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ABSTRACT 

Reducing energy related costs by better timing demand for 

power is a rapidly growing concept due to increased and 

more fluctuating energy prices. One way to achieve this is 

through smart charging of electric vehicles (EVs). In the 

present work, a python-based program has been developed 

based on scheduling theory and tailored to the specific 

objectives of charging at a long-term parking facility. 

Basic building blocks of the theory were assessed to 

explore the possibility of combining them into a useful 

model of the problem. The simulation yields example 

schedules where charging is restricted to night-time and 

no more EVs than necessary are charged simultaneously, 

without compromising the constraint of fully charged 

vehicles at predefined due dates.  

INTRODUCTION  

The power sector is going through a massive 

decarbonization process in which electrification plays an 

essential role. On the power generation side this means 

replacing fossil energy sources with intermittent 

renewable energy sources like wind and solar power. On 

the demand side new load patterns are observed due to for 

instance the introduction of electric vehicles (EVs) and 

batteries in the energy system [1]. One of the consequences 

of this transition is an increased high-intensive 

decentralized electrical power demand not necessarily 

coinciding with the production or transmission capacity 

[2]. This is a driver for greater variations in electricity 

prices, which in turn strengthens the incentive for 

consumers to adjust their demand. Typically, this means to 

move the load away from peak hours (load shifting). The 

purpose of such demand response in this case is not to 

balance out an unexpected surge or delay in supply, but 

rather for the demand to be as evenly distributed over time 

as possible. This will be beneficial for the grid because the 

capacity is better utilized, as well as for the consumers, 

because it may potentially reduce their electricity bills [3].  

 

A possible approach for demand response is smart 

charging of EVs. Today, charging typically starts as soon 

as the EV is parked and connected, which may imply 

buying electricity when the price is high. It may also imply 

adding demand at peak hours, putting more constraints on 

the grid. A natural first improvement step is load shifting 

by better scheduling the timing of EV charging. Many 

scheduling methods exist, usually requiring data 

communication and advanced algorithms for full 

optimization [4].  

 

 

In this work we have developed a python-based program 

to demonstrate a proof-of-concept for EV charging 

schedules that can be implemented at airports or other 

places offering long-term parking without any additional 

equipment [5]. The basic building blocks of scheduling 

theory [6] are assessed to explore the possibility of 

combining them into a useful model for smart charging.  

METHOD 

Formulation of the EV charging problem 

Scheduling theory is traditionally used for decision 

making in industrial manufacturing and service industries. 

It describes scenarios where there is one or more machines 

that can perform a set of jobs with certain completion 

times. The goal is to schedule the machines to process the 

jobs so that the entire set of jobs are completed as soon as 

possible, so that the production capacity of the machines is 

used to the fullest. The scheduling problem can generally 

be described by the following triplet [6]: 

 

𝛼 | 𝛽 | 𝛾       (1) 

 

Here 𝛼 describes the machine environment, 𝛽 provides 

details of processing characteristics and constrains, and 𝛾 

describes the objective to be minimized.  

 

For the EV charging problem, the chargers can be regarded 

as machines, while the full charging of one EV can be 

regarded as one job. The goal is to schedule the charging 

of each EV in the EV pool based on the following 

restrictions:  

 

1. All charging is limited to night-time, if possible, on 

the assumption that demand peaks rarely, if ever, 

occur during night-time. In addition, the electricity 

prices normally are lower during night-time than 

daytime [7]. 

 

2. No EVs are charged before they must in order to finish 

in time, which increases the chance of fitting all 

charging hours into the defined interval. 

 

3. No more EVs than necessary charge simultaneously, 

which will spread out the demand used to charge the 

EVs as much as possible.  
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Machine environment (𝜶) 

Many different machine environments are identified in 

scheduling theory [6]. The one most applicable for the EV 

chargers is 𝑚 identical machines in parallel (𝑃𝑚). The 

chargers can be regarded as machines, of which there are 

several that can operate simultaneously / in parallel.  

