway have only a par�al effect on the 

disease, reducing DON content with maximum 50% if applied at the op�mal �me (Felleskjøpet Agri 

SA, 2023). The pathogen reproduces sexually (Aamot et al., 2015) and can therefore change in 

aggressiveness, virulence and poten�ally achieve fungicide resistance (Becher et al., 2010, de Chaves 

et al., 2022). The use of resistant varie�es along with other management op�ons could be a more 

effec�ve way to reduce the risk of infec�on. The resistance is quan�ta�ve in nature and race non-

specific (He et al., 2013, Bjørnstad et al., 2017) which likely contributes to durability of the resistance. 

With a predicted future Norwegian climate with more rainfall and humid condi�ons that are 

favourable for the fungus, it is important that the resistance breeding con�nues in order to prevent 

large economic losses due to FHB epidemics.  

Resistance to Fusarium can be categorized into five main types (Hautsalo et al., 2018); (i) resistance to 

ini�al infec�on (Schroeder & Christensen, 1963), (ii) resistance to disease spread, (iii) resistance to 

kernel infec�on, including germina�on ability (Mesterházy, 1995), (iv) tolerance (Mesterházy, 1995), 

and (v) resistance to mycotoxin accumula�on (Miller et al., 1985, Mesterházy et al., 1999). 

Addi�onally, there are passive avoidance mechanisms that the plants use to avoid infec�on. Three of 

these are plant height, where taller plants increase the distance to the ini�al infec�on, days to 

heading, which makes the plants flower in periods of lower disease pressure, and anther extrusion, 

which ensures that the anthers are not stuck between palea and lemma, leaving openings for the 

fungus to enter the florets and grow on the dead anther �ssue.  Fusarium resistance is measured in 

several different ways. The four main approaches are to (i) measure mycotoxin content, (ii) count 
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number of infected spikelets, (iii) measure germina�on percentage (GP), and (iv) quan�fy the amount 

of fusarium DNA in a qPCR. These traits are correlated and deal with different parts of the resistance 

mechanisms. 

Tradi�onally, oat breeding in Norway has been done with phenotypic selec�on where inbred lines 

from each cross are selected and evaluated, first in head rows for simple traits like height and 

earliness and later for yield and quality traits. For the past 12 years, Norwegian material has been 

screened for fusarium resistance in genera�ons F10-F12 in spawn-inoculated and mist-irrigated disease 

trials at two loca�ons. Such trials are expensive, but efficient to provoke large varia�on in DON 

content and GP and thus increase selec�on accuracy for FHB resistance.  

Genomic selec�on (Meuwissen et al., 2001) is a breeding strategy that could help select for FHB 

resistance at an early stage, while reducing the need to do large expensive field tes�ng. It uses 

sta�s�cal models to predict the phenotypes of new individuals using only their genotypic 

informa�on. The models are trained with a training popula�on that has been genotyped and 

phenotyped for the given trait. Marker effects will be es�mated based on a prior distribu�on, giving 

each marker a small effect that is summed into the total predicted breeding value of the genotype. 

The accuracy of the genomic predic�on models is determined by the number of individuals used in 

the training and their relatedness to the breeding material, the accuracy of the phenotyping, the 

heritability of the trait and the density of the markers. Fusarium resistance is a complex trait with 

many small-effect quan�ta�ve trait loci (QTL) that contribute to resistance, and large genotype x 

environment interac�ons that give the trait rela�vely low heritability (He et al., 2013, Hautsalo et al., 

2018, Hautsalo et al., 2020). There is also a low accuracy in phenotyping compared to other traits like 

days to heading and plant height, which makes fusarium resistance a difficult trait to predict.  

There are several ways to improve genomic predic�on models. Some examples of successful 

improvement of FHB in wheat are to include known QTL informa�on (Rutkoski et al., 2012), 

correlated traits (Gaire et al., 2022) or environmental factors (Zhang et al., 2021) as co-factors in the 

models. There are few examples of genomic predic�on for fusarium resistance in oat, and in one that 

have been conducted do not include co-variates in the models (Haikka et al. 2020). This study will 

u�lize a large and diverse training popula�on tested in several environments to predict new breeding 

material for DON accumula�on and germina�on ability by including QTL informa�on from a previous 

mapping study in the predic�on models. The aim is to evaluate genomic predic�on models for DON 

and GP both within the training popula�on and in the Norwegian oat breeding program, and to give 

general advice on the u�liza�on of fixed effect models for breeding programs.  
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2. Materials and methods 

2.1. Materials 

2.1.1. Training population 

The training popula�on used in this study consisted of 541 oat lines and cul�vars selected from a 

larger pool of approximately 1,124 lines and cul�vars by using a combina�on of the three selec�on 

strategies described by Sørensen et al. (2023). These strategies aimed to maintain high phenotypic 

and genotypic diversity in smaller popula�ons and ensured that the training popula�on remained 

highly related to the material in the Norwegian breeding program. In total, 440 lines were from 

Norway, 40 from Sweden, 26 from Germany, nine from Netherland, eight from Canada, eight from 

Finland, five from USA, two from Austria, one from Denmark and one from Australia (Supplementary 

1, Table 1). Some lines were excluded to avoid strong associa�on between correlated traits and FHB 

resistance. These were (1) very tall plants, as increased height increases the risk for lodging which in 

turn creates favorable humid microclimate for the pathogen to thrive, (2) very short plants as it 

shortens the distance from the heads to the primary inoculum, and (3) lines without husks as more 

fungus and thus DON is present on the husks (Brodal et al., 2020). These traits could give large effect 

to loci present in families that share these traits, or large effect to QTL for these traits that are not 

present in the breeding material. These traits include plant height and presence of husks.  

2.1.2. Validation populations 

Three breeding popula�ons were used to validate the results from the cross-valida�on, and will be 

called V1, V2 and V3 from this point. V1 and V2 consist of 242 F10 breeding lines from Graminor from 

the years 2020 and 2021 respec�vely. F10 lines have not been selected for Fusarium resistance. V3 

consisted of 230 lines where 112 were F10 lines from 2022, 88 were F11 from V2, 22 were F12 from V1 

and 8 were F13 from the breeding popula�on of 2019.   

