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ABSTRACT South Africa has been experiencing an energy crisis since 2007. Utility loadshedding became
the main control for under-frequency events due to a mismatch in generation and consumption. Rolling
blackouts are further supported by failing electrical infrastructure and illegal (non-metered) connections
to the distribution network. A common remedy to mandatory South African loadshedding, from the
perspective of university campuses, is to deploy hybrid photovoltaic-diesel (PV-diesel) microgrids that allow
for an uninterrupted power supply for a few hours. Campus microgrids are typically smaller compared
to national utilities (less inertia) and require sensitive control schemes to remain stable. In this paper,
frequency recordings associated with the operating microgrid of the University of the Free State QwaQwa
campus are analysed. A simplistic stochastic mathematical model is presented as a model describing the
observed frequency dynamics, describing the transition between the utility grid and the microgrid state, the
microgrid frequency controller response, and the influence of the PV generators. Moreover, inter-campus
synchronous frequency measurements are showcased and the future implications thereof are discussed. The
main contributions of this paper focus on the recording and modelling of the frequency dynamics of fully
functioning campus microgrids, and the showcasing of continuous synchronous measurements of frequency
at two different campuses.

INDEX TERMS Operational microgrids, frequency dynamics, state classification schemes, synchronous
frequency measurements, complex systems, stochastic modeling.

I. INTRODUCTION
South Africa’s utility power grid has been degrading over the
past 2 decades [1]. The effects of what is now clearly denoted
the South African energy crisis have taken root primarily
over the past 5 years [2], marked by pervasive loadshedding
throughout the country. Industry and the citizens suffer from

The associate editor coordinating the review of this manuscript and
approving it for publication was Hamdi Abdi.

regulated and sometimes irregular power outages and total
blackouts daily [3]. Rolling blackouts permeate the energy
landscape, with different regions being deprived of power
delivery for 3773 hours during 2022 [4].

Private and public institutions found means of ensuring
robust power delivery in order to be able to operate without
daily interruptions. The latter converged into strategies
commonly known as energy resilience and microgrids
naturally form part of the main energy reliability plan.
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Large universities turned to microgrid alternatives with local
renewable power generation from photovoltaic (PV) as well
as diesel generators to meet their energetic demands [5].
One existing microgrid example, which is explored in detail
in this work, is the QwaQwa campus of the University of
the Free State (UFS), which accounts for 9.5% of energy
consumed across all the campuses. The UFS implemented
a combination of PV and diesel generators to provide
power at times when no power is delivered by the utility
grid (or municipality in this case), constituting a unique
University campus microgrid design in South Africa. With
setting up and operating a microgrid at the scale of a
university campus arise various challenges – and with it
multiple opportunities – not discarding the issues involving
large volume data management and control policies for
the microgrid controllers. A wealth of data is generated
pertaining to various crucial variables of a microgrid that
directly influence the stability, quality, and optimization of
the microgrid. Naturally, on the central variables is the
voltage-frequency, which is maintained, as in the utility
grid, to operate at 50Hz. Microgrid controllers mimic the
linear response in frequency fluctuations known from inertial
systems. Yet the physical and mathematical nature of the
observed microgrid frequency is not necessarily identical to
that of the frequency from the utility grid, due to different
levels of inertia, renewable penetration, network topology,
and demand.

The dynamics of frequency changes in an islanded
microgrid operation can be described using elementary math-
ematical models [6]. Herein, dynamical systems – primarily
coupled oscillator models – provide one avenue to describe
the dynamics of the rotor-angle and frequency (and voltages
levels if desired) [7]. These can be augmented with stochastic
elements – random noise with adequate characteristics – that
help explain the true nature of the data [8]. We explore in this
work a set of elementary data-driven processes that explain
the recorded frequency excursions [9]. We remark here that
this work contains one of the first analyses of real-world
MG frequency data in a living system. This alone constitutes
an advance in the understanding of operational MGs in
real-world settings. We show that a simple combination of
dynamical response and stochastic noise qualitatively mirrors
theMG frequency data. The principles underlying elementary
mathematical models show that the dynamics of the UFSMG
are, in many ways, similar to the dynamics of the frequency
of the utility grid. Although not unexpected, as most MG
control mechanism seek to reproduce the functioning of
conventional inertial synchronous power grids, this work
confirms this from an analysis point-of-view of real-world
frequency data. This constitutes one of the main contributions
of this work. We show that the frequency is negatively
impacted by the PV generation at the UFS QwaQwa campus,
leading to large frequency responses that resemble Lévy-
like noise [10], [11], [12], [13], [14]. Similarly, the actual
MG frequency excursions are ‘rough’ stochastic processes,
having a Hurst coefficientH < 0.5 [15], [16], [17], [18], [19].

