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Abstract: The stabilisation of soft soils using the traditional binders cement and quicklime are known
to emit large amounts of carbon dioxide. To reduce this carbon footprint, substitutes such as industrial
by-products have been thoroughly tested as viable alternatives for soil stabilisation. However, recent
research has also shown that biochar from biomass pyrolysis can in some instances have a positive
stabilisation effect and even result in a carbon-negative footprint. This paper presents a laboratory
study to investigate the stabilisation effect of five industrial by-products and four types of biochar
on three natural Norwegian soils: two clays with low and high water contents and one peat with
a very high water content. The soils and binders were characterised by their mineralogical and
chemical compositions. The biochars had varying stabilisation effects on the clays when combined
with cement, with some negative stabilisation effects, whilst the effect was very beneficial in the peat,
with a strength increase of up to 80%. The industrial by-products showed opposite results, with
beneficial effects in the clays and a strength increase of up to 150%, but negative stabilisation effects in
the peat. Correlating the mineralogical and chemical compositions to stabilisation effects was found
to be challenging.

Keywords: soil stabilisation; clay; peat; industrial by-products; biochar; shear strength; stiffness

1. Introduction

Soil stabilisation is used extensively throughout the world to improve soil charac-
teristics. One application of soil stabilisation involves the improvement of engineering
properties of thick soft soil deposits, typically referred to as deep soil stabilisation or
deep mixing, to enable the development and construction of buildings, roads, railways
and other land use. Deep soil stabilisation is performed by mixing a binder into the soil,
whereupon chemical reactions strengthen the soil matrix. Traditionally, cement (CEM)
and quicklime (QL) have been the preferred binders. However, their production is well
known to emit considerable amounts of carbon dioxide (CO2). Globally, cement produc-
tion alone contributes to approximately 8% of global anthropogenic CO2 emissions [1,2].
To the best of the authors’ knowledge, there is no estimation of the total CO2 emissions
generated from the deep soil stabilisation of soft soil deposits. However, it is safe to
assume that it is considerable.
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There are major research efforts being made across the world to decrease CO2 emis-
sions in the soil stabilisation industry as well as in the cement and concrete industries.
One way of achieving this is to substitute CEM and QL with alternative binder types
and, since society is creating large amounts of unused industrial by-products (IBPs),
these could be a potential substitute. IBPs often come in the form of ashes from the
combustion of the original waste product. In the soil stabilisation industry, research
and testing on a laboratory scale have been conducted using a wide variety of IBPs,
e.g., cement kiln dust [3–5], lime kiln dust [6,7], fly ash [8–10], bottom ash [11], gyp-
sum [12,13], ground-granulated blast-furnace slag (GGBS) [14–18] and ladle slag [12].
In addition, other binders or additives have been studied, such as biopolymers [19,20],
geopolymers [21], fibres [22], reactive magnesia [5], colloidal silica [23] and natural or
synthetic zeolites [24,25]. These studies have illustrated the potential to reduce emissions
when using IBPs. However, despite all the research efforts, it is difficult to establish a
common framework for their stabilisation effect. This might be attributed to the fact that
IBPs can differ considerably in their composition and to the high variability of soils in
terms of, e.g., grain size distribution, mineralogical composition, water content, organic
content, etc. It is, therefore, vital that studies on the stabilisation effect of different IBPs
in different countries and regions continue to be performed.

Recently, there has also been increased interest and research on the use of biochar as
an alternative binder. Biochar is manufactured by the pyrolysis of biomass, i.e., combustion
in an inert atmosphere (i.e., the absence of oxygen), resulting in a non-biodegradable
carbonaceous material with typical carbon contents exceeding 75%. It is characterised by a
high porosity and large surface area and, hence, a high water-absorption capacity [26,27],
and has several potential benefits, including soil fertility improvement and contaminant
immobilisation [28]. Recent studies have also shown that biochar in mixtures with cement
can have a positive stabilisation effect in soils [27,29–39], meaning that it can be used as
an alternative binder along with its carbon sequestration potential. Since 1.0 kg of biochar
contains a minimum of approximately 0.75 kg of carbon (C), it can sequester over ~2.7 kg
of CO2eq as no decomposition or erosion takes place in low permeable thick clay deposits.
This amount of sequestered carbon is substantial, considering that corresponding CO2eq
emissions for CEM and QL, as examples, are approximately 0.65 kg and 1.0 kg CO2eq,
respectively, per kg binder [6]. To make a CEM-biochar-based binder climate neutral,
i.e., resulting in net zero CO2eq emissions, one thus needs only to replace approximately
20–30% of the CEM with biochar.

This paper presents results from a laboratory study where five different IBPs and four
different biochars were used to stabilise three soft Norwegian soils: a soft, low-sensitive
clay from Onsøy [40], located in southern Norway; a quick clay; and a peat, both from
Tiller-Flotten [41,42], located in mid-Norway. All binders and soils were characterised by
their composition and mineralogy, and the potential for soil stabilisation was investigated
by strength and stiffness testing.

