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A B S T R A C T   

The Atlantic salmon industry in northern Europe is experiencing increasing losses due to the amoeba Paramoeba 
perurans, which is the causative agent of amoebic gill disease (AGD); a disease that has a debilitating impact on 
fish’s health and welfare. Successful implementation of genomic selection (GS) for AGD can potentially increase 
selection response and help reduce outbreaks in the commercial farming of Atlantic salmon. However, successful 
implementation of GS requires the existence of linkage disequilibrium (LD) between markers and quantitative 
trait loci (QTL). In this study, we evaluated separately the extent of LD present in six Atlantic salmon breeding 
populations from Mowi. We also investigated the benefit of using genomic information for selection in these 
populations, comprising 4 year-classes from Mowi’s Norwegian population and 2 year-classes from Mowi’s Irish 
population that was recently introgressed into the Norwegian population. The average distance between markers 
was 43 kb and the average LD (measured by r2) between adjacent markers was approximately 0.3 for each 
population. As expected, LD decreased as the physical distance between markers increased. In addition, we 
observed long-range LD (LD extending to several megabases) across all chromosomes and for all the populations 
studied. Both the heritability and the accuracy of the breeding value estimates for AGD resistance varied 
considerably among populations, ranging between 0.06 and 0.24, and 0.32 to 0.77, respectively. The GS models 
studied had overall better performance than the pedigree based best linear unbiased prediction (PBLUP) model 
with respect to the accuracy of breeding values prediction, whereas no significant difference was found between 
the linear and nonlinear GS models. We recommend the use of genomic best linear unbiased prediction (GBLUP) 
model for the genetic evaluation of AGD resistance due to the higher computing requirements of nonlinear GS 
models.   

1. Introduction 

Amoebic gill disease (AGD), first identified in 1985 (Munday, 1985), 
is an increasing concern to the salmon industry around the world. The 
disease, which was initially found only in Tasmania (Munday, 1985) and 
USA (Kent et al., 1988), has now been reported in most salmon pro
ducing countries of the world, including Norway, Chile and Ireland 
(Bustos et al., 2011; Oldham et al., 2016; Steinum et al., 2008). 

AGD is a disease caused by the amoeba Paramoeba perurans (Young 
et al., 2008). Clinical manifestation of the disease includes anorexia, 
cardiac dysfunction, lethargy, respiratory distress, and convergence of 
infected fish near the water surface (Kent et al., 1988; Kube et al., 2012; 
Munday et al., 1990; Powell et al., 2002). If left untreated, it can result in 

mortalities of up to 50% (Munday, 1985). 
AGD presents itself with the appearance of white multifocal mucoid 

patches on the gills (Kube et al., 2012). These patches are usually also 
used to score or assess the severity of AGD in what is often termed a gross 
gill (pathology) score. Presently, histopathology and polymerase chain 
reaction (PCR) analysis are the only two ways of confirming the pres
ence of the pathogen. 

The only economically feasible treatment of the disease is fresh water 
or hydrogen peroxide bath for about 0.5–3 h, depending on the treat
ment type (Parsons et al., 2001; Rodger, 2014). Baths are scheduled 
when the average gross gill score is above 2 (Taylor et al., 2009b). This 
bath merely removes gill mucus and gill associated amoebas (Taylor 
et al., 2009b), and usually fish will become reinfected in a matter of days 
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after bath. The number of required baths within a production cycle can 
thus be considerable; for instance, in Tasmania, between 12 and 15 
baths may be needed in a 15–18 months production cycle. This can 
result in a substantial increase in cost of production (Taylor et al., 
2009b) and there are of course also severe welfare issues related both to 
the disease itself and the treatment of it (Lillehammer et al., 2019). 

A supplementary strategy that can help to manage this disease is 
selective breeding for AGD resistance. In Tasmania, which has the 
longest history of AGD in salmon farming, selective breeding has proven 
to be a successful approach in mitigating the negative impacts of the 
disease, and the number of baths required in each production cycle has 
been significantly reduced (Evans et al., 2015). 

Genetic evaluation of disease resistance of aquacultural species can 
be done as a challenge trial in experimental facilities or during natural 
disease outbreak in the sea (field testing). In a field test, the natural 
environment will encompass all factors and/or their interactions that 
may contribute to pathogenicity (Norris et al., 2008). However, it might 
be difficult to ascertain the actual cause of disease or mortality. Also, the 
randomness of an outbreak may make field testing less suitable for 
systemic selective breeding. In experimental challenge trials, group of 
fish are exposed to specific pathogens (Odegard et al., 2006), thus, the 
cause of disease/death can be assumed known, although clinical ex
amination of challenged fish is usually also performed. Challenge trials 
are thus arguably the ‘gold standard’ for evaluating disease resistance in 
aquatic species. Some studies have also reported favorable genetic cor
relation between challenge trials and field testing (Gjøen et al., 1997; 
Odegard et al., 2006; Storset et al., 2007). However, recent results of 
Gjerde et al. (2019) and Lillehammer et al. (2019) show low genetic 
correlation between challenge trial and field testing for AGD resistance, 
which implies that challenge trials are not necessarily reflective of AGD 
resistance in the commercial production environment. 

