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Introduction 

Technological advancements and improvements in next-generation sequencing have al-
lowed for the exploration of complex and previously unknown marine microbial commu-
nities, which constitute the largest and most stable ecosystem on earth. Studies such as the 
Tara Oceans project [1] have enabled the discovery of so-called microbial dark matter [2] 
or unculturable microbial communities. The main challenge in metagenomics study is to 
identify low-abundance microbes, which highly depends on the accuracy and precision of 
short-reads sequencing platforms. While short reads may introduce sequencing errors, 
high coverage can compensate these errors in subsequent downstream analysis [3]. Short 
read sequencing platform such as Illumina HiSeq3000 platform can generate 1 tera-base-
pairs (Tbp) of sequence data which corresponds to 3.33 billion paired-end (PE) reads 
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(150 bp) in a single run and is based on sequencing by synthesis 
chemistry. It has already been the preferred choice for shotgun 
metagenomics studies due to their affordability and low error rates 
[4].  

The BGISEQ-500 platform, based on DNA Nanoball Technolo-
gy, by the Beijing Genomics Institute (BGI) group in 2016, gener-
ates 1 Tbp of sequence data which corresponds to 5 million PE 
reads (100 bp) in a single run while minimizing amplification er-
rors. DNA Nanoball Technology incorporates customized com-
bined probe-anchor synthesis technology with MGI Tech Co., Ltd.’ 
proprietary base-calling software. Several studies have compared 
the BGI’s platform performance with Illumina’s platform in differ-
ent areas of omics studies such as transcriptome, small RNA se-
quencing including metagenomics studies [5-7]. 

One of the key challenges in metagenomics studies utilizing short-
read platforms is that short-read sequences often map to multiple 
species with identical or similar segments in the reference genome 
[8]. To address this issue, taxonomic classifiers (bioinformatics 
tools), utilize specialized algorithms to accurately assign millions of 
reads generated from short read sequencers to the corresponding 
taxa [9]. Taxonomic classifiers such as Kraken2 [10] use both least 
common ancestor (LCA) and k-mer approaches to build an indexed 
database and searches for k-mers in the reads that match against the 
reference database. Whereas other taxonomic classifiers such as Kai-
ju [11] perform maximum exact match against protein databases us-
ing Burrows-Wheeler transform. Both k-mer based classifiers are de-
signed for short reads and utilize pseudo-alignment algorithms to 
match them against a reference database for classification. 

However, a downside of this method is the reliability of taxo-
nomically annotated reference sequences database as uncharacter-
ized taxa generally lead to insufficient classification at the species lev-
el [12]. Highly accurate relevant reference sequence databases, such 
as the NCBI RefSeq database [13] and the MAR databases 
(https://mmp2.sfb.uit.no/) [14] can accelerate taxonomic profiling 
of marine metagenomics reads or contigs. The MAR databases 
hosted at the Center for Bioinformatics (SfB), The Arctic Universi-
ty of Norway (UiT), a node of ELIXIR Norway, contain marine 
microbial genome records based on the level of completeness 
(MarRef v1.5: 1270 manually curated records and MarDb v1.5: 
13237 incompletely sequenced marine prokaryotic genomes re-
cords including metagenome-assembled genomes [MAGs] and 
single amplified genomes [SAGs]). These records are taxonomical-
ly annotated using both Genome Taxonomy Database (GTDB) 
[15] and NCBI, allowing flexibility to use either GTDB taxonomy 
or NCBI taxonomy identifier (TaxID). Both GTDB and NCBI 
taxonomy are hierarchically ordered into taxonomic levels or ranks. 

The most commonly used taxonomic ranks for bacteria include 
domain/kingdom, phylum, class, order, family, genus, and species. 

