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Non-linear shrinking of linear model errors 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Residual shrinking is developed for both 
regression and classification problems. 

• The proposed strategy can improve 
predictions while retaining 
interpretability. 

• This contributes to explainable AI by 
shrinking the black box of ANNs.  
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A B S T R A C T   

Background: Artificial neural networks (ANNs) can be a powerful tool for spectroscopic data analysis. Their 
ability to detect and model complex relations in the data may lead to outstanding predictive capabilities, but the 
predictions themselves are difficult to interpret due to the lack of understanding of the black box ANN models. 
ANNs and linear methods can be combined by first fitting a linear model to the data followed by a non-linear 
fitting of the linear model residuals using an ANN. This paper explores the use of residual modelling in high- 
dimensional data using modern neural network architectures. 
Results: By combining linear- and ANN modelling, we demonstrate that it is possible to achieve both good model 
performance while retaining interpretations from the linear part of the model. The proposed residual modelling 
approach is evaluated on four high-dimensional datasets, representing two regression and two classification 
problems. Additionally, a demonstration of possible interpretation techniques are included for all datasets. The 
study concludes that if the modelling problem contains sufficiently complex data (i.e., non-linearities), the re-
sidual modelling can in fact improve the performance of a linear model and achieve similar performance as pure 
ANN models while retaining valuable interpretations for a large proportion of the variance accounted for. 
Significance and novelty: The paper presents a residual modelling scheme using modern neural network archi-
tectures. Furthermore, two novel extensions of residual modelling for classification tasks are proposed. The study 
is seen as a step towards explainable AI, with the aim of making data modelling using artificial neural networks 
more transparent.   
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1. Introduction 

Partial Least Squares (PLS) [1,2] is a popular method for linear 
regression model building and data analysis of high-dimensional spec-
troscopic and multicollinear data. The linear PLS models are considered 
to be relatively simple, and interpretable by considering the score- and 
loading vectors obtained from the model building process. In light of 
Beer Lambert’s law, which states that the absorbance of a chemical 
species is proportional to the concentration of that species in a sample, 
linear models are usually assumed to be sufficient for modelling based 
on spectroscopic data modelling. Although often valid, effects caused by 
physical or chemical interferents, scattering effects or complex struc-
tured materials are sources that may violate Beer Lambert’s law [3]. 
Recent studies have shown that non-linear models based on artificial 
neural networks (ANNs) can sometimes achieve better prediction per-
formance than PLS models [4–6]. These findings lend credibility to the 
inclusion of neural networks in the standard toolbox for spectroscopic 
data analysis. 

The rapid advances in deep learning technology have led to an 
increased interest in the study of neural networks and their potential for 
model building based on spectroscopic data. Despite this increased in-
terest, research on problems related to image- and text analysis are still 
the dominant areas of application. By adapting techniques from estab-
lished deep learning models, it has been demonstrated that convolu-
tional neural networks (CNNs) are especially effective on 1D 
spectroscopic data [7–11]. Furthermore, as CNNs have achieved high 
prediction performance even without including explicit preprocessing of 
the raw spectra [5,12], there are indications that the effect of the pre-
processing step is something that can actually be learned during the CNN 
learning process, given that relevant variation in the interfering signals 
is present in the spectra. 

The ability to learn good feature representations automatically from 
the data is one of the strongest assets of ANN models. However, this 
comes at the cost of model transparency and makes the resulting neural 
network model weaker in terms of interpretations when compared to the 
linear models obtained by PLS and related methods. The troublesome 
understanding of ANN models is caused by the complex sequences of 
non-linear transformations for calculating the network outputs (pre-
dictions) from the input data. 

In order to obtain useful interpretations along with the modelling 
there are two obvious alternatives: 1) One can discard ANN-based 
models and rely solely on interpretable models obtained by simpler 
(linear) strategies at the possible cost of some predictive performance. 2) 
One can focus on developing supplementary methodology to obtain 
more useful interpretations from ANN models, such as feature impor-
tances [13]. A third alternative is to consider a hybrid modelling 
approach that splits the model building process into a linear part (for 
interpretations) and a non-linear part (for enhanced model 

performance). In the literature, the latter approach has different names 
(both hybrid modelling and residual modelling have been used). 

