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Abstract

Data underlying any machine learning model is prone to change over time in a process called model drift. The extent

of change and effect on the model performance should be monitored in production settings to avoid decreasing

predictive performance. This thesis explores model drift in a small case study of occupation classifications based

on text variables from the Norwegian Labour Force Survey. Kolmogorov-Smirnoff drift detection is tested, together

with a novel multivariate approach, using the RV coefficient, to explore local changes within occupation classes.

Drift mitigation is explored using four adaptive methods: fixed-windows, weighting, Hoeffding adaptive trees and

a new targeted matching approach to create training data. Feature drift was detected using both descriptive and

statistical methods for one of the groups explored; a model with occupations of very different natures. Using RV

values, drift was visualized and seen within classes of several of the occupations investigated. Slight decreases in

model performance were observed when models were trained on a fixed, early period. Specific adaptive methods

to learn under drift did not perform better than a generic approach using all data. However, within classes where

gradual drift was visually seen, an adaptive weighting algorithm performed best. In the occupation class that showed

a recurrent drift pattern, the novel targeted matching algorithm performed slightly better than other methods. Further

investigations on how these methods perform on larger classification models are recommended to generalize these

findings.



Sammendrag

Data underliggende enhver maskinlæringsmodell er utsatt for endringer over tid i en prosess kalt modellavdrift.

Omfanget av endringene og effekten på modellens ytelse bør overvåkes i produksjonsmiljøer for å unngå re-

duksjon i prediktiv ytelse. Denne avhandlingen utforsker modellavdrift i en case-studie av yrkesklassifikasjoner

basert på tekstvariabler fra den norske arbeidskraftsundersøkelsen. Kolmogorov-Smirnoff modellavdriftsdeteksjon

testes, sammen med en ny multivariat tilnærming ved bruk av RV-koeffisienten, for å utforske lokale endringer

innen yrkesklasser. Modellavdriftsreduseringen sammenlignes ved fire adaptive metoder: fasttidsvindu, vekting,

Hoeffding-tre adaptive metoder og en ny målrettet matchende metode for å skape treningsdata. Egenskapsendring

ble oppdaget ved bruk av både deskriptive og statistiske metoder for en av modellene som ble undersøkt; en modell

med yrker med svært forskjellige karaktertrekk. Ved å bruke RV-verdier ble modellendring visualisert og observert

innen klasser av flere av yrkene som ble undersøkt. Små reduksjoner i modellens ytelse ble observert når modellene

ble trent på en fast, tidlig periode. Spesifikke adaptive metoder for læring under endring presterte ikke bedre enn

en generisk tilnærming ved bruk av all tilgjengelig data. Imidlertid, innen yrkesklasser der gradvis endring visuelt

ble observert, presterte en adaptiv vektingsalgoritme best. I yrkesklassen som viste et gjentakende endringsmønster,

presterte den nye målrettede matchende algoritmen noe bedre enn andre metoder. Videre undersøkelser om hvordan

disse metodene presterer på større klassifikasjonsmodeller anbefales for å generalisere disse funnene.
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Chapter 1

Introduction

1.1. BACKGROUND

Statistics Norway is the National Statistic Institute (NSI) for Norway, tasked with producing the majority of the

country’s official statistics. This includes everything from calculating the percentage of children without holes in

their teeth, the average income for a nurse, to the number of potatoes grown, and the price of all exported oil. The

statistics produced form an integral part of policy and decision-making for the country. The processes involved in sta-

tistical production vary as widely as the subject areas and include project planning, data collection, data editing and

imputation, estimation and confidential protection. Statistics Norway follows a series of principles established by the

European Union when performing tasks, which include a commitment to quality and ensuring sound methodology

[1].

There is increasing interest in machine learning (ML) algorithms, like classification models, within NSIs for solv-

ing some of the challenges faced when producing statistics. Classification is a process that has gained considerable

attention [2]. ML algorithms are data-driven ways to build classification models that are more robust than rule-based

methods and require fewer ongoing resources than manual classification. However, ML classification models are

often trained under static conditions and are susceptible to performance decreases in dynamic environments where

data is evolving. Research into new methods for learning in dynamic environments is therefore important to ensure

high accuracy in models used in production settings where data is changing.

Text classification problems are generally high dimensional and often susceptible to changes. The language we

use in society is constantly evolving. New concepts, words and phrases may suddenly appear, for example in the

case of ”covid”, or be introduced gradually over time. Other words will change their meaning or die out. Language

processing and models must therefore also adapt in these dynamic systems.

Many new ML algorithms, designed to handle dynamic systems, have been presented in the literature in recent

years [3, 4, 5]. With this increase in interest comes more choices for implementation. There is a lack of guidelines and

frameworks for choosing between the ML classification models in dynamic environments, making implementation
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increasingly overwhelming for statisticians at NSIs. Additionally, these algorithms have often been tested on limited

synthetic data and most have no or sparse testing on text classification problems.

1.2. MODEL DRIFT

Model drift refers to changes in the underlying data distribution of a learned model, through time [6]. This phe-

nomenon is sometimes referred to as dataset shift [7, 8], and can be a serious challenge in production settings that

assume static environments. In most cases, the performance of a model will degrade with time, known as model

degradation [9]. Because of this, there has been considerable focus on the topic in the last decade, with research on

defining the causes, developing detection methods, and adaptive algorithms to mitigate its effects [5].

Model drift can be organized into two general groups: concept drift (or real drift) and virtual drift [10]. These

refer to what is changing in the underlying data. Consider the joint distribution Pt(y,x) in a classification problem

where t, represents a specific time point, y is the target, class variable, and x is the set of features in the model.

According to Bayes decision theory, the joint distribution can be written as Pt(y|x)Pt(x) when the target variable y

can be causally determined by the features x. If there are changes in the distribution of the features, P (x) without

changes in the conditional distribution P (y|x), this is often referred to as virtual drift [10]. In this case, conditional

distributions are equal at two time-points Pt(x|y) = Pt+1(x|y) while Pt(x) ̸= Pt+1(x), where t + 1 is a specified

time point after t. This may be caused by a dynamic environment, changes in the processing of the upstream data

(known as upstream drift), or changes in the selection probability of the feature data [11]. While the conditional

probability isn’t affected in virtual drift, it can result in inadequate amounts of training data at specific ranges in the

data leading to decreases in model prediction [12].

In contrast, concept drift refers to when the conditional distribution P (y|x) changes, resulting in decreasing

model performance if not addressed. Common causes of this include seasonality, changing personal preferences,

quality of materials and language evolution [9, 13]. In addition, upstream processes, such as changes in secondary

data sources used in data pre-processing, can influence the relationship between features (x) and the target classes

(y) leading to (upstream) drift. This type of drift is generally not considered true concept drift. Lu et. al. [5] describe

two underlying mechanisms that result in concept drift. Firstly, it can be a change only in the conditional distribution

whereby P0(x|y) ̸= P1(x|y) yet Pt(x) = Pt+1(x). In classification tasks this results in a shift in the decision

boundary (Figure 1.1). A second mechanism is when both P (x) and P (y|x) change so that Pt(x|y) ̸= Pt+1(x|y)

and Pt(x) ̸= Pt+1(x). In this case, the system has a high complexity and dynamic nature. In 2012, Moreno-Torres

et. al [11] describe this scenario only briefly and note that they consider them nearly impossible to solve. However,

in production settings, this is the likely underlying situation.

A third type of drift is mentioned sporadically in the literature as prior-probability shift [9]. This is when there is

a change in the class distribution, Pt(y) ̸= Pt+1(y) and occurs when new classes appear, evolve or disappear. This is

common in classification tasks within NSIs as both national and international standards change on occasion. While
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Fig. 1.1: Model drift patterns showing original with no drift (left), virtual drift (center) and concept drift (right).
Two classes are shown: class 1 ( ) and class 2 ( ), with a decision boundary shown between them. This decision
boundary is identical in virtual drift, even though the distribution has changed. The decision boundary changes
when concept drift occurs.

this is an important consideration in classification problems, it is not a focus in this thesis.

The transition of the drift pattern will play a role in how easy it is to detect the change and how the learning

algorithm should adapt. Bayram et. al [9] describe four main drift transition types: sudden (or abrupt [14]), gradual,

incremental and recurring (1.2). Sudden drift occurs when there is a fast concept change, for example, the appearance

of the term ”covid tester” when describing occupation in 2020. In text contexts, this usually represents the sudden

appearance or sudden disappearance of a new term. In contrast, gradual drift occurs when a new concept replaces

an old one over a longer period [15]. For example, the word ”pre-primary” was commonly used to refer to children

before school age, however, in more recent years has been replaced by ”early childhood”. Similarly, incremental

drift is where an old concept gradually changes over an extended time. For example the word ”monster” was often

associated with books about monsters in receipt data, however, in more recent times is more associated with the

energy drink brand. These first three drift types are regarded as permanent [10], where the concept change does

not revert to a previous conditional relationship. The final drift type, recurring drift, refers to drift patterns where

changes in concepts return to previous states. This cyclical nature can be periodic, for example, the names of

Christmas products sold in shops, or may occur at random intervals [16].

The ability to detect when a drift is occurring is an important part of performance monitoring to ensure the

quality of the predictions. It has gained considerable attention, with a review by Bayram et. al. in 2022 listing

more than 60 drift detection methods [9]. Many of these focus on changes in performance metrics to detect changes.

However, performance metrics require fully labelled data which is not always available in the case of automated

classification tasks. In contrast, detection methods focusing on changes in the distribution of the features (x) have

the advantage of not requiring labelled data. The Kolmogorov-Smirnov test (KS) is a traditional, non-parametric

test from the 1930s that has made a resurgence as a drift detection method in recent years [17, 18, 19]. This method

was extended by Dos Reis et al. [20] who proposed a speed-up of the efficiency of the algorithm to allow it to be

used in an online context. Other popular algorithms used for drift detection based on feature distributions include the

3



Fig. 1.2: Model drift transitions showing sudden (top), gradual (middle-top), incremental (middle-bottom and
recurring (bottom).

population stability index [21], adaptive windowing (ADWIN) [22] and Least squares density difference [23]. All

these methods take a univariate approach and extending them to a multivariate case generally involves a conservative

penalty, often reducing their efficiency. The lack of multivariate approaches is particularly a problem with text

classification tasks that regularly have thousands or more features.

An alternative approach for drift detection could be to use a multivariate technique. The RV coefficient is a

similarity measure between two sets of observations; a matrix correlation coefficient [24]. While more commonly

associated with comparing data on the same individuals over time, it provides a multivariate approach to compare

similarities, not seen in other drift methods. We therefore test it in this novel context to explore drift detection and

explanation in text data in this thesis.

1.3. LEARNING WITH DRIFT

Lu et. al. [5] discuss the problem of learning under drift in terms of three key areas: drift detection, drift under-

standing and drift adaption. Drift detection, as discussed in the previous section (section 1.2), refers to methods that

try to determine if changes are occurring in features (P (x)) and concepts (P (y|x)). Drift understanding refers to

exploring when, how and where the drift is occurring. This is important to decide the best adaption strategy. Most
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drift detection methods have a built-in trigger mechanism that specifies the time point of a change. The other aspects

of understanding are not as well researched in the literature and include the severity of the change, and where in

the data it is occurring. Drift detection methods that compare the distribution of the features (P (x)) will sometimes

calculate a distance that indicates the severity. However, this is often not communicated directly to the user in pack-

aged algorithms and doesn’t always reflect the severity of the impact on the model. There has been some research

on monitoring local error rates in decision trees to address more specifically where drift is occurring [25]. However,

this has not been extensively studied or implemented into the main public domain drift packages. In contrast, the

final area of learning under drift (drift adaption), has been well studied in the literature. The remaining paragraphs

in this section discuss drift adaption and the various approaches that have been proposed in the literature.

Retraining is by far the most popular method for combating model degradation. It involves gathering new

labelled data and feeding it into an algorithm to use for new predictions. It will generally boost the performance for

that time period (see Figure 1.3) but raises also the question of how much data to use for the training process.

Fig. 1.3: Model degradation (left), and model degradation with retraining (right). Three retraining time points are
given ( ).

Over time, the algorithms should both learn from newly trained data and have some system to forget data that

is no longer needed. Grossberg [26] was the first to describe this stability-plasticity trade-off. The algorithm should

maintain the information it has previously learned which is relevant for the classification problem, or potentially

relevant in the future (stability) while outdated information should be replaced with new knowledge (plasticity)

[16, 9]. Different algorithms solve this balance in different ways.

Window-based approaches are common in adaptive learning [5]. These involve using a pre-defined time-width

interval for training the algorithm. For example, all data from the most recent year may be used to train the algorithm

to predict the next time period. A small window will likely contain the most relevant data as generally, data from

the nearest time period will be most similar to that which is being predicted. However, a larger window will include

more data, which in stationary environments will produce higher model performance. Deciding the window size can
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be challenging which has led to adaptive window approaches such as the popular ADWIN (adaptive windowing)

algorithm [22]. This increases the window size automatically when there is little drift and decreases it in times of

change.

A similar approach to windows is the use of weighting training data. Again, labelled data collected at closer

time points will generally be better at predicting classifications when there is a dynamic environment. Data closer to

the time-point being predicted are therefore weighted higher than those further away. Weighting can be at a global

level or combined with window techniques for local adaptation. These approaches have also been used to adapt at a

spatial level [27].

Another new approach is to create training data that is most similar to the batch being predicted rather than

simply using that which is the most recent. This approach was presented by Mallick et. al. using their Matchmaker

algorithm [4]. Results from their work showed both accuracy and speed improvements. Since the algorithm is not

implemented using open-source software, it is not considered further in the thesis.

Elwell and Polikar [16] classified adaptive learning algorithms into two groups; active and passive learning. In

active learning, a drift detection mechanism runs to determine when the algorithm should actively learn. In contrast,

passive learning refers to approaches where models are continuously updated. The ADWIN algorithm is an example

of an active learning approach as it has a drift detection mechanism to determine the window size. In contrast, a

fixed-window learning approach is an example of a passive learning approach. In general, active approaches may

work best when there are sudden drift changes and it is clear when the change occurred to base new training data on.

Comparatively, passive approaches may be preferred when there is gradual drift as this type of drift is often harder

to detect and it is less clear what period of training data to base the new model on [10].

Adapting the training data through retraining with windows, weighting or matching isn’t the only way to mitigate

drift. Lu et. al [5] mention two additional approaches to adaptive learning: ensemble methods and adaptive models.

Ensemble methods involve reusing older models that are extended or use adaptive voting rules. Ensemble methods

are particularly popular in drift settings as the models are easily updated with new learners being added or removed

without much extra computation or optimization. Gomes et. al. [28] proposed an adaptive Random Forest algorithm

for classification problems in the presence of concept drift known as Adaptive Random Forests (ARF). These use

a drift detection (for example ADWIN) per tree, together with re-sampling techniques to update in evolving data

scenarios [28]. An alternative to adjusting the ensemble itself is to adapt the voting procedure. This idea was

presented as a weighted majority in Littleston and Warmuth [29], whereby ”expert” learners, that often predict

correctly, are weighted higher than others. This idea was utilized by Kolter and Maloof [30] in their Dynamic

Weighted Majority (DWM) algorithm. It maintains a weighted pool of ”expert”, base learners which is added to if

the global algorithm makes a mistake. If an ”expert” makes a mistake then its weight is reduced and may be removed.

The Learn++ Non-Stationary Environment algorithm (Learn++NSE) was a significant further development of this,

where voting depends on a time-adjusted accuracy [16]. It has been shown to perform well on a range of drift rates
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and types including recurrent patterns, which are often very difficult for adaptive methods to learn [16].

A final approach for adaptive learning is adaptive models. The Very Fast Decision Tree learner (VFDT) is an

example of this where the model itself adapts. VFDT uses decision trees and a Hoeffding bound to decide how

many examples are needed to split each node [31]. It is very efficient for use on big data streams due to its online

approach where examples are only ever processed once. This was extended by Hulten et. al. specifically for concept

drift scenarios in the Concept-adapting Very Fast Decision Tree learner (CVFDT) [32]. Bifet and Gavalada [33]

also extended the VFDT further by enriching it with an active change detection mechanism to create an adaptive

approach which they called the Hoeffding adaptive tree.

Several authors have acknowledged the lack of framework around adaptive learning [10]. For those working

in NSIs, tasked with setting up and testing ML classification algorithms, there is little guidance on which methods

perform best under which drift conditions. New studies in this area often focus on creating more efficient techniques,

particularly for big data streams. While some NSIs are using new large data sources, the majority of official statistics

are produced on smaller, more stable batched-type data. Guidance on choosing these methods is lacking. Barros et.

al. performed a large comparison study on concept drift but with a focus on drift detection methods [14]. The data

sets used included a small number of numerical features and not textual data where there can be many thousands

(or millions) of features in sparse matrices. When Gomes et. al. [28] presented their popular ARF algorithm, only

one of the 16 test data used was textual and this was dropped from most of the analysis, due to memory difficulties.