In this study, we provide an extensive comparison of sequencing 
platforms (HiSeq3000 and BGISEQ-500) using 12 sediment 
metagenomics samples, utilizing various combinations of taxono-
my classifiers with reference databases and assemblers. By doing so, 
this study aims to provide insights into the advantages and limita-
tions of each platform and contribute to the ongoing efforts to im-
prove and optimize metagenomics research. 

Methods 

Metagenomic DNA extraction 
The study collected marine sediment samples from 12 locations off 
the Norwegian coast and metagenomic DNA was extracted using 
the FastDNA Spin Kit for Soil (MP Biomedicals, Santa Ana, CA, 
USA). The DNA samples were sequenced using both HiSeq3000 
(Norwegian Sequencing Centre, Oslo, Norway) and BGISEQ-500 
(BGI Tech Solutions (Hong Kong) Co., Ltd., Hong Kong, China) 
platforms. 

Data available 
All the sequencing reads generated from both HiSeq3000, and 
BGISEQ-500 platforms have been deposited in the European Nu-
cleotide Archive (ENA) at EMBL-EBI under accession number 
PRJEB55540. A copy of the BGISEQ-500 generated sequences has 
also been submitted to the CNGB Sequence Archive (CNSA) of 
China National GeneBank DataBase (CNGBdb) with accession 
number CNP0003834.  

Normalization and preprocessing of sequence data 
In this study, we divided each 12 samples into two, treating them as 
technical replicates (Illumina HiSeq3000: 150 bp PE and BGIS-
EQ-500: 100 bp PE; Illumina, San Diego, CA, USA). To normalize 
sequence data, the largest dataset from each pairwise technical rep-
licate was normalized (downsampled) to an equal number of bases 
per sample points for accurate comparison. It was done using refor-
mat.sh of the BBTools suite (sourceforge.net/projects/bbmap/) 
with the "sbt" option (sbt: ‘lowest base count of sequences generat-
ed among sequencing platforms per sample site’) (Figs. 1 and 2). 
The normalized or unprocessed reads were then screened for over-
all sequencing quality using FastQC v0.11.5 [16] and optical dupli-
cates for Illumina sequences were removed using clumpify.sh (du-
pedist = 40) of the BBTools package. Adapter sequences were 
trimmed using bbduk.sh (HiSeq3000 = Nextera adapter sequences, 
BGISEQ-500 adapter sequences left = ‘AAGTCGGAGGCCAAG-
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Fig. 1. Workflow for analyzing HiSeq3000 and BGISEQ-500 generated data. Major analysis steps are indicated in light red (Preprocessing, 
Assembly, and Taxonomic classification). Arrows indicate the direction of data flow. Tools used in each analysis step are indicated in gray 
boxes.

CGGTCTTAGGAAGACAA’ and right = ‘AAGTCGGATCGTAG-
CCATGTCGTTCTGTGAGCCAAGGAGTTG’) and low-quality 
bases were filtered out (HiSeq3000: ‘forcetrimleft = 17 ktrim = r 
minlen = 51 qtrim = r trimq = 20 tbo = t mink = 11 hdist = 1’ and 
BGISEQ-500: ‘minlen = 51 trimq = 20 forcetrimleft = 3’). 
Trimmed reads were mapped against PhiX phage sequences using 
FastQ Screen [17] to filter any possible contamination in Illumina 
sequences. Finally, PE reads were reordered using repair.sh and 
clean reads greater than 51 bases with Phred score > 20 were kept 
for downstream analysis. 