1.1. Comparison to the literature 

Hybrid and residual modelling have been proposed in various forms. 
A popular approach to hybrid modelling is to use an ANN as a feature 
extractor [18]. This procedure can be used to extract non-linear features 
to later be modelled by other models, such as a PLS model [14]. More 
recently, large ANNs pre-trained on massive datasets of images are used 
to extract general features from images to be used as input for other 
models [19]. Another form of hybrid modelling is to use linear models to 
enrich the features fed to an ANN [15]. This is a kind of feature engi-
neering approach to help the ANN model find useful relations in the 
data, and can be useful in situations with little available data. A third 
approach, and the one focused on in this study, is to use an ANN to 
model the residuals from a linear model [16]. The concept was first 
proposed to improve prediction performance of an ANN which suffered 
from poor generalisations [17]. The performance was improved by 
training the ANN to learn the difference between the linear model pre-
diction and the response value and subsequently combine the linear and 
ANN predictions. Residual modelling has also been successfully applied 
to time series analysis based on the linear autoregressive integrated 
moving average (ARIMA) [20–22]. 

With increasing amounts of data collected and better deep learning 
technology, modern ANN models are often outperforming more tradi-
tional models. Thus, the residual modelling might not necessarily 
improve the prediction performance as was shown in the earlier studies. 
A more interesting avenue is therefore to use the residual modelling 
framework to better understand the problem and data. The present study 
explores this possibility of interpretation within the residual modelling 
framework. The framework is similar to Hussain et al. [17], but uses 
modern deep learning techniques such as rectified linear units (ReLU) 
activation functions and dropout layers [23] to obtain better performing 
ANN models. Different from previous studies, we apply modern ANN 
architectures to explore the effectiveness of non-linear modelling of the 
residuals from a linear model with a focus on maintaining model 
interpretability. The study focuses on high-dimensional spectroscopic 
data which has, to our knowledge, not previously been used with re-
sidual modelling. PLS and CNN models are used as examples of linear 
and deep learning models, respectively, because of their standing in the 
literature regarding interpretation possibilities and performance with 
spectral data [24,25]. Fig. 1 shows a basic illustration of the modelling 
scheme. Prediction of a new sample is obtained by adding the predicted 
residual term and the prediction from the linear model together. 

In our study, the residual modelling is applied to four different high- 
dimensional datasets. We also present two novel approaches that extend 
the idea of doing residual modelling also for classification problems. The 

Fig. 1. Schematic illustration of the non-linear residual modelling. The input data is processed by a PLS model to generate interpretable linear prediction ŷPLS. The 
linear prediction is subtracted from the true response to obtain the residuals rPLS which are modelled by the ANN for improved performance of the hybrid model. The 
final prediction ŷ of the hybrid model is obtained as the sum of ŷPLS and r̂ANN. 
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predictive performance of the hybrid modelling scheme is compared to 
both pure PLS modelling and classical ANN modelling. Furthermore, 
possible diagnostic tools for model interpretations are presented and 
discussed for all four problems. 

2. Methods and material 

In the following, we give an overview of the models used in this study 
and a detailed description of the non-linear residual modelling 
approach. 

2.1. Models 

Predictive model building is a learning process for mapping data 
from some input space Rp to an output space Rc. For the regression 
problems considered here, the output space is one-dimensional (c = 1) 
and for classification problems the number of dimensions c equals the 
number of groups. 

In the following, let X ∈ Rn×p be a data matrix with n measurements 
of p-dimensional samples. Assume that X is centred and possibly further 
preprocessed. Let xT denote a row-vector from this matrix with corre-
sponding response value(s) y ∈ Rc. 

The prediction mapping of a linear model can be described by the 
equation 

ŷ = Wx + b (1)  

where W ∈ Rc×p and b ∈ Rc are the parameters called weights and biases, 
respectively, in machine learning and regression coefficients and intercepts 
in statistics and chemometrics. In the case of a PLS model, equation (1) 
becomes ŷ = βx+ y, where W = β is a matrix with regression co-
efficients found through the PLS algorithm and y are the mean response 
values over the training set. The PLS model projects the input data onto a 
low-dimensional latent space represented by score vectors ta. These 
score vectors are found sequentially as the linear combinations of the 
original features that maximise the covariance between an input matrix 
X and response y. In the PLS model building, the score vectors are 
associated with corresponding loading vectors pa which represent co-
ordinates of the features in the compressed subspace. Together, the 
score- and loading vectors form rank one matrices which added together 
form the original data (maximum number of components) or an 
approximation: X̂ =

∑A
a=1tapT

a . 
An ANN model is essentially a function that maps an input vector to 

some scalar or vector output through a sequence of non-linear trans-
formations f1, …, fD. The model is trained by adjusting the network 
parameters (weights) in a supervised fashion. For a network with layers 
d = 1, …, D, each containing nd nodes, the prediction of a sample xT is 
obtained by the composed mapping 

ŷ = (fD∘⋯∘f1)(xT). (2)  

Each transformation is represented by a non-linear function (activation 
function) of the weighted sum of its vector input values, i.e., a non-linear 
vector-to-vector mapping associated with the nodes and weights be-
tween two layers of the network architecture. For example, the trans-
formation associated with a fully connected layer d is defined as 
fd(zT):=φ(Wdz + bd), where φ(⋅) is the non-linear activation function 
operating element-wise on the argument vector. The weight matrix Wd 
can alternatively be replaced by a convolution matrix/operator to obtain 
a convolution layer. Each layer is associated with its own set of weights 
and biases that during the training process are adjusted iteratively by an 
error back-propagation gradient descent algorithm. 