The purpose of this study was to investigate if and how the stabilisation effects of the
IBPs and biochars differed for the different soil types and whether the stabilisation effect
could be correlated to the binder and soil compositions. As few studies compare several
types of IBPs and biochars in both clay and peat, the results presented herein give new
insights into how their effectiveness can vary. This study shows that the differences can be
considerable and highlights the importance of taking both the type of binder and the type
of soil into consideration. It is believed that the results can also provide valuable guidance
for further testing.

2. Materials and Methods
2.1. Natural Soils

The soft, low-sensitive Onsøy clay was sampled from the Norwegian GeoTest Site
(NGTS) located outside of the city of Fredrikstad in southern Norway [40]. The sample
depth was approximately 5–8 m. The clay had a bulk density (ρb) of 1.5–1.6 t/m3, natural
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water content (w) of 60–80%, sensitivity of 5–9, organic content of 3–4%, plasticity index
(Ip) of 40–50%, and liquidity index (IL) of approximately 0.9–1.0. The clay content was
approximately 60–70%, the remaining being predominantly quartz silt grains.

The Tiller-Flotten quick clay was sampled from a depth of 9–13 m at the NGTS test site
outside of Trondheim, mid-Norway [41]. The quick clay had a ρb of 1.75–1.85 t/m3, w of
40–45%, sensitivity of 150–250, organic content of <1%, Ip of approximately 10–15%, and IL
of approximately 1.5–2.0. The clay content was similar to that of Onsøy, with the remaining
being mostly quartz silt grains.

The peat was sampled from a depth of 1–1.5 m at the NGTS site at Tiller-Flotten [41,42].
The peat had a w of approximately 800–1000% and a ρb close to 1.0 t/m3. The degree of
humification according to the von Post classification [43] was determined at H2–H3, i.e., a
very low degree of humification with insignificant or very slight decomposition with an
identifiable plant structure. The sampling depth was approximately 1.5 m.

2.2. Binders

A Portland cement of type CEM I 52.5 R (EN 197-1 [44]), produced by Norcem at
Brevik, near Porsgrunn, Norway, was used. The CEM I cement was chosen to avoid any
content of fly ash or slag that could interact with the biochars and IBPs.

Four different types of biochars (BCs) were used, all produced in a full-scale microwave-
assisted pyrolysis (MAP) unit with a residence time of ~20 min. The reactor temperature
was approximately 470–600 ◦C. The four biochars were as follows:

• BC1: originated from demolition wood, i.e., wood panels, furniture and composite
wood materials, which hence contained some metals and glue remains.

• BC2: originated from municipal sewage which had been sedimented to a bottom
sludge and thereafter left to decay for some time. Approximately 39 wt.% of limestone
(CaCO3) was added for hygenisation and workability before the sludge was used for
biochar production.

• BC3: originated from sewage and food waste. To speed up the sedimentation, iron
chloride (FeCl3) was added for flocculation. The bottom sludge was used to produce
the biochar.

• BC4: originated from garden waste, i.e., branches, leaves and grass, but also contained
some soil and sand.

The five types of IBPs included two types of bioashes, one paper-sludge ash and two
ladle slags:

• The bioashes were one fly ash (FA) and one bottom ash (BA) obtained from the Bergene
Holm’s combustion plant at Brandval, near Kongsvinger, Norway. This plant is a grate-
fire combustion plant where the boiler temperature is 1000–1200 ◦C. The resulting
fly and bottom ash account for approximately 10% and 90%, respectively, of the total
ash generated. The biomass consisted of a mixture of ~35–40% dry wood chips and
~60–65% bark. Bioash is mostly used for agricultural purposes [45]; however, a few
studies have also been made on soil stabilisation [46–51].

• One type of paper-sludge ash (PSA) was used, originating from the Norske Skog
factory at Skogn, mid-Norway, where paper production and recycling is performed.
A mixture of ~58% biofuel (demolition wood), ~25% deinked pulp sludge, ~14%
bio sludge and ~3% plastic/juice cartons, etc., was combusted at a temperature of
approximately 850 ◦C. In this study, fly ash from the combustion was used. PSA
has been used as an alternative binder in both mortars and concrete [52–54] and in
soil stabilisation [55–61].

• The two ladle slags originated from Celsa Steel Services, where the recycling of steel
is carried out to produce reinforcement steel bars. Both electric arc furnace slag and
steelmaking slag are generated from different stages of the melting process. The ladle
slags used herein were a mixture of these slags and were extracted from two different
locations: at the melt shop (LS1), i.e., a fresh ladle slag, and from an intermediate
repository (LS2). Since LS is cooled rather slowly, it develops a high crystallinity and
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thus possesses relatively low hydraulic reactivity compared to GGBS [62]. LS can be
alkali-activated using, e.g., sodium hydroxide, sodium silicate (‘waterglass’), QL, CEM
or reactive magnesia [63–65], albeit somewhat less effectively than GGBS [65,66]. LS
has also been used for research purposes in soil stabilisation [12,67–71].

