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Background and Objective: Determining the most informative features for predicting the overall survival of 
patients diagnosed with high-grade gastroenteropancreatic neuroendocrine neoplasms is crucial to improve 
individual treatment plans for patients, as well as the biological understanding of the disease. The main objective 
of this study is to evaluate the use of modern ensemble feature selection techniques for this purpose with respect 
to (a) quantitative performance measures such as predictive performance, (b) clinical interpretability, and (c) 
the effect of integrating prior expert knowledge.
Methods: The Repeated Elastic Net Technique for Feature Selection (RENT) and the User-Guided Bayesian 
Framework for Feature Selection (UBayFS) are recently developed ensemble feature selectors investigated in 
this work. Both allow the user to identify informative features in datasets with low sample sizes and focus on 
model interpretability. While RENT is purely data-driven, UBayFS can integrate expert knowledge a priori in the 
feature selection process. In this work, we compare both feature selectors on a dataset comprising 63 patients 
and 110 features from multiple sources, including baseline patient characteristics, baseline blood values, tumor 
histology, imaging, and treatment information.
Results: Our experiments involve data-driven and expert-driven setups, as well as combinations of both. In 
a five-fold cross-validated experiment without expert knowledge, our results demonstrate that both feature 
selectors allow accurate predictions: A reduction from 110 to approximately 20 features (around 82%) delivers 
near-optimal predictive performances with minor variations according to the choice of the feature selector, 
the predictive model, and the fold. Thereafter, we use findings from clinical literature as a source of expert 
knowledge. In addition, expert knowledge has a stabilizing effect on the feature set (an increase in stability of 
approximately 40%), while the impact on predictive performance is limited.
Conclusions: The features WHO Performance Status, Albumin, Platelets, Ki-67, Tumor Morphology, Total MTV, Total 
TLG, and SUVmax are the most stable and predictive features in our study. Overall, this study demonstrated the 
practical value of feature selection in medical applications not only to improve quantitative performance but 
also to deliver potentially new insights to experts.
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1. Introduction

In the last decade, several artificial intelligence techniques have 
been used in either classification problems or prediction problems 
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in cancer. Types of cancers include prostate cancer, breast cancer, 
ear-nose-throat cancer, urological cancer, and gastrointestinal cancer, 
among others [1]. We can generally divide the tasks into diagnosis and 
staging, lesion segmentation, and prognosis and treatment response. For 
the prediction of survival in oral cancer, breast cancer, and lung cancer, 
several machine learning methods have been employed. These include 
artificial neural networks, decision trees, Bayesian networks, and sup-
port vector machines [2].

Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN), in 
particular, are heterogeneous types of malignancies increasingly com-
mon over the last three decades [3,4]. High-grade GEP NEN encom-
passes both neuroendocrine tumors grade 3 (NET G3) and neuroen-
docrine carcinomas (NEC), where NEC is further subdivided into small 
cell (SC) and large cell carcinomas (LC). According to the WHO 2019 
Classification of Tumors: Digestive System Tumors, NET G3 are well dif-
ferentiated (WD), whilst NEC are poorly differentiated (PD), both with 
a Ki-67 proliferation index (Ki-67) > 20% [5]. Although both NET G3 
and NEC share features of immunohistochemical staining with chro-
mogranin A and synaptophysin, they are considered morphologically 
different [6].

The prognosis for patients with advanced GEP NEC is poor, with 
a median survival of less than 12 months [7,8], whilst the progno-
sis for locoregional GEP NEC is higher; 20.7 months [9]. Numerous 
recently published studies [7,10–16] have shown the prognostic im-
portance of several parameters on overall survival (OS), such as age, 
performance status (PS), primary tumor site, tumor differentiation, 
TNM-stage, serum lactate dehydrogenase (LDH), serum platelet lev-
els, proliferation marker Ki-67, maximum standardized uptake value 
(SUVmax), total metabolic tumor volume (tMTV) and total total lesion 
glycolysis (tTLG). Establishing more robust prognostic parameters and 
validating established parameters is essential to provide optimal care 
for this patient group.

Forecasting the OS of cancer patients as a major indicator of treat-
ment success by machine learning models is of high relevance to offer 
optimal individual treatment for patients, and an active field of re-
search [17–20]. In particular, accurate outcome prediction models pave 
the way for decision support in clinical practice. Since GEP NEN are 
rare, however, the data basis for training purely data-driven models is 
limited, leading to problems like overfitting, spurious correlations, and 
consequently to inaccurate predictions [21–23]. Two major approaches 
are at hand to overcome these issues: (a) increasing the number of sam-
ples (either by collecting more data or by artificial data augmentation) 
or (b) reducing the dimensionality of the feature space. In this work, 
we elaborate on approach (b), where our method of choice is feature 
selection. While general dimensionality reduction methods like Princi-
pal Component Analysis [24] transform the data to a new domain and 
thereby make identification of influencing factors difficult, feature se-
lection reduces the dimension by subsetting the dataset by columns. 
As a result, a subset of the original features is retained, and the inter-
pretability of the data columns is preserved. Using conventional feature 
selection methods, this approach has been successfully applied in can-
cer research [25,26].

Beyond the obvious benefit that predictive models become tractable, 
feature selection has the potential to improve the understanding of bio-
logical processes by clinical experts [27]. In particular, feature selectors 
point to input data parameters, which are related to explaining the 
target variable by a data-driven model. This information may either 
support or contradict existing hypotheses about the underlying biolog-
ical processes or disclose previously unknown relations. Outside the 
context of feature selection, the importance of achieving interpretabil-
ity along with high predictive performance in modeling tumor survival 
is further discussed in [28]. The evaluation and interpretation of the 
findings require close collaboration between clinical experts and data 
scientists. However, such an application of feature selectors is still less 
common in machine learning [29], where the focus typically lies exclu-
2

sively on optimizing performance metrics.
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Several state-of-the-art feature selection methods have been pop-
ularized in recent years, like INTERACT, CFS, InfoGain, ReliefF, and 
SVM-RFE [30]. State-of-the-art research in feature selection with ap-
plications in healthcare, such as L1 regularization [31], decision 
trees [32], Laplace scores [33], or the minimum redundancy-maximum 
relevance (mRMR) criterion [34], are mainly data-driven and may suf-
fer from well-known limitations. Among these limitations is the problem 
that minor changes, such as the inclusion of new or removal of old sam-
ples, may have significant effects on the set of selected features — the 
property of feature sets to remain invariant under such changes to the 
dataset is referred to as feature selection stability and investigated in 
[35]. The usage of ensemble feature selectors, which train multiple fea-
ture selectors on subsets of the samples in a dataset, has recently been 
investigated extensively [36] and achieves a higher feature selection 
stability compared to a single feature selection run while retaining a 
similar predictive performance, as used, e.g. in random forest meth-
ods [37]. More recently, this fact has been exploited to introduce more 
stable feature selection methods such as the Repeated Elastic Net Tech-
nique for Feature Selection (RENT) [38] and the User-Guided Bayesian 
Framework for Feature Selection (UBayFS) [27]. Both methods are tai-
lored towards healthcare applications, which offer a large potential with 
respect to the aspects discussed above. The benefit of these methods lies 
in (a) the fact that they represent opposite paradigms of purely data-
driven versus hybrid data- and expert-driven feature selection and (b) 
that model interpretation and knowledge gain is their main objective 
rather than performance optimization. Yet, while RENT and UBayFS 
have shown to perform well compared to established feature selection 
methods [27,38] and additionally provide information on feature selec-
tion stability, these two methods have not yet been applied to purely 
clinical studies. This leaves the full clinical value of these methods un-
explored, an issue that this study attempts to address.