The most important goal of regression modelling is to identify model 
parameter values resulting in small prediction errors when applying the 
model. A popular strategy is to search for the model parameters mini-
mising the mean squared error (MSE) of the training data: ‖ y − ŷ ‖ 2/n, 
where n is the number of samples and ŷ are the associated model 
predictions. 

In PLS regression, the objective implemented by the algorithm in-
cludes decomposition and dimension reduction of the data matrix X 
followed by linear least squares modelling with the reduced data. For a 
neural network the objective is chosen as a loss function (cost function) 
to be minimised by a gradient descent search. In classification problems, 
the objective is to minimise the number of misclassified samples. For a 
classification problem including c different classes (groups), and an n- 
dimensional vector representing the class labelling, the latter is usually 
replaced by a (one-hot encoded) Y ∈ R(n×c) dummy matrix. 

In the PLS modelling approach to classification the dummy matrix is 
taken as the response data to obtain the model predictions Ŷ. Thereafter, 
a classification model can be obtained by linear discriminant analysis 
(LDA) [26] of the fitted values Ŷ. 

The dummy matrix Y can also be taken as the responses for training 
an ANN model with c output nodes including softmax transformations of 
the model output to produce class membership probabilities. A cate-
gorical cross-entropy loss function, defined by 

L(Y, Ŷ) = −
∑n

i=1

∑c

j=1
Yi,jln Ŷ i,j (3)  

is most often used for training the classification ANN, where Ŷ i,j is the 
predicted probability of sample i to belong to class j. 

2.2. Neural network architecture and training 

Choosing an efficient neural network architecture is challenging 

Fig. 2. Illustration of the base neural network architecture used for the 1D datasets.  
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given the almost unlimited number of possible network configurations. 
One of the most important aspects is to find the correct model 
complexity/capacity. The network must be sufficiently complex to 
model the data. However, inclusion of too many weights may lead to 
model overfitting. Due to limited research on network architectures for 
1D spectroscopic data, there are no clear recommendations for the 
choice of model architectures, often resulting in a large amount of time 
spent on model tuning. 

In the present paper, our choice(s) of architecture(s) are based on 
prior experience reported in the literature [12,27]. An illustration is 
shown in Fig. 2. 

This architecture includes one convolution layer followed by a stack 
of fully connected (dense) layers. A non-linear activation function is 
used element-wise in the mappings between each layer, and the dropout 
principle [23] is used for the mappings into the final layer. The number 
and size of the convolution filters, the number of fully connected layers, 
the number of nodes in each hidden layer, the type of activation function 
and the dropout rate are all to be considered as hyperparameters. 

The hyperparameters control the complexity of the model and are 
tuned to each specific dataset in the present work using a Bayesian 
optimisation [28]. A Python algorithm utilising the Keras library of 
TensorFlow [29] implements the training process. Specifications of the 
ranges used in the hyperparameter search are provided in the Supple-
mentary materials. The computations were executed on an NVIDIA 
Quadro RTX 8000 graphics processing unit (GPU). The PLS and LDA 
modelling were done using Python and the scikit-learn package version 
1.1.1 [30]. 

The ANNs used for model predictions and non-linear residual 
modelling on 1D data use the base architecture described above. Among 
the datasets there is one set containing 2D images, for which the ANN 
used is a standard 2D CNN suitable for image recognition. This 2D ar-
chitecture consists of blocks of convolution layers and batch normal-
isation layers with one fully connected layer and regularising dropout 
before the output layer. Dimension reduction is obtained by strided 
convolutions between some network layers. For more details on the 
architecture, see the Supplementary materials. 

The ANN training is based on model updating during multiple epochs 
of error back-propagation. The number of epochs (cycles through the 
training data) is essential for tuning the networks as it affects the amount 
of over/under fitting. Determination of the appropriate number of 
epochs for training is usually done by monitoring the loss (prediction 
error) on an independent validation set during the training phase. 

2.3. Non-linear residual modelling 

The concept behind residual modelling is to improve the prediction 
performance of a linear model by explicitly modelling the prediction 
errors (residuals) from that linear model using a neural network. This 
idea is most straight-forward for regression problems, but the same 
concept can be applied on classification problems (described below). 
The residual modelling procedure is illustrated in Fig. 1. First, the input 
data (X, y) are used to train a PLS model which generates the linear 
prediction ŷPLS. Second, an ANN is trained using the residuals rPLS = y−
ŷPLS as target for the network. Note that the network takes the same data 
X as input. Denoting the prediction of the residuals r̂ANN, the final 

prediction of the non-linear residual shrinking problem is the sum ŷ =

ŷPLS + r̂ANN. 