2.2. Field trials 

Field experiments of the training popula�on were conducted for three years from 2020 to 2022 in 

two loca�ons, Vollebekk (59.66°N, 10.75°E) and Staur (60.73°N, 11.10°E). V1, 2 and 3 were tested in 

2020, 2021 and 2022 respec�vely in both loca�ons. The experimental design of the training 

popula�ons, V1 and V2 were alpha la�ce design with two replicates and sub-block size of 5. The 

experimental design of V3 was randomized complete block (RCBD). All material were sown in spawn 

inoculated and mist irrigated disease trials (Tekle et al., 2018). 
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2.3. Phenotyping 

All plots were scored for Days to Heading (DTH) as the number of days from sowing to at least 50% of 

the heads have emerged, and Plant Height (PH) in cen�meters from the ground to the top of the 

plant. DON accumula�on was measured on milled seed samples with husks as parts per million (ppm) 

in the lab at Graminor with an Agraquant Deoxynivalenol Plus (0.25/5), 96 Wells ELISA kit developed 

by Romer Labs Ltd. Germina�on ability was measured at Graminor as percentage of germinated (GP) 

seeds using the “between paper” method described in point 5.6.2.1.1 of the ISTA protocol (ISTA, 

2021). Two replicates of 50 seeds were used per plot. The paper rolls were put in plas�c bags to 

retain moisture, stored in cool temperatures between 5 and 10°C for 7 days, then moved to room 

temperature for 6-8 days before analysis. Paper size was 220 X 400 mm and 200 x 400 mm with a 

capillary capacity of 80 mm/10 min and produced by Munktell Filter AB. DON and GP were collected 

for all trials except GP for V3 Staur.  

2.4. Phenotypic data analysis 

The Best linear unbiased es�mators (BLUE) were calculated for each genotype in each trial and across 

trials (Overall), with the following models in the META-R so�ware (Alvarado et al., 2016): 

Overall trials alpha: Yijkl = µ + Envi + Repj (Envi) + Blockk(Envi Repi ) + Genl + Envi × Genl + εijkl [Eq.1] 

Single trials RCBD: Yik = µ + Repi + Genk + εik [Eq.2] 

Overall trials RCBD: Yijkl = µ + Envi + Repj (Envi) + Genl + Envi × Genl + εijkl [Eq.3] 

Yijkl is the phenotype of the ith envrionment (Env) of the jth replica�on (Rep) of the kth incomplete 

block (Block) of the lth variety (Gen). Yik is the phenotype of the ith replicate (Rep) of the kth variety 

(Gen). µ is the mean, ε is the error which is assumed to be independant and normally distributed with 

a mean of zero and variance of σ2.. 

2.5. Genotyping and data preparation 

The training popula�on was genotyped with a customized, unpublished 20 kSNP array containing 

18,598 markers. The array contained all markers from the publicly available 6 k SNP array (Tinker et 

al., 2014). The valida�on popula�ons were genotyped by a different 7kSNP array (Polley et al., 2023), 

which contained the most polymorphic markers from the previous 20K array. The gene�c data were 

filtered based on the training popula�on with a threshold of 10% for missing values/heterozygotes 

and 5% MAF based on the training popula�on, resul�ng in 3071 polymorphic markers.  
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2.6. Previous association mapping 

A genome wide associa�on study (GWAS) was done on the training popula�on using phenotypic data 

from individual experiments and V1-3 to iden�fy and validate important QTL-regions. The GWAS 

detected markers on 15 different QTL-regions, and resistant and suscep�ble alleles were iden�fied for 

each region. Five regions were validated in a separate haplotype analysis which showed consistent 

significant effect across environments. The QTL regions are from this point referred to as haplotypes 

and named 1C, 7C-1, 9D, 12D and 18D-1 in reference to the linkage groups they were detected in. 

This study aims to use the allele informa�on for each of these haplotypes in separate models and in 

combina�on to improve predic�ons. 

2.7. Genomic prediction 
2.7.1. Models 

In this study, the Bayesian Ridge Regression model was used as the baseline model for the predic�ons 

and is given as: 

Yi = µ + ∑  𝑝𝑝
𝑘𝑘=1 Xikβk + εi [Model 1] 

Where Y is the BLUEof the ith individual, µ is the intercept, X is the marker value of the kth marker of 

the ith individual, β is the random marker effect of the kth marker, and ε is the error term of the ith 

individual. Both β and ε are assumed to be normally distributed with a mean of 0.β has a variance of 

σ2 of the kth marker effects and ε has a variance of σ2 of the ith individual.   

The fixed effect models are writen as:  

 Yi = µ + ∑  𝑝𝑝
𝑘𝑘=1 Xikβk + ∑  𝑞𝑞

ℎ=1 Zijuj + εi [Model 2] 

Where the markers are modelled the same as in Model 1 with the addi�onal terms of Z which is the 

allele values of the jth haplotype of the ith individual, and u, which is the fixed effect of the jth 

haplotype. The haplotypes are coded as 1, 0 and -1 for the resistant, neutral and suscep�ble alleles, 

respec�vely, in accordance with the results given by the previous haplotype analysis. The single 

haplotype models are named M1C, M7C-1, M9D, M12D and M18D-1 a�er the respec�ve haplotypes 

used as fixed effects in the models. Two models use mul�ple haplotypes, named M5HT which uses 

the five haplotypes from the single haplotype models, and M15HT which also uses the addi�onal 10 

haplotypes detected in the GWAS. The genomic predic�on was done using only the overall values for 

all experiments available for each popula�on, and accuracy was collected by correla�ng the predicted 

values with the overall observed values of the valida�on popula�ons. The DON values were log 

transformed to obtain normally distributed values for the GS analysis. 
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2.7.2. Cross-validation and prediction accuracy 

The models were used in a five-fold cross-valida�on setup where the training set was randomly split 

into five groups and each group in turn was given missing phenotypes while the rest were used to 

train the models. This procedure was repeated 30 �mes, and Pearson correla�ons between predicted 

and observed phenotypes were collected and will from here on be referred to as predic�on ability 

(PA). The models were evaluated with a Tukey pairwise comparison to see if they yielded significantly 

different mean PA. The same models were used to predict the phenotypes of the three valida�on 

popula�ons with the full training set.  

2.8. Selections 

In the Norwegian breeding program 1/3 of the lines from F10 are usually advanced for the next cycle 

of retes�ng. In this study we used this as a scenario to select 1/3 of the lines with lowest predicted 

logDON values for each cross-valida�on replica�on and valida�on popula�on. The selec�ons were 

then analysed for average observed DON, GP, DTH and PH, and for the frequency of the 15 resistant 

alleles from the previous GWAS in each model. The phenotypes and allele frequencies were then 

compared to the base BRR model to see how the fixed effects models affected the lines selected. The 

results from the training popula�on were compared with Tukey pairwise comparisons using Minitab 

sta�s�cal so�ware (Minitab, 2021) to see if there were significant differences. In addi�on, a selec�on 

based on the observed values were done to compare the allele frequencies of phenotypic and 

genomic selec�on. Selec�ons were not done for GP because of the low heritability and gene�c 

significance in V1 and V2 (Table 1).  