This seems to be common in comparative studies on model drift as it is generally easier to simulate numerical data.

One comparison study that did include textual data classification was again limited to drift detection methods and

not extended to adaptive approaches [13]. Of the example data used for drift experiments mentioned in Lu et. al.

[5], none of the synthetic data was textual and the three real-world data with realistic feature numbers for textual

analysis (>1000) were two-class problems. Text classification problems in NSIs are generally multi-class by nature

with the intent of classifying to an existing (often international) classification framework. This lack of knowledge

on how adaptive algorithms perform in this context is a key area that this thesis aims to address.

Finally, the ability to easily implement an adaptive algorithm on an NSI’s data platform is crucial. NSIs often

have large and rigid IT systems with limitations on what programming languages may be supported and limited

access to license costs. Some new algorithms are presented by proprietary businesses [4] and may therefore not

be easily implemented in NSIs where IT infrastructure may be both complex, but also limited in the options for

language/tools allowed. MOA (Massive Online Analysis) is a popular open-source implementation framework that

includes tools for learning in dynamic environments [34]. It has a huge array of implementations of algorithms. The

software is written in Java and is therefore not easily implemented at Statistics Norway. The focus of this thesis

is therefore on methods that are implemented in the open-source language Python where modules can be easily

integrated into Statistics Norway’s data platform.
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1.4. CASE STUDY: OCCUPATION CLASSIFICATION IN THE NLFS

The Norwegian Labour Force Survey (NLFS) is a large, interview-based survey, that collects information to produce

key statistics on the Norwegian labour market. The occupation of participants is classified based mostly on responses

from open questions that are transcribed to text variables. While the classification task is currently done using mostly

manual coding by a team of people at Statistics Norway, ML algorithms have been initially tested in pilot projects.

However, NLFS is a long-running survey and it is important to consider how much drift has occurred in the data

and how this might affect the performance of the ML algorithms. For example ”ekspeditør” was a common word

to describe a shop assistant before 2000, but has been almost entirely replaced by ”butikkmedarbeider” in recent

years. Determining the extent of this type of change and how it affects static models is important to assess before

any implementation in a production setting. In addition to potential concept drift, changes in the production setting

can lead to upstream drift. By comparing adaptive approaches to learning we hope to determine the best approach

for classification in this type of NSI setting.

1.5. AIM OF THIS THESIS

The overall aim of this thesis is to investigate drift patterns in occupation data from the NLFS and to compare

adaptive ML approaches for occupation classification models. A holistic approach is taken to explore learning

under drift, looking at all 3 of the main areas; drift detection, drift understanding and drift adaption. For this

task, we have chosen to reduce the scope to 2 classification models, each with 4 occupation classes. One model

(referred to as Group A) uses 4 occupations with very diverse occupations while the other (Group B) includes more

similar occupations. These groups provide a proof-of-concept, case study for testing drift detection, visualization

and adaption techniques. The following research questions will be addressed in this thesis:

RQ1: Is drift occurring in the chosen occupation groups?

The first objective is to determine if drift is occurring in the data for the occupation groups chosen. We have a

time series of 27 years and we want to see if occupations have been described in changing ways during this time.

RQ2: How does drift impact the performance of the occupation classification models?

In addition to investigating whether drift is occurring, we want to find out if these changes would affect the model

performance. This will let us determine if drift patterns are of a concept drift type of virtual drift, without affecting

the relationship between features and class (p(y|x)).

RQ3: How well do standard adaptive approaches including fixed-window, weighting, and Hoeffding adap-

tive trees, mitigate drift in our occupation classification problem?

Given that Statistics Norway is interested in using a classification model in a production setting, we are interested

in determining which of these 3 approaches is best suited to our occupation classification problem. In the presence

of drift, can these approaches help our classification model adapt to changes?
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RQ4: Can our novel implementation of targeted matching create better training data to mitigate drift

effects in occupation classification models compared to standard approaches?

Our final objective is to implement a new targeted matching algorithm to create more relevant training data. We

compare the performance of this method against standard tools for adaptive learning to see if this approach performs

better under drift conditions.

This thesis is organized into the following sections. Chapter 2 describes the data, methods and algorithms tested.

Chapter 3 gives an overview of the results from the two occupation models with case studies of four dissimilar

occupations and four similar occupations. A discussion of these results is given in chapter 4 and the final chapter 5

provides some concluding remarks.
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Chapter 2

Methods

Model drift poses significant challenges in maintaining model performance over time. As a consequence, a robust

strategy for model adaptation and monitoring should be used. The following chapter outlines the methodologies used

in this thesis research. Our data is described in further detail followed by an outline of the pre-processing techniques

used for the textual data. The methods for visualizing changes in the data and determining critical deviation points

are defined. An explanation of the model tuning and adaptive learning approaches is then given.

2.1. DATA: THE NORWEGIAN LABOUR FORCE SURVEY

The Norwegian Labour Force Survey (NLFS) is a large, quarterly, sample survey, run by Statistics Norway since

1972 [35]. Residents are interviewed about their labour market activities to establish statistics for the country’s

unemployment rate, the number of people in and outside the workforce and the number of hours worked. Around 24

000 people, between the ages of 15 to 89 years, are invited to participate in the survey each quarter. The survey has

a rotating panel design, meaning there is around 3000 new participant each quarter, while the rest have been part of

the survey in previous quarters [36]. The data is used for both national and international statistics and is regulated by

law including its precision requirements [37]. It is of high interest to policymakers, economists, private companies

and researchers.

Statistical indicators are divided into domains such as regions, age, sex and occupation. These domain variables

are collected at the time of the interview or linked from administrative data shortly after. Occupation is collected from

the interviewer, and written as free text (in Norwegian) based on self-reported occupation and the main activities for

the person’s job. The text is then classified to the Norwegian occupation standard (STYRK-08); a standard based on

the International Standard Classification of Occupations (ISCO-08) [38, 39]. The STYRK-08 occupation standard

was first published in 2011, however has some similarities in structure to the previous standard (STYRK-98). The

previous STYRK-98 was introduced into the NLFS in 1996. Before this, a national standard for occupation was used

which differs significantly from both STYRK-98 and STYRK-08 [40]. This early standard is not discussed further
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in this thesis.

Fig. 2.1: Example of the hierarchy of the four-digit in the occupation standard (STYRK-08) for early childhood
teachers.

The STYRK-08 occupation standard is hierarchical and consists of 4 digits. Figure 2.1 provides an example

of an occupation code 2342; the code for early childhood teachers. The first digit indicates which of the 10 major

groups the occupation belongs to (see Table 2.1). The job’s required skill level is a main consideration in defining

the first-digit groups. Within each major group, occupations are grouped into sub-major (2nd digit) and minor (3rd

digit) groups. These groupings have been established based on the job’s skill specialization, i.e. the knowledge

required, and/or the tools, materials and goods used and produced [39].

Table 2.1: Description of the 10 major occupation groups in STYRK-08.

First
occupation
digit

English description Norwegian description

0 Armed forces and unspecified Militære yrke og uoppgitt
1 Managers Ledere
2 Professionals Akademiske yrke
3 Technicians and associate professionals Høyskoleyrke
4 Clerical support workers Kontoryrke
5 Service and sales workers Salgs- og serviceyrke
6 Skilled agricultural, forestry and fishery workers Bonder, fiskere mv.
7 Craft and related trades workers Håndverkere
8 Plant and machine operators and assemblers Prosess- og maskinoperatorer, transportarbeider mv.
9 Elementary occupations Renholdere, hjelpearbeidere mv.

The current method of classifying occupation text to the STYRK-08 standard for the NLFS includes manually
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choosing a classification category based mostly on text variables collected in the interview. Variables include the

company name, company activity, self-reported occupation, and the main tasks of the job. The questions have been

consistent since 1996, despite changes to other questions in the survey [41, 42, 43]. They are generally asked and

written in Norwegian, however, occasionally respondents are recorded in English. The following questions (with

variable names in bold) are asked in the survey:

• (B NAVN1) Hvor hadde du arbeid i uka X? Vi ønsker navnet på bedriften. (Where did you work in week X?

We want the name of the establishment).

• (B ART1) Hva slags virksomhet drives i bedriften? (What is the main activity of the establishment?)

• (Y TITL1) Hva er ditt yrke i denne bedriften? (What is your occupation in this establishment?)

• (Y TEK1) Hva er dine viktigste arbeidsoppgaver? (What are your main tasks?)

The responses to these questions provide the text used in the classification models in this thesis. These questions

are asked multiple times if a survey participant has more than one job. We have chosen to only use data from the

main job. We have also chosen to only include the first instance of the occupation for each participant. The NLFS

is a panel design and individuals participate a total of 8 times. They are only asked the four questions above in the

first interview; in subsequent interviews, occupation information is copied from the previous quarter if they have

remained in the same job. This will therefore only appear once in our data. If the participant has changed jobs, they

will be asked the questions again and this will be included in our data.

In addition to the text variables from the interview, coders have (in recent years) access to register information.

While we have chosen not to include this information in the classification models, it can introduce drift to our data.

Changes occurring in the register information available to those coding can affect how the occupation is classified.

Previous studies have shown that when a classification code is available, coders are more likely to choose that

provided, compared to when coding blindly. This is a part of the upstream data processing which can introduce

upstream drift. The following paragraph describes the register data used by the coders and provides background

information on the upstream data processing.

Since 2015, participants in the NLFS have been linked directly to the information in the A-ordning register using

personal identification numbers. The A-ordning register is a coordinated system between Statistics Norway, the

Norwegian tax authority (Skattetaten) and the Norwegian Labour and Welfare Administration (NAV). All employers

must report information on employees’ hours worked, earnings and occupation every month [44]. Employers report

occupation in the older standard (STYRK-98) but with an additional 3 digits; a 7-digit code. These are then converted

to 4-digit STYRK-08 codes. Prior to 2015, register information on occupation from the Arbeidsgiver/arbeidstaker

register (Aa-register) was linked to the NLFS. This register was maintained by the Norwegian Labour and Welfare

Adminstration (NAV) and had compulsory requirements on registering workers. A copy of the register was sent
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to Statistics Norway every week. From 2001, it was compulsory for companies to report occupation codes for

their employees to the Aa-register [45] except for those working for municipalities and the government. They

reported job titles rather than occupation until 2007 for municipality workers and until the introduction of A-ordning

for government workers [40]. The quality of the occupation codes was challenging in the beginning but with the

introduction of both automatic an manual controls and coding, improved over the first years [46]. Several challenges

remained before this register was phased out, replaced by the A-ordning. The occupation codes in the registers are

based on those provided by companies and are generally still associated with the position description rather than

tasks completed by the worker. Therefore, they are still limited in quality as they consider the actual tasks performed

by the person.

The data used in this thesis is based on occupation classifications from the Norwegian Labour Force Survey

(NLFS) for a period of 27 years; from 1996 to 2022. A selection of 8 occupations were chosen to use in this thesis

to build 2 classification models. Four of the occupations were significantly different from one another (referred to as

Group A) and occurred with relatively high frequencies providing a good amount of data in all years. The other four

were more similar (Group B) and were less frequent, yet still present in all years of the data. These groups provide

a proof-of-concept, case study for testing drift detection, visualization and adaption techniques. Table 2.2 provides

a description of the 8 occupations and the number of observations in our data.

Table 2.2: Description of the 8 occupations used in this thesis

Occupation
code
(STYRK-
08)

Occupation description
(STYRK-08)

Previous oc-
cupation code
(STYRK-98)

Privous occupation de-
scription (STYRK-98)

Number of ob-
servations

Group

2224 Registered Nurse for
the Mentally Subnormal
(RNMS)

3232 RNMS 1373 A

2342 Early childhood teachers 3320 Pre-primary educa-
tion teaching associate
professionals

3577 A

4322 Production clerks 4132 Logistical clerks 1084 A
6130 Mixed crop and animal

producers
6130 Crop and animal produc-

ers
3809 A

3151 Ship engineers 3141 Ship engineers 578 B
3152 Ships deck officers and

pilots
3142 Ships deck officers and

pilots
1068 B

3153 Aircraft pilots and re-
lated associate profes-
sionals

3143 Aircraft pilots 268 B

5111 Travel attendants and
travel stewards

5111 Travel attendants and
travel stewards

302 B
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2.2. TEXT PRE-PROCESSING

The four textual variables mentioned in 2.1 were used to learn prediction models for occupation classification.

However, text variables cannot be directly sent as input to models. They need to be pre-processed and tokenized to

create features that can be read as input to the model. Pre-processing and feature engineering are vital parts of model

building based on text variables and can have effects on model performance. In this section, we outline the steps

taken to process the textual data.

2.2.1. Cleaning texual variables

Text variables were cleaned by first removing all numbers. While in some settings numbers in text strings may be

useful, in many contexts they will contribute to excessive features after tokenization with little effect on performance.

While some studies have shown this pre-processing step may not specifically improve a model’s performance [47],

decreasing the number of features can still improve the speed of a model and we have therefore chosen to remove

them completely.

Next, special characters and symbols were replaced with a space. In many situations, the description of the main

activity was described as a list, separated by commas, dashes, periods or forward slashes. As we want our model

features to be extracted from clean words, it was important to replace them with a space so that meaningful words

could be used. During this process, double spaces may be introduced in the texts. We removed all double spaces

with single ones at this point.

When features are created from text, the process is case-sensitive. This means that the word ”Barnehage” will be

considered as a completely separate feature from the same word without an uppercase: ”barnehage”. We therefore

converted all text to lowercase before further processing. See Figure 2.2 for an example of the pre-processing stages.

Text cleaning was performed using the statistical program, R [48], and the tm R-package for text mining [49].

2.2.2. Removal of stop words

Stop words are words that are commonly used in text but generally don’t help in natural language processing (NLP)

tasks like our occupation classification problem. Examples of stop words include ”and” and ”of” in English or ”og”

and ”av” in Norwegian. These help the reader understand the context and enable the flow of the text. However, as

they are often not useful for solving classification and other NLP tasks, they are generally removed from textual data

before feature extraction. This aims to better promote features with meaning and can improve the performance of

the model [50].

There is no universal list of stop words, as they are language (and in some cases context) dependent. However,

attempts have been made to create commonly used lists of stop words, that can easily be used by others in pre-

processing. A common such repository of stop words is the snowball repository [51] which is implemented in the
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Fig. 2.2: Example of text pre-processing stages for a given example.

tm R-package [49]. This includes 176 commonly used Norwegian stop words which we have removed from our

text. One word in the list was not used as it can be associated with an occupation. The word ”dykk” means ”your”

in Nynorsk however is also the root form for the verb to dive. As this word may be used to describe occupations

where diving is involved we chose to remove it from the stop word list. An additional word ”as” was added to the

stopword list. This is the abbreviation used to indicate a limited liability company (”Aksjeselskap”). As we used the

company name in the classification models, ”as” occurred very frequently and had no real value in the models and

was therefore removed. For a full list of stop words used see Appendix A.

2.2.3. Stemming

The process of stemming aims to return a word to its root form. A word can have many different forms, for example,

in many languages verbs are conjugated to give context on when and by whom the action occurred. Stemming is an

important part of pre-processing to align similar words with different forms. Again, this alignment results ideally in

fewer, more meaningful features. Figure 2.3 shows the number of words in the corpus with and without stemming

for the 8 occupations. We can see that stemming reduces the number of words slightly in our data.

Norwegian is no exception when it comes to using multiple forms of words to express context. Verbs are

conjugated based on when the action occurred (but not by the object doing the action). For example, ”pleie” is the

verb to care for which changes to ”pleier” in the present tense and ”pleid” in the past tense. Norwegian declension

is rather intricate, involving alterations in nouns based on factors such as singular or plural forms, definiteness, and

the gender of the noun. To illustrate this, the Norwegian word for child ”barn” changes to ”barnet” in the definite

form when referring to a specific child, or ”barna” when referring to plural, specific children. In addition to nouns

15



(a) Group A

(b) Group B

Fig. 2.3: Number of words in the corpus each year for 8 occupations. Corpus size is given with and without
stemming.
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and verbs, Norwegian has alterations in adjectives, adverbs and superlatives. Stemming tries to find the root of all

these types of words. Figure 2.2 gives an example of the pre-processing stages including stemming.