The use of genome wide dense SNP-markers (single nucleotide 
polymorphism) to predict the genetic merit of an individual, which can 
be done for instance by GS (genomic selection), has revolutionized plant 
and animal breeding. In GS schemes, phenotypes are regressed on all 
markers simultaneously in an informant population (also termed 
training/reference population) to obtain the marker effects/allele sub
stitution effects, which are then used to predict the breeding values of 
genotyped selection candidates (Meuwissen et al., 2001). Genome wide 
markers with sufficient density are used in GS so that all the quantitative 
trait loci (QTLs) are in linkage disequilibrium (LD) with at least one 
marker (Goddard and Hayes, 2007). Few studies (Barria et al., 2018; 
Kijas et al., 2017) exist on the amount of LD present in Atlantic salmon 
populations and moreover, there is dearth of information on LD in the 
Atlantic salmon breeding populations in Norway. 

In aquaculture breeding programs, where most traits are not 
measured directly on selection candidates, GS has the advantage that it 
can accurately capture the mendelian sampling terms, allowing for 
better utilization of within and between family genetic variation, and 
thereby improving prediction accuracy compared to using only pedigree 
information. GS has recently been implemented in Atlantic salmon 
populations for several growth related and disease traits (Tsai et al., 
2016; Tsai et al., 2015; Verbyla et al., 2022) and increase in prediction 
accuracy have been reported to range from 10 to 27%, compared to 
pedigree-based models. For AGD, GS has been shown to increase accu
racy of prediction (Aslam et al., 2020; Verbyla et al., 2022) and most 
importantly, higher realized genetic gains has also been reported for the 
Tasmania Atlantic salmon breeding population (Verbyla et al., 2022). 
The above studies reported increases in prediction accuracy when using 
linear GS models, however, Bayesian models have been reported to 
perform better than linear GS models for traits that are controlled by a 
small number of QTLs or genes (Joshi et al., 2021; Kemper et al., 2015; 
Neves et al., 2014; Zhu et al., 2019). For AGD, Aslam et al. (2020) re
ported putative QTLs explaining about 37% of total genetic variance. No 
previous studies on AGD resistance in Atlantic salmon have compared 
linear and nonlinear (bayesian) GS models. 

In this study, we will: (i) explore the extent of linkage disequilibrium 
present in different breeding populations of Atlantic salmon (ii) estimate 
the genetic parameters for AGD resistance using pedigree and genomic 
information and (iii) evaluate the prediction accuracy of pedigree based 
and genomic based (linear and nonlinear) evaluation models. 

2. Material and methods 

2.1. Fish strains 

The year-classes used in this study came from two strains: Mowi 
Fanad and Mowi Norway strains. These strains comprised of four par
allel sub-populations each, often referred to as year-classes to indicate 
the year the sub-populations were taken to sea. The reason for having 
four parallel year-classes in a salmon breeding program is due to the 
generation interval of Atlantic salmon which is usually four years 
(longer in the wild). Selection is usually done yearly to make seeds 
available for the salmon industry each year (Gjedrem, 2010). 

The origin of the Mowi Norway strain dates as far back as 1969 when 
wild salmons from rivers Vosso and Åroy were used to form the base 
population (Våge, 1995). Between 1982 and 1986, ova from this strain 
were exported to Ireland to form the Mowi Fanad strain (Norris et al., 
1999). Hence, these strains originated from a common base population. 

The year-classes in the Mowi strain were crossed systematically in 
the years 1969 to 2002 in order to avoid rapid increase in inbreeding. 
This mixing was considerably reduced in the generations following 
2002, when the use of DNA based assignment of parents and BLUP se
lection was implemented. Since then, the year-classes have undergone 
about six generations of selection in parallel with the occasional use of 
males from the previous year-class. 

Two year-classes from the Mowi Fanad strain were recently intro
gressed into the year-class 2015 (YC2015) and year-class 2016 (YC2016) 
of the Norwegian strain. Thus, for these year-classes (YC2015 and 
YC2016), we appended A and B to indicate their origin. A and B refer to 
the Norwegian and Irish strain, respectively. We have a total of 6 year- 
classes in this study (YC2015A, YC2015B, YC2016A, YC2016B, YC2017 
and YC2018). Population bottleneck and genetic drift are likely the 
major factors responsible for the differentiation of these year-classes 
(Fig. 1). As stated earlier, there is usually the presence of four year- 
classes in an Atlantic salmon breeding population, whereas this study 
has 6 year-classes, hence, to avoid any ambiguity, we shall refer to the 
year-classes in our study as populations. 

2.2. Fish management 

The populations in this study were AGD phenotyped in a field trial. 
For all populations, the fish were eyed-egg and start-fed in January and 
April the year before. All fish were individually tagged using passive 
integrated transponder (PIT) tag obtained from Biomark (https://www. 
biomark.com/product/apt12-pit-tag/). They were stocked into net 
cages between April and May when they were approximately 14–15 
months old and have completed smoltification. For example, the 2015 
populations were eyed-eggs and start-fed in January and April 2014, 
respectively. They were raised in freshwater flow-through system until 
they smoltified and were ponded/transferred into net cages in May 
2015. The average size of the fish at stocking in sea were 101 g, 122 g, 
120 g and 198 g for the populations in the year 2015, 2016, 2017 and 
2018, respectively. 