3. Results 

3.1. Phenotypic analysis and correlations 

The trial sta�s�cs show that there were large differences between the years of the tes�ng 

popula�ons with low infec�ons rates in 2020 and 2021 where V1 and V2 were tested respec�vely 

with a grand mean of 2.28 ppm DON in both popula�ons, compared to 7.05 ppm for V3 tested in 

2022. The heritability was also lower in V1 and V2 than V3 for both traits, and excep�onally so for GP 

with heritability of 0.19 and 0.18 for V1 and V2, and 0.79 for V3. In V1, the environmental variance 

was very large (123.42) for GP, while in V2 there was a large residual variance (94.78). The Genotype 

main effect is highly significant for DON in all popula�ons, but only in the TP and V3 for GP.  
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Table 4: Trial statistics of the overall values of DON and GP for the validation populations (V1-3) and 

training population (TP) including broad sense Heritability (H2), Variance (Var) and significance level 

(Sig) of the factors Genotype (Gen), Environment (Env) Genotype x Environment (Gen x Env), and 

Residual (Res), Grand Mean, Minimum values (Min), Maximum value (Max) and Coefficient of 

variance (CV). 

 
DON GP 

V1 V2 V3 TP V1 V2 V3 TP 

H2 0.48 0.54 0.81 0.79 0.19 0.18 0.79 0.62 

Gen Var 0.22 0.33 2.05 1.08 2.97 5.58 33.10 8.51 

Env Var 0.14 0.68 0.31 6.00 123.42 2.18 20.11 27.61 

Gen x Env Var 0.13 0.06 0.62 0.71 10.27 4.59 10.34 12.01 

Res Var 0.71 1.00 4.41 1.99 29.17 94.78 67.50 39.53 

Grand Mean 2.28 2.28 7.05 4.59 79.33 72.25 68.51 73.14 

Min 0.86 0.87 3.27 2.48 65.82 56.25 33.96 60.51 

Max 6.21 6.1 12.00 8.56 88.14 85.75 87.96 83.15 

CV 37.07 43.83 29.8 30.75 6.81 13.47 11.99 8.60 

Gen Sig 5.11E-07 6.74E-11 2.40E-23 3.87E-150 0.11 0.10 4.82E-11 4.07E-50 

Env Sig 0.37 0.02 0.16 0.02 0.03 0.79 0.06 0.08 

Gen x Env Sig 5.52E-03 0.22 1.30 5.31E-38 9.54E-06 0.36 0.02 2.69E-30 

 

The correla�ons for the valida�on popula�ons (Table 2) show that even though the heritability and 

genotypic significance were low for GP in V1 and 2, there was s�ll a significant nega�ve correla�on 

between DON and GP in those popula�ons (-0.13 and -0.14). DON showed a consistent posi�ve 

significant correla�on (0.18-0.24) with DTH in all popula�ons, while GP showed significant nega�ve 

correla�on to DTH in V2 and V3. There was a significant nega�ve correla�on between PH and DON in 

V2 and V3 (0.15 and 0.17), and a significant posi�ve correla�on between GP and PH in V1 (0.21).  
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Table 5: Pearson correlations between the overall values of days to heading (DTH), plant height (PH), 

DON accumulation (DON) and germination percentage (GP) in the three validation populations (V1-3) 

Population Trait 1 Trait 2 Correlation p-value 
V1 DON DTH 0.212 0.001 

DON PH -0.062 0.317 
DON GP -0.133 0.032 
GP DTH -0.001 0.988 
GP PH 0.212 0.001 

V2 DON DTH 0.237 0 
DON PH -0.156 0.012 
DON GP -0.141 0.023 
GP DTH -0.235 0 
GP PH -0.062 0.319 

V3 DON DTH 0.179 0.007 
DON PH -0.17 0.01 
DON GP -0.488 0 
GP DTH -0.165 0.013 
GP PH 0.02 0.767 

 

3.2. Prediction ability 

3.2.1. Training population 

A significance test of the PA of DON and GP in the training popula�on using the Bayesian ridge 

regression (BRR), BayesA, BayesB, BayesC and Bayesian LASSO showed no significant differences (data 

not shown). BRR were chosen as the basic model for further analysis because it assumes that most 

markers have small effect on the phenotypes which matched previous assump�ons of the 

quan�ta�ve nature of FHB resistance in oat (He et al., 2013, Bjørnstad et al., 2017).  

Predic�ons of logDON (Figure 1a) with single haplotype models showed significantly increased PA 

compared to BRR from a mean of 0.493 to 0.505, 0.509 and 0.504 with M7C-1, M9D and M12D 

respec�vely. M1C increased mean PA to 0.498 but were not significantly different from BRR, while 

M18-1 did not differ from the BRR in mean PA. For the mul�ple haplotypes models the M5HT showed 

significantly higher PA than any single haplotype model with a PA of 0.524, while M15HT showed 

significantly higher PA than M5HT with a mean of 0.545. 

Predic�ons of GP (Figure 1b) with single haplotype models showed no sta�s�cal difference in PA 

compared to BRR. For the mul�ple haplotype models M5HT showed a mean PA of 0.538 which was 

significantly higher than BRR of 0.523 while M15HT showed a mean PA of 0.558 which was 

significantly higher than M5HT. 
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Figure 6: Prediction ability of log-transformed DON values (logDON) and Germination percentage 

(GP) in the training population using 5-fold cross-validation. Each model was replicated 30 times. 

3.2.2. Validation populations 

The same models were applied to the valida�on popula�ons and the results are showed in Figure 2. 

This sec�on will highlight the notable differences between the fixed effect models and BRR. Notable 

difference here is defined as equal or bigger difference than 0.01 in PA. Some of the results were 

inconsistent across popula�ons and traits, but the main trends for the different models were the 

following. M1C did not differ notably from BRR in terms of PA, except for an increase for logDON in 

V1 and decrease for GP in V2. M7C-1 showed higher or equal PA to BRR in V1 and V3 for both logDON 

and GP, but reduced PA in V2 for both traits. M9D showed PA equal or higher than BRR for logDON 

and slightly lower for GP in all popula�ons. M12D did not show higher PA than BRR in any popula�on 

or trait. M18D-1 showed higher PA than BRR for GP in all popula�on, and no notable difference for 

logDON. M5HT showed notably higher PA for logDON in V1 and for GP in V3, but notably lower for 

logDON in V2 and V3, and for GP in V2. M15HT showed notably large decrease in PA for logDON in all 

popula�on, and in V2 and V3 for GP.  
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Figure 7: Prediction ability of log-transformed DON values (logDON) and Germination percentage 

(GP) in the three validation populations V1, V2 and V3 for the different models.  

