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Abstract: The Sagnac effect can be demonstrated with light
propagating either along a circular contour or, as done by
Wang et al., back and forth along a linear contour. In the
linear Sagnac effect, the emitter–receiver device is in
motion relative to the contour where light propagates. In
the reciprocal linear Sagnac effect (RLSE), the device is
stationary and the contour is in motion. When the contour
changes direction of motion, some special features of the
linear Sagnac effect are not fully reciprocal to the RLSE,
which foresees variations of the first order in ∕v c in the
round-trip time taken by a light signal to cover the contour.
The RLSE can be tested with present technology and, if
confirmed experimentally, it might have interesting tech-
nological applications. Presently, it can be important for
testing light-speed invariance, simultaneity, and the rela-
tivity principle.

Keywords: light propagation, Sagnac effect, one-way speed
of light, relative simultaneity, Lorentz invariance

1 Introduction

The experiment related to the circular Sagnac effect [1],
shown in Figure 1(a), was performed in 1913, and the one
corresponding to the linear effect, shown in Figure 1(b),
was accomplished byWang et al. [2] in 2003. In both effects,
the measuring device C* (emitter–receiver clock or inter-
ferometer) is in motion relative to a stationary contour,
and C* measures the difference TΔ of the round-trip times
of two light signals counterpropagating around the con-
tour. Following Post [3], TΔ is given by,
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where ⇐T and ⇒T represent the round-trip time of the co-
and counter-moving light signals (or photons) along the
contour of perimeter =P πr2 or L2 in the circular and linear
effects, respectively. For the circular Sagnac effect, with

=v ωr, result (1) is usually expressed [3] as = ⋅ ∕ωT A cΔ 4 2,
where A is the area enclosed by the light path.

In the linear Sagnac effect of Figure 1(b), the arm AB of
the contour is stationary and the measuring device C* is
moving clockwise with uniform speed v along the contour,
going from the lower to the upper section of the contour
and vice versa. While sliding around the pulley of radius R

during the short time η, the device C* changes the direction
of motion at the pulley A (or B). Locally, the speed v of C*

relative to the contour is always constant. In the linear
experiment performed by Wang et al. [2], the device C* is
always in uniform rectilinear motion on the lower contour
section during the round-trip time ≃ ≃⇐ ⇒T T T . Therefore,
in this experiment, C* does not turn around the pulleys A
or B. However, since the relative speed v between C* and
the contour is constant, there is no reason to suppose that
the result differs from the theoretical prediction (1) if C*

turns around the pulley during the round-trip time T .
In Section 2, we consider the reciprocal linear Sagnac

effect (RLSE), shown in Figure 2, where the device C* is
stationary and the contour is in relative motion. We find
that, for counter-propagating light signals, the same obser-
vable TΔ in (1) is foreseen in the RLSE and, thus, with
regard to TΔ , the RLSE is reciprocal to the linear Sagnac
effect.

Nevertheless, within the context of standard special
relativity based on light speed invariance, there are obser-
vable features of the linear Sagnac effect that are not reci-
procal to those of the RLSE. In fact, when in the interval ⇒T

(or ⇐T ) the device C* turns around the pulley in the linear
Sagnac effect of Figure 1(b), for the corresponding RLSE
of Figure 2, the Lorentz transformations (LTs) foresee var-
iations in the first order in ∕v c for the interval ⇒T (or ⇐T ),
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which differ from that given by Eq. (1). Thus, if experimen-
tally confirmed, the RLSE represents a new optical effect,
which differs from the standard Sagnac effect.

In Section 3, we describe a realistic experiment, fea-
sible with present technology, which can measure the men-
tioned variations related to the velocity v.

There are no problems in interpreting the circular and
linear Sagnac effect in the inertial frame of reference Sc of the
stationary contour where the speed of light is assumed to be
c, while different interpretations of the Sagnac effects are
given [4–12] in the frame SC* comoving with the device C*.

Some of the calculations that support our results are
presented in the Appendix. Moreover, in the Appendix, we
discuss some of the interpretations of the Sagnac effects in
the wider scenario of relativistic theories [4–13], involving
tests on simultaneity confirming that relative and absolute
simultaneity are not physically equivalent. In this scenario,
we show how the RLSE can be used as a test of light speed
invariance.

2 The reciprocal linear Sagnac
effect

In the RLSE of Figure 2, the measuring device C* (clock or
interferometer) is stationary, while the whole contour is
moving back and forth with uniform speed v relative to C*.
Ideally, the motion of the contour should be such that,
locally, the relative speed between the contour and C*

would always be v. In Figure 2(a), the contour is moving
with uniform motion relative to C*, which stays on the
contour lower section until pulley A (not shown) reaches
C*. At this moment, since C* is stationary, the contour has
to move slightly in the direction perpendicular to AB
during the short time η when sliding around C* at A, as
shown in Figure 2(b). After changing direction of motion,
the contour is moving relative to C*, now on the upper
section as shown in Figure 2(c).

If the pulleys have diameter R2 , the motion in the
perpendicular direction ≃H R2 2 takes place during the
finite time interval ≃ ∕η πR v when the contour is acceler-
ating and changing its direction of motion relative to C*.
However, for the purpose of simplifying calculations, we
omit the process taking place during the negligible short
finite interval η by assuming that the round-trip time T

is much greater than η ( ≫T η and ≫ ≃ ≃L ηv H R2 2 , while
∕ ≫v c L ηc( ) ). Thus, in the following, we consider the

simple ideal case of a linear contour moving back and forth
in the direction AB at the uniform speed v relative to C*.
However, in the Appendix, we consider also the more rea-
listic case of a rectangular contour where η is not negligible
and the motion perpendicular to AB is taken into account.

Denoting by =P L2 the perimeter of the contour,
assuming the light speed to be c and using the LT, we
find the following results valid for the RLSE:

Figure 1: (a) In the circular Sagnac effect, two counter-propagating
photons are emitted from the deviceC* and travel along the circumference
of the rotating platform (only a single photon is shown). C* measures the
difference TΔ of the arrival times after a round trip. (b) In the linear Sagnac
effect, the counter-propagating photons travel in an optical fiber that may
slide frictionless around the two pulleys A and B. The segment AC* of
length D represents the initial position of device C* relative to A, the left
end point of the contour. If AC* = > ∕ = ∕D vL c v c P2 ( ) , the counter-
moving photon performs a round trip and gets back to C* when this is still
moving on the contour lower section.