Taxonomic classification 
Taxonomic classification of the preprocessed or clean reads was 
performed using Kaiju (v1.7.3) and Kraken2 (v2.1.0) against both 
indexed bacterial MAR (v1.5, June 2020) and RefSeq (July 2020) 
databases at default parameter settings and thread 15. The MAR da-

tabases differentiate marine microbial genomes based on the level 
of curatedness. In the current study, both MarRef v1.5 and MarDb 
v1.5 were merged (here referred to as MAR) and used as the refer-
ence databases. The reference database for taxonomic classification 
was tailored to bacterial protein and nucleotide genome sequences 
and indexed using Kaiju and Kraken2 respectively. Four indexed 
classifier-database combinations were created: kaiju-MAR (25 
GB), kraken2-MAR (49 GB), Kaiju-RefSeq (31 GB), and krak-
en2-RefSeq (42.6 GB). Classified reads were imported using the 
phyloseq package [18] in R, and the corresponding count values 
were converted into percentages for both sequencing platforms (12 
samples), where 100% refers to the total read count of a sample. 
Subsequently, the taxonomically classified reads were subjected to 
Principal Coordinate Analysis (PCoA) analysis using Bray-Curtis 
dissimilarities at the taxonomic ranks phylum, order, and genus in 
R with the ordinate function from phyloseq package. 
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Fig. 2. Total read count (bar plot) and total base counts (line plot) present in raw, normalized, and preprocessed read sequences generated 
from two sequencing platforms. Sequences in red and blue variants represent HiSeq3000 and BGISEQ-500 total reads and bases counts, 
respectively, while the black line graph represents normalized base counts for both sequencing platforms.
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The assembly of both normalized and preprocessed/clean reads 
from both HiSeq3000 and BGISEQ-500 platforms was performed 
using MEGAHIT v1.2.9 [19] and metaSPAdes v3.13.0 [20], except 
for the assembly of normalized reads from HiSeq3000 due to high 
computational requirements. It resulted in 84 combinations of input 
reads, assemblers, sequencing platforms, and sample points, and 
each combination was assembled at default k-mer values. Assembly 
qualities of contigs greater than 500 bp were evaluated using Me-
taQuast v5.0.2 [21]. The MEGAHIT assemblies were conducted 
locally using 40 threads on Intel(R) Xeon(R) Gold 6150 CPU @ 
2.70 GHz processors and Intel(R) Xeon(R) Gold 6240R CPU @ 
2.40 GHz processors. The metaSPAdes v3.13.0 assemblies were 
performed on Sigma2 - the National Infrastructure for High Perfor-
mance Computing and Data Storage in Norway. Supplementary Fig. 

1 was generated on relative values (–1 to 1) using the ComplexHeat-
map R package [22]. Relative values were recomputed as mean of 
assembly statistics from each UnPreprocessed reads-assembler com-
bination relative to average value obtained from all combinations, as 
described in a previous publication [23]. An in-house bash script 
was used to calculate the maximum memory (RAM) utilized and 
total run-time during both taxonomy classification and assembly.  

Results  

Normalization and preprocessing of sequence data 
Illumina HiSeq3000 generated a higher number of bases, on aver-
age (~36 billion bases and fewer reads ~241 M) than BGISEQ-500 
(~32 billion bases or ~322 M reads) at most sample points (Fig. 2). 
Normalization enabled us to retain ~23–38 billion high-quality 
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bases with average Q20 scores of ~99.04% and ~97.25% for HiS-
eq3000 and BGISEQ-500 generated normalized/unprocessed 
reads, respectively (Supplementary Table 1). High-quality sequenc-
es were characterized by a lack of ambiguous base calls or base-call-
ing errors, represented by an ‘N’. We observed that such errors were 
almost absent (<0.6%) in BGISEQ-500 reads but ranged from 
5–11% at the end of HiSeq3000 reads (8 bp), which were discarded 
by quality control tools. Moreover, HiSeq3000 reads showed a high 
amount of Nextera adapter contamination in three out of 12 sam-
ples, while the BGISEQ-500 reads were almost free from adapter 
sequences. The duplication ratio in HiSeq3000 generated reads was 
slightly higher than that in BGISEQ-500 generated reads (Supple-
mentary Table 1). The GC percentage of HiSeq3000 and BGIS-
EQ-500 generated reads ranged between 52%–56% and 51%–55%, 
respectively (Supplementary Fig. 2). Finally, the length of prepro-
cessed reads varied between 117–130 bp for HiSeq3000 and ~100 
bp for BGISEQ-500. 