2.3.1. Classification problems 
It is not as obvious how to transform the residual modelling from 

minimising continuous errors to correcting categorical mis-
classifications. We explore and compare two different approaches called 
MSE-shrinking and CE-shrinking (described below) representing 
different ways to utilise the ANN to correct the linear model outputs. 

In the MSE-shrinking approach, the ANN is trained to learn the 
matrix of residuals from the multi-class PLS prediction R = Y − ŶPLS. 
This approach is similar to regression problems where the network tries 
to learn the difference between the one-hot encoded matrix and the PLS 
prediction. The final prediction is obtained by an LDA model trained on 
the sum ŶPLS + R̂ANN. The loss function of this network is MSE, hence the 
name MSE-shrinking. 

In the MSE-shrinking approach, the ANN is essentially doing a 
regression and is unaware of the final goal of classification. In order to 
obtain an objective more relevant for classification problems, we also 
considered the CE-shrinking alternative where the network is using ŶPLS 
as additional inputs. The purpose of this approach is to try to learn the 
residuals implicitly by forcing the network to improve on the provided 
PLS predictions. This is achieved by adding the PLS prediction ŶPLS to 
the output of the last layer prior to the softmax activation as illustrated 
in Fig. 3. Since the loss function of this network is the commonly used 
categorical cross-entropy, we refer to this alternative residual modelling 
approach as CE-shrinking. 

Upon testing, it turned out that the networks required some con-
straints to avoid ignoring the provided PLS predictions. Without con-
straints, the network models had a tendency to make the outputs of the 
ANN block shown in Fig. 3 extremely large. In effect this essentially 
made the provided PLS predictions irrelevant. 

To overcome this problem, we included an L2-regularisation to the 
ANN contribution by adding λ ‖ Z ‖ to the loss function, where Z is the 
pre-softmax output of the ANN block. By this, the values are forced to be 
of a magnitude similar to the PLS predictions. Through visual inspection, 
it was found that λ = 1 constrained the network modelling sufficiently 
but not too much. Since the ŷPLS will have values close to the range 0–1, 
it is reasonable to assume that λ = 1 is a good choice regardless of the 
dataset. An alternative to visual inspection is to compare the Frobenius 
norms of ŶPLS and Z to determine the appropriate value of λ. The 
parameter λ acts as an additional hyper-parameter that control the 
trade-off between interpretation and performance. With insufficient 
regularisation (λ chosen to be too small), the PLS model interpretations 
of our hybrid modelling approach may be invalid. 

2.3.2. Model selection and validation 
The non-linear residual modelling approach was tested on four high- 

dimensional benchmark datasets described in the next section. During 
the analysis, all datasets, except the MNIST data were divided into 
training (75%) and test (25%) sets in a stratified manner where appli-
cable. The test sets were held aside for the final model evaluations. The 
MNIST dataset is an exception since it comes with predefined sets of 
training- and test data. 

The regression problems were evaluated using the R2 metric and the 
classification problems by prediction accuracy (i.e., percentage of 
correctly classified samples). During training of the ANNs, the MSE was 
minimised. 

2.3.2.1. Model selection. Both the PLS and ANN models require tuning 
of model complexity. This complexity was tuned for each individual 
dataset. For the PLS model, the optimal number of components was 
found using a 5-fold cross validation on the training partition of the data. 
The optimal network architecture for each problem was found using the 
Bayesian optimisation framework described earlier, with 1/3 of the 

Fig. 3. Illustration of the CE-shrinking approach. The penalised contribution of 
the ANN prediction and the PLS prediction are added together (element-wise) 
before the softmax activation in the network. Note that the PLS prediction is 
unchanged during the ANN training phase. 
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training data as a validation set. Using a single partition of the training 
set reduces computational cost drastically compared to a full cross 
validation procedure. We have taken the point of view that a model 
predicting well on the validation data is also expected to perform well on 
the test set. 

2.3.2.2. Model evaluation. During evaluation of the models, the PLS 
model was trained on the whole training set (75% of the total amount of 
data) and evaluated on the test set. The ANN model was trained on 2/3 
of the training data where the final 1/3 was used as a validation set to 
determine how many epochs to train the ANN before convergence. The 
trained network was then used to evaluate the test set. Another practice 
included in our experiments was to do the test set evaluation based on 
the average of 10 neural network models using different random weight 
initialisations in order to obtain more robust estimates of the expected 
predictive performance. 