The majority of text in the occupation descriptions is in Norwegian. We used the Porter stemming algorithm

implemented in the R-package tm [49]. This algorithm works by stripping the suffix of words using a rule-based

system to find the root word [52]. It was originally designed for the English language but has been adapted for

other languages including Norwegian. The stemming in this implementation does not always result in meaningful

and real words. For example, ”barnehage”, meaning kindergarten in Norwegian, is a compound word made up of

”barn” (child) and ”hage” (garden). This stems to ”barnehag” which while isn’t a real word, will reduce variations

(for example ”barnehager”) down to the same root. Verbs in Norwegian are reduced not to the infinitive form as in

English but to the imperative form. For example, the verb ”lære” (to learn), stems to ”lær”, which is a command.

The word ”lærer” is both a noun (teacher) and a verb (learn) in present form. Stemming doesn’t consider the context

of the word and in this case, stems the word as if it is a verb. While this is not necessarily the correct root of the

word, the process still aids in reducing the number of features created that have identical or very similar meanings.

2.2.4. Tokenization

Tokenization is the process of converting a corpus of text into a matrix form. This is the matrix of features (x) that is

then utilised to train the models. ”Bag-of-words” is one simple way to achieve this by counting up the occurrences

of each word in a text string. This is performed for each text in the data to form the matrix. Table 2.3 provides

an example of this process. The matrix will generally be sparse with many zeros and a handful of ones and higher

integers scattered throughout.

Table 2.3: Example of pre-processing and tokenization of text using ”bag-of-words”

Original text Pre-processed text Bag-of-words
pass barn barnehag barnehagelær

Passer på barn pass barn 1 1 0 0
Passer på barn i barnehage pass barn barnehag 1 1 1 0
Barnehagelærer barnehagelær 0 0 0 1

We performed tokenization with ”bag-of-words” using the cleaned versions of the three variables for occupation.

The variables were pasted together prior to tokenization, into one string. Additional white spaces were removed prior

to tokenization.

An advantage of ”bag-of-words” is its simplicity, however, there are some disadvantages. The order of the words

is lost in the process which can considerably reduce the meaning of the text. An alternative is to use combinations

of words (n-grams) where several words are used to create features. In this way, the order of the words is partially

preserved. The data on occupation codes is relatively short and there are not many instances where the order of the

words would change the meaning and therefore occupation code. Additionally, using word n-grams increases the
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number of features creating larger matrices and more complexity. This was therefore not pursued further.

A larger problem in our data is the presence of spelling errors and abbreviations. For example, ”Data prog.” and

”Data programmer” will result in different features although referring to the same activity. A way to address this is

to create tokens based on a small set of letters, sometimes referred to as k-grams. Table 2.4 Shows an example of

using 3-gram characters to build tokens. This may be done using spaces (as represented by ” ” in the example in

Table 2.4 or not. Müller [53] explored both word n-grams and character k-grams in a classification task at Statistic

Norway with similar short text descriptions. He found that k-grams performed best in this context, with a range of

2 to 3 characters, a similar result to other text classification tasks of this type [54]. We tested both word and 3-gram

character tokenization of our text variables in this thesis.

Table 2.4: Example of pre-processing and tokenization of text using 3-gram character tokenization.

Original text Pre-processed text 3-gram
pas ass ss s b ba bar arn ... lær

Passer på barn pass barn 1 1 1 1 1 1 1 ... 0
Passer på barn i barnehage pass barn barnehag 1 1 1 1 2 2 2 ... 0
Barnehagelærer barnehaglær 0 0 0 0 0 1 1 ... 1

2.2.5. Weighting of terms - TFIDF

A challenge seen in the tokenization process is that common words get a lot of weight. Words such as ”jobber” (work)

may occur often in occupation descriptions but not contribute to the performance of the classification model. Term

frequency-inverse document frequency (TFIDF) is a method to weigh the tokenized data to overcome this problem.

The idea of weighting words/terms differently is not new and has been around for at least 25 years [55, 56]. The term

frequency part (tf ) refers to the number of occurrences of a specific word or n-gram/k-gram (t) within the string or

document (d). This is multiplied by the inverse document frequency (idf ) which is the inverse of the proportion of

documents (d) with that term (t), where nd is the number of documents/observations in the data.

TFIDF (t, d) = tf(t, d) · nd

df(t, d)
(2.1)

Variations on this have been developed over the years, but this technique is still commonly used in NLP problems

like our classification task. We implemented this in Python using scikit-learn [57]. This uses a variant of TFIDF

where

idf(t, d) = log
1 + nd

1 + df(t, d)
(2.2)

TFIDF (t, d) = tf(t, d) · (idf(t, d) + 1) (2.3)
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TFIDF was implemented using the TfidfTransformer class in the sklearn.feature extraction.text module. This trans-

formation also simultaneously normalizes the data [58, p. 266]

2.3. DRIFT DETECTION METHODS

In recent years, the number of drift detection methods has exploded [5]. Many of the newer techniques focus on

online methods used on big data streams [9], however, data used in NSIs is often small and in batches, as is the case

for the data used in this thesis. We therefore explore the use of two methods, both designed for comparing data in

batches: Kolmogorov-Smirnov (KS) and RV.

The Kolmogorov-Smirnov (KS) test is a non-parametric technique to compare the distribution of two samples.

It is named after Andrej Kolmogorov and Nikolai Smirnov from their work in the 1930s and 1940s [17, 18]. While

an older technique, it has gained new interest in recent years in the context of model drift detection [20]. As a

non-parametric test, it makes no assumptions about the data distribution but instead tests for whether two samples

come from the same underlying distribution. It is a significance test, the Null hypothesis being that the two samples

come from the same distribution. The KS test statistic (D) is calculated as the maximum distance between the two

empirical cumulative distributions [59]. This is compared to a null hypothesis distance (D∗) calculated as

D∗(d) =

(√
ne+ 0.12 + 0.11/

√
ne

)
· d (2.4)

where d is the observed value and ne = n·m
n+m where n and m are the sizes of the two samples [59]. The significance

level can then be calculated using a function, Q for the probability that the null hypothesis is false:

P (D > d) = Q(D∗(d)) (2.5)

as defined further by Stephens [60]. The KS test allows us to compare feature distributions and determine if they

come from the same underlying distribution, assuming a static, non-drifting environment. A significant result in-

dicates there is drift at that point in time. This method takes a uni-variate approach, so an adjustment is made for

multivariate situations. Implementation was done in Python using the alibi-detect package, which uses a Bonferroni

correction to adjust the significance level of the test statistic [19]. The Bonferroni adjustment aims to preserve the

global type I errors (false positives) to the specified significance level for the tests. It does this by dividing the sig-

nificance level (eg. α = 0.05) by the number of tests, ensuring the significance but in a known conservative manner

[61].

We implemented the KS drift detection in two ways: 1) with a fixed reference point for vectorization, using a

continuous detection model, and 2) using a moving reference for vectorization and new detection models each year.

A significance level of 0.05 was chosen.
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The RV coefficient is a multivariate extension of Pearson’s correlation coefficient and was first described by

Escoufier in 1973 [62]. It is a way to measure the relationship between two matrices for a set of subjects [24]. The

RV coefficient is not generally associated with measuring drift patterns, however, we test its use in this novel setting

with our time series of textual classification data. An advantage of using the RV coefficient is that it is specifically

tailored for multivariate data, as is the case for processing textual data. If X is a n x p matrix and Y is a n x q matrix

then the RV for the two matrices can be calculated as

RV (X,Y) =
tr(SXYSYX)√
tr(S2

XYS2
YY)

(2.6)

where SXX is the empirical covariance matrix of X defined as

SXX = (1/(n− 1))X′X (2.7)

(SYY) is the empirical covariance matrix of Y as

SYY = (1/(n− 1))Y′Y (2.8)

and the empirical covariance matrix of X and Y (SXY) is

SXY = (1/(n− 1))X′Y (2.9)

The method is often used to compare a set group of subjects with different sets of variables or at different time

points. The matrices must have the same number of rows (n). In our case, we are interested in comparing the

matrices of a set of words or features. We therefore transpose the data before calculating the RV to attain two data

sets with an equal number of rows. In addition, we double-centered the data, meaning we centered the data around

the mean, both row-wise and column-wise.

The RV coefficients were calculated by comparing yearly batches of data. Pair-wise comparisons were performed

for all years within each occupation. Calculations were performed in Python using the hoggorm package [63].

2.4. BASE ALGORITHMS

We selected three machine learning algorithms to test as the base predictive model for occupation: Random forest,

Support vector machine and logistic regression. These have been tested on similar classification problems within

Statistics Norway [53, 54]. This section provides a summary of their methodologies.
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2.4.1. Random forest

Random forest is a supervised machine learning method that has become popular for classification tasks due to its

good performance and simplicity [64, p. 587]. They are an example of an ensemble method where multiple decision

trees are grown and combined using a voting system for classification. The following paragraphs summarise decision

trees and the key concepts of how they have been extended to random forests.

The base structure of a classification decision tree is to recursively split the data into increasingly similar (or pure)

groups with respect to the classification variable (y) based on the criteria of one of the features (x). At each split,

the most appropriate variable and threshold value is chosen according to a splitting measure. After each selection,

the data is then divided again until no further gain can be made, or a stopping criterion is met [65]. The information

gain refers to the splitting measure we want to maximize at each split and can be defined as

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj

Np
I(Dj) (2.10)

where Dp is the data at the parent node, Dj is the data at child node j, I(Dp) and I(Dj) are the impurity measures

for the parent and child nodes respectively, and Np and Nj are the number of samples in the parent and child nodes

[58, p. 91]. The information gain is essentially the difference between the purity (how similar the samples are) of

the parent and the sum of the child nodes. When the split leads to a higher purity of the child nodes the information

gain will be higher. The Gini index is often used to measure the impurity of the nodes and is defined as

Gini(D) = 1−
c∑

i=1

p2i (2.11)

where pi is the relative frequency of class i in data D at a particular node [65].

The random forest method utilizes two important additional concepts: bagging, or bootstrap aggregation, and

random selection of features [66]. Bagging involves the creation of multiple datasets through a technique called

bootstrapping, wherein samples are drawn from the original data with replacement. Results from models trained on

the bootstrap samples are then aggregated. This process of bagging has been shown to improve the accuracy of the

classifications [67]. In addition to bagging, a random subset of features is chosen for consideration at each node

within the random forest trees. This forces less favourable features to be used and increases the variation among the

trees. Bagging and the random selection of features work together to create many noisy, overfitted and different trees

in random forests, which often leads to higher accuracy classifications with lower variance than single decision trees

[66, 64, p. 588].
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2.4.2. Support vector machine

Support vector machine (SVM) is a powerful supervised ML method, commonly used in classification tasks. They

have previously been shown to perform well in similar text classification tasks at Statistics Norway [54]. While first

described in the late 1970s, they gained increased interest in the late 1990s as a tool for solving multidimensional

estimation problems [68]. The general idea of SVM classification is to fit optimal hyperplanes to split the data into

classes. If the classes are linearly separable, there will be an infinite number of solutions for the position of the

hyperplane [64, p. 129]. The optimal location of the decision boundary is thereby determined by maximizing the

margin distance between the boundary and the closest observations, known as the support vectors. In the case of

binary classification, assume xi is the feature vector for observation i and yi is the class variable being 1 for a positive

class and -1 for a negative class. The points, x, which lie on the decision boundary will then satisfy

w · x+ b = 0 (2.12)

where w is the weight vector, normal to the decision boundary, and b is the offset from the origin. When classes are

linearly separable, all observations xi satisfy the two conditions

w · xi + b ≥ 1 for yi = 1 (2.13)

w · xi + b ≤ −1 for yi = −1 (2.14)

These two equations can be combined to give the overall constraint

yi(xi · w + b)− 1 ≥ 0 ∀i (2.15)

The points that satisfy the equivalents of equations 2.13 and 2.14, will form the support vectors and lie on the

hyperplanes (H1 and H2), parallel to the decision boundary [69]. The perpendicular distance between each of the

hyperplanes and the decision boundary is |1− b|/∥w∥ for the positive class and |−1− b|/∥w∥ for the negative class.

Together, this distance is called the margin and is 2/∥w∥ [69]. SVM aims to maximize this distance with constraint

shown in equation 2.14. However, in practical terms, it is easier to minimize the reciprocal term, ∥w∥2/2 using

quadratic programming [58, p. 81]. Figure 2.4 (a) provides a diagram of an SVM with separable classes. Vector

supports are shown lying on H1 and H2 and are circled.

In the more common case that classes are not linearly separable, slack variables (ξi) are introduced to allow for

some misclassifications. The constraints from equations 2.13 and 2.14 are then

w · xi + b ≥ 1− ξi for yi = 1 (2.16)
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(a) SVM with separable classes. Support vectors are indicated with
cirlces

(b) SVM with non-separable classes. Slack variables are shown for
the 3 observations that lie on the wrong side of the decision boundary.
Slack values for correctly classified observations are set to 0.

Fig. 2.4: Diagrams of SVM decision boundaries for a two-class example. Hyperplanes are shown as H1 and H2.

w · xi + b ≤ −1 + ξi for yi = −1 (2.17)

where

ξi ≥ 0 ∀i (2.18)

which includes the slack variables ξi for each observation, i [69]. The new objective is now to minimise ∥w∥2/2 +

C(
∑

i ξi) where C determines the severity of the penalty term for misclassifications [58, p. 82]. Large values of C

lead to a smaller margin and can cause overfitting of the model. Therefore, the value of C should be tuned as part of

the hyperparameter tuning process.

SVM models were implemented using functions SVC and LinearSVC in the sklearn.svm package in Python. The

function SVC was used to test a non-linear kernel (’rbf’) while the LinearSVC was used as a faster implementation

of a linear kernel model.

2.4.3. Logistic regression

Logistic regression stemmed from the need to model and predict binary variables using multiple explanatory vari-

ables. The method is popular and used in a broad range of contexts such as modeling health outcomes [64, p. 122],

credit rating [70], and text classification tasks [53]. Logistic regression is based on estimating the odds of a particular

event or belonging to a particular class. The odds can be written as p(x)
1−p(x) where p(x) represents the probability of

belonging to class y = 1 given the values of x [58, p. 61]. The logit function is then the natural log of these odds

which can be expressed as a linear combination of the values of x, similar to that seen in equation 2.12 as an adapted

linear regression:

ln

(
p(x)

1− p(x)

)
= w · x+ b (2.19)
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where w is the weight vector and b is the bias or offset from the origin. This can be seen as applying a logit scale to

transform a linear regression and ensuring predicted values lie in the [0, 1] range [71]. The equation above can then

be rearranged to give

p(x) =
1

1 + exp−(w·x+b)
(2.20)

After estimating the weight vector (w) in this model using training data, values for new observations can be predicted

(ŷ). A probability is returned from the model, which using a threshold is turned into an estimated class value. For

example, if the threshold is 0.5, then

ŷi =

1, if p(xi) ≥ 0.5.

0, otherwise.
(2.21)

Logistic regression was implemented using the LogisticRegression function in the sklearn.linear model Python

package.

2.4.4. Multiclass approaches - one vs rest

Many of the methods and cases in the previous sections have referred to binary outcome variables. In our text

classification problem, we have a multiclass problem. In this thesis, we focus on predicting observations to one of

four classes (in two separate models) but in a real application for occupation classification, there are several hundred

codes to predict. We therefore need to adapt the methods to a multiclass outcome.

One vs rest is a common approach in multiclass problems. It entails building separate binary models for each

class, each one being modeled against all remaining classes. The models are then compared, with the most confident

used for the classification prediction. This approach is used with the algorithms described in this thesis.

2.5. DRIFT ADAPTION METHODS

In addition to testing for drift patterns in our data, we tested and compared several approaches to adapting the

algorithms to changes. Most adaptive approaches focus on which training data is used to learn the models. The most

relevant training data is often that which is closest in time to what we want to predict. This must be balanced with

the trade-off that more training data often leads to better predictions. This stability-plasticity trade-off is explored

by comparing 4 adaptive approaches: sliding-windows, weighting, an adaptive algorithm (Hoeffding adaptive tree),

and a matching approach. These are compared to two methods that are not adaptive: using a fixed reference and

using all available training data (accumulative).
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2.5.1. Sliding-window

Sliding-window approaches are based on a fixed-width size of training data. We used a sliding-window of 5 years

and a sliding-window of 1 year prior to the prediction point. For each year where data is predicted, the training data

moves to the nearest window. An illustration of this and the other adaptive methods is shown in Table 2.5.

Table 2.5: Example of training data for predicting classification in 2004 using different adaptive approaches. Green
indicates training data and purple indicates the test data.

