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In pig production, the production animals are generally three- or four-way
crossbreeds. Reliable information regarding the breed of origin of slaughtered
pigs is useful, even a prerequisite, for a number of purposes, e.g., evaluating
potential breed effects on carcass grading. Genetic data from slaughtered pigs can
easily be extracted and used for crossbreed classification. In the current study, four
classification methods, namely, random forest (RF), ADMIXTURE, partial least
squares regression (PLSR), and partial least squares together with quadratic
discriminant analysis (PLS-QDA) were evaluated on simulated (n = 7,500)
genomic data of crossbreeds. The derivation of the theory behind PLS-QDA is
a major part of the current study, whereas RF and ADMIXTURE are known and
well-described in the literature. Classification success (CS) rate, square loss (SL),
and Kullback–Leibler (KL) divergence loss for the simulated data were used to
compare methods. Overall, PLS-QDA performed best with 99%/0.0018/0.002
(CS/SL/KL) vs. 97%/0.0084/0.051, 97%/0.0087/0.0623, and 17%/0.068/0.39 for
PLSR, ADMIXTURE, and RF, respectively. PLS-QDA and ADMIXTURE, as the most
relevant methods, were used on a real dataset (n = 1,013) from Norway where the
two largest classes contained 532 and 192 (PLS-QDA), and 531 and 193
(ADMIXTURE) individuals, respectively. These two classes were expected to be
dominating a priori. The Bayesian nature of PLS-QDA enables inclusion of
desirable features such as a separate class “unknown breed combination” and
informative priors for crossbreeds, making this a preferable method for the
classification of breed combination in the industry.
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1 Introduction

Several meat production livestock systems rely on crossbred animals. In pig production,
the production animals are generally three- or four-way crossbreeds (CBs). There are several
reasons for using CB in meat production, in particular to benefit from heterosis and breed
complementarity and to be flexible in creating different products for different markets
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(Smith, 1964; Dickerson, 1973; Sellier, 1976). In contrast to meat
production from other domestic animals, such as cattle, breed
information for production pigs is not logged through the
production chain, and hence, no, or at least incomplete, controls
exist for the breed combination of individual slaughtered pigs.

Verification of a true CB combination is beneficial at different
steps of the pig production chain. For instance, having control of CB
breed origin will allow for the inclusion of CB performance from
different sources after verification in the selection program of a pig
breeding company. Including CB performance is desirable for
achieving a sizable genetic progress for traits showing a genetic
correlation between PB performance and CB performance that is
lower than unity (Wientjes and Calus, 2017). Breed and
crossbreeding also have a significant effect on meat quality traits
(Kim et al., 2020) and the distribution of undesired mutations like
halothane and Rendement Napole genes (Hamilton et al., 2000). For
these reasons, verification of the breed of origin will be valuable for
abattoirs and retailers. Finally, it is natural to assume that breed
origin might be an unobserved nuisance factor for carcass grading;
see Gangsei et al. (2018) for an elaborating discussion. If CB
combinations were known for dissected carcasses, it would
facilitate the evaluation of potential biases regarding the grading
of different breed combinations.

The problem addressed in the current study is the classification
of breed combination for individuals in the CB population based on
genetic data, i.e., single-nucleotide polymorphisms (SNPs) from a
50-K SNP chip. Such genomic data have become cheaper and more
accessible due to rapid developments in technology, and the number
of application areas has exploded within different parts of the
natural sciences, including ancestry classification tasks.

Most methods used to infer breed combinations in pig
populations with genomic data were originally developed for
inferring human ancestry. ADMIXTURE (Alexander et al., 2009)
is one of the most popular methods used to classify individuals with
an unknown ancestry into discrete populations and was developed
for human populations but has been used extensively in pigs to trace
commercial (Huang et al., 2014) or indigenous pig breeds (Mujibi
et al., 2018; Dadousis et al., 2022; Kim et al., 2022; Yin et al., 2023).
Principal component-based algorithms for determining the ancestry
have also been developed, such as PCAdmix (Brisbin et al., 2012),
and applied in pig populations (Schleimer et al., 2022). As pig
breeding is far from human genetics, new methods are needed for
better classification. An approach has been developed to assign
alleles in three-way CB pigs to their PB of origin; the approach has
high accuracy, but as it infers local ancestry, it is highly
computationally demanding (Sevillano et al., 2016; Vandenplas
et al., 2016). Another study tried using random forest for this
purpose in pigs; however, the method did not accurately estimate
breed composition for the breeds in question with the available
markers (Chinchilla-Vargas et al., 2021). Recently, an interesting
study was published showing the advantage of partial least squares
regression (PLSR) and partial least square–discriminant analysis
(PLS-DA) for global ancestry identification of pig breeds (Miao
et al., 2023). The results showed that a wide range of breeds can be
discriminated using these methods and that alternatives to human-
developed methods can be beneficial for the pig industry. However,
the study was restricted to the classification of PBs and treated CBs
as similar to unknown breeds.

When assuming that grandparents are PB animals from a set of
known PBs with known origin, i.e., breed, there will always be a
possibility that CB individuals might have one or more grandparents
from breeds outside the set with predefined known breeds. Ideally,
classification methods should be able to identify such individuals
and classify them as an “unknown breed combination.” All the
aforementioned methods, except PLS-DA, lack the ability to
incorporate such a feature, and further elaboration is needed to
achieve this objective.

The novelty of the present study is to derive the theoretical basis
for partial least squares with quadratic discriminant analysis (PLS-
QDA) (Boulesteix, 2004; Hastie et al., 2009) used for CB
classification based on the following steps: i) PLS was used as a
replacement for PCA/MDS as the primary dimension reduction
method for SNP data, ii) additional variance was incorporated by
modeling the proportion of DNA inherited from each grandparent
as a random variable, and iii) the Bayesian nature of QDA was
utilized to incorporate informative priors for CB classes and the
possibility to include a class “unknown breed origin”. The variance
in proportion of inherited DNA was combined with breed-specific
variances for PBs in order to achieve CB-specific covariance matrices
for PLS components. CB-specific covariance matrices enable the use
of QDA as a replacement for the more common linear discriminant
analysis (LDA). An additional asset facilitated by PLS-QDA is
visualization of the behavior of decision boundaries in a low (<3)
dimensional space.

The overall aim of this study is to evaluate the crossbreed
classification of commercial finisher pigs based on genomic data
from a 50-K (Illumina) SNP chip. Two other well-known
classification methods, random forest (RF) and ADMIXTURE,
were compared with PLSR and PLS-QDA.

2 Materials and methods

2.1 Materials

2.1.1 Genomic data
The genotypes used in this study are data collected from the pig

breeding companies Norsvin (Norway) and Topigs Norsvin (the
Netherlands). Animals were genotyped using a custom GeneSeek
50-K (Illumina) SNP chip (Lincoln, NE, Unites States). Of these,
23,070 SNPs are used routinely by Topigs Norsvin and constitute the
raw SNP data in the current study. Based on PB animals (n = 4,014),
it was observed that from five different PBs (see details in the
following section), the minimum call rate was 0.997 and minor allele
frequency (MAF) was 0.045, well inside the limits used by Tusell
et al. (2020) at 0.9 for call rate and 0.01 for MAF.