To conclude the frequency modelling and observations,
we show, qualitatively, a hysteresis phenomenon induced
by the interaction of the controller with various generation
units and demand management, pointing to a classical
hysteresis behaviour ubiquitous in nonlinear dynamical
systems. Secondly, we shortly explore measurements of inter-
campus synchronous frequency excursions and showcase
the implications of such measurements on the development
of synchronicity frameworks. By recording and modelling
actual microgrid frequency excursions we exemplify how
invaluable these mathematical tools are at qualitatively
describing the frequency dynamics of a MG, which in
turn also tells us that MGs can safely be described with
the same mathematical apparatus used for studying utility
grid frequency, dynamical, and stochastic processes of other
physical nature, or generally complex systems at large. This
paper is structured as follows: Section II provides an overview
of the existing UFS QwaQwa Campus Microgrid, Section III
outlines the pre-processing associated with recorded fre-
quency excursions, Section IV showcases the modelling of
the observed frequency dynamics, Section V highlights some
of the recordings of inter-campus synchronous frequency
excursions and methodology thereof.

II. OVERVIEW OF UFS QWAQWA CAMPUS MICROGRID
The UFS QwaQwa Campus is located in the Phuthaditjhaba
District in the Free State Province of South Africa, near
the border to Lesotho. The QwaQwa Campus forms part
of three UFS Campuses, the other being the Bloemfontein
Campus (320 km apart) and the South Campus, both
located in Bloemfontein in the Free State Province of
South Africa.

The QwaQwa Campus Microgrid (MG) consists of
two electricity-generating elements, namely the PV plant
(918 kWp) and the synchronous diesel generators
(4×400 kVA), as illustrated in Fig. 1, The MG is grid-
tied to the national utility. Both the PV plant and the
diesel generators are centralized and connected directly to
the 11 kV network, see [5], which highlights the fact that
non-centralized generation is linked to grid unavailability,
prompting the microgrid layout in a centralised fashion.
In addition, initial momentum and load synchronization are
needed from the diesel generators to meet the campus load,
which is achievable through centralization.

FIGURE 1. Energy mix for the QwaQwa campus MG, illustrating the
grid-forming capabilities of the diesel generators in a centralised manner.
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Critical to the design of the MG network, the centralised
diesel generators allow the campus MG to enter into an
islanded state when the national utility grid is unavailable,
electrifying the campus network and allowing for PV syn-
chronization. When no power is supplied by the utility grid,
i.e., a no-grid condition is detected, the campus network is
isolated from the local utility, signaling diesel generation and
campus grid formation with subsequent PV synchronization.
TheMG transition state lasts for several minutes which forces
the MG metering into a non-metering state (translating to
gaps or repetition in time series data). The MG controller
balances generation kVA (diesel and renewable) with demand
by signalling generator and inverter controllers to change and
alter apparent power output in order to match the demand.
Additionally, the MG controller also reacts to the MG’s
‘health’ signals in order to execute the startup procedure of
the diesel generators which are locally synchronised before
connecting to the 11kV busbar via a step-up transformer. The
latter electrification procedure requires the diesel generators
to match full demand before PV synchronisation and needs a
set of generators with spinning reserves.

III. UNIQUENESS OF THE TRANSITIONS OF HYBRID
PV-DIESEL CAMPUS MICROGRIDS
This section discusses the efforts towards transition classi-
fication, i.e., identifying whether the microgrid is islanded
or connected to the utility based on historical data. The
proposed scheme detects the transitions of the systemwithout
perturbing or injecting perturbations into the system. The
scheme was designed with the aim of processing and reacting
to historic frequency data for modelling purposes (see
Section IV).