Taxonomic classification 
The taxonomic classification of preprocessed reads from both se-
quencing platforms in all samples resulted in 16,667 unique bacteri-
al taxonomic IDs (Supplementary Table 2.1). A significant propor-
tion of taxa (~40.3%) were unique to a particular database, irre-
spective of the classifier and database type used (Supplementary 
Fig. 3). The RefSeq database uniquely identified approximately 
49.5% (or 8,242 taxa) of total classified taxa. Similarly, the MAR 
database uniquely contributed significantly to the identification of 
approximately 40.7% (or 6,796 taxa) of the total taxa. Kraken2, us-
ing RefSeq, identified 1,066 taxa (6.4% of total classified taxa) that 
were unique and not identified by any other classifier-database 
combination. In contrast, 1,484 taxa or 8.9% of the total classified 
taxa were identified by all classifier-database combinations. 

A decline in the percentage of taxonomically classified reads was 
observed at lower taxonomic ranks, regardless of the sequencing 
platform, classifier, or database used (Fig. 3). Across all taxonomic 
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Fig. 4. Principal coordinate analysis plot of taxonomically classified reads using the Bray-Curtis distance metric at taxonomic ranks: (A) 
phylum, (B) order, and (C) genus (x-coordinate flipped). Gray oval cluster each classifier-reference database combination at 95% confidence 
interval.

ranks and for each sample point, a higher fraction of HiSeq3000 
reads were classified relative to BGISEQ-500 reads (average differ-
ence of ~1.93%–7.23%), irrespective of reference databases used 
(Supplementary Table 2.2). Kaiju classified a higher fraction of 
reads than Kraken2 for all taxonomic ranks (average difference of 
22%–26.8% from domain to family, and 9.62%–23.58 % from genus 
to species) (Supplementary Table 2.3). The use of the curated ma-
rine-specific database (MAR) resulted in more reads being taxo-
nomically classified than RefSeq (average difference of ~6.2%–
11.7% from domain to family), except with Kaiju at genus and species 
level (Supplementary Table 2.3). However, at the taxonomic rank 
of genus and species, the percentage of reads classified using Kai-
ju-MAR declined more than that using Kaiju-RefSeq (average dif-
ference of ~1.4%–7.9%) (Fig. 3, Supplementary Table 2.3). 

The PCoA of taxonomic profiles showed a clear clustering that 
correlates to the choice of reference databases and taxonomic clas-
sifiers. Approximately 73.9% of variation in the dataset is explained 
by the choice of reference database, while 14.6% can be attributed 
to the choice of taxonomic classifier at the species level (Fig. 4). At 
higher taxonomic ranks, there were no clear separations between 
the selected reference databases and taxonomic classifiers. The se-
quencing technology does not seem to contribute to the variations 
in ordination plot.  

Assembly  
We assembled unprocessed and preprocessed/clean reads using two 
assemblers (MEGAHIT and metaSPAdes) independently, resulting 
in a total of 84 assemblies from seven categories (un/preprocessed 
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Fig. 5. Boxplot showing assembly statistics using metaSPAdes and MEGAHIT on unprocessed and preprocessed reads from HiSeq3000 (red) 
and BGISEQ-500 (blue) sequencing platforms.
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Fig. 5. Boxplot showing assembly statistics using metaSPAdes and MEGAHIT on unprocessed and 

preprocessed reads from HiSeq3000 (red) and BGISEQ-500 (blue) sequencing platforms. 

