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ABSTRACT The energy mix of future power systems will include high shares of electricity generation
by wind turbines and solar photovoltaics. These generation facilities are generally connected via power-
electronic inverters. While conventional generation responds dynamically to the state of the electric power
system, inverters are power-electronic hardware and need to be programmed to react to the state of the
system. Choosing an appropriate control scheme and the corresponding parameters is necessary to guarantee
that the system operates safely. A prominent control scheme for inverters is droop control, which mimics
the response of conventional generation. In this work, we investigate the stability of coupled systems of
droop-controlled inverters in arbitrary network topologies. Employing linear stability analysis, we derive
effective local stability criteria that consider both the overall network topology as well as its interplay with
the inverters’ intrinsic parameters. First, we explore the stability of an inverter coupled to an infinite grid and
uncover stability and instability regions. Second, we extend the analysis to a generic topology of inverters and
provide mathematical criteria for the stability and instability of the system. Last, we showcase the usefulness
of the criteria by examining two model systems using numerical simulations. The developed criteria show
which parameters might lead to an unstable operating state.

INDEX TERMS Droop-controlled inverters, power-grid dynamics, linear stability analysis, small-signal
stability.

I. INTRODUCTION
The ongoing transition to a sustainable energy system
challenges the stability of electric power systems in several
ways [1]. Renewable power sources, such as wind power
and solar photovoltaics, fluctuate on a large range of
time scales [2], [3], [4]. Wind power is often located
at favorable locations far away from the centers of the
load, requiring long-distance transmission [5]. Cellular or
microgrid concepts are being developed to increase robust-
ness, enabling small or islanded power systems to operate
safely [6], [7]. Finally, wind turbines and solar panels are
generally connected to the power grid via power-electronic
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inverters instead of traditional synchronous machines, which
fundamentally alters frequency and voltage dynamics [8],
[9]. A system driven by inverter-connected generation is
fundamentally different from present systems around the
world which still have a considerable amount of generation
by large rotating generator masses. While conventional
generation using large rotating masses is synchronously
coupled to the grid due to electromechanical properties,
inverters can be freely programmed to react to a mea-
sured state of the connected power grid. Different control
algorithms have been proposed to achieve different targets.
Studying how the dynamics of inverters are affected by
different endogenous factors, e.g., different line types and
model details [10], [11], becomes increasingly important
as we move to a system dominated by power-electronic
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inverters, particularly by droop-controlled inverters [12],
[13], [14], [15]. Furthermore, it is essential to understand
the collective dynamics of coupled inverters as well as how
their interaction with the topology of the underlying power
grid influences the set of system parameters that lead to a
stable operating state. For example, the existence of different
network motifs and topologies can destabilize the grid [16],
induce multistability [17], [18], or influence the propagation
of disturbances [19].

This article presents a set of analytically derived stability
criteria for droop-controlled inverters. It extends upon previ-
ous studies on the topic, especially the ones by Schiffer et al.,
Refs. [20], [21], and [22] dealingwith synchronousmachines,
by providing a discussion of the interplay of frequency,
voltage dynamics, the power-grid topology, and their impact
on the stability of the full system. Additionally, we make use
of these criteria to derive a set of necessary and sufficient
conditions for the linear stability of power grids with an
arbitrary topology. In particular, we derive upper bounds for
the reactive power droop gains and lower bounds for the
connectivity of the network.

The paper is organized as follows. In Sec. II, we intro-
duce the model used to describe the collective dynam-
ics of inverter-based networks with the dynamics of
droop-controlled inverters being described in Sec. II-A,
the equations pertaining to the connecting power grid in
Sec. II-B, and the stable states of operation or fixed points
in Sec. II-C. In Sec. III, the dynamics of a single inverter
coupled to an infinite grid are investigated to ascertain
the existence of different regions of stability for different
system parameters. Subsequently, we extend the stability
analysis to arbitrary network topologies by constructing the
Jacobian of the full system and formulating conditions for
stability and instability in Sec. IV. In Sec. V, we extend
these conditions to derive a set of explicit stability conditions
expressed as inequalities. Finally, in Sec.VI, we test the
tightness of the derived conditions and thus their usefulness
in determining the stability of considered fixed points by
numerical experiments in two test systems.

A list of reoccurring symbols and notations can be found
in Table 1.