2.3. Field test 

For each field trial, we monitored the occurrences of AGD in the net 
cages by regular gill scoring of a random sample of fish until the average 
score approached 2 at which point all fish were gill scored (major gill 
scoring). This monitoring started in the month of July in each year based 
on historical occurrence of AGD in Norway. All populations were gill 
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scored using the method of Taylor et al. (2009b). Briefly, each fish was 
scored between 0 and 5, where the numbers are on an ordinal scale with 
0 meaning no infection and 5 meaning severe coverage of the gills with 
>50% of the gills covered with white spots. For the 2015 populations, 
two persons (A and B) scored all the fish, while only one person (B) gill 
scored all the other populations from 2016 to 2018. Two major gill 
scorings were done for populations in the year 2015, occurring in the 
months of September (first infection) and October (second infection). 
For other populations (YC2016A - YC2018), major gill scoring only 
happened in the month of November and this was assumed to be the first 
infection. After each major gill scoring, the fish were treated with fresh 
water. For populations in the year 2015, I and II is appended to the 
population’s name to indicate first and second AGD infections, 
respectively. 

2.4. Genotyping 

All fish were genotyped with a non-commercial Affymetrix 55 K SNP 
array developed by Nofima in 2016 in collaboration with Benchmark 
and Mowi Genetics AS. Quality control was performed on the SNP data 
with Plink (Purcell et al., 2007). Markers and samples with call rate <
95% were removed. Also, SNPs with Hardy Weinberg p value (Fisher’s 
exact test) of <10− 25 as well as those with minor allele frequency of 
<1% were discarded. Finally, to limit the impact of poor sample quality, 
only samples with heterozygosity rate between 0.25 and 0.45 were used 
for the analysis. 

2.5. Genotype imputation 

Sporadic missing genotypes were imputed with Beagle version 5.4 

(Browning and Browning, 2016) using the following parameters: each 
chromosome was split into segments of size 20 Mb (window = 20) and 
overlaps between windows 5 Mb (overlap = 5) was used; 10 burn-in 
(burnin = 10) and 50 iterations was used for the phasing and imputa
tion (iterations = 50), the rest of the parameters were set to default. A 
total of 50,456 SNPs were retained after quality control and imputation. 
The imputation step was necessary because missing genotypes are 
problematic for the genetic evaluation software (Wombat (Meyer, 
2007)) used in this study. 

2.6. Linkage disequilibrium between adjacent markers 

Linkage disequilibrium (measured by r2 (Hill and Robertson, 1968)) 
between adjacent markers for each population was computed using 
Plink (Purcell et al., 2007), with the following parameter setting; − -r2, 
− -ld-window-kb 1000, zero –ld-window-r2, and − -ld-window of 2 to 
obtain LD values between adjacent SNPs. The mean r2 were then 
computed using R (Team, 2021). 

2.7. LD decay 

LD between markers at distances of up to 1000 kb was estimated 
using Plink (Purcell et al., 2007) with the parameters –r2, − -ld-window- 
r2 0, − -ld-window 100, and –ld-window-kb 1000. The last two param
eters indicate that markers of up to 100 within 1000 kb distance should 
be used in the computation. Based on the physical distance of each SNP 
pair, SNPs pair with the same physical distance were grouped together 
(bin) and the mean r2 of each bin was computed and visualized using R 
(Team, 2021). 

Fig. 1. Relationship between populations obtained from the first two PC of the genomic relationship matrix.  
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2.8. Model for analysis 

For each population, the following models were used to analyse the 
gill score records. 

2.8.1. PBLUP 

y = 1μ + Wu + e  

where y is a vector of phenotypes (gill score), μ is the overall mean, 1 is a 
vector of ones, W is an incidence matrix relating the phenotype to the 
additive genetic effects u and e is a vector of residual effects. e ~ N (0, 
Iσ2

e ), u ~ N (0, Aσ2
u), where I is an identity matrix, σ2

e is the residual 
variance, A is the numerator relationship matrix, σ2

u is the additive ge
netic variance. 

Heritability (h2) was estimated as: h2 =
σ2

u
σ2

u+σ2
e 

2.8.2. GBLUP 
SNP BLUP is equivalent to Genomic best linear unbiased prediction 

(GBLUP) (Goddard, 2009; Strandén and Garrick, 2009). However, when 
the number of individuals is less than the number of markers (as is the 
case for the datasets in this study), GBLUP is desirable because it has less 
computational requirement (Meuwissen et al., 2013), hence our choice 
of GBLUP. The GBLUP model used was similar to the PBLUP model but 
with u being replaced with g and A being replaced with G. g is the vector 
of additive genomic effects and G is the genomic relationship matrix. G 
was computed as described by VanRaden (2008). 

G =
ZZ′

∑m

i
2pi(1 − pi)

where Z is a matrix of centered genotypes (0 -2p = homozygous, 1 -2p =
heterozygous, 2 -2p = homozygous), pi is the frequency of the reference 
allele for the ith marker, and m is the total number of markers. 

Genomic heritability was estimated as: h2 =
σ2

g
σ2

g+σ2
e 

2.8.3. Bayes B 
Bayes B was proposed by Meuwissen et al. (2001). In BGLR (Pérez 

and de Los Campos, 2014), this model has a mixture density prior with 
some SNPs having no effect with probability 1-π, while the remaining 
SNPs have an effect with probability π. The marker effect is sampled 
from a scaled t-distribution and π is sampled from a beta distribution. 
The genetic and residual variance are sampled from an inverted chi- 
square distribution with scale parameter (Su and Se) and degree of 
freedom (d.fU and d.fe), respectively. 