Figure 2: In the RLSE, the emitter–receiver C* is stationary and the
contour of length ≃ =L P2 is moving with a relative speed v. (a) The
device C* emits a photon that travels on the contour lower section from
the position = < ∕D vL cAC* 2 2. (b) When point A reaches C*, the contour
changes direction of motion while sliding in the perpendicular direction
at speed v on C* for a short negligible time interval η. (c) After the
contour has resumed its motion in the horizontal direction, after a round-
trip, C* receives the returning photon on the contour upper section.

2  Gianfranco Spavieri and Espen Gaarder Haug



(a) ( )= > ∕ = ∕D vL c v c PAC* 2 . C* remains always on
one of the sections of the contour in the interval T .

The segment AC* of length D represents the initial
position of device C* relative to A, the left end point of the
contour. For light counter-propagation (photon moving
counter-clockwise) starting from the device C*, when

> ∕D vL c2 2 the description of the RLSE is reciprocal to
that shown in (Figure 1(b)), where C* remains always on
the lower section of the contour, while the photon per-
forms a round trip in the interval ⇒T and gets back to C*.
The Lorentz-contracted moving contour has length ∕L γ

and the round-trip times for counter-, ⇒T , and co-propaga-
tion, ⇐T , have the expected values,
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where in Eq. (2), ⇐T , ⇒T , and TΔ are the same as given in Eq.
(1). In some cases, we may approximate the results to the
first order in ∕v c to simplify calculations. In Appendix (A.3),
we calculate the round-trip interval ⇒T for the counter-
propagating photon emitted by C* from the distance

= > ∕D vL cAC* 2 , and show in (A15) that ⇒T is independent
of D when C* stays on the same track (lower contour sec-
tion, in this case) during the interval ⇒T .

In this case ( > ∕D vL c2 ), the RLSE foresees results that
are the same as those of the standard linear Sagnac effect.
Moreover, the symmetry is such that ⇐T is the same as ⇒T by
changing v to −v. It follows that, for = > ∕D vL cAC* 2 ,
results (2) for the RLSE are equivalent to results (1) of the
standard Sagnac effect. In fact, in agreement with the prin-
ciple of relativity, provided that C* and the contour are in
uniform relative motion in the interval ⇒T , the two effects
are the same when observed either from the rest frame of
the contour or the device C*.

(b) = < ∕D vL cAC* 2 . C* and the contour change their
direction of relative motion in the interval T .

In this case, for light counter-propagation, the succes-
sive positions of the contour relative to C* are shown in
Figure 2, indicating that C* and the contour change their
direction of relative motion during the round-trip time.

Special case = = ∕D D vL c0 . Starting from ∕D γ0 (where
the factor γ takes into account the length contraction of the
moving contour) on the lower section of the contour, the photon
travels at speed c toward the moving point B that, at time t, is
at the distance ( )( )∕ − ∕ + = ∕ − ∕ +L γ D γ vt L γ v c vt10 . Then,
the signal reaches point B when ( )( )= ∕ − ∕ +ct L γ v c vt1 , i.e.,
after the time interval ( )= ∕t L γcout . Moreover, since point

A is moving toward C* at speed v from the initial distance
= DAC* 0, point A reaches C* when ( )= ∕ = ∕vt D γ vL γc0 , i.e.,

at ( )= ∕t L γcout . Hence, the two events “photon at B” and “A at
the position of C*” are simultaneous in the reference frame SC*

where C* is at rest, as shown in Figure 2(b). The return time
interval of the photon from B to C* on the contour upper
section is obviously ( )= ∕t L γcret , the return interval tret being
independent of the motion of the contour. Then, in the RLSE of
Figure 2(b), the return interval tret is the same regardless of
whether the contour keepsmoving to the right or starts moving
to the left of the stationary C*.

Working out the calculations also for the co-propa-
gating signal, for ⇐T , we find the exact result (A18) of
Appendix (A.3). Then,
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We see that, in the special case considered earlier
where C* is initially on the lower and then on the upper
section of the moving contour, the round-trip time ⇒T in Eq.
(3) is greater than the corresponding value in Eq. (2). How-
ever, also the round-trip time ⇐T turns out to be greater
than the corresponding value in (2). Then, for counter-pro-
pagating light signals, the difference TΔ RLSE in Eq. (3) is still
the same as in Eq. (2) and, as far as TΔ is concerned,

= =T TΔ Δ invariantRLSE and the RLSE is equivalent to the
standard linear Sagnac effect.

Special features of the RLSE. The important inter-
esting feature of the RLSE is that in Eq. (3) the round-trip
time ⇒T of a single photon (i.e., the counter-propagating
one) differs from the corresponding ⇒T in Eq. (2). The dif-
ference persists as long as < < ∕D vL c0 2 and C* moves
from the lower to the upper section during the round-
trip time ⇒T . Then, the function ( )=⇒ ⇒T T D varies from the
minimum value given in Eq. (2) (for =D 0 or > ∕D vL c2 ) to
the maximum one given in Eq. (3) (for = = ∕D D vL c0 ). We
must stress that ⇒T is an observable measurable by clock C*

and, for the standard linear Sagnac effect, the theory fore-
sees ( )= ∕ +⇒T L γ c v2 , independent of the value of D. Analo-
gous considerations can be made for ⇐T .

Thus, results (2) and (3) indicate that there are special
features of the RLSE not equivalent to those of the standard
Sagnac effect. In case (b), when velocity variations are
involved and C* and the contour change their direction
of relative motion in the intervalT , the differences indicate
that the relativity principle does not hold. The differences
between the two effects are interpreted below in the con-
text of special relativity and the LT, showing that can be
linked to relative simultaneity.
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Since the standard RLSE, where = −⇐ ⇒T T TΔ is mea-
sured, is equivalent to the standard linear Sagnac effect, the
usual approach based on measuring = =T TΔ Δ invariantRLSE

does not reveal the special features of the RLSE. Then, for the
purpose of pointing out these special features foreseen by the
LT, we consider below the special reciprocal linear Sagnac
effect (S-RLSE), and show how the S-RLSE can be tested and
represents an optical effect with properties that differ from
those of the standard linear Sagnac effect.

