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In the One-Way Linear Effect, the round-trip time interval 𝑇 ′
0 taken by light to propagate around a 

moving linear closed contour, is measured by a device. If the contour changes velocity by Δ𝑣, the 
round-trip interval 𝑇 ′(𝑋′, Δ𝑣) turns out to depend on the device position 𝑋′ and Δ𝑣. The variation 
Δ𝑇 ′ = 𝑇 ′(𝑋′, Δ𝑣) − 𝑇 ′

0 , related to Δ𝑣∕𝑐, is experimentally observable by means of standard 
interferometry, ring laser techniques, or high precision time-delay detectors of light pulses. Being 
sensitive to velocity variations, if experimentally confirmed the One-Way Linear Effect may have 
relevant applications in inertial guidance systems and related areas. Furthermore, the One-Way 
Linear Effect can be used to confirm Lorentz invariance by testing relative simultaneity versus
absolute simultaneity.

1. Introduction

Among the relevant optical experiments historically related to light speed invariance, let’s mention the following. The Michelson-

Morley experiment [1] of 1887 provided a surprising null result that gave support to the theory of special relativity (SR) proposed 
by Einstein in 1905 [2] assuming light speed invariance and the Lorentz transformations (LT). The more sensitive Michelson-Gale 
experiment of 1925 [3], performed with an interferometer fixed on Earth, provided a non-null result. The standard Sagnac experiment 
[4], shown in Fig. 1-a, was carried out in 1913. The linear Sagnac experiment, shown in Fig. 1-b, was performed by Wang et al. 
[5], [6] in 2003. The linear Sagnac effect is considered to be equivalent to the standard Sagnac effect. In the Sagnac effects the 
emitter-receiver C* (clock or interferometer) is moving relative to a fixed contour where two light signals are counter-propagating 
and C* measures the difference Δ𝑇 = 𝑇⟸ − 𝑇⟹ of their round-trip times 𝑇⟸ and 𝑇⟹.

Recently, Spavieri and Haug [7] have proposed the Reciprocal Linear Sagnac Effect, shown in Fig. 1-c, where the measuring 
device C* is stationary and the contour is in relative motion. In the reciprocal effect, the observable Δ𝑇 is foreseen to be the same as 
in the linear Sagnac effect. There are, however, observable features of the linear Sagnac effect that differ from those of the reciprocal 
effect [7].

Following Post [8], for the Sagnac effects the difference Δ𝑇 is given by,

Δ𝑇 = 𝑇⟸ − 𝑇⟹ = 2𝜋𝑟
𝛾(𝑐 − 𝑣)

− 2𝜋𝑟
𝛾(𝑐 + 𝑣)

= 4𝛾𝑣𝜋𝑟
𝑐2

= 2𝛾𝑣𝑃
𝑐2

= 4𝜔 ⋅𝐀
𝑐2

(1)

Δ𝑇 = 𝑇⟸ − 𝑇⟹ = 2𝐿
𝛾(𝑐 − 𝑣)

− 2𝐿
𝛾(𝑐 + 𝑣)

= 4𝛾𝑣𝐿
𝑐2

= 2𝛾𝑣𝑃
𝑐2

,
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Fig. 1. a) In the circular Sagnac effect, two counter-propagating photons (only a single photon is shown) are emitted from the device C* and travel on the circumference 
of the rotating platform. C* measures the difference Δ𝑇 of the photons’ arrival times after a round trip. b) In the linear Sagnac effect, device C* is moving with 
velocity 𝑣 relative to the stationary frame AB and emits counter-propagating photons traveling in an optical fiber that slides frictionless around pulley A and B. c) In 
the reciprocal Sagnac effect, the frame AB of the optical fiber moves with velocity 𝑣 relative to the stationary device C* that emits photons counter-propagating along 
the optical fiber.

where 𝑇⟸ and 𝑇⟹ represent the round-trip time of the co- and counter-moving light signals (or photons) along the contour of 
perimeter 𝑃 = 2𝜋𝑟 in the standard (or circular) Sagnac effect and 𝑃 = 2𝐿 in the linear effect respectively. For the circular Sagnac 
effect, with 𝑣 = 𝜔𝑟, the result (1) is usually expressed [8] in terms of the angular velocity 𝜔 and the area 𝐀 enclosed by the light path.