Fitting the models in the non-linear residual modelling, had to be 
done with care. The PLS model training residuals will typically be 
smaller in magnitude than the validation residuals as the same samples 
are used for training and prediction. This means the ANN would be 
trained on unrealistic residual magnitudes if applied directly to the 
training residuals. A 5-fold cross-validation was therefore used to obtain 
more realistic estimates of the residuals from the PLS model before 
training the ANN using the cross-validated residuals as responses. After 
training the residual ANN on the cross-validated residuals, again using 
1/3 of the data to determine convergence of the network, the test set 
predictions were made by first retraining the PLS model on the whole 
training dataset to obtain the linear test set predictions ŷPLS− test. 
Thereafter, the ANN model trained on the cross-validated residuals was 
used to obtain the non-linear predictions r̂ANN− test of the test set. 

2.4. Datasets 

2.4.1. FTIR 
The first dataset is for regression and contains Fourier-Transform 

Infrared (FTIR) spectra obtained from enzymatic protein hydrolysis 
processes of different rest raw materials from food production [31]. The 
raw materials come from fish and poultry, such as fish heads and chicken 
mechanical deboning residue, which were hydrolysed by different kinds 
of enzymes. As the response, the average molecular weight (AMW) of 
proteins was used, which works as a proxy for the degree of hydrolysis. 
In total, the dataset contains 885 spectra with a varying number of 
replicates. In the subsequent analysis, the spectra with wavenumbers 
between 1800 cm− 1 and 700 cm− 1 are used, resulting in 571 features for 
each spectrum. Prior to the modelling, the spectra were preprocessed 
using Savitzky-Golay smoothed second derivatives with filter width of 
11 points and polynomial smoothing of 3rd degree followed by extended 

multiplicative signal correction (EMSC) with 2nd degree polynomial 
baseline correction. As an extra preprocessing step for the neural net-
works (both ANN modelling and residual shrinking), the data was 
standardised column-wise (autoscaling). 

2.4.2. Raman 
The second dataset is for regression and contains Raman spectra from 

samples of milk [32]. The dataset contains 2682 spectra with varying 
numbers of replicates. The wavenumber range is between 3100 cm− 1 to 
120 cm− 1, resulting in 2979 features for each spectrum. Each spectrum 
was preprocessed using EMSC with 6th order polynomial baseline 
correction. No further preprocessing was done prior to the neural net-
works for this dataset. 

2.4.3. NIR 
The third dataset is a classification problem and contains Near 

Infrared (NIR) spectra from a remote sensing hyperspectral image over 
an area covering 16 different vegetation and soil types in Salinas Valley, 
California [33]. The spectra cover the wavelength range 400 nm–2500 
nm and have 204 features each. In our experiment, a random subset of 
200 samples per class was used. Prior to the analysis, the hyperspectral 
bands corresponding to water absorption were removed. As a pre-
processing step, the Standard Normal Variate (SNV) was performed. No 
further preprocessing was done prior to the neural networks. 

2.4.4. MNIST 
The final dataset is the Modified National Institute of Standards and 

Technology database (MNIST) dataset consisting of 28 × 28 pixel 
greyscale images of handwritten digits [34] used for classification. For 
the PLS model, we convert the samples to 1D by treating each pixel as a 
feature, resulting in 784 features in total. This dataset contains 70 000 
samples (60 000 for training and 10 000 for testing). The classes are 
relatively balanced with the smallest and largest classes containing 
9.02% and 11.25% of the total data respectively. Each feature was 
normalised to have values between 0 and 1. No further preprocessing 
was made for any of the models. A 2D CNN is better suited to capture 
features in the images since it also makes use of the spatial information 
in the data. Therefore, a 2D CNN was applied with the original input 
data shape of 28 × 28 pixels for both ANN modelling and residual 
shrinking. 

3. Results 

The prediction performance of each model is summarised in Figs. 4 
and 5. Starting with the regression problems and the FTIR dataset, the 
best performance was achieved by the non-linear residual model with an 
R2 score of 0.841. The ANN was slightly (but not significantly) worse 
with an R2 score of 0.833. Both alternatives clearly outperformed the 
PLS model which got an R2 score of 0.797. With the Raman dataset, the 
pure ANN performed slightly better than the PLS with R2 scores of 0.915 
and 0.898 respectively. In contrast to the FTIR dataset, the non-linear 
residual modelling did not improve on the linear prediction. The PLS 
models for the FTIR and Raman datasets included 28 and 16 compo-
nents, respectively. 