Testing the S-RLSE with an experiment
We pointed out that the round-trip ⇒T of the counter-

propagating signal is an observable that can be measured
by the single clock C*. Therefore, the special features of the
RLSE can be revealed with this type of measurements. In
general, for precise measurements, we need to compare
the observable ⇒T with the corresponding observable T *
of a signal on a different light path. In the case of the S-
RLSE, for the optical light path of the co-propagating
photon, we choose a contour with the same perimeter

=P L2 , but stationary in the device frame SC*.
Hence, the main difference between the RLSE and the

S-RLSE is that in the RLSE, we have = ⇐T T* , while in the S-
RLSE, the round-trip time interval of the co-propagating
signal is now = ∕T L c* 2 . With our choice, by means of (1),
for the standard Sagnac effect, we have TΔ *

Sagnac = − ⇒T T* =

( )( )∕ − ∕ + ∕ ≃ ∗
L c γ L c v c2 2 1 ΔSagn = ∕vL c2 2 constant and inde-
pendent of D. Instead, for the S-RLSE, we have =TΔ *

( ) ( )= − = −⇒ ⇒T D T T T T DΔ * * * dependent on D.
With the help of (2) and (3), we find,
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According to results (4), the function ( )T DΔ * is con-
stant for ≳ ∕D vL c2 and given by ∕ = =∗

vL c T2 Δ Δ *2
Sagn Sagnac,

which is the same for the RLSE and the linear Sagnac effect.
However, for ≲ ∕D vL c2 , the function ( )T DΔ * varies from
the maximum values ∕vL c2 2 ( =D 0 and = ∕D vL c2 ) to zero
( = = ∕D D vL c0 ), as shown in Figure 4. Analogous results,
given in the following section and in the Appendix, are
obtained when light propagates in a medium of refractive
index n.

Thus, by assuming light speed invariance and the LT,
the S-RLSE foresees the variant ( )T DΔ * of (4) that can be
observed. The variant special feature of (4) is discussed in

the Appendix within the wider scenario of relativistic the-
ories. To fully understand the difference between the
D-dependent S-RLSE results (4) and the D-independent
results of the linear Sagnac effect in Eq. (2) and in Eq. (1),
we consider the following corresponding interpretations.

2.1 Interpreting the RLSE and the linear
Sagnac effect using the LTs

In the linear Sagnac effect and in the RLSE, the measure-
ments are made by device C*. Why are the round-trip time
intervals of the propagating signals different in the two
effects? Let us, then, consider an observer comoving with
clock C* (let us call it “observer C*” or simply “C*”) and
check first what happens in the linear Sagnac effect of
Figure 1(b) when C* is near point A and, during the round-
trip interval ⇒T , changes the direction of motion in the negli-
gible time interval η moving from the lower to the upper
section of the contour. While on the lower section, C* is
comoving with the inertial frame ″S and with the inertial
frame ′S when on the upper section.

If the counter-propagating photon is emitted by C* at
( )= = ∕D v c LAC* 0 when in the lower section frame ″S , C*

reaches A when, simultaneously, the photon reaches point
B, as shown in Figure 3. Then, for the relative position of
photon and C*, the situation is the same as that in the RLSE
of Figure 2(b).

However, when (after reaching A and turning around
the pulley) C* starts comoving with frame ′S on the upper
section, we can see in Figure 3 that now the position of the
photon is not at B, but at K, being AK ( )≃ − ∕ <L v c L1 2 and,
thus, the situation differs from that of Figure 2(b) of
the RLSE.

The difference is due to the fact that, in the linear
Sagnac effect, the mechanism of relative simultaneity takes
place when C* changes velocity by moving from frame ″S

on the lower section to the frame ′S on the upper section
[7]. The two events, “C* at A” and “photon at B,” are simul-
taneous for observer C* on frame ″S in the lower section,
but no longer simultaneous for C* on frame ′S in the upper
section because ′S is in motion with speed ≃ v2 relative
to ″S .

As shown in Figure 3, in the linear Sagnac effect, clock
C* is reached by the photon returning on the upper section
after the proper time interval ( )( )≃ ∕ − ∕τ L c v c1 2ret and the
round-trip time interval is, as expected, ( ) = +⇒T τSagnac out

( )( ) ( )≃ ∕ + ∕ − ∕ = ∕ +τ L c L c v c L c v1 2 2ret . In this case, rela-
tive to C*, in the return trip, the photon covers at speed c

the shorter distance ( )− ∕L v c1 2 only.
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However, in the case of the RLSE (Figure 2(b)), C* is
stationary and, since themechanism of relative simultaneity
does not apply, in the return trip, the photon covers at speed
c the full distance ≃L in the time interval ( )= ∕ ≃ ∕t L γc L cret .
Thus, for the special case = = ∕D D vL c0

2, in the RLSE, the
round-trip time is ( ) ≃ ∕⇒T L c2RLSE , which is greater than the
corresponding one ( ) ( )≃ ∕ +⇒T L c v2Sagnac of the linear
Sagnac effect.

As shown in ref. [7], in the case of the linear Sagnac
effect, the “time gap” ≃ ∕δt vL c2 2, due to relative simulta-
neity between ′S and ″S , corresponds to the length difference

≃ ∕cδt vL c2 not covered by the photon when C* is on the
upper section. Therefore, we find that ( ) ( )≃ +⇒ ⇒T TRLSE Sagnac

δt, showing that the difference can be related to relative
simultaneity.

In general, in the linear Sagnac effect, the round-trip
time T of light signals is independent of D and the sta-
tionary contour shape, while in the RLSE, the round-trip
time T depends on D and on the shape of the moving
contour. Then, the RLSE represents an optical effect not
fully equivalent to the linear Sagnac effect.

3 Experiment testing the S-RLSE

Here, we discuss the results obtained for the rectangular
contour of Figure 4 (shown also in Figure A1 of the

Appendix) of sizes L and H . With ≃H R2 , where R is the
radius of the pulley in the linear Sagnac effect, the shape of
this contour represents more realistically the RLSE.