As far as we know, no publications have yet explored feature se-
lection techniques for the prediction of overall survival using machine 
learning incorporating PET-parameters in neuroendocrine neoplasias. 
In fact, there exist very few studies applying machine learning tech-
niques in these cancers for survival prediction. [39] used eight machine 
learning models to predict overall survival after upper gastrointestinal 
surgery. However, they did not perform any feature selection prior to 
the application of the models. Others have used machine learning tech-
niques for tasks other than overall survival prediction. [40] used gene 
data to predict subtypes of small intestinal neuroendocrine tumors using 
an SVM model, [41] used LASSO regression to predict the histological 
grade in pancreatic neuroendocrine tumors, and [42] used a LASSO 
Cox regression model to predict overall survival in oesophageal neu-
roendocrine carcinomas prior to treatment.

This paper aims to improve the understanding and insights into the 
OS in patients diagnosed with high-grade GEP NEN by applying recently 
developed ensemble feature selection techniques RENT and UBayFS. 
Thereby, we demonstrate that the applied feature selectors contribute 
to the clinical understanding of the disease by supplying information 
of high practical value. Our investigated dataset contains 63 patients 
diagnosed with high-grade GEP NEN. Our experiments compare both 
ensemble feature selectors in setups with and without the use of expert 
information. Our main goals are: (I) to determine the most informative 
set of features with respect to the outcome prediction task; (II) to in-
terpret those selected features clinically, and compare with previously 
established features — to evaluate the first goal, we measure the quality 
of the selected feature set in terms of predictive performance and selec-
tion stability. Another aspect of interest is: (III) to determine the effect 
of integrating prior expert knowledge into the feature selection process, 
compared to a purely data-driven pipeline. In a similar analysis [43], 
the authors present a novel wrapper feature selector which can incor-
porate prior knowledge, as well. On a dataset with clinical and medical 
image data, they show that the inclusion of prior knowledge (in this 

case, standardized uptake value (SUV) features) improves the stability
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of feature selection. To this end, we discuss the feature selection re-
sults with respect to their clinical relevance and potential to improve 
our understanding of what influences the OS of GEP NEN patients.

Notations In the following, we denote the input data matrix by 𝑿 ∈
ℝ𝑚×𝑛, where 𝑚 denotes the number of patients, and 𝑛 denotes the 
number of features. Further, the target variable is denoted by 𝒚 ∈ ℝ𝑚. 
A feature set 𝑆 is characterized by the indices, 𝑆 ⊆ {1, … , 𝑛}. Vectors 
and matrices are indicated by bold letters.

2. Methods

2.1. GEP NEN dataset

Patient cohort Patients were identified from a single institutional co-
hort at Oslo University Hospital, also included in two multi-institutional 
Nordic NEC registries organized by the Nordic Neuroendocrine Tumor 
Group, previously described by [10]. In short, this cohort consisted 
of 192 patients included between January 2000 and July 2018, with 
GEP NEC classified according to the WHO 2010-classification [44]. In 
addition, all patients who had performed a fluorine-18 labeled 2-deoxy-
2-fluoroglucose ([18F]FDG) positron emission tomography/computed 
tomography (PET/CT) within 90 days of their histological evaluation 
were eligible for inclusion. A hundred and seven patients did not have 
PET/CT performed, and two patients had no metabolic active lesions 
available for evaluation. Seventeen patients had more than 90 days 
between their biopsy and PET/CT, leaving 66 patients available for in-
clusion in this study.

Histological re-evaluation As described previously in [10], the histolog-
ical re-evaluation was performed on both core biopsies and surgical 
specimens from GEP NEC primary tumors and metastases. These were 
re-classified according to the most recent WHO 2019-classification [5]
and with regards to synaptophysin, chromogranin A, and the prolifera-
tion marker Ki-67. In this study, only the re-evaluated histology features 
were used, while the original histology block was discarded.

PET/CT acquisition All PET/CT scans were done according to the Eu-
ropean Association of Nuclear Medicine (EANM) guidelines [45,46] as 
part of the clinical routine. The three PET scanners used were a 40-slice 
Siemens Biograph mCT hybrid PET/CT system (Siemens Healthineers, 
Erlangen, Germany), a Siemens Biograph 64, and a 64-slice General 
Electric (GE) Discovery 690 (GE Healthcare, Waukesha, WI, USA). Both 
Biograph PET/CTs were both EANM Research Ltd. (EARL)-accredited, 
whilst the Discovery 690 followed similar routine quality controls har-
monizing with the two Biographs for cross-calibration. All acquisitions 
were from the vertex or skull base to mid-thighs. Before the PET ac-
quisition, a low dose CT was acquired for anatomical information and 
attenuation correction. Parameters from PET were extracted using the 
ROI Visualisation, Evaluation, and Image Registration (ROVER) soft-
ware v3.0.5 (ABX GmbH).2

Treatment All patients received treatment in the form of surgery, 
chemotherapy, or a combination of both. In total, 54 patients received 
the standard treatment of platinum-based chemotherapy. Patients could 
have surgery prior to or after [18F]FDG PET/CT. Evaluation of response 
to chemotherapy treatment was done with CT using the Response Eval-
uation Criteria in Solid Tumors (RECIST) [47].

Outcome variable Our outcome variable, or outcome target, was over-
all survival (OS) in months. This can be defined as the time a patient 
remains alive from the time of diagnosis to death of any cause; hence, 
it is not disease-specific. It is a reliable and easily available survival 
3

2 The detailed imaging- and extraction protocol is described in [10].
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Fig. 1. Distribution of the overall survival in months.

measure [48]. We can analyze such survival data, i.e., the time from 
diagnosis to the time of death, using the Kaplan-Meier estimator. Pa-
tients who did not experience the event during the time of the study 
(or during follow-up) (i.e., death) are said to be ‘censored’ [49]. Being 
‘censored’ means that we do not know when this event will occur, only 
that it has not happened at the end of the study (or during follow-up). 
Across the full dataset, the empirical distribution of the outcome vari-
able is illustrated as a histogram in Fig. 1.

Data blocks The data were grouped into five different blocks

(p) baseline patient characteristics
(b) baseline blood values
(h) re-evaluated histology
(i) PET/CT imaging
(t) treatment

The data contained mainly categorical and ordinal features with very 
few continuous variables. An overview of pairwise feature correlations3

provided in Fig. 2.

2.2. Data preprocessing

The data preprocessing consists of several chronological steps prior 
to applying the ensemble feature selectors, see Fig. 3.

Data cleaning The first step in data preprocessing is to exclude fea-
tures known to be unimportant, such as features with only one unique 
value for all patients or duplicated features. Furthermore, we remove 
all data columns containing more than 25% missing values across all 
patients. The threshold of 25% is selected as a trade-off between aim-
ing to preserve as many features as possible, and avoiding a possible 
bias that may be induced by large-scale imputations. Even though a 
bias may already occur at a lower cutoff of 10% missing values [50], 
a higher value was selected to provide more flexibility to the feature 
selection. In the given dataset, the number of features affected by the 
removal, however, changes only by ±1 feature, if the threshold is de-
creased to 10%, or increased to 33%, respectively. By this criterion, we 
remove 15 features from block (p), one feature from block (b), eight 
features from block (h), 14 features from block (i), and eight features 
from block (t).

Further, three patients are excluded from the experiments due to 
a high number of missing values in at least one block. All subsequent 

3 Only features with an absolute correlation > 0.5 with at least one other 

feature are shown.
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Fig. 2. Correlations between input features (features
preprocessing steps are conducted on the remaining 63 patients and are 
applied by block to retain the homogeneous block structure.

Missing values Some values were missing because the clinicians did 
not fill out the case registration forms (CRF) properly or completely. 
Amongst other reasons, this may be because the information was miss-
ing in the patient journal, a blood sample was not done, a parameter 
was forgotten registered in the patient journal, or because the patients 
are referred from other hospitals. Such features, which are unavail-
able for a large percentage of patients, cannot be assessed properly 
in a data-driven manner and were therefore excluded — an imputa-
tion of those features would be unreliable due to the small sample 
size and may introduce incorrect or misleading information into the 
model.