 

It could be intuitive to let each machine represent one 

physical charger, which would make 𝑚 equal to the 

number of chargers. However, following the conventions 

of scheduling theory, that would lead to a schedule in 

which as many chargers as possible are always in use. That 

is the opposite of what is wanted for load shifting. The 

number of machines 𝑚 is therefore kept flexible in the 

present problem. To fulfil the goal of reducing load at peak 

hours, no more chargers than necessary should be in use 

simultaneously. The chargers are therefore modelled as a 

minimized number of machines.  

 

Processing characteristics and constraints (𝜷)  

The theory defines many different processing 

characteristics and constraints [6]. One relevant for the 

charging environment is the release date of job number 𝑗 

(𝑟𝑗).  If this characteristic is present in the 𝛽 field of the 

triplet, job number 𝑗 cannot start before its release date. 

 

It was considered to add 𝑟𝑗 to the processing 

characteristics. However, even though it can be assumed 

that new EVs arrive every day, it is not known when, how 

many, or anything about their characteristics, like their 

charging needs and due dates. It was decided to only 

include what is known in the triplet, which in this case is 

by nature a snapshot in time, since the circumstances 

change daily. It is only known which EVs with their 

respective charging needs and due dates are parked right 

now. It is not known how the picture will look tomorrow. 

It was chosen to disregard the possibility of EV owners 

notifying ahead of time that they are coming, because that 

only alleviates the problem to a small degree: that the 

future is not known.  

 

Another important constraint from the scheduling theory 

is preemptions permitted (𝑝𝑟𝑚𝑝). This means that jobs do 

not need to run continuously from start until completion 

but can be paused and restarted at will. A full charging of 

one EV is regarded as one job, but the charging processes 

of each EV can be stopped and restarted automatically, 

with no harmful effect to the battery [8]. Hence 

preemptions should be allowed in the charging problem. 

 

Objectives to be minimized (𝜸) 

There are several objectives to be minimized defined in 

scheduling theory [6]. The most relevant to the charging 

problem are maximum makespan (𝐶𝑚𝑎𝑥) and maximum 

lateness (𝐿𝑚𝑎𝑥). Makespan is the time it takes to complete 

the job, while lateness is the time between the job’s due 

date and its actual completion date. For the charging 

problem, the maximum lateness is set as the objective to 

be minimized. It is defined as due date (𝑑𝑗) plus lateness 

(𝑧). The due date is the time (in this work: number of days) 

until the due date of a job, and lateness is the number of 

days of accepted delay relative to the due date. For the 

purposes of the charging problem, 𝑧 is not only minimized, 

but specifically set to zero. It is a hard constraint that all 

EVs must be fully charged (or charged to the agreed-upon 

minimum battery level) upon the EV owners’ return. It is 

unlikely that the EV owners will accept the possibility of 

delays. 

 

Based on these considerations, the triplet for the charging 

problem may be described by Eq. (2):  

 

𝑃𝑚 | 𝑝𝑟𝑚𝑝 | 𝐿𝑚𝑎𝑥      (2)

  

Solution to the charging triplet  

The triplet in the form of Eq. 2 generally has a 

deterministic solution and is one of the few due date 

objective related problems that are solvable in polynomial 

time; namely with Longest Remaining Processing Time 

first (LRPT) [6]. The LRPT principle is simply to always 

prioritize the job that has the longest remaining processing 

time. When a job is processed enough that a different job 

has more processing time left, the machine switches to that 

job, which initially had the second longest remaining 

processing time. This goes on until no jobs have any 

processing time left.  

 

However, the triplet given by Eq. 2 is not directly solvable 

by LRPT. For LRPT to be applicable to the problem of EV 

charge scheduling, the timeline must be reversed. This 

operation converts the due dates (𝑑𝑗) of the jobs to 

release dates (𝑟𝑗), and converts the zero-lateness 

objective (𝐿𝑚𝑎𝑥 , 𝑧 = 0) to a maximum makespan 
(𝐶𝑚𝑎𝑥) objective. Then the latest due date in the job set is 