For each SNP, the most frequent allele in 4,014 PBs was
identified. SNPs were coded into numeric vectors with zero for
the homozygous genotype of the most frequent allele at the SNP in
question, one for the heterozygote, and two for the homozygous
genotype of the least frequent allele.

Data from five PBs (n = 4,014) are used as training data for all
models. They also constitute the basis for data simulation; see the
paragraphs in the following section for details. PBs are Landrace
(abbreviation “L,” n = 1,000), Large White (“W,” n = 1,000), Duroc
(“D,” n = 1,000), and Hampshire (“H,” n = 14), which are
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dominating PBs in the Norwegian pig population. For the
exploration of uncertainty measures and generalizations of the
methods, a fifth breed, Pietrain (“P,” n = 1,000), not present in
Norway, was incorporated into the study. In the present study, the
term “breed” is used extensively. In practice, the PBs described
previously might be viewed as sub populations/lines primarily
present in the Norwegian pig population. In addition to the SNP
data from PB individuals, SNP data from 1,013 slaughter pigs with
unknown breed origin were used to examine model behavior.

2.1.2 Breeds and breed combinations
The focus of this study is to classify the breed combinations of

founders (F0 generation) observed in the commercial finisher pigs
(F2 generation) based on genotypes from the F2 generation. It is
assumed that all F0 individuals are PB.

When q PBs are present, there are q4 (625 for q = 5 and 256 for
q = 4) different unique breed permutations in the F2 generation. For
example, “LWDD” indicates L and W as the grandfather and
grandmother of the maternal line, respectively, and D as the
grandfather and grandmother at the paternal line, which is the
most common Norwegian finisher breed combination. The pure
breeds Duroc and Hampshire are typically the paternal line for
production pigs.

The q4 unique permutations constitute a total of ncomb � ( q + 4 − 1
4

)
(70 for q = 5 and 35 for q = 4) unique breed combinations when the
sequence of grandparents is not taken into account. Combinations
are given with letters in descending alphabetical order. For example,
the combination “DDLL” contains the permutations {“LLDD,”
“LDLD,” “LDDL,” “DDLL,” “DLLD,” “DLDL”}, etc.

2.2 Simulation of SNP data for crossbreeds

In order to test the accuracy of classification methods, CB data
with a known breed origin form a prerequisite. For the current study,
such data were nonexistent, and data simulation was used to obtain
relevant test datasets for the methods.

SNP data from the PBs (n = 4,014) were used as the input for the
simulation. The output was combinations of the SNP data in
accordance with known CB combinations. One simulated test set,
TestP−, originates from PBs omitting Pietrain. The other test set,
TestP+, consists of breed combinations with at least one Pietrain
grandparent. For each CB combination, we performed
100 simulations, resulting in 3,500 simulations for both test sets,
TestP− and TestP+.

Simulations were conducted using R packages and functions
described in Vigeland (2021). The first step in the simulation
procedure was to simulate an identical by descent (IBD) pattern
along the genome for an individual in the F2 generation, as shown in
Figure 1, based on a pedigree connecting the F0 and F2 generations.
An IBD pattern shows how different parts of an individual’s genome
are inherited through descent from previous generations, from
grandparents in the present study, using information on how the
chromosomes recombine. The recombination is a stochastic process
along the genome. A prerequisite for simulation of IBD patterns is a
recombination map which relates the cumulative genetic distance, in
centimorgans, to the cumulative physical distance, in bases, along
the genome. The genetic map provided by Tortereau et al. (2012)
was used as the basis for the recombination map.

The second step was to sample SNP data for the F2 individual,
conditional on the simulated IBD pattern and the CB combination
from the individual in question. Thus, the F0 generation was
randomly selected among the 4,014 PB individuals, and then,
their allele data (nucleotide bases A, C, T, and G) were
transferred to the F2 individual, in accordance with the simulated
IBD pattern for each SNP. Consequently, the simulated data are
different combinations of the original allele data from the
4,014 PB pigs.

2.3 Evaluation of classification results

The typical goal of classification is to assign an observation to
one out of a distinct set of classes. A problem arises when the goal is
to classify in between such distinct classes. We will regard the CB
pigs as such fuzzy sets (Zadeh, 1965), i.e., the class of CB pigs is
regarded as a continuum of grades of membership in the PB classes.

Four classification methods were tested: random forest (RF),
ADMIXTURE, partial least squares regression (PLSR), and partial
least squares with quadratic discriminant analysis (PLS-QDA); see
following sections for details. Only PB individuals were used for
training the four classification methods. We applied two different
training datasets, one consisting of all PB individuals and another
omitting the Pietrain data, referred to as TrainP+ and TrainP−,
respectively.

For the two simulated test sets, TestP+ and TestP−, breed
combinations were classified using all four aforementioned
methods trained on the two training sets (TrainP− and TrainP+),
leading to a total of 16 (“four methods” × “two training data

FIGURE 1
Illustration of how a chromosome pair is inherited IBD from the
F0 to F2 generation. The genomes recombine from the F0 to
F1 generation and then to the individual in the F2 generation,
visualized by the combination of colors of the chromosomes.
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sets” × “two test data sets”) combinations of methods, training, and
test data. For each combination, 3,500 individuals were classified,
i.e., 35 “CB combinations” × 100 “individuals per combination”. The
real data from CBs with unknown breed origin (n = 1,013), denoted
“TestR”, were classified using ADMIXTURE and the PLS-QDA
method. The results were used to examine the effect of an
informative prior distribution in the latter and whether the
methods provided useful and credible results in a practical setting.

All breed combinations might be represented by a vector Δ of
length q (q = 4 in TrainP− and q = 5 in TrainP+) whose elements are
the proportions of grandparents from each of the q PBs, in
alphabetic order, i.e., “D,” “H,” “L,” “P,” and “W.” For example,
an individual with breed combination DDLW will have
Δ � 1

4[2 0 1 0 1]t. Consequently, the elements of Δ are quarters,
which sum to 1. All four classification methods give predictions
for Δ which denoted Δ̂. Even if the elements of Δ are quarters, the
predictions are proportions, i.e., 0≤ δ̂

j

new ≤ 1 and ∑q
j δ̂j � 1, but the

elements (δ̂j) are not necessarily in quarters.
Two statistics are calculated for the evaluation of different

methods based on simulated data where the true breed
combinations (Δ) are known. The square loss for a new
prediction is given by ∑q

j(δj − δ̂j)2, and the Kullback–Leibler
divergence (Kullback and Leibler, 1951) is the divergence
between the two multinomial distributions for 4Δ with
probability vectors Δ and Δ̂, respectively.