All biochars and IBPs were ground and sieved to a <1 mm fraction and dried before
being used for soil stabilisation. Figure 1 shows the IBPs and an example of one biochar.
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slag (LS2), (d) paper sludge ash (PSA), (e) bioash (BA) and (f) bioash (FA).

2.3. Microstructural and Compositional Analyses

Water contents (w) and particle densities (ρs) were determined according to ISO 17892-1
and -3, respectively. The ρs was determined using the fluid pycnometer with moist speci-
mens. Two separate determinations were made and an average value was calculated if the
difference was <0.03 t/m3. These analyses were performed at the geotechnical laboratory
at the Norwegian Geotechnical Institute (NGI).

Specific surface area (SFA) determinations were made by the adsorption of gas and
calculated according to the Brunauer–Emmett–Teller (BET) theory [72]. The SFA analyses
were performed by Nemko Norlab in Norway.

Thermogravimetric analyses (TGA) were performed on samples dried at 105 ◦C
prior to analyses which were then, from room temperature, exposed to a temperature
increase rate of 10 ◦C/min in a nitrogen atmosphere [73,74]. The TGA was performed at
SINTEF in Norway.

X-ray fluorescence (XRF) analyses of major elements were performed using a PANa-
lytical Axios 4 kW equipped with a rhodium X-ray tube on fused glass beads. The material
was mixed with a lithium borate flux and heated to 1000 ◦C. X-ray diffraction (XRD)
analyses were made on whole rock, i.e., not sieved, and were hand-mortared prior to the
analyses. The analyses were made with a BRUKER D8 Advance using CuKα radiation
(40 kV/40 mA). Scans were acquired on a rotating disk using 2.5◦ Soller slits and a fixed
divergence slit (0.6 mm) in the range of 3 to 75◦ 2Ө with a step size of 0.02◦ 2Ө and a 1 s
count time. Mineral identifications were performed using the BRUKER Diffrac.EVA ver. 5.2
software, Crystallographic Open Database (COD) and International Centre for Diffraction
Data (ICDD) databases. Mineral quantification was conducted using Rietveld modelling
with the TOPAS 5.0 software. The XRF and XRD analyses were performed by X-ray Mineral
Services, UK.
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2.4. Geotechnical Testing

The preparation of stabilised soil specimens was performed by first remoulding the
natural clays and peat until they were visually considered homogeneous, whereupon
the dry binder mixture was added and homogenised for ~3–5 min. The soil–binder
mixtures were then moulded in plastic cylinders (diameter 54 mm; height 100 mm)
using a rodding technique, i.e., tamping or pushing a rod onto the material to minimise
the air content [75,76]. Three replicate samples from each mixture were produced
and cured for 28 days in the sealed cylinders at a room temperature of approximately
20 ◦C [77]. Unconfined compression (UC) tests were then performed with a strain
rate of ~3.7%/min. From the UC tests, the strength was interpreted as the maximum
shear stress (τmax), which is typically used in Nordic practice instead of the unconfined
compressive strength (τmax = UCS/2). Stiffness was interpreted as secant Young’s
modulus (E50) up to 50% of the peak stress.

Table 1 shows the complete laboratory strength testing programme. Based on the
results from previous research [27,29,46], different binder quantities (α) and combinations
were used for the clays and peat and for the IBPs and biochars. For the clays stabilised with
IBPs, mixtures of 50 wt.% CEM and 50 wt.% IBP were used, with a total α of 60 kg/m3. For
comparison, specimens with 100% CEM were also prepared with α of 30 and 60 kg/m3.
For clays and biochar (BC), mixtures of 33 wt.% CEM and 67 wt.% BC were prepared with
α of 150 kg/m3, i.e., 50 kg/m3 of CEM and 100 kg/m3 of BC. For comparison, specimens
with 100% CEM with α of 50 kg/m3 were prepared.

Table 1. Laboratory strength testing programme. Mixtures were designated by binder quantity of
CEM and binder quantity of biochar or IBP. For example, CEM-30/BC4-30 denotes a mixture of
30 kg of CEM and 30 kg of BC4 per m3 of natural soil, i.e., a total binder quantity of 60 kg/m3. For all
mixtures, three replicate specimens were prepared.