Result (1) can be applied to the Michelson-Gale experiment, usually interpreted [9], [10] as a circular Sagnac effect, where 
the emitter-receiver device (or clock C*) is fixed on the frame of the interferometer where light propagates, as in the case of the 
Michelson-Morley experiment. However, in the Michelson-Gale experiment, the light path has the form of a rectangle of considerable 
area and, being placed on the surface of the rotating Earth, it rotates relative to the Earth Centered Inertial (ECI) frame. Hence, being 
analogous to the circular Sagnac effect, the Michelson-Gale experiment can measure the angular velocity 𝜔𝐸 of the Earth [10]. At 
present, experiments based on the Sagnac effect using ring laser techniques are performed routinely on Earth [11], [12] to measure 
𝜔𝐸 with a precision 𝛿𝜔∕𝜔𝐸 < 10−8. Therefore, the Michelson-Gale experiment can be considered to be equivalent to a circular Sagnac 
experiment and its non-null result is due to the fact that the system composed of C* and the rectangular light path fixed on the 
Earth’s surface is rotating relative to the ECI frame, where the speed of light is assumed to be 𝑐.

In the Michelson-Gale and the equivalent circular Sagnac experiment, the velocity 𝑣 of C* is uniform and the two experiments 
can detect velocity variations due to rotation. It is thus feasible that there is an experimental set up, here denoted as One-Way Linear 
Effect based on the LT and light speed invariance, capable of detecting linear velocity variations. The purpose of our Letter is to 
show how the One-Way Linear Effect can be theoretically verified. A realistic test of the One-Way Linear Effect, possible with present 
technology, is described.

The Sagnac effect finds important applications in inertial guidance systems extremely sensitive to rotations, such as ring laser 
gyroscope and other optical systems. It is premature to indicate the applications that the One-Way Linear Effect can have. Neverthe-

less, what is important is that the techniques involved in this type of effects are very sensitive. Then, as well as in the case of the 
reciprocal linear Sagnac effect ([7]), potential uses of the One-Way Linear Effect might be the detection of movements of seismic 
origin (and corresponding direction) or velocity variations of aircraft due to air turbulence.

2. Round-trip time interval of a particle moving along a linear contour

The circular and linear Sagnac effects are usually described in the inertial frame of reference of the stationary contour, where the 
speed of light is assumed to be 𝑐. Interpretations of the Sagnac effects in the frame comoving with device C* are given by several 
authors [13–28].

In the linear Sagnac effect of Fig. 1-b the arm AB of the contour is stationary and clock C* is moving clockwise with uniform 
speed 𝑣 along the contour, going from the lower to the upper section of the contour and vice versa. While sliding around the pulley of 
radius 𝑅 during the short time 𝜂, the device C* changes direction of motion at the pulley A (or B). Locally, the speed 𝑣 of C* relative 
to the stationary contour is always constant. In the linear experiment by Wang et al. [5], device C* stays on the lower contour section 
in uniform rectilinear motion during the round-trip time 𝑇 ≃ 𝑇⟸ ≃ 𝑇⟹ and therefore C* does not turn around the pulleys A or B. 
Nevertheless, since the relative speed 𝑣 between C* and contour is constant, the theoretical prediction (1) for 𝑇⟸, 𝑇⟹, and Δ𝑇 is 
maintained, even when C* turns around the pulley during the round-trip time 𝑇 .

In the reciprocal linear Sagnac effect of Fig. 1-c, the device C* is stationary and the contour is moving relative to C*. For this 
2

effect, as long as C* is always on the lower (or upper) track of the contour during the round-trip interval 𝑇 , the predictions for Δ𝑇
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are the same as those of Fig. 1-b. However, the one-way predictions for 𝑇⟸ and 𝑇⟹ are different when C* is first on the lower and 
then on the upper track during the interval 𝑇 ([7]).

Previous works [18–20] discuss the role of simultaneity in special relativity in the context of the circular and linear Sagnac effects 
and other special cases [21]. In these previous works, the device C* is moving relative to the contour where light propagates, but in 
the present One-Way Linear Effect the device C* is always fixed to and co-moving with the contour, while the contour velocity may 
be varying relative to an inertial frame. We show in Section 3 that, if the velocity of the contour changes by Δ𝑣, the relevant feature 
of the One-Way Linear Effect foreseen by the LT is that the one-way round-trip time interval 𝑇 ′ measured by C* depends not only 
on Δ𝑣, but also on the position 𝑋′ of C* on the contour, so that: 𝑇 ′ = 𝑇 ′(𝑋′, Δ𝑣). This special feature is not present in the physical 
effects discussed in previous works [18–22] or other works related to the interpretation of the Sagnac effect.

A significant characteristic of the One-Way Linear Effect is that it represents an optical effect of the Sagnac type capable of 
detecting velocity variations. If its existence is confirmed experimentally, the One-Way Linear Effect may likely find important useful 
technological applications in inertial guidance systems and related areas, as has been the case for the Sagnac effect.