As a second step, we impute the features with less than 25% missing 
values via an adaptation of the 𝑘-nearest neighbors (𝑘NN) imputation 
algorithm [51]. Nearest neighbor imputation strategies are frequently 
used for a dataset with many missing values [52]. The number of fea-
tures and the number of patients that have at least one missing value 
for each block are: (p) (7:25), (b) (5:16), (h) (7:6), (i) (2:2), and (t) 
(3:3) where the first number represents the number of features and the 
second number represents the number of patients.

In particular, we restrict the feature space to non-missing columns 
and compute a matrix of pair-wise distances between all patients. 
We denote the set comprising the 𝑘-nearest neighbors of patient 𝑖 by 
𝑁𝑘(𝑖) ⊆ {1, … , 𝑚}. Assuming that feature 𝑗 is missing for patient 𝑖, we 
impute 𝑥𝑖,𝑗 by 𝑥imp

𝑖,𝑗
, representing the median (instead of the mean, as 

suggested by [51]) of feature 𝑗 across the patient’s 𝑘 nearest neighbors 
4

where the feature value is known, i.e.
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with absolute correlations ≤ 0.5 were removed).

noyes

categorical ordered numeric

raw input dataset

66 × 117

remove outliers

> 25% missing values,
or excluded?

remove
columns

𝑘NN missing
value imputation

feature type?

one-hot
encoding

ordinal
encoding

Yeo-Johnson &
standardization

preprocessed dataset

63 × 110
Fig. 3. Preprocessing pipeline for the dataset.
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Table 1

One-hot versus ordinal encoding of a 4-level 
variable (levels A, B, C, D). Ordinal encod-
ing assumes an order of the levels (here: 
A<B<C<D).

Level One-hot encoding Ordinal encoding

A (0,0,0) (0,0,0)
B (0,0,1) (0,0,1)
C (0,1,0) (0,1,1)
D (1,0,0) (1,1,1)

𝑥
imp
𝑖,𝑗

← median
{
𝑥𝑙,𝑗 ∶ 𝑙 ∈𝑁𝑘(𝑖)

}
. (1)

Ordered categorical features are transformed to an integer scale before 
interpolation. The usage of an odd value of 𝑘 (by default, we use 𝑘 = 5) 
guarantees that the median returns an integer, which is a clear benefit 
over the mean when using the technique for ordered features.

Categorical feature encoding One challenge in clinical data science is 
handling different data types [53]. Categorical features require encod-
ing in order to be processed alongside numeric variables in predictive 
models. In particular, we distinguish between ordinal and nominal cat-
egorical variables: Nominal variables (i.e. variables without an inter-
nal order of the feature levels), such as clinical institution, are one-hot 
encoded [54]. Given a feature 𝑗 with 𝑐𝑗 feature levels, the one-hot en-
coding produces a set of 𝑐𝑗 − 1 binary features {𝒆2, … , 𝒆𝑐𝑗 }, given as 
follows:

(
𝑒𝑙
)
𝑖
=
{

1 if 𝑥𝑖,𝑗 = 𝑙,

0 otherwise,
(2)

for 𝑙 ∈ {2, … , 𝑐𝑗} indicating the feature level. The number of one-
hot/ordinal categorical features is: 21/5 for block (p), 0/3 for block 
(b), 10/2 for block (h), 1/0 for block (i), and 5/0 for block (t). To avoid 
linear dependencies between features, the first feature level is not rep-
resented by a binary vector in the encoded space, but rather contributes 
to the model intercept, see Table 1.

Features with an internal order among their levels (ordinal vari-
ables), such as the WHO performance status with levels 0, 1, 2, 3, and 
4, require an ordinal encoding to retain the relevant information about 
the order. Under the assumption that the influence of a feature increases 
from lower to higher levels (i.e., higher levels comprise the lower levels 
and an additive effect), the following encoding is used:

(
𝑒𝑙
)
𝑖
=
{

1 if 𝑥𝑖,𝑗 ≤ 𝑙,

0 otherwise,
(3)

for feature level 𝑙 ∈ {2, … , 𝑐𝑗}. Again, the first feature level, which 
would be assigned a value of 1 across all samples in the encoded space, 
is not assigned a binary vector in the encoded space. A comparison 
between one-hot and ordinal encoding is provided in Table 1. In con-
trast to transforming to an integer scale, this binary ordinal encoding 
preserves the order among the categories but does not pretend equal 
distances between the categories on a numerical scale.

Feature transformation and normalization During our experiments, we 
split the dataset into train and test sets. To normalize the distribution 
of each numeric feature, we use the Yeo-Johnson power transformation 
along with standardization [55]. The Yeo-Johnson power transforma-
tion is an extension of the well-established Box-Cox transformation with 
the benefit that it enables the transformation of negative and zero val-
ues. The intention is to bring the data closer to a normal distribution 
by simultaneously stabilizing data variance. For a given feature 𝑗, Yeo-
5

Johnson’s power transform is defined as
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Table 2

Encoding of the target vari-
able “overall survival” (OS) 
[months].

Level Encoding

OS ≤ 12 1
12 < OS ≤ 24 2
24 < OS ≤ 36 3
36 < OS ≤ 48 4
48 < OS ≤ 60 5
60 < OS 6

𝑥YJ
𝑖,𝑗

←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((𝑥𝑖,𝑗 + 1)𝜆𝑗 − 1)
𝜆𝑗

if 𝜆𝑗 ≠ 0, 𝑥𝑖,𝑗 ≥ 0

log(𝑥𝑖,𝑗 + 1) if 𝜆𝑗 = 0, 𝑥𝑖,𝑗 ≥ 0

−
((−𝑥𝑖,𝑗 + 1)2−𝜆𝑗 − 1)

2 − 𝜆𝑗
if 𝜆𝑗 ≠ 2, 𝑥𝑖,𝑗 < 0

− log(−𝑥𝑖,𝑗 + 1) if 𝜆𝑗 = 2, 𝑥𝑖,𝑗 < 0.

(4)

Commonly, the transformation parameter 𝜆𝑗 is estimated from the 
data using a maximum likelihood approach. After the Yeo-Johnson 
transformation, we scale the data to zero mean and variance of 1. To 
prevent biased train and test data, the transformation parameter 𝜆𝑗 and 
the mean and variance for the standardization are estimated on the 
training data in each split separately.

Encoding of the target variable Even though machine learning models 
for censored data are evolving, most present predictive models cannot 
handle censored data [56]. To avoid the problem presented by censored 
data, we encode the OS in months into an integer value (1-6). Using 60 
months median follow-up time as a reference, there are no censored 
patients with OS below 60 months. Considering survival on a yearly 
basis we use the representation of the target variable in our experiments 
as in Table 2. Since each level in the encoded space equals one year, 
predictive errors used in the remainder of this paper refer to a yearly 
scale.

2.3. Feature Selection Methods

In this work, we investigate two ensemble feature selection meth-
ods, which have been tailored to fit the requirements of datasets in 
the life science domain: the Repeated Elastic Net Technique for Fea-
ture Selection (RENT) [38] and the User-Guided Bayesian Framework 
for Feature Selection (UBayFS) [27]. Both methods build on the princi-
ple of (a) randomly sub-sampling the input dataset and (b) training an 
elementary feature selection model on each sample. The final feature 
set is determined by applying a meta-model on the feature sets selected 
by the elementary models, see Fig. 4. In the case of RENT, the elemen-
tary feature selector type is restricted to elastic net regularization [57]
using logistic regression models for binary classification problems or or-
dinary least squares linear regression models for regression problems, 
while UBayFS operates on an arbitrary elementary model type.