2.5.2. Weighting

An alternative approach to sliding-windows is weighting. We chose to test a global weighting scheme where all data

before the prediction time was used but with varying weights. The weights for the training data were calculated as:

wij =
1

y0 − yj
(2.22)

where wij is the weight used for training data i in year j which is inversely proportional to the difference between

the prediction year, y0, and the year of the observation yj . So training data from the year before prediction would be

given a weight of 1, whereas training data from 10 years prior would be given a weight of 0.1. Training observations

with higher weights will push the algorithm to focus more on correctly classifying them.

2.5.3. Targeted matching algorithm

Mallick et. al. [4] presented a matching algorithm in 2022 where the data to be predicted is matched to similar

training data for the learning process. They presented an algorithm with an online approach to learning with a fast

runtime. However, there is currently no open-source implementation of this in R or Python available for testing. We

have used a matching approach to build the training data for the learning process to test this concept. We matched

features of observations to be predicted with the available training data to build a specific training dataset for each
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time point. We used the function SequenceMatcher in the Python package difflib to match text to 2 observations

in the training data to learn the algorithm. Python code for the adapted functions used is provided in Appendix B.

SequenceMatcher is based on a matching algorithm called the Gestalt approach, described in the 1980s by John

Ratcliff and John A. Obershelp [72]. It was developed first to identify matching text that may include spelling errors.

Their approach was to compare two strings and first identify the longest common substring, called the anchor. The

new strings to the left and right of the anchor are then examined as new strings in a recursive manner. The length of

all the matching characters, Km, is added together across the recursive anchors until all parts of the string have been

analyzed. The distance function is then

D =
2Km

|S1|+ |S2|
(2.23)

where |S1| and |S2| are the lengths of strings 1 and 2 that are being compared [73]. The distance values for D range

from 0 to 1, where 1 is an exact match and 0 is completely not a match. This algorithm was used to identify the 2

most similar strings to build the training data for training a model.

2.5.4. Hoeffding adaptive trees

Hoeffding adaptive trees were also tested as an adaptive approach. This is an extension of the very fast decision trees

(VFDT) where an active change detection (ADWIN) is implemented. This algorithm has shown promising results

in drifting environments over other adaptive approaches [33]. The motivation for the Hoeffding tree was to create

a decision tree for data streams with large amounts of data. It creates a more efficient decision tree by considering

that not all observations are needed to select the feature to use at each of the nodes of the tree. Exactly how many

observations are needed is determined by the Hoeffding bound. We first consider a random variable, r, with range

R, where for an information gain R = log(c) where c is the number of classes. The Hoeffding bound then states

that with probability 1− δ, the true mean of the variable, r, is at least r − ϵ where

ϵ =

√
R2ln(1/δ)

2n
(2.24)

delta is a confidence level and n is the number of observations [31]. The idea is then that the number of samples

used n, is as small as possible while still assuring that the feature chosen is the same as that if all samples were used.

Bifet and Galvadà’s [33] extension included a change detection mechanism to further limit the number of ob-

servations to use. The implementation in this thesis uses the HoeffdingAdaptiveTreeClassifier function from the

Python package River [74]. This includes an ADWIN change detection algorithm which uses a window, W , of the

most recent observations, so long as a drift has not been detected. When new data arrives, drift detection is tested

by splitting the current window, W , into two parts W0 and W1 which have lengths n0 and n1 consecutively. The

average values of the features (x) in the windows are calculated as µW0 and µW1 and their difference is compared
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to a cutoff value ϵcut, as:

ϵcut =

√
2

m
σ2
W ln

2

δ′ +
2

3m
ln

2

δ′ (2.25)

Here m is the harmonic mean of the two windows, 1/(1/n0 + 1/n1), and σ2
W is the observed variance of the

observations in the window, W [22]. The process of cutting the window is repeated for all lengths of n0 and n1. As

a consequence, δ
′

is an adjusted from the confidence level, δ, and considers multiple testing

δ
′
=

δ

n
(2.26)

where n is the sum of n0 and n1.

2.6. PERFORMANCE METRICS

To compare models and approaches, a series of performance metrics were calculated including accuracy, F1-score,

ROC-Area under curve (AUC), and the Brier score. All these metrics are sensitive to different aspects of a model’s

performance. They are therefore useful in different ways to measure the various performance aspects. The different

metrics are described in the following sections.

2.6.1. Accuracy

Accuracy is one of the most common performance metrics used and is simple to calculate and interpret. Here

we define accuracy as the number of correctly classified items in the prediction divided by the total number of

predictions. In a binary case, a 2x2 confusion matrix is established as in Table 2.6. The number of correctly

identified observations in the positive class is referred to as the number of true positives (TP), while the number of

true negatives (TN) is the number of correctly classified observations in the negative class. False negatives (FN) refer

to incorrectly classified observations, predicted to the negative class and False positives (FP) are those incorrectly

classified to the positive class.

Table 2.6: Confusion matrix terms

Prediction
Positive Negative

Observation
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True negative (TN)

Accuracy it is then

Accuracy =
TP + TN

TP + TN + FP + FN
(2.27)

Accuracy works well as a performance metric for classification tasks where data is balanced, and there are similar

numbers of observations in all the classes. However, in cases of high imbalance, the results can be misleading. For
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example, if one class represents 95 percent of the data, predicting all to this class will result in an accuracy of 95

percent which could be misinterpreted as good performance.

2.6.2. F1-score

The F1-score addresses some of the weaknesses of accuracy by balancing both precision and recall. The precision

is the number of true positives (TP), divided by the sum of the TP and false positives (FP)

Precision =
TP

TP + FP
(2.28)

The precision measures how well the model correctly identifies the positive class. A high precision means that when

the model predicts a positive result, it is likely to be correct. Table 2.6 provides the confusion matrix terms for a

binary classification example.

In contrast, recall measures the ability of a model to correctly identify all relevant instances of a class. It is

defined as the TP divided by the sum of the TP and the number of false negatives (FN).

Recall =
TP

TP + FN
(2.29)

Recall is important in situations where false negatives are costly and/or have significant consequences.

The F1-score is then a combination of these two measures and is defined as

F1-score = 2
precision · recall
precision+ recall

(2.30)

This is a useful performance measure in many circumstances, particularly when working with unbalanced data.

For multi-class problems, like the one in this thesis, the F1-score is calculated for each class and then averaged

over the classes. We have chosen to use the weighted average which weighs the class F1-scores by the number of

observations.

2.6.3. ROC-AUC

The Receiver Operating Characteristic (ROC) is a way to assess the balance between recall, sometimes called the

True Positive Rate (TPR), and the false positive rate (FPR). In binary cases, the FPR is the probability of an incorrect

positive value when the observation is negative.

FPR =
TP

FP + TN
(2.31)
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The ROC is then a curve of the TPR (recall) against the FPR as the threshold of the classification rule is varied

[64, p. 317]. In the binary case, a model such as logistic regression will calculate a float value between 0 and 1 for

each observation it predicts. A threshold value is then applied to determine which class the observation should be

predicted to. For example, a value of 0.5 may be applied where predicted values above this are predicted as positive

and values (1) below this are predicted as negative (0). To create the ROC curve, this threshold value is varied,

and the TPR and FPR are re-calculated. The values of TPR and FPR are then plotted on a graph to create a curve

(see Figure 2.5). Curves that are a straight diagonal line indicate a model that is not able to discern the categories,

whereas a curve that increases rapidly up to a high value in the top left corner indicates a model that is better at

distinguishing the categories correctly.

The area under the ROC curve is used as a single metric to assess the model performance. Values close to

1 indicate a ROC curve that is near the top left corner. Values near 0.5 indicate ROC curves that are around the

diagonal. Figure reffig:roc provides some example ROC curves with their equivalent AUC values.

Fig. 2.5: Example of three ROC curves with corresponding AUC values. The diagonal line provides the baseline
for a model that doesn’t discern between classes.

2.6.4. Brier score

The Brier score is a statistical measure to assess the accuracy of probabilistic predictions in the context of classifi-

cation tasks. It was originally used to assess weather predictions and was first described in 1950 [75]. The original

model allowed for multiclass predictions and was defined as

BrierScore =
1

N

N∑
i=1

R∑
j=1

(fij − oij)
2 (2.32)
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where N is the number of observations, R is the number of classes, fij is the probabilities associated with the

prediction of observation, i, in class, j, and oij takes the value of 0 or 1 according to whether the event occurred in

class j or not. The score uses probabilities rather than predicted classes and therefore considers how certain the model

is in its predictions. The score is essentially the mean square error of the prediction probabilities. Consequently,

lower values of the Brier score, near 0, indicate a high performance, whereas high values, near 1, indicate the model

is not able to distinguish the classes well.

2.7. MODEL TUNING

We want to test how different approaches to learning models in a drift situation perform. To do this, we need a base

model for testing different window sizes and weighting approaches. An important part of using ML algorithms is

tuning the hyperparameters of the model. We tested 3 base models (regression, random forest and SVM) with the

hyperparameters shown in Table 2.7. In addition, we tuned a number of hyperparameters in the Hoeffding adaptive

tree model.

Table 2.7: Hyperparameters and values used in the model tuning process.

Model Parameter Values

SVM

C 0.01, 0.1, 1, 10, 100
Maximum features 500, 1000, 5000
Use TFIDF True, False
Kernel linear, rbf
Terms word, 3-gram (character)

Logistic
regression

C 0.1, 1, 10
Maximum features 500, 1000, 5000
Use TFIDF True, False
Terms word, 3-gram (character)

Random
Forest

Tree number 50, 100, 500
Maximum features 500, 1000, 5000
Use TFIDF True, False
Terms word, 3-gram (character)

Hoeffding
Adaptive Tree

Grace period 10, 200, 500
Delta 1e-07, 1e-03, 0.1, 0.9
Terms word, 3-gram (character)

A 25 percent sample of our data was used to tune the hyperparameters. This is much smaller than a standard

approach which often uses 70 to 80 percent of the data for tuning and training. hyperparameters were tuned using

all years in the full tuning data, the remaining test set was run using a year-wise approach to compare the various

adaptive approaches. It was important to have a large amount of data in the test data to ensure a reasonable represen-

tation of all classes for all years. The training/test split was stratified by year and occupation class to ensure that all

groups were represented in each year. We used 5-fold cross-validation in the tuning data to determine the best values
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for the hyperparameters using accuracy as the performance metric. The process of model tuning was run separately

to predict among the 4 different occupations (Group A) and the 4 similar occupations (Group B).
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Chapter 3

Results

This chapter describes descriptive results, drift detection and model performance results from our analysis. Word

popularity, trends and frequency over the time period are described in section 3.1, while results from RV computa-

tions and KS drift detection are described in section 3.2. A summary of model tuning and comparative results for

the adaptive models is given in section 3.3.

3.1. DESCRIPTIVE RESULTS

We focus on 8 occupation classes in our data that are used to build two separate, predictive models. The text

variables in the data, described in section 2.1 were pre-processed as described in section 2.2. Figure 3.1 shows the

term frequency of the 4 most common words within each of the 8 occupation classes. The levels shown indicate

the proportion of observations where that term occurs in the text. For example, the stemmed word ”barnehag”

(kindergarten) occurs in approx 70 to 80 percent of the texts for Early childhood teachers. We see that in some

classes, for example, production clerks, the popularity of the top 4 words has been relatively stable over the whole

time period. The term ”logistikk” (logistics) has occurred in around 60 percent of the texts/observations throughout

the time period. In other classes, we can see clear changes in the popular terms. For example, in early childhood

teachers, the term ”førskolelær” (pre-school teacher) has declined from occurring in around 50 percent of texts

down to around 5 percent. In contrast, ”pedagogisk” (educational) and ”led” (leader), which are often used together

(”pedagogisk leder”) have increased in frequency over this time period within this same class. Among aircraft pilots,

the term ”pilot” has increased in popularity to a frequency of around 80 percent of texts within this class. This is

a borrowed English word that we see has increased in use within the Norwegian language. In contrast, Figure 3.2

indicates that the more traditional Norwegian words for a pilot: ”flyver” and ”flyger”, have decreased in popularity

in recent years.

Among the most common words, we see no overlap in Group A. However, in Group B where the occupations

are more similar, there is some overlap in the most common words. For example, we see the word ”rederi” (shipping
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(a) Group A

(b) Group B

Fig. 3.1: Popularity of the top four words in each occupation class.
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Fig. 3.2: Occurrence of ”pilot”, ”flyg” and ”flyv” terms within the occupation class for aircraft pilots.

company) in both occupations 3151 (Ships engineers) and 3152 (Ships decks officers and pilots). The words ”sas”

(SAS: airline company) and ”flyselskap” (airline) are both common in classes 3153 (aircraft pilots) and 5111 (travel

agents and stewards).

The word frequencies in Figure 3.1 for Groups A and B are all shown on the same scale. We see that some

occupation classes, for example, early childhood teachers, have words with a very high frequency, 80 percent or

more in some years. Other classes, for example, crop and animal producers, have lower frequencies for their most

common words.

Figure 3.3 shows the percentage of observations that contain the 30 most frequent word terms within occupation

classes in Groups A and B. The plots show frequencies irrespective of the actual word but ordered by their frequency.

This emphasizes that for some classes, specific terms are important and the text is perhaps more homogeneous. Other

classes with lower frequencies among their most common terms indicate a higher variation in how the occupation

is described and perhaps also a higher variation in the tasks and jobs performed by people within these classes.

In Group A, we see that early childhood teachers (2342) have the most frequent term for the most common word.

However, when we look at the 30th most common word, the RNMS occupation has the most frequent term. In

Group B, ship engineers (3151) had the most highest frequency of their most common term while travel attendants

and stewards (5111) had the highest frequency of the 30th term.

3.2. DRIFT DETECTION

The textual data used in our analysis is from a 27-year period. Figures 3.1 and 3.2 indicate that common terms used

to describe jobs have changed over this period within some occupations. We are interested to see if these changes
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(a) Group A

(b) Group B

Fig. 3.3: Comparison of the percentage of occurrence of terms in each occupation using stemmed word terms

35



are detected and able to be visualized using drift detection methods. This section provides results from two methods;

1) using a quantitative Kolmogorov-Smirnov (KS) drift detection model and 2) using RV comparisons together with

heatmaps to visualize which classes may be contributing to drift.

KS drift detection was run separately on the two groups of data (Group A and Group B) with results shown in

Table 3.1. The results compare matrices based on 3-gram character features. We found that drift was only detected

in the model with more diverse occupations (Group A). When the reference point for the vectorization was fixed to

the first period and the drift detection model was allowed to run consistently, drift was detected at all time points

from 2001, except for 2003. In contrast, when the drift detection only included the year prior to testing, only 2021

showed a drift pattern within Group A. For Group B, no drift was detected in either of the methods.

Table 3.1: Results from KS drift detection using both fixed and moving models. Results are from comparing
matrices using 3-gram character features. Models from groups A and B are shown separately.

Group Reference
point

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

A
Fixed 0 0 0 0 1 1 0 1 1 1 1 1 1
Moving 0 0 0 0 0 0 0 0 0 0 0 0 0

B
Fixed 0 0 0 0 0 0 0 0 0 0 0 0 0
Moving 0 0 0 0 0 0 0 0 0 0 0 0 0

Group Reference
point

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

A
Fixed 1 1 1 1 1 1 1 1 1 1 1 1 1
Moving 0 0 0 0 0 0 0 0 0 0 0 1 0

B
Fixed 0 0 0 0 0 0 0 0 0 0 0 0 0
Moving 0 0 0 0 0 0 0 0 0 0 0 0 0

Results from KS drift detection indicate that for occupations within Group A, there have been some significant

changes to the underlying textual data. To explore this further and gain a better understanding of which occupations

were contributing to these changes, we calculated RV values for all year-wise comparisons. Figures 3.4 and 3.5

provide heatmap plots of the RV values for the 8 occupation classes, again using matrices based on 3-gram character

features. The number of observations and corpus size for each year within the classes are also shown.

We see there are quite different patterns of RV among the occupations, particularly within Group A occupations.

Early childhood teachers have the highest correlation in features over the time period. This indicates that these jobs

are generally described in similar ways by many of the participants. However, the number of features (corpus size)

in this class is quite high, around 1000 each year, and the number of observations is reasonably high, compared to

other classes and consistent throughout the years. There is some indication of a drift pattern when comparing the

most extreme years within this occupation. From around 2015, the correlation with earlier years appears to decrease

as indicated by a lighter green colour. RV values for RNMS show also some signs of drift, where particularly the

early years 1996 to 2002 and recent years 2015 to 2022 show higher RV values with the closer years. The corpus
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Fig. 3.4: Heatmaps showing the RV values for each comparative year for 4 occupation classes in Group A. Barplots
below show the number of observations and corpus size.
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Fig. 3.5: Heatmaps showing the RV values for each comparative year for 4 occupation classes in Group B. Barplots
below show the number of observations and corpus size.
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size is slightly smaller and the observation numbers are lower compared to early childhood teachers. Within Group

A, Production clerks have the lowest RV values overall. They have the fewest observations among those in Group

A. The corpus sizes are smaller in the earlier years, before 2010, while similar to the other classes in the later years.