2.8.4. Bayes R 
Bayes R was proposed by Erbe et al. (2012) to address the deficiency 

of Bayes B and to improve computational efficiency. It assumes the SNPs 
effect comes from a series of normal distributions with variance ranging 
from zero to 1% of the genetic variance. The residual variance is 
sampled from an inverted chi-square distribution as described above. 

2.9. Genetic correlation between first and second infection 

For populations in the year 2015, a bivariate model was used for the 
estimation of the genetic correlation between the first and second gill- 
score record. 
[

y1
y2

]

=

[
1 0
0 1

][ μ1

μ2

]

+

[
Z1 0
0 Z2

][ u1

u2

]

+

[ e1

e2

]

var
[

u1
u2

]

=

[
Aσ2

u1 Aσu1,2

Aσu2,1 Aσ2
u2

]

var
[

e1
e2

]

=

[
σ2

e1 σe1,2

σe2,1 σ2
e2

]

y1 and y2 are vectors of phenotypes (gill score) for infections 1 and 2, 
μ1 and μ2 are the overall means of gill scores for infections 1 and 2, Z1 

and Z2 are incidence matrices relating the phenotypes to the additive 
genetic effects u1 and u2 for infections 1 and 2, respectively, σ2

e1 and σ2
e2 

are vectors of residual effects for infections 1 and 2. 
σ2

u1 and σ2
u2 are the additive genetic variances for infections 1 and 2, 

and σu1,2 = σu2,1 is the additive genetic covariance between both in
fections, σ2

e1 and σ2
e2 are the residual variances for infections 1 and 2, and 

σe1,2 = σe2,1 is the residual covariance between both infections. 

2.10. Genomic correlation between first and second infection 

This model is similar to the bivariate model described above but with 
ui being replaced with gi and A being replaced with G. g is the vector of 
additive genomic effects and G is the genomic relationship matrix. 

The ‘parameter expanded’ expectation maximisation (PX-EM) fol
lowed by the “average information” restricted maximum likelihood (AI 
REML) algorithm of the Wombat software was used to estimate the ge
netic parameters for both the PBLUP and GBLUP models (Meyer, 2007). 
To aid convergence of the GBLUP model in Wombat the option –dense 
was specified at run time. Bayes B and Bayes R model was analyzed with 
the BGLR package (Pérez and de Los Campos, 2014) and GCTB (Zeng 
et al., 2018), respectively. 

To ensure that the Bayesian models converge to their stationary 
posterior distribution, trace plots and auto correlation plots were visu
ally inspected. Also, geweke diagnostics was performed using R package 
coda (Plummer et al., 2006). The number of iterations of the Bayesian 
models ranged from 100,000 to 800,000 depending on the population 
and model. 50% of the iterations were discarded as burn-in with the 
thinning interval ranging from 1 to 5%. These values were chosen based 
on the convergence diagnostics tests. 

2.11. Accuracy and bias 

For each of the model (linear and nonlinear) in a population, accu
racy was assessed by cross validation, mimicking sib-based GS per
formed for aquacultural species. A random sample of one fish was 
selected from each family (families with <5 individuals were excluded), 
these fish were selected as the selection candidates and thus their 
phenotype was masked. The remaining fish in the dataset were used to 
train the model. The process was repeated 50 times. For each run, the 
accuracy (r) of prediction was estimated by: 

Accuracy

⎛

⎜
⎝r

⎞

⎟
⎠ =

cor(gill score(g)ebv )
̅̅̅̅̅̅̅̅̅̅

h2
pblup

√

These estimates were then averaged to give the estimated mean ac
curacy and the standard deviation of these estimates was taken as the 
standard error (SE) even though the sample size in each family varied. 
The variance components derived from analyzing each population’s gill 
score record were utilized in predicting the (g)ebv for the linear models 
(PBLUP, GBLUP). 

Bias was obtained from the regression coefficient of gill score on the 
(g)ebv. A bias value higher than 1 indicates that the (g)ebv estimates are 
deflated while a value lower than 1 indicates the (g)ebv is inflated. 

Bias =
cov (gill score(g)ebv )

var((g)ebv)
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3. Results 

3.1. Descriptive statistics 

Table 1 shows the descriptive statistics of gill score records for each 
population. The number of phenotyped and genotyped fish for each 
population were more or less the same. The average gill score spanned 
from 1.52 to 2.69. The distribution of gill score record for each popu
lation is shown in Fig. 2. The number of phenotyped fish ranged from 
640 to 3114, with YC2016B having the lowest number of fish while 
YC2017 had the highest number of fish. 

3.2. Linkage disequilibrium 

LD between marker pairs at various distances is shown in Supple
mentary file 1: Fig. S1 and Table 2. All populations had similar r2 value 
at the various distances examined. LD between marker pairs decreased 
as distance increased (Supplementary file 1: Fig. S1 and Table 2). The 
mean LD between adjacent SNPs is also shown in Table 2. All pop
ulations had similar r2 value between adjacent markers. Table 3 has the 
average r2 by chromosome for the various populations. The average LD 
between markers across chromosomes and populations ranged from 
0.21 to 0.37. Chromosome 8 had the least amount of LD while chro
mosome 19 had the highest amount of LD across populations. LD be
tween adjacent markers (by chromosome) was similar across 
populations. 

