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Abstract. The paper studies existence and uniqueness of solutions to nonlinear delay differen-

tial equations driven by Jumarie and Itô differentials. The analysis is based on the properties of

the singular integral operators in specially designed spaces of stochastic processes and Picard’s
iterative method.
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1. Introduction.
sec-Intro

Processes operating in a multi-time scale modus arise in a number of fields including finance,
science and engineering. In [5] it was suggested to use the fractional Jumarie derivative introduced

in [2] v = df
(dt)α (0 < α ≤ 1) and the classical white noise g = w dB

dt to model the deterministic and

the stochastic parts of the multi-time scale processes, respectively. In the integral form this reads
as

f(t)− f(0) = α

∫ t

0

(t− s)α−1v(s)ds and g(t)− g(0) =

∫ t

0

w(s)dB(s). (1) eq-frac-int

Adopting this approach we study the following fractional stochastic delay differential equation
in multiple time scales:

dx(t) =

m∑
j=1

(fj(t, (H1jx)(t))(dt)
αj + gj(t, (H2jx)(t))dBj(t)) (t ∈ R). (2) SDDE

Here fj(t, v) and gj(t, v) are random functions and H1j , H2j are linear delay operators, (dt)αj are
the fractional Jumarie differentials and dBj(t) are the Itô differentials generated by the standard
scalar Wiener processes (Brownian motions) Bj . The initial condition for (2) is

x(s) = φ(s) (s ≤ 0), (3) prehist

where φ(ω, s) is some random function (not necessarily continuous).
A solution of the initial value problem (2)-(3) is a stochastic process x satisfying (3) for s ≤ 0

and the integral equation

x(t)− φ(0) =

m∑
j=1

(∫ t

0

αj(t− s)αj−1fj(s, (H1jx)(s))ds+

∫ t

0

gj(s, (H2jx)(s))dBj(s)

)
(4) int

for all t ≥ 0. The main result of the paper is a generalization of the existence and uniqueness
theorem from [5] to the case of Eq. (2) and its operator counterpart.

2. Preliminaries
sec-notation

We keep fixed a stochastic basis (Ω,F , (F)t∈R, P ) satisfying the standard conditions [4] assum-
ing, in addition, that Ft = F0 for all t ≤ 0. All stochastic processes in this paper are supposed to
be progressively measurable w.r.t. this stochastic basis or parts of it [4].

The following notation is used throughout the paper:

• R = (−∞,∞), R+ = [0,∞), R− = (−∞, 0).
• µ is the Lebesgue measure defined on R or its subintervals.
• E is the expectation corresponding to the probability measure P .
• Bj(t) (t ∈ R+, j = 1, ...,m) are the standard scalar Wiener processes.
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• The space Lq(J,R
l) (1 ≤ q < ∞, J ⊂ R is a subinterval), contains all progressively

measurable l-dimensional stochastic processes x(t) (t ∈ J) such that
∫
J

E|x(t)|qdt < ∞.

• The space Mp(J,R
l) (1 ≤ p < ∞) consists of all progressively measurable, l-dimensional

stochastic processes x(t) (t ∈ J) such that

sup
t∈J

E|x(t)|p < ∞.

• The space kn consists of all n-dimensional, F0-measurable random variables, and k = k1

is a commutative ring of all scalar F0-measurable random variables.
• The space knp = {ξ : ξ ∈ kn, E|ξ|p < ∞} (1 ≤ p < ∞) is a linear subspace of kn.

The spaces Lq(J,R
l), Mp(J,R

l) and knp are supposed to be equipped with the natural norms.

Clearly also that for q ≤ p and finite intervals J we have Mp(J,R
l) ⊂ Lq(J,R

l), but not in the
topological sense.

3. Properties of some delay operators

Consider the delay operator

(Hx)(t) = x(h(t)), (5) oper-delay-1

Theorem 3.1. Let J = [0, T ] and 1 ≤ q < ∞. Assume that h(t) (t ∈ J) is a Borel function such
that h(t) ≤ t µ-almost everywhere on J . Then the operator (5) is a linear bounded operator from
Mq(R− ∪ J,Rn) to Mq(J,R

n).