RENT The rules to obtain a final feature set further demonstrate the 
distinct scopes of the methods: RENT defines three criteria 𝜏1, 𝜏2 and 𝜏3
for the selection of features based on the distribution of their weights 
across the elementary models; (I) the number of times the feature 
weights are non-zero (𝜏1) is above a level specified by the user; (II) 
the alternation of the sign of the feature weights does not surpass a 
user-defined level (𝜏2); (III) the sizes of the feature weights deviate 
significantly from 0 (𝜏3). The hyperparameters for RENT comprise a 
number 𝑀 of elementary models, an internal data split ratio, two pa-
rameters associated with the elastic net regularization in the elementary 
models (𝐶 and 𝓁1), as well as one cut-off parameter for each of the three 

criteria 𝜏1, 𝜏2, 𝜏3.
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RENT pipeline

𝑿
input
dataset

sub-sampling

𝑿1 𝑿2 … 𝑿𝑚
data
subsets

elementary feature selector:
elastic net

𝜹1 𝜹2 … 𝜹𝑚
elementary
feature sets

information from data

meta-model
selection criteria

𝜏1 𝜏2 𝜏3

ensemble
feature
selection

𝜹⋆feature set

UBayFS pipeline

𝑿

sub-sampling

𝑿1 𝑿2 … 𝑿𝑚

elementary feature selector:
e.g., elastic net or mRMR

𝜹1 𝜹2 … 𝜹𝑚

information from data

meta-model
posterior distribution

over 𝜹

prior
knowledge

side
constraints

information from expert

𝜹⋆

Fig. 4. Overall structure of both ensemble feature selection methods, RENT and UBayFS. After training an ensemble of 𝑚 elementary feature selectors, information 
is combined in a meta-model. While RENT uses information from data only, UBayFS additionally includes expert information.
UBayFS In contrast, UBayFS combines the selection frequency of each 
feature across the elementary models with prior information from 
domain experts, along with side constraints. In particular, the prior 
weighting of features is possible, along with the definition of linear side 
constraints between features (and feature blocks). In practice, weights 
can represent knowledge about the importance of features, which is ver-
ified from previous publications. Side constraints enable the user to re-
strict the feature set’s maximum size max𝑠 and account for the intrinsic 
block structure during feature selection (e.g., in multi-source datasets). 
Hence, RENT implements a purely data-driven approach based on Elas-
tic Net, while UBayFS is a general meta-model with capabilities to 
integrate contextual information about the data generation process. In 
its most basic setup, UBayFS requires as hyperparameters a number of 
elementary models 𝑀 and an internal data split ratio, a maximum num-
ber of features max𝑠, and a model type to use as the elementary feature 
selector.

2.4. Outcome prediction

Linear regression Given a set of selected features 𝑆 , we make use of lin-
ear regression models [58] to model the target variable 𝒚. In its simplest 
form, the linear regression model (with intercept) is given as

𝒚 = 𝑿̃𝜷 + 𝜺, (5)

where 𝜷 ∈ ℝ𝑛+1 is the model parameter vector, 𝑿̃ denotes the matrix 
containing one column of ones, followed by the sub-matrix of 𝑿 re-
stricted to the columns contained in 𝑆 . Further, 𝜺 ∼

iid
𝑁(0, 𝜎2) denotes 

the model error with constant error variance 𝜎 > 0. By default, parame-
ters of linear regression models are obtained via ordinary least squares 
(OLS), i.e., by minimizing the least squares error

min
𝜷

‖𝒚 − 𝑿̃𝜷‖22. (6)

Once the parameter vector 𝜷 is estimated by optimizing Eq. (6) an-
alytically, predictions are obtained by evaluating 𝒚̂ = 𝑿̃𝜷 .

𝑘-nearest neighbor (𝑘NN) regression As an alternative to the linear re-
gression model, a 𝑘-nearest neighbor (𝑘NN) regression model [58] is 
used to compute predictive results. In contrast to the linear regression 
model, the 𝑘NN model does not assume a linear relationship between 
6

the predictors and the target variable. Similar to the 𝑘NN method used 
for missing value imputation in Section 2.2, a neighborhood 𝑁𝑘(𝑖) of 
sample 𝑖 containing the 𝑘 nearest training data points with respect to 
a Euclidean metric on the feature space is computed for any data point 
𝒙𝑖. The prediction for the target value 𝑦𝑖 corresponding to sample 𝑖 is 
given by the mean of the neighbor’s target values

𝑦̂𝑖 =
1
𝑘

∑
𝑙∈𝑁𝑘(𝑖)

𝑦𝑙. (7)

Note that the neighborhood 𝑁𝑘(𝑖) is a subset of the training samples 
only, while 𝑦̂𝑖 may represent both training or test samples.

Both predictive models, linear regression as well as the 𝑘NN regres-
sion model, are known to suffer from the curse of dimensionality — 
hence, we can assume that selecting a high number of features deterio-
rates each model. The opposite extreme for both methods, i.e., selecting 
no features at all, leads to predicting the output with the mean over the 
training data regardless of the input. Thus, we expect a well-performing 
feature selector to deliver a proper subset 𝑆 of the feature set {1, … , 𝑛}, 
which allows both predictive models to perform better than the base-
lines given by (a) the overall mean of the target variable, and (b) a 
model including all features.

2.5. Implementation & Reproducibility

Parts of our analyses are conducted in the programming languages R
[59]; other parts are conducted in Python [60]. We use the open-source 
implementations for RENT [61] and UBayFS [62]. For data preparation 
and preprocessing, we deploy the R package caret [63], and the Python 
package scikit-learn [64]. Fold indices are shared between R and Python. 
Predictive models are trained and evaluated in R using the caret package 
for all model setups. All plots are created using package ggplot2 [65]. 
For reproducibility, the full code used to run and evaluate the exper-
iments is available on the open-source software platform GitHub4. In 
addition, a detailed list of blocks and features is provided. The raw 
dataset, however, is restricted under data protection regulations.

All results are produced on an Intel Core i7 CPU @1.8 GHz, 32GB 
RAM under a Windows 11 Pro operating system.
4 https://github .com /annajenul /GEP _NEN _Analysis.

https://github.com/annajenul/GEP_NEN_Analysis
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3. Experiments and Results

Our experimental results are structured into a pre-study, where 
we determine optimal hyperparameters for the feature selection algo-
rithms, followed by two main experiments. Experiment 1 focuses on 
the comparison of the two models, RENT and UBayFS, on the dataset 
without accounting for additional expert knowledge. Experiment 2 is 
operated on UBayFS only, as prior information and additional side con-
straints are included in the feature selection.

Our main focus in the experiments lies on the selected feature sets, 
along with the impact of the feature selection on predictive perfor-
mance. We provide feature counts from both of the investigated feature 
selectors, RENT and UBayFS, across five different train-test splits of the 
dataset. Unless specified otherwise, all experiments are conducted using 
the hyperparameters determined during the pre-study.

3.1. Experimental setup

Model parameters Both algorithms, RENT, and UBayFS are trained 
on 𝑀 = 100 ensemble models and internal 0.75/0.25-splits for sub-
sampling the dataset. The underlying elementary feature selector for 
RENT is, by definition, an elastic net regularized linear regression 
model. Thus, RENT requires five hyperparameters to be determined 
during the pre-study (2 elastic net regularization parameters, 𝓁1 and 
𝐶 , as well as three thresholds 𝜏1, 𝜏2, and 𝜏3 for the selection criteria). 
In order to make results comparable with UBayFS, we further deploy a 
side condition to restrict the search space to settings, which deliver a 
maximum number of features max𝑠 during validation. Thus, the number 
of features selected by RENT is approximately equal to the pre-defined 
parameter max𝑠.

UBayFS uses minimum redundancy max relevance (mRMR) [34] as 
an elementary feature selector. The internal number of features in each 
elementary model is set to max𝑠, i.e. each elementary model selects 
exactly max𝑠 features. For the meta-model, the same parameter max𝑠 is 
used to restrict the maximum number of selected features via a max-size 
side constraint (hard constraint) — while different levels of max𝑠 are 
evaluated in experiment 1, the parameter is set to the default max𝑠 = 20
in experiment 2. Further, unless otherwise stated, prior feature weights 
in UBayFS are set uniformly to 0.1 across all features, which results in 
a non-informative prior.