Another important aspect of the One-Way Linear Effect is that its special feature is foreseen by the LT based on relative simultane-

ity. Yet, as shown in the Appendix, this special feature is not predicted by theories based on absolute simultaneity. This fact suggests 
that, by exploiting the One-Way Linear Effect, it is possible in principle to test relative simultaneity versus absolute simultaneity. 
Tests discriminating relative from absolute simultaneity are uncommon in literature, because in the context of relativistic theories it 
is generally assumed that synchronization of spatially separated clocks is arbitrary and relative and absolute simultaneity are not ob-

servable [29]. However, in our effect, the measuring device is only the single clock C*, which does not require synchronization. Thus, 
the experiment on the One-Way Linear Effect described in Section 3 appears feasible for testing Lorentz invariance. Being capable of 
discriminating relative from absolute simultaneity, the One-Way Linear Effect represents a definite advance for the comprehension 
of the role of simultaneity in relativistic theories.

In the One-Way Linear Effect experiment described in the next section we focus on the one-way prediction for 𝑇 ′, as foreseen by 
the LT.

2.1. Contour in uniform motion

Let us consider the linear contour of Fig. 2-a co-moving with frame 𝑆′ at speed 𝑣 relative to the lab frame 𝑆. The device C* is 
fixed to the contour at the end point A. A particle is moving on the contour upper section from A to B in the interval 𝑡𝑜𝑢𝑡 in the out 
trip, and back on the lower section from B to A in the interval 𝑡𝑟𝑒𝑡 in the return trip, traveling at the local speed 𝑢′ = 𝑢0 relative to the 
contour rest length AB =𝐿0. If the contour consists of an optical fiber of refractive index 𝑛, the particle can be a photon traveling at 
speed 𝑢0 = 𝑐∕𝑛. The results derived are valid also for the case, to be discussed elsewhere, of a curved contour forming a circular arc 
AB moving along the circumference.

In agreement with the relativistic velocity transformations, the particle speed in frame 𝑆 is 𝑢𝑜𝑢𝑡 = (𝑢0 + 𝑣)∕(1 + 𝑢0𝑣∕𝑐2) in the out 
trip and 𝑢𝑟𝑒𝑡 = (𝑢0 − 𝑣)∕(1 − 𝑢0𝑣∕𝑐2) in the return trip. With,

𝑢𝑜𝑢𝑡 − 𝑣 =
𝑢0

𝛾2(1 + 𝑢0𝑣∕𝑐2)
𝑢𝑟𝑒𝑡 + 𝑣 =

𝑢0

𝛾2(1 − 𝑢0𝑣∕𝑐2)
,

the resulting time intervals are,

𝑡𝑜𝑢𝑡 =
𝐿0

𝛾(𝑢𝑜𝑢𝑡 − 𝑣)
=

𝛾𝐿0(1 + 𝑢0𝑣∕𝑐2)
𝑢0

→
𝛾𝐿0(1 + 𝑣∕𝑐)

𝑐
(2)

𝑡𝑟𝑒𝑡 =
𝐿0

𝛾(𝑢𝑟𝑒𝑡 + 𝑣)
=

𝛾𝐿0(1 − 𝑢0𝑣∕𝑐2)
𝑢0

→
𝛾𝐿0(1 − 𝑣∕𝑐)

𝑐

𝑇 = 𝑡𝑜𝑢𝑡 + 𝑡𝑟𝑒𝑡 =
2𝛾𝐿0
𝑢0

→
2𝛾𝐿0
𝑐

𝑇 ′ = 𝜏′ = 𝑡′
𝑜𝑢𝑡

+ 𝑡′
𝑟𝑒𝑡

= 𝑇

𝛾
=

2𝐿0
𝑢0

→
2𝐿0
𝑐

,

where in (2) 𝑇 ′ = 𝜏′ represents the round-trip proper time interval measured by C*. The expressions to the right in (2) after the arrow 
→ represent the results in free space when 𝑢0 = 𝑐.

Since C* is fixed to and co-moving with the contour, the round-trip interval 𝑇 calculated from frame 𝑆 is the same whether 
the particle travels one way clockwise or anti-clockwise along the contour starting from C* and returning to C*. Results (2) are 
independent of the position of C* relative to A, as long as the contour is in uniform motion during the interval 𝑇 .

3. Contour in variable motion

If the velocity of the contour changes by Δ𝑣, the interval 𝑇 ′ = 𝑇 ′(𝑋′, Δ𝑣) depends on the initial distance 𝑋′ of C* from point A 
and on Δ𝑣.