Binder Onsøy Clay Tiller-Flotten Clay Peat

Cement CEM I
CEM-30 CEM-30

CEM-100CEM-50 CEM-50
CEM-60 CEM-60

Sludge PSA CEM-30/PSA-30 CEM-30/PSA-30 CEM-100/PSA-200

Bioash
FA CEM-30/FA-30 CEM-30/FA-30 CEM-100/FA-200
BA CEM-30/BA-30 CEM-30/BA-30 CEM-100/BA-200

Ladle slag LS1 CEM-30/LS1-30 CEM-30/LS1-30 CEM-100/LS1-200
LS2 CEM-30/LS2-30 CEM-30/LS2-30 CEM-100/LS2-200

Biochar

BC1 CEM-50/BC1-100 CEM-50/BC1-100 CEM-100/BC1-200
BC2 CEM-50/BC2-100 CEM-50/BC2-100 CEM-100/BC2-200
BC3 CEM-50/BC3-100 CEM-50/BC3-100 CEM-100/BC3-200
BC4 CEM-50/BC4-100 CEM-50/BC4-100 CEM-100/BC4-200

For the peat specimens, all mixtures were prepared with 33 wt.% CEM and 67 wt.%
IBP or BC with a total α of 300 kg/m3. Again, for comparison, specimens with 100% CEM
with α of 100 kg/m3 were prepared.

To further investigate the stabilisation effect of the IBPs and biochars, testing ac-
cording to the ‘strength activity index’ (SAI) [78] was performed, although not using
the same recipe and geometry as specified in the ASTM standard due to available lab-
oratory equipment. Specimens with mixtures of 12.5 wt.% water, 25 wt.% dry binder
and 62.5 wt.% clean quartz sand were manufactured. One reference specimen with 100%
CEM was prepared, followed by mixtures where 20% of the CEM was replaced with the
respective IBP and biochar. Thus, in total, 10 mixtures were prepared, all moulded in
cylinders (diameter 54 mm; height 100 mm) and cured for 14 days before being subjected
to UC tests.
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3. Results
3.1. The Characterisation of Natural Soils and Binders

Results from the w, ρs and SFA determinations are shown in Table 2. The w of the
Tiller-Flotten quick clay (42%) was lower than that of the Onsøy clay (73%); however, the
SFA was similar for both clays. The IBPs and biochars exhibited a large variation in w,
although all were dried prior to being mixed with the natural soils. The PSA, BA, LS1 and
BC2 had a w ≈ 0% (Table 2). The biochars had varying w, ρs and SFA. The high SFA of the
biochars BC1, BC2 and BC3 was expected [26,27].

Table 2. Results of water content, particle density and specific surface area (SFA) determinations.
Note that the water contents for the IBPs and biochars were determined after receiving the binders in
the laboratory. Before mixing with the soil, all IBPs and biochars were dried.

Material Water Content
[%]

Particle Density
[t/m3]

SFA
[m2/g]

Natural soils
Tiller-Flotten quick clay 42 2.85 23.26

Tiller-Flotten peat 886 ~1.45 1.28
Onsøy clay 73 2.7 25.24

Cement CEM I ~0 2.55 1.54

Sludge PSA ~0 2.68 3.9

Bioash
FA 42.5 2.85 3.0
BA ~0 2.69 0.5

Ladle slag LS1 ~0 3.02 0.8
LS2 19.8 2.99 11.0

Biochar

BC1 98.4 1.61 38.5
BC2 ~0 2.44 54.8
BC3 35.5 2.34 51.3
BC4 85.3 1.67 5.3

The results of the compositional (XRF) and phase (XRD) analyses are shown in
Tables 3–5. In general, the compositions were similar to those of previously published
results. For example, the two ladle slags had high contents of SiO2 and CaO [65,79]. The
PSA also showed similar compositions as those reported in the literature, albeit with
somewhat lower CaO contents [53]. The BC2 was particularly high in CaO because of the
addition of limestone to the sludge prior to pyrolysis. Similarly, the BC3 contained a high
amount of Fe2O3 because of the addition of iron chloride in the sedimentation process.
This also resulted in higher particle densities compared to BC1 and BC4 (Table 2).

Bassanite (Ca(SO4) • 0.5H2O) was identified in the CEM I sample at a concentration
of 7.2% (Table 5). Bassanite was unexpected, but the chemical composition favoured the
phase with sulphur and calcium at reasonable levels (Table 3). It was expected to find C3A
(3CaO • Al2O3), a common constituent in cement, but no compelling evidence was present
in the diffractograms. The high amorphous content (Table 5) made it difficult to argue for
an aluminium-containing phase (C2A) instead of a calcium–sulphate phase.

Results from the TGA for the natural soils are plotted in Figure 2, together with their
respective derivative differential thermogravimetry (DTG) values. The clays displayed
DTG peaks at approximately 480 ◦C for the Onsøy clay and 590 ◦C and 670 ◦C for the
Tiller-Flotten clay, corresponding to the dehydroxylation of clay minerals such as illite
and chlorite. The Tiller-Flotten clay also contained 2.1% calcite (Table 4), which was most
likely reflected by the peak at approximately 590 ◦C. The TGA on peat naturally exhibited
a high weight loss due to the high organic content, as could also be observed concerning
the high LOI and amorphous contents in the XRF and XRD analyses, respectively. Overall,
the results agree with both XRF and XRD as well as previous studies [40,41].
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Table 3. Results of major element X-ray fluorescence analyses (XRF). All values in per cent. ND = not
determined as abundance was below the detection limit.