Proof. Evidently, H is linear and maps progressively measurable processes defined on R− ∪ J to
the ones defined on J . In addition, sup

t∈J
E|x(h(t))|q ≤ sup

t≤T
E|x(t)|q, which proves boundedness of H

from Mq(R− ∪ J,Rn) to Mq(J,R
n). The last statement of the theorem follows from the inclusion

Mq(R− ∪ {0}, Rn) ⊂ Mq(R− ∪ J,Rn). □

Next, consider the distributed delay operator

(Hx)(t) =

∫ t

−∞
dsR(t, s)x(s). (6) oper-distr-delay-1

Theorem 3.2. Let J = [0, T ] and 1 < q < ∞. Assume that the values of R(t, s) (t ∈ J, −∞ <
s ≤ t) are l × n-matrices and R satisfies the following conditions:

(1) R is Borel measurable on its domain;
(2) sup

t∈J
Vart−∞R(t, ·) < ∞.

Then the operator (6) is a linear bounded operator from Mr(R− ∪ J) to Mq(J,R
l).

Proof. Using the componentwise description of the operator (6) we may assume, without loss of

generality, that l = n = 1, so that (Hx)(t) =
∫ t

−∞ x(s)dsR(t, s). Evidently, the operator H
maps progressively measurable processes defined on R− ∪ J to the ones defined on J . Putting
Vart−∞[R(t, ·)](s) ≡ R̄(t, s) we get

sup
t∈J

E|
∫ t

−∞ x(s)dsR(t, s)|q ≤ sup
t∈J

(
E
∫ t

−∞ |x(s)|qdsR̄(t, s)×
(∫ t

−∞ dsR̄(t, s)
)q−1

)
≤ sup

t∈J

(∫ t

−∞ E|x(s)|qdsR̄(t, s)
)
× sup

t∈J

(∫ t

−∞ dsR̄(t, s)
)q−1

≤ sup
s∈R−∪J

E|x(s)|q sup
t∈J

(∫ t

−∞ dsR̄(t, s)
)
× sup

t∈J

(∫ t

−∞ dsR̄(t, s)
)q−1

≤ sup
t∈R−∪J

E|x(t)|q sup
t∈J

(∫ t

−∞ dsR̄(t, s)
)q

≤
(
sup
t∈J

Vart−∞R(t, ·)
)

sup
t∈R−∪J

E|x(t)|q

which proves boundedness of H from Mq(R− ∪ J) to Mq(J,R
l). □
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Remark 3.1. The delay operator (5) can be regarded as a particular case of the delay operator
(6) if we put R(t, s) = diag[χh, ...., χh] to be the n×n diagonal matrix containing the indicator χh

of the set {(t, s) : s ≤ h(t)}. Moreover, if we define R(t, s) to be the (rn)× n-matrix of the form

R(t, s) = (diag[χh1
, ...., χh1

], ..., diag[χhr
, ...., χhr

]) ,

then we get the multiple delay operator x(t) 7→ (x(h1(t)), ...., x(hr(t)).

4. Main results

Let us first consider the following fractional functional differential equation:

dy(t) =

m∑
j=1

((Fj(y))(t)(dt)
αj + (Gj(y)x)(t)dBj(t)) (7) control

equipped with the initial condition
y(0) = y0 ∈ knp . (8) init

The solution of Eq. (7) is understood in the following sense:

y(t)− y(0) =

m∑
j=1

(
αj

∫ t

0

(t− s)αj−1Fj(y)(s)ds+

∫ t

0

Gj(y)(s)dBj(s)

)
(t ∈ J). (9) eq-int-app

def-sup-operator Definition 4.1. Let X,Y be two separable metric spaces and σ : Ω ×X → Y be a random map.
The operator x(·) → σ(·, x(·)) is called the superposition operator generated by σ.

def-Volterra Definition 4.2.