considered the starting point, and the LRPT rule is applied 

backwards. If all the jobs can be completed between their 

respective release dates and time 0 following the LRPT 

principle, the schedule is feasible. If not, it would normally 

lead to lateness greater than zero, which in basic 

scheduling theory is solved by increasing the accepted 

lateness (𝑧) until a feasible schedule is reached [6]. This 

approach is not possible for the charging problem, as it 

would violate the hard constraint that all EVs must be fully 

charged before their due dates. Nevertheless, since we 

model the number of machines as a soft constraint for the 

charging scheduling problem, the problem can instead be 

solved by increasing the number of machines until a 

feasible schedule is reached. One more machine means 

that the number of jobs that can be processed 

simultaneously increases by one. For the charging 

schedule, this means that the number of EVs allowed to 

charge simultaneously is increased by one. This way, it is 

ensured that the practical interests of the EV owners take 
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priority over ideal charging patterns in terms of load 

shifting. If this is implemented in a real setting, a site-

specific capacity related cap on number of machines could 

be added, triggering an expansion of the permitted 

charging time interval.  

 

The triplet for the charging problem on a reversed timeline, 

which is solvable by LRPT, is thus given by Eq. 3: 

 

𝑃𝑚 | 𝑝𝑟𝑚𝑝, 𝑟𝑗  | 𝐶𝑚𝑎𝑥     (3) 

 

Simulation of example schedules 

A python-based program was developed [9] to solve the 

charging triplet (Eq. 3). The program takes information 

about a pool of parked EVs as input and simulates an 

example schedule based on the LRPT principle, with a few 

additional considerations.  

 

Choice of objective to be minimized 

The charging problem has two objectives to be minimized: 

maximum lateness (𝐿𝑚𝑎𝑥) because the charging must be 

finished by the time the EV owner returns; and number of 

EVs that are charged simultaneously, for minimizing 

power peaks. The latter, which can be regarded as 

maximum idleness of the machines, is not a defined 

objective function in basic scheduling theory that can be 

set in for 𝛾 in the triplet (Eq. 1) [6]. It was therefore 

decided to solve it by adding a feature to the python 

program that minimizes the number of machines, the 𝑚 in 

𝑃𝑚 in the triplet.  

 

How the number of machines (m) is modelled 

Instead of letting one machine represent one physical 

charger, the collection of chargers is modelled as a 

minimized number of "machines". The number of 

machines determines how many jobs can be processed 

simultaneously. Thus, minimizing the number of 

"machines" will minimize the amount of EVs charging at 

the same time.  

 

In practice, this minimization starts by solving the problem 

as a single machine problem, setting 𝑚 equal to 1. If the 

resulting schedule is proven feasible, it concludes that the 

collection of chargers can be modelled as one machine - 

meaning that all EVs can be fully charged by their due 

dates inside the defined permitted charging hours, while 

allowing only one EV to charge at a time. If the resulting 

schedule is not proven feasible, the program makes a new 

attempt with two machines modelled instead, and so on. It 

continues to add one machine until a feasible schedule can 

be found. 

 

The theoretical maximum for the number of machines is 

the number of EVs parked. If this happens, it means that 

all the EVs need to be allowed to charge at the same time 

for all EVs to be ready by their due dates. Failing a feasible 

schedule with the maximum number of machines, the 

parameters for permitted charging hours (ideally set to the 

eight hours of the night with lowest demand and electricity 

price) must be altered in the program. If implemented in a 

real setting, a capacity related cap should be put on the 

permitted number of machines, if the electrical system is 

not dimensioned for all chargers to draw power 

simultaneously.  

 

To account for the daily changes in the collections of 

parked EVs, it was concluded that each charging schedule 

should be regarded as a snapshot in time - a sensible 

charging plan based on the currently parked EVs. The 

schedule should further be updated once per day, 

considering the new EVs that arrived during the day. Since 

it makes sense both power peak wise and electricity price 

wise to only charge during night-time [8], if possible, the 

schedule only needs to be updated once per day, in the 

evening, before the nightly charging starts.  

RESULTS AND DISCUSSION 

The developed python-program gives a proof-of-concept 

simulation, where certain parameters are set by the user 

depending on the scenario to be explored. In this section, 

we simplify the input parameters for better visualization of 

the results for three example cases. The simulations are 

performed for a pool of six EVs, all with charging needs 

of six hours. The due dates (or rather, the number of days 

until due dates) are randomly generated numbers inside a 

specified interval. In this work, the interval is set between 

one and three, to avoid unnecessarily long example 

schedules. The generated numbers for the three example 

cases are shown in Table 1.  