3.3. Selections 

For each model 1/3 of the lines with lowest predicted logDON values were selected for analysis of 

phenotypes and haplotype frequencies. Addi�onally, selec�ons were done for the observed logDON 

values in order to compare genomic and phenotypic selec�on in terms of allele frequencies. 

3.3.1. Phenotypes 

The observed phenotypes of DON, GP, DTH and PH were averaged in each selec�on from the 30 

replicates of the cross-valida�on for each model and analysed for significant differences (Figure 3). 

Similarly, the observed phenotypes of the selec�ons done for each model in the valida�on 

popula�ons were compared to each other (Figure 4). 

3.3.1.1. Training population  

Of the single haplotype models only M9D showed significantly lower observed DON values than BRR 

with 0.04 ppm mean difference (Figure 3a), but it was also the only one that showed significantly 

lower DTH than BRR with 0.04 days (Figure 3c). M1C, M7C-1 and M9D showed significantly higher GP 

than BRR with mean differences of 0.1, 0.1 and 0.09 % respec�vely (Figure 3b). M12D also showed 

significantly higher PH than BRR with a mean difference of 0.18 cm (Figure 3d). Both M5HT and 

M15HT showed significantly lower DON (Figure 3a) than the M9D with a mean difference of 0.03 and 

0.04 ppm, respec�vely, but they were not significantly different from each other. M5HT showed 

significantly higher GP (Figure 3b) than any single haplotype model with 0.2 higher mean GP than 

M1C, while M15HT showed significantly higher GP than M5HT with a mean difference of 0.25. 

Neither M5HT nor M15HT were significantly different from BRR in terms of DTH (Figure 3c), but both 

showed significantly higher PH (Figure 3d) than BRR with a mean difference of 0.22 and 0.45 cm. 
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There was no significant difference between M5HT and M12D, but M15HT had significantly higher PH 

than both.  

 

 

Figure 3: Average observed phenotypes of DON (a), Germination percentage (GP; b), Days to heading (DTH; c) and Plant 

height (PH; d) in selections based on the lines with 33% lowest predicted logDON with each model in the 30 cross-validation 

replicates. 

3.3.1.2. Validation populations 

For the single haplotype models in V1 there were notably higher DON for M12D than BRR (Figure 4a), 

while the rest were at the same level as BRR. For GP there was an increase with M9D, and a slight 

decrease with M12D (Figure 4b). However, V1 showed low varia�on in GP in selec�ons with 

difference of 0.2 between the lowest and highest. In V2 there were notably lower DON (Figure 4c) 

and higher GP (Figure 4d) than BRR for M12D and M18D-1, and higher GP for M1C. In addi�on, M1C 

showed notably higher GP and M7C-1 showed lower DON. However, M7C-1 also showed notably 

lower GP. In V3 there were notably lower DON than BRR for M7C-1 and M18D-1, and higher GP for 

M1C and M9D. M18D-1 also showed notably lower GP.  

M5HT showed notably higher DON values than BRR in all popula�ons, and the lowest GP in V2 and V3 

of all the models. M15HT showed the highest DON values in all popula�ons, but notably higher GP 

than M5HT in V2 and V3. In V1, both M5HT and M15HT showed higher GP than BRR. Data for DTH 
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and PH are shown in Supplementary Figure S1 and shows that there were no notable differences for 

DTH between the models in any popula�on. Of note for PH is that M15HT selec�ons consistently 

were the shortest of the models. No models resulted in taller plants than with BRR.  

 

 

Figure 4: Average observed DON values (DON; a, c, e) and Germination percentage (GP; b, d, f) in 

selections made in Validation populations V1(a & b), V2(c & d) and V3 (e & f). Selections consist of 1/3 

of the lines with lowest predicted logDON values with each model. 

3.3.2. Allele frequency 

3.3.2.1. Total population, phenotypic selection, and genomic selection 

The frequency of the five validated resistant alleles in each popula�on (Training popula�on, V1, V2 an 

V3) were summarized from the total popula�on, from a selec�on based on observed phenotypes, 

and based on predicted phenotypes with BRR (Figure 5). There is a large difference in the ini�al 

frequencies of the resistant alleles, and the difference is consistent across the popula�ons. Allele 1C 

had a low frequency (0.19-0.28), 7C-1, 9D and 12D had medium frequency (0.41-0.5, 0.46-0.57 and 
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0.47-0.68) and 18D-1 had high frequency (0.77-0.89). In the training popula�on (Figure 5a) there was 

generally increased frequency of all alleles in phenotypic selec�ons with the highest increase in 7C-1, 

9D and 12D. BRR selec�ons had slightly higher frequency than phenotypic selec�on for all alleles.  

There were some major differences between the valida�on popula�ons (Figure 5b, c and d) in terms 

of frequency of resistant allele in response to phenotypic and genomic selec�on. Most alleles 

increased in frequency with phenotypic selec�on, except for 7C-1 in V2 and 9D in V3. BRR selec�on 

generally increased the frequency more than phenotypic selec�on except for 1C in V1 and 9D in V1 

and V2. There was notably higher increase of 1C in V1 and 9D in V2 with Phenotypic selec�on than 

the other alleles. 

 

Figure 5: Frequency (y-axis) of resistant haplotype alleles of 1C, 7C-1, 9D, 12D and 18D-1 (x-axis) in 

the total population (Blue), Phenotypic selections (red) and BRR selections (yellow) in the training 

population (a), validation population V1 (b), V2 (c) and V3 (d). Selections were made on 1/3 of the 

lines with the lowest observed (Phenotypic selection) and predicted (BRR selections) DON values. The 

frequency of BRR selection for the training population was an average across the 30 replicates of the 

cross-validation. 
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3.3.2.2. Training population 

In order to gain more insight into how the different haplotype-based models affected the targeted 

loci, the frequency of the 15 resistant alleles were calculated in each selec�on and analysed to see if 

they differed significantly compared to BRR (Table 3). For the single haplotype models there were 

significant increases in their targeted resistant alleles. Other posi�ve effects were a significant 

increase in 21D with M9D. The nega�ve effects were significant reduc�ons in 12D and 19A with M1C, 

in 20D with M9D, in 1C with M12D and in 7C-2 with M18D-1.  