Material Al2O3 SiO2 CaO MgO SO3 K2O Fe2O3 Na2O LOI

Natural soils
Tiller-Flotten quick clay 16.97 51.04 3.22 5.86 0.02 4.05 9.28 2.01 5.6

Tiller-Flotten peat 1.17 1.28 0.24 0.23 <0.01 0.10 0.38 0.03 96.4
Onsøy clay 17.55 53.18 1.00 3.38 0.02 4.79 8.38 2.35 7.5

Cement CEM I 4.58 18.79 61.05 2.40 3.94 0.87 3.30 0,34 2.6

Sludge PSA 6.8 18.1 42.8 2.8 6.3 0.5 3.5 ND 16.3

Bioash
FA 2.2 4.3 36.5 3.9 2.2 7.4 0.4 ND 35.2
BA 3.4 10.9 57.2 4.8 1.2 3.5 1.3 ND 8.0

Ladle slag LS1 6.6 33.2 47.1 7.1 3.2 ND 1.8 ND 0.0
LS2 6.9 25.5 43.7 7.5 1.7 ND 3.2 ND 9.7

Biochar

BC1 1.3 3.2 3.2 ND 0.7 0.5 0.8 ND 87.1
BC2 8.2 9.5 32.8 0.8 2.2 0.3 6.3 ND 32.2
BC3 10.1 16.5 4.1 0.4 2.8 0.7 24.9 ND 32.4
BC4 2.9 12.2 4.7 0.4 0.5 1.1 2.3 ND 74.5

Table 4. Results of whole rock X-ray diffraction analyses (XRD) of natural soils, showing clay minerals
in crystalline phase and amorphous phase separately. All values in per cent.

Material Illite + Mica Chlorite Quartz K-Feldspar Plagioclase Amphibole Calcite Others 1 Amorphous

Natural soils

Tiller-Flotten
quick clay 30.5 14.3 13.2 5.6 17.7 7.3 2.1 - 9.3

Tiller-Flotten peat 1.2 - 0.3 - - - - - 98.6
Onsøy clay 30.2 10.9 14.3 5.3 11.6 2.5 - 0.7 24.6

1 Onsøy clay: halite (0.6%) and pyrite (0.1%).

Table 5. Results of X-ray diffraction analyses (XRD) of cement and industrial by-products, showing
minerals in crystalline phase and amorphous separately. All values in per cent.

Material C2S 2 C3S 3 C4AF 4 Calcite Portlandite Quartz Merwinite CaO-Lime Others 1 Amorphous

Cement CEM I 8.1 47.4 10.2 - - - - - 7.2 27.2

Sludge PSA - - - 19.4 2.3 12.9 13.7 4.8 4.8 42.2

Bioash
FA - - - 48.5 3.8 - - - 13.1 32.5
BA - - 13.3 0.1 6.9 - - 16.0 3.8 59.9

Ladle slag LS1 - - - - - - 20.5 - 42.3 37.2
LS2 - - - - 4.8 - 11.7 - 24.1 59.4

Biochar

BC1 - - - 1.3 - 0.6 - - 0.6 97.5
BC2 - - - 35.3 - 3.1 - - 6.6 55.0
BC3 - - - - - 6.4 - - 10.0 83.7
BC4 - - - 2.6 - 7.5 - - 11.1 78.9

1 CEM I: bassanite (7.2%). PSA: anhydrite (3.7%), rutile (1.1%). FA: fluorapatite (8.3%), arcanite (2.7%), thenardite
(1.3%), hematite (0.8%). BA: magnesite (1.4%), periclase (2.4%). LS1: Calcio-olivine (25.9%), larnite (1.2%),
gehlenite (9.3%), clinoenstatite (5.9%). LS2: calcio-olivine (18.9%), gehlenite (2.7%), zeolite (2.5%). BC1: rutile
(0.6%). BC2: illite+mica (2.4%), K-feldspar (1.6%), plagioclase (2.6%). BC3: K-feldspar (2.8%), plagioclase (4.3%),
magnetite (2.9%). BC4: illite+mica (1.7%), K-feldspar (3.7%), plagioclase (4.8%), amphibole (0.8%), dolomite (0.1%).
2 C2S = di-calcium silicate (belite), 2CaOSiO2. 3 C3S = tri-calcium silicate (alite), 3CaOSiO2. 4 C4AF = tetra-calcium
alumino ferrite (felite), 4CaOAl2O3 Fe2O3.