3.3. Variance component and heritability 

Table 4 and Supplementary file 2: Table S1 report on variance 
components and heritability estimates obtained from the different linear 
and nonlinear models investigated. The heritability estimates ranged 
from 0.05 to 0.24, with the lowest estimates (0.06 to 0.09) recorded in 
the 2015 populations and for the first infections, except for the first 
infection of YC2015B. The highest heritability estimates (0.17–0.24) 
were found in the 2016, 2017, and 2018 populations. 

The results of the genomic selection (GS) models yielded similar 
variance components and heritability estimates within each population. 
The estimates obtained with the pedigree based best linear unbiased 
prediction (PBLUP) model were also similar to those of the GS models, 
except for YC2015B-I, where the GS model estimates were lower. For the 
first infection, the heritability estimates varied from 0.08 to 0.24 with 
YC2015B and YC2016A having the highest heritability estimate for the 
PBLUP model. However, for the GS models, YC2016A had the highest 
heritability estimate. For the second infection, the heritability estimates 
ranged from 0.06 to 0.09, with YC2015A having the highest value. 

Overall, the study found that heritability estimates varied depending 
on the population, with higher estimates observed in more recent pop
ulations. The results also showed that GS and PBLUP models provided 
similar estimates of variance components and heritability. 

3.4. Genetic correlation between first and second infection 

Genetic correlation between first and second infection for YC2015A 
and YC2015B is shown in Table 5. The genetic correlation between the 
first and second gill score using pedigree information is 0.913 and 0.723 
for YC2015A and YC2015B, respectively. The genetic correlation esti
mates using genomic information were slightly lower (0.81 and 0.714 
for YC2015A and YC2015B, respectively) than using pedigree 
information. 

3.5. Accuracy and bias of prediction 

The within population prediction accuracy for the various models 
and AGD incidence are shown in Table 6. The within population accu
racy ranged from 0.32 to 0.77. For each population, the accuracies with 
GS models were higher than the PBLUP estimates. GS models did not 
differ significantly from each other. In general, all bias estimates were 
close to 1. 

4. Discussion 

To facilitate selective breeding, it is important to understand the 
genetic basis of AGD resistance and develop accurate genetic evaluation 
models. This study uses both pedigree and genome assisted models to 
estimate the genetic parameters for AGD resistance and evaluate the 
accuracy of different evaluation models, including genomic-based linear 
and nonlinear models. 

4.1. Linkage disequilibrium and decay 

We have explored for the first time, the extent of linkage disequi
librium present in different populations of Atlantic salmon in Norway, 
which is important for successful implementation of genomic selection. 
The linkage disequilibrium observed between adjacent markers for each 
population studied was about 0.3 (Table 2). Meuwissen et al. (2001), 
using haplotypes to predict the additive genetic value in the concept 
paper on GS, achieved an accuracy of 0.85 with microsatellite markers 1 
centimorgan apart, which is approximately the same as having SNP 
markers with LD (measured by r2) of 0.2 (Calus et al., 2008). This in
dicates that the density of markers applied in this study should be suf
ficient for accurate prediction of additive genetic values. The average LD 
values between adjacent markers observed in our study population were 
generally higher than what was previously reported by Barria et al. 
(2018), where LD estimate ranged from 0.07 to 0.26 in different Atlantic 
salmon populations of North American and European origin. In contrast, 
Kijas et al. (2017) reported LD for markers at different physical distances 
in Tasmanian and Finnish Atlantic salmon populations. Comparing LD 
values from different studies is however not straight forward because 
marker types, measures of LD, manners of obtaining haplotypes, ways of 
reporting (with some studies reporting LD at certain physical distance) 
and so on may not be the same (Pritchard and Przeworski, 2001). In 
addition, the density of markers will affect the LD values obtained, with 
higher LD values between adjacent markers observed at higher densities 

Table 1 
Descriptive statistics of the data set.   

Phenotyped fish No of families Mean (SD) Median Range (min-max) Genotyped fish 

YC2015A-I 2464 273 2.06 (1.02) 2 0–4 2464 
YC2015A-II 2316 269 2.69 (1.00) 3 0–5 2316 
YC2015B-I 1049 116 1.87 (1.04) 2 0–5 1049 
YC2015B-II 948 117 2.48 (1.05) 3 0–5 948 
YC2016A 2006 180 2.35 (1.35) 2 0–5 2006 
YC2016B 640 70 1.91 (1.29) 2 0–5 640 
YC2017 3114 275 1.52 (1.31) 1 0–5 2911 
YC2018 3033 139 1.52 (1.18) 1 0–5 2949 

SD = Standard Deviation, min = minimum, max = maximum. 
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of markers (Larmer et al., 2014). Our study and that of Kijas et al. (2017) 
also differ in marker density used and thus difficult to compare. Moreso, 
LD values are population specific and factors such as selection, muta
tion, genetic drift, admixture/migration and recombination shape the 
LD observed in a population (Ardlie et al., 2002). As explained earlier, 
the Atlantic salmon populations studied have a history of admixture (see 
materials section). Admixture leads to linkage disequilibrium between 
linked and unlinked loci (spurious LD), but the spurious LD dissipates 

after a few generations. However, LD induced by admixture between 
linked loci can persist for several generations (Stephens et al., 1994), 
and recent admixture history can result in LD extending over several 
megabases (Al-Tobasei et al., 2021; Vallejo et al., 2018). We indeed 
observed strong LD at distances spanning several megabases (Supple
mentary file 1: Figs. S2 - S7), indicating that accurate genomic predic
tion can be performed with even low-density markers for these 
populations. While dense markers are not necessary for significant as
sociation with QTL, long-range LD makes fine mapping of the causal 
variant challenging, as markers far from the QTL can also be associated 
with it. 