This along with the small number of observations, indicates it is heterogeneous, where occupations are described

in varying, different ways. While Figure 3.1 indicates there is one common term ”logistikk” within this class, it

also shows the next most common words do not have a particularly high frequency. Again, this supports a low RV

value and indicates diverse occupation descriptions. RV values for the occupation class on mixed crop and animal

producers show signs of a recurrent pattern. From around 2008 to 2014 there was a change resulting in much lower

RV values during this time period. From around 2015, occupation descriptions then reverted back to similar patterns

to those prior to 2008. Both the observation numbers and corpus size dropped greatly during this period.

Among the occupations in Group B, RV values were generally low. Ships deck officers and pilots show a slight

pattern of drift where RV values appear higher with closer years in the earlier period, 1996 to 2001, compared to

later years. Travel attendants and stewards also showed some small signs of drift in the very early years with higher

RV values in years 1996 to 1999. The remaining years show lower RV values and no great changes or patterns. RV

values for aircraft pilots appear to be quite randomly spread with some higher values in years far apart, and some

among years close together. However, there does appear to be a pattern of higher RV values among the most recent

four years, 2019 to 2022 within this class. The final occupation in Group B; ships engineers, had low overall RV

values with few discernible patterns, other than that in 2016 there appears to be a year of data that is less correlated

with all other years than otherwise. The number of observations and corpus size in Group B is generally less than

those in Group A. Ship deck officers and pilots (3152) had the most observations of those in Group B while aircraft

pilots (3153) had the least.

Both KS drift detection and RV heatmaps indicate some changes have occurred in occupation description among

the Group A occupations. Group B occupations, while more similar to each other in how they are described, do not

show strong drift patterns from either the KS drift detection or visually using RV values.

3.3. PREDICTIVE PERFORMANCE OF THE MODEL

We are interested in building predictive models for classifying occupations that will work under both stable and drift

conditions. This section describes the results from models tested for classifying occupations within Group A (4 very

different occupations) and Group B (4 similar occupations). We first present results from model tuning, followed by

results relating to model degradation, adaptive approaches and the new matching approach.

3.3.1. Model validation

Model hyperparameters were tuned using a 25 percent training set and 5-fold cross-validation. Data was amalga-

mated over all years, using standard base algorithms without adaptive approaches. Table 3.2 provides results from
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the best models for each of the algorithms based on accuracy performance measures. Table 2.2 shows that while there

are some differences in the number of observations in each class they are reasonably balanced, therefore, accuracy

is an appropriate measure to use. For a full table of model tuning results see Appendix C.

SVM models performed best when using TFIDF feature weighting, a linear kernel, and 3-gram character fea-

tures. The SVM for Group A performed best when the penalty value, C, was 10 whereas Group B performed equally

best when C was 1 or 10. For further testing in the remianing part of this thesis we use the smaller value, 1, for

C in Group B. Using a maximum of 1000 or 5000 features in the model for Group A performed equally, whereas,

for Group B, 5000 and 10000 maximum features performed equally. Again, we chose the smaller values for further

analyses, using 1000 features for Group A and 5000 in Group B.

For logistic regression we saw that using TFIDF feature weighting with 3-gram character features also performed

best in both Group A and B. The best value for the strength of the regularization, C, was 10 for Group A and B. The

model performance was best when using 5000 or 10000 features for Group A whereas Group B performed best with

only 500 features.

Random forests also performed best when using 3-gram character features, however, TFIDF weighting was only

prefered in Group A. 500 trees was prefered in Group B, whereas only 100 trees in Group A provided the best

validation performance. The best number of features was 5000 in Group A and 500 in Group B.

Tuning of the Hoeffding adaptive trees resulted in the best model with a grace period of 1, a delta value of 0.1

and using words as features. TFIDF was used in all cases and wasn’t a tuned hyperparameter in this model.

3.3.2. Model selection

SVM, Random forests and logistic regression models are not drift adaptive approaches by themselves. Results from

cross-validation in section 3.3.1 were used to compare their performances to select one as a base model for testing

adaptive approaches.

Table 3.2 shows that SVM performed best among Group A and equally best with logistic regression for Group

B. For simplicity in programming, an SVM was selected to use for further comparisons of adaptive designs for both

groups. Overall, Random forests performed slightly worse compared to the other base models: SVM and logistic

regression. Logistic regression performed well in Group B and only very slightly worse than SVM in Group A.

The Hoeffding adaptive tree model is an adaptive approach where branches may be replaced based on a drift

detector when their accuracy decreases. Table 3.2 shows that the validation performance (63 and 64 percent accuracy)

is considerably lower than that of the other methods. The approach appears to be considerably underfitting the model

and unable to utilise the features in a good way. We have therefore chosen not to include it further in the analysis.
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Table 3.2: Best model hyperparameters for SVM, Logistic regression, Random forest and Hoeffding adaptive tree
classification models for occupations in Groups A and B.

Group Model Validation per-
formance (av-
erage accuracy
over 5-folds)

Best hyperparameters

Group
A

SVM
0.9931 C: 10, max features: 1000, use TFIDF: True, kernel: linear, fea-

tures: 3-gram
0.9931 C: 10, max features: 5000, use TFIDF: True, kernel: linear, fea-

tures: 3-gram
Logistic
regression

0.9907 C: 10, max features: 5000, use TFIDF: True, features: 3-gram
0.9907 C: 10, max features: 10000, use TFIDF: True, features: 3-gram

Random forest 0.9842 max features: 5000, number of trees: 100, use TFIDF: True, fea-
tures: 3-gram

Hoeffding
adaptive tree

0.6347 grace period: 1, delta: 0.1, features: word

Group
B

SVM

0.9567 C: 1, max features: 5000, use TFIDF: True, kernel: linear, fea-
tures: 3-gram

0.9567 C: 1, max features: 10000, use TFIDF: True, kernel: linear, fea-
tures: 3-gram

0.9567 C: 10, max features: 5000, use TFIDF: True, kernel: linear, fea-
tures: 3-gram

0.9567 C: 10, max features: 10000, use TFIDF: True, kernel: linear, fea-
tures: 3-gram

Logistic
regression

0.9567 C: 10, max features: 500, use TFIDF: True, features: 3-gram

Random forest 0.9459 max features: 500, number of trees: 500, use TFIDF: False, fea-
tures: 3-gram

Hoeffding
adaptive tree

0.6410 grace period: 1, delta: 0.001, features: word

3.3.3. Model degradation

Model degradation refers to the decrease in model performance over time; see Figure 1.3. We are interested in

investigating whether this is the case in our two classification models (Groups A and B) over the 27-year time period.

Section 3.2 indicates that features have changed significantly for Group A over this time period and descriptive results

shown in section 3.1, indicate that at least some features have changed their distributions over this time period for

both Groups A and B.

To test model degradation, a fixed reference point (year 1996) was used to train an SVM model, based on the

best hyperparameters from model tuning shown in 3.3.1. Occupation classifications were then predicted for all years

after this. This represents a scenario where a model is trained and put into a production setting with no retraining.

Data used in this, and the following sections includes the 75 percent not used in model tuning. Figure 3.6 shows

results using four performance metrics for the two groups of data. Accuracy and F1-scores are quite high, above
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(a) Group A

(b) Group B

Fig. 3.6: Performance metrics by year for a classification model using a fixed reference period (1996) for training
showing some model degradation. Metrics are shown separately for Group A and B.

90 percent for all time periods in Group A and above 80 percent for all time periods in Group B. In Group A, there

appears to be a slight decline in the accuracy and F1-scores, particularly between 2005 and 2010. Group B shows a

wider variation in the accuracy and F1-scores and is in general lower performance compared to that seen in Group A.

It shows a slight decrease in values over the time period. We also note that the values for the accuracy and F1-scores

are very similar to each other. The data in this study is relatively balanced and indicates that these are measuring

performance in a similar way.

Figure 3.6 shows that the ROC-AUC measures are high (near 1.0) in both Group A and B. This indicates that the

model is quite certain about the classifications it is producing. In Group A, there is no indication of model degradation

based on the ROC-AUC performance measure. Group B shows some signs of a decrease in performance, particularly

from 2015 onwards, based on the ROC-AUC.

The Brier scores also show some indication of model degradation for both Group A and B. Values closer to zero

for the Brier score indicate a more certain and better-performing model. Again, Group B has a larger variation in the

values, but both show an upward trend, towards increased uncertainty in the model.
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Overall, there is some indication that if an occupation classification model was trained on a single time period

and put into production without retraining, the performance would decrease over time.

3.3.4. Adaptive prediction models

Adaptive approaches were tested based on SVM classification models to adapt to drift in the data. Again, hyperpa-

rameters established from tuning (see section 3.3.1) were used in the models. Table 3.3 provides the average results

for all years of the adaptive approaches, in addition to a fixed reference point as in section 3.3.3, and a non-adaptive

accumulative approach, using all data available prior to the testing time point. It shows that the accumulative ap-

proach performed, on average, best, based on all performance measures we tested. For the ROC-AUC performance

measure, the 5-year sliding window and weighted approaches performed equally well in Group A compared to the

accumulative approach.

Table 3.3: Average performance metrics over all years (1997 to 2022) for adaptive, fixed and accumulative
approaches. Metrics are given separately for Groups A and B.

Group Method Accuracy F1-score ROC Brier score

Group
A

Fixed 0.9684 0.9691 0.9991 0.0528
1-year window 0.9815 0.9813 0.9994 0.0500
5-year window 0.9866 0.9865 0.9997 0.0240
Accumulated 0.9878 0.9878 0.9997 0.0193
Weighted 0.9875 0.9874 0.9997 0.0275
Matched 0.9851 0.9849 0.9996 0.0349

Group
B

Fixed 0.9328 0.9311 0.9885 0.1354
1-year window 0.8829 0.8726 0.9787 0.2468
5-year window 0.9536 0.9524 0.9909 0.0928
Accumulated 0.9600 0.9593 0.9939 0.0685
Weighted 0.9550 0.9538 0.9934 0.1060
Matched 0.9372 0.9354 0.9892 0.1325

To investigate how well the model was performing for each of the occupation classes, the F1-scores were calcu-

lated within occupations and are shown in Table 3.4. We can see that while the accumulative approach performed

best in most situations overall, it was not always the best method based on the individual classes. The novel matching

approach performed best in occupation class 6130 (mixed crop and animal producers). Note that in this occupation,

the RV scores in Figure 3.4 showed a recurrent drift pattern. A weighted approach performed slightly better than

the other approaches in occupation for early childhood teachers (2342) and for RNMS (2224). Interestingly, these

are two classes that showed some slow drift patterns in Figure 3.4 heatmaps. Within Group B occupations, the

accumulative approach performed best in all occupation classes.

Figure 3.7 shows the F1-scores throughout the 27-year period. A 3-year running average was used to smooth

the values to visualize trends. Results for all performance metrics by year are shown in Appendix D. In general,

accuracy, F1-scores and Brier scores show a similar pattern to each other. The ROC-AUC scores were generally
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Table 3.4: Average F1-scores over all years (1997 to 2022) for adaptive, fixed and accumulative approaches.
Metrics are given separately for each occupation class in Groups A and B.

Group Method 2224 2342 4322 6130

Group
A

Fixed 0.9667 0.9878 0.9289 0.9153
1-year window 0.9627 0.9871 0.9565 0.9819
5-year window 0.9759 0.9908 0.9628 0.9881
Accumulated 0.9783 0.9914 0.9672 0.9852
Weighted 0.9810 0.9923 0.9601 0.9848
Matched 0.9714 0.9873 0.9605 0.9925

3151 3152 3153 5111

Group
B

Fixed 0.9334 0.9462 0.9222 0.8800
1-year window 0.8868 0.9295 0.6850 0.7843
5-year window 0.9477 0.9584 0.9361 0.9516
Accumulated 0.9533 0.9653 0.9502 0.9555
Weighted 0.9514 0.9602 0.9486 0.9475
Matched 0.9368 0.9522 0.9056 0.8980

higher and with less variation than the other measures. F1-score was chosen for Figure 3.7 as a good representative

performance measure for investigating individual occupation trends.

In Group A, we see that all models performed well for the early childhood teachers (2342) throughout the time

period. For the RNMS occupation (2224), the 1-year window showed some variation, performing not as well as the

other in some of the time periods, particularly between 2006 and 2009. For production clerks, we see an increase in

F1-scores for all approaches in the early years from 1997 to 2000. Based on the observation and corpus sizes shown

in Figure 3.4 we can observe that there were very few observations in 1997 which may be contributing to the low

F1-scores in the beginning. One incorrectly predicted observation will have a large impact on the overall F1-score

for the class in this case. We see an increase in all approaches in this class between 1997 and 2000, indicating it is not

just the increased amount of data in the training set improving the model (the fixed reference model also increased

over this time). The fixed reference period model has a decrease in performance from around 2005. The RV values

for this class appear to increase in the later years, perhaps indicating some drift (Figure 3.4). The mixed crop and

animal producers (6130) occupation shows a drop in the F1-scores for many of the approaches between 2010 and

2018. Comparing this with the RV values shown in Figure 3.4, we see that this occurs at around the same time as the

number of observations drops and the RV values also decrease. The matching approach appears to have the highest

F1-scores during this time of change.

In Group B, the F1-scores appear to be more variable over the time period compared to Group A. In all groups, the

1-year window approach performed worse the the others at most time periods. This perhaps reflects the small number

of observations and instability in the model when only a single year is used for the training. The accumulative,

weighted, and 5-year window methods all appear to improve in model performance over the early years; 1997 to

2000. These approaches use increasing amounts of training data and indicate that using only 1 year of training data
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is under-fitting the model. The fixed reference period approach did not perform better than the other approaches,

however, does not appear to drop substantially in any of the occupation classes in B. This indicates that not much

drift is occurring in the data. Finally, the F1-scores for the matching approach are not better than the other approaches

over the time period in Group B.

Confusion matrices are shown in Figure 3.8, for the best-performing model using an accumulative approach.

We see that the model can classify the occupations in both Group A and B with a high degree of accuracy. Group

B shows slightly higher levels of misclassification compared to Group A, but still above 90 accuracy within all of

the occupation classes. Among Group A, production clerks had the highest levels of misclassifications with around

2 percent being classified as mixed crop and animal producers. Among Group B, occupation 3153 (aircraft pilots

and related associate professionals) was misclassified as 3152 (ships deck officers and pilots) in around 7 percent of

predictions.

Average run times for the prediction models are shown in Table 3.5. Run times were averaged over 10 repetitions

of the modeling process, except for our novel matching algorithm which was run once. This was only run once due

to the very long processing time. We see that run times for Group A are approximately double those for Group B.

This is mainly because of the difference in the number of observations in the groups (9843 observations compared

to 2216 observations). The run times using the full accumulated training data and with weighting were similar and

the slowest of the official package algorithms. The new matching algorithm was the slowest by a large margin due

to the slowness of the matching procedure for establishing the training data.

Table 3.5: Average run times for adaptive and standard modeling for Groups A and B. Timings are in seconds and
are the average of 10 runs except for the matched algorithm which shows results for 1 run.

Run time Group
A B

Fixed Reference 3.8425 1.9046
1-year window 2.5827 1.5367
5-year window 4.7346 2.2643
Accumulated 10.3552 3.9014
Weighted 10.1811 3.6160
Matched 15675.61 890.62

Finally, we are interested in how our models and approaches will scale up to larger amounts of data and classes.

Table 3.6 shows performance results for the prediction approaches using combined data with 8 occupation classes

(Group A and B combined). The targeted matching approach was dropped here due to the extensive time it took to

run the algorithm. All other approaches were tested.
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(a) Group A

(b) Group B

Fig. 3.7: F1-scores by year and occupation for Group A and B. F1-scores are smoothed using a 3-year running
average.
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(a) Group A (b) Group B

Fig. 3.8: Cumulative confusion matrix for the accumulative approach to training data.

Table 3.6: Performance metrics for a prediction model for occupation with 8 classes.

Accuracy F1-score ROC Brier score
Fixed 0.9694 0.9693 0.9989 0.0497
1-year window 0.9630 0.9618 0.9984 0.0824
5-year window 0.9787 0.9786 0.9992 0.0374
Accumulated 0.9857 0.9857 0.9996 0.0238
Weighting 0.9802 0.9801 0.9995 0.0349
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Chapter 4

Discussion

In this thesis, we have explored model drift detection and adaption techniques in a text classification example.