For the classification datasets we used prediction accuracy (propor-
tion correctly classified) as performance measure since the datasets were 
relatively balanced. For the NIR data, the PLS model achieved an ac-
curacy of 0.958. The ANN had the lowest accuracy of 0.955 while the 
MSE- and CE-shrinking methods had accuracies of 0.958 and 0.963, 
respectively. Taking the uncertainties into account, one cannot claim 
that any of the neural network based methods outperforms the PLS on 
this dataset, meaning that the PLS model was sufficient for this task. On 
the MNIST dataset, the PLS model got an accuracy of 0.877 while the 
pure ANN got an accuracy of 0.992. The MSE-shrinking and CE- 
shrinking techniques got accuracies of 0.994 and 0.986, respectively, 
both significant improvements over the underlying PLS model. The PLS 

Fig. 4. Regression problems. ANN results are the means of 10 trials with 
standard deviation as the error bar. The y-axis is truncated. 
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models for the NIR and MNIST datasets used 20 and 27 components, 
respectively. The relatively high number of components needed must be 
seen in light of the large number of classes (16 for the NIR data) and the 
high intra-class variation (various ways of writing the same digits). 

3.1. Interpretation 

The main motivation for applying non-linear residual modelling was 
to utilise the power of neural networks to model non-linear relation-
ships, while retaining the interpretability. Since the residual modelling 

Fig. 5. Classification problems. ANN results are the means of 10 trials with standard deviation as the error bar. The y-axis is truncated.  

Fig. 6. Score plots from the PLS model of the FTIR dataset. Explained feature variance is shown in parentheses, raw material are encoded as colours and response 
values as circle sizes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Regression coefficients from PLS models trained in the Raman milk dataset using 6, 12 and 16 components.  
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does not affect the linear prediction part, all interpretations of the PLS 
model are still to be considered as valid. In the following we explore a 
selection of possible graphical diagnostic tools and their purpose. Many 
of these diagnostic tools are not available in pure ANN modelling and 
highlights the usefulness of the residual modelling approach. 

Fig. 6 shows score plots of the first four PLS components from the 

model trained on the FTIR dataset. This kind of plot highlights patterns 
in the latent space, shown by similarities or clusters of samples in the 
scatter plots. Based on the observed groupings, it is sometimes possible 
to explain which samples share chemical or physical properties in the 
corresponding components. For instance, by colouring the samples in 
this dataset by their product group (chicken, turkey, mackerel and 

Fig. 8. Score plots from the PLS model of the remote sensing NIR dataset. Explained feature variance is shown in parentheses and symbol usage indicates 
different classes. 

Fig. 9. Score plots from the PLS model trained on the MNIST dataset. Explained feature variance is shown in parentheses, and symbol colours indicate digits. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Loading weights of the first four PLS components from the MNIST dataset, reshaped back to original image size (28 × 28).  
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salmon), it is confirmed that the first two components distinguishes 
salmon from other samples. The plot also emphasises a group of turkey 
samples with larger AMW values. This demonstrates that from such 
score plots one can detect possibly unknown groupings or confirm 
already known or hypothesised groupings in the data. Furthermore, such 
plots can also be useful for detection outliers. 

Fig. 7 shows line plots of the regression coefficients obtained from 
three different PLS models including 6, 12 and 16 PLS components, 
respectively, all trained on the Raman milk dataset. Such plots are useful 
for detecting important regions in the feature space for predicting the 
response, indicated by positive or negative peaks and contrasts. The 
model including 6 PLS components shows a peak in the region around 
the 1700 cm− 1 shift. This peak is typical in systems with rich lipid 
content such as these samples [32] and can be an indication of varying 

lipid contents along with the iodine value variation. Other areas of in-
terest for similar substances include 3000 cm− 1 and 1300 cm− 1, where 
indeed peaks are also observed. However, more than 6 PLS components 
are needed before these become visually apparent. Another observation 
is that the regression coefficients get more noisy with an increased 
number of components and is an indication of model over fitting. 

For the NIR remote sensing dataset, the score plots shown in Fig. 8 
reveal important insights. The first two components (left figure) displays 
a curvy structure which indicates that there may be some effect in the 
spectra picked up by the model that should have been corrected for in 
the preprocessing. A hypothesis for explaining this phenomenon is that 
it has something to do with the pre-treatment of removing the water- 
absorbance part of the spectra prior to the analysis. In both plots we 
get a visual confirmation of the similarity of samples within the same 
category as well as indication of outlying samples, e.g., the Vinyard 
vertical trellis observation at around coordinates (2,-0.5) in the leftmost 
plot. 