The contour of rest length 2𝐿0 shown in Figs. 2-b is in motion relative to the inertial frame 𝑆. A particle, emitted from C* located 
at the distance 𝑋′ from A, travels (Fig. 2-b1) along the contour at the local speed 𝑢0 and reaches point B where is reflected. When the 
3

particle has covered the distance 𝐿0 from C*, it reaches point Z (Fig. 2-b2), being the distance of Z from B: ZB =𝑋′. At this moment 
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Fig. 2. a) The contour AB is moving at speed 𝑣 relative to frame 𝑆. After being emitted by C* at A, the particle moves always at the local speed 𝑢0 relative to the 
contour. When reaching point B, the particle changes direction and returns to C*, while the contour keeps moving at speed 𝑣. b-1) C*, placed on the contour upper 
section at the distance 𝑋′ from A, emits a particle that, traveling at the local speed 𝑢0, reaches B. b-2) The particle changes direction at B and moves on the lower 
section toward point Z. b-3) When the particle has covered the distance 𝐿0 from C* and passes by Z, the contour changes speed from 𝑣 to 𝑣𝑓 . When reaching A, the 
particle changes direction and returns to C*.

the contour velocity is slowed by Δ𝑣 to 𝑣𝑓 = 𝑣 −Δ𝑣 in the negligible interval 𝜂 (Fig. 2-b3) and the particle travels from Z to A, where 
it is reflected, and completes its round trip by reaching C* in the time interval 𝑇 .

For simplicity’s sake, let’s consider the ideal case where 𝜂 is negligible in comparison to 𝑇 and, relative to 𝑆′, the particle travels 
the short finite distance 𝜂𝑢0 ≪ 2𝑣𝐿0∕𝑐 during the interval 𝜂. With this assumption, we may omit taking into account the details of 
the process when the contour changes velocity.

The particle is moving along the contour performing what we define as a one-way clockwise round trip starting from C*. A 
two-way trip consists of a clockwise trip from C* and back to C*, plus a counter-clockwise trip from C* and back to C*.

In the trip from C* to Z, the contour has uniform speed 𝑣. According to the LT, relative to frame 𝑆 the speed of the particle 
is 𝑢+ = (𝑢0 + 𝑣)∕(1 + 𝑢0𝑣∕𝑐2) while traveling from C* to B. The time interval 𝑡1 from C* to B is obtained from the equation 𝑢+𝑡 =
(𝐿0 −𝑋′)∕𝛾 + 𝑣𝑡. While traveling from B to Z the particle speed is 𝑢− = (𝑢0 − 𝑣)∕(1 − 𝑢0𝑣∕𝑐2) and the time interval 𝑡2 from B to Z is 
obtained from the equation 𝑋′∕𝛾 − 𝑢−𝑡 = 𝑣𝑡. With

𝑢+ − 𝑣 =
𝑢0

𝛾2(1 + 𝑢0𝑣∕𝑐2)
𝑢− + 𝑣 =

𝑢0

𝛾2(1 − 𝑢0𝑣∕𝑐2)
,

we find,

𝑡1 =
𝐿0 −𝑋′

𝛾(𝑢+ − 𝑣)
=

𝛾(𝐿0 −𝑋′)(1 + 𝑢0𝑣∕𝑐2)
𝑢0

→
𝛾(𝐿0 −𝑋′)

𝑐
+

𝛾𝑣(𝐿0 −𝑋′)
𝑐2

(3)

𝑡2 =
𝑋′

𝛾(𝑢− + 𝑣)
=

𝛾𝑋′(1 − 𝑢0𝑣∕𝑐2)
𝑢0

→
𝛾𝑋′

𝑐
− 𝛾𝑣𝑋′

𝑐2

𝑡1 + 𝑡2 =
𝛾𝐿0
𝑢0

+
𝛾𝑣𝐿0

𝑐2
− 2𝛾𝑣𝑋′

𝑐2
→

𝛾𝐿0
𝑐

+
𝛾𝑣𝐿0

𝑐2
− 2𝛾𝑣𝑋′

𝑐2

Since in the short interval 𝜂 the contour has decelerated to speed 𝑣𝑓 = 𝑣 − Δ𝑣, from Z to A the return speed of the particle is 
𝑢−
𝑓
= (𝑢0 − 𝑣𝑓 )∕(1 − 𝑢0𝑣𝑓∕𝑐2) and the corresponding time interval 𝑡3 is obtained from the equation (𝐿0 −𝑋′)∕𝛾𝑓 − 𝑢−

𝑓
𝑡 = 𝑣𝑓 𝑡. For the trip 

from A to C* the speed is, 𝑢+
𝑓
= (𝑢0 + 𝑣𝑓 )∕(1 + 𝑢0𝑣𝑓∕𝑐2) and for the corresponding interval 𝑡4 the equation is 𝑢+