For the rectangular contour of Figure A1, we assume
that the contour slides continuously at the local speed v

relative to C*. This is a mechanical difficulty that, in prin-
ciple, can be surmounted, although it increases the cost of
the experiment in comparison to the standard Sagnac
experiments. Actually, for the experiment, the rectangular
contour can move relative to C* for a short distance,
starting with C* on the lower section L and ending on the
left side H , as shown in Figure A1. For the size of the contour
to be manageable, it is convenient to have light propagating
in an optical fiber with a high refractive indexn. In this case,
the round-trip time is increased to ≃ ∕⇒T nP c.

In the case of light propagation in a medium, we have
to distinguish the case when the medium is locally at rest
along the contour from the case when the medium is
locally at rest with C* and sliding along the contour. The
speed of light in the moving medium is obtained from the
standard relativistic velocity transformations. The results
using the LT, derived in the Appendix (neglecting disper-
sion), are shown schematically below.

S-RLSE with medium locally at rest with the con-
tour = +P L H2 2

= ≃T

nP

c

T n

v

c

P

c

D* , Δ * , independent of2

Figure 3: Effect of relative simultaneity observed by C* in the linear
Sagnac effect. The two events “C* at A” and “photon at B” are simulta-
neous on frame S″ comoving with C* when on the contour lower section.
After turning around the pulley in the negligible time interval η and
changing velocity, C* starts comoving with frame S ′ on the upper section
at = =t t′ ″ 0. However, due to relative simultaneity between S ′ and S″,
for observer C* on S ′, the photon is no longer at B but is at K already.

Figure 4: Time difference ( )T DΔ * for the counter-moving photon in the
S-RLSE. For the Sagnac effect, TΔ *= ∕vP c

2 is constant and represented by
the dotted line. For the S-RLSE, starting from right to left with C* on the
contour lower section L from the position > ∕D vL c2 2, we have

= ∕T vP cΔ *
2 until ≃ ∕D vL c2 . When < ∕D vL c2 and until = = ∕D D vL c0 ,

( )T DΔ * decreases up to ∕vL c
2. Then, TΔ * increases and reaches again

the value ∕vP c
2 at =D 0 and afterwards when C* is on the left side H of

the moving contour. The broken line refers to the S-RLSE of Figure 2,
where =P L2 and the dip is ∕vL c2 2 with =TΔ * 0 at =D D0.
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For the S-RLSE with medium locally at rest with device
C*, Figure 4 shows ( )=T T DΔ * Δ * as a function of D. For the
Sagnac effect, = = = ∕∗

T T vP cΔ * Δ * ΔSagnac Sagn
2 is constant.

For the S-RLSE, ( )T DΔ * is represented by the solid line
that varies as a function of the initial position D of clock
C*. For the S-RLSE, the LT foresee, the observable dip by

∕vL c
2 in the function ( )T DΔ * . The broken line refers to the

S-RLSE of Figure 2, where =P L2 and the dip is ∕vL c2 2 with
=TΔ * 0 at =D D0.
Expected precision for the S-RLSE
The variation ( )T DΔ * may be measured with the tech-

niques of ring interferometry or, after some adaptations,
ring lasers [3]. Ring lasers Sagnac experiments, which can
measure the angular velocity ωE of the Earth with a preci-
sion ∕ < −

δω ω 10E

8, are performed routinely on the Earth
[14,15]. For the effect of refractive index of an optical
medium on the rotation frequency of ring lasers and reso-
nators, there are various experimental expressions as
functions of n, considered by Malykin in ref [16] (2014).

In relation to the sensitivity of detectors measuring δτA

and the smallest measurable time interval, there are tech-
niques capable of resolving femtosecond ( −10 s15 ) [17] or
even attosecond ( −10 s18 ) [18] pulses of laser light, although
better limits may be obtained by means of advanced
interferometry.

The dip by ∕vL c
2, to be measured to confirm the pre-

diction of standard relativity based on the LT, is compar-
able to that measured in the usual experiments testing the
Sagnac effect and, thus, well within the range of the sensi-
tivity of available detectors and not too difficult to observe.

In the experiment by Wang et al. [2], the device C* is in
motion relative to the contour. In the S-RLSE, the device C*

is stationary and the contour in relative motion. Assuming
the same relative velocity, we expect that the sensitivity
achievable for our S-RLSE experiment is approximately the
same as that achieved in the experiment by Wang et al. [2].
The main difference with respect to the experiment by
Wang et al. is related to the mechanical difficulties involved
with the motion of the contour, which implies more an
increase in the complexity and cost of the experiment,
rather than a loss in sensitivity.

Possible applications of the S-RLSE if confirmed
experimentally.

After more than a century, the Sagnac effect is employed
in current technology and is used in inertial guidance systems,
ring laser gyroscope (extremely sensitive to rotations), and
other optical systems. Being not yet experimentally confirmed,
it might be premature to indicate what kind of applications
the RLSE might have. However, considering that the circular
Sagnac effect (sensitive to rotations) can detect very accurately
the angular velocity of objects, such as the Earth, the RLSE
(sensitive to velocity changes) might be suitable to detect velo-
city variations and also point out the corresponding direction.
The realization of these applications requires, however, to
take into account other features related to the RLSE that will
be considered in a future contribution.

4 Conclusions

We have described an optical effect, denoted as RLSE,
where the emitter–receiver device is stationary and the
contour along which light propagates is in motion. The
RLSE provides the same results of the standard Sagnac
effect for the round-trip time difference TΔ of light signals
counter-propagating along the closed contour. However,
the RLSE possesses features that are not equivalent to the
corresponding ones of the Sagnac effect. When the contour
changes velocity, standard special relativity foresees that
the round-trip time interval ⇒T of a counter-moving light
signal differs from the corresponding one of the Sagnac
effect. The difference is observable with our S-RLSE experi-
ment and given by the dip by ∕vL c

2 in the measured round-
trip time difference ( ) = − ⇒T D T TΔ * * of counter-propagating
photons, plotted in Figure 4. The dip may be related to the
different role played by relative simultaneity in the linear
Sagnac effect and the RLSE.

If confirmed experimentally, the S-RLSE stands to be a
new relativistic optical effect. In this case, being sensitive
to velocity changes, the S-RLSE might have important
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technological applications in inertial guidance systems by
detecting velocity variations and corresponding direction.