For the MNIST dataset, the associated score plots in Fig. 9 show how 
similarities between the different classes can be revealed. The score plot 
of the first two components, shows that digits with similar appearance 
such as 4, 9 and 7 tend to be grouped closely together. Furthermore, 
samples of the digit 1 lie far away from samples of digit 0, indicating that 
the first component distinguishes curves from straight lines. Another 
interesting observation is that the amount of explained variance is fairly 
low for the earlier components compared to the models for the other 
datasets, meaning that PLS modelling requires more components to 
effectively capture all variance of the MNIST features. Since the MNIST 
dataset consists of 2D sample images, it is also possible to visualise the 
PLS loading weights as images in the original 28 × 28 pixel image space 
as shown in Fig. 10. The loading weights highlight regions in the input 
space with large impact on the resulting PLS model(s) and associated 

Fig. 11. Line plot of the test set residuals (absolute values) from the FTIR 
hydrolysates dataset for the pure PLS model and after the residual modelling. 
The blue and red lines show the PLS model residuals and the new residuals after 
the residual shrinking respectively in increasing order from left to right. The 
grey line shows the new residuals after the residual shrinking in the same order 
as the sorted PLS residuals. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Confusion matrices of test set predictions on the MNIST dataset. Left: PLS model, right: PLS + non-linear residual modelling. The numbers in the diagonals 
are removed for clarity and the information is summarised in the bar plot at the bottom. The bar plot shows the classification accuracy per class for each model. 
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predictions. The first PLS loading seems to be focused on capturing oval 
shapes like zeros consistent with the earlier interpretation from the score 
plot. The other loadings also resemble structures of familiar handwritten 
numbers. 

The residual modelling approach offers additional options regarding 
model interpretation by studying how the final residuals are changed 
compared to the PLS residuals. For regression problems, the changes can 
be visualised as line plots as in Fig. 11. In this figure, the absolute values 
of the residuals of the test set predictions are shown. The blue line in the 
figure corresponds to the PLS model residuals plotted in increasing order 

from left to right. The corresponding new residuals after the residual 
shrinking are shown by the grey line. The red line corresponds to these 
new residuals after the residual shrinking in increasing order. It can be 
observed that the PLS residuals with large absolute values tend to get 
reduced by the ANN, while some samples get a higher residual after 
performing the residual modelling. The plot reveals the gain of the re-
sidual modelling, and may be useful for identifying possible outliers, e. 
g., samples with notably larger residuals compared to the overall re-
sidual distribution. The indicated outlying samples can then be inspec-
ted with respect to eventual irregularities in the data collection 
procedure. 

In classification problems, a simple diagnostic tool to study the effect 
of the residual modelling are confusion matrices as shown in Fig. 12. A 
confusion matrix is used to evaluate a model performance by giving a 
summary of the counts of true versus predicted classes. By convention, 
the confusion matrix rows indicate the true class and the columns 
indicate the predicted class. For a useful classification model, the diag-
onal entries, showing the number of correctly classified samples, should 
contain the largest numbers. Here, these numbers are summarised as a 
bar plot for good overview. The confusion matrices reveal classes that 
are more challenging than other. For instance, the PLS model predicts 
the digit 7 to be a 9 wrongly 71 times. However, this mistake, along with 
most others, are corrected by the ANN model. Additionally, one can look 
at individual samples which the PLS model predicted wrongly and 
corrected by the residual shrinking, with the aim to pinpoint where the 
linear model works poorly. An example image is shown in Fig. 13 where 
the PLS model predicted the digit 9 instead of the correct digit 8. The 
barplot shows that the PLS model was not very confident in its decision 
among the alternative candidates (8, 4 and 6). Interestingly, the model 

Fig. 13. Output from PLS model and after the MSE-shrinking approach for a sample image. True label: 8, PLS prediction: 9, prediction after residual shrinking: 8.  

Fig. 14. R2 score of the non-linear residual modelling using different numbers 
of PLS components. The error bars indicate the standard deviation of 10 
different ANN weight initialisations. 

Fig. 15. Accuracy score of the non-linear residual modelling for classification using different numbers of PLS components. The error bars indicate the standard 
deviation of 10 different ANN weight initialisations. 
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obtained after the residual estimation is extremely confident in its pre-
diction of the class to be an 8. 

4. Discussion 

The main benefit of the presented non-linear residual model scheme 
is that model interpretations are partly available, i.e., from the linear 
part of the modelling. In cases where the linear part of a hybrid model 
dominates the contribution to prediction it also provides better insights 
than the pure ANN modelling alternative. The examples shown in the 
results section indicate that non-linear ANN-modelling of the linear PLS 
residuals yields models that are often close to the pure ANN models in 
performance. The utility of the non-linear residual modelling becomes 
most evident when the problem is sufficiently complex and may serve as 
a useful alternative to a black-box ANN. 