II. MODELING INVERTER-BASED POWER GRIDS
A. DYNAMICS OF DROOP-CONTROLLED INVERTERS
Traditional power systems rely on synchronous machines to
produce power and supply every consumer in the network
with electricity. Synchronous machines possess an intrinsic
relation between their power output and their frequency and
phase angle, described by the swing equation [23]. Power-
electronic inverters, on the contrary, do not possess such an
intrinsic relation a priori but offer some flexibility to design
their control mechanics and response. The vast majority of
the commonly used inverters employ a control scheme that
mimics the dynamics of conventional synchronous machines.
In most cases, a simple proportional control is applied,

TABLE 1. List of reoccurring symbols and variables used in the
subsequent chapters. Vectors are written as boldface lowercase Roman
letters and matrices as boldface uppercase case Roman letters.

whereas in fair argumentation the frequency regulation is
designed to be an instantaneous reaction and the voltage
control is regulated with a delay. These types of controllers
are denoted droop controllers since they ‘droop’ or decrease
their internal characteristics (frequency or voltage) to match
a desired state of operation.

The basic state variables of a set of inverters j =

1, . . . ,N are the voltage magnitude Ej ∈ R+ and the
voltage power phase angle δj ∈ S. The control system
adjusts these state values according to measurements of the
active and reactive power exchanged with the grid. Following
Schiffer et al. [21], a general control scheme for the inverter
j obeys the equations

δ̇j = uj,

τVj Ėj = −Ej + vj, (1)
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where τVj ∈ R+ is the recovery time of the voltage dynamics
under control. In a simple proportional, or droop, control
scheme, the frequency control uj ∈ R is directly proportional
to the active power Pelj and the voltage control vj ∈ R is
proportional to the reactive power Qel

j (in VAR). Hence, the
control signals read

uj = ωd
− κj

(
Pmes
j − Pdj

)
,

vj = Edj − χj

(
Qmes
j − Qdj

)
, (2)

and

τjṖmes
j = −Pmes

j + Pelj ,

τjQ̇mes
j = −Qmes

j + Qel
j , (3)

where the superscript ·
mes indicates the measured values

of active and reactive power and the superscript ·
d stands

for desired, i.e., referring to the desired frequency or
voltage at inverter j. Naturally, the desired frequency ωd

the inverters should attain is unique across the power grid,
whereas the desired voltage Edj depends on each inverter.
A natural choice for the desired frequency is the reference
frequency of 50Hz or 60Hz, i.e., the most common mains
frequencies, which are within a certain range that balances the
efficiency of generators and motors and certain requirements
of equipment [23]. The parameters κj and χj are the droop
gains for the active and reactive power, respectively.

The measurement of the active and reactive power is
typically not instantaneous. This is taken into account by a
low-pass filter such that the measured values Pmes

j and Qmes
j

at inverter j are given by Eq. (3) with a low-pass-filter time
constant τj [24], where Pelj and Qel

j denote the instantaneous
values.
We now summarize the equations of motion describing the

inverter and its control system. The measured values of the
power Pmes

j andQmes
j can be expressed in terms of the control

signals using the relations Eq. (2). A further simplification
can be made as the recovery time of the voltage dynamics is
typically much lower than the time constant of the low-pass
filter such that we can set τVj = 0 in Eq. (1), which yields
vj = Ej. Hence, we obtain the following set of equations of
motion of an inverter j [20], [21]

δ̇j = ωj,

τjω̇j = −ωj + ωd
− κj

(
Pelj − Pdj

)
,

τjĖj = −Ej + Ed
j − χj

(
Qel
j − Qd

j

)
. (4)

The active and reactive power exchanged with the grid, Pelj
and Qel

j , depend on the state of all elements in the grid.
To close the equations of motion we thus have to specify the
network equations for the power grid.

B. THE NETWORK EQUATIONS
The active and reactive power flows in a power grid are
described by the classical alternating current (AC) load-flow

equations [23]. We consider a network consisting of inverter
(active) and load (passive) nodes, which are modeled by a
constant impedance to the ground. The passive nodes can be
eliminated using the Kron reduction resulting in an effective
network consisting of inverter nodes only [25]. In the
following, we use this reduced network only. Without loss
of generality, we can assume that the network is connected,
as we can analyze different components separately otherwise.
The complex voltage at each inverter node j = 1, . . . ,N

is written as Vj = Ejeiδj with Ej ∈ R+ and δj ∈ S. The total
current injected in the grid is linear in the voltages according
to Ohm’s law and can be written as