In any event, the different features between the stan-
dard linear Sagnac effect and the S-RLSE can be exploited
for testing Lorentz and light speed invariance.
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Appendix

A.1 Special reciprocal linear Sagnac effect
for light propagation in a medium of
refracting index n on a rectangular
contour of sides L and H

For the S-RLSE, the round-trip interval ⇒T differs from the
corresponding one of the linear Sagnac effect if, on the
contour lower section, to the first order in ∕v c, ≃ ∕D nvL c

and the photon reaches the right corner when the left
corner reaches C*.

S-RLSE with medium locally at rest with the con-
tour. = +P L H2 2 .

For the contour of Figure A1(a), we calculate with the
LT to the first order in ∕v c the time intervals taken by the
counter-propagating photon to cover the sides of the rec-
tangular contour in motion with velocity v relative to the
stationary C*.

Position 1: Starting from = ≃ ∕D vt nvL c, and using the
equation = − +C t L D vtn withCn the light speed relative to
C*. Then, we have,

( )

( )

=
∕ +
+ ∕

= =
+ ∕

+ ∕
≃ − +

C

c n v

v nc

t

L

C

nL v nc

c nv c

nL

c

n vL

c

vL

c

1

1

1
.

n

n

1

2

2 2

Position 2: By means of the equation = −C t H vtn ,

( )

=
∕ −
− ∕

=
+

≃
− ∕

≃ −

C

c n v

v nc

t

H

C v

nH v nc

c

nH

c

vH

c

1

1
.

n

n

2 2

Position 3: With the equation =C t Ln ,

≃

= ≃

C

c

n

t

L

C

nL

c

.

n

n

3

Position 4: By means of the equation, ( )= − +C t H v t tn 2 3 ,

( )

( )

=
∕ +
+ ∕

=
+ ∕

+ ∕
− −

= − + − −

C

c n v

v nc

t

nH v nc

c nv c

n vH

c

n vL

c

nH

c

n vH

c

vH

c
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c

n vL

c

1

1

1

n

4

2

2

2

2

2

2 2

2

2

2

2

= + + + = − +⇒T t t t t

nP

c

n

v

c

P

c

vL

c

.1 2 3 4
2

2

S-RLSE medium locally at rest with the device
C*. = +P L H2 2 .

For the contour of Figure A1(b), we calculate with the
LT to the first order in ∕v c the time intervals taken by the
counter-propagating photon to cover the optical fiber
sliding on the moving rectangular contour.

Position 1: Starting from =D vt , by means of the equa-
tion = − +C t L D vtn with Cn the light speed relative to C*

along the fiber at rest, we have,

=

= =

C

c

n

t

L

C

nL

c

.

n

n

1

Position 2: From the equation = −C t H vtn and with
the optical fiber at speed v2 relative to C*,

( )

( )

=
∕ −
− ∕

=
+

≃
− ∕
− ∕

≃ + −

C

c n v

v nc

t

H

C v

nH v nc

c nv c

nH

c

n vH

c

vH

c

2

1 2

1 2

1

2
.

n

n

2

2

2 2

Figure A1: (a) Optical fiber of index n locally at rest on the rectangular
contour moving with velocity v relative to the stationary clock C*. The
photon starts from C* at the distance D from the contour left side H and
returns to C* in the interval ⇒T after traveling along the contour sides at
different speeds Cn relative to C*. (b) Optical fiber of index n locally at
rest with C* and sliding on the rectangular contour moving with velocity
v relative to the stationary clock C*. In position 1, the fiber in the lower
contour section is at rest relative toC*. In 2, the sliding fiber has speed v2

relative to C*. In 3, the relative speed is v and in 4, the fiber is at rest
relative to C*.
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Position 3: By means of the equation =C t Ln and with
the optical fiber at speed v,

( )

( )

≃
∕ −
− ∕

= =
− ∕

− ∕

≃ + −

C

c n v

v nc

t

L

C

nL v nc

c nv c

nL

c

n vL

c

vL

c

1

1

1

.

n

n

3

2

2 2

Position 4: From the equation ( )= − +C t H v t tn 2 3 and
with the optical fiber at rest,

= = − −C

c

n

t

nH

c

n vH

c

n vL

c
n 4

2

2

2

2

= + + + = ⎛
⎝ − ⎞

⎠ +⇒T t t t t

P

c

n

v

c

vL

c

.1 2 3 4 2

A.2 Interpreting optical effects and the RLSE
in the scenario of relativistic theories

Several authors [4,13,19–23] argue that the LT are physi-
cally equivalent to alternative coordinate transformations
that differ from the LT by an arbitrary clock synchroniza-
tion parameter only. Thus, these authors claim that the
one-way light speed is undetermined, or conventional,
when measured by two spatially separated clocks that
can be arbitrarily synchronized. In the framework of rela-
tivistic theories [13], the coordinate transformations alterna-
tive to the LT, more often used to describe physical phe-
nomena, are denoted as LTs based on absolute
simultaneity (LTA). The LT and the LTA are expressed as,

( ) ( )

( )

′ = − ∕ ′ = −
′ = ∕ ′ = −

LT t γ t vx c x γ x vt

LTA t t γ x γ x vt ,

2

(A1)

where in (A1)v indicates the velocity of frame ′S relative to
frame S and the transformations ′ = ′ =y y z z; are under-
stood. With the factor ( )= − ∕ − ∕

γ v c1 2 2 1 2 depending on v, LT
stands for the LTs, based on standard synchrony and rela-
tive simultaneity. LTA stands for the LTs based on absolute
synchrony and simultaneity. To the first order in ∕v c, the
LTA coincides with the Galileo transformations. The LTA
(or ALT in Ref. [9]) are known in literature also as the
Tangherlini–Selleri transformations [6,19,20], used by sev-
eral authors [4–9].

Because of the arbitrariness of synchronization and
one-way light speed, many physicists consider the LT and
LTA to be physically equivalent and, according to them, the
LTA can be used to interpret all the experiments sup-
porting standard special relativity [13,21–23]. Certainly,
the equivalence should hold in the cases when the one-

way light speed is conventional because measured by
two spatially separated clocks that are arbitrarily synchro-
nized. However, in the Sagnac effects, the one-way speed of
light around the contour can be determined with the single
clock C* and no arbitrary clock synchronization is involved.
Thus, in relation to the difficulties pointed out in the inter-
pretations of the Sagnac effect [6–9,11], several authors [4–9]
have shown that the difficulties are surmounted if, in lieu of
the LT based on relative simultaneity, coordinate transfor-
mations based on conservation of simultaneity (LTA) are
adopted.