𝑓
𝑡 =𝑋′∕𝛾𝑓 + 𝑣𝑓 𝑡. With,

𝑢−
𝑓
+ 𝑣𝑓 =

𝑢0

𝛾2(1 − 𝑢0𝑣𝑓∕𝑐2)
𝑢+
𝑓
− 𝑣𝑓 =

𝑢0

𝛾2(1 + 𝑢0𝑣𝑓∕𝑐2)
,

we find,

𝑡3 =
𝐿0 −𝑋′

𝛾𝑓 (𝑢−𝑓 + 𝑣𝑓 )
=

𝛾𝑓 (𝐿0 −𝑋′)(1 − 𝑢0𝑣𝑓∕𝑐2)
𝑢0

→
𝛾𝑓 (𝐿0 −𝑋′)

𝑐
−

𝛾𝑓 𝑣(𝐿0 −𝑋′)
𝑐2

(4)

𝑋′ 𝛾𝑓𝑋
′(1 + 𝑢0𝑣𝑓∕𝑐2) 𝛾𝑓𝑋

′ 𝛾𝑓 𝑣𝑋
′

4

𝑡4 =
𝛾𝑓 (𝑢+𝑓 − 𝑣𝑓 )

=
𝑢0

→
𝑐

+
𝑐2
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𝑡3 + 𝑡4 =
𝛾𝑓𝐿0

𝑢0
−

𝛾𝑣𝑓𝐿0

𝑐2
+

2𝛾𝑣𝑓𝑋′

𝑐2

The round-trip proper time interval 𝑇 ′ = 𝜏′ measured by C* can be derived from the time transformation of the LT, which is 
𝑡′ = 𝛾(𝑡 − 𝑣𝑥∕𝑐2) when the contour speed is 𝑣 relative to 𝑆. In the interval Δ𝑡 clock C* moves by Δ𝑥 = 𝑣Δ𝑡 and the proper time 
interval is Δ𝜏′ = Δ𝑡′ = 𝛾Δ𝑡(1 − 𝑣2∕𝑐2) = Δ𝑡∕𝛾 . Alternatively, we may use the inverse transformation, 𝑡 = 𝛾(𝑡′ + 𝑣𝑥′∕𝑐2) and consider the 
variation, Δ𝑡 = 𝛾(Δ𝑡′ + 𝑣Δ𝑥′∕𝑐2). Since Δ𝑡′ = Δ𝜏′ is measured by C* at the same position (Δ𝑥′ = 0), we find again, Δ𝜏′ = Δ𝑡′ = Δ𝑡∕𝛾
(i.e., 𝜏′ = 𝑇 ∕𝛾). After the time interval Δ𝑡 = 𝑡1 + 𝑡2, when the particle has reached Z, the contour and the device C* change velocity. 
Then, for the successive time interval Δ𝑡𝑓 = 𝑡3 + 𝑡4, C* is moving at speed 𝑣𝑓 and now, Δ𝑡′

𝑓
=Δ𝑡𝑓∕𝛾𝑓 . Hence, with Δ𝑣 = 𝑣 −𝑣𝑓 relations 

(3) and (4) give,

𝑇 ′(𝑋′,Δ𝑣) = Δ𝑡′ + Δ𝑡′
𝑓
=

𝐿0
𝑢0

+
𝑣𝐿0

𝑐2
− 2𝑣𝑋′

𝑐2
+

𝐿0
𝑢0

−
𝑣𝑓𝐿0

𝑐2
+

2𝑣𝑓𝑋′

𝑐2
(5)

=
2𝐿0
𝑢0

+ Δ𝑣

𝑐

𝐿0
𝑐

− 2Δ𝑣

𝑐

𝑋′

𝑐
→

2𝐿0
𝑐

+ Δ𝑣

𝑐

𝐿0
𝑐

− 2Δ𝑣

𝑐

𝑋′

𝑐
.

We can see from (5) that, besides depending on 𝑋′, the interval 𝑇 ′(𝑋′, Δ𝑣) depends on Δ𝑣 and is sensitive to velocity variations of 
the first order in Δ𝑣∕𝑐.

There is a remarkable difference between 𝑇 ′ in (2) and 𝑇 ′(𝑋′, Δ𝑣) in (5). As seen from an observer co-moving with the contour 
when in uniform motion, result (2) indicates that the particle, traveling at the local speed 𝑢0, in the interval 𝑇 ′ covers the ground 
distance 2𝐿0 as expected. However, if the contour changes velocity by Δ𝑣, result 𝑇 ′(𝑋′, Δ𝑣) in (5) indicates that the particle covers 
the different ground distance 2𝐿0 + 2𝑢0Δ𝑣(𝐿0 − 2𝑋′)∕𝑐2 → 2𝐿0 + 2Δ𝑣(𝐿0 − 2𝑋′)∕𝑐.