The similar pattern of LD observed across populations (Tables 2 & 3, 
Supplementary file 1: Figs. S2 - S7) probably reflect similar population 
history or similar historical LD generating events and/or similar forces 
of selection acting on the populations. The effect of selection on LD 
depends on the intensity of selection, the direction, duration and con
sistency (Du et al., 2007). 

Variable recombination rates exist across the genome (Ardlie et al., 
2002; Barria et al., 2018; Yu et al., 2001), and this might affect the LD 
seen on different chromosomes as LD is inversely related to 

Fig. 2. Distribution of gill scores of the various populations.  

Table 2 
Average r2 at various distances in six populations.   

0 - 
100kp 

100 - 
200 
kb 

200 
-300 
kb 

300 
-400 
kb 

400 
-500 
kb 

adjacent 
SNPs 

Total 
mean 
r2 

YC2015A 0.22 0.14 0.12 0.12 0.11 0.31 0.13 
YC2015B 0.21 0.12 0.11 0.09 0.09 0.29 0.11 
YC2016A 0.21 0.12 0.11 0.09 0.09 0.29 0.11 
YC2016B 0.19 0.11 0.09 0.08 0.07 0.28 0.09 
YC2017 0.19 0.11 0.09 0.09 0.08 0.27 0.09 
YC2018 0.21 0.13 0.11 0.11 0.10 0.29 0.12  
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recombination rate, regions with high recombination rate are usually 
referred to as “recombination jungle” whereas regions with low 
recombination rate are commonly referred to as “recombination desert” 
(Yu et al., 2001). To investigate this, we computed the average LD be
tween adjacent markers on each chromosome for the different pop
ulations (Table 3). We observed variable LD across the genome 
(chromosomes), with chromosome 19 consistently having the highest 
LD across populations, making chromosome 19 a recombination desert. 
In contrast, chromosome 8 had the lowest LD across populations, indi
cating that it is a recombination jungle, but this could also be a result of 
low density of SNP on that chromosome (Table 3). Nonetheless, since the 
amount of LD on chromosome 8 is still higher than 0.2, we rather refer to 
it as a “recombination grassland”. 

Barria et al. (2018) suggested that LD values may be inflated due to 
high relatedness within the studied population. We examined the impact 
of relatedness on LD in our study by randomly sampling one fish from 
each family and then estimating LD using these individuals. The results 
from this analysis (not shown) did not differ from using the whole 
dataset. 

4.2. Variance component and heritability 

Knowledge of genetic parameters is important for the prediction of 
genetic gain (Gianola and Rosa, 2015). Our pedigree based heritability 
estimate varied from 0.06 to 0.24. Lillehammer et al. (2019) and Gjerde 
et al. (2019) also reported estimates within this range for AGD resistance 
in different Norwegian Atlantic salmon populations. However, these 
estimates are in general lower than those reported from Tasmania (Kube 
et al., 2012; Taylor et al., 2009a), which could be as a result of different 
genetic makeup (different loci segregating in different populations). 
Moreso, in Tasmania, major gill scoring in the breeding program takes 
place when the level of infection exceeds the normal level used in 
commercial practise (Kube et al., 2012; Taylor et al., 2009a; Taylor 
et al., 2009b), whereas in Norway, major gill scoring takes place when 

Table 3 
Summary statistics for the evaluated SNPs and average linkage disequilibrium values (by chromosome) of different Atlantic salmon populations.  

Chromosome Average1 number of SNPs Average1 SNP distance (kbp) Average linkage disequilibrium values 

YC2015A YC2015B YC2016A YC2016B YC2017 YC2018 

1 3712 41 0.31 0.30 0.29 0.27 0.28 0.30 
2 1394 47 0.28 0.24 0.25 0.22 0.22 0.26 
3 2383 37 0.29 0.3 0.28 0.27 0.27 0.29 
4 2029 39 0.31 0.28 0.28 0.26 0.26 0.29 
5 1983 38 0.28 0.27 0.28 0.25 0.25 0.28 
6 2016 41 0.27 0.25 0.25 0.24 0.23 0.25 
7 1378 39 0.26 0.25 0.24 0.24 0.23 0.24 
8 454 55 0.23 0.24 0.21 0.21 0.21 0.22 
9 2695 50 0.32 0.32 0.30 0.29 0.30 0.34 
10 2665 42 0.32 0.32 0.32 0.3 0.28 0.32 
11 1842 49 0.29 0.30 0.28 0.28 0.26 0.29 
12 2054 44 0.27 0.28 0.27 0.26 0.26 0.28 
13 2583 41 0.36 0.32 0.34 0.32 0.32 0.34 
14 2264 41 0.35 0.33 0.32 0.31 0.31 0.34 
15 2000 50 0.32 0.31 0.29 0.30 0.29 0.31 
16 1658 48 0.32 0.30 0.30 0.29 0.28 0.30 
17 1177 45 0.28 0.26 0.25 0.26 0.24 0.27 
18 1434 47 0.33 0.29 0.29 0.28 0.28 0.32 
19 1618 49 0.37 0.35 0.35 0.35 0.33 0.36 
20 1875 45 0.35 0.32 0.34 0.31 0.31 0.32 
21 1230 45 0.29 0.27 0.27 0.26 0.26 0.27 
22 1465 41 0.32 0.30 0.29 0.30 0.28 0.32 
23 1450 34 0.27 0.27 0.26 0.25 0.25 0.26 
24 1200 37 0.33 0.33 0.29 0.30 0.27 0.29 
25 1154 43 0.33 0.29 0.31 0.28 0.27 0.30 
26 1016 45 0.31 0.27 0.29 0.25 0.25 0.29 
27 1222 35 0.31 0.28 0.29 0.27 0.27 0.30 
28 991 39 0.29 0.27 0.27 0.26 0.26 0.26 
29 892 46 0.27 0.27 0.25 0.25 0.23 0.26  