Nevertheless, epistemologists [24] claim that the basic
postulates of a meaningful physical theory must be testable
(i.e., falsifiable). Then, if one of its basic postulates is not
falsifiable, it may be argued by physicists and epistemolo-
gists [24] that the theory is not physically meaningful. If the
LT (with relative simultaneity) are equivalent to the LTA
(with absolute simultaneity) and the speed of light is con-
ventional, the standard theory of special relativity has a
drawback because its fundamental postulate of one-way
light speed invariance cannot be tested [13,19–23]. For
this reason, in the more recent formulation of special rela-
tivity found in mainstream physics journals where light
speed is conventional [4], the constant c in the second
postulate is no longer the one-way light speed, but “the
round-trip speed of light (i.e., the average speed of light
during the round-trip from A to B and then back to A),”
which is observable.

Nevertheless, standard special relativity is based on
the LT and, for determining the good standing of this
theory and the LT, it is essential to establish whether the
LTA and the LT are, or are not, physically equivalent.

It is worth mentioning that in practically all the experi-
ments supporting special relativity what is being tested
are effects related to relativistic time dilation and length
contraction, equally foreseen by the LT and the LTA
[4–9,13]. Special relativity is a very well tested theory con-
firmed by high precision experiments [13,25–28]. The
experiments performed so far are likely suitable to test
[13] the so-called relativistic effects only, which are of
second (or higher) order in ∕v c and are not dedicated
experiments capable of testing the special different fea-
tures of the LT and LTA, relative versus absolute simulta-
neity, because these differences vanish on average. In lit-
erature, there are proposals of dedicated experiments of
first order in ∕v c that might test the different features of
simultaneity, relative or absolute (see, for example, [7,20]).
However, up to now and as far as we know, no experi-
ments of this type have been performed. Yet, as shown
below, these different features can be tested by means of
the RLSE also.
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A.2.1 The LTA and LT foresee different results for
the RLSE

In the interpretation of the optical effects of the Sagnac
type with the LTA, we are looking for the preferred frame
where the one-way light speed can be assumed to be c. The
natural choice is given by the contour inertial rest frame Sc

where Maxwell’s equations are valid, and the electromag-
netic waves, locked on the contour, propagate at speed c.
With this choice of the preferred frame, from the contour
inertial frame Sc, the LTA and LT provide an equivalent
interpretation with the same results.

If, for the RLSE of Figure 2, we choose again the con-
tour to be the preferred frame, then, we may assume that
while moving with uniform velocity relative to C* the con-
tour is carrying along the electromagnetic waves, always
propagating at the local speed c relative to the contour.
With the aforementioned assumptions, we find that in
the framework of the LTA, the RLSE is fully reciprocal to
the linear Sagnac effect. In fact, save for the negligible time
interval η when the contour changes velocity, the observer
Sc comoving with the contour of Figure 2 is on an inertial
frame before and after the interval η. Then, as far as the
RLSE is concerned, the result is independent of whether
the relative change of motion is performed by C* or the
contour. Since simultaneity is conserved with the LTA,
when the contour changes velocity, there are no variations
in the relative positions of photon and C*, unlike what
happens with relative simultaneity in Figure 3. Therefore,
if calculated from the contour frame Sc, the invariant
proper time interval ⇒T is the same as in the linear Sagnac
effect. However, when calculated from clock frame SC* we
have to take into account that with the LTA light speed is
no longer invariant.

To verify that, with the LTA, the invariant interval ⇒T

in the RLSE is independent of D and the same as in the
linear Sagnac effect, we calculate it from the clock frame
SC* for the case when the contour changes velocity in the
interval ⇒T , as in Figure 2. Let the photon start from C* at D

and travel toward point B moving to the right (Figure 2(a)).
Relative to C*, by addition of velocities, the light speed along
the moving contour is≃ +c v, where for simplicity we use the
first-order approximation in ∕v c. In the out trip and at time t ,
point B is at the position − +L D vt to the right of C* and the
photon reaches B when ( )+ = − +c v t L D vt . Considering
first the special case when simultaneity takes place, we set

=D vt and, thus, ( )= = ∕ +t t L c vout and = ≃ ∕D vt vL cout .
Then, the two events “photon at B” and “A at C*” are simul-
taneous in every frame. In the return trip on the upper sec-
tion (Figure 2(b)), the contour is nowmoving to the left, while
the photon travels on the upper section toward the stationary

C* at the speed ≃ +c v. With the photon coming from B at L,
the return time interval is ( )= ∕ +t L c vret and the round-trip
is ( )= + ≃ ∕ +⇒T t t L c v2out ret , which is the same as in the
linear Sagnac effect shown in (2).

It can be shown that the same result, independent of D,
is obtained in general, e.g., when the photon reaches B before
A reaching C* (or when A reaches C* before the photon
reaching B) and when C* is always on the lower (or upper)
section of the contour in the round-trip interval ⇒T .

In conclusion, with the LTA based on absolute simul-
taneity, the RLSE is fully equivalent to the linear Sagnac
effect and the relativity principle is holding. For the S-RLSE
experiments described earlier, contrary to the LT, the LTA
foresee that the variant (for the LT) function ( )T DΔ * is (for
the LTA) always =T TΔ * Δ *

Sagnac, independent of D. It fol-
lows that, by means of the S-RLSE, the different predictions
of the LT and LTA, and light speed invariance, can be
tested.

Another example indicating that the LT and LTA are
not equivalent, and cannot be arbitrarily interchanged in
the description of physical phenomena, is given by the
Thomas precession, discussed below.

A.2.2 Using the Thomas precession to discriminate
relative (LT) from absolute (LTA) simultaneity

In the following, we consider the relativistic phenomenon
of the Thomas precession [29] and find that it is predicted
by the LT but not by the LTA. Since the spacetime sym-
metry of the LT differs from that of the LTA, it is not
surprising that the two transformations predict different
results. Standard special relativity is routinely used in sev-
eral areas of modern physics employing the symmetry of the
LTs based on relative simultaneity and the Thomas preces-
sion derived from the LT is well known for predicting the
correct spin–orbit interaction energy splitting [29,30] and is
thus considered to be observable. Moreover, Thomas’ pre-
cession is included in the equation of spin motion of the
BMT equation of elementary particle physics [31]. However,
so far there are no direct tests of the Thomas precession.