Train-test splits As the ratio between the number of patients and fea-
tures is unbalanced, with 63 patients and 110 encoded features, the 
reliability of the feature ranking results must be validated to reduce 
the risk of spurious correlations and overfitting [66]. Hence, we per-
form a 5-fold split of the dataset. For all possible permutations, we use 
four folds for training UBayFS or RENT, as well as the predictive mod-
els and the remaining fold for testing. Hyperparameters are determined 
on each split separately by internally subsetting the 4-fold training set 
(nested split). The 5-fold splits and hyperparameters determined in the 
pre-study remain the same across all experiments.

For each feature selection method, we provide the selection fre-
quencies of each feature across the five folds, i.e., a feature obtains an 
importance score between 0 and 5 according to the number of folds it 
was selected for. For predictive performance scores, a linear regression 
model and a 𝑘NN regression model are trained on the same training 
folds, using the features from the preceding feature selection, and eval-
uate the prediction error on the test set (averaged across all folds).

Performance metrics To assess whether a feature set contains relevant 
information for training predictive models, we analyze the predic-
tive performance in a regression setup following the feature selection 
step. The performance is quantified using the root mean squared error 
(RMSE), which has a lower bound of 0 and shall be minimized.

Using the stability criterion introduced by [35], we further evalu-
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ate the feature selection stability across the five folds for RENT and 
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Table 3

Selected hyperparameters for each train/test split.

Parameter Fold

1 2 3 4 5

RENT 𝓁1 0.3 0 0.3 0.3 0.3
𝐶 1 1 1 1 1
𝜏1 0.3 0.5 0.3 0.35 0.35
𝜏2 0.3 0.5 0.4 0.35 0.35
𝜏3 0.975 0.975 0.975 0.975 0.975

UBayFS max𝑠 20 20 20 20 20

UBayFS. The computed score is asymptotically bounded in the interval 
[0, 1]; a value of 1 indicates perfect stability, i.e. the same feature set is 
selected in each model, while 0 indicates that selected feature sets show 
no overlap.

Furthermore, the redundancy rate (RED) returns an intrinsic feature 
set quality measure by computing the average absolute Pearson corre-
lation among the selected features. Small correlations are desirable as 
highly correlated features represent redundant information. Equally to 
the absolute Pearson correlation coefficient, RED is bounded in [0, 1].

In experiment 2, we additionally assign prior weights to a subset of 
features — therefore, we also evaluate the percentage of prior-elevated 
features (PERC) in the selected feature sets as well. If PERC is high, 
features extracted via data-driven feature selectors match the domain 
experts’ knowledge. However, a low PERC does not necessarily contra-
dict expert knowledge since the features may be highly correlated, and 
therefore, similar information may be encoded in multiple distinct sets 
of features.

3.2. Pre-Study

The pre-study aims to determine the optimal hyperparameters for 
RENT. Given a 0.75/0.25 outer train-test split as specified above, 
only train data are used for hyperparameter selection. For this pur-
pose, 4-fold cross-validation is performed on each train dataset (us-
ing the same four folds as in the outer train-test split). Across the 
resulting four models, hyperparameters are selected by maximizing pre-
dictive performance in a grid search over the parameter space 𝐶 ∈
{1, 10, 100, 1000}, 𝓁1 ∈ {0, 0.1, 0.2, … , 1}, 𝜏1, 𝜏2 ∈ {0, 0.05, 0.1, … , 1}, 
and 𝜏3 = 0.975 (fixed).

The runtime for the full computation associated with the pre-study 
(parameter selection and final feature selection) for RENT comprised 
approx. 350 sec (16 cores, 24 threads in parallel). Since UBayFS does 
not require parameter selection, the runtime to evaluate the feature 
selection model for different levels of max𝑠 (see Experiment 1) is shorter 
(approx. 65 sec without parallelization).

Table 3 shows the hyperparameters identified for RENT and UBayFS 
in each train-test split (given by the numbers of the test folds 1-5). 
Due to the restriction of the maximum number of features, the stated 
parameters may not represent global maxima for the performance of 
RENT; however, comparability between the methods is preserved. Fur-
thermore, since the number of features is restricted, the selected hyper-
parameters are in a similar range between the folds.

3.3. Experiment 1: feature selection without prior knowledge

Having determined hyperparameters for each fold in the pre-study, 
RENT, and UBayFS are applied in each data split to the training dataset 
to select an optimized feature set for a given max𝑠 on a purely data-
driven basis.

Selected features For each feature, selection frequencies across the 
five test folds are further provided in Table 4 (columns RENT and 

UBayFS, 𝑤 = 0.1).
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Table 4

Feature selection frequencies across five folds by RENT and UBayFS (with different prior weight levels 𝑤 for selected features). Features with increased 
prior weights in the UBayFS setup reported in the last column are highlighted with asterisks.

Block Feature RENT UBayFS

𝑤 = 0.1 𝑤 = 50 𝑤 = 110

(p) * Age at Diagnosis 2 2 5 5
Time from PET to Metastasis (days) 0 0 0 0
Time from PET to Diagnosis (days) 0 0 0 0
Time from diag to mets (months) 0 0 0 0
Sex 0 0 0 0
Loc. Adv. Resectable Disease 0 0 0 0
Loc. Reccurence 0 0 0 0
Metastatic Disease at Time of Diagnosis 3 0 0 0
Treatment Intention Palliative 4 4 2 0
Prior Other Cancer 2 2 0 0
Living Alone 0 0 0 0

* TNM staging Pathological 0 0 0 0
Stage grouped Stage IV 0 0 0 0
Mets Bone 5 5 5 0
Mets LN Distant 0 0 0 0
Mets LN Regional 0 0 0 0
Mets LN Retro 0 0 0 0
Mets LN 0 0 0 0
Mets Liver 0 0 0 0
Mets Lung 0 0 0 0
Mets Other 0 0 0 0
Mets Skin 0 0 0 0
Primary Tumor Resected 0 0 0 0
M-stage M1 0 0 0 0
BMI 1 0 0 0
Non Smoker 0 0 0 0
Smoker 0 0 0 0
Radical Surgery 3 4 0 0
Co-morbidity Severity 1 0 0 0 0
Co-morbidity Severity > 1 0 0 0 0
N-stage N1 0 0 0 0
N-stage > N1 0 0 0 0

* WHO Perf Stat 1 0 0 4 5
* WHO Perf Stat 2 4 5 5 5
* WHO Perf Stat 3 0 0 3 4
* WHO Perf Stat 4 0 0 0 2

(b) Abs. Neutrophil Count 0 0 0 0
* Albumin 2 5 5 5

CRP 5 5 4 0
Creatinine 0 0 0 0
Haemoglobin 0 0 0 0
WBC 1 1 1 0
ALP > Normal <= 3UNL 4 5 3 0
ALP > 3UNL 1 2 0 0
Chromogranin_A > Normal <= 2UNL 0 0 0 0
Chromogranin_A > 2UNL 0 0 0 0

* LDH > Normal <= 2UNL 0 0 1 5
* LDH > 2UNL 0 0 2 5

NSE > Normal <= 2UNL 0 0 0 0
NSE > 2UNL 0 0 0 0

* Platelets 2 5 5 5

Block Feature RENT UBayFS

𝑤 = 0.1 𝑤 = 50 𝑤 = 110

(h) * Ki-67 5 5 5 5
Hist Exam Metastasis 0 0 0 0

* Primary Tumor Esophagus 0 0 1 5
* Primary Tumor Gallbladder/duct 0 0 4 5
* Primary Tumor Gastric 0 0 5 5
* Primary Tumor Other abdominal 0 0 2 4
* Primary Tumor Pancreas 1 0 4 5
* Primary Tumor Rectum 0 0 3 5
* Unknown Pr. With Dominance of GI met. 0 0 0 5

Co-existing Neoplasm Adenoma 0 0 0 0
Co-existing Neoplasm Dysplasia 0 0 0 0
No Co-existing Neoplasm 0 0 0 0