 reads, sequencing technology, and assemblers) (Supplementary Ta-
ble 3, Supplementary Fig. 1). On average, MEGAHIT with HiS-
eq3000 unprocessed reads generated the largest and most contigu-
ous assemblies (~866 Mb or ~976 kb contigs), while metaSPAdes 
using clean BGISEQ-500 reads produced the smallest assemblies 
(~371 Mb or ~415 kb contigs) (Fig. 5). Both assemblers consistent-
ly produced larger assemblies using HiSeq3000 reads, with an aver-
age difference of ~390 Mb (MEGAHIT using unprocessed reads), 
~164 MB (MEGAHIT using clean reads), and ~116 MB 
(metaSPAdes using clean reads) compared to BGISEQ-500 reads. 
The largest contigs in all assembly categories ranged between 35–
155 kb, except for outliers at ~192 kb (Supplementary Fig. 4A). The 
GC percentage of assemblies was ~53%–57% for HiSeq3000 and 
~48%–56% for BGISEQ-500 (Supplementary Fig. 4B). The N50 
contig length (>500 bp) remained similar (~0.75–1 kb) in all assem-
blies, irrespective of assemblers (Supplementary Fig. 4C). 

Computational requirements 
The computational resources required for classification and assem-
bly were minimally affected by the sequencing platform. The taxo-
nomic classifier Kaiju efficiently utilized all available resources, 
while Kraken2 used approximately 35.58% of the CPU but classi-
fied the dataset 12 times faster than Kaiju (Supplementary Fig. 5A 
and 5B). Peak memory usage for Kaiju varied between ~28–35 GB 
and ~42–43 GB for Kraken2. MetaSPAdes required significantly 
higher memory (~515–554 GB) than MEGAHIT (~54–63 GB) 
for assembling the largest dataset (~32–38 billion bases) while for 
the smallest dataset (~19–23 billion bases), metaSPAdes and 

MEGAHIT used ~300 GB and ~35 GB of maximum memory 
(Supplementary Fig. 5D). Peak memory usage and run-time for all 
assemblies averaged approximately 428 GB or 37.22 h for 
metaSPAdes, and 46 GB or 6.48 h for MEGAHIT. The assembler 
run-time performance improved significantly using preprocessed 
or clean reads by ~45% (MEGAHIT using HiSeq3000), ~25% 
(MEGAHIT using BGISEQ-500), and ~31% (metaSPAdes using 
BGISEQ-500) compared to unprocessed reads (Supplementary 
Table 3). 

Discussion 

Our study compared the metagenomic DNA sequences generated 
by two sequencing platforms, HiSeq3000 and BGISEQ-500, from 
12 samples collected along the Norwegian coast. To evaluate the 
quality of the generated datasets, we utilized two different reference 
databases, taxonomic classifiers and assemblers. 

Both platforms generated an unequal number of reads and base 
counts, which can vary due to factors such as microbial abundance, 
sequencing depth, and GC biases [24]. Library preparation meth-
ods specific to each platform can impact read duplication and 
adapter contamination [25]. There is also evidence of a plat-
form-dependent GC distribution pattern between the BGIS-
EQ-500 and HiSeq4000 [7]. To mitigate these limitations and dif-
ferences, an equal number of bases were extracted from each sam-
ple point from both platforms, to normalize the data and facilitate 
further comparisons. Our analysis encompasses the evaluation of 
the percentage of reads classified at various taxonomic ranks, as-
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sembly statistics, and computational requirements for each plat-
form's generated sequencing reads. 