• A continuous map V : X → Y , where X,Y are two separable metric spaces of functions
defined on an interval J ⊂ R is called Volterra if

x1(s) = x2(s) ⇒ (V x)(s) = (V y)(s)

for all x1, x2 ∈ X , any t ∈ J and almost all s ≤ t, s ∈ J .
• A map V : Ω ×X → Y is called a random Volterra map if V (ω, ·) is Volterra for almost
all ω ∈ Ω and V (·, x) is F-measurable for all x ∈ X.

• The superposition operator generated by a random Volterra map is defined by x(·) 7→
V (·, x(·)).

• A random Volterra map V : Ω×X → Y , such that V t(·, x) is Ft-measurable for all t ∈ J
will be called non-anticipating.

Evidently, any Volterra map V gives rise to a family of Volterra maps V t : Xt → Yt (t ∈
J), where Xt and Yt consist of the restrictions of the functions from X and Y , respectively, to
(−∞, t]∩J . It is also easy to check that the superposition operators generated by random Volterra
maps are continuous in probability and if V is non-anticipating, then the superposition operator
generated by V preserves progressive measurability of stochastic processes.

In the proofs below we use the following inequalities:

E

∣∣∣∣∣∣
t∫

0

f(s)dB(s)

∣∣∣∣∣∣
q

≤ cqqE

 t∫
0

|f(s)|2ds

q/2

(t ∈ R+, q ≥ 2), (10) estimate-1

where f(t) is an arbitrary scalar, progressive measurable stochastic process on R+, B(t) is the
standard scalar Brownian motion and cq is a certain constant, which is independent of f ;∣∣∣∣∣∣

t∫
0

(t− s)α−1g(s)ds

∣∣∣∣∣∣
q

≤ dqq t
qα−1

t∫
0

|g(s)|q ds (t ∈ R+, q > α−1), (11) estimate-2

where g : R+ → R is a Lebesgue measurable function and dq =
(

q−1
qα−1

)1−1/q

.
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Inequality (10) follows from the estimates proved in e.g. [3], while (11) is a direct consequence
of Hölder’s inequality.

th-exist Theorem 4.1. Let J = [0, T ] and assume that

(1) 0 < αj ≤ 1, pj ≥ 2, αj
−1 < pj ≤ p (1 ≤ j ≤ m).

(2) The superposition operators generated by the random, non-anticipating operators Fj, Gj

(1 ≤ j ≤ m) map the space Mp(J,R
n) into the spaces Lpj (J,R

n) and L2(J,R
n), respec-

tively, and satisfy the Lipschitz condition

||Fjy1−Fjy2||Lpj
(J,Rn) ≤ ℓ||y1−y2||Mp(J,Rn), ||Gjy1−Gjy2||L2(J,Rn) ≤ ℓ||y1−y2||Mp(J,Rn) (12) eq-Lipsch

for some constant ℓ and the sub-linear growth condition

||Fjξ||Lpj
(J,Rn) ≤ b||ξ||kn

p
, ||Gjξ||L2(J,Rn) ≤ b||ξ||kn

p
(13) eq-bound

for some constant b and any ξ ∈ knp .

Then the initial value problem (7)-(8) has a unique (up to the natural equivalence of indistinguish-
able processes) solution y(·, y0) ∈ Mp(J,R

n).
If the constants ℓ and b are independent of J , then the solution y(t, y0) is defined for all t ∈ R+.