We have investigated occupation classification data from the Norwegian Labour Force Survey (NLFS) and seen

indications of underlying changes in occupation descriptions. Both slow drift and recurrent drift patterns were

observed in some occupations, while others showed no signs of change. A decrease in the performance of the

classification models was seen in some cases. Both standard adaptive algorithms and a new targeted matching

approach were tested on two classification models. We saw that several of the approaches were able to adapt to the

effects of changes seen in our data, however, a simple accumulative method worked best overall.

This discussion chapter summarises the results from our analysis in the context of our research questions, pro-

vides an outline of the limitations to the scope of our findings, and provides context to the results with ideas for

future directions.

4.1. SUMMARY OF RESULTS

This study has investigated four objectives, described as research questions in section 1.5. These are summarised in

the following sections.

4.1.1. Is drift occurring in the chosen occupation groups?

The first objective was to investigate whether drift was occurring in our 8 chosen occupation classes. We first

used descriptive techniques to look at the frequency of the most common words and visualized this using Figures

of the frequencies through time (Figures 3.1 and 3.2). Some changes were observed, for example, the frequency

of ”førskolelær” decreased while ”pedagogisk” increased in the early childhood teacher occupation. Among de-

scriptions in the aircraft pilot occupation class (3153) the occurrence of ”flyg” and ”flyv” decreased while ”pilot”

increased. These both indicate that some drift is occurring in the features of our data. In other classes, such as
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production clerks (4322), the word frequencies for the most common words have remained relatively stable over the

27-year period and do not support that drift is occurring.

We used Kolomogornov-Smirnov (KS) drift detection as a more formal test for the presence of drift. This is a

method implemented in several Python packages and an established technique for use in this setting. Using a fixed

reference period of 1996, a significant difference was seen in most years after 2001 for Group A. This is interesting

as 2001 was the first year where occupation was compulsory for companies to report in the AA-register, a data source

available to those performing the classifications at an individual level. This supports the idea of upstream drift at

this time point. Results from comparing features only with the previous year indicated only 2020 and 2021 were

different in Group A. Again, there were changes to the register data available to coders in 2021 and again supports

the idea of upstream drift at this time point. In Group B, no significant drift was detected using the KS method.

RV values calculated and plotted using heatmaps allowed us to investigate changes within the 8 chosen occupa-

tions (see Figures 3.4 and 3.5). Signs of drift patterns were seen within some of the classes. For example, mixed

crop and animal producers (6130) showed a recurrent drift pattern where quite sudden changes occurred in around

2009 and then reverted back in around 2014. Gradual drift can be seen in the occupation for early childhood teachers

(2342) and to some extent RNMS (2224) shown by weaker RV values at time points further from each other. Among

the Group B occupations, we found little evidence of drift using KS or RV values. One challenge within Group

B was the lower observation values as seen in Figures 3.4 and 3.5. The RV values appear to be lower when the

observation numbers are lower. This may limit its value in drift detection settings. This may only be useful as a drift

indicator with sufficiently large data. How much data is needed should be determined experimentally, and is an area

of future study.

4.1.2. How does drift impact the performance of the occupation classification models?

We saw some evidence of drift in the description of occupations in Group A. Classification models were tuned for

Groups A and B separately and model performance was assessed over the 27-year period in different ways. Using

a fixed reference point (1996) we saw that a model trained only on this appeared to degrade slightly according to

F1-score, accuracy and Brier score measures. The degradation was only slight though, around 5 percent in Group A

over the time period for accuracy and F1-scores (see Figure 3.6). While we did not detect a drift using KS among

the Group B occupations, there appeared to be some model degradation, with all performance metrics appearing

to decrease over the time period. Again, the amount of the performance decrease was only slight; 5 to 10 percent.

Considering the long time period (27 years), the decrease in model performance is perhaps less than we expected.

Using only 1 year of data, the model accuracy was still over 90 percent in Group A, 27 years later. This is perhaps a

reflection on how different the four occupation classes are in Group A, and how different their features are from one

another. Even with more similar occupations in Group B, the model only appeared to suffer slightly and was still

able to distinguish the classes, most of the time.
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4.1.3. How well do standard adaptive approaches including fixed-window, weighting, and Hoeffding adaptive

tree, mitigate drift in our occupation classification problem?

We tested several standard algorithms and approaches to learning under drift, with overall results shown in Table

3.3. All approaches tested performed better than using a fixed reference period in Group A. Using a 1-year window

performed slightly worse than a fixed reference point for Group B. This group had fewer observations and using 1

year of training data (either with a fixed reference point, 1996, or the most recent period) appears to be too little

training data and is likely under-fitting the model. Using a 5-year window improved the performance, but not as

much as using all data up until the test point, referred to as an accumulative approach. We saw that this accumulative

approach worked best overall, in both Groups A and B, but did not necessarily perform best when we saw individual

occupation results (see Table 3.4). Among Group A results, weighting the training data appeared to improve the

performance for two of the occupations (RNMS and early childhood teachers). This is interesting as these were the

two occupations where a slow drift pattern was observed based on RV values (see Figure 3.4). This indicates that

weighting the training data may be the best approach when there is known slow drift in the data.

The high performance of the accumulative approach in Group B, overall and in all occupations (see Table 3.4)

supports the idea that not much drift has occurred in this group over the time period. In stable environments, more

training data will generally lead to a better-performing model by providing more information on the underlying

processes. The accumulative approach utilizes the most training data with no time consideration.

The Hoeffding adaptive tree algorithm was not shown in the results tables as tuning showed accuracy scores well

below the levels seen by the other base methods (Table 3.2). While we tuned some of the main hyperparameters

including grace period, and delta value, we were not able to find a way to increase the performance to a level where

it could compete against the other approaches. Further tuning and testing could lead to a better-performing model,

however, due to time limitations in this thesis, was not tested further.

4.1.4. Can targeted matching create better training data to mitigate drift effects in occupation classification

models compared to standard approaches?

A targeted matching algorithm was implemented to create training data similar to the observations to be predicted.

We used a matching approach based on 3-gram character features and used an SVM model for prediction. Overall,

the targeted matching didn’t perform as well as accumulative, weighted, and 5-year window methods (see Table 3.3).

The method used training data which was twice the size of the prediction data (2 similar observations were found per

observation to predict). This was perhaps too little data and increasing this amount may have perhaps led to better

overall results.

Interestingly, when looking at the individual class performances (Table 3.4), the targeted matching performed

slightly better than all other methods for the occupation class mixed crop and animal producers (6130). This class

showed an interesting pattern where the occupation descriptions changed and/or observation numbers dropped in the
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middle of the time period (see Figure 3.4). It produced a recurrent pattern where the change reverted back to a similar

pattern to that seen earlier in the time period. It is easy to see that in this case, specifically targeting the training data

to find similar observations in an earlier time period could be beneficial. There is therefore some indication that for

data with recurrent drift, targeting matching could be a useful approach.

4.2. STUDY LIMITATIONS

In this thesis, we have studied drift patterns in two small classification models for predicting occupation codes from

text data. The two sets of data represent a case study, that has allowed us to look in more detail at the relationships of

the features, model classification patterns and misclassifications. The groups were chosen to represent two settings,

one with occupations that were quite different from one another and likely to give a model that can easily distinguish

between the classes, and a case where the occupations were more similar, and where a model might struggle more.

The occupations in the case study were chosen from the 48 occupations where we had a full-time series for the years

1996 to 2022. While we chose the groups for the case study that were more frequent, there was still a limited number

of observations. The smallest class (aircraft pilots) had only 268 observations over the time period which equates to

only around 10 observations per year on average. This limitation can make the models and predictions somewhat

limited in performance, even more so as we split the data for model tuning and testing.

Using only 4 occupations in each of the classification models is also a limitation in this study. In a real production

setting, there are 407 occupation codes in the STYRK-08 standard for a model to predict. Our approaches in

this thesis are therefore limited in scope and would need to be tested and validated further in the wider context

of classification. Our approach using RV coefficients and heatmaps to visualize drift would not be feasible in a

production setting with 407 occupations, without adaption. One possible extension to our approach would be to

combine methods, using a drift detection algorithm first and combining with RV and heatmap plots to gain more

insight into what type of drift is occurring.

The text data was processed in a number of ways: removing numbers, stop words and stemming. We used

standard, out-of-the-box tools for this, including pre-made lists of stop words. These were partially adapted, by

excluding one word we believed could be useful for classification in our context (”dykke”- dive) and adding one

that we saw frequently (”as” - company). However, we did not analyze the effect of removing these stop words or

whether better adaptions could be used. Likewise, we used a stemming algorithm that was written for a more general

setting. We saw that it reduced the number of features in our data (see Figure 2.3), however, it also reduced words

to incorrect roots, in the case of ”lærer” (teacher). While this is not necessarily a problem for a prediction model,

further investigations would be interesting to look into the effects of this. We saw that stemming didn’t help against

spelling errors where, for example, ”gårdbruk” and ”gårdsbruk” (farming) were identified as two separate features.

This may be one of the reasons why the model using 3-character grams performed better as it is more robust against

these errors. We only tested a very limited range of feature extractions (word and character 3-grams) and further
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testing of this would be interesting to optimize the model further. Additionally, we know that some respondents

reply to the NLFS in English. While we didn’t see many examples in our data, pre-processing including stop words

and stemming assumed text was Norwegian. Again, further analysis of this would be interesting to determine if a

multi-language approach would be beneficial to the prediction models.

We tested drift detection using Kolmogorov-Smirnov (KS) tests, however, there are limitations to this approach.

Its use of a Bonferroni adjustment for multiple testing of features makes it a conservative approach and may be prone

to incorrectly missing detection points (prone to type II errors). We used a default setting for the confidence level

(p-value = 0.05) but it would be interesting to test this further. Alternative approaches for drift detection would have

been interesting to compare with, such as the ADWIN algorithm. Due to difficulties in installing valid packages and

time constraints, it was not included in the comparisons. This is a popular algorithm for both detection and adaptive

modelling and it would be good for future work to include this approach.

Model tuning was performed on a subset of data without consideration of time or model adaption type. This

is a limitation of our study as when running the drift adaption models, much smaller subsets of training data were

used. While we used a small set of data (only 25 percent) to reflect some aspects of the smaller data sizes, the lack

of time considerations limits it. Hyperparameter values may have been optimized differently compared to if we had

considered time and adaptive aspects during the tuning. For example, we found that using a maximum of 5000 and

1000 features for the models was optimal, but when running models based on yearly data, there may not even be this

amount of features. Running model tuning by splitting the data into time segments, for example, 5-year groups, and

predicting the next time period could be a way to improve the model tuning in this setting. Additionally, considering

the adaptive method and further tuning of different options for the weighting approach may have improved the

performance of the models.

4.3. CONTEXT OF THE RESULTS AND FUTURE WORK

In National Statistical Institutes (NSIs), there is often time and resources spent on implementing new methods

such as ML classification models. Less focus is placed on monitoring ML models that are put into production,

risking decreased quality with model degradation over time. The 2021 UNECE report on ML for official statistics

[2] acknowledges the need for monitoring after deploying, however, nothing beyond retraining is mentioned as a

solution. This may be costly and unnecessary, depending on the performance consequences of the drift. Lu et. al.

[5] divide learning under drift into 3 parts: detection, understanding and adaption. We have used a holistic approach,

exploring all three tasks associated with model drift in a small case study. This is the first time this has been done in

an NSI setting that we know of. Our work therefore provides a guide to methods that can be used in classification

tasks within Statistics Norway and other NSIs.

Our study has shown that simple monitoring using drift detection, such as KS tests, is possible to implement in

the current IT platform at Statistics Norway. While this is a standard package algorithm, there is a lack of examples
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of the performance of drift detection in multi-class text classification [14]. Our study has shown an example of

this with results indicating detection at time points where changes have occurred in upstream processes. This may

indicate that this is a good method to use for detecting sudden, yet perhaps small changes. Slow gradual changes

are often more difficult to detect. Using a set reference point to compare against showed that the KS method may

be able to detect gradual changes when they become big enough. However, using this method by comparing each

consecutive year with the previous is not likely to pick up on gradual changes over longer periods of time.

We tested using RV values in the context of model drift as a new method for detecting and explaining drift. It has

the advantage over many other methods in that it is well suited to multi-variate data. This is particularly important in

the context of text classification, where there are often many features. We calculated values within classes, giving us

a method to further explain drift patterns. The understanding part of drift mitigation is often overlooked, with most

focus in the literature on detection and adaption [9, 12, 10]. Using RV values within classes, we were able to better

understand drift dynamics, specifically where and when drift was occurring. However, it doesn’t provide us with

how extensive the model will be affected. The heatmaps we used to visualize RV values showed quite significant

changes in the feature data (see Figure 3.4). This only appeared to reflect a small amount on the model performances

(see Figure 3.6). It also seems to be quite sensitive to observation numbers; fewer observations generally resulted in

low correlations in the data years. Further testing and development of this tool in drift problems is needed to explore

this further.

We have shown that using RV values is a viable new way of helping understand drift patterns. However, we see

that the levels of the RV, vary greatly. A low correlation didn’t necessarily mean that drift was occurring as it was

often consistent over the whole time period (see Figure 3.5). It would therefore be difficult to use it as a drift detection

tool, as a fixed threshold value can’t be set for all scenarios. Additionally, a challenge in using RV values for drift

monitoring is how to scale up to a larger number of classes. We have chosen to look in detail at eight occupations.

Scaling this method up to 407 occupations using visual inspection would not be feasible in a production setting. In

this case, perhaps subsets of classes could be run using more traditional drift detection methods first, followed by

calculating RV values within classes if a drift is detected, to better understand the mechanics behind it. We have

also not shown a direct link between drops in RV values and drops in model performance. The KS test showed the

first drift detection in 2001 in Group A (Table 3.1) which can also be seen reflected in a slight performance drop in

the fixed reference model (3.6). The heatmap however doesn’t show any discernible pattern at this time point (3.4).

Similarly to the KS method, they can not distinguish between virtual drift and real drift. Rather than monitoring the

input data distributions, an alternative approach to drift detection is to monitor the probabilities/certainties that are

produced by the models [2]. This may help to avoid false virtual drift detection where the model is still performing

well. The idea is to avoid picking up on isolated changes to the feature distributions (p(x)) but changes to how

certain the model is. This may have a closer link to real concept drift and would be an interesting extension to test

in the future.
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When a system is stable with little change, models generally benefit from increased training data. Whereas in

dynamic environments, there is a benefit to a forgetting mechanism to adapt to changes. This trade-off, described

by Grossberg [26] as the stability-plasticity trade-off is important in the context of adapting to drift. In this thesis,

we saw an example where stability was the most important aspect (Group B), where more data, irrespective of time,

produced the best model performance. We also observed an example where adaptive approaches may be useful

(based on class performance scores in Group A). While an accumulative approach performed best overall, within

occupation classes where drift was noted, adaptive approaches that had a forgetting mechanism performed better.

Our novel targeted matching approach wasn’t the best performer but showed promising signs in our occupation

class with a recurrent pattern. The approach we took was inspired by Mallick et. al.’s [4] Matchmaker algorithm,

however, we implemented a more targeted approach, matching at an observation level. In contrast, the Matchmaker

algorithm matches the most similar batch based on covariate and concept drift rankings [4]. Their implementation,

while less targeted, allows for fast and online implementation with good performance outcomes under drift condi-

tions. Classification tasks at NSIs are often not at the same large scale as in other problems and computational time

is often less of an issue based on smaller data sets. However, our implementation of targeted matching was very slow

and would require speeding up for this to be a feasible option to use in the future.

Generally, our classification models performed well and were easily able to discern the occupation classes. While

some earlier pilot studies using ML for occupation classification have been performed at Statistics Norway, this is

the first to use a more systematic approach, using cross-validation for hyperparameter tuning and comparing several

methods. Performance measures including accuracy and F1-scores were high for both groups of data (above 95

percent) and show promise for future implementation. While we have investigated the problem as a multi-class

problem, future work should focus on the effects of scaling up the problem to all (407) classes. Our initial test of

combining both Group A and B into an 8-class problem did not appear to reduce the performance much. However,

including further classes will introduce additional challenges such as dealing with classes with very few observations.

It is important to note that the goal of a full classification model is not necessarily to achieve the level of accuracy

and performance seen in this case study. A double-coding study of occupation in 2018 and 2019 showed that two

separate manual coders only achieved 75 percent identical coding at the highest detail level (4 digits) [76]. This

indicates that even if a model only achieves 75 percent accuracy, it still may be a useful tool for implementation.

Furthermore, Muller [53], outlined the implementation of such predictive models in a semi-assisted way using a

Human-in-the-loop framework. Adaptive algorithms could also be implemented in this way, using manual coding

for difficult classifications or in periods where there is known drift occurring.