Our findings indicate that despite the differences in sequence 
length (HiSeq3000: 150 bp PE and BGISEQ-500: 100 bp PE), the 
base quality between these two sequencing platforms is compara-
ble. The absence of adapter sequences in the BGISEQ-500 se-
quences resulted in a smaller proportion of reads being discarded 
during subsequent processing stages (Supplementary Table 1). 
However, a higher percentage of taxonomically classified reads was 
obtained from the HiSeq3000 platform, with a difference ranging 
from 1.93% to 7.23% on average, compared to the BGISEQ-500 
platform, when evaluated across different taxonomic classifiers and 
reference databases (Fig. 3, Supplementary Table 2.1). This dis-
crepancy could be due to a combination of factors, including se-
quence length, classification algorithms, and reference databases 
used. Previous research using short Illumina reads indicates a weak 
correlation between read length and classification success (the 
probability of correct classification out of total taxonomically classi-
fied reads) and for bacteria it remained relatively constant across 
different read lengths (100 bp and 150 bp) [26]. Also, Illumina 
short reads (100 bp and 150 bp) were found to have a constantly 
higher overall recall (the probability of correct classification out of 
total reads) for bacteria using Kraken2 [26]. The difference in the 
fraction of reads classified between the HiSeq3000 and BGIS-
EQ-500 platforms could be attributed to differences in the classifi-
cation method employed. Both Kaiju and Kraken2 utilize different 
approaches to taxonomically classify reads; Kaiju uses a maximum 
number of exact matches, while Kraken2 identifies fixed-size 
k-mers of variable length in reads and matches them against in-
dexed databases. Although Kaiju had a slightly longer run-time, it 
efficiently utilized all computational resources and classified a high-
er percentage of reads (as shown in Supplementary Fig. 4A). Un-
fortunately, it was impossible to calculate the accuracy of the taxo-
nomic classifiers used in this study as it requires simulation studies 
on known mock communities using reference databases, which was 
beyond the scope of this paper [11]. 

Our analysis showed that using both MAR and RefSeq protein 
databases was more effective in classifying reads compared to their 
nucleotide counterparts (Supplementary Table 2.3). This disparity 
could be attributed to the fact that protein sequences are more ro-
bust to nucleotide substitutions and sequencing errors [27]. Con-
versely, the nucleotide database showed a difference of 11–24 Gb 
in bacterial genome records compared to the protein counterpart. 
Moreover, using the RefSeq database (bacteria) as a reference led to 
a higher maximum memory requirement, possibly due to database 
composition and diversity (Supplementary Fig. 5C). Furthermore, 

the PCoA plot presented in Fig. 4 provided additional evidence of 
substantial differences at lower taxonomic ranks between the refer-
ence databases. The distinct clustering patterns strongly correlates 
with the selection of reference databases. Taken together, these re-
sults suggest that the taxonomic classification of sequence reads is 
primarily influenced by the choice of reference database, followed 
by the taxonomic classifiers and sequencing platforms used. Nota-
bly, the PCoA plot illustrates that the two sequencing technologies 
produced comparable taxonomic profiles. 

As expected, the fraction of classified reads declines from the 
highest (domain) to the lowest (species) taxonomic rank (Fig. 3). 
The decline is due to a combination of the incomplete annotation 
of entries in the databases at lower taxonomic ranks (e.g., an entry 
can have higher taxonomic information e.g., only at domain to fami-
ly rank), and that the classification algorithms fail to classify reads at 
lower ranks if reads matches equally well to multiple entries. Similar 
misclassification at the genus or species level have been previously re-
ported due to bioinformatics contamination, instances where spe-
cies having a higher average nucleotide identity than the true spe-
cies [25] or the absence of closely related genomes in RefSeq which 
is rare at higher taxonomic ranks [28]. However, Kaiju address this 
by utilizing LCA method in cases of equally good matches to multi-
ple taxa, leading to assignment of reads at a higher taxonomic rank. 

As an example, taxonomic classification using Kaiju against the 
MAR database gradually declines from domain level with 100% 
classification to 71% at the family level. However, it drops signifi-
cantly to 59.27% at the genus level and further to 43.09% at the 
species level. This drop in classification accuracy could be due to 
the presence of marine MAGs, SAGs, and incomplete genomes in 
the MarDb database [14], which is a component of MAR database. 
MAG and SAG genomic sequences are assembled from environ-
mental samples and often contain fragments from multiple ge-
nomes or exhibit gaps and errors due to the complexities of assem-
bling genetic material from diverse source. The high degree of frag-
mentation in MAGs and the presence of unknown microbes pose 
challenges in accurately classifying these microbes, especially at 
lower taxonomic ranks. The absence of representative taxon nodes 
for MAGs in the database can further complicate the process.  