Ij =

N∑
ℓ=1

Yj,ℓVℓ. (5)

Here, we have introduced the nodal admittance matrix Y ∈

CN×N with the entries

Yj,ℓ = Gj,ℓ + iBj,ℓ =

 ŷj +
∑
k ̸=j

yj,k if j = ℓ;

−yj,ℓ if j ̸= ℓ,

(6)

where yj,ℓ is the admittance between nodes j and ℓ in the
effective Kron-reduced network. Furthermore, ŷj = ĝj +

ib̂j, where ĝj and b̂j denote the shunt conductance and
susceptance, respectively. Without the shunts, the matrices G
and B are graph Laplacian matrices [26].
The apparent power feed-in Selj at node j is given by

Selj = VjI∗j =

N∑
ℓ=1

VjY ∗

j,ℓV
∗

ℓ , (7)

where the superscript ∗ denotes the complex conjugate.
Decomposing into active and reactive power, Selj = Pelj +iQel

j ,
yields

Pelj =

N∑
ℓ=1

EjEℓ

[
Bj,ℓ sin(δj,ℓ) + Gj,ℓ cos(δj,ℓ)

]
, (8a)

Qel
j =

N∑
ℓ=1

EjEℓ

[
−Bj,ℓ cos(δj,ℓ) + Gj,ℓ sin(δj,ℓ)

]
, (8b)

using the shorthand δj,ℓ = δj − δℓ. In the main part of the
manuscript, we restrict ourselves to lossless grids settingGj,ℓ
to zero. The network equations then read

Pelj =

N∑
ℓ=1

EjEℓBj,ℓ sin(δj,ℓ), (9a)

Qel
j = −

N∑
ℓ=1

EjEℓBj,ℓ cos(δj,ℓ). (9b)

For actual calculations, it is often convenient to use scaled
units. In the per-unit (pu) system all voltages, currents,
powers, and impedances are expressed in units of a suitably
chosen reference value such that the load flow equations
become dimensionless [23].
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C. FIXED POINTS OF THE POWER GRID MODEL
The stationary operation of a power grid corresponds to
a stable fixed point of the equations of motion Eq. (4).
All voltages Ej, frequencies ωj, and power phase angle
differences δj,ℓ = δj − δℓ must be constant in time to
ensure a stationary power flow between the nodes of the
grid. The condition of fixed phase differences requires that
all machines rotate at the same frequency δj(t) = ω̄t + δ◦

j for
all j = 1, . . . ,N , leading to the conditions

ω̇j = Ėj = 0, δ̇j = ω̄, for all j = 1, . . . ,N . (10)

In a mathematically strict sense, this defines a stable limit
cycle of the system. However, all points of the cycle are
physically equivalent and we can choose any point on the
cycle as a representative of the equivalence class and call
this an equilibrium. Perturbations along the limit cycle would
simultaneously add or subtract a global phase shift δ from all
phases δj, thus not affecting phase synchronization and power
flows. These perturbations will be excluded from the stability
analysis, which is expressed in Def. 1. In the following,
we use the superscript ·

◦ to denote the equilibrium values of
phase angle, frequency, and voltage.

Using the equations of motion Eq. (4) and the network
equations Eq. (9a) and Eq. (9b), the equilibria of an
inverter-based power grid are described by the nonlinear
algebraic equations

ω̄ = ω◦
j ,

0 = ωd
− ω◦

j + κjPdj − κj

N∑
ℓ=1

Bj,ℓE◦
j E

◦

ℓ sin(δ
◦

j,ℓ),

0 = Edj − E◦
j + χjQdj + χj

N∑
ℓ=1

Bj,ℓE◦
j E

◦

ℓ cos(δ
◦

j,ℓ). (11)

Furthermore, we transform to a frame of reference that rotates
with a constant angular velocity of ω̄. In this frame of
reference, we have δ̇j = 0 which simplifies the analysis.
We note that several equilibria can coexist in networks with
sufficiently complex topology, although such does not hinder
performing linear stability analysis [27].

III. SINGLE INVERTER COUPLED TO AN INFINITE GRID
We first examine the simplest possible system, a single
inverter coupled to an infinite grid. For this system, one can
systematically compute all fixed points and scan over system
parameters to obtain a comprehensive picture of the stability
of the considered fixed point.