New methods for adaptive learning are being developed at high rates. While we have mostly only investigated

shallow, more traditional base ML models, adaptive approaches based on deep Neural Networks are being developed.

For example, Xu and Wang’s dynamic extreme learning machine uses an adaptive approach where the number of

nodes and hidden layers is adaptively changed under drift conditions [77]. There has also been attention given
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to transfer learning in drift settings for both drift detection [78] and adaptive classification [79] settings. Transfer

learning builds on the idea that a rich data source must be adapted to a new problem, which is very similar to the

problem of model drift. These developments are exciting extensions that would be interesting to test in future studies.
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Chapter 5

Conclusion

In this thesis, we have shown drift occurring in a text classification problem using occupation classification as a

case study. Using a holistic approach, detecting, understanding and adaptive methods were tested to investigate

drift patterns. We saw that some drift had occurred during the time period within some of the occupation classes.

However, taking a simple approach and using all data available appeared to perform well, above more complex

adaptive algorithms in this setting. This emphasizes that despite drift being detected, extensive, adaptive approaches

may not be necessary in all contexts. We found some evidence for weighting adaption algorithms performing better

within classes where gradual drift appeared to be occurring. Additionally, we showed that creating matched training

data appeared to perform well in the class where there was a local recurrent pattern. Further work on extending the

models beyond the limited 8 classes used in this thesis will provide a more extensive and realistic picture for future

implementation. NSIs, such as Statistics Norway, have an extensive amount of rich data, often with long time series.

With increased automation of classification tasks using ML methods, monitoring of model performance should be

implemented. Adaption methods, like the ones tested in this thesis, should be tested and considered further in cases

where drift (both upstream and conceptual) is known or detected.
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Appendix A

List of stop words removed from text
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Table A.1: List of stop words removed in text processing

Stop words used in text preprosessing
og i jeg det at en
et den til er som på
de med han av ikke ikkje
der så var meg seg men
ett har om vi min mitt
ha hadde hun nå over da
ved fra du ut sin dem
oss opp man kan hans hvor
eller hva skal selv sjøl her
alle vil bli ble blei blitt

kunne inn når være kom noen
noe ville dere som deres kun
ja etter ned skulle denne for

deg si sine sitt mot å
meget hvorfor dette disse uten hvordan
ingen din ditt blir samme hvilken
hvilke sånn inni mellom vår hver
hvem vors hvis både bare enn
fordi før mange også slik vært
være båe begge siden dykkar dei
deira deires deim di då eg
ein eit eitt elles honom hjå
ho hoe henne hennar hennes hoss

hossen ikkje ingi inkje korleis korso
kva kvar kvarhelst kven kvi kvifor
me medan mi mine mykje no

nokon noka nokor noko nokre si
sia sidan so somt somme um
upp vere vore verte vort varte
vart as
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Appendix B

Python code for targeted matching

The following code provides the functions used for creating training data for the targeted matching algorithm.

from d i f f l i b import SequenceMatcher

from heapq import n l a r g e s t

def g e t c l o s e m a t c h e s i n d e x e s ( t e x t , p o s s i b i l i t i e s , n =2 , c u t o f f = 0 . 6 ) :

”””

T h i s f u n c t i o n u s e s SequenceMatcher from d i f f l i b t o f i n d t h e i n d e x o f t h e n

most s i m i l a r compared t o a s i n g l e t e x t s t r i n g .

Parame ter s :

− t e x t ( s t r ) : S t r i n g c o n t a i n i n g t h e f e a t u r e s f o r one o b s e r v a t i o n i n t h e

p r e d i c t i o n s e t .

− p o s s i b i l i t i e s ( pd . S e r i e s ) : L i s t o f i t e m s t o be compared w i t h t h e t e x t as

a pandas s e r i e s .

− n ( i n t , o p t i o n a l ) : Number o f c l o s e s t matches t o r e t u r n . D e f a u l t s t o 2 .

− c u t o f f ( f l o a t , o p t i o n a l ) : The minimum s i m i l a r i t y r a t i o r e q u i r e d f o r a match .

D e f a u l t s t o 0 . 6 .

R e t u r n s :

l i s t : A l i s t c o n t a i n i n g t h e i n d e x e s o f t h e b e s t n matches .

”””

r e s u l t = [ ]

s = SequenceMatcher ( )
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# S e t t h e second s e q u e n c e as t h e t e x t

s . s e t s e q 2 ( t e x t )

# I t e r a t e t h r o u g h each p o s s i b i l i t y and compare i t w i t h t h e f e a t u r e s

f o r id , x in enumerate ( p o s s i b i l i t i e s ) :

s . s e t s e q 1 ( x )

# Check i f a l l t h r e e s i m i l a r i t y r a t i o s meet t h e c u t o f f

i f s . r e a l q u i c k r a t i o ( ) >= c u t o f f and \

s . q u i c k r a t i o ( ) >= c u t o f f and \

s . r a t i o ( ) >= c u t o f f :

r e s u l t . append ( ( s . r a t i o ( ) , id ) )

# Move t h e b e s t s c o r e r s t o t h e t o p o f t h e l i s t

r e s u l t = n l a r g e s t ( n , r e s u l t )

# E x t r a c t t h e i n d e x e s o f t h e b e s t n matches

re turn [ x f o r s c o r e , x in r e s u l t ]

def c r e a t e t r a i n i n g ( X t ren , X pred , y t r e n , n = 2 ) :

”””

Cr ea t e t r a i n i n g da ta by match ing t h e s t r i n g s i n X pred w i t h c o r r e s p o n d i n g

v a l u e s i n X t r e n .

Parame ter s :

− X t r e n ( pd . S e r i e s ) : T r a i n i n g da ta f e a t u r e s . S t r i n g v a r i a b l e .

− X pred ( pd . S e r i e s ) : P r e d i c t i o n da ta f e a t u r e s t o be matched w i t h X t r e n .

S t r i n g v a r i a b l e .

− y t r e n ( pd . S e r i e s ) : T r a i n i n g da ta l a b e l s c o r r e s p o n d i n g t o X t r e n .

− n ( i n t , o p t i o n a l ) : Number o f c l o s e s t matches t o c o n s i d e r when match ing .

D e f a u l t s t o 2 .
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R e t u r n s :

t u p l e : A t u p l e c o n t a i n i n g matched X t r e n f e a t u r e s and c o r r e s p o n d i n g y t r e n

l a b e l s .

”””

# E s t a b l i s h empty l i s t s f o r r e s u l t s

X t r e n m a t c h e d = [ ]

y t r e n m a t c h e d = [ ]

# I t e r a t e t h r o u g h each s t r i n g i n X pred

f o r i in range ( l e n ( X pred ) ) :

# Get t h e b e s t n matches i n X t r e n f o r t h e c u r r e n t p r e d i c t i o n

m a t c h s t r i n g s = g e t c l o s e m a t c h e s i n d e x e s ( X pred . i l o c [ i ] , X t r en ,

n=n , c u t o f f =0)

# Check i f t h e r e are any matches

i f l e n ( m a t c h s t r i n g s ) > 0 :

# Accumula te t h e matched f e a t u r e s and l a b e l s

X t r e n m a t c h e d += X t r e n . i l o c [ m a t c h s t r i n g s ] . t o l i s t ( )

y t r e n m a t c h e d += y t r e n . i l o c [ m a t c h s t r i n g s ] . t o l i s t ( )

re turn X t r e n m a t c h e d , y t r e n m a t c h e d
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Appendix C

Model tuning results

Table C.1: Model tuning results for SVM tuning for Group A

Max features C Use idf Kernel Features Mean test score

10000 10 True linear 3gram 0.9931

5000 10 True linear 3gram 0.9931

5000 1 True linear 3gram 0.9927

10000 1 True linear 3gram 0.9927

10000 100 True linear 3gram 0.9923

5000 100 True linear 3gram 0.9923

5000 10 False rbf 3gram 0.9894

5000 100 False rbf 3gram 0.9894

10000 10 False rbf 3gram 0.9894

10000 100 False rbf 3gram 0.9894

1000 1 True linear 3gram 0.9894

10000 1 False linear 3gram 0.9890

1000 100 True rbf 3gram 0.9890

1000 10 True rbf 3gram 0.9890

5000 1 False linear 3gram 0.9890

5000 1 False rbf 3gram 0.9886

1000 10 False rbf 3gram 0.9886

10000 1 False rbf 3gram 0.9886

1000 100 False rbf 3gram 0.9886

1000 1 True rbf 3gram 0.9886
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Max features C Use TFIDF Kernel Features Mean test score

1000 1 False linear 3gram 0.9882

1000 0.1 True linear 3gram 0.9882

5000 100 False linear 3gram 0.9878

10000 10 False linear 3gram 0.9878

10000 1 True rbf 3gram 0.9878

5000 10 True rbf 3gram 0.9878

10000 100 True rbf 3gram 0.9878

5000 1 True rbf 3gram 0.9878

5000 10 False linear 3gram 0.9878

10000 100 False linear 3gram 0.9878

10000 10 True rbf 3gram 0.9878

5000 100 True rbf 3gram 0.9878

10000 0.1 True linear 3gram 0.9874

5000 0.1 True linear 3gram 0.9874

1000 10 True linear 3gram 0.9874

1000 100 True linear 3gram 0.9874

500 100 False rbf 3gram 0.9874

1000 1 False rbf 3gram 0.9874

500 10 False rbf 3gram 0.9874

1000 10 False linear 3gram 0.9870

1000 100 False linear 3gram 0.9870

500 0.1 True linear 3gram 0.9866

10000 0.1 False linear 3gram 0.9862

1000 0.1 False linear 3gram 0.9862

5000 0.1 False linear 3gram 0.9862

500 1 True rbf 3gram 0.9858

500 100 True rbf 3gram 0.9858

500 10 True rbf 3gram 0.9858

500 1 False rbf 3gram 0.9858

500 1 True linear 3gram 0.9854

500 10 True linear 3gram 0.9846

500 1 False linear 3gram 0.9846

500 100 True linear 3gram 0.9842
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Max features C Use TFIDF Kernel Features Mean test score

500 10 False linear 3gram 0.9837

500 100 False linear 3gram 0.9837

500 0.1 False linear 3gram 0.9833

10000 1 True linear word 0.9825

5000 1 True linear word 0.9825

1000 10 True rbf word 0.9817

1000 100 True rbf word 0.9817

5000 10 True linear word 0.9813

10000 100 True linear word 0.9813

10000 10 True linear word 0.9813

5000 100 True linear word 0.9813

1000 10 True linear word 0.9805

10000 10 True rbf word 0.9785

10000 100 True rbf word 0.9785

5000 10 True rbf word 0.9785

5000 100 True rbf word 0.9785

1000 1 True rbf word 0.9785

5000 1 False linear word 0.9785

10000 1 False linear word 0.9785

500 100 True rbf word 0.9781

500 10 True rbf word 0.9781

500 1 True rbf word 0.9781

500 1 True linear word 0.9781

500 10 False rbf word 0.9781

500 100 False rbf word 0.9781

1000 10 False linear word 0.9781

500 10 True linear word 0.9781

1000 1 True linear word 0.9777

500 0.1 False rbf 3gram 0.9772

1000 100 True linear word 0.9772

5000 10 False linear word 0.9772

10000 10 False linear word 0.9772

1000 1 False linear word 0.9768
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Max features C Use TFIDF Kernel Features Mean test score

5000 100 False linear word 0.9768

10000 100 False linear word 0.9768

500 1 False linear word 0.9764

500 1 False rbf word 0.9764

1000 0.1 False rbf 3gram 0.9760

1000 100 False rbf word 0.9760

1000 10 False rbf word 0.9760

500 100 True linear word 0.9760

500 0.01 False linear 3gram 0.9756

500 0.01 True linear 3gram 0.9756

1000 0.01 False linear 3gram 0.9752

500 10 False linear word 0.9752

5000 1 True rbf word 0.9748

10000 1 True rbf word 0.9748

500 0.1 True linear word 0.9744

1000 1 False rbf word 0.9740

1000 100 False linear word 0.9740

5000 0.01 False linear 3gram 0.9732

1000 0.1 True linear word 0.9732

10000 0.01 False linear 3gram 0.9732

5000 100 False rbf word 0.9728

10000 100 False rbf word 0.9728

10000 10 False rbf word 0.9728

5000 10 False rbf word 0.9728

500 100 False linear word 0.9728

1000 0.01 True linear 3gram 0.9724

10000 0.1 False rbf 3gram 0.9716

5000 0.1 False rbf 3gram 0.9716

500 0.1 True rbf 3gram 0.9707

10000 1 False rbf word 0.9699

5000 1 False rbf word 0.9699

5000 0.1 True linear word 0.9695

10000 0.1 True linear word 0.9695
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Max features C Use TFIDF Kernel Features Mean test score

1000 0.1 False linear word 0.9687

500 0.1 False linear word 0.9687

10000 0.1 False linear word 0.9675

5000 0.1 False linear word 0.9675

1000 0.1 True rbf 3gram 0.9642

10000 0.01 True linear 3gram 0.9618

5000 0.01 True linear 3gram 0.9618

500 0.01 False linear word 0.9240

500 0.01 True linear word 0.9204

1000 0.01 False linear word 0.9175

10000 0.01 False linear word 0.9102

5000 0.01 False linear word 0.9102

500 0.1 False rbf word 0.9086

1000 0.01 True linear word 0.9009

1000 0.1 False rbf word 0.8996

5000 0.1 True rbf 3gram 0.8850

10000 0.1 True rbf 3gram 0.8850

5000 0.1 False rbf word 0.8797

10000 0.1 False rbf word 0.8797

5000 0.01 True linear word 0.8610

10000 0.01 True linear word 0.8610

500 0.1 True rbf word 0.8574

1000 0.1 True rbf word 0.8074

10000 0.1 True rbf word 0.7481

5000 0.1 True rbf word 0.7481

500 0.01 False rbf 3gram 0.7237

1000 0.01 False rbf 3gram 0.7156

500 0.01 True rbf 3gram 0.7107

5000 0.01 False rbf 3gram 0.7095

10000 0.01 False rbf 3gram 0.7095

500 0.01 False rbf word 0.6623

1000 0.01 False rbf word 0.6558

5000 0.01 False rbf word 0.6469
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Max features C Use TFIDF Kernel Features Mean test score

10000 0.01 False rbf word 0.6469

1000 0.01 True rbf 3gram 0.6331

500 0.01 True rbf word 0.5160

1000 0.01 True rbf word 0.4547

10000 0.01 True rbf 3gram 0.4189

5000 0.01 True rbf 3gram 0.4189

10000 0.01 True rbf word 0.3881

5000 0.01 True rbf word 0.3881
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Table C.2: Model tuning results for SVM tuning for Group B

Max features C Use TFIDF Kernel Features Mean test score

5000 1 True linear 3gram 0.9567

10000 1 True linear 3gram 0.9567

10000 10 True linear 3gram 0.9567

5000 10 True linear 3gram 0.9567

500 10 False linear 3gram 0.9549

1000 1 True linear 3gram 0.9549

500 100 False linear 3gram 0.9531

1000 100 False linear 3gram 0.9531

500 1 True linear 3gram 0.9531

10000 100 True linear 3gram 0.9531

5000 100 True linear 3gram 0.9531

500 10 True linear 3gram 0.9513

1000 10 False linear 3gram 0.9513

10000 10 False linear 3gram 0.9513

500 1 True rbf 3gram 0.9513

1000 1 False linear 3gram 0.9513

500 10 True rbf 3gram 0.9513

500 100 True rbf 3gram 0.9513

500 1 False linear 3gram 0.9513

5000 10 False linear 3gram 0.9513

5000 1 False linear 3gram 0.9513

10000 1 False linear 3gram 0.9513

5000 100 False linear 3gram 0.9513

10000 100 False linear 3gram 0.9513

500 100 True linear 3gram 0.9495

1000 1 True rbf 3gram 0.9495

1000 0.1 True linear 3gram 0.9477

500 0.1 True linear 3gram 0.9477

1000 10 True linear 3gram 0.9477

1000 100 False rbf 3gram 0.9477

10000 10 False rbf 3gram 0.9477

10000 100 False rbf 3gram 0.9477
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Max features C Use TFIDF Kernel Features Mean test score