Proof. We prove this theorem for the equivalent integral equation (9). Notice that due to the
Volterra property of the operators Fj and Gj we have

||Fjy1−Fjy2||Lpj
([0,t],Rn) ≤ ℓ||y1−y2||Mp([0,t],Rn), ||Gjy1−Gjy2||L2([0,t],Rn) ≤ ℓ||y1−y2||Mp([0,t],Rn)

(14) eq-Lipsch-1

for any t ∈ J . Now, the proof becomes a standard application of Picard’s iterations. Put

y(ν)(t) = y0 +

m∑
j=1

(
αj

∫ t

0

(t− s)αj−1Fj(y
(ν−1))(s)ds+

∫ t

0

Gj(y
(ν−1))(s)dBj(s)

)
(t ∈ J, ν ∈ N)

(15) eq-Picard

and y(0) = y0. Using (12), (13), (14) and inequalities (10), (11) with q = pj we obtain

E
∣∣∣y(ν+1)(t)− y(ν)(t)

∣∣∣p ≤ K

∫ t

0

E
∣∣∣y(ν)(s)− y(ν−1)(s)

∣∣∣p ds (t ∈ J, ν ∈ N) (16) eq-exist-0

and

E
∣∣∣y(1)(t)− y(0)(t)

∣∣∣p ≤ K0t||y0||kn
p

(t ∈ J). (17) eq-exist-1

Iterating (16) and using (17) yield

E
∣∣∣y(ν+1)(t)− y(ν)(t)

∣∣∣p ≤ K0
Kνtν

ν!
(t ∈ J, ν ∈ N), (18) eq-exist-2

which ensures convergence of the sequence {y(ν)} to some y in the space Mp(J,R
n). The sto-

chastic process y(t) satisfies then Eq. (9) due to continuity of the operators Fj : Mp(J,R
n) →

Lpj
(J,Rn) and Gj : Mp(J,R

n) → L2(J,R
n) and boundedness of the linear operators (I1jy)(t) =∫ t

0
(t − s)αj−1y(s)ds and (I2jy)(t) =

∫ t

0
y(s)dB(s) acting from Lpj (J,R

n) to Mp(J,R
n) and from

L2(J,R
n) to Mp(J,R

n), respectively (see estimates (10)-(11)).
Assume y1(t) and y2(t) to be two solutions of Eq. (9). Then we have, exactly as in (16), that

E |y1(t)− y2(t)|p ≤ K

∫ t

0

E |y1(s)− y2(s)|p ds (t ∈ J),

and the property of uniqueness follows from Grönwall’s lemma. □

To prove the existence and uniqueness theorem for (2) we represent it as Eq. (7). This is a
standard procedure in the deterministic theory of functional differential equations [1]. To this end,
we assume given two stochastic processes y ∈ Mp(J,R

n) and φ ∈ Mp(R− ∪ {0}), put

y+(t) =

{
y(t) (t ∈ J)
0 (t ∈ R−)

and φ−(t) =

{
0 (t ∈ J)
φ(t) (t ∈ R−)
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and define

Fj(y) = fj(·, H1j(y+) +H1j(φ−)), Gj(y) = gj(·, H2j(y+) +H2j(φ−)), (19) canonical

which yields Eq. (7).
The result below connects Eq. (2) and (7).

prop-link Proposition 4.1. Assume that the k-linear operators Hij : Mp(R− ∪ J,Rn) → Lp(J,R
l) are

bounded for all i = 1, 2, j = 1, ...,m. Then the stochastic process

x(t) =

{
y(t, φ(0)) (t ∈ J)
φ(t) (t ∈ R−)

(20) x-via-y

is the solution of the initial value problem (2)-(3) if and only if y is a solution of the initial value
problem (7)-(8).

Proof. Let y be a solution of the problem (7)-(8). Then (20) can be rewritten as x(t) = y+(t, φ(0))+
φ−(t) (t ∈ R− ∪ J), and for all t ∈ J we obtain x(t) = y(t) and Hij(y+) +Hij(φ−) = Hijx due to
linearity of Hij . Hence x(t) satisfies Eq. (2). In addition, x(t) = φ(t) for t ≤ 0.