Hard classifications for RF, ADMIXTURE, and PLSR were
achieved by choosing the breed combination with either the
shortest Kullback–Leibler divergence or minimal square loss. For
PLS-QDA, the hard prediction is the CB class with largest posterior
probability.

2.4 Classification methods

2.4.1 ADMIXTURE and random forest
ADMIXTURE (Alexander et al., 2009) is an algorithm and

software tool for the maximum likelihood estimation of
individual ancestries, usually used for humans but also possible
to apply to other species like pigs. ADMIXTURE 1.3 software (avid
H. Alexander et al., 2020) was used for this analysis in a supervised
mode with K-values set to 4 (for TrainP−) and 5 (for TrainP+).

RF is a widely used classification method built on the theory of
tree-structured classifiers. An RF consists of a collection of K tree-
structured classifiers, where K is usually a large number. In the end,
all trees vote for their preferred class and RF classifies to the class
with most votes (Breiman, 2001; Hastie et al., 2009). The Hampshire
data were oversampled in the tree-growing process, inversely
proportional to their abundance compared to other breeds
(1,000/14). RF analysis was conducted via the “randomForest”
package (Liaw and Wiener, 2022) in R. Only training data were
used for tuning hyper parameters, with the out-of-bag (OOB) error
as the performance measurement. The major hyper parameters to tune
are the number of drawn candidate variables in each split (mtry), the
number of observations drawn for each tree (sample size), node size, and
number of trees (K) (Probst et al., 2019).We usedmtry � 151 ≈

�����
23070

√
,

number of trees K = 100, sample size 100, and node size 1, which gave
OOB errors equal to 0 for both TrainP+ and TrainP−.

2.4.2 Partial least squares regression
Partial least squares (PLS) is a supervised method where breed

information is taken into account. Wold et al. (2001) offers an
overview over the fundamental principles of PLS. The basic idea of
PLS regression (PLSR) is to find the multidimensional directions in
the predictor variable space, i.e., the SNP (X) that explains the
maximum multidimensional variance direction in the response,
i.e., the breed (Y).

We apply a multivariate response matrix Y (n × q) for the PLS
regression. Each row in the response consists of the Δ vector for the
PB in question. As all individuals in the training data are PB, all
elements of Y ∈ {0, 1}, i.e., dummy variables for the breed.

In principle, all predictor variables, i.e., SNPs, are included but
assigned different weights, defined by the loading matrix P (p × m).
The score matrix T = XP, a n × m matrix, defines the relevant
subspace of X, where m is the number of relevant components.

We usedm = q − 1 where the reasoning is that two breeds will be
well separated on one axis/component, three breeds by two axis, or
in general q breeds by m = q − 1 axis/components, where each PB
should represent one node point, and one node point only, in them-
dimensional space spanned by the scores.

A frequently used method for dimension reduction is principal
component analysis (PCA) (Pearson, 1901). In contradiction to PLS,
PCA is an unsupervised method, not taking breed information into
account when constructing the scores. For comparison of the two
methods, the first four scores from PCA and PLS are compared and
evaluated against the prerequisite that each PB should represent one
node point, and one node point only, in the space spanned by the
scores.

PLSR predictions might yield results whose elements are larger
than 1 or smaller than 0. These elements were truncated to 1 − 10−10

and 10−10, respectively, for the evaluation of Kullback–Leibler
divergence.

The R-package “pls” (Liland et al., 2021) was used for fitting PLS
and PCA models. The response (Y as described previously),
predictors (X as described previously), and number of
components (q = 4 for TrainP+ and q = 3 for TrainP−) were the
data/parameters used as inputs for fitting the PLS and PCA models.

2.4.3 Partial least squares with quadratic
discriminant analysis

The principles of classification and discriminant analysis (DA)
are given in Hastie et al. (2009). The goal is to find a posterior
probability for different classes (CBs):

P K|x( ) � f k x( )πk∑ncomb+1
l�1 f l x( )πl

, (1)

where fk(x) is the class-conditional density of x (observed SNPs),
assuming that the SNP sample is from an individual of class K, and
πk is the prior probability of class K.

For PLS-DA, x is replaced with t, i.e., the PLS score vector.
Furthermore, a common assumption is to assume that fk(t) is
(multivariate) normally distributed with different mean
parameters (μk). When variance is assumed to be constant
among classes, the method is known as linear discriminant
analysis (LDA), which is notably applied on PLS scores (PLS-
LDA) (Boulesteix, 2004). In the present study, we assume
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different variance parameters Σk for each class, which is known as
quadratic discriminant analysis (QDA) (Hastie et al., 2009). Initially,
this assumption is applied to the scores of the PB individuals, i.e., the
PLS scores (tj) for PB individuals are assumed to be multivariate
normal:

tj ~ Nm μj,Σj( ), j � 1, . . . , q, (2)

where q is the number of PBs.
For the problem in the present study, only data from PB animals

are used for training, and we lack observations, i.e., score vectors, for
all CB classes. In order to implement CB classes, we need to find the
class-conditional densities (fk(x)) for CB classes, without having the
realization of score vectors for these classes. In addition, we included
a class “unknown,” i.e., an unknown breed combination, leading to
ncomb + 1 possible classes. The inclusion of the “unknown” class is
possible for PLS-QDA, due to its Bayesian nature, where possible CB
combinations are defined a priori, in contradiction to RF and PLSR.

A natural assumption is to assume that the scores of CB animals
are distributed as linear combinations in accordance with the
proportion of inherited DNA from the PB F0 generation. Let θ, a
vector of length q, represent the proportion of DNA material in an
F2 individual inherited from grandparents of different F0 PB
individuals. Then, 0 ≤ θj ≤ 1, j = 1, . . ., q, and ∑q

jθj � 1. Under
the assumption that θ is known for a CB individual, it is natural to
model t � ∑q

jθjt
j, where tj is the score associated with PB class j.