For the mul�ple haplotype models there were significant increases for all five resistant alleles 

included in M5HT. In addi�on, there were a significant increase in resistant allele of 21D. There were 

significant decreases in five other haplotypes (5C-1, 6C, 7C-2, 18D-2 and 19A). For M15HT that 

included all 15 haplotypes there were significant increases in 10 resistant alleles, and a significant 

decrease in two (5C-1 and 20D), while 6C, 18D-1 and 18D-2 were not significantly different from BRR. 

R-HT M1C M7C-1 M9D M12D M18D-1 M5HT M15HT  

1C ***   **  *** *** 

 

2C       *** 
5C-1      *** *** 
5C-2       *** 
6C      **  

7C-1  ***    *** *** 
7C-2     ** *** *** 
9D   ***   *** *** 

12D **   ***  *** * 
15A       *** 

18D-1     *** ***  

18D-2      **  

19A *     *** *** 
20D   **    *** 
21D   ***   *** *** 

Figure 6:  Difference between the fixed effect models and the base model BRR in frequencies of 

resistance haplotype alleles (R-HT) within populations selected based on the 1/3 lowest predicted 

DON values. The number are rounded up to the closest second decimal, and empty cells means that 

the difference was less than 0.005. p-values < 0.05 = *, 0.01 = ** and 0.001 = ***. 
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3.3.2.3. Validation populations 

This sec�on shows the differences between the fixed effect models and BRR for the valida�on 

popula�ons in terms of frequencies of resistant alleles frequencies (Table 4). Haplotypes 2C, 5C-1 and 

18D-2 were omited from the results because the resistant allele of 2C did not show any notable 

difference from BRR with any model, 5C-1 had missing marker informa�on in all popula�ons, and the 

resistant allele of 18D-2 showed very large reduc�on for all models in V1 and V3, which obscured the 

results for the other alleles. The difference in allele frequencies between BRR and the fixed effect 

models were in general inconsistent across popula�ons and haplotypes. The single haplotype models 

did increase the frequency of their target resistant allele in selec�on for all valida�on popula�ons. In 

the M5HT the resistant alleles of 6C and 15A also increased consistently along with the five targeted 

resistant haplotype alleles, while the resistant allele of 21D decreased consistently across all 

popula�on. With M15HT there were consistent increase in frequency of the seven resistant alleles of 

1C, 5C-2, 6C, 7C-1, 7C-2, 9D and 15A. The alleles of 19A, 20D and 21D showed consistently reduced 

frequency or no difference with BRR. The alleles of 12D and 18D-1 increased in V1 and V2 but were 

reduced in V3. This coincided with the trend in V3 that 12D were reduced in all single haplotype 

models except M12D, and the same for 18D-1.  

HT M1C M7C-1 M9D M12D M18D-1 M5HT M15HT 

 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 
1C                      

5C-2                      

6C                      

7C-1                      

7C-2                      

9D                      

12D                      

15A                      

18D-1                      

19A                      

20D                      

21D                      

Scales 

                                   V1                                                                         V2                                                                                    V3 

 

Figure 7: Differences in haplotype frequencies for all 12 resistant haplotype alleles (HT) between the 

fixed effect models (M1C, M7C-1, M9D, M12D, M18D-1, M5HT & M15HT) and BRR in selections based 

on the lowest 1/3 predicted DON values in Validation population 1(V1), 2(V2) and 3(V3). The colours 

represent the size of difference for each population shown in the scale at the bottom of the diagram. 
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4. Discussion 

The genomic selec�on models that included the fixed effects of haplotypes worked as intended in the 

training popula�on and valida�on popula�ons and increased and reduced the effects of resistant and 

suscep�ble alleles respec�vely in the models. This was demonstrated by the increased frequencies of 

targeted resistant alleles in selec�ons of the lowest predicted logDON values (Table 3 and 4). The 

added effects resulted in increased PA for logDON and GP (Figure 1) as expected in the training 

popula�on as this is the same popula�on as was used for the GWAS. However, in the valida�on 

popula�on PA varied depending on the haplotype, trait, and popula�on. The following discussion will 

try to explain the poten�al reasons for the varying results. 

4.1. Quality of data analysis 

The trial sta�s�cs (Table 1) showed that the heritability of DON was rela�vely high for all popula�on 

with lowest H2 of 0.48 for V1, and highest of 0.81 for V3. Previous studies have shown large 

differences in heritability of DON between trials and years with the same material ranging from 0.28 

to 0.81 (He et al., 2013, Haikka at al., 2020). For GP heritability was low in V1 (0.19) and V2 (0.18) 

with large environmental variance for V1 and large residual variance for V2. This indicates that there 

is a large difference in variance between the loca�ons for V1, thus it would have been beter to use 

phenotypes from single environments to es�mate PA. For V2 the coefficient of variance (CV) for both 

DON and GP in V2 indicates some unknown error has occurred causing large differences between 

samples of the same varie�es in the same experiments. The trial sta�s�cs of individual experiments 

indicate that the error has occurred in both loca�ons as they both have rela�vely high coefficient of 

variance (CV) for both traits (Supplementary Table S1). As the error is present in both loca�ons and 

traits it is most likely something that affects the general disease pressure like inocula�on or 

environmental condi�ons. Addi�onally, the low heritability of GP in both loca�ons indicate that there 

was something wrong with the post-harvest GP analysis as the analysis was carried out by Graminor 

for both loca�ons. Or that some unknown factor unrelated to Fusarium has affected the GP as the 

sta�s�cs showed lower GP values in V2 than V1 even though the DON levels are almost iden�cal.  

4.2. Effect of added haplotypes on allele frequency 

One of the main goals in genomic selec�on is to get accurate predic�ons, and this is achieved through 

a model that assigns effects of markers in rela�on to observed phenotypes of the training popula�on. 