* Tumor Morphology WD 4 3 4 5
Chromogranin A Staining 0 0 0 0
Architecture Infiltrative 1 0 0 0
Architecture Organoid 1 0 0 0
Architecture Solid 0 0 0 0
Architecture Trabecular 1 1 0 0
Vessel Pattern Distant 1 2 0 0
Biopsy Location Gastric 0 0 0 0
Biopsy Location Liver Metastasis 0 0 0 0
Biopsy Location Lymph Node 0 0 0 0
Biopsy Location Oesophagus 0 0 0 0
Biopsy Location Pancreas 0 0 0 0
Biopsy Location Peritoneum 2 0 0 0
No Stroma 4 1 0 0
Stroma 3 3 0 0
Geographic Necrosis 0 2 0 0
Synaptophysin Staining 2+ 0 0 0 0
Synaptophysin Staining 3+ 0 1 0 0

(i) Injection to Scan [min] 2 2 0 0
Weight [kg] 2 0 0 0

* Total MTV [cmˆ3] 3 1 5 5
SUVmean 0 0 0 0

* SUVmax 2 4 5 5
SUVmean (total) 1 0 0 0
SUVmax (total) 5 5 5 0

* Total TLG [g] 4 1 5 5
Institution Rikshospitalet 4 3 0 0
Institution Ullevaall 0 0 0 0
Height [cm] 0 0 0 0
Glucose [mmol/L] 2 0 0 0

(t) Time from PET to first treatment (days) 0 0 0 0
Chemotherapy Type Cisplatin/Etoposide 4 3 0 0
Chemotherapy Type Other 0 0 0 0
Chemotherapy Type Temozolomide/Capecitabine 1 0 0 0
Chemotherapy Type Temozolomide/Everolimus 4 5 2 0
Best Response (RECIST) Not Assessed 0 1 0 0
Best Response (RECIST) Only Clinical PD 0 0 0 0
Best Response (RECIST) Partial Response 2 0 0 0
Best Response (RECIST) Progressive Disease 0 0 0 0
Best Response (RECIST) Stable Disease 0 0 0 0
Reintroduction with Cisplatin Etoposide 0 0 0 0
Number of Courses 4 4 2 0
Treatment Stopped Other 1 2 0 0
Treatment Stopped Progression of Disease 0 0 0 0
Treatment Stopped Toxicity 0 0 0 0
No Progression 5 3 2 0
Progression 3 3 1 0
Predictive performance Further, Fig. 5 illustrates the predictive perfor-
mances of 𝑘NN and linear regression models trained after UBayFS and 
RENT feature selection. The plot shows the RMSE for each fold given a 
predefined number of selected features max𝑠.

Notably, RENT performs better using the linear regression model as 
the predictor, while UBayFS shows a better performance in combination 
with 𝑘NN. The stronger performance of RENT with linear regression 
may be a result of the fact that the underlying feature selection in RENT 
is based on a regularized linear regression model. UBayFS, however, is 
based on mRMR, which does not build upon a linear predictive model.

While linear regression results deteriorate at a higher number of fea-
tures (max𝑠 > 30), the 𝑘NN model retains a similar performance level, 
which suggests that the curse of dimensionality does not yet have a 
strong effect on the Euclidean distance for the given feature space di-
mensionalities. For the linear model, overfitting is triggered by a large 
ratio between the number of features and the number of patients5.

Among all compared methods, differences between the folds are ob-
vious: for instance, fold 4 is predicted with the lowest RMSE averaged 
over all combinations of feature selector, predictive model, and max𝑠. 
On the other hand, fold 2 is associated with the largest averaged RMSE, 

5 We also evaluated a support vector machine with radial basis function ker-
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nel. The performance was similar to the 𝑘NN model.
followed by fold 3. Potentially, differences between folds may be caused 
by two factors (or combinations of both):

• the cohort of patients in the training set does not represent the 
global distribution of the data well — e.g., the training data do 
not contain a sufficient number of samples with particularly high 
or low target values (bad prediction due to a bad model);

• the cohort of patients in the test set is particularly hard to esti-
mate, e.g., due to outliers (bad prediction in spite of an appropriate 
model);

Due to the low number of only 12-13 patients in each fold, even a 
low number of hard-to-predict outliers may deteriorate RMSE results 
significantly.

Residuals In order to shed light on the dynamics leading to the dif-
ferences in performance between the data folds, histogram plots of the 
residuals for fold 2 (worst fold in UBayFS) and fold 4 (best fold across 
most setups) at max𝑠 = 20 are provided in Fig. 6. Residuals are de-
fined as the difference between the true value and the prediction; thus, 
a positive or negative residual value indicates an underestimation or 
overestimation of the lifetime, respectively.

In contrast, to fold 4, the residuals from fold 2 are more dispersed. 

All histograms are symmetric and centered around 0, which indicates 
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Fig. 5. Predictive performances (on test set) of models trained after feature selection for different numbers of features.

Fig. 6. Histograms of errors on the test set (predicted value by 𝑘NN - ground truth) of the folds performing best (fold 4) and worst (fold 2) at max = 20 features.
that all methods are able to estimate the intercept correctly. In both 
folds, the prediction model was able to predict the correct lifetime 
category for almost half of the patients in the test set. However, the 
histogram indicates that predictive models based on both feature se-
lectors overestimate the lifetime in test fold 4 (positive errors), while 
lifetimes in test fold 2 are rather slightly overestimated (negative er-
rors). The main difference in performance between fold 2 and fold 4 
is driven by dispersion, i.e. by a minority of patients, which show a 
high error — due to the small sample size, even a small number of such 
outliers can impact the total RMSE significantly.

When considering patients with absolute residual values > 2.5 as 
outliers, RENT shows three outliers in fold 2 (two positive and one 
negative) and one in fold 4 (negative), while UBayFS shows one outlier 
9

in fold 2 (negative). All outliers refer to different patients.
𝑠

Stability In addition to the performance evaluation, we further investi-
gate qualitative aspects of the selected feature sets, as shown in Fig. 7. 
The demonstrated stabilities and redundancy rates (RED) of the feature 
sets selected by RENT and UBayFS across the five folds tend to increase 
with max𝑠. While RENT has a slightly lower and more fluctuating sta-
bility (around 0.5), UBayFS shows a clear convergence at around 0.6. 
The RED is below 0.25 for all possible numbers of features, indicating 
that both RENT and UBayFS select features with small correlations.

3.4. Experiment 2: feature selection with prior knowledge

Previous research on GEP NEN shows that some features impact the 
survival of patients; those are Age at diagnosis, WHO performance status, 

Primary tumor location, Tumor morphology, Tumor differentiation, Lactate 
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Fig. 7. Stabilities and redundancy rates (RED) of feature sets selected by RENT and UBayFS (max = 20 features, each).
dehydrogenase (LDH), Platelets, Albumin, Ki-67, SUVmax, and TNM-staging
[7,10–16]. Tumor differentiation is highly correlated to tumor morphol-
ogy, so we do not include the feature in this work. Furthermore, findings 
by [10] indicate a high relevance of the features Total MTV [cm3] and 
Total TLG [g], which shall be investigated.

In this experiment, we focus on these features (a total number of 22 
features in the encoded space) within our feature selection and predic-
tion pipeline. In particular, during experiment 1, the aforementioned 
features comprise PERC= 30% of the final feature sets (on average 
across the five folds and given max𝑠 = 20 features, each). We refer to 
this score as PERC (percentage of selected features supported by lit-
erature). In the following, we deploy prior weights on these features 
to investigate how UBayFS as a hybrid feature selector combining in-
formation from experts and data, performs in comparison to the pure 
data-driven methods presented in experiment 1. Since RENT cannot 
incorporate prior feature importances, this evaluation is restricted to 
UBayFS.