Using standard proprieties of the normal distribution, we have

t | θ ~ Nm ∑q
j�1

θjμj,∑q
j�1

θ2j Σj
⎛⎝ ⎞⎠. (3)

The proportion of DNA inherited from each grandparent is not
exactly equal to a quarter. Thus, θ might be viewed as a random
variable with E(θ) = Δ and defined variance V(θ). By applying the
law of total expectation (Adam’s law) and variance (Eve’s law), we
find that

E t( ) � Eθ ∑q
j�1

θjμj
⎡⎢⎢⎣ ⎤⎥⎥⎦ � ∑q

j�1
δjμj � μ1 . . . μq[ ]Δ � μ+Δ,

V t( ) � Eθ ∑q
j�1

θ2jΣj
⎡⎢⎢⎣ ⎤⎥⎥⎦ + Vθ μ+θ[ ] � ∑q

j�1
V θjj( ) + δ2j( )Σj + μ+V θ( )μ+t,

(4)
where V (θjj) is the jth diagonal element of V (θl) and the columns of
the m × q matrix μ+ are given by the q expectation vectors (μj) for
PBs. We will assume, even if it is an approximation, that the
marginal distribution for t is multivariate normal with
expectation and variance as given in Eq. 4, i.e.,

t ~ Nm μ+Δ,∑q
j�1

V θjj( ) + δ2j( )Σj + μ+V θ( )μ+t⎛⎝ ⎞⎠. (5)

Ordinary least squares (OLS) estimates are used for μj and Σj,
i.e., sample means and sample covariance for the PB PLS score
vectors from the training datasets. In addition, V(θ) needs to be
estimated. This was done by assuming that θ is Dirichlet distributed
with the concentration parameter α0Δ; consequently, E(θ) = Δ, and
V(θ) � 1

α0+1 (d(Δ) − ΔΔt), where d(Δ) is the diagonal matrix with Δ

on the main diagonal. Then, the only unknown parameter is α0,

which was estimated by the method of moments on simulated data.
A total of 1,000 simulations of θ, applying Δ as a vector of quarters,
was conducted by IBD simulation (Vigeland, 2021); see Section 2.2
for details. The diagonal elements of the simulated variance have
expected values 3(16α0 + 16)−1 leading to α̂0 � 3(16V̂arθ)−1 − 1,
where V̂arθ is the mean diagonal element of the empirical
variance based on simulated data, which is affected by several
factors, including the genetic map (Tortereau et al., 2012).

We assumed that the class-conditional density of t for the
unknown breed (f′unknown′(t)) was uniform over the q − 1-
dimensional space spanned by the range of PB score vectors.

We use two different prior distributions, i.e., πk in Eq. 1, a “flat prior”
for different breed-combinations, i.e., π1 � . . . � πncomb+1 � 1

ncomb+1 and an
informative prior where πk is set equal to the proportion of pig litters of
crossbreed k among all pig litters in Norway in 2021 (Langaker et al.,
2021). The PLS-QDA soft prediction is given by Δ̂ � ∑ncomb

k�1 ΔkP(K|x),
where P(K|x) is the posterior probability for class K, and Δk is the
associated breed proportion vector; see Eq. 1. For the class unknown, we
used Δ = 0q.

PLS-QDA models were fitted and evaluated in RStudio (Posit
team, 2023) with custom functions, where the package “mvtnorm”

(Genz et al., 2023) was used extensively. Codes are available at
GitHub (Gangsei et al., 2023), a repository which also contains codes
for replicating results, tables, and figures in the present study. For a
more extensive exploration of the classification results presented in
this article, an R-Shiny app has been made available (Gangsei, 2023).

3 Results

3.1 Comparing PCA and PLS

For visualization of the data, both PCA and PLS were conducted
on the TrainP+ data. The results are shown in Figure 2. For both
PCA and PLS, first and second components both split the three
breeds Duroc, Landrace, and Pietrain in a similar way. Component
3 manages to separate Large White from the other breed classes for
both PCA and PLS approaches. The difference lies in the last, small
breed (n = 14) Hampshire. The fourth component from the PCA
mainly spans within variation of Pietrain and Hampshire, i.e., the
breed with a small sample size cluster from the other breeds but does
not represent its own node point in the four-dimensional space
spanned out by the first four PCA components. In contradiction, the
fourth component from PLS manages to distinguish this pig breed
with its own node point even with a small sample size. As CBs are
regarded fuzzy sets, each PB should represent node points in them =
q − 1 dimensional space spanned by the scores in order to prevent
equal center points (μ) for different breed combinations. PCA fails to
incorporate this prerequisite for the unbalanced dataset, and
hence, PCA is not included in further analysis. The total
variance explained (R2) by the first four components in TrainP+
was 34.4% and 34.9% of the X-matrix for PLS and PCA,
respectively. For both PLS and PCA, R2 > 99.1% for all PBs
except Hampshire, which had R2 = 90.6% and 5.0% for PLS and
PCA, respectively. For TrainP−, the cumulative R2 values for three
components were 32.1% and 32.5% (for X with PLS and PCA),
> 99.2% for all PBs except Hampshire with R2 = 91.1% and 5.9%
for PLS and PCA respectively.
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3.2 Classification of simulated data

3.2.1 Comparing methods
Table 1 displays an overview of the classification results based on

the simulated data, for soft and hard classification with both the
Kullback–Leibler divergence and the square loss. In general, PLS-
QDA performed best as it managed to correctly classify 6,901 and
6,892 (KL-dist and Sq-loss, respectively), or 99% average, out of the
total of 7,000 individuals when trained with Pietrain (TrainP+) and
tested for all combinations (TestP+ and TestP−). Similar results for
ADMIXTURE and PLSR are 6,744 and 6,826 (97% average), and
6,768 and 6,840 (97% average), respectively. RF, by far, performed
worst as it only correctly classified 458 and 2073 (17% average)
individuals.

Soft classification results for different methods are visualized in
Figure 3. The figure shows results based on all breed combinations
except Hampshire in the first column. All methods have best
precision for PBs, i.e., PB proportion for breed j (δj = 1), or
when PB is not present at all, i.e., δj = 0. For δj, at 0.25, 0.5, and
0.75, the classification precision decreases with increasing δj for PLS-
QDA, indicating that PB proportions of 0.75 are most poorly
classified with PLS-QDA. Hampshire results are of particular
interest as only 14 individuals were present in the training data
compared to 1,000 individuals for the four other breeds. Even if RF
performs poorest overall, it is more noticeable for Hampshire than

the other breeds as the Hampshire proportions are heavily
underestimated by RF. To some extent, this is also the case for
PLSR, while ADMIXTURE and PLS-QDA seem to yield unbiased
estimates also for Hampshire proportions.

3.2.2 Effect of omitting breed from training data
All methods performed well when trained and tested on their

respective “alike” datasets, as well as when trained with Pietrain and
tested without, as shown in the second row in Table 1.

Contrary to prior expectations, there do not appear to be
large differences in the classification precision for TestP−
depending on whether Pietrain is included in the training
data (TrainP+) or not (TrainP−). When evaluated as the
proportion of correct classified individuals, the results are
marginally better with TrainP+ compared to TrainP−, in
particular, for ADMIXTURE and PLSR. However, the average
Kullback–Leibler divergence and square loss are, in general,
marginally smaller with TrainP− compared to TrainP+.
Consequently, including Pietrain in the training data does not
seem to impair the model’s classification ability, even for CBs
without Pietrain.