Deriving the Thomas precession with the LT
Here, we consider the textbook derivation made by

Jackson [30] and indicate schematically the steps that
lead to the Thomas precession. In deriving the spin preces-
sion for the case of spin–orbit interaction, Thomas con-
siders an electron orbiting on a plane at the peripheral
velocity v around the nucleus of an atom. Thomas shows
that, because of the motion of the electron in its circular
orbit with the acceleration a due to the Coulomb field, the
electron spin acquires an extra angular velocity ωT of
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purely relativistic kinematical origin. The Thomas angular
velocity ωT , corresponding to the rotation per unit of time
of the electron frame, can be calculated from the infinite-
simal LT along the electron path (shown in Figure A2),
indicating that successive transformations consist of a
pure boost and a rotation.

To point out the origin of the rotation of the particle
rest frame ″S , in his approach to the Thomas precession,
Jackson starts from the LT between the two frames ″S and
S given by (Ref. [30], Section 11.19),

( ) ( )

( )

( )

″ = − ⋅ = − −

″ = +
−

+ −

″ = +
−

+ −

″ =

βx γ x γ x β x β x

x x

γ

β

β x β x β γβ x

x x

γ

β

β x β x β γβ x

x x

x

1

1

,

u u

u

u

0 0 0 1 1 2 2

1 1 2 1 1 2 2 1 1 0

2 2 2 1 1 2 2 2 2 0

3 3

(A2)

where, as shown in Figure A2, ″S is in motion with velocity
components =u ux 1 and =u uy 2 relative to the laboratory
frame S and in (A2) ( )= − ∕ − ∕

γ u c1
u

2 2 1 2, = +u u u
2

1

2

2

2,
= ∕β u c

1 1 , and = ∕β u c
2 2 .

The connection between the two sets of rest frame coor-
dinates, ′x at time t and ″x at time +t δt, corresponding to
the frames instantaneously co-moving with the particle in
its accelerated motion, are given by,

( )

( )

′ =
″ = +

β

β δβ

x A x

x A x ,

boost

boost

where = ∕β cv and + = ∕ = ∕ +β δβ δβc cu v , with the factor
= +γ γ γ βδβ

u

3

1
to the first order in δβ. The resulting infinite-

simal transformation between ′S and ″S is,

″ = ′x A x ,LT (A3)

where the transformation matrix,

( ) ( )= + −
β δβ βA A A ,LT boost boost

1 (A4)

is,

=
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(A5)

As shown by Jackson [30], the resulting infinitesimal
Lorentz transformation (A3) consists of a boost with velo-
city βcΔ and a rotation ΩΔ given by,

=
−

×β δβ

γ

β

ΩΔ
1

.
2

(A6)

The rotation is highlighted by the two antisymmetric
matrix elements ( )ALT 23 and ( )ALT 32 of A

LT
,

=

⎛

⎝

⎜
⎜
⎜
⎜

⋯ ⋯ ⋯ ⋯

⋯ ⋯
−

⋯

⋯ −
−

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⎞

⎠

⎟
⎟
⎟
⎟

A

γ
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δβ

γ

β

δβ

1

1
,LT

2

2

(A7)

indicating the existence of a rotation of the electron rest
frame ″S by ΔΩ about the x3 axis. Because of the spacetime
symmetry of the LT in (A2), the parameter time depends on
space, ( )″ = ″t t t x, and ( )′ = ′t t t x, . Therefore, through the
matrix multiplication (A4), we can see that the time depen-
dence on space, related to relative simultaneity, is essential
for providing the resulting antisymmetric matrix elements
( )ALT 23 and ( )ALT 32 of A

LT
shown in (A7).

A direct consequence of expression (A6) is the resulting
Thomas precession acquired by the object at the angular velocity,

= − =
+

×
→

ω

δt

γ

γ c

Ω a v

lim
Δ

1
.T

δt 0

2

2
(A8)

Then, if the rotating object has a component of a perpen-
dicular to v, the object acquires a Thomas precession of
purely kinematical origin, independent of other effects.

Figure A2: An object (electron) is in accelerated motion along a curvi-
linear path under the action of external forces. The moving frames S ′ and
S″ represent successive rest frames of the object. Starting from the
origin of the laboratory frame S , the velocity of the rest frame S ′ at time t

is ( ) =t cβv and at time +t δt the velocity of the rest frame S″ is
( )+ = +v t δt cβ cδβ. The resulting infinitesimal LT from S ′ to S″ consists
of a boost and a rotation, indicating that the object acquires a precession
at the Thomas angular velocity ωT of purely relativistic kinematical origin
independent of other effects.
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The LTA based on absolute simultaneity predict no
Thomas precession

The LTs based on absolute simultaneity (LTA) between
frame S and ″S are given by,

( )

( )

″ =

″ = +
−

+ −

″ = +
−

+ −

″ =

−
x γ x

x x

γ

β

β x β x β γβ x

x x

γ

β

β x β x β γβ x

x x

1

1

,

u

u

u

0

1
0

1 1 2 1 1 2 2 1 1 0

2 2 2 1 1 2 2 2 2 0

3 3

(A9)

which are the same as the LT in (A2), save for the fact that
the time parameter does not depend on space (absolute
simultaneity) and is given by ″ = ″ = −

cτ x γ x
u0

1
0, being ″τ

the proper time on the particle rest frame ″S .
Obviously, the spacetime symmetry of the LT is

different from that of the LTA and, therefore, for
observables that depend on symmetry, different predic-
tions may be expected from the two different
transformations.

Following the procedure adopted earlier, we proceed
by calculating the connection,

″ = ′x A x ,LTA (A10)

using the LTA (instead of the LT) and derive the corre-
sponding matrix ALTA (A14).

The transformations between frame ′S and S are,

( )

′ = ⇒ = ′
′ = − ⇒ = ′ + ′
′ = ⇒ = ′
′ = ⇒ = ′

−

−

x γ x x γx
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x x x x

x x x x .