In this system, the voltage and frequency of the infinite
grid are assumed to be constant at the reference level Ê and
ωd , respectively. In a rotating frame, we can further set the
power phase angle of the grid to zero. Hence, we are left
with the dynamics of the single inverter in terms of its voltage
magnitude Es, power phase angle δs, and frequency ωs. The
equations of motion Eq. (4) then read

δ̇s = ωs,

τ ω̇s = −ωs + ωd
− κ(ÊEsB sin (δs) − Pd ),

FIGURE 1. Simulation of a single inverter coupled to an infinite grid
starting from a stable fixed point and increasing the reactive power droop
gain χ . The remaining parameters where chosen as τ = 0.1 s, B = 1.5,
κ = 1, Pd = 1.25, Qd = 0.05, Ê = 1, and Ed = 1. Initially, the system is in
a stable fixed point for a reactive power droop gain of χ1 = 0.05. After
the reactive power droop gain is increased to χ2 = 0.15 at the dashed
black line, the system moves to a new stable fixed point. Finally, the
reactive power droop gain is increased to χ3 = 0.3 at the dotted black
line. After the final change to χ3, there is no stable fixed point and the
dynamics exhibit a limit cycle behavior.

τ Ės = −Es + Ed

− χ (−ÊEsB cos (δs) + BE2
s − Qd ). (12)

where we have used that Bs,s = −Bs,grid = −B.
The fixed points of Eq. (12) can be written as x◦

s =

(δ◦
s , 0,E

◦
s )

⊤, where the superscript ⊤ denotes the transpose
of the vector. We can solve for the fixed points analytically
by squaring the frequency and voltage equations to eliminate
the fixed point power phase angle δ◦

s . The fixed point voltages
E◦
s of Eq. (12) are thus determined by the equation

0 = B2E◦
s
4
+ 2χ−1BE◦

s
3

+

[
χ−2

− 2κ−1BEd − 2BQd − Ê2B2
]
E◦
s
2

+

[
−2χ−2

(
Ed + χQd

)]
E◦
s

+

[
Edχ−2

+ 2χ−1QdEd + Qd
2
+

(
ωd

κ

)2

+ 2
ωdPd

κ
+ Pd

2
]
, (13)

which is a 4th-order polynomial in E◦
s that can be solved

analytically. Note that only real and positive solutions of
Eq. (13) are physically meaningful and will be considered in
the subsequent steps.

If a solution E◦
s of Eq. (13) is found, the corresponding

power phase angle δ◦
s is given by

δ◦
s = arcsin

(
ωd/κ + Pd

BÊE◦
s

)
. (14)

Naturally, not every set of parameters guarantees a stable
fixed point. Given a physically meaningful solution to
Eq. (14), the argument of arcsine in Eq. (14) has to be
in the interval [−1, 1]. Note, we also presupposed that the
frequency ω◦

s should vanish and thus we are only concerned
with fixed points that meet this requirement.We now consider
an example where we see how the stability of a fixed point
may be lost such that the inverter becomes unstable. In the
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FIGURE 2. Scan over the desired reactive power Qd and the desired
active power Pd for a single inverter coupled to an infinite grid. The
remaining parameters were chosen as τ = 0.1 s, B = 1.5, κ = 1, χ = 0.5,
Ê = 1, and Ed = 1. To classify how the fixed point changes for different
parameters, the stationary power phase angle δ◦

s (panel a), stationary
voltage magnitude E◦

s (panel b) and the dominant eigenvalue of the
Jacobian µdom (panel c) are shown. The white color indicates regions
where no stable fixed point could be found. The dashed lines show
parameters on which the fixed point power phase angle or voltage
magnitude take the same value.

example shown in Fig. 1, the simulation was initialized
in a fixed point calculated using Eq. (13) and Eq. (14).
Subsequently, we increase the reactive power droop gain
by starting with a reactive power droop gain χ1 = 0.05,
increasing it to χ2 = 0.15 and to χ3 = 0.3 at the times
indicated by the vertical black lines. The dynamics settles on
a new fixed point after the first change to χ2 = 0.15 and the
stability of the fixed point is lost after the change to χ3 = 0.3.
The local stability properties of an equilibrium, i.e., sta-

bility with respect to small perturbations, can be obtained by
linearizing the equations of motion [28], [29]. We decompose
the state variables into the values at the fixed point and small
perturbations, which can be written as

δs(t) = δ◦
s + ξs(t), ωs(t) = ω◦

s + νs(t), Es(t) = E◦
s + ϵs(t).