3.2.3 Pietrain regarded as an unknown breed
To get an understanding of how inclusion of unknown breeds,

i.e., breeds not present in the training data, in CB combinations

FIGURE 2
Score plots for pure breed animals based on the four primary scores using principal component analysis (PCA) displayed in the upper panels and
partial least squares (PLS) displayed in the lower panels. Pietrain pigs are represented in red, Duroc in yellow, Landrace in magenta, Large White in cyan,
and Hampshire in black.
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affects the classification results for PLS-QDA, results for the
combination TrainP− TestP+ were evaluated and are presented
in Table 2. For this combination, Pietrain might be regarded as
an “unknown breed” and, ideally, all individuals in TestP+ should be
classified as “unknown” for the model based on TrainP+. In Table 2,
“P” is still the abbreviation for Pietrain, but the combinations are
generalized, i.e., “XXXX” = “DDDD,” “HHHH,” “LLLL,”
“WWWW” (PB), “XXXY” = “DDDH,” . . ., “WWWL,” i.e., three
grandparents of the same breed, etc. Most of the CB blends with
Pietrain are recognized and classified as an “unknown” breed. PB
Pietrain (“PPPP”), almost PB Pietrain (“PPPX”), and the CB of one
Pietrain together with three of the four other classes (“PXYW”) are
more likely to be classified as a mix of all the other four PB
combinations (“XYLK”) with 100%, 46%, and 32% classified as
“XYLK,” respectively. A likely explanation is that the center point for
“DHLW” is close to origo, with a large associated generalized
variance.

3.3 General PLS-QDA results

The Bayesian method PLS-QDA, which might be regarded as a
refinement of PLSR, performs best and also has more flexibility in its
modeling, e.g., it can easily be implemented with an unknown breed
combination. The support for classifying to “unknown” can be
adjusted by changing the associated prior probability πUnknown.
Changing πUnknown has some similarities to changing the
significance level for hypothesis testing. If the support for an
unknown breed is lowered, i.e., πUnknown is decreased, fewer
individuals will be classified as “unknown breed,” i.e., the

probability of classification to a “real CB class” is increased, with
the disadvantage that the probability of incorrect classification is
increased. The analogy to hypothesis testing is that the higher
significance level increases the probability of rejecting the null
hypothesis but also increases the risk of doing a type I error.
Consequently, if it is of huge importance to avoid incorrect
classifications, πUnknown should be increased and vice versa.

Another feature which is unique for PLS-QDA is the possibility
to use an informative prior. The effect of the informative prior on
classification results for the real data, TestR, with PLS-QDA, trained
on TrainP+, is shown in Table 3. The effect of the informative prior
is conspicuous and as expected a priori. The number of individuals
classified to the two dominating CB classes i.e., “DDLW” and
“HHLW,” i.e., typically F1 commercial (“LW”) maternal line and
Duroc (“DD”) or Hampshire (“HH”) paternal lines, increases, in
particular, at the expense of the number classified as “unknowns.”
PLS-QDA with an informative prior and ADMIXTURE yields close
to similar results for the real data, with one exception, the “unknown
group,” which is natural since classifying to “unknown” is not a
feature in ADMIXTURE.

Estimates for μj and Σj in Eq. 2 are PB-specific means and
covariances based on the PLS scores. The PLS scores for PBs used
for these calculations are shown in the two lower panels in Figure 2. μj
and Σj for CBs are linear combinations of μj’s and Σj’s for PBs, as shown
in Eq. 5.

A crucial success factor for PLS-QDA is the incorporation of
additional variance in CB covariance due to the stochastic nature of
the proportion of DNA inherited from grandparents. Table 4 shows
average matrix determinants at the log scale for the theoretical
covariance matrices, as given in Eqs 4, 5. The size of the

TABLE 1 Evaluation of prediction errors for soft predictions as mean ± standard deviations and hard predictions given as numbers of correct classifications as the
total number and % (n = 3,500 for TestP+ and TestP−) based on Kullback–Leibler divergences and quadratic errors, crossed over the two training (TrainP+ and
TrainP−) sets and test sets (TestP+ and TestP−).

Combination Method RF ADMIXTURE PLSR PLSQDA

TrainP+ TestP+ KL-dist (soft) 0.31 ± 0.2 0.072 ± 0.088 0.038 ± 0.038 0.0015 ± 0.013

KL-dist (hard) 300 (8.6%) 3,326 (95%) 3,438 (98%) 3,458 (99%)

Sq-loss (soft) 0.061 ± 0.033 0.01 ± 0.01 0.0084 ± 0.0093 0.0016 ± 0.012

Sq-loss (hard) 1,208 (35%) 3,404 (97%) 3,424 (98%) 3,455 (99%)

TrainP+ TestP− KL-dist (soft) 0.46 ± 0.24 0.053 ± 0.063 0.064 ± 0.08 0.0024 ± 0.016

KL-dist (hard) 158 (4.5%) 3,418 (98%) 3,330 (95%) 3,443 (98%)

Sq-loss (soft) 0.075 ± 0.041 0.0073 ± 0.0092 0.0084 ± 0.0096 0.002 ± 0.015

Sq-loss (hard) 865 (25%) 3,422 (98%) 3,416 (98%) 3,437 (98%)

TrainP−TestP+ KL-dist (soft) 12 ± 16 12 ± 16 12 ± 16 9.6 ± 16

KL-dist (hard) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Sq-loss (soft) 0.29 ± 0.26 0.28 ± 0.29 0.26 ± 0.27 0.37 ± 0.24

Sq-loss (hard) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

TrainP−TestP− KL-dist (soft) 0.3 ± 0.18 0.048 ± 0.065 0.056 ± 0.081 0.0024 ± 0.017

KL-dist (hard) 595 (17%) 3,400 (97%) 3,208 (92%) 3,445 (98%)

Sq-loss (soft) 0.05 ± 0.035 0.0077 ± 0.0098 0.0085 ± 0.0098 0.0025 ± 0.021

Sq-loss (hard) 1,627 (46%) 3,408 (97%) 3,406 (97%) 3,434 (98%)
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determinant of the covariance matrix is referred to as the generalized
variance byWilks (1932) andmight be viewed as a scalar describing the
size of the covariance matrix in question. The generalized variance
increases with an increasing number of PBs in the CB combination. For
comparison, the log scale determinants of empirical variances from
predicted scores, i.e., tsim = XsimP, where Xsim is the matrix of simulated
SNPs, are shown in the same table. The results showdeterminants of the
same size for both training sets, except for PBs where the variance based
on empirical scores is smaller.

The behavior of classification results, center points (μ), and
associated covariance (Σ) for CBs of different complexities and
different settings for the informative prior and support for
unknown breed (πUnknown) can be explored in the R-Shiny app
(Gangsei, 2023).

4 Discussion

The overall aim of this study was to evaluate crossbreed
classification of commercial finisher pigs based on genomic data
from a 50-K (Illumina) SNP chip, with the four different methods,
namely, RF, ADMIXTURE, PLSR, and PLS-QDA. The novelty was
to implement PLS-QDA as an alternative method with several
beneficial features to analyze the genomic SNP data.