For the Tiller-Flotten peat, a DTG peak was observed between temperatures of
220–350 ◦C, caused by the dehydration of the organic content in the peat. A high weight
loss in this temperature range indicated that the peat had a low degree of humification,
e.g., a large number of intact fibres and leaves [73], which was coherent with the von
Post classification of H2-H3. The TGA further showed a continuous weight loss at higher
temperatures, which is typical for peat due to its rather complex composition [80].
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TGA and DTG results for the CEM, IBPs and biochars are shown in Figure 3.
The FA and LS2, in particular, had a high weight loss in the temperature range of
approximately 40–120 ◦C as the free and adsorbed water evaporated, in line with the
high water content determinations. The BA and LS2 showed additional weight loss at
temperatures of 380–480 ◦C, i.e., dehydration of Ca(OH)2. These also had the highest
content of portlandite, as shown by the XRD analyses. At temperatures of 700–800 ◦C,
the FA and PSA exhibited weight loss due to the decomposition of CaCO3. Again, this
was observed in the XRD analyses with high calcite contents. Two outlying results
were identified: a weight increase for the PSA at temperatures of 380–630 ◦C and for
LS1 at temperatures of 900–1050 ◦C. A possible reason for this might be baseline drift
during the TGA tests; however, despite this, it should be of no particular relevance to
the stabilisation effect of the binders. In general, the TGA and DTG analyses of the
IBPs were similar to those found in the literature [54,61,65,69,81].

The TGA and DTG results for the biochar showed similar characteristics as those
for the peat, i.e., a gradual weight loss over a large temperature range. This was ex-
pected since they had relatively similar compositions, as observed in the XRF analyses.
One exception was the BC2, which exhibited a DTG peak at temperatures of 700–800 ◦C,
i.e., decomposition of the CaCO3 due to the high calcite content, as was observed in
the XRD analysis.
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3.2. Stabilisation Effect

Figure 4 shows results from the UC tests, i.e., strength and stiffness for the stabilised
specimens cured at 28 days. The stabilised Onsøy clay (see Figure 4a) obtained τmax values
ranging between 50 and 100 kPa, except for CEM as a single binder with α of 60 kg/m3,
i.e., CEM-60, which reached almost 200 kPa. Adding 100 kg/m3 of biochar had varying
stabilisation effects. Biochars BC2 and BC3 had negative stabilisation effects on the strength
development, whilst BC1 and BC4 had positive stabilisation effects. The same differences
were also observed for E50 (see Figure 4b). The stabilisation effect of adding the calcium-
based IBPs also varied. However, all IBPs had positive stabilisation effects with increased
strength. The PSA and BA in particular seemed to give a relatively high strength and
stiffness contribution.

The Tiller-Flotten clay (see Figure 4c,d) showed a considerably greater strength de-
velopment, where τmax ranged from just below 200 kPa up to approximately 550 kPa.
However, for the Tiller-Flotten clay, all biochars had a negative stabilisation effect, although
to a lesser degree for BC1 and BC4. For the IBPs, the same pattern as that for the Onsøy
clay was observed, i.e., the PSA and BA had the highest stabilisation effect.

The results for the stabilised peat are shown in Figure 4e,f. All biochars, especially
BC1 and BC4, had a positive stabilisation effect with an increased τmax compared to CEM
as a single binder. The effect of adding IBPs, however, reduced the strength considerably,
except for LS1 and LS2. The same pattern was obtained for stiffness E50.

The average relationships between stiffness E50 and strength τmax, often referred
to as the rigidity index, are plotted in Figure 5. For the clays, the ratio E50/τmax was
generally between 200 and 400, equivalent to E50/UCS between ~100 and ~200, which is
in line with other studies [29,82,83]. The CEM and PSA stabilised specimens deviated
from this (CEM-30/PSA-30), where the ratio E50/τmax was ~90, i.e., considerably lower
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than that for the other IBPs. It was further observed that specimens stabilised with
biochar in general had a lower ratio E50/τmax compared to CEM as a single binder
and CEM combined with IBPs. This implies that stabilisation with biochar improves
stiffness to a lesser degree than strength. For the peat specimens, the ratio E50/τmax
varied between ~40 and ~100, independent of IBP or biochar, in line with previous
studies on biochar in peat [27]; however, there was also an exceptionally low ratio for
the CEM-PSA-specimen, where E50/τmax was ~13.
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Figure 5. Relationship between shear strength (τmax) and stiffness Youngs’ modulus (E50 ). Average
values for the three replicate specimens for each mixture. Points denoted ‘w/CEM and IBP’ show
mixtures with both CEM as a single binder and CEM and IBP in combination.