Although, Kaiju using RefSeq protein database, identified ap-
proximately 49.5% of the total identified taxa or 8,242 taxa, it re-
mains uncertain whether these classified organisms are exclusively 
of marine origin. The difference in classified reads using Kai-
ju-MAR or Kaiju-RefSeq at lower taxonomic rank could result 
from non-marine strains in RefSeq database, fewer marine bacteria 
being taxonomically identified at species level in the MAR database 
or allocation of equally classified reads to higher taxonomic rank 
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using the LCA algorithm by Kaiju. Nevertheless, despite these chal-
lenges, Kaiju consistently demonstrated the highest recall with HiS-
eq3000 generated sequences, except at species level, where the MAR 
database proved most effective for marine metagenomics samples. 

Assessing the quality of metagenomics assemblies can be chal-
lenging due to the absence of reference genomes representing di-
verse communities. Our comparative analysis using same base 
count demonstrated that both assemblers produced larger assembly 
lengths and total contigs using preprocessed HiSeq3000 reads in 
majority of sample points. The BGISEQ-500 assemblies exhibited 
slightly better N50 and L50 contig values, although these statistics 
can be easily manipulated due to being based on the ordered length 
of contigs. In addition to our assessment of assembly quality, we 
compared assemblers which revealed that MEGAHIT generated 
larger assembly lengths and longer total contigs than metaSPAdes, 
with an average difference of 2.56%–18.74% and up to 16.55% (us-
ing unprocessed BGISEQ-500 reads), 8.5%–19.15% and 6.82%–
19.29% (using clean HiSeq3000 reads), and up to 13.49% and upto 
11.65% (using clean BGISEQ-500 reads) in all 12 samples (Fig. 5). 
We employed de Bruijn graph (dBg) based assemblers, which re-
quire a selection of k-mer size and can significantly impact the final 
assembly (Fig. 5, Supplementary Fig. 4C and 4D). The choice of 
k-mer size influences the complexity of the graphs and affects the 
ability to resolve repeats, errors, and heterozygosity in the assembly 
[29]. Choosing a smaller k-mer size results in more connected 
graphs, while a larger k-mer size leads to simplified graphs. In our 
study, we used the recommended default k-mer size to obtain as-
sembly statistics across different sequencing technologies, pro-
cessed reads, and assembly programs. While both MEGAHIT and 
metaSPAdes performed comparably in terms of assembly, MEGA-
HIT was more resource-efficient overall. The peak memory usage 
for MEGAHIT to assemble 200 million reads or approximately 31 
billion bases was 63 GB, making it a preferred option for memo-
ry-intensive metagenomics projects. 

Our findings suggest that both platforms are capable of generat-
ing high-quality metagenomic data, but there were some notable 
differences in their performance. Overall, the choice of sequencing 
platform should depend on the specific research question and the 
characteristics of the microbial community being studied. Our 
study provides valuable insights into the performance of two popu-
lar platforms, which can aid researchers in making prior decisions 
about their sequencing strategies. 

The study compared the results of two short read sequencing 
platforms, HiSeq3000 and BGISEQ-500, and we found that they 
produced comparable results. We also compared different sequenc-
ing technologies, taxonomic classifiers, reference databases and as-

semblers. The findings show that short read sequencing platforms 
can be used interchangeably in metagenomics studies, without 
compromising result quality. Our studies show that each sequenc-
ing platform has strengths and weaknesses; therefore, the selection 
of specific platform should be based on the specific research ques-
tions and experimental design. For metagenomics analysis the 
choice of reference database is more essential for taxonomic classi-
fication where the sequencing method itself becomes less signifi-
cant. Finally, taxonomic classifiers and assembly tools have different 
computational requirements and the availability of resources needs 
to be taken into account. 
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