When a rolling blackout (loadshedding) occurs, the MG
experiences a transition from one state to another (e.g.
transition from the main utility to the PV-diesel powered
MG). During such a power supply disruption, there is a
time delay (on average 2 → 5 minutes) where the diesel
generators and network meters start up, thus causing a
phenomenon that resembles a Non-Detected Zone (NDZ)
or state of transition. During this time the main controllers
and meters will store the last frequency value that was
recorded prior to the transition. This frequency value is
continuously recorded until the generators have reached
a stable state around the 50Hz threshold and the meters
have successfully rebooted. The latter repetitive recording
phenomenon is unique to each meter type. The continuous
repetition of the last recorded frequency creates the transition
state.

In order to identify the transition state in historic fre-
quency data, a method of rolling averages is utilised. This
method is sufficient due to the continuous and stochastic
nature of the frequency excursions. In the above-mentioned
detection scheme, firstly the difference between themeasured
frequency values is calculated so as to simplify the averaging
calculations and simplify the Boolean logic required to switch
the identified states. A rolling window size of 10 s is used to

sweep across the frequency difference data and calculate the
average of those 10 corresponding values (since the data has
a 1 s resolution, we have 10 values for a rolling window of
size 10 s). If 2 consecutive averaged values are precisely equal
to 0, then the algorithm classifies this as a transition state and
will continue to do so until the average is not exactly equal
to 0.

The functionality of the classification algorithm is depen-
dent on the nature of the historic frequency data, where the
states before and after a transition can never be the same and
the initial state must be pre-classified. The initial state (either
utility or MG state) is then used as an input for the algorithm.
Boolean values are assigned to the transition, utility and MG
states. The first Boolean value is used to keep track of whether
the grid is in a transition state or not. The second Boolean
value determines whether the next state is microgrid or utility.
By identifying the transition state, the algorithm utilises the
respective Boolean values to switch between the utility and
MG states. The transition finder scheme can be observed to
function roughly as a frequency divider, toggling one Boolean
variable on the positive edge of another. The resultant state-
classified frequency data was used for the statistical analysis
as the main modelling result of this paper.

With regards to the classification of islanding states,
a typical power grid is set up such that the power consumption
is of main importance, and the power supply secondary.
However, in the case of the QwaQwa MG, the incoming
power supply is the primary focus of the algorithm. This can
be seen in the overview section of the algorithm where it
uses the profiles of the historic frequency readings to evaluate
and label the relevant state, i.e., utility, MG, or transition.
Each state has its own unique frequency profile and driving
dynamics and thus requires accurate classification.

IV. STATISTICS OF MG FREQUENCY RECORDINGS:
MODELLING THE OBSERVED MICROGRID FREQUENCY
EXCURSIONS
From the perspective of frequency dynamics, the UFS
QwaQwa MG offers a unique mix of signatures, transitions,
and control dynamics. As discussed in section II, the ability
to record the frequency on the 11 kV common-point-of-
coupling allows the operator to retrieve a seamless frequency
representation that illustrates all the transitions between grid-
connected and MG states, control transients, and different
modes of MG states. Fig. 2 illustrates the latter ability with
direct seamless comparison between grid/MG frequency and
power consumed. It also clearly illustrates high degrees
of variability in the power consumption profiles (variable
demand and renewable generation) with clear improvements
in frequency variances between different states.

Fig. 3 captures a typical transition between the grid-
connected state and the MG state. Immediate observed
changes in frequency excursions are visible between the
states and the MG state which is typically led by a frequency
decay over a time span of a few minutes. The stability
(observed small variations in frequency) of the MG state is
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FIGURE 2. Typical MG frequency/power recordings cycling between
grid-connected and microgrid state. Note that the gaps in the power
consumption correspond to the MG states, hence grid-disconnected
states.

influenced by fluctuations in renewable generation, demand,
control hysteresis, and failure in diesel generation.

FIGURE 3. Typical transition between grid connected and MG states.

Fig. 6 illustrates the anti-poles in MG states that exist
during the day and night. Control dynamics are sensitive
to variability in control inputs (loads, renewable generation,
and diesel generation) and typically exhibit higher degrees
of variability in frequency recordings during the day. During
sunny days and low variability, the night/day MG states are
indistinguishable upon visual inspection, except for instances
of control hysteresis and generation failure of some sort.