Results (5) have been derived in the inertial frame 𝑆 where the speed of light is assumed to be 𝑐 and using the velocity transfor-

mations provided by the LT. The same results (5) can be derived from the inertial frame 𝑆′, 𝑆′′, or any other inertial frame taking 
into account the effect due to relative simultaneity, as considered in the Appendix.

Testing the one-way effect

In the case considered above, the round-trip interval 𝑇 ′ = 𝑇 ′
⟸ for a given velocity variation Δ𝑣, refers to a one-way (clockwise) 

co-moving particle traveling along the contour. In the Sagnac effect the interval 𝑇 ′
⟹ for a counter-moving particle differs from 𝑇 ′

⟸
and Δ𝑇 ′ = 𝑇 ′

⟸ − 𝑇 ′
⟹ ≠ 0. In our case, however, since C* is fixed on the contour, the interval 𝑇 ′

⟹(𝑋′, Δ𝑣) for a counter-moving 
particle is the same as in (5) for the co-moving particle. Then, for the usual case of counter-propagating particles we have the null 
result, Δ𝑇 ′ = 𝑇 ′

⟸(𝑋′, Δ𝑣) − 𝑇 ′
⟹(𝑋′, Δ𝑣) = 0 and, in our case, the dependence on 𝑋′ and Δ𝑣 of the one-way interval 𝑇 ′

⟸(𝑋′, Δ𝑣)
cannot be revealed.

However, the one-way round-trip interval 𝑇 ′(𝑋′, Δ𝑣) can be compared with the round-trip time interval 𝑇 ′
0 = 2𝐿0∕𝑢0 taken by 

a particle to propagate along an optical fiber of length 2𝐿0 forming a coil that can be placed at the position of C* and co-moving 
with it. Let 𝑑0 represent the dimension of the coil where the spiraling particle moves back and forth. According to (2), for uniform 
motion the time interval corresponding to each turn in the coil is 𝜏′

𝑝𝑎𝑟𝑡𝑖𝑎𝑙
= 2𝑑0∕𝑢0, independent of velocity. Therefore, during the time 

interval when the coil is moving at the uniform speed 𝑣 relative to 𝑆, by adding up the partial intervals 𝜏′
𝑝𝑎𝑟𝑡𝑖𝑎𝑙

until the length 𝐿0 is 
covered, the expected proper time interval is 𝑇 ′

0∕2 = 𝐿0∕𝑢0. Again, during the time interval when the coil is moving at the uniform 
speed 𝑣𝑓 relative to 𝑆 , we have 𝑇 ′

0∕2 = 𝐿0∕𝑢0. Then, the total length 2𝐿0 of the coil is covered after the round-trip proper time 
interval 𝑇 ′

0 = 2𝐿0∕𝑢0, which is the same as in the case of a stationary coil. Hence, the device C* can measure the non-null difference,

Δ𝑇 ′(𝑋′,Δ𝑣) = 𝑇 ′(𝑋′,Δ𝑣) − 𝑇 ′
0 =

Δ𝑣𝐿0

𝑐2
− 2Δ𝑣𝑋′

𝑐2
. (6)

The plot of Δ𝑇 ′(𝑋′, Δ𝑣) as a function of the position 𝑋′ of C* is given in Fig. 3, where we assume that the contour changes 
direction of motion with velocity variation Δ𝑣 = 2𝑣.

For the one-way effect described above, we have made some assumptions in order to simplify calculations, such as that the interval 
𝜂 is negligible and the velocity change occurs when the particle covers the distance 𝐿0. However, in principle the calculations can 
be performed in general and, thus, we expect to have 𝑇 ′ = 𝑇 ′(𝑋′, Δ𝑣, 𝜂, 𝐿, ...) depending on the various parameters that can affect the 
result.

Expected precision of the measuring device.