(15)

We linearize Eq. (12) in the small perturbations around the
fixed point x◦

s = (δ◦
s , 0,E

◦
s )

⊤. The linearized dynamics are
given by

d
dt

ξs
νs
ϵs

 = Js

ξs
νs
ϵs

 , (16)

where Js ∈ R3 is the Jacobian

Js = 0 1 0
−τ−1κE◦

s C −τ−1
−τ−1κS

−τ−1χE◦
s S 0 −τ−1

[
1 + χ

(
2BE◦

s − C
)]
 ,

(17)

with C = BÊ cos (δ◦
s ) and S = BÊ sin (δ◦

s ).
The matrix Js is the central object of linear stability

analysis, with its eigenvalues and eigenvectors showing how
a trajectory behaves close to a fixed point. The fixed point is
asymptotically stable, i.e., the small disturbances ξs(t), νs(t)
and ϵs(t) decay exponentially, if all eigenvalues µn have a
negative real part.

To understand which parameters lead to a stable fixed
point, we scan over different parameter combinations.

FIGURE 3. Scan over the coupling strength B and the desired active
power Pd for a single inverter coupled to an infinite grid. The remaining
parameters were chosen as τ = 0.1 s, Qd = 0.05, χ = 0.5, κ = 1, Ê = 1,
and Ed = 1. To classify how the fixed point changes for different
parameters, the stationary power phase angle δ◦

s (panel a), stationary
voltage magnitude E◦

s (panel b) and the dominant eigenvalue of the
Jacobian µdom (panel c) are shown. The white color indicates regions
where no stable fixed point could be found. The dashed lines show
parameters on which the fixed point power phase angle or voltage
magnitude take the same value.

We focus on the desired active power Pd , the desired reactive
power Qd , the coupling strength B, and the reactive power
droop gain χ . The active power Pd and reactive power Qd

are requirements of the connected consumers or producers
of electricity, and B gives the coupling strength to the power
grid network. The reactive power droop gain χ is a parameter
that can be freely chosen by the grid operator. We choose
Ê = 1, Ed = 1, κ = 1 and τ = 0.1 s if not stated otherwise.
Note, while Qd can in general be negative, we focus on
the case of positive Qd . In Fig. 2 we show the static power
phase angle, static voltage, and the real part of the dominant
eigenvalue examined over a range of values of Pd and Qd ,
where χ = 0.5 and B = 1.5 are fixed.

No stable fixed point can be found if the desired power
Pd exceeds a critical threshold. The fixed point vanishes
in a saddle-node bifurcation when the power phase angle
takes the value δ◦

s = π/2 and the real part of the dominant
eigenvalueµdom is zero. Increasing the desired reactive power
Qd permits larger values for the desired active power Pd .
Additionally, Fig. 2 also shows that the stationary power
phase angle δ◦

s is mostly influenced by the desired power Pd ,
while the stationary voltage E◦

s is mostly influenced by the
desired reactive power Qd .

The scan over the coupling strength B and desired active
power Pd can be seen in Fig. 3. The maximum Pd increases
almost linearly with the coupling strength B for the chosen
parameters. Again, the stationary power phase angle δ◦

s
assumes a maximum value close to the bifurcation.

The scan over different reactive power droop gains χ and
desired power Pd (see Fig. 4) reveals that there is also a
bifurcation for increasing the reactive power droop gain χ .
In contrast to the parameters B, Pd andQd , the reactive power
droop gain χ is a parameter that can be freely chosen in the
inverters and is of large importance when trying to ensure the
system stays in a stable state.

To highlight the influence of the reactive power droop
gain χ in shaping the parameter region with a stable fixed
point, the separatrices of different values of χ are shown
in Fig. 5. For low values of χ , the separatrix in the
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FIGURE 4. Scan over the reactive power droop gain χ and the desired
active power Pd for a single inverter coupled to an infinite grid. The
remaining parameters were chosen as τ = 0.1 s, Qd = 0.05, B = 1.5,
κ = 1, Ê = 1, and Ed = 1. To classify how the fixed point changes for
different parameters, the stationary power phase angle δ◦

s (panel a),
stationary voltage magnitude E◦

s (panel b) and the dominant eigenvalue
of the Jacobian µdom (panel c) are shown. The white color indicates
regions where no stable fixed point could be found. The dashed lines
show parameters on which the fixed point power phase angle or voltage
magnitude take the same value.