Specifically, we increase the prior weight of the 22 features sup-
ported by literature (referred to as prior-elevated features) to the 
following levels: 𝑤 ∈ {0.1, 10, 20, … , 100, 110} — after evaluating all 
levels with respect to predictive performance, we restrict to special 
cases 𝑤 = 0.1 (non-informative prior weighting), 𝑤 = 50 (mediocre 
prior weighting), and 𝑤 = 110 (strong prior weighting). After applying 
UBayFS with the given levels of prior information, we examine how the 
feature set and the predictive performance develop. The case of 0.1 is 
equivalent to the uniform case without prior knowledge (default setup 
for UBayFS in experiment 1). In contrast, prior weight 110 indicates 
that each prior-elevated feature already is assigned a higher score than 
the maximum score that can be achieved throughout the elementary 
models (𝑀 = 100) — as a result, the selected features are exclusively 
restricted to those with prior information and elementary feature selec-
tors in UBayFS are only used to select a feature set of max𝑠 = 20 features 
among the 22 prior-elevated features.

Predictive performance Fig. 8 shows the average performances along 
with the standard deviations across the 5 test folds. In general, lower 
levels of prior weights do not significantly impact the performance. By 
increasing the prior weight to a higher level, performance levels lead to 
stronger variability and an increase of RMSE in the better-performing 
folds, such as fold 4. Finally, if the prior weight is set to the maximum 
level of 110, all folds converge to a similar level since the data-driven 
feature selection hardly contributes to these setups. Thus, a potential 
conclusion is that moderate levels of prior knowledge can slightly in-
crease models’ capabilities. In contrast, strong prior knowledge leads to 
a convergence towards the global mean performance across all folds — 
such prior setup acts as a strong restriction of the search space exploited 
by the feature selector.

Stability In contrast to the minor effects of prior knowledge on predic-
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tive performance, stability increases significantly, as shown in Fig. 8. 
𝑠

Finally, at a maximum level of 𝑤 = 110, stability converges towards 
an almost perfectly stable solution. This is due to the restriction of the 
search space to the prior-elevated features, which results in a selection 
of 20 out of only 22 features in total. As expected, the percentage of 
selected features supported by literature (PERC) also increases linearly 
with the level of prior weights provided. The redundancy rate between 
the selected features shows a slight decrease, indicating that the prior-
elevated features contain only small correlations.

4. Discussion

Benefits and drawbacks of RENT and UBayFS Both feature selectors 
evaluated in this work, RENT, and UBayFS, have been designed to sat-
isfy the requirements of medical datasets. Both are ensemble models, 
which allows them to obtain stable solutions. However, a direct com-
parison of the two methods from a statistics perspective yields notable 
differences: Besides the obvious advantage that UBayFS is capable of in-
tegrating expert knowledge, RENT restricts the elementary model type 
to generalized linear models with regularization, while UBayFS is of a 
generic type, i.e. can be used with an arbitrary elementary feature selec-
tion type. As a result, UBayFS is not bounded to a linear model structure 
but has been deployed with mRMR [34] in this study, which increases 
the generality of the model. On the other hand, RENT is known to have 
advantages over UBayFS in purely data-driven setups since the selection 
criteria take more internal information from the elementary models into 
account (distribution of parameter coefficients) rather than a pure se-
lection frequency. Thus, in general, RENT has been observed to achieve 
a higher predictive performance in multiple setups [27] while UBayFS 
offers more flexibility.

Experiment 1 In our first experiment, we left out prior expert knowl-
edge and let the feature selection be purely data-driven. We know that 
certain features were prognostic for survival in earlier studies, as men-
tioned in experiment 2 below. We wanted to study whether the same 
prognostic features would still be selected and if there were any cur-
rently unknown prognostic features that could be further researched. 
Comparing the two first columns in Table 4 we can see which features 
are selected repeatedly in different folds with RENT and UBayFS. We 
must keep in mind that we cannot directly compare the importance of 
the features in terms of a coefficient (e.g. similar to Cox regression), just 
that they are repeatedly selected in each fold.

Further, the correlation between features must also be considered 
when comparing the importance of features which we can find in Fig. 2: 
the presence of highly correlated features makes the feature selection 
problem ill-posed, i.e. two distinct sets of features may lead to almost 
the same result in terms of predictive performance. Intuitively, this issue 
is caused by the fact that two or more features with a high correlation 
contribute the same information to the model, and thus, models may 
choose one over the other by chance in such cases. This results in a 

lower selection frequency for both features, and thus in an underrat-
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Fig. 8. Experiment 2: predictive performances on fold 1-5, and qualitative metrics of features sets produced by UBayFS at different levels of prior knowledge on 
features with evidence from literature (max = 20).
𝑠

ing of their importances to the model, which is why groups of highly 
correlated features should be analyzed in common.

In block (p) (baseline patient characteristics), we have a few fea-
tures that one would expect to be prognostic for OS. One obvious one is 
Stage IV disease which does not seem to be chosen at all by RENT and 
UBayFS. However, looking at the correlation heatmap in Fig. 2 we see 
that this feature is highly correlated to several other features, among 
those Metastatic Disease at Time of Diagnosis and Treatment Intention Pal-
liative. We see that this last one gets chosen four out of five times with 
both, RENT and UBayFS, which probably explains why Stage IV does not 
seem to be important. Having a palliative treatment intention usually 
means you have stage IV disease. This is also a well-known prognos-
tic indicator from the literature [8]. Bone metastasis is usually a poor 
prognostic indicator in several types of cancers [67], and it is not sur-
prising that this is chosen all the time. We also know that WHO PS is a 
prognostic indicator in these patients. This is also reflected in the num-
ber of folds it is chosen by RENT and UBayFS, but it is only WHO level 
2 that seems to be important. That said, Fig. 2 shows that WHO levels 3 
and 4 are highly correlated to some of the SUV parameters which might 
contribute to those never being selected. Radical Surgery is quite often 
chosen by both RENT and UBayFS and is also a predictable prognostic 
indicator. Having radical surgery means that all viable tumors are re-
moved, and that is only possible if you have a low tumor burden. This 
underlines the importance of surgery in the curative intended treatment 
of this type of cancer.

Next, in block (b) (baseline blood values), we see that both CRP and 
ALP > Normal <= 3UNL get selected almost equally many times by 
both RENT and UBayFS, and both have a high number indicating impor-
tance over the other features in this block. A high CRP at baseline has 
previously been shown to be a poor prognostic feature in some studies 
[7,68,69], whilst others have not replicated this [70]. This is probably 
not surprising as this has been shown to be a poor prognostic indicator 
in advanced cancer patients in a palliative setting, and especially in GEP 
NEN [71–74]. ALP has also been shown in studies to be prognostic for a 
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shorter OS [7,75,76]. For Albumin and Platelets, RENT chose these only 
half as many times as UBayFS. Both have been shown to be prognos-
tic indicators of OS [7,8]. Interestingly, Haemoglobin, WBC, LDH, and 
Chromogranin A are barely chosen or are chosen neither by RENT nor 
UBayFS. All these features have previously been shown to be prognostic 
for OS [7].

Moving on to block (h) (re-evaluated histology), we have quite a 
few features that are well-known prognostic indicators. The strongest 
one from the literature is probably Ki-67 which is used in the classifica-
tion system of NEN. The second strongest is probably Tumor Morphology
which has been shown in several studies to be prognostic for OS [7,8]. 
We see that Ki-67 is chosen every time from all five folds both for 
RENT and UBayFS supporting this feature as a strong prognostic in-
dicator for OS. Further, Tumor Morphology gets chosen four out of five 
times with RENT and three out of five times with UBayFS. This is also 
to be expected since we know that patients with NET G3 have a bet-
ter OS than those patients with NEC [77]. What is surprising is that 
most tumor sites, especially those patients with unknown primary and 
esophagus NEN, are not chosen by RENT or UBayFS. Primary Tumor 
Site has been shown to be prognostic in several studies [7,8]. Several 
of the features like Stroma, Architecture, Vessel Pattern, Co-existing neo-
plasm, and Geographic Necrosis are considered typical for either NET G3 
or NEC [78], and one might assume these are highly correlated with 
Tumor Morphology. Although this is not reflected in Fig. 2. Almost none 
of these features are chosen with RENT or UBayFS except for Stroma. 
NET G3 typically have hyalinized stroma, and NEC have desmoplastic 
stroma [78].