0
1

0 0 0

1 1 0 1
1

1 0

2 2 2 2

3 3 3 3

(A11)

After substituting x0 and x1 given by (A11) in expression
(A9), the connection ″ = ′x A xLTA of (A10) to the first order
in δβ is found to be,
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(A12)

For the matrix elements ( )ALTA 23 and ( )ALTA 32, we may
take into account that the velocity of ″S relative to S is

= +β β δβ
1 1

and =β δβ
2 2

and ≃γ γ
u

to the first order in
δβ. Then, (A12) becomes,
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(A13)

From the connection ″ = ′x A xLTA given by Eq. (A13), we
find that the elements of the corresponding matrix ALTA

relevant to our case are,
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(A14)

indicating that both the matrix elements ( )ALTA 23 and
( )ALTA 32 are positive, not antisymmetric, and do not reflect
the existence of a rotation about the x3 axis, as it is the case
for the corresponding elements of the matrix ALT Eq. (A5)
derived with the LT. In fact, the matrix elements ( )ALTA 23

and ( )ALTA 32 indicate a relative distortion of axes due to
length contraction in the direction of motion, but no rela-
tive rotation about the x3 axis.

In conclusion, standard special relativity predicts the
existence of the Thomas precession, which is related to
the spacetime symmetry properties of the LT based
on relative simultaneity. Instead, the LTA, based on conserva-
tion of simultaneity, predicts that the Thomas precession does
not exist. With the examples of the Thomas precession, the
RLSE, and other phenomena [6–9], we may infer that the LTA
are not in general physically equivalent to the LT. Hence, the
two transformations – and absolute and relative simultaneity
– cannot be interchanged arbitrarily.

A.3 Calculating with the Lorentz
transformations the intervals ⇐⇐T , ⇒⇒T and

== ⇐⇐ ⇒⇒T T TΔ ‒ for the RLSE

A.3.1 Showing that, for >> ∕∕D vL c2 and C* on the same
(upper or lower) contour section, in the RLSE the round-
trip time interval ⇒⇒T for the counter-moving photon is
independent of D and the same as in the standard linear
Sagnac effect

With reference to Figures 1(b) and 2(a), we assume that the
counter-moving photon is emitted by C* when > ∕D vL c2 ,
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so that C* is always on the lower track during the round-
trip interval ⇒T . In this case, the contour is always moving
at speed +v relative to C*. Then, the photon moving at
speed c reaches point B when ( )= − ∕ +ct L D γ vt, i.e., at,

( )

( )( )
=

−
−

=
− + ∕

t

L D

γ c v

γ L D v c

c

1
,1

where we have used the relation ( )( )∕ = − ∕ + ∕ =γ v c v c1 1 12

− ∕v c1 2 2.
Moving now on the upper track, the photon travels

from B toward A and reaches A when ∕ − =L γ ct vt after
the interval,

( )

( )
=

+
=

− ∕
t

L

γ c v

γL v c

c

1
.2

After reaching A, the photon starts moving on the
lower track to return to C*. Since point A has been moving
at speed v toward C* during the interval +t t1 2, the position
of A relative to C* is now ( )∕ − +D γ v t t1 2 and the photon
reaches C* when ( )∕ − + =D γ v t t ct1 2 , after the interval,
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The resulting round-trip interval ⇒T is,
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1 2 3

(A15)

showing that, for > ∕D vL c2 , in the RLSE ⇒T , is D-indepen-
dent and the same as that of the standard linear Sagnac
effect in Eq. (1). The same conclusion holds for the round-
trip ⇐T of the co-propagating photon.

A.3.2 Showing that in general, for the RLSE the round
trips intervals ⇐⇐T and ⇒⇒T depend on D. For two
counter-propagating photons, the standard RLSE
provides the same D-independent result TΔ of the
standard linear Sagnac effect.

When during the round-trip interval T the device C* keeps
on the same track (lower or upper contour section), there is
no problem in deriving (as shown earlier) for = −⇐ ⇒T T TΔ

the D-independent results (1)–(3), which are the same as
those that can be found in literature. The calculations
become quite complicated when the device C* passes,
e.g., from the lower to the upper track and we wish to
find results in general. Since in the variant S-RLSE, the
round-trip ⇒T has its maximum when the photon covers
the maximum length ∕L γ2 (occurring when ( )= ∕D vL γc0 ),
we consider here this special case and perform the calcula-
tions for deriving the round-trip ⇐T of the co-moving
photon and determine TΔ of (3). For the co-moving photon,
we have first to find its position at ( )= ∕t L γcout when point
A reaches C* and the rod changes the direction of motion.
With reference to Figure A3(a), starting from C* and moving
to the left at speed c toward point A, the photon reaches A
when − + =D vt ct0 , i.e.,

( )
=

+
=

+
t

D

c v

vL

γc c v

.A

0

After reaching A (Figure A3(b)), the photon moves to the
upper track and, in the remaining interval, = −t t tΔ Aout

propagates on the upper track toward point B while the
rod is still moving to the right at speed v. Then, since A is
moving at speed v, after the interval tΔ , the position of the
photon relative to A is,

Figure A3: Relative positions of photon and clock C* during light co-
propagation in the round-trip interval ⇐T .
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( ) ( )( )
( )

( )
= − = − − =

−
+

h c v t c v t t

c v L

γ c v

Δ ,Aout

as shown in Figure A3(c).
With the photon at distance h from A and the device C*

coinciding with A and displaying the reading tout, the con-
tour changes direction of motion. Then, from h, the photon
reaches B when, + = ∕ −h ct L γ vt, i.e., after the interval,
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as indicated in Figure A3(d).
After reaching B on the upper track, the photon passes

to the lower track and moves toward A, reaching it when
∕ − = −L γ ct vt at,

( )
=

−
t

L

γ c v

,3

as in shown Figure A3(e).
At this point, the photon at A goes to the upper track

and starts moving toward C*. However, in the interval
+t t2 3, point A has moved to the distance ( )+v t t2 3 to the

left of C*. Then, from A, the photon reaches C* when
( )= +ct v t t2 3 after the interval,
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After some algebra, the resulting round-trip time interval
for the co-propagating photon is found to be,
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(A16)

The sum +t tout 3 can be expressed as follows:
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By substituting Eq. (A17) in Eq. (A16), we find,
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and with ( )= ∕⇒T L γc2 ,

= − =⇐ ⇒T T T

γvL

c

Δ
4

2

in agreement with the result of the standard linear Sagnac
effect.
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