FIGURE 5. Shape of regions with stable fixed points of a single inverter
coupled to an infinite grid for different values of the reactive power
droop gain χ . Dashed lines show the border between parameter regions
where a stable fixed point exists (left of the curves) and where no stable
fixed point can be found (right of the curves). The coupling strength
B = 1.5 and the desired reactive power Qd = 0.05 were chosen for panel
a and b, respectively. The remaining parameters were chosen as τ = 0.1 s,
κ = 1, Ê = 1, and Ed = 1.

Qd -Pd plane is almost vertical and Pd almost exclusively
determines if a stable fixed point is present. This changes
for increasing values of χ resulting in the separatrix
describing approximately a linear function in the Qd -Pd

plane. Increasing the reactive power droop gain χ results in
an overall smaller parameter region with a stable fixed point
in the B-Pd plane. Thus, the network has to be reinforced, i.e.,
B has to be increased, to ensure that the fixed point is stable
for the same Pd and increasing χ .

IV. LINEAR STABILITY ANALYSIS FOR EXTENDED
NETWORKS
A. LINEAR STABILITY ANALYSIS
We now extend the linear stability analysis to systems
consisting of multiple inverters that are coupled by an
underlying network. As in the case of the single inverter,
we linearize the equations of motion around the fixed point
to find out if the perturbation ξj(t), ϵj(t), and νj(t) decay
exponentially, i.e., the fixed point is linearly stable. To this
end, we decompose the state variables for each inverter
j as the sum of their equilibrium values and the small
perturbation as

δj(t) = δ◦
j + ξj(t), Ej(t) = E◦

j + ϵj(t), ωj(t) = ω◦
j + νj(t).

(18)

Inserting this decomposition in the equations ofmotion Eq. (4)
yields, at linear order

ξ̇j = νj (19)

τjν̇j = −νj − κj

N∑
ℓ=1

(
3j,ℓξℓ − Aℓ,jϵℓ

)
, (20)

τjϵ̇j = −ϵj + χjE◦
j

N∑
ℓ=1

(
Hj,ℓϵℓ + Aj,ℓξℓ

)
, (21)

where we have defined the matrices 3,A,H ∈ RN×N with
components

3j,ℓ =

{
−E◦

j E
◦

ℓBj,ℓ cos(δ
◦

ℓ,j) for j ̸= ℓ,∑
k ̸=j E

◦
j E

◦
kBj,k cos(δ

◦
k,j) for j = ℓ,

(22)

Aj,ℓ =

{
−E◦

ℓBj,ℓ sin(δ
◦

ℓ,j) for j ̸= ℓ,∑
k E

◦
kBj,k sin(δ

◦
k,j) for j = ℓ,

(23)

Hj,ℓ =

{
Bj,ℓ cos(δ◦

ℓ,j) for j ̸= ℓ,

Bj,j +
∑

k Bj,k cos(δ
◦
k,j)E

◦
k /E

◦
jfor j = ℓ.

(24)

Furthermore, we define the diagonal matrices (all in RN×N )

E = diag(E◦

1 ,E◦

2 , . . . ,E◦
N ), (25)

T = diag(τ1, τ2, . . . , τN ), (26)

K = diag(κ1, κ2, . . . , κN ), (27)

X = diag(χ1, χ2, . . . , χN ). (28)

In the following, we assume that all droop constants, i.e.,
κ and χ , and all time constants τ are strictly positive by
design and we neglect the case that an equilibrium voltage
vanishes exactly. Hence, the four matrices defined above all
have strictly positive diagonal entries.

We can then summarize the linearized equations of motion
in a vectorial form defining the vectors ξ = (ξ1, . . . , ξN )⊤,
ν = (ν1, . . . , νN )⊤, and ϵ = (ϵ1, . . . , ϵN )⊤, where the
superscript ⊤ denotes the transpose of a matrix or vector.
We obtain

d
dt

ξ

ν

ϵ

 = J

ξ

ν

ϵ

 , (29)

with the Jacobian matrix

J =

1l 0 0
0 T−1K 0
0 0 T−1XE

 0 1l 0
−3 −K−1 A⊤

A 0 H̃

 , (30)

and the abbreviation H̃ = H − X−1E−1.
Generally, an equilibrium is linearly (asymptotically)

stable if the real part of all relevant eigenvalues of the
Jacobian matrix J is strictly smaller than zero [28]. In this
case, however, we must slightly adapt this definition. We note
that J always has one eigenvalueµ1 = 0 with the eigenvector(