Our results also indicate that ANN based models are not always the 
superior choice regarding good predictions. For both the Raman- and 
NIR datasets analysed in this study, the difference in predictive perfor-
mance between the ANN- and PLS models were insignificant. For such 
simple problems, it is therefore not surprising that the idea of hybrid 
modelling adds little or nothing with regard to improved predictive 
performance. 

It is noteworthy that both the MSE-shrinkng and CE-shrinking ap-
proaches for classification performed well despite differences in the 
corresponding optimisation problems (i.e., different loss functions). No 
conclusion can be drawn whether one of the two approaches is superior 
based on the examples considered here. One major difference between 
the two alternatives is that the CE-shrinking requires tuning of an 
additional hyperparameter to set the balance between how much the 
PLS- and the ANN model contribute to the hybrid model predictions. 

A fair question to ask is whether the proposed hybrid non-linear 
residual modelling is necessary or if one alternatively could train a 
PLS model to support interpretations and a separate ANN model to 
handle the predictions. However, this alternative provides no direct 
connection between the separate PLS- and ANN model behaviours. With 
the hybrid residual modelling scheme it will always be possible to 
inspect a prediction to assess its composition with regard to the linear 
and non-linear contributions. In effect, the proposed hybrid modelling 
can be thought of as shrinking the size of the ”black box” associated with 
the ANN model, where the shrinkage depends on the dominance of the 
linear model part. 

Supported by prior knowledge regarding the data, subject to the 
model building, it is possible to judge the validity of a model by 
considering the content of the different model visualisation techniques. 
The diagnostic tools for interpretation presented can roughly be divided 
into two categories. On the one hand, the score- and loading plots pro-
vide insight into the subspace spanned by the PLS components. The 
other type of visualisation is provided by filters and feature maps of the 
neural network and governs a different feature space than the PLS 
model. The choice of visualisation from the ANN is dependent on the 
network architecture, and currently convolutional layers seem to offer 
the best options. Currently, it is easier to relate to visualisation of images 
as shown with the MNIST dataset. But, 1D signals can be treated in a 
similar fashion to detect regions of higher activation [7]. 

The residual modelling is not the only way of modelling non- 
linearities with a PLS model. Alternatively, a non-linear extensions of 
PLS modelling such as RBF-PLS [35] can be considered. This model 
might be a good alternative but lack the same flexibility in feature 
representations the ANN provides. Interpretability through the use of 
kernel functions might also be challenging. 

Since the MNIST dataset consists of 2D images forming a three- 
dimensional tensor representation of input data, X, an alternative to 
vectorising (unfolding) the images to be features for ordinary PLS 
modelling is the application of a multilinear PLS version like N-PLS or N- 
CPLS [36,37] directly with the tensor representation. These methods 
also provide loading weights and loadings along each of the image 

dimensions which can be beneficial for understanding the resulting 
model. However, when comparing these modelling alternatives for the 
MNIST data, performance was near identical to ordinary PLS. 

In our examples, non-linear residual modelling was applied on PLS 
models using the optimal number of components decided by cross- 
validation. It can be argued that using fewer components might be 
beneficial for the subsequent residual modelling approach. With fewer 
PLS components, the neural network essentially gets more freedom since 
the PLS model does not explain as much variance. Furthermore, since 
interpretation is typically done using the first few components, much of 
the insights are retained. Using fewer PLS components might also reduce 
the risk of letting the PLS model attempt to model non-linearities more 
suited for the ANN. To test the effect of using different numbers of 
components, all examples were repeated using 6 and 12 PLS components 
respectively, and keeping everything else unchanged, while repeating 
the ANNs on the new and larger residuals. A presentation of the results 
to be compared are shown in Figs. 14 and 15. In general, the use of fewer 
PLS components resulted in better performance of the resulting hybrid 
model. An exception is the Raman dataset where the use of fewer PLS 
components gave significantly worse performance. A possible explana-
tion for this is that the ANN training process was unable to find any 
relevant information in the residuals. Hence, the ANN was not able to 
successfully model the larger residuals from a reduced PLS model (fewer 
components), resulting in an overall worse performance compared to an 
optimal PLS model. The failure of the residual modelling is shown by the 
higher variance in the associated error bar for the 6 component model 
alternative. 

5. Conclusion 

We have demonstrated a hybrid modelling framework where an 
artificial neural network (ANN) is used to predict residuals from a linear 
model. The concept is presented for regression problems and later 
extended for classification tasks. In the residual modelling scheme, the 
data modelling is split into a linear and non-linear part, allowing the 
majority of the data modelling to be done by a linear interpretable 
model while the ANN is used to boost the prediction performance. It is 
shown that with the proposed framework, it is possible to achieve almost 
the same predictive performance as a pure ANN modelling but with the 
added benefit that a larger proportion of the model can be interpreted, 
thereby shrinking the black box of the ANN. 
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