For testing the existence of the optical effect it is sufficient to perform, for example, measurements at 𝑋′ = 0 and 𝑋′ =𝐿0∕2. The 
measurable difference Δ𝑇 ′ = Δ𝑇 ′(𝑋′, Δ𝑣) in (6) represents the prediction of standard special relativity based on the LT. Δ𝑇 ′ may 
be measured with standard interferometry or by means of ring laser techniques [8], [30], [31]. With standard interferometry there 
could be some problems of stability because of the change of speed of the contour. Alternatively, detectors that act as clocks may 
be used to measure the time of flight of light pulses. For detectors capable of measuring Δ𝑇 ′, there are techniques that may resolve 
femtosecond (10−15(𝑠)) [32] or even attosecond (10−18(𝑠)) [33], [34] pulses of laser light. The value of Δ𝑇 ′ is comparable to that of 
the standard quantities measured in the Sagnac effects, which are within the range of the sensitivity of existing detectors. The main 
challenge for this type of experiment is probably the one related to the mechanical difficulties involving the motion of the contour, 
5

which requires speed variations for performing the test.
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Fig. 3. Special case Δ𝑣 = 2𝑣. The difference Δ𝑇 ′(𝑋′) = 𝑇 ′(𝑋′) −𝑇 ′
0 as a function of the position of device C* along the contour. The maximum variation occurs at 𝑋 = 0

and 𝑋 =𝐿0 . When C* is at 𝑥′ =𝐿0∕2, the round-trip interval is 𝑇 ′(𝑋′) = 𝑇 ′
0 = 2𝐿0∕𝑐 and Δ𝑇 ′(𝐿0∕2) = 0.

4. Conclusions

We have shown that, for our One-Way Linear Effect, when the contour changes velocity, the LT foresee the 𝑋′, Δ𝑣-dependent 
round-trip time interval 𝑇 ′(𝑋′, Δ𝑣) for the particle, or light, propagation. When 𝑇 ′(𝑋′, Δ𝑣) is compared with the round-trip inter-

val 𝑇 ′
0 = 2𝐿0∕𝑐 corresponding to a stationary contour, we find that the LT foresee the observable non-null variation Δ𝑇 ′(𝑋′, Δ𝑣) =

𝑇 ′(𝑋′, Δ𝑣) − 𝑇 ′
0 in (6). The difference Δ𝑇 ′(𝑋′) is plotted in Fig. 4 for the special case Δ𝑣 = 2𝑣 and its maximum is 2𝑣𝐿0∕𝑐2, experi-

mentally observable with present technology.

As in the case of the Sagnac effect, which after more than a century has found important uses in the development of technology, 
it is feasible that, if experimentally confirmed, the One-Way Linear Effect can find similar important applications in inertial guidance 
systems or other related areas.
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Appendix A

If we wish to derive results (5) from an inertial frame other than frame 𝑆, we have to take into account that, since simultaneity is 
not conserved with the LT, the contour ends A and B change direction of motion simultaneously in frame 𝑆, but not in the contour 
or other frames.

Within the assumption 𝜂𝑢0 ≪ 2𝑣𝐿∕𝑐 and, thus, neglecting the interval 𝜂 ≪ 𝑇 ′ when the velocity change takes place, the contour 
frame is co-moving with the inertial frame 𝑆′ before changing direction of motion and with the inertial frame 𝑆′′ immediately after. 
In short, we may see how the mechanism of relative simultaneity works between frames in relative motion, as follows. Let us consider 
the case 𝑋′ = 0 when the particle is emitted from C* at A and travels at speed 𝑐. Furthermore, let the contour change direction of 
motion with 𝑣𝑓 = −𝑣 and Δ𝑣 = 2𝑣. In this case, from (5) the round trip interval is,

𝑇 ′ = 𝑇 ′
𝑜𝑢𝑡

+ 𝑇 ′
𝑟𝑒𝑡

=
2𝐿0
𝑐

+
2𝑣𝐿0

𝑐2
, (7)
6

which we interpret in terms of the out trip from A to B (𝑇 ′
𝑜𝑢𝑡

=𝐿0∕𝑐 + 𝑣𝐿0∕𝑐2) and the return trip from B to A (𝑇 ′
𝑟𝑒𝑡

=𝐿0∕𝑐 + 𝑣𝐿0∕𝑐2).
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Fig. 4. Effect of relative simultaneity between frames in relative motion. At 𝑡 = 𝑡′ = 𝑡′′ = 0 the origins of frames 𝑆 , 𝑆′ , and 𝑆′′ coincide at A. 𝑎) As seen from frame 𝑆, 
at the moment (𝑡 = 0) the contour is changing direction of motion, the particle (a photon) is at point B. 𝑏) As seen from frame 𝑆′ moving at the relative speed +𝑣, at 
𝑡′ = 0 the photon is already on the lower section at the distance 𝑐𝛿𝑡′ from B. 𝑐) As seen from frame 𝑆′′ moving at the relative speed −𝑣, at 𝑡′′ = 0 the photon is still on 
the upper section at the distance 𝑐𝛿𝑡′′ from B.

