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Abstract 
We demonstrate how to extract the Planck length from hydrostatic pressure 
without relying on any knowledge of Newton’s gravitational constant, G. By 
measuring the pressure from a water column, we can determine the Planck 
length without requiring knowledge of either G or the Planck constant. This 
experiment is simple to perform and cost-effective, making it not only of in-
terest to researchers studying gravity but also suitable for low-budget educa-
tional settings. Despite its simplicity, this has never been demonstrated to be 
possible before, and it is achievable due to new theoretical insights into grav-
ity and its connection to quantum gravity and the Planck scale. This provides 
new insights into fluid mechanics and the Planck scale. We are also exploring 
initial concepts related to what we are calling “Planck fluid”, which could po-
tentially play a central role in quantum gravity and quantum fluid mechanics. 
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1. Theory 

Blaise Pascal’s law is directly related to the well-known hydrostatic pressure 
formula (Granger [1]): 

p gHρ=                              (1) 

where ρ  is the liquid density (an “incompressible” fluid), H is the height of the 
liquid column, p is the pressure, and g is the gravitational acceleration. As 

2
GMg
r

= , we can rewrite this as: 
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2
GMp H
r

ρ=                           (2) 

The Planck length was first described by Max Planck [2] [3] and is traditionally  

given by 3p
Gl
c

=
 . Max Planck found this formula by assuming G, c, and    

were the most important universal constants, and then applied dimensional 
analysis to derive this formula as well as formulas for the Planck time, Planck 
mass, and Planck temperature. We can solve the Planck length formula for G  

and get 
2 3
pl cG =


 and then claim the Planck length is the important fundamental  

constant, and that G is a composite constant. Such suggestions were made al-
ready in 1984 when Cahill [4] [5] suggested expressing the gravitational constant  

from the Planck mass as 2
p

cG
m

=
 . In 1987, Cohen [6] pointed out correctly that  

this would only lead to a circular problem as long as no one at that time knew 
how to find the Planck mass or Planck length independently of first knowing G. 
However, in recent years, we have shown how to find the Planck length inde-
pendent of G and also   using a Newton force spring or a Cavendish appara-
tus, see [7] [8]. In this paper, we will show a similar approach utilizing funda-
mental principles of fluid mechanics. Not only will we outline the theory to do 
so, but also we will perform simple experiment using a manometer in a water 
column to demonstrate that this is more than theory. 

Another important point we will utilize is that we can solve the Compton [9]  

wavelength formula, h
Mc

λ = , with respect to mass. This gives: 

1M
cλ

=
                              (3) 

where   is the reduced Planck constant, also known as the Dirac constant 
( 2h π= ), and λ  is the reduced Compton wavelength. We will claim that 
this formula holds for any mass, even astronomical-sized objects like the Earth, 
the Sun, stars, and galaxies. It might seem questionable as the Compton wave-
length formula was originally developed in relation to Compton scattering of 
electrons. However, the mass of any object (or mass-equivalent) can be de-
scribed by this formula for mass. Composite masses do not have a single Comp-
ton wavelength, but the reduced Compton wavelength in the formula then 
represents the aggregate of all the wavelengths in the particles making up the 
mass, including energy, which we can treat as having a Compton wavelength. 
We have the relation: 

1
1

i
n

i

λ

λ

=
∑

                            (4) 

This is fully consistent with: 

31 2
1 2 3 2 2 2 2

n
n

E EE EM m m m m
c c c c

= + + + + + + +  



E. G. Haug 
 

 

DOI: 10.4236/ojfd.2023.135019 252 Open Journal of Fluid Dynamics 
 

31 2
2 2 2 2

1 2 3

1 1 1 1 1 n

n

c cc c h hh h
h h h h h
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λ λλ λ
λ λ λ λ λ

= + + + + + + +  (5) 

1
1

i
n

i

λ

λ

=
∑

 

So, even binding energy can be taken into account, be aware the energy can be 
both added as done above or subtracted. Ignoring nuclear binding energy will, 
however, introduce less than a 1% error in the predicted Compton wavelength 
and, therefore, also in the mass we are working with. This is discussed in detail 
in [7] [10]. 

Based on the analysis above, we can replace G with 
2 3
pl cG =


 and M with 

1M
cλ

=
  in Equation (2). This gives: 

2 2

2
pc l

p H
r

ρ
λ

=                          (6) 

Next, we simply solve this with respect to the Planck length and we get: 

p
r pl
c H

λ
ρ

=                           (7) 

To find the Planck length, we need to know the speed of light c, the radius of 
the Earth r, the reduced Compton wavelength of the Earth λ , the density ρ  
of the fluid, and the height of the fluid column H. In the next section, we will 
demonstrate that this is easily possible, even in practice. 