1 average number per chromosome was averaged across populations. 

Table 4 
Genetic parameters of gill scores using pedigree or genomic information.   

PBLUP GBLUP  

Va ± SE Ve ± SE h2 ± SE Va ± SE Ve ± SE h2 ± SE 

YC2015A- 
I 

0.08 ±
0.03 

0.96 ±
0.04 

0.08 ±
0.03 

0.07 ±
0.02 

0.97 ±
0.03 

0.07 ±
0.02 

YC2015A- 
II 

0.09 ±
0.03 

0.92 ±
0.03 

0.09 ±
0.03 

0.07 ±
0.02 

0.93 ±
0.03 

0.07 ±
0.02 

YC2015B-I 0.26 ±
0.07 

0.83 ±
0.06 

0.24 ±
0.06 

0.13 ±
0.04 

0.93 ±
0.05 

0.12 ±
0.03 

YC2015B- 
II 

0.06 ±
0.04 

1.04 ±
0.06 

0.06 ±
0.04 

0.06 ±
0.03 

1.04 ±
0.05 

0.05 ±
0.03 

YC2016A 0.43 ±
0.09 

1.40 ±
0.08 

0.24 ±
0.05 

0.43 ±
0.07 

1.42 ±
0.06 

0.23 ±
0.03 

YC2016B 0.29 ±
0.14 

1.39 ±
0.14 

0.17 ±
0.08 

0.33 ±
0.11 

1.36 ±
0.11 

0.19 ±
0.06 

YC2017 0.36 ±
0.07 

1.35 ±
0.06 

0.21 ±
0.04 

0.36 ±
0.05 

1.34 ±
0.43 

0.21 ±
0.03 

YC2018 0.28 ±
0.06 

1.14 ±
0.05 

0.19 ±
0.04 

0.30 ±
0.04 

1.12 ±
0.03 

0.21 ±
0.03 

Va = additive genetic variance, Ve = residual variance, h2 = heritability. 

Table 5 
Genetic and phenotypic correlation between repeated gill scores, first and sec
ond infection, on the same individuals for the 2015 populations.    

rp ± SE rg ± SE 

Pedigree Genomic Pedigree Genomic 

Populations Incidence II II 

YC2015A I 0.227 ±
0.021 

0.220 ±
0.020 

0.913 ±
0.129 

0.810 ±
0.130 

YC2015B I 0.225 ±
0.033 

0.229 ±
0.033 

0.723 ±
0.262 

0.714 ±
0.255 

rg = genetic correlation, rp = phenotypic correlation, I = first infection, II =
second infection. 
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there is a moderate level of infection in the field or challenge setting. 
Kube et al. (2012) indicated that higher heritabilities are usually found 
when there is a high incidence of AGD in the population. As mentioned 
earlier, in the 2015 populations in our study, gill scoring was recorded 
twice. For YC2015A, heritability estimates of the first infection was 
marginally lower than the second infection, whereas for YC2015B, 
estimated heritability of the second infection was significantly lower 
than the first infection. The latter is in close agreement with Lille
hammer et al. (2019) who found a similar trend. Other authors have 
reported higher heritability estimates for the second infection when 
compared to the first infection (Kube et al., 2012; Taylor et al., 2009a). It 
is important to note that while AGD was recorded in the months of 
September and October for all populations in the year 2015, it was 
recorded in the month of November for the other populations (YC2016- 
YC2018), hence, the relatively high heritability we observed for these 
populations (YC2016-YC2018) may be indicative of these populations 
having a previous episode of AGD infection given that higher heritability 
is usually observed for subsequent infections (Kube et al., 2012). 

4.3. Genetic correlation between first and second infection 

Conventionally, the first and subsequent infections are considered as 
separate traits, probably because of the study by Kube et al. (2012) who 
found a generally low correlation between the first and subsequent in
fections. The first infection is thought to elicit an innate response while 
subsequent infections elicit an adaptive response (Kube et al., 2012). 
However, a high genetic correlation between the first and second 
infection have been found in most studies (Kube et al., 2012; Lille
hammer et al., 2019; Taylor et al., 2009a), which also correspond to the 
findings in our study (YC2015A: 0.91 PBLUP, 0.81 GBLUP; YC2015B: 
0.723 PBLUP, 0.714 GBLUP). 