For the out trip as seen from frame 𝑆, we consider the instant when the particle reaches point B (Fig. 4-a) and the contour has 
traveled the distance 𝑣𝑇𝑜𝑢𝑡 from the original position 𝑆0, shown in Fig. 4-a. Then, to keep it simple, we assume that the origins of 𝑆, 
𝑆′, and 𝑆′′ coincide at point A at 𝑡′′ = 𝑡′ = 𝑡 = 0, as in Fig. 4.

According to the time transform of the LT, 𝑡′ = 𝛾(𝑡 − 𝑣𝑥∕𝑐2), the event “particle at B with 𝑥𝐵 = 𝐿0∕𝛾 at 𝑡 = 0” occurs in the past 
at 𝑡′

𝐵
= 𝛾(0 − 𝑣𝑥𝐵∕𝑐2) = −𝑣𝐿0∕𝑐2 = −𝛿𝑡′. Therefore, at the present time 𝑡′ = 0 on 𝑆′, after reflection at B at 𝑡′

𝐵
= −𝛿𝑡′ the particle has 

moved by 𝑐𝛿𝑡′ toward the contour end point A (Fig. 4-b). Hence, as seen from 𝑆′, the path length covered in the out trip is 𝐿0 from A 
to B on the upper contour section, and 𝑐𝛿𝑡′ from B toward A on the lower section in the interval 𝛿𝑡′, i.e., 𝐿0 + 𝑐𝛿𝑡′. In agreement with 
the interpretation based on relative simultaneity, the corresponding measured time interval is, 𝑇 ′

𝑜𝑢𝑡
=𝐿0∕𝑐 + 𝛿𝑡′ =𝐿0∕𝑐 + 𝑣𝐿0∕𝑐2.

On the return trip, the contour changes direction of motion and we have to consider the frame 𝑆′′ co-moving with the contour just 
after changing direction of motion (Fig. 4-c). According to the time transform of the LT, 𝑡′′ = 𝛾(𝑡 + 𝑣𝑥∕𝑐2), for 𝑆′′ the event “particle 
at B with 𝑥𝐵 =𝐿0∕𝛾 at 𝑡 = 0” will occur in the future at 𝑡′′

𝐵
= 𝛾(0 + 𝑣𝑥𝐵∕𝑐2) = 𝑣𝐿0∕𝑐2 = 𝛿𝑡′′. Therefore, at the present time 𝑡′′ = 0 on 𝑆′′, 

the particle has not yet reached B and is on the upper contour section (Fig. 4-c), and will reach B after traveling the distance 𝑐𝛿𝑡′′. 
Afterwards, traveling at speed 𝑐 from B toward A, the particle covers the path length 𝐿0 and reaches C* after traveling the distance 
𝐿0 + 𝑐𝛿𝑡′′, corresponding to the measured time interval 𝑇 ′

𝑟𝑒𝑡
=𝐿0∕𝑐 + 𝛿𝑡′′ =𝐿0∕𝑐 + 𝑣𝐿0∕𝑐2.

In conclusion, when the contour changes direction of motion, the round-trip interval measured by C* is not 2𝐿0∕𝑐, but is given 
by (7) where, according to standard special relativity based on the LT, the additional contribution 2𝑣𝐿0∕𝑐2 = 𝛿𝑡′ + 𝛿𝑡′′ comes from 
the effect of relative simultaneity between the frames in relative motion (𝑆′ and 𝑆 in the out trip, and 𝑆′′ and 𝑆 in the return trip).

Interpreting the optical effect in the context of theories assuming absolute simultaneity.

In the interpretation of optical phenomena in the context of theories assuming absolute simultaneity, we are looking for the 
preferred frame where the light speed can be assumed to be 𝑐. For the Michelson-Morley experiment, the Sagnac effect, the recip-

rocal linear Sagnac effect, and other optical phenomena, the natural choice corresponds to the inertial frame where the contour is 
stationary, Maxwell’s equations are valid, and the electromagnetic waves, constrained to move along the contour, propagate at speed 
𝑐. Then, we may assume that the contour is carrying along in its motion the electromagnetic waves propagating at the local speed 
𝑐, regardless of the contour state of motion. If simultaneity is conserved in this scenario, even with the contour changing velocity, 
𝛿𝑡′ = 𝛿𝑡′′ = 0 and there are no variations in the relative positions of the particle on the contour, as it occurs with relative simultaneity 
in Fig. 4-a, 4-b, and 4-c. Hence, by assuming absolute simultaneity we have 𝑇 ′ = 2𝐿0∕𝑐 independent of 𝑋′ and Δ𝑇 ′(𝑋′) = 0 in (6), 
representing a null result, unlike the predictions of the LT based on relative simultaneity.
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