5000 100 False rbf 3gram 0.9477

5000 10 False rbf 3gram 0.9477

1000 10 False rbf 3gram 0.9477

500 1 False rbf 3gram 0.9477

5000 100 True rbf 3gram 0.9459

10000 100 True rbf 3gram 0.9459

5000 10 True rbf 3gram 0.9459

10000 10 True rbf 3gram 0.9459

1000 100 True rbf 3gram 0.9459

1000 10 True rbf 3gram 0.9459

1000 100 True linear 3gram 0.9459

1000 1 False rbf 3gram 0.9459

500 10 False rbf 3gram 0.9441

500 100 False rbf 3gram 0.9441

5000 0.1 True linear 3gram 0.9405

10000 0.1 True linear 3gram 0.9405

10000 1 True rbf 3gram 0.9405

5000 1 True rbf 3gram 0.9405

5000 1 False rbf 3gram 0.9387

10000 1 False rbf 3gram 0.9387

500 0.1 False linear 3gram 0.9351

1000 0.1 False linear 3gram 0.9333

5000 0.1 False linear 3gram 0.9297

10000 0.1 False linear 3gram 0.9297

500 1 True linear word 0.9206

1000 1 False linear word 0.9189

5000 1 False linear word 0.9189

10000 1 False linear word 0.9189

5000 1 True linear word 0.9171

1000 1 True linear word 0.9171

10000 1 True linear word 0.9171

10000 100 True linear word 0.9170

5000 100 True linear word 0.9170
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Max features C Use TFIDF Kernel Features Mean test score

1000 100 True linear word 0.9170

500 1 False linear word 0.9170

10000 10 True linear word 0.9152

5000 10 True linear word 0.9152

1000 10 True linear word 0.9152

1000 10 False linear word 0.9134

5000 10 False linear word 0.9134

10000 10 False linear word 0.9134

1000 10 True rbf word 0.9116

1000 100 True rbf word 0.9116

5000 10 True rbf word 0.9116

5000 100 True rbf word 0.9116

10000 10 True rbf word 0.9116

10000 100 True rbf word 0.9116

10000 100 False linear word 0.9080

5000 100 False linear word 0.9080

1000 100 False linear word 0.9080

500 100 True rbf word 0.9080

500 10 True rbf word 0.9080

500 10 False linear word 0.9044

500 100 False rbf word 0.9026

500 10 False rbf word 0.9026

500 10 True linear word 0.9026

5000 100 False rbf word 0.9008

1000 10 False rbf word 0.9008

1000 100 False rbf word 0.9008

10000 10 False rbf word 0.9008

5000 10 False rbf word 0.9008

10000 100 False rbf word 0.9008

500 0.1 True linear word 0.8990

500 1 True rbf word 0.8972

500 0.1 False linear word 0.8972

500 1 False rbf word 0.8936
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Max features C Use TFIDF Kernel Features Mean test score

5000 1 False rbf word 0.8936

10000 1 False rbf word 0.8936

1000 1 False rbf word 0.8936

1000 0.1 True linear word 0.8936

5000 0.1 True linear word 0.8936

10000 0.1 True linear word 0.8936

5000 0.1 False linear word 0.8918

1000 0.1 False linear word 0.8918

500 100 False linear word 0.8918

10000 0.1 False linear word 0.8918

10000 1 True rbf word 0.8900

1000 1 True rbf word 0.8900

5000 1 True rbf word 0.8900

500 100 True linear word 0.8900

500 0.01 False linear 3gram 0.7906

1000 0.01 False linear 3gram 0.7743

5000 0.01 False linear 3gram 0.7671

10000 0.01 False linear 3gram 0.7671

500 0.01 True linear 3gram 0.7636

1000 0.01 True linear 3gram 0.7112

500 0.01 False linear word 0.6968

500 0.1 False rbf 3gram 0.6949

10000 0.01 True linear 3gram 0.6841

5000 0.01 True linear 3gram 0.6841

1000 0.01 False linear word 0.6805

5000 0.01 False linear word 0.6805

10000 0.01 False linear word 0.6805

1000 0.1 False rbf 3gram 0.6589

500 0.01 True linear word 0.6445

10000 0.1 False rbf 3gram 0.6083

5000 0.1 False rbf 3gram 0.6083

5000 0.01 True linear word 0.6065

1000 0.01 True linear word 0.6065

77



Max features C Use TFIDF Kernel Features Mean test score

10000 0.01 True linear word 0.6065

500 0.1 False rbf word 0.4928

500 0.1 True rbf 3gram 0.4874

1000 0.1 False rbf word 0.4549

10000 0.1 False rbf word 0.4549

5000 0.1 False rbf word 0.4549

1000 0.1 True rbf 3gram 0.4278

500 0.1 True rbf word 0.4278

5000 0.1 True rbf 3gram 0.4260

10000 0.1 True rbf 3gram 0.4260

1000 0.1 True rbf word 0.4242

500 0.01 True rbf word 0.4242

500 0.01 False rbf word 0.4242

5000 0.01 False rbf word 0.4242

10000 0.01 True rbf word 0.4242

10000 0.01 False rbf word 0.4242

10000 0.1 True rbf word 0.4242

5000 0.1 True rbf word 0.4242

5000 0.01 True rbf word 0.4242

1000 0.01 True rbf word 0.4242

1000 0.01 False rbf word 0.4242

500 0.01 True rbf 3gram 0.4242

500 0.01 False rbf 3gram 0.4242

5000 0.01 True rbf 3gram 0.4242

5000 0.01 False rbf 3gram 0.4242

10000 0.01 True rbf 3gram 0.4242

10000 0.01 False rbf 3gram 0.4242

1000 0.01 False rbf 3gram 0.4242

1000 0.01 True rbf 3gram 0.4242
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Table C.3: Model tuning results from logistic regression for Group A

Max features C Use TFIDF Features Mean test score

5000 10 True 3gram 0.990655

10000 10 True 3gram 0.990655

10000 10 False 3gram 0.989435

5000 10 False 3gram 0.989435

1000 10 True 3gram 0.989029

1000 10 False 3gram 0.988216

1000 1 True 3gram 0.987403

500 1 True 3gram 0.986997

5000 1 True 3gram 0.986997

10000 1 True 3gram 0.986997

10000 1 False 3gram 0.986996

5000 1 False 3gram 0.986996

1000 1 False 3gram 0.986184

500 10 True 3gram 0.986183

500 10 False 3gram 0.984966

500 1 False 3gram 0.984559

500 10 False word 0.980087

5000 10 True word 0.978868

10000 10 True word 0.978868

500 10 True word 0.977651

1000 10 False word 0.977650

1000 10 True word 0.976838

500 0.1 True 3gram 0.976024

5000 10 False word 0.976023

10000 10 False word 0.976023

500 0.1 False 3gram 0.975619

5000 0.1 False 3gram 0.975212

10000 0.1 False 3gram 0.975212

1000 0.1 False 3gram 0.975212

500 1 True word 0.973993

1000 0.1 True 3gram 0.972773

1000 1 True word 0.971555
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Max features C Use TFIDF Features Mean test score

5000 1 True word 0.969524

10000 1 True word 0.969524

500 1 False word 0.968711

1000 1 False word 0.967899

10000 1 False word 0.965460

5000 1 False word 0.965460

5000 0.1 True 3gram 0.965458

10000 0.1 True 3gram 0.965458

500 0.1 True word 0.927262

500 0.1 False word 0.926854

1000 0.1 False word 0.923196

10000 0.1 False word 0.919136

5000 0.1 False word 0.919136

1000 0.1 True word 0.917509

10000 0.1 True word 0.884195

5000 0.1 True word 0.884195

500 0.01 False 3gram 0.754570

500 0.01 True 3gram 0.746445

1000 0.01 False 3gram 0.744413

1000 0.01 True 3gram 0.744413

10000 0.01 False 3gram 0.744413

5000 0.01 False 3gram 0.744413

5000 0.01 True 3gram 0.742380

10000 0.01 True 3gram 0.742380

500 0.01 True word 0.728567

1000 0.01 True word 0.727754

5000 0.01 True word 0.726535

10000 0.01 True word 0.726535

500 0.01 False word 0.722878

1000 0.01 False word 0.722065

10000 0.01 False word 0.720032

5000 0.01 False word 0.720032
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Table C.4: Model tuning results from logistic regression for Group B

Max features C Use TFIDF Features Mean test score

500 10 True 3gram 0.956740

5000 10 True 3gram 0.953137

1000 10 True 3gram 0.953137

10000 10 True 3gram 0.953137

500 10 False 3gram 0.951319

1000 10 False 3gram 0.949517

10000 10 False 3gram 0.949517

5000 10 False 3gram 0.949517

500 1 True 3gram 0.945913

1000 1 True 3gram 0.942310

5000 1 True 3gram 0.938706

10000 1 True 3gram 0.938706

500 1 False 3gram 0.938657

1000 1 False 3gram 0.933251

10000 1 False 3gram 0.927846

5000 1 False 3gram 0.927846

1000 10 True word 0.918853

5000 10 True word 0.918853

10000 10 True word 0.918853

500 10 True word 0.918821

5000 10 False word 0.915250

10000 10 False word 0.915250

1000 10 False word 0.915250

500 10 False word 0.913399

500 1 True word 0.899017

1000 1 True word 0.897199

10000 1 True word 0.897199

5000 1 True word 0.897199

500 1 False word 0.895381

10000 1 False word 0.893579

5000 1 False word 0.893579

1000 1 False word 0.893579
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Max features C Use TFIDF Features Mean test score

500 0.1 False 3gram 0.803260

1000 0.1 False 3gram 0.785127

10000 0.1 False 3gram 0.783325

5000 0.1 False 3gram 0.783325

500 0.1 True 3gram 0.779787

1000 0.1 True 3gram 0.743702

500 0.1 False word 0.736478

5000 0.1 True 3gram 0.718395

10000 0.1 True 3gram 0.718395

5000 0.1 False word 0.716609

10000 0.1 False word 0.716609

1000 0.1 False word 0.716609

500 0.1 True word 0.689566

10000 0.1 True word 0.673333

1000 0.1 True word 0.673333

5000 0.1 True word 0.673333

500 0.01 False 3gram 0.521704

1000 0.01 False 3gram 0.4838

10000 0.01 False 3gram 0.458509

5000 0.01 False 3gram 0.458509

500 0.01 False word 0.433202

500 0.01 True 3gram 0.4314

5000 0.01 True 3gram 0.425995

1000 0.01 True 3gram 0.425995

10000 0.01 True 3gram 0.425995

10000 0.01 False word 0.424193

5000 0.01 True word 0.424193

10000 0.01 True word 0.424193

1000 0.01 True word 0.424193

500 0.01 True word 0.424193

1000 0.01 False word 0.424193

5000 0.01 False word 0.424193
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Table C.5: Model tuning results from Random forest for group A

Max features n estimators Use TFIDF Features Mean test score

5000 100 True 3gram 0.984153

5000 50 True 3gram 0.983746

500 500 False 3gram 0.983340

500 100 False 3gram 0.983339

500 500 True 3gram 0.983339

10000 500 False 3gram 0.982931

500 100 True 3gram 0.982528

5000 50 False 3gram 0.982527

1000 100 False 3gram 0.982527

10000 500 True 3gram 0.982525

500 50 True 3gram 0.982120

1000 500 False 3gram 0.982120

500 50 False 3gram 0.982120

1000 500 True 3gram 0.982119

10000 50 False 3gram 0.981714

5000 100 False 3gram 0.981713

10000 100 True 3gram 0.981713

5000 500 True 3gram 0.981307

1000 100 True 3gram 0.981306

10000 100 False 3gram 0.980901

1000 50 False 3gram 0.980494

5000 500 False 3gram 0.980493

1000 50 True 3gram 0.980088

10000 50 True 3gram 0.980088

10000 50 True word 0.971962

1000 100 True word 0.971146

5000 100 False word 0.970744

5000 50 True word 0.970741

5000 500 False word 0.970338

10000 500 True word 0.969931

10000 100 False word 0.969118

5000 500 True word 0.969118
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Max features n estimators Use TFIDF Features Mean test score

1000 500 True word 0.969114

10000 500 False word 0.968712

5000 100 True word 0.968711

1000 500 False word 0.968709

500 100 True word 0.968708

10000 50 False word 0.968305

500 500 True word 0.968303

10000 100 True word 0.967899

500 50 False word 0.967086

500 500 False word 0.967085

500 50 True word 0.967081

1000 100 False word 0.965864

1000 50 False word 0.965458

5000 50 False word 0.965054

1000 50 True word 0.965052

500 100 False word 0.963833
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Table C.6: Model tuning results from Random forest tuning for Group B

Max features n estimators Use TFIDF Features Mean test score

500 500 False 3gram 0.945897

1000 50 False 3gram 0.945880

1000 500 True 3gram 0.944095

500 100 True 3gram 0.944062

5000 100 False 3gram 0.942293

500 50 True 3gram 0.942277

1000 50 True 3gram 0.940475

500 500 True 3gram 0.940475

1000 500 False 3gram 0.940475

500 100 False 3gram 0.938673

5000 500 True 3gram 0.936888

10000 100 True 3gram 0.936888

5000 500 False 3gram 0.936888

10000 500 False 3gram 0.936888

10000 500 True 3gram 0.936888

10000 50 False 3gram 0.936871

1000 100 True 3gram 0.935102

5000 50 True 3gram 0.935070

10000 100 False 3gram 0.935070

5000 50 False 3gram 0.935053

10000 50 True 3gram 0.933268

1000 100 False 3gram 0.933235

500 50 False 3gram 0.931450

5000 100 True 3gram 0.929648

1000 100 True word 0.895364

10000 100 True word 0.893579

5000 100 True word 0.891777

1000 100 False word 0.891761

5000 100 False word 0.891761

10000 500 True word 0.889959

10000 50 True word 0.888174

500 100 True word 0.888157
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Max features n estimators Use TFIDF Features Mean test score

10000 100 False word 0.888157

10000 500 False word 0.888157

1000 500 False word 0.888157

1000 500 True word 0.888157

5000 50 False word 0.888157

5000 500 False word 0.888157

500 500 True word 0.888141

1000 50 False word 0.886355

5000 500 True word 0.886355

1000 50 True word 0.884570

5000 50 True word 0.882752

10000 50 False word 0.882752

500 500 False word 0.882719

500 50 False word 0.880934

500 100 False word 0.875495

500 50 True word 0.875495
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Table C.7: Model tuning results from Hoeffding adaptive tree tuning for Group A

Grace period Delta Features Mean test score

1 0.1 word 0.634721

1 0.9 word 0.631469

1 1e-07 word 0.602207

1 0.001 word 0.600588

10 1e-07 word 0.583915

10 0.1 word 0.572935

10 0.001 word 0.570908

200 0.001 word 0.570095

200 1e-07 3gram 0.570085

200 1e-07 word 0.568061

10 1e-07 3gram 0.567250

50 0.001 3gram 0.565621

50 1e-07 3gram 0.564405

200 0.001 3gram 0.563993

10 0.001 3gram 0.562374

10 0.1 3gram 0.553029

50 0.1 3gram 0.552221

200 0.1 word 0.546927

200 0.1 3gram 0.544907

200 0.9 3gram 0.500997

50 0.9 3gram 0.463638

10 0.9 3gram 0.444548

10 0.9 word 0.414103

200 0.9 word 0.385603
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Table C.8: Model tuning results for Hoeffding adaptive tree tuning for Group B

Grace period Delta Features Mean test score

1 0.001 word 0.640950

1 1e-07 word 0.639066

10 0.1 word 0.624701

10 0.001 word 0.619328

10 1e-07 word 0.601245

200 0.1 word 0.592236

200 0.001 word 0.586798

1 0.1 word 0.576020

200 1e-07 word 0.574201

10 0.1 3gram 0.509124

50 0.1 3gram 0.505471

200 0.001 3gram 0.501867

10 0.001 3gram 0.500131

200 0.1 3gram 0.500066

50 1e-07 3gram 0.500066

10 1e-07 3gram 0.500049

200 1e-07 3gram 0.498247

50 0.001 3gram 0.494660

10 0.9 word 0.447797

1 0.9 word 0.440262

50 0.9 3gram 0.436806

10 0.9 3gram 0.424193

200 0.9 3gram 0.386355

200 0.9 word 0.355217
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Appendix D

Performance metrics

The following figures show performance metrics for the 6 modeling approaches.
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(a) Fixed reference

(b) 1-year window

(c) 5-year window

Fig. D.1: Comparison of performance metrics for Group A showing fixed-reference and sliding-window
approaches.
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(a) Accumulative approach

(b) weighted approach

(c) Matched approach

Fig. D.1: Comparison of performance metrics for Group A showing accumulative, weighted and matched
approaches.
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(d) Fixed reference

(e) 1-year window

(f) 5-year window

Fig. D.2: Comparison of performance metrics for Group B showing fixed-reference and sliding-window
approaches.
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(a) Accumulative approach

(b) weighted approach

(c) Matched approach

Fig. D.2: Comparison of performance metrics for Group B showing accumulative, weighted and matched
approaches.
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