4.4. Within population accuracy 

The prediction accuracy estimates in our study ranged from 0.32 to 
0.77, corresponding to similar estimates by Aslam et al. (2020). Better 
prediction accuracy of GS models, compared to PBLUP, is generally 
observed (Robledo et al., 2018; Tsai et al., 2016; Vallejo et al., 2017), 
although in some cases, the better performance of the GS model is 
marginal (Aslam et al., 2020; Tsai et al., 2016), particularly when the 
informants population size is small. Other factors that influence pre
diction accuracy include choice of model, heritability of the trait, rela
tionship between the validation set and informants, and LD between 
markers and QTL (Calus, 2010; Hayes et al., 2009). 

Daetwyler et al. (2010) showed with simulated data that when a trait 
is controlled by a small number of QTLs (i.e not polygenic), nonlinear 
model performed better than GBLUP model. Joshi et al. (2021) observed 
better performance of nonlinear GS models with Streptococcus agalactiae 
challenge-test data in Nile Tilapia. However, in our study we observed in 
most cases similar performance for all GS models, which could indicate 
that AGD resistance is a polygenic trait. We have no obvious reason for 
the poorer performance of the Bayes R model for YC2015A-II and its 

exceptional performance for YC2015B-II, this however highlights the 
importance of validating the accuracy of GS models in independent data 
sets. 

Since SNPs may not explain all the genetic variance, including a 
polygenic effect in the model has been suggested to account for back
ground genes not explained by the SNPs (Meuwissen et al., 2013). The 
fact that GBLUP in general showed a similar genetic variance as PBLUP 
in our study indicates that the SNP markers managed to capture the 
genetic variance and hence there is no need to fit a polygenic effect in 
our model. 

The heritability of a trait has been reported to have an effect on 
prediction accuracy (Hayes et al., 2009). Low accuracy has been 
observed for traits with low heritability (Hayes et al., 2009; Sukha
vachana et al., 2020). In order to achieve a high accuracy for traits with 
low heritability, large informants population are required (Hayes et al., 
2009). In addition, the size of the informants population affects how 
accurately SNPs effect can be estimated, and this is particularly impor
tant when a large number of QTLs with small effect controls the trait 
(Hayes et al., 2009). Accordingly, we observed that the population with 
a low sample size and heritability (YC2015B-II) had the lowest predic
tion accuracy with large standard errors (YC2016B included). Meu
wissen et al. (2001) reported that sampling errors of the estimated 
marker effect will limit the accuracy of prediction and these sampling 
errors increases as heritability decreases. They posit this can be solved 
with higher sample size. We observed a reduced standard error when the 
sample size was high even with low heritability for some populations. 

The relationship between our informants and validation set reflects 
what is commonly used in most aquacultural breeding programmes. This 
is relevant because the accuracy of prediction depends in part on the 
relationship between the informants and validation set (Fraslin et al., 
2022; Habier et al., 2007), which is favorable for the sib-testing scheme 
used. Moreso, Daetwyler et al. (2013) recommended that when evalu
ating the prediction accuracy of genomic evaluation models, it should 
mimic how it is used in practice. 

Please note that evaluating the performance of genetic evaluation 
models using accuracy is not without its drawbacks as the estimates will 
be affected by how accurately the variance components are estimated. 

5. Conclusions 

Our results suggest that accurate genomic prediction can be achieved 
even with relatively low marker density. We also confirm the existence 
of genetic variation for AGD resistance in the studied populations, which 
hence can be improved by selective breeding. In the majority of cases we 
studied, there was no significant difference between the GS models, 
indicating that resistance to AGD is likely polygenic. Nonlinear models 
have a higher computing requirement, hence in the genetic evaluation of 
AGD resistance, we recommend the use of the GBLUP model. 

Funding 

This research has been performed in the scope of the EATFISH 

Table 6 
Accuracy and bias of prediction.   

PBLUP GBLUP Bayes B Bayes R  

Mean Acc. ± SE Mean Bias ± SE Mean Acc. ± SE Mean Bias ± SE Mean Acc. ± SE Mean Bias ± SE Mean Acc. ± SE Mean Bias ± SE 

YC2015A-I 0.39 ± 0.23 1.08 ± 0.66 0.51 ± 0.22 0.98 ± 0.44 0.51 ± 0.25 0.97 ± 0.56 0.48 ± 0.20 0.95 ± 0.45 
YC2015A-II 0.48 ± 0.17 1.07 ± 0.41 0.54 ± 0.19 1.03 ± 0.36 0.54 ± 0.19 1.02 ± 0.43 0.41 ± 0.19 0.75 ± 0.36 
YC2015B-I 0.48 ± 0.15 0.92 ± 0.30 0.51 ± 0.16 0.96 ± 0.33 0.50 ± 0.16 0.94 ± 0.34 0.51 ± 0.18 0.94 ± 0.36 
YC2015B-II 0.32 ± 0.39 1.05 ± 1.29 0.40 ± 0.35 0.99 ± 0.89 0.39 ± 0.35 0.93 ± 0.86 0.60 ± 0.39 1.15 ± 0.77 
YC2016A 0.47 ± 0.12 0.95 ± 0.28 0.56 ± 0.12 0.91 ± 0.21 0.56 ± 0.12 0.90 ± 0.23 0.56 ± 0.12 0.91 ± 0.22 
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