Further, in block (i) (PET/CT imaging) the interesting features are 
Total MTV, Total TLG, and the SUV parameters. From Fig. 2 and previ-
ous literature [10] we know that these features are often (if not always) 
highly correlated. Hence, the selection of SUVmax (total) instead of the 
other features is probably related to this. Moreover, we know from pre-
vious studies [10,13–15] that global measures such as Total MTV and 
Total TLG are poor prognostic indicators for OS in these tumors, i.e., 
associated with a poor prognosis of the patient, but we lack stronger 

evidence in form of larger studies. Here we see that SUVmax (total) is 
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chosen in all five folds both for RENT and UBayFS supporting the pre-
vious findings that PET-parameters are good prognostic features of OS.

Finally, in block (t) (treatment), we can see that a few features are 
selected often. Chemotherapy treatment with cisplatin/etoposide is not sur-
prisingly a predictor for OS, and most of the patients did indeed receive 
this combination. No chemotherapy is obviously detrimental. We also 
see that the Chemotherapy treatment with temozolomide/everolimus gets 
chosen often both by RENT and UBayFS. This is probably because this 
chemotherapy regimen is more often chosen for those patients with a 
low Ki-67, and these are more likely to be NET G3 which already have a 
better OS. Further, both Number of Courses and Progression are two fea-
tures that are selected often by RENT and UBayFS. Progression and No 
Progression are obviously poor prognostic indicators, and one could as-
sume that the higher Number of Courses a patient receives, the longer 
before they have progression, and hence they live longer. This is, of 
course, only an assumption and interpretation of the data at hand. It is 
a bit surprising that the response evaluation results did not get chosen. 
One would assume that patients with the best response - stable disease 
would fare better than those with progressive disease. Looking at Fig. 2, 
the features from this block have low correlation coefficients.

Experiment 2 Here we added prior expert knowledge and assigned two 
different weights. A weight 𝑤 = 50 means approximately 50% expert-
driven and 50% data-driven. A weight 𝑤 = 110 means almost purely 
an expert-driven approach where we effectively force the selection of 
features only from the subset of those from prior expert knowledge. We 
concentrated on features that are well documented in several previous 
studies, although there exist more features in the literature suggesting 
prognostic values than these. The features selected from prior expert 
knowledge are listed in the first paragraph in Section 3.4 and marked 
by an asterisk in Table 4.

If we concentrate on the second, third, and fourth columns, which 
show the difference between a data-driven, a hybrid, and an expert-
driven setup, respectively, we see that none of the marked features 
drops in importance as we increase the level of expert knowledge. Some 
features that were never chosen with a pure data-driven model are still 
not chosen. One could argue that these are probably not strong features 
to begin with, or that other features contain the same and/or stronger 
information. A few features only get chosen when almost completely 
removing the data-driven part and make a huge leap from not being 
chosen to being chosen five times. We argue that one should be careful 
to draw conclusions from these features being selected at 𝑤 = 110, as 
these are forced to be chosen based on expert intervention.

A few features stand out by being stable across all values of 𝑤; WHO 
Performance Status, Albumin, Platelets, Ki-67, Tumor Morphology, Total 
MTV, Total TLG, and SUVmax. It would be bold to assume that these 
features are the most important and stable predictors of OS from the 
subset of expert knowledge markers, but this is only conditioned on the 
particular choice of methods presented in this work and requires confir-
mation in a larger-scale analysis. Further, it is also interesting to notice 
that even though several parameters from PET are highly correlated, 
several are still chosen very often by the model. This is in line with the 
results of our previous study [10]. Moreover, it is a bit surprising that 
Primary Tumor Site, especially Unknown Primary and Esophagus, is not 
chosen more often as these are well-known negative predictors of OS 
[7,8], unless a high level of expert knowledge is applied.

We also notice that some of the other non-marked features drop in 
importance as we increase 𝑤, and this is probably related to the fact 
that the features overlap in the information they add to the model. A 
few of these features are also moderately or highly correlated. E.g. CRP
is correlated with quite a few of the other blood markers, and this could 
explain why it falls in importance when increasing 𝑤. Mets Bone (bone 
metastases) is not listed in the correlation heatmap and thus has no 
moderate or high correlations with other features, but still completely 
falls out. Bone metastases usually occur late in several cancers and is 
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a poor prognostic feature. Hence, one should assume that this feature 
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and similar ones like CRP, ALP, which performs well with low values 
of 𝑤 falls of in the pure knowledge-driven model because the model is 
“forced” to select only marked features. We must remember that the 𝑤
= 110 is an extreme expert-driven model which is probably not clini-
cally relevant but was added to explore and evaluate what the model 
did in this extreme situation.

In closing, this is a small but novel study with a limited number 
of patients, and to our knowledge the first study exploring and eval-
uating RENT and UBayFS on a clinical dataset. Although we cannot 
ascertain how important different features are compared to each other 
and if they contribute to poorer or better survival, we find similar re-
sults as several previous studies. Both ensemble feature selectors should 
be evaluated using larger and different patient cohorts, and the eval-
uation of which 𝑤 is optimal when using UBayFS should be explored 
in future studies. The clinical application of both RENT and UBayFS 
may be validated through already established features from different 
studies found in the literature, to quickly and effectively compare dif-
ferent features with regard to their prognostic relevance, and to develop 
or discover novel prognostic features. Clinicians could use this infor-
mation to deliver patient-tailored survival predictions based on a set 
of features instead of the traditional median overall survival. Specifi-
cally, features extracted from diagnostic imaging can contain the same 
prognostic information as a traditional pathophysiological feature. Such 
imaging features are easier to collect as they are non-invasive and all 
patients go through an imaging work-up before their final diagnosis. 
Finally, imaging features are less prone to intra- and intertumoral het-
erogeneity as can be found in several cancers, especially in NEN.

5. Conclusion

From a data science perspective, this work demonstrated the ap-
plicability of modern ensemble feature selection techniques RENT and 
UBayFS for OS prediction on a real-world multi-source dataset from pa-
tients diagnosed with high-grade GEP NEN. Overall, our experiments 
showed that both RENT and UBayFS were able to reduce the number 
of selected features to only around 18% of the original features (around 
20 out of 110 features), while preserving the information needed to 
achieve a similar predictive performance as in the full dataset with 
different types of predictive models. In direct comparison, we could 
conclude that the purely data-based and the hybrid feature selection ap-
proach with expert knowledge as input performed equally well in terms 
of predictive model metrics, while the inclusion of expert knowledge 
led to a continuous improvement in terms of feature selection stability. 
The higher the weight on the expert knowledge, the higher the stability, 
ultimately resulting in an almost purely deterministic selection proce-
dure. This fact underlines that a reasonable trade-off between data and 
expert knowledge can improve the properties of feature selection results 
in practical setups. In general, both applied feature selectors allow new 
insights into a small subset of features, which are highly informative for 
the overall survival of cancer patients, which underlines the high value 
of such feature selection methodologies for interpretation in addition to 
preventing computational issues such as the curse of dimensionality.

From a clinical perspective, we demonstrated the capabilities of 
modern ensemble feature selectors like RENT and UBayFS for health-
care problems — in particular, the inclusion and comparison of expert-
and data-driven setups, as well as combinations of both, allow the user 
to gain relevant information for clinical use. The most stable and pre-
dictive features in our study are WHO Performance Status, Albumin, 
Platelets, Ki-67, Tumor Morphology, Total MTV, Total TLG, and SUVmax. 
This result validates already established known prognostic features and 
adds support for PET features in prediction for overall survival.
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