This seems to be fully in line with a new quantization of general relativity 
theory. Haug [11] [12] recently re-written Einstein’s [13] [14] field equation as: 

281 .
2

plR Rg T
cµν µν µν

π
− =


                     (8) 

And further demonstrated that the Schwarzschild solution can be re-written 
as: 

1
2 2 2 2 2 2

2 2
2 2d 1 d 1 d dGM GMs c t r r
rc rc

−
   = − − + − + Ω   
   

 

1
2 2 2 2 2 22 2

d 1 d 1 d dp p p p

M M

l l l l
s c t r r

r rλ λ

−
   

= − − + − + Ω   
   

        (9) 

where Mλ  is the reduced Compton wavelength of the mass M, and 2dΩ =  
2 2 2d sin dθ θ φ+ . Further the term p

M

l
λ

 represents the reduced Compton  

frequency per Planck time. This provides the same predictions as the standard 
Schwarzschild metric, but it offers a deeper insight in our view. The re-written 
metric, expressed solely in terms of constants, requires only the Planck length 
and the speed of light for utilization, excluding the gravitational constant G. This 
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paper demonstrates that we can determine the Planck length through gravita-
tional phenomena, such as hydrostatic pressure, without relying on knowledge 
of G. This appears to establish a closer connection between fluid mechanics and 
gravity, and even extends to quantum gravity. 

2. Experiment 

We will measure the pressure in a water column and, based on this, deduce the 
Planck length without knowledge of the gravitational constant. To do this, we 
will use two low-budget manometers: the Klein Tools ET 180 digital manometer 
and the RISEPRO Digital manometer (see Figure 1). Any decent manometer 
should suffice; we are using two manometers just to reduce the chance of errors 
due to something unique to a specific manometer. Both of these manometers 
cost less than $50 each, and we mention this to highlight that this experiment 
could easily be conducted in almost any classroom. Our goal is not to achieve 
the highest possible precision, nor to measure the Planck length more accurately 
than has been done indirectly by other methods, such as a Cavendish apparatus. 
Instead, we aim to demonstrate how simple laws of fluid mechanics can be uti-
lized in practice to find the Planck length without knowing the value of G. This 
has never been done before. 
 

 
Figure 1. The figure illustrates the setup of our simple 
yet powerful experiment. We measure the pressure in a 
fluid cylinder filled with 15 cm of water using three dif-
ferent manometers. Based on new and deeper insights 
into gravity, we can extract the Planck length without 
any knowledge of the gravitational constant. 
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Figure 1 illustrates our setup. We use a fluid cylinder filled with 15 cm of wa-
ter, and then we measure the hydrostatic pressure with three different manome-
ters. The water was measured to temperature 21 celcius, which was the same as 
the room temperature. The measured pressure at the bottom of the vessel was 
1.37 kilopascals with the RISEPRO Digital manometer and 1.38 with the Klein 
Tools ET 180 digital manometer. This is after adjusting for air pressure, which is 
done automatically by the RISEPRO Digital manometer but had to be done ma-
nually with two readings from the Klein Tools ET 180 digital manometer. 

Next, we need to determine the speed of light, which we can measure without 
any knowledge of gravity or simply look up. As of today, the speed of light is de-
fined exactly as 299,792,458 m/s, and we will use this value. 

We also need to calculate the reduced Compton wavelength of the Earth. To 
do this, we take the mass of the Earth in kilograms and use the formula  

685.89 10 m
EM c

λ −= ≈ ×
 . Although determining the Earth’s mass in kilograms  

typically requires knowledge of G, we can independently off knowledge of G or 
even   find the reduced Compton wavelength of any mass using the proce-
dure described in [7] and [10], which is also repeated in detail in Appendix A. 

Furthermore, we need to determine the density of water, which is approx-
imately 997 kg/m3. With all the necessary inputs, we can use formula 7 to com-
pute the Planck length:  

68
356371000 1.57 5.89 10 1.56 10 m

299792458 997 0.15p
r pl
c H

λ
ρ

−
−× ×

= = ≈ ×
×

 

This result is, as expected, slightly lower than the official CODATA NIST 
(2019) value of 1.616255 × 10−35 m, with a one standard deviation uncertainty of 
0.000018 × 10−35 m. The reason for the lower value in our experiment is likely 
due to considerably higher uncertainty in our low-budget measurement tools. 
However, it’s important to note that the primary aim of this experiment is not to 
establish a more accurate value of the Planck length but simply to demonstrate 
the remarkable fact that we can extract the Planck length from pressure alone, 
without prior knowledge of Newton’s gravitational constant. This is in line with 
other recent research on the Planck length [7]. To accurately identify uncertainty 
in the measurement, a more thorough study must be conducted with careful 
control of temperature and air pressure during various measurements. This 
could serve as a basis for future research. However, the purpose of our study 
here is simply to demonstrate that one can indeed find the Planck length inde-
pendent of the knowledge of G from hydrostatic pressure. 