PLS was used as an alternative dimension reduction method to
PCA due to its additional features. Subsequent theoretical
deductions led to the extended method, PLS-QDA. For
comparison, two methods not built on dimension reduction were
also executed: the model-based ADMIXTURE, which is a well-
functioning software application for ancestry classification, and the

FIGURE 3
Densities for elements in the soft classifications (Δ̂). The left column represents results obtained from breeds Duroc, Landrace, Pietrain, and Large
White, and the right column represents results fromHampshire. The rows represent the four differentmethods, i.e., RF, ADMIXTURE, PLSR, and PLS-QDA.
The curves show empirical densities for δ̂j for δj = 0/4, 1/4, . . ., 4/4, with colors black, red, blue, green, and magenta, respectively. Densities are based on
results from models trained on the training set TrainP + and applied to both simulated test sets, i.e., TestP+ and TestP−. Vertical lines represent the
true proportions, i.e., δj.
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well-known classification method RF. The classification results, for
all methods on the two simulated test sets with and without an
additional breed, show that PLS-QDA had the highest accuracy and
that PLSR and ADMIXTURE are both methods that meet prior
expectations to classification accuracy.

It was observed, naturally, that all methods have best precision
for the classification of individual elements, δj in Δ, when the
element is associated with a PB, i.e., δj = 1, or when the PB is
not present at all, i.e., δj = 0. For PLS-QDA, it was observed that the
classification precision for δj was decreased at 0.25, 0.5, and 0.75,
indicating that PB proportions at 0.75 are most poorly classified with
PLS-QDA. A similar pattern is not evident for ADMIXTURE;
however, the results for PB proportions at 0.75 are approximately
equal for PLS-QDA and ADMIXTURE.

PLS-QDA has some advantages compared to ADMIXTURE and
PLSR. First, it performs best when tested on the simulated data, even
if this is by small margins, but more important is its ability to
incorporate an unknown breed combination. The results presented
in Table 2 show that the PLS-QDA method is capable of classifying
CBs with Pietrain grandparents as “unknowns” to a large degree.
The exception is PB Pietrain, almost PB Pietrain (“PPPX”), and the
CB of one Pietrain together with three of the four other classes
(“PXYW”), where many individuals were classified as a mixture of
the four other PBs. Consequently, classification results with four
different PBs should be interpreted with caution as it may be an
unknown purebred not seen in the training set. Some
misclassifications of CBs with other levels of Pietrain
grandparents also occur; however, in general, the method

TABLE 2 Proportions (in %) of the predicted breed combination, i.e., maximum posteriori probabilities with PLS-QDA, for the model trained without Pietrain
(TrainP−) vs. true breed combinations for the simulated test set with Pietrain (TestP+). Breed combinations are generalized, i.e., “XXXX” = {“DDDD,” “HHHH,”
“LLLL,” “PPPP,” “WWWW”} (PB), “XXXY” = {“DDDH”, . . ., “ZZZL”}, i.e., three grandparents of the same breed, etc.

Predicted combination (%)

Unknown XXXX XXXY XXYL XXYY XYLK n

True combinations PPPP 0 0 0 0 0 100 100

PPPX 54 0 0 0 0 46 400

PPXX 100 0 0 0 0 0 400

PPXY 80 0 0 0 0 20 600

PXXX 66 28 6 0 0 0 400

PXXY 68 0 17 8 6 0 1,200

PXYL 41 0 0 27 0 32 400

TABLE 3 Predicted breed combinations for the test set containing real data based on models trained on all data (TrainP+). Predictions as posterior maximums
applying the informative and flat prior to the PLS-QDAmethod and hard predictions based on the square loss for ADMIXTURE. The last columns show differences
in the total number classified to different CBs for PLS-QDA with and without informative priors and ADMIXTURE. The group “other combinations” contains sums
for breed combinations with fewer than 10 predictions for any of the methods.

Number of breed combinations Difference between methods

Flat Informative ADMIXTURE Inf. vs. Adm Adm. vs. Flat Inf. vs. Flat

DDLW 497 532 531 1 34 35

HHLW 169 192 193 −1 24 23

Unknown 118 70 0 70 −118 −48

LLWW 41 44 46 −2 5 3

DDLL 43 43 53 −10 10 0

LLLL 38 39 41 −2 3 1

LLLW 23 24 22 2 −1 1

HHLL 17 16 36 −20 19 −1

DLPW 16 0 0 0 −16 −16

LWWW 10 0 11 −11 1 −10

HLLW 0 0 14 −14 14 0

Other combinations 41 53 66 −13 25 12
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performs reasonably well for these combinations, in particular for
individuals with 50% Pietrain grandparents.

Another advantage PLS-QDA has in comparison to the other
methods is the possibility to use different prior distributions for the
CB populations. These priors might change in time and space, for
instance, in other target populations, e.g., countries with other
dominating breed combinations. By assigning high prior weight
to the unknown breed group, more individuals will be classified as
unknowns at the expense of the known CBs. As argued in the results,
the interpretation of the prior weight for an unknown breed has
similarities to the interpretation of the significance level in
hypothesis tests, i.e., a higher significance level/lower prior for
unknown breed not only leads to increased strength for
classifying a known CB/reject the null hypothesis, but also an
increased possibility of misclassification/type I errors. This is a
desirable feature enabled by the Bayesian nature of QDA and, to
the best of our knowledge, a novelty in classification of crossbreed
pigs.

A main result is that, at least for unbalanced data, PLS is
preferable over PCA as PLS fulfills the prerequisite of assigning
one node point in the q − 1-dimensional space to each PB, which is,
thus, a necessity for classification purposes and, in addition, is a
considerable advantage for visualization. This is illustrated in
Figure 2 where PLS assigns one PB to each node point in the q −
1-dimensional space defined by the scores. This is a prerequisite for
the PLS and PLS-QDA methods as CBs are considered blends in a
space where the PBs represent the extremes. For purely practical
purposes, this might have been solved by having a more balanced
dataset, i.e., the same number of Hampshires as for the other breeds.
However, the insight has significance since new breeds might fairly
easily be added to the model without the need for observations from
a large number of individuals when PLS is used.

It should be recognized that PLS, at least for genomic data such
as the data used in the present study, fulfills the need for dimension
reduction, with better results than PCA in the sense of more dense
and dispersed clusters of PBs for the first m PCA/PLS components.
As a key finding of the present study, we highlight that PLS might be

used as a complementary method for dimension reduction of SNP
data under the assumption that a “supervising” feature in the present
study “breed,” is available.

An important feature of a general method is the stability when
exposed to new or unknown breeds that are not included in the PB
F0 generations. The results show that both PLS-QDA and PLSR, as
well as ADMIXTURE, are flexible in the sense that new PBsmight be
added to the training data without substantial loss with respect to
classification accuracy, even if some of the included PBs are not
present in the target population. As strongly anticipated,
classification performance for breeds not included in training
data was poor. However, the results showed marginal
deterioration when the method was trained with the new breed,
TrainP+, and classified without, TestP−. Hence, the disadvantage of
training on a variety of PBs is small even if the possible crossbreed
combinations are well known a priori. Consequently, for all
methods, other PBs might be included in the training data, with
small or even negligible loss of classification precision in populations
where one or more of PBs is not present. The possibility of adding
new PBs to the model without the need for a large sample size for
PBs in question is a highly desirable feature for PLSR, PLS-QDA,
and ADMIXTURE.