A. COMPLEX SYSTEMS MODEL OF THE OBSERVED MG
FREQUENCY EXCURSIONS
Having seen a few examples of distinct MG states of the UFS
QwaQwa campus, we construct a simplistic stochastic model
that qualitatively describes the frequency dynamics. Consider
the MG frequency f (t) as a random variable described by [6],
[11], [12], [13], and [14]

df (t) = −γ (f (t) − µ(t)) dt + σdBH (t) + L(t), (1)

with γ the response strength, µ(t) a dynamic driver or mean-
reverting strength that drives the frequency, BH (t) a fractional
Brownian motion with Hurst coefficient H , and an added
noise element L(t) that is induced by exogenous elements.
We should immediately note that this representation of
the frequency is one of a linear response −γ f (t) from

the controller. We can now make use of off-the-shelf
mathematical tools to show, from a data-driven perspective,
that our model is well justified. Let us start with the linear
response and dynamic driver.

1) LINEAR RESPONSE AND DYNAMIC DRIVER
In order to show that the frequency controller reacts linearly
to frequency changes, we use estimators for the drift, based
on a Fokker–Planck description of our model (1) [20].
We employ a non-parametric kernel-density (Nadaraya–
Watson) estimator for the drift Dm=1(f ) and diffusion
Dm=2(f ), given by

Dm(f ) =
1
m!

1
1t

1
N

N−1∑
i=1

K (f − fi)(fi+1 − fi)m, (2)

with an Epanechnikov kernel

K (f ) =
3
4
(1 − f 2), with support |f | < 1. (3)

We note here that fi is a recorded frequency f (t), which is
naturally discrete in increments i of length 1 second, i.e., the
sampling rate 1t = 1 s. We can now employ this estimator
for all the MG states separately after a relaxation period of
15 minutes (900 seconds). This is to discard the transitory
slow exponential transient evidenced in Fig. 7. In Fig. 4 we
can ascertain from the data 1) the controller responds linearly
to frequency changes; 2) the operational point lies close to
49.967Hz; 3) the (negative) slope of D1(f ) results in γ used
in Eq. (1).

FIGURE 4. Drift estimation following Eq. (2) return the (negative) linear
response γ [21].

Here we note a difference between the linear response γ ,
obtained via the driftD1(f ) and the slow exponential dynamic
transientµ(t), which can easily be captured by considering an
exponential function

µ̂(t) = A exp (−λt) + c, (4)

which can be fitted with a simple least-square method. The
response rate λ of the dynamic response is of the order of λ =

4.35×10−3
±0.24×10−3 s−1. In principle, one could expect

c = 50Hz, i.e., the reference frequency, yet as observed in
Figs. 5 and 6 the MG frequency attains equilibrium close to,
but not exactly at 50Hz (cf. Fig. 4).

VOLUME 12, 2024 14469



J. Maritz et al.: Data-Driven Modeling of Frequency Dynamics Observed in Operating Microgrids

2) CORRELATED STOCHASTIC NOISE
Just like one observes in utility grid recordings of utility
power-grid frequency recordings, the data is noisy [6], [8],
[22], [23]. The frequency trajectories are not as smooth
as one expected for dynamical systems (not in chaotic
states). Moreover, these frequency fluctuations are not
purely uncorrelated processes like Brownian noise/motion.
Employing detrended fluctuation analysis (DFA) [15], [16],
[17], [18], [19] we estimate the Hurst coefficient H of the
MG frequency trajectories. Hurst coefficient H smaller than
H < 1/2 are self-anti-correlated processes known as rough
processes. Purely uncorrelated processes, like conventional
Gaussian noise or Brownian motion, have H = 1/2.
Positively correlated processes have H > 1/2 and are
smoother than all aforementioned noise processes (in the
limit H = 1 the processes become purely continuous and
differentiable and we return to a dynamical systems’ setting).
Following the well-described procedures to obtain the Hurst
coefficient (see [18], [19]) using a first-order polynomial and
fitting the fluctuation function between 15 and 300 seconds,
we obtain a Hurst coefficient H = 0.28 ± 0.14, i.e., a strong
self-anti-correlated process, which educates our choice of
fractional Gaussian noise dBH (t) in Eq. (1). The amplitude
can partially be assessed with the diffusion estimator D2(f )
in Eq. (2) and adjusted to match the magnitude of the
fluctuations, educating our choice of σ in Eq. (1).