The results from the strength activity index (SAI) are shown in Figure 6. All biochars
and IBPs reduced the strength but to various degrees, ranging from ~70% reduced strength
for BC4, BA and FA to ~90% reduced strength for BC3. On average, the strength reduction
was 81% for the biochars compared to 73% for the IBPs. This difference was very much
affected by the low reduction for BC3 (93%). It should, however, be noted that the variation
for each mixture was relatively large, as shown by the error bars.
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4. Discussion
4.1. Stabilisation Effect for Different Binders in Clays

To further analyse the comparative stabilisation effects of biochars and IBPs, the
relative strengths for both the Onsøy and the Tiller-Flotten clays when the biochars and
IBPs were added to CEM are plotted in Figure 7. It was observed that most of the biochars
had a negative effect on strength development (see Figure 7a), apart from BC1 and BC4 in
the Onsøy clay, where the strength increase was ~20–40%. Notably, BC1 and BC4 also had
the least negative effect in the Tiller-Flotten clay, where the strength only decreased ~15%.
The largest negative effect was observed for BC2, where the strength in the Tiller-Flotten
clay decreased by a considerable ~65%.
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These results indicate that the use of biochar in the stabilisation of clays results in
relatively few benefits, which can be expected since it does not contain any calcium-based
cementitious properties. However, previous tests have revealed positive stabilisation
effects on the Tiller-Flotten clay [29], although with a different type of biochar. Notably, the
stabilisation effect of biochar in soils has been observed to be highly dependent on the type
of biochar and its properties such as SFA, water content and grain size distribution, and the
resulting stabilisation effect thus varies greatly [37,84].

Research on mortars, concrete and asphalt has also shown that biochar can be
beneficial as a substitution or additive, although negative effects also have been re-
ported [85–89]. In those cases where the biochar has shown positive effects, this has
mostly been attributed to the water retention properties of biochar. This reduces water
evaporation during curing, reduces microcracking and provides a continuous source
of water for the cement hydration occurring over time [85,86]. In addition, the microp-
ores of the biochar can provide space for the cementitious compounds resulting from
pozzolanic reactions [90,91]. Whether a positive or negative effect is obtained depends
on the biochar content in relation to the cement content, the water saturation of biochar
prior to mixing and the grain size distribution. Generally, finer-grained and pre-soaked
biochar is preferred in cement mortar mixtures [38]. Typically, positive effects have been
reported for biochar contents up to ~2–3%, beyond which, a negative effect is often
observed, especially if the content is over ~10% [88,92].

How these findings translate to soil stabilisation has thus far not been properly in-
vestigated. As clays typically have a large amount of water readily available for cement
hydration, the potential benefits from water retention properties might be lower compared
to those from mortars and cement. On the other hand, biochar could enable densification
in clays with high porosity and, thus, both the initial porosity and amount of biochar per
unit volume of clay would affect the stabilisation effect. Previous tests on soils have shown
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that an optimal amount of biochar can be found [29,38], which should be studied further
with the soils used herein.

Another important parameter that highly affects the stabilisation effect is the binder
uniformity, i.e., the distribution of binder in the soil that is obtained after mixing. The
higher binder uniformity of calcium-based binders such as CEM and QL was observed to
be beneficial [93]. How these results apply to biochar is not known and, although it could
be assumed to have the same effect, this effect must be studied further.

Based on simple linear regression analyses, there appeared to be no correlations
between the stabilisation effect and the mineralogical or chemical oxide compositions
of the biochars as shown by the XRD and XRF analyses. For example, BC2 contained a
considerable amount of CaO in a calcite mineral structure, originating from the addition
of limestone to the sludge prior to pyrolysis. However, this had no stabilisation effect
since the CaO was not available for pozzolanic reactions with the CEM. This was also
observed previously when QL and calcite (CaCO3) were used for the stabilisation of
Tiller-Flotten clay [6].

The stabilisation effects of the calcium-based IBPs are shown in Figure 7b. Most of the
IBPs had a positive stabilisation effect. However, there are a few exceptions where no effect
was observed, specifically for FA, LS1 and LS2. Ladle slags in general are known for their
relatively low effectiveness and often need to be alkali-activated [65,94], which appears not
to have been achieved with the added quantity of CEM. The BA and PSA performed well,
with an increased strength of 50% to 150%. This indicates that the CaO in these binders
was available for chemical reactions with pozzolans in the binder or soil. In fact, CaO in
free-form in the BA and PSA at 16% and 4.8%, respectively, was also noted by the XRD
analyses (Table 5). However, these contents were not directly proportional to the relative
strength increase.

Typically, for calcium-based products such as the ashes and ladle slags used herein,
the CaO-content is correlated to the amount of cementitious products obtained in the
soil–binder mixture. This, however, depends on the amount of CaO available for chemical
reactions with the soil particles, also referred to as the active or free CaO content. This
should be considered in further work.

4.2. The Stabilisation Effect for Different Binders in Peat

Figure 8 shows the stabilisation effect of the biochars and IBPs in the peat. Here,
biochar was observed to be far more effective compared to the IBPs, with a strength
increase of up to 80% for BC4. These results are similar to previous findings on peat
stabilisation [27,31,95]. The stabilisation effect can possibly be attributed to the water
retention (high absorption capacity) of the biochar and densification [32,96]. This
could be a larger effect in peat with a very high water content and high porosity
compared to clays with considerably lower porosity, as indicated by the water content
determinations (Table 2).