ξ ν ϵ
)⊤

=
(
1 0 0

)⊤
. (31)

This eigenvector corresponds to a global shift of the inverters’
phase angles δ 7→ δ + α which has no physical significance
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and must thus be excluded from the stability analysis. Hence,
the linear stability analysis can be restricted to the subspaces

D(3)
⊥

=

{
(ξ , ν, ϵ) ∈ R3N

|(1, 0, 0)⊤(ξ , ν, ϵ) = 0
}

, (32a)

D(2)
⊥

=

{
(ξ , ϵ) ∈ R2N

|(1, 0)⊤(ξ , ϵ) = 0
}

, (32b)

D(1)
⊥

=

{
ξ ∈ RN

|1⊤ξ = 0
}

. (32c)

Furthermore, it is convenient to order the eigenvalues of the
Jacobian as

µ1 = 0, ℜ(µ2) ≤ ℜ(µ3) ≤ · · · ≤ ℜ(µ3N ). (33)

We can now formulate a consistent condition for linear
(asymptotic) stability transversally to the limit cycle (cf.
Ref. [28]).
Definition 1: The equilibrium (δ◦

j , ω
◦
j ,E

◦
j ) is linearly

(asymptotically) stable if ℜ(µn) < 0 for all eigenvalues
n = 2, . . . , 3N of the Jacobian matrix J defined in Eq. (30).

B. THE REDUCED JACOBIAN
We can significantly simplify the linear stability analysis
by eliminating the frequency subspace, leading to a reduced
Jacobian of dimension 2N instead of 3N . In particular,
we obtain the following lemma
Lemma 1: The linear stability of an equilibrium (δ◦

j , ω◦
j ,

E◦
j ) is determined by the reduced Jacobian

4 =

(
−3 A⊤

A H̃

)
. (34)

The equilibrium is stable if4 is negative definite onD(2)
⊥
. It is

unstable if 4 is not negative semi-definite on D(2)
⊥
.

Proof: Define the Lyapunov function candidate

V :=

ν

ξ

ϵ

⊤K−1T 0 0
0 3 −A⊤

0 −A −H̃


︸ ︷︷ ︸

=:P

ν

ξ

ϵ

 . (35)

Then one finds

V̇ = −2ν⊤K−1ν − 2(Aξ + H̃ϵ)⊤T−1XE(Aξ + H̃ϵ)

≤ 0. (36)

The last inequality follows as the matrices T ,X , K , and
E are diagonal with only positive entries. If 4 is negative
definite, then P is positive definite and the equilibrium is
stable according to the Lyapunov stability theorem. If 4

is not negative semi-definite, then also P is not positive
semi-definite and the equilibrium is unstable according to the
Lyapunov instability theorem. □

V. EXPLICIT CONDITIONS FOR STABILITY AND
INSTABILITY
In this section, we derive some explicit conditions for the
stability or instability of an inverter-based grid. Guided by
the results for the single inverter from Sec. III, we will focus

on the role of the network connectivity and the reactive power
droop gain χ . The starting point of our analysis is Lemma 1,
for which we introduce a further decomposition into the
voltage and angle subspace.

A. DECOMPOSING VOLTAGE AND ANGLE SUBSPACES
We can obtain further insight into the stability condition by
a decomposition in terms of the rotor angle and the voltage
dynamics. Applying the Schur or Albert complement [30] to
the reduced Jacobian 4, we obtain the following result.
Lemma 2 (Sufficient and Necessary Stability Conditions

for Lossless Power Grids)
I. The equilibrium (δ◦

j , ω
◦
j ,E

◦
j ) is linearly stable if (a) the

matrix 3 is positive definite on D(1)
⊥

and (b) the matrix
H̃ + A3+A⊤ is negative definite, where ·

+ is the
Moore–Penrose pseudoinverse.

II. The equilibrium (δ◦
j , ω

◦
j ,E

◦
j ) is linearly stable if (a) the

matrix H̃ is negative definite and (b) the matrix 3 +

A⊤H̃
−1
A is positive definite on D(1)

⊥
.