But each marker is not independent of the rest and can be inherited together due to physical linkage 

on the chromosome, family structure or due to selec�on in a breeding program (Slatkin, 2008). This 

makes the assigned effect of each marker connected to the effect of others. In this study we added 
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the effect of single QTL regions assuming they do not affect the other QTL regions. But as the 

selec�ons showed (Table 3) that the effect of other QTL regions was rela�vely reduced, in some cases 

significantly compared to the basic BRR model, like with resistant allele of 12D with M1C, and 1C with 

M12D. Two poten�al reasons for this are that; (1) there is a linkage between the resistant allele of 1C 

and non-resistant alleles of 12D and vice versa, or (2) that the effect of 12D and 1C are overes�mated 

in the BRR model, and that downregula�ng them with fixed effects of specific haplotypes contributes 

to improved accuracies. As PA is calculated as the correla�on between the predicted and observed 

phenotypes it could be argued that to achieve 100% accuracy of the models, the allele frequency in 

selec�ons should be the same with BRR as with phenotypic selec�on (Figure 5). But in selec�ons 

made with BRR all resistant alleles have higher frequency than selec�on based on observed 

phenotypes. This indicates that the basic model overes�mates the marker effects of these large effect 

QTL, increasing selec�on intensity for these regions, thus increasing gene�c gain faster than 

phenotypic selec�on. A drawback of this is that alleles can get fixated faster in the breeding material, 

or that rare alleles are lost due to gene�c dri�, both of which reduce the gene�c diversity of the 

breeding material making reducing poten�al gene�c gain in the future with the same material 

(Wientjes et al., 2023). 

4.3. Types of resistance 

Usually, the correla�on between the DON and GP (Table 2) caused the reduced DON in selec�ons to 

also show increased GP which was the case for the training popula�on (Figure 3). But in some 

instances, it did not, like for M7C-1 in V2 (Figure 4c and d) and 18D-1 in V3 (Figure 4e and f). In the 

training popula�on as well, there was a larger effect on GP with M1C than on DON, even though the 

selec�on was made for low DON (Figure 1 and 2). A last example is that M15HT showed consistently 

higher DON than M5HT in the valida�on popula�ons, but also higher GP. One explana�on to these 

inconsistencies is that there are genes that are specific to resistance to reduc�on in germina�on 

ability (Type 3), and resistance to DON accumula�on (Type 5) which has been highlighted by several 

studies in wheat (Abate et al., 2008, He et al., 2019, Aviles et al., 2020.). Similarly, studies in oat have 

iden�fied QTL specific for FHB resistance (Types 1 and 2) and resistance to DON accumula�on (He et 

al., 2013, Bjørnstad et al., 2017). It could be argued that a general FHB resistance would have similar 

effect on DON and GP which could be the case for M7C-1 as it has similar effect in the valida�on 

popula�on for both DON and GP. For 9D however it has a clear effect on DON in the valida�on 

popula�on, but no effect on GP indica�ng that it is Type 5 specific. In the GWAS study by Sørensen et 

al (2023) it was proposed that the QTL-region of 1C could be associated to the DON detoxifica�on 

genes found by Khairullina et al. (2022). A possible explana�on to the results for M1C in the training 

popula�on is that the detoxifica�on genes work within the grain itself, protec�ng the embryo from 
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damage. But if these genes only worked within the seeds, they would have limited effect on the total 

DON content as it has been shown that most of the fungus and DON is located in the husks (Brodal et 

al., 2020), and our samples are not dehulled before DON analysis. An experiment on DON content of 

dehulled vs whole samples, or an analysis that shows where the detoxifica�on genes are transcribed 

could poten�ally support this theory. Another important aspect to GP contra DON is that the 

reduc�on in GP can be affected by several other factors like heavy rainfall before harvest or other 

pathogens which could explain why there are differences between the results for DON and GP.  

4.4. Resistance vs susceptibility genes 

In some instances, the models can result in increased PA for the traits, but not significantly reduced 

DON or increased GP in selected material. This suggests that the increased PA comes from higher 

predicted DON and lower GP in the non-selected material. This is the case for both M9D in V1 and V2 

(Figure 2 and 4) and M12D in the training popula�on (Figures 1 and 2). In both cases there is a clear 

increase in frequency of the resistant allele in selec�ons without the expected effect on the 

phenotypes. This suggests that the causal QTL is not a resistance gene (R-gene), but a suscep�bility 

gene (S-gene). R-genes are o�en dominant and mainly func�on to protect the plants from specific 

pathogens. S-genes on the other hand are o�en related to other func�ons in the plants and makes 

them more compa�ble with the pathogen which increase infec�on (van Schie & Takken, 2014). The 

difference is subtle and not easy to determine. Therefore, it is not possible to determine that based 

on this study alone.  

Evidence to support this theory is found in Supplementary Figure S2 which shows that there was a 

rela�vely high frequency of suscep�ble alleles of 9D in the training popula�on (0.48) and lower in V1 

(0.09), V2 (0.2) and V3 (0.18). In both V1 and V3 BRR already reduces the frequency of these alleles 

by half in selec�ons, while there was no reduc�on in V2. This suggests that there was limited number 

of suscep�ble alleles remaining to select against with the M9D model. Resul�ng in increased 

predicted DON in non-selected lines and increased PA in total, but no notable reduc�on in DON in 

selected elite genotypes. The training popula�on had more suscep�ble alleles in the total popula�on, 

thus it showed good effect of the M9D model for both PA and DON in selec�ons. For M12D the 

frequency of the suscep�ble alleles was already very low in the training popula�on (0.12) which 

explains its low effect in the training popula�on. In the valida�on popula�on it is even lower with 

frequencies of 0, 0.03 and 0.05 in V1, V2 and V3 respec�vely which explains why there is almost no 

difference in PA for M12D in the valida�ons as no increase in the presumed resistant allele improves 

the results. S-genes are o�en targets for gene edi�ng as a simple dele�on or knock-out of these 

genes in any way would result in more resistant genotype. Edi�ng a non-resistant allele of a R-gene 
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into a resistant allele would however require knowledge of the protein it is supposed to create and 

precise altera�on of the DNA code. One way to test this hypothesis is to do a dele�on of resistant and 

suscep�ble alleles of each QTL. If the gene is a R-gene dele�on of resistant allele would cause the 

genotype to lose resistance, while dele�on of the suscep�ble allele would cause no difference in 

resistance. Opposite would be true if the gene was an S-gene. It is important however to determine 

the func�on of the S-gene to avoid unintended consequences as these o�en serves as other 

func�ons in the plant (van Schie & Takken, 2014). 