RF performed, by far, the poorest for classification of the
simulated data, in particular for CBs, including Hampshire. This
is in line with prior assumptions as Hampshire was hugely
underrepresented in the training data. RF is built on tree
prediction, where a considerable number of trees collectively
favor the class with the highest probability. With few
observations in the training datasets, Hampshire will most likely
not be included in the training of all tree models, and therefore, RF
will give a skewed result and suffer when presented with a small class
in the test data. RF performance depends on the tuning of hyper
parameters. In the present study, hyper parameters were tuned to
values giving OOB errors at 0 in the training set and at the same time
yielded small computational cost. It is not unlikely that RF
performance could be improved more by extensive tuning of the
hyper parameters based on the model’s performance on the

TABLE 4 Mean ± standard deviation for covariance matrix determinants using a logarithmic scale, crossed over generalized breed combinations i.e., “XXXX” =
{“DDDD,” “HHHH,” “LLLL,” “PPPP,” “WWWW”} (PB), “XXXY” = {“DDDH,” . . ., “ZZZL”}, i.e., three grandparents of the same breed, etc., and if Pietrain is included in the
analysis or not. The column “mixed normals” is based on Σ in the likelihood function, and the column “Simulated data” is based on empiric covariances from
simulated data.

Generalized breed combination Mixed normals Simulated data

P+ XXXX (n = 5) 5 ± 1.3 2.4 ± 0.63

XXXY (n = 20) 5.8 ± 0.72 5.4 ± 0.48

XXYL (n = 30) 7.1 ± 0.38 7.8 ± 0.45

XXYY (n = 10) 5.5 ± 0.45 6 ± 0.36

XYLK (n = 5) 9.1 ± 0.25 9.7 ± 0.26

P− XXXX (n = 4) 4 ± 1.2 2 ± 0.51

XXXY (n = 12) 5.3 ± 0.62 4.8 ± 0.48

XXYL (n = 12) 7 ± 0.3 7.3 ± 0.19

XXYY (n = 6) 5.2 ± 0.45 5.5 ± 0.39

XYLK (n = 1) 9.3 ± NA 8.7 ± NA
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simulated test data. However, as models for all methods were fitted
based on training data only, the same principle should be applied to
RF. The results show that for the present study, RF is a sub-optimal
classification method, most likely due to the unbalanced data
structure. This could also be adjusted in favor of RF if operated
with more balanced data, but as argued previously, it is beneficial
with methods that perform well on unbalanced data and balanced
for generalization purposes. The three other methods, at least PLS-
QDA and ADMIXTURE, seem to be robust against the unbalanced
training dataset and without extensive hyper parameter tuning.

Two different measures, namely, square loss and
Kullback–Leibler divergence, were both used for two purposes:
comparing the accuracy of soft predictions between methods, and
transformation of soft predictions to hard predictions for RF,
ADMIXTURE, and PLSR. Formally, the transformations from
soft to hard predictions based on the square loss and
Kullback–Leibler divergence are just discriminant classification
performed on the soft predictions, Δ̂, with a flat prior for CBs.
The square loss corresponds to LDA, and Kullback–Leibler is an
alternative discriminant function. The results from both methods
are quite similar but differ marginally. We view it as a strength that
the evaluation of the results seems to be affected to a negligible
degree by the choice of distance measurement.

The purely practical applications for the models included in the
present study are limited to breed and breed combinations for the
five PBs included, i.e., Duroc, Hampshire, Landrace, Large White,
and Pietrain. However, through the results and principles, we show
that both ADMIXTURE and PLSR/PLS-QDA are methods where
other PBs might be fairly easily included, even when PB data for new
breeds are scarce, which are key findings in the study. Another
limitation to the study is the unbalanced training set, containing
only 14 pigs of the breed Hampshire. This has been seen as an
opportunity to evaluate the methods in amore realistic setting than a
balanced dataset would provide. Therefore, it has been kept this way
intentionally instead of pruning the data by, for instance, taking out
Hampshire as PB.

In the present study, breed combinations, not breed
permutations, were used as classifying units. Variation in the
percentage of DNA material inherited from PB animals is
affected by different breed permutations under the same breed
combination. By only considering combinations, potential
information associated with different permutations might be lost.
For example, consider the combination “LLWW” consisting of the
six permutations “LLWW”, “LWLW”, “LWWL”, “WLLW”,
“WLWL”, and “WWLL”. When calculating mean (μj) and
covariance (Σj) for CBs (see Eq. 5), the assumption is that the
proportion of DNA inherited from grandparents, i.e., θ, was
Dirichlet distribution with the concentration parameter α0Δ,
leading to V(θ) � 1

α0+1 (d(Δ) − ΔΔt), where Δ represents the
breed combinations in the F0 generation. This assumption seems
reasonable for all permutations; however, for the two permutations
“LLWW” (F1 commercial maternal line) and “WWLL”, both with
two PB individuals in the F1 generation, we know that the
proportion of DNA inherited from the two PBs in question is
50% exactly, which is not the case for the other four
permutations. Consequently, for “LLWW” and “WWLL”, θ = Δ
= [0 0 ½ ½ 0]t (i.e., zero variance for θ). For the four other
permutations, it is natural to assume non-zero variance for θ.

The consequence, referring to Eq. 5, is that covariance, Σj,
associated with permutations “LLWW” and “WWLL” should be
smaller than the other permutations, as all elements including V(θ)
in Eq. 5 should be excluded for these permutations. This information
might be possible to utilize in order to, at least to some extent,
distinguish different breed permutations under the same breed
combination. However, the strength of classifying different
permutations is likely to be low as the means, i.e., μj in Eq. 5 are
unaffected by V(θ). The effect of permutation clustering within
combinations is easy to observe for real data classified as breed
combination “HHLZ” in the 3D Shiny app (Gangsei, 2023). These
individuals cluster inside their associated limiting spheres. From
prior information, it is overwhelmingly likely that the only
permutation existing within this combination is the crossing of
the Hampshire paternal and TN70 maternal lines, which also
highlights that permutations might be identified by an
informative prior.