3) OBSERVED PV-INDUCED SPIKES IN FREQUENCY
EXCURSIONS
The elements presented previously, from the dynamic driver
describing the exponential transient, the drift D1(f ) from
where we retrieved the linear response, the DFA algorithm
and the diffusion estimator D2(f ) which elucidate the nature
of the noise in the MG, comprise a set of elements that fully
describes a stochastic process for MG frequencies. We do
note that during active periods of PV power generation,
the MG frequency is affected by large spikes/fast frequency
deviations. These are sporadic and exogenous to the nature
of the stochastic model in Eq. (1). We condense them in a
singular element L(t) that is an additive noise term not part
of the fundamental dynamics of the frequency. Tangentially
following Anvari et al. [24], we utilise a combination
of Poisson jumps with Gaussian amplitude (a Lévy-like
noise) [25], [26], such that

L(t) = ξJ (t), (5)

with J (t) a homogeneous Poisson point process in time with
an amplitude drawn from aGaussian distribution ξ withmean
zero and variance σξ . We note again that we consider this just
as added noise in the model which is not part of the stochastic
integral of df (t) in Eq. (1).

B. OBSERVED MULTISTABILITY INDUCED BY
CONTROLLER-DEMAND MANAGEMENT DISAGREEMENT
Control optimisation for the QwaQwa campus microgrid
is continuous in the MG state, especially as demand-side

FIGURE 5. Stochastic model of the MG frequency involving a dynamics
driver, a rough correlated motion, and an exogenous noise, given in
Eq. (1).

FIGURE 6. Comparison between two different microgrid states, mid-day
state (governed by PV production variability) and a night state (governed
by diesel generation and low variability).

management schemes are operational (as discussed in
section II) that reduce the load to a point where the controller
cycles between a total of 2, 3, or 4 engaged diesel generators
that contribute inertia to the MG. The latter generates
interesting periodic frequency signatures, i.e., hysteresis,
as seen in Fig. 7. The MG oscillates between two inertia
states as generators enter and exit the energy mix, leading so
small frequency excursions. The frequency inter-oscillations
are led and followed by stable MG frequency states (lower
variances).

FIGURE 7. Typical control hysteresis induced by demand management
reducing the load to a point where the controller experiences difficulty
determining the appropriate number of online generators.

Short grid connected states can also occur within MG
states, generating transitional states superimposed on the
mainMG states, see Fig. 8. The latter could be due to network
faults, sporadic grid-connected states, or MG failure (in the
case of the utility grid being available).
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FIGURE 8. Inter MG states super imposed on main MG States.

Unplanned (or transient) MG states also exist due to
network faults inducing MG states and could range between
minutes, hours, or days.

FIGURE 9. Short interim network fault (of a few minutes) inducing a
noisy MG state.

The next section explores and showcases the implementa-
tion of synchronous frequency measurements at two different
campuses 300km apart. The implications of generating
seamless recorded frequency excursions, combining utility,
and MG states, are discussed.

V. GENERATING RECORDED FREQUENCY EXCURSIONS
BY COMBINING UTILITY/MG STATES IN SYNCHRONOUS
MANNER
Frequency recordings are similar at different locations when
measured at more than 1 minute resolution, but showcase a
plethora of dynamical effects (microscopic fluctuations) at
1 and sub-second recording intervals, see [23]. The latter
observation can be leveraged for the purposes of generating
seamless recorded frequency excursions for MG locations.
This particular measurement campaign relies on the ability
to measure synchronously, i.e. measurements of the same
system at two different locations need to share the same
timestamp.