4.5. Non-random linkage 

One explana�on to why the effect of the models differed between popula�ons is that there is a non-

random linkage between the different QTL-regions due to family structure. This linkage differ 

between popula�on as each popula�on consists of several popula�ons of half-siblings from different 

crosses. Adding any assumed effects of major QTL to the model would therefor posi�vely or 

nega�vely affect other QTL they are in LD with. This linkage could result in worse predic�ons as 

demonstrated in the valida�on popula�ons (Figure 2). Several studies demonstrate the benefits of 

including fixed effects of major QTL in the predic�on models (Li et al., 2019, Kim et al., 2022) while 

others highlight that increasing effects of major QTL could come at the expense of other minor QTL 

important for durable resistance (Poland & Rutkoski 2016, Herter et al., 2019).  

Another aspect of the importance of linkage is the LD between marker and causal QTL detected in the 

GWAS could change over �me due to recombina�on of the chromosomes. This is demonstrated by 

the apparent co-segrega�on of the resistant alleles used as fixed effect and the allele on 21D in the 

training popula�on (Table 3) as it significantly increased in selec�ons when all five were included in 

the model and when only 9D was included. Contrary, in the valida�on popula�on it almost always 

decreased even when its effect was added in M15HT. This indicates that the LD between the five 

validated markers and the markers on 21D changed over �me. It is also possible that the presumed 

effects from the GWAS results are not true in the breeding popula�ons due to recombina�on within 

the QTL regions, or between the regions and the causal QTL. 

4.6. Avoidance mechanisms 

As described earlier there are several mechanisms that provide reduced symptoms of FHB through 

passive avoidance of infec�on. In this study we inves�gated the effect of DTH and PH in selected elite 

material to see if the assumed resistance affects these traits. Days to heading were not affected by 

the added effect of haplotypes, but PH were in some cases, especially for the M15HT. These effects 

were not consistent across popula�ons and could therefore be atributed to non-random linkage 
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between the markers and PH. However, it is possible that the observed increased PH in selec�ons 

from the training popula�on contributed to increased PA and reduced DON. While the consistent 

short plants observed in selec�on from the valida�on popula�ons could have contributed to the 

consistently low PA and increased DON in all three popula�ons.  

Anther extrusion (AE) is another avoidance mechanism that has been shown to heavily impact FHB 

resistance in both wheat and oat (Skinnes et al., 2010; Lu et al., 2013; Tekle et al., 2020). This trait has 

not been analysed in this study but could be a causal trait for the resistance observed. Previous 

research has shown that AE genes affect resistance to ini�al infec�on (Type 1), but not spread of 

disease (Type 2). A possible way to test the hypothesis of AE genes is to use segrega�ng popula�ons 

for the target QTL-regions and analyse them for AE and confirm the effects for FHB resistance. An 

addi�onal study of the material with point and spray inocula�on would confirm if the resistance 

shown is Type 1 resistance only.  

4.7. Gene expression 

Some of the resistant alleles do not increase in frequency a�er phenotypic selec�on for every 

popula�on (Figure 5), indica�ng that they do not affect the resistance in that specific popula�on or 

environment. And the presence of a resistance allele does not mean that the presumed resistance is 

expressed as other factors could affect it like environmental factors or transcrip�on factors. The 

environmental interac�on has been shown to impact gene expression in wheat (Munkvold et al., 

2013, Li et al., 2020) and specifically for R-genes in Arabidopsis thaliana (MacQueen and Bergelson. 

2016). But environmental factors could also heavily impact the F. graminearum fungus crea�ng 

favourable condi�ons for infec�on (Hjelkrem et al., 2022). Further, the infec�on pressure itself could 

be a factor that affects the gene expression as shown by a study on F. equiseti in wheat (Manghwar et 

al., 2021).  

Gene to gene interac�ons could also affect the expression and thereby influence the genomic 

predic�ons. Some genes work as transcrip�on factors for other genes to func�on, and it has been 

proven to be a factor in FHB resistance in wheat (Kage et al., 2017). The reduced frequency of the 

QTL-region on 21D in the valida�on popula�on, contrary to the training popula�on could indicate 

that it is a transcrip�on factor important for some of the other genes to func�on thus limi�ng their 

effect in the predic�on models. In this study each of the valida�on popula�ons were tested under 

different environmental condi�ons and disease pressures (Table 1) which limits the possibility of 

determining what factors affects the expression. Further evalua�on under controlled environments 

and transcrip�on analysis could shed light on this ques�on.   
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4.8. Evaluation and potential improvement of genomic prediction 

The accuracy of genomic predic�on is o�en limited by the heritability of the trait. Accuracy of 

genomic selec�on is therefore o�en expressed as Pearson correla�on divided by the square root of 

heritability (Estaghvirou et al., 2013). PA above heritability could indicate that the model also predicts 

part of the environmental effects or non-addi�ve effect. In a normal cross-valida�on setup the 

environmental effects are confounded in the training popula�on giving poten�ally higher PA than 

expected. This is why we included breeding popula�on as well to validate the models. However, as 

the valida�on popula�ons are tested in the same years as the training, there is expected to be some 

environmental effects captured by the model as well. A beter approach to evaluate the models 

would be to use new breeding material tested in a new environment.  

In our trials there is a rela�vely high heritability for DON (0.79) and GP (0.62) in the training 

popula�on. The ini�al PA of 0.49 for DON and 0.52 for GP with the base model showed both that the 

models worked well with PA close to what other studies have found (Haikka et al., 2020), and that PA 

had poten�al to be improved. The valida�on popula�ons also showed moderately high PA for DON 

close to the heritability in V1 and V2. For GP however there were low PA for V1 and V2, which 

matched exactly the heritability of GP measured in these popula�ons (Table 1). Higher PA were 

obtained in V3 (0.4) with the base model when higher heritability is achieved. This indicates that the 

model itself works and that high predic�on ability depends on the accuracy of phenotyping.  

The fixed effects worked as intended and gave extra weight to the targeted QTL-region and improved 

PA in the training popula�on but did not work that well in the valida�on popula�on. We propose 

three ways to improve PA based the current approach of added effects of significant markers. One is 

to differen�ate the effects of the regions as the GWAS showed that each region contributes different 

effect on resistance. A second is to use a model that includes epista�c effects which could capture the 

poten�al gene interac�on for the trait (Raffo et al., 2022). Third is to use only the QTL-regions that 

have the low LD with other known QTL regions. 