The software program used for the simulation of data in the
study was developed with a primary area of application for the
human genome, in particular kinship analyses and forensic genetics.
Due to the genetic map provided by Tortereau et al. (2012), it was
possible to apply the software application to the pig genome in a
realistic manner. The genetic map is averaged over sex and four
different breed combinations (“pedigrees”) containing PBs Large
White, Meishan, Yorkshire, Berkshire, Duroc, and Landrace. The
recombination rates varied between breed combinations and sexes
(Tortereau et al., 2012). Consequently, the use of an average genetic
map in the present study is an approximation. However, the effect of
variations in the genetic map is assumed to be of minor importance
as it will only have limited effects on the parameter α0 scaling the
variance of the proportion of the inherited genomic material from
the four grandparents (θ). Higher recombination rates would yield
larger values for α0 and lower variance for θ. In the present study, α0
was kept constant at its estimated value at 73.58. A possible topic for
future research is to evaluate the effects of changing this value and
thereby the covariance matrices for CBs.

A challenge with the SNP data is that they only contain
information regarding the two nucleobases that are present at
each SNP but no information regarding whether the nucleobases
originate from the paternal or maternal line. For homozygote SNPs,
this data structure causes no problems. For heterozygote SNPs, the
two nucleobases were randomly assigned to the maternal or paternal
chromosomes of the F0 generation when assigning the nucleobases
to a simulated IBD chromosome structure.

For the simulation study, breed permutations were drawn
randomly within each breed combination. A topic for future
studies might be to design simulations for different breed
permutations and apply a classification model for permutations
based on theoretically different variances, in order to classify
permutations within the same combination. Such studies would,
to the best of our understanding, be of more theoretical than
practical interest.

The simulation study provides SNP simulations for CBs and
behaves as a credible realization for SNP data in real CB individuals.
This is supported, although not proved, by the fact that simulated
data are distributed in accordance with the model, both regarding
expected values and variances. Consequently, it is reasonable to
assume that the evaluation of methods based on the simulated
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results, to a great extent, describes the real precision and reliability
for different methods and breed combinations. To explore how PLS-
QDA and ADMIXTURE behave when applied to a real example, the
trained PLS-QDA and ADMIXTURE models were tested on real
data, TestR. The distribution of CB classes was in accordance with
prior knowledge, i.e., the dominating CBs were “DDLW” and
“HHLW”, even when using the flat prior for PLS-QDA. The flat
vs. informative prior results for the PLS-QDAmethod appear to be a
textbook example of how an informative prior might be utilized in a
Bayesian setting. The inclusion of the informative prior has a
substantial effect by allocating more individuals to breed
combinations known to be dominating a priori, at the expense of
the “unknown” class and CBs known to be rare a priori. Still, the
informative prior does not totally dominate the classification results.
ADMIXTURE classifies closer to PLS-QDA with informative priors,
which may indicate that the method is adequate in adjusting for
actual populations. The prior information can neither be added nor
changed. This result again advocates for ADMIXTURE as a reliable
method for classification. It could be interesting to see how the two
different methods, PLS-QDA with informative priors and
ADMIXTURE, behave on real data from other real situations
with other CB combinations.

Some of the real data are classified to CBs containing Pietrain,
even if Pietrain should not be present in the Norwegian pig
population. The CBs with Pietrain are “DLPW” and “HLPW”,
i.e., four breed combinations. Inclusion of some genetics of
Pietrain origin cannot be totally ruled out in Norway; however,
for the last 15–20 years, the policy of breeding companies operating
in Norway has been to avoid using Pietrain genetics. From the
simulation results, we observed that PB individuals from different
breeds were not part of the training set and were generally classified
as four-breed combinations. Consequently, the four-breed
classification results should be interpreted with care as they
might, in fact, be PBs or close to PB individuals, from breeds not
included in the training dataset. In Norway, at least the Mangalica
breed is present and, in fact, a possible candidate for these
classifications. A natural development of the work presented in
this study would be to incorporate Mangalica as a new PB in the
training data.

The results in this study can beneficially be used for generalization
to other problems in several ways. The simulation tool showed an
excellent generalization from humans to pigs and can be generalized
to other breeds/populations/countries or to other species with
genomic data available in the form presented in the current study.
Prior knowledge of recombination rates, i.e., the study of Tortereau
et al. (2012), was essential for the present study, both in the simulation
and in order to estimate V(θ) and thereby Σ. If similar information
regarding recombination rates is available, the methods described in
the present study might be transferred to similar problems for other
species, assuming that genomic data are available.

Another interesting topic, which falls outside the scope of this study,
is to consider other responses than breeds. For instance, a feature such
as color could be treated in a similar way, where some colors are viewed
as references, i.e., the counterpart to PBs in the current study and other
color combinations as blends, i.e., the counterpart to CBs.

ADMIXTURE and RF were tested as possible candidate
methods. Other candidates could also have been included, for
instance, different classification methods that deal better with

unbalanced data. Although RF failed as a real candidate,
ADMIXTURE performed well for both simulated data and
real data. Thus, the result of this study confirms
ADMIXTURE’s suitability as a standard software program for
classifying genetic origins, not only for human ancestry. Kim
et al. (2022) indicate how ADMIXTURE, in combination with
PCA, behaves nicely and provides useful information for both
classification and visualization in a pig population.

Partial least squares with linear discriminant analysis (PLS-
DA) has recently been shown to perform well on other problems
with similar SNP data (Miao et al., 2023). The derivation of PLS-
QDA for CBs was initiated and conducted prior to the
publication by Miao et al. (2023). However, PLS-QDA might
be viewed as an elaboration of PLS-DA utilized in Miao et al.
(2023) in the sense that i) PLS-QDA was applied to CB
classification in contrast to PLS-DA used for PB classification
only, and ii) the derivation of CB-specific covariance matrices is
a prerequisite for QDA and novel to the present study. In
particular, a research topic for further analysis could be to
apply PLS-QDA and simulation of CBs to the data used in Miao
et al. (2023) where the number of PBs was much higher than
that in the present study (n = 91).

The main focus of the study was to evaluate the PLS-based
methods, in particular to derive equations for the expected
values μ’s and covariances used in the likelihood functions
for CBs. Another important objective was to show that PLS
extends and improves classification in a more robust way for
unbalanced data and when faced with unknown breed
combinations, which is a reality when working with real data
from slaughterhouses.

5 Conclusion

In the present study, it has been shown that PLS-QDA, PLSR, and
ADMIXTURE are well suited methods for the crossbreed classification
of pigs based on genomic data from a 50-K (Illumina) SNP chip from
purebred grandparents. ADMIXTURE is a well-proven method that is
suited for ancestry classification tasks with genetic SNP data. It
originates from kinship in humans but proved to work nicely and
was easy to transfer to pigs. Themethod of themain focus in the present
paper, PLS-QDA, has some advantages compared to the othermethods.
It has the highest classification accuracy, which supports the inclusion
of an “unknown breed combination” class and an informative prior.
Finally, it facilitates informative visualization in 3D format. Accurate
CB classification has important applications, in particular, related to
research and development topics in the pig industry, including breeding
progress, carcass grading, meat yield, and quality. Another important
contribution from the current study is to incorporate the stochasticity in
the proportion of inherited DNA from ancestors as a feature utilized for
PLS-QDA as an extension of PLS-DA.
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