3. Properties of a Hypothetical Planck Fluid 

What we have discussed and investigated, even experimentally, above, is the re-
lation between fluid pressure and the Planck length through standard gravita-
tional observations, such as measuring pressure in a macroscopic setting. Since 
we can derive the Planck length from macroscopic gravitational phenomena, one 
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would expect that the formula: 

p
r pl
c H

λ
ρ

=                            (10) 

also potentially holds all the way down to the Planck scale. We are naturally far 
from observing something directly at the Planck length or Planck time, as these 
scales are significantly shorter than any current experimental devices can direct-
ly observe. However, the validity of formula 10 can be theoretically tested to 
some extent at the Planck scale by assuming the existence of a superfluid, which 
we will refer to as the Planck fluid. We will link the properties of the Planck fluid 
to Planck unit properties, see Unnikrishnan and Gillies [15] for an overview of 
Planck unit properties. For instance, we will assume that the pressure in the 
Planck fluid equals the Planck pressure, and that gravitational acceleration is 
measured at a height of one Planck length. Furthermore, the reduced Compton 
wavelength of the Planck mass is equal to the Planck length. Let’s input these 
assumptions into the formula and see what results we obtain: 

p p p p p
p p

p p p p

l p l p lr pl t
c H c l l

λ
ρ ρ ρ

= = =                  (11) 

Here, pp  represents the Planck pressure, defined as the Planck force divided  

by the Planck surface area, i.e., 2
p

p
p

F
p

l
= , where 2

p p
p

p

m m
F G

l
=  (see [15]). Further  

pρ  denotes the Planck (mass) density (see [15] [16]) of the Planck fluid,  

3
p

p
p

m
l

ρ = . When we substitute these values into the formula above, we obtain: 

2

2 2

2 2 3

3 3 3

p

p p p
p p p

p p p p p p
p p

p p p
p p p

p p p

Gm
F l m c
l l l

l l l l l l
l lm m mc c cl l l

l l l

= = = =           (12) 

In gravitational theory, it is often assumed that the gravitational field behaves 
like a perfect fluid or superfluid. We propose that this superfluid can be referred 
to as the Planck fluid. 

The Reynolds number plays a central role in various aspects of fluid mechan-
ics, including the interpretation of the Navier-Stokes equation. The Reynolds 
number is defined as: 

uLRe ρ
µ

=                          (13) 

Here, ρ  represents the kilogram density of the fluid, u is the flow speed, L is 
a characteristic length, and µ  is the dynamic viscosity of the fluid. 

An intriguing question arises: what is the Reynolds number for the Planck  

fluid? The Planck mass density is given as 3
p

p
p

m
l

ρ = . Furthermore, the flow  
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speed of Planck mass particles is equal to the speed of light, denoted as c. More-
over, we assume that the characteristic length is equal to the Planck length, i.e., 

pL l= . The dynamic viscosity of the fluid can be seen as the product of pressure 
and time. The Planck pressure is typically expressed as  

2 2

2 2 3
Planck force
Planck area

p p

p p p

p p p

m m
G

F l m c
p

l l l
= = = = , and we assume it only exists for the  

Planck time. Therefore, the dynamic viscosity of the Planck fluid is: 
2

3 2
p p

p p
p p

m c m c
t

l l
µ = =                         (14) 

This means the Reynolds number for the Planck fluid is given by: 

2

1p p

p

p

cluLRe m c
l

ρρ
µ

= = =                        (15) 

Chaotic behavior of fluids is typically associated with a high Reynolds num-
ber: 1Re . Gravity, as we observe it at macroscopic scales, appears to be high-
ly ordered and deterministic, unlike many chaotic fluids. A Reynolds number of 
1 for this Planck fluid, which we associate with gravity, is therefore somewhat 
consistent with our observations. 

The Reynolds number compares inertial forces to viscous forces. When the 
inertial force equals the viscous force, resulting in a Reynolds number of one, the 
fluid does not move. Initially, this may seem to pose a dilemma. We assumed a 
flow speed of c, so the Planck fluid should move at the speed of light, seemingly 
contradictory to the idea that it doesn’t move. However, this is entirely consis-
tent with a new quantum gravity model [17], where the Planck mass particle is 
essentially a collision between building blocks involving two photons. This colli-
sion lasts only for the Planck time, and the collision itself is what we consider as 
mass in this model. So, the superfluid can both remain completely still and move 
at the speed of light. We propose the hypothesis that the Planck fluid exists 
within all matter, including any fluids that has rest-mass, which are all known 
real fluids. 