Assume now that x is a solution of the problem (2)-(3) and put y = x|J . Then x(t) = y+(t) +
φ−(t) (t ∈ R− ∪ J), so that Hijx = Hij(y+) +Hij(φ−), which means that y(t) satisfies Eq. (7) if
Fj and Gj are defined as in (19). By construction, y(0) = φ(0), and the result follows. □

ex-canonical Example 4.1. The representation (7) of Eq. (2) with the distributed delay operators Hij given by

(Hijx)(t) =

∫ t

−∞
dsRij(t, s)x(s),

where Rij(t, s) are n× l-matrix valued, Borel measurable functions defined on {(t, s) : t ∈ J, −∞ <
s ≤ t}, reads as

dy(t) =

m∑
j=1

(
fj(t,

∫ t

0

dsR1j(t, s)y(s) + u1j)(dt)
αj + gj(t,

∫ t

0

dsR2j(t, s)y(s) + u2j)dBj(t)

)
.

In particular, Eq. (2) with time-dependent delays given by

(Hijx)(t) = x(hij(t)),

where hij(t) ≤ t are Borel measurable functions (i = 1, 2, j = 1, ...,m), has the following represen-
tation:

dy(t) =

m∑
j=1

(fj(t, (S1jy)(s) + u1j)(dt)
αj + gj(t, (S2jy)(s) + u2j)dBj(t)) ,

where Sij, known as inner superposition operators (see e.g. [1]), are defined as

(Sijy)(t) =

{
y(hij(t)) (t ∈ J)
0 (t ∈ R−)

Now we are ready to prove the existence and uniqueness result for Eq. (2).

th-exist-SDDE Theorem 4.2. Let J = [0, T ] and assume that

(1) 0 < αj ≤ 1, pj ≥ 2, αj
−1 < pj ≤ p (1 ≤ j ≤ m).

(2) for all j = 1, ...,m the random functions fj , gj : Ω×R+ ×Rl → Rn are such that fj(·, ·, v)
and gj(·, ·, v) are progressively measurable for any v ∈ Rl and fj(ω, t, ·) and gj(ω, t, ·) are
continuous for P ⊗ µ-almost all (ω, t), satisfy the Lipschitz condition

|fj(ω, t, x1)− fj(ω, t, x2)| ≤ ℓ|x1 − x2|, |gj(ω, t, x1)− gj(ω, t, x2)| ≤ ℓ|x1 − x2| a.s. (21) eq-Lipsch-SDDE

for some constant ℓ and all x1, x2 ∈ Rl, t ∈ J and the sub-linear growth condition

|fj(ω, t, x)| ≤ b|x|, |gj(ω, t, x)| ≤ b|x| (22) eq-bound-SDDE

(3) the k-linear operators Hij : Mp(R− ∪ J,Rn) → Lp(J,R
l) are bounded for all i = 1, 2, j =

1, ...,m.



6 ARCADY PONOSOV

Then for any φ ∈ Mp(R− ∪ {0}, Rn) the initial value problem (2)-(3) has a unique (up to the
natural equivalence of indistinguishable processes) solution x(·, φ) ∈ Mp(J,R

n).
If the constant ℓ is independent of J , then the solution x(t, φ) is defined for all t ∈ R.

Proof. The proof is based on Theorem 4.1. Define Fj and Gj using the formulas (19). It is
easy to see that the superposition operators generated by the non-anticipating operators Fj , Gj

(1 ≤ j ≤ m) map the space Mp(J,R
n) into the space Lp(J,R

n), which contains both Lpj
(J,Rn)

and L2(J,R
n), because p ≥ max{2, pj : j = 1, ...,m}. These operators satisfy the Lipschitz

condition (12) and the sub-linear growth condition (13) as well. Therefore, Eq. (7) with Fj , Gj so
constructed has a unique solution y ∈ Mp(J) satisfying the initial condition y(0) = φ(0). Applying
Proposition 4.1 completes the proof. □

Remark 4.1. As Mp([0, T ], R
n) ⊂ Lp([0, T ], R

n), the delay operators (5) and (6) satisfy condition
(3) of Theorem 4.2.
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