 
Table 1. The number of days until due dates for three 
example cases (randomly generated between one and 
three). All cases are simulated for a pool of six EVs, all 
with charging needs of six hours. 

 Case 1 Case 2 Case 3 

Due date EV-1 1 3 3 

Due date EV-2 2 3 1 

Due date EV-3 2 1 3 

Due date EV-4 2 3 1 

Due date EV-5 1 3 3 

Due date EV-6 3 3 1 

 

Charging is restricted to the eight-hour time span between 

2200 and 0600 hours, because these are typically the hours 

with lowest demand and lowest electricity price [8]. 

However, users of the code can easily alter this parameter 

to fit their own circumstances.  

 

The resulting example schedules are given in Figures 1 - 

3. The row on top of the schedules represents each EV in 

the EV pool. The column to the far left represents time, in 

hours. Only the hours during the night are shown.  
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Figure 1. Example schedule for charging EVs in case 1.  

 
Figure 2. Example schedule for charging EVs in case 2. 

 
Figure 3. Example schedule for charging EVs in case 3. 

 

The example schedules demonstrate that no more EVs than 

necessary are charged simultaneously at any point. The 

number of machines modelled (i.e. the maximum number 

of EVs charging simultaneously) in case 1 and 2 is two, 

while for case 3 it is three. This is different every time, 

because it depends on the number of EVs, their due dates 

and their charging needs.  

 

Furthermore, it can be seen that the schedules prioritize the 

EVs closest to their due dates first. It is also apparent that 

no charging starts before it needs to in order to reach its 

due date, within the constraint of the number of available 

machines, and the constraint of permitted charging hours. 

The interrupts that occur due to the LRPT principle are 

also well exemplified.  

 

The schedules are based on the EV pool as it is any given 

moment in time. The idea is that an update would happen 

every day, where new EVs arrive and cause adjustments. 

Each EV will gradually be replaced by new ones. This 

means that none of the schedules will realistically be 

followed exactly as they are. It is likely that the 

adjustments to the original schedule will cause some EVs 

to require charging outside of the defined permitted 

charging hours, due to for instance unforeseen charging 

needs of new arrivals with a short due date.  
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The demonstrated optimization measure is relatively 

simple and has a comparatively good ratio between how 

much it costs to implement, and how much there is to gain 

from it. Power peak wise, much is already achieved by 

delaying the charging until night-time, assuming that the 

power peaks occur during daytime [8]. If not, the method 

also works if there is an identifiable daily interval with low 

probability of power peaks occurring. Ensuring that no 

more EVs than necessary are charged at the same time 

fulfils the desire to distribute the demand as evenly over 

time as possible. Lastly, scheduling the charging such that 

no EVs charge before they must in order to complete by 

their due date, increases the chance of fitting all the 

charging hours into the hours with lowest demand and 

lowest electricity price. This makes charging schedules a 

worthwhile optimization measure. Furthermore, the 

charging schedule measure is a significant improvement 

from how it is done today, where the charging of a vehicle 

starts once it is connected to the charger.  

 

CONCLUSIONS 

Smarter charging of EVs parked at airports or other places 

offering long-term parking can be utilized as a measure for 

load shifting. Building on scheduling theory from 

industrial production, this work demonstrates a proof-of-

concept for EV charging schedules. It proposes a system 

that schedules the charging of each EV in the EV pool such 

that all charging is restricted to night-time, if possible, on 

the assumption that power peaks rarely, if ever, occur 

during night-time. No EVs are charged before they must in 

order to finish in time, which increases the chance of fitting 

all charging hours into the defined interval. Provided that 

the EV owner knows when they will be back to collect 

their EV, this can be achieved without affecting the EV 

owners’ interests. It is also ensured that no more EVs than 

necessary charge simultaneously, which will spread out 

the power demand used to charge the EVs and will 

therefore contribute to better grid utilization. For an 

existing parking facility, this optimization measure 

requires no additional equipment, and can be integrated 

into the existing systems at the parking houses.  
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