We expect, or perhaps more accurately, hope, that the Reynolds number for 
the Planck fluid could potentially provide new insights into the Navier-Stokes 
equations. Fluid mechanics at the Planck scale may behave in a binary manner, 
either moving at c or not moving at all-switching between these states, essential-
ly causing the Planck fluid to vibrate. Admittedly, we are entering speculative 
territory here, but we have dedicated many years to studying quantum gravity 
theory, so there is more thought behind this than we can explore fully in a single 
article. As far back as 1916, Einstein [14] suggested in one of his general relativi-
ty papers that the next significant step in gravity would involve the development 
of quantum gravity. Eddington [18], in 1918, was likely the first to propose that 
such a quantum gravity theory had to be linked to the Planck length (Planck 
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scale). Now, over 100 years later, there is still no consensus on a unified quan-
tum gravity theory [19]. Perhaps new ideas concerning Planck scale superfluids 
can take us a step further. At the very least, this quantum Planck fluid intro-
duced here appears to be consistent with a new way to quantize general relativity 
theory; see [12] [20], and connect it to the Planck scale. However, we don’t ask 
anyone to take any of this for granted, but rather to investigate for themselves 
and join the discussions about the Planck scale, which should also include the 
potential existence of a Planck fluid. 

4. Conclusion 

We have presented a theory on how the Planck length can be determined from 
fluid mechanics without requiring knowledge of the gravitational constant G. 
Specifically, we achieve this by utilizing Pascal’s law and new insights in quan-
tum gravity. Additionally, we conducted a simple experiment using a manome-
ter to measure the pressure in a water column and deduced the Planck length 
from the results. This demonstration shows that it can be easily done in practice. 
Furthermore, we briefly outline some properties of a hypothetical fluid that we 
have coined the “Planck fluid.” We find that its Reynolds number is likely to be 
one, and that we could hypothetically extract the Planck length from it if we 
could measure its pressure to be the Planck pressure. 
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Appendix 

We will demonstrate how one can determine the Compton wavelength for any 
mass, even very large ones, without the need to know the mass in kilograms or 
the Planck constant. We have detailed this approach in multiple papers, but be-
cause it is so central, we are reiterating much of this methodology here in this 
appendix. The Compton wavelength is typically given by 

h
mc

λ =                             (16) 

In this case, we usually require knowledge of both the Planck constant and the 
mass, denoted as m, along with the speed of light to calculate the Compton wa-
velength. However, Compton, based on Compton scattering of electrons, pro-
vided the following formula: 

( ),1 ,2 1 cosh
mcγ γλ λ θ− = −                     (17) 

We can replace h
mc

 with the Compton wavelength λ  and solve for it,  

yielding: 

,1 ,2

1 cos
γ γλ λ

λ
θ

−
=

−
                         (18) 

To find the Compton wavelength of the electron, we need to measure the wa-
velengths of the incoming and outgoing photons that collided with the electron, 
as well as the angle between the incoming and outgoing photons. This process is 
known as basic Compton scattering. 

Next, we will utilize the fact that the absolute value of the charge is the same 
for an electron and a proton. The Cyclotron frequency is given by: 

2
qBf
m

=
π

                           (19) 

The ratio of the Cyclotron frequency of the proton to that of the electron is 
expressed as: 

2 1836.15

2

e eP P

P e P

e

qB
f m m

qBf m
m

λ
λ

= = = ≈
π

π

                 (20) 

Therefore, all we need to do to find the Compton wavelength of the proton 
relative to the electron is to measure the Cyclotron frequency of a proton and an  

electron (see also [21] and [22]). The Compton wavelength is then 1
1836.15Pλ = .  

However, since the proton is a composite particle, it is unlikely to have a single 
Compton wavelength, even though the proton wavelength has been discussed in 
the literature for many years (see [23] [24], and others). Nevertheless, the me-
thod above provides the correct relative mass of the proton to the electron. 

To find the Compton wavelength of a larger macroscopic mass, all we need to 
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do is count the number of protons and neutrons in it. Since neutrons have al-
most the same mass as protons, the Compton wavelength of such a mass is 
simply the Compton wavelength of the proton divided by the total number of 
protons and neutrons in the mass of interest. Additionally, we need to consider a 
small correction factor for the number of electrons in the mass. Counting atoms 
in a macroscopic object is not easy, but it is entirely feasible and was actually one 
of the competing methods for establishing a new kilogram standard (see [25] 
[26] [27] [28]). Other methods are also available for counting atoms; for exam-
ple, refer to [29]. 
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