In contrast to their positive stabilisation effect on clay, most of the IBPs had a negative
effect on the strength of the peat. Adding PSA, FA and BA to CEM yielded strengths that
were only ~20–50% of that for CEM as a single binder. The reason for this is not known. LS1
and LS2 had a lesser negative effect, with equivalent values of ~88–98%. Here, a possible
explanation is that the ladle slags were activated by the higher amount of CEM than that in
the clays and hence gave a cementitious contribution by pozzolanic reactions, similar to
the effects of GGBS [13,97].

4.3. The Strength Difference between the Onsøy and Tiller-Flotten Clays

The absolute strength difference between the Onsøy and Tiller-Flotten clays was
noticeable. The strength values for the Tiller-Flotten clay were ~3–6 times higher than
those for the Onsøy clay and ~3.7 times higher on average. For CEM as a single binder,
the strength was ~2.9 times higher. It was noted that the deviations were similar
between the two clays, which might reflect the fact that the specimen quality was



Appl. Sci. 2023, 13, 9048 14 of 19

similar for both clays. The strength difference is, therefore, believed not to be caused
by, for example, differences in specimen quality. Further, based on previous research
on similar types of clays, these differences seem too large to be explained by differences
in, for example, the organic content alone, which was 3–4% for the Onsøy clay and
<1% for the Tiller-Flotten clay [13,83]. Previous research has also shown that a lower
liquidity index could imply a higher strength [98], but the opposite effect was observed
herein as the liquidity indices were approximately 0.9–1.0 and 1.5–2.0 for the Onsøy
and Tiller-Flotten clays, respectively.
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Moreover, the difference cannot be explained by the differences in the water content
relative to the binder quantity. This is typically analysed by using the water–binder
ratio, i.e., the weight ratio between the water in the soil to the total α added during
stabilisation [6,99,100]. With a w of ~42% and ~73% for the Tiller-Flotten and Onsøy clays,
respectively, this corresponds to a content of water of approximately 530 l/m3 and 660 l/m3,
respectively, which results in water–binder ratios of ~9 and ~11, respectively. Previous
research on water–binder ratios vs. strength testing on Norwegian soils [6,82] indicates
that the strength difference should only be approximately 20%, i.e., this does not explain
the large strength differences between the two clays studied herein.

The strength differences between the two clays were also difficult to assess based
on the compositional analyses. In addition, since previous studies have shown large
strength differences between stabilised clays from different geographical regions without a
satisfactory explanation [6,82,83,101], there is a need for further studies on this topic.

5. Conclusions

Four biochars (BCs) and five industrial by-products (IBPs) were characterised and
tested for stabilisation effects on three natural Norwegian soils: the Onsøy and Tiller-Flotten
clays and peat. The following conclusions were made:

• Two of the biochars (BC1 and BC4) had beneficial stabilisation effects (i.e., strength
and stiffness) on the Onsøy clay with a relatively high water content (~73%). All four
biochars had negative stabilisation effects on the Tiller-Flotten clay with a relatively
low water content (~42%); however, BC1 and BC4 had the least negative effect.
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• Almost all of the IBPs had positive stabilisation effects on the two clays. The greatest
effect was observed with the paper sludge ash (PSA) and bottom ash (BA). The ladle
slags (LS1 and LS2) had a negligible effect on strength and stiffness development.

• Three biochars (BC1, BC3 and BC4) had a positive stabilisation effect on the peat.
Three IBPs had negative stabilisation effects, whilst the ladle slags LS1 and LS2 again
had a negligible effect.

• The stiffness-to-strength ratios (E50/τmax) of most of the mixtures ranged between 200
and 400, except for all peat samples, which had E50/τmax values of approximately 50.
The low E50/τmax values also applied to some mixtures with biochar and all PSA-
stabilised specimens.

The varying results in strength for the biochars are believed to depend on the biochar
characteristics such as grain size and water absorption capacity in relation to the porosity
and water content of the soil. The results indicate that the stabilisation effect of the biochars
increases with increasing water content of the soil; however, this has not been investigated
in detail. Further research on biochar in soft soil stabilisation is needed as the climate
mitigation potential is considerable.

No apparent correlation between stabilisation effect and the chemical composition
of the biochars or IBPs was observed. This highlights the difficulty in predicting strength
development based on chemical and mineralogical compositions alone and stresses the
importance of performing laboratory testing.

The need for further studies is noted. In particular, further research should investigate
the observed large strength and stiffness differences when stabilising different clays. In
addition, further studies are needed to explain the effects of, for example, the grain size
distribution of IBPs and biochars and the effects of the binder uniformity of biochar on the
stabilisation effect.
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