To achieve the most accurate synchronised measurements
associated with power system parameters, operators utilise
timing servers that offer extreme timestamp accuracy and the
opportunity to synchronize many devices within substations
or renewable plants, such as meters, controllers and relays.
The latter is particularly appropriate when investigating

FIGURE 10. Comparison of utility frequency (measured at BFN campus)
with QwaQwa campus MG frequency (measured remotely from the BFN
campus)

sub-second dynamics and MG responses. The challenge is
to synchronise time series data for the purposes of studying
dynamics and be sensitive to the timing topology of the
network (or networks) under observation. If the aim is to
study sub-second MG/utility dynamics and fast controller
reactions, the recommendation will be to note inter-campus
signal travelling times and propagation times between
campuses, especially if meters are remotely polled. If the total
propagation time exceeds to desired observation interval,
the recommendation will be to re-design the observation
campaign.

An operator will have two broad timing paradigms to
possibly implement: pointing individual meters to a common
timing server at each location and transmitting this timestamp
to data servers, or pointing individual data servers, further
downstream, to shared timing servers. Both paradigms are
subjected to delays that can be divided into (ranging from
small to large delays) inter-substation delays, substation-to-
server delays, and inter-location delays. Any time delays are
subjected to varying path lengths between meters, collectors,
and data servers. Total time delays are also a function of
network topology that could change over time due to failure
or transmission loss. In the case of Phasor Measurement
Units, onboard clocks or timing servers need to be accurate to
nanoseconds to enable synchronous measurements and this is
achieved with direct GPS links. Synchronous measurements
are also subjected to communication network delays and
power outages that are typically flagged during post-
processing. In this paper, one-second resolution frequency
measurements at both the UFS Bloemfontein (BFN) campus
and the QwaQwa campus were recorded. The latter resolution
was linked to meter capabilities. Frequency excursions
observed at BFN campus were collected from the main
meter that is separated by 500m. Simultaneously with the
previously mentioned measurements, QwaQwa frequency
data was requested from the BFN campus with a round-
trip travel time of 3ms. In comparison with the desired
measurement resolution of 1 s, the longest inter-campus
round-trip delay is less, hence the authors neglect the small
delays between meters and servers. As mentioned in the
preamble of this section, network dynamics are identical at
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different locations if observed at intervals of 1 s or more, and
ultimately, allowed the authors to construct a synchronously
observed frequency excursion for the QwaQwa MG that is
composed of utility frequency measurements (recorded on
BFN campus) and MG frequency measurements (recorded
from the BFN campus remotely), see Fig. 10.

VI. CONCLUSION
The main contributions of this work are summarised as

1) Recording real-world, living voltage-frequency of a PV-
diesel MG, the in-service QwaQwa campus MG of the
University of the Free State

2) proposing a simple physics-inspired model for the
observed frequency dynamics of a fully functioning
campus MG

3) showcasing synchronous frequency recordings at two
different campuses and outlining the technicalities of
such data campaigns.

The design of university campus MGs, within the South
African setting, will typically be governed by the need for
continuous power supply to ensure uninterrupted functioning
of university and academic activities. Prioritising continuous
power supply above long-term economics and smooth
transitions ultimately governs the inherent dynamics of a
typical South African MG. The latter-mentioned dynamics
are reflected in MG frequency measurements that showcase
transitional effects, startup sequences, response times to
varying loads, and the effect of volatile renewable generation
on the dynamics. The developed simple mathematical
machinery is used to describe the observed frequency
dynamics, which could also be utilised for larger grids, hence
making the QwaQwa microgrid an ideal test bed to explore
utility-related control schemes, network stability, reaction to
failures, and digital twin-related schemes for MGs. In this
work, we showed that renewable generation modulates the
frequency response to resemble Lévy-like noise—inherently
linked with PV generation—, of which the direct effect could
be on schemes that rely on frequency states to control campus
loads. We showcased several issues pertaining to hysteresis
effects due to conflicting governor actions and transient states
in the MG state. This paper also showcased the current status
of synchronous frequency recordings at different locations
in the power network, by specifically dealing with accurate
time stamping and issues arising therein. The latter showcase
led to a proposed strategy to generate seamless frequency
excursions at various MG locations based on on-site and
remote frequency measurements. Future work includes the
investigation of load control on the MG stability and the
coupling of the social and resource network via demand
reduction interventions to reduce diesel usage and reduce
control hysteresis.
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