Other aspects of improving PA include the following: (1) using models that include G x E interac�on 

like “RKHS” (Hu et al., 2023) as G x E is shown to have a significant effect on DON and GP (Table 1), (2) 

use mul�-trait models that include effects of DTH and PH to improve PA (Gaire et al., 2022, Zhang et 

al., 2022) as they have shown to correlate with both DON and GP (Table 2), and (3) to increase the 

number of markers used, as the approximately 3000 markers used in this study do not necessarily 

capture all the small effect QTL in the large oat genome. All improvements men�oned above could be 

used together in a mul�-trait-mul�-environment model (Gill et al., 2021) with fixed effect of 

significant markers.  
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4.9. Recommendations for implementation 

From this study it has become evident that the effect of associated markers from a GWAS are not 

necessarily transferable into beter predic�on models in breeding popula�ons (Figure 2). This is 

contrary to most other studies that report that adding prior QTL informa�on improves PA for 

Fusarium head blight (Rutkoski et al., 2012, Zhang et al., 2021, Alemu et al., 2023). The approaches to 

incorpora�ng QTL informa�on differs and is not always directly comparable. There are four main 

points to make about incorpora�on of significant QTL as fixed effect for genomic predic�on. One is to 

analyse the known resistance QTL for non-random linkage and co-segrega�on and use markers that 

have low LD to others. This should reduce the risk of lower effects of non-targeted resistance QTL as 

has been shown in this paper (Table 3 and 4; Herter et al., 2019). A second point is to use markers 

that has a stable effect across environments, as this study has shown that some QTL have very low 

effect in certain environments (Figure 5). A third point is that markers that increase PA but do not 

increase breeding values in predicted resistant genotypes (Figure 4) could be more useful for 

discarding suscep�ble genotypes as the increased PA likely comes from reduced breeding values of 

the most suscep�ble genotypes. Finally, the markers could be specifically associated to DON or GP, 

even if they are iden�fied as associated to both in a GWAS. Thus, only markers associated to the 

specific trait should be added to the model. Further work is needed on iden�fying effec�ve markers 

for improved PA in new breeding popula�ons.     

4.10. Conclusion 

This study has shown that the resistant QTL-regions found in the training popula�on can be used to 

improve predic�on accuracy. Selec�ons of elite material based on the models showed lower DON and 

higher GP than with the base model. However, the models showed inconsistent effect in the 

valida�on popula�ons. Increasing the effects of specific QTL-regions have shown to nega�vely affect 

others, and the effect differs between popula�ons likely due to difference in linkage between the 

regions. This linkage can be posi�ve or nega�ve depending on which alleles that are linked. Normal 

genomic predic�on models show increased selec�on intensity for the five validated resistance alleles 

compared to phenotypic selec�on. The complexity of FHB resistance in oat with mul�ple small effect 

QTL, several types of resistance, high GxE interac�on, correlated traits and poten�al epista�c effects 

emphasise the need to develop more complex models in order to capture these effects. The results 

from this study will be used for implementa�on of genomic selec�on in the Norwegian breeding 

program, and the rela�vely high predic�on ability will make it possible to do selec�on in early 

genera�on with the developed models. 
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Figure S8: Average observed days to heading (DTH; a, c & e) and plant height (PH; b, d & f) in 

selecting 1/3 of the lines with lowest predicted logDON values in each model for validation population 

1 (V1; a & b), 2 (V2; c & d) and 3 (V3; e & f) 



 
 

 

Figure S9: Frequency of susceptible haplotype alleles in the training population (a) validation 

population 1 (V1; b), 2 (V2; c), and 3 (V3; d) for the total population (blue), a phenotypic selection of 

the lines with the lowest 1/3 observed DON values (red) and genomic selection of the lines with 

lowest 1/3 prediceted DON values (yellow) for the five resistant alleles of 1C, 7C-1, 9D, 12D and 18D-

1.  

 

 

 

 

 



 
 

Table S6: Trial statistics of the individual experiments (Staur 2020, Vollebekk 2020, Staur 2021 and 

Vollebekk 2021) for the traits Days to heading (DTH) DON accumulation (DON) and Germination 

percentage (GP) and plant height (PH) for Validation population 1 (V1) and 2 (V2) including broad 

sense Heritability (H2), Genotypic Variance, Residual Variance, Grand Mean, Least significant 

difference (LSD) and Coefficient of variance (CV), number of replicates (n) and Genotype significance.  

Statistic DTH DON GP PH 
V1 Staur 2020 

Heritability 0.88267822 0.50827632 0.36145419 0.69059985 
Genotype Variance 1.07389784 0.39752954 0.00053866 11.9985724 
Residual Variance 0.28154133 0.735283 0.00186599 10.7724898 
Grand Mean 43.4029165 1.97071173 0.87254165 78.2529086 
LSD 1.17779078 1.83692011 0.0984082 7.6228242 
CV 1.22250928 43.5115106 4.95072505 4.19428132 
n Replicates 2 2 2 2 
Genotype significance 0 3.0629E-07 0.00147838 1.4433E-13 

V1 Vollebekk 2020 
Heritability 0.83478904 0.50380608 0.51518223 0.50259917 
Genotype Variance 0.73632351 0.32634027 0.00210664 7.34235168 
Residual Variance 0.28926834 0.70580681 0.00398922 14.3515937 
Grand Mean 61.200823 2.58288767 0.71393834 56.2798121 
LSD 1.21185468 1.73257943 0.14525571 8.59680728 
CV 0.87880636 32.5265052 8.84674193 6.73127645 
n Replicates 2 2 2 2 
Genotype significance 0 5.2971E-06 3.1774E-06 3.9163E-06 

V2 Staur 2021 
Heritability 0.52439771 0.42859541 0.13977773 0.26766417 
Genotype Variance 1.73349733 0.50595833 8.21035216 6.78220311 
Residual Variance 3.12443783 1.34565949 101.353436 37.489635 
Grand Mean 41.8720787 2.8746064 70.4774912 92.4843173 
LSD 3.45849862 2.26970415 19.8517857 11.9800124 
CV 4.22144779 40.3542426 14.2846236 6.62045001 
n Replicates 2 2 2 2 
Genotype significance 1.4963E-10 8.4002E-07 0.10231555 0.00547889 

V2 Vollebekk 2021 
Heritability 0.88691044 0.43930933 0.21907203 0.6286097 
Genotype Variance 1.60524013 0.25968082 12.3839436 10.5761668 
Residual Variance 0.40911872 0.66565368 87.968802 12.5479745 
Grand Mean 55.9726322 1.68684502 73.9916372 81.5083026 
LSD 1.25148698 1.5963416 18.3535635 6.93088156 
CV 1.14274398 48.3669816 12.6759846 4.3459524 
n Replicates 2 2 2 2 
Genotype significance 1.8738E-65 4.1535E-07 0.01597067 2.7267E-17 
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