The equilibrium is linearly unstable if any of the above
definiteness conditions are violated.
Proof: Here, we present solely the proof for criterion I,

as an equivalent procedure can be used to prove criterion II.
The reduced Jacobian matrix 4 can be decomposed as

4 = U⊤SU, (37)

with S ∈ R2N×2N a block diagonal matrix

S =

(
−3 0
0 H̃ + A3+A⊤

)
, (38)

and a transformation matrix

U =

(
1l −3+A⊤

0 1l

)
. (39)

The transformation matrix U is of full rank and maps the
vector (1,0)⊤ onto itself. Hence, U also maps the relevant
subspace D(2)

⊥
onto itself. Now assume that S is negative

definite on D(2)
⊥
. Then for every x ∈ D(2)

⊥
, x ̸= 0 we have

x⊤4x = (Ux)⊤S(Ux) < 0. (40)

Similarly, if we assume that 4 is negative definite on D(2)
⊥
,

then for every y ∈ D(2)
⊥
, y ̸= 0, we have

y⊤Sy = (U−1y)⊤4(U−1y) < 0. (41)

Hence, the transformation U does not affect the definiteness:
4 is negative (semi-)definite on D(2)

⊥
if and only if S is

negative (semi-)definite on D(2)
⊥
.

Using Lemma 1 we know that the equilibrium is linearly
stable if 4 or equivalently S is negative definite on D(2)

⊥
and

unstable if 4 is not negative semi-definite. Since S is block
diagonal, the definiteness of the entire matrix is equivalent to
the definiteness of both blocks and the lemma follows. □
Lemma 2 allows us to obtain a deeper insight into the

linear stability of inverter-based power grids and permits the
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derivation of several explicit stability criteria. To this end,
we will proceed through the conditions of the lemma step by
step.

B. ANGLE STABILITY
Condition I. (a) in Lemma 2 refers to the stability of
the isolated phase angle system, disregarding the voltage
dynamics. To see this, we artificially fix the voltages such
that ϵ = 0. The linearized equations of motion read

d
dt

(
ξ

ν

)
=

(
0 1l

−T−1K3 −T−1

)(
ξ

ν

)
. (42)

Performing the same simplification as in the previous
sections, one finds that the system is stable if and only if
the matrix 3 is positive definite on D(1)

⊥
, which is identical

to condition I.(a) in Lemma 2. One can now easily find a
sufficient condition for angle stability. If for all connections
(j, ℓ) in the grid we have

cos(δ◦
j − δ◦

ℓ ) > 0, (43)

then 3 is a proper Laplacian matrix of a weighted undirected
network, which is well known to be positive definite on
D(1)

⊥
[26].

Necessary and sufficient conditions are harder to obtain.
If condition (43) is not satisfied for one or several connec-
tions, the matrix 3 rather describes a signed graph, for which
positive definiteness is more involved. A variety of criteria
have been obtained in [31], [32], [33], and [34].
In the following derivations, the Fiedler value or algebraic

connectivity λ2 and the corresponding Fiedler vector vF will
be used [35], [36], [37]. They are the smallest non-zero
eigenvalue λ2 of a Laplacian and the corresponding eigenvec-
tor vF . A Laplacian has at least one zero-valued eigenvalue
λ1 = 0. Further zero-valued eigenvalues correspond
to the number of disjoint connected components in the
network. The algebraic connectivity λ2, as its name suggests,
indicates howwell-connected a network is. As the connection
between different parts of the networks become weaker,
λ2 moves closer and closer to zero until the network separates
into disjoint parts increasing the multiplicity of λ1. Thus,
the algebraic connectivity λ2 encodes relevant information
regarding the connectivity of the network and plays a crucial
role in the stability analysis of networked systems.

C. VOLTAGE STABILITY
Condition II. (a) in Lemma 2 entails the stability of the
isolated voltage subsystem. To see this, we artificially fix the
angles such that ν = ξ = 0. Then the linearized equations of
motion read

d
dt

ϵ = T−1XEH̃ ϵ. (44)

Recall that the matrix T−1XE is a diagonal matrix with
strictly positive entries. Hence, we find that the isolated
voltage dynamics is linearly stable if and only if the matrix H̃

is negative definite, which is identical to condition II. (a) in
Lemma 2.

We find a necessary and a sufficient condition for voltage
stability in terms of the droop constants (cf. [38]). Both show
that the droop gains for the reactive power χ must not be
chosen too large.
Corollary 1: If for all nodes j = 1, . . . ,N,

1
χj

>

N∑
ℓ=1

Bj,ℓ(E◦
j + E◦

ℓ ) (45)

and condition (43) holds for all connections (j, ℓ) in a power
grid, then the matrix H̃ is negative definite and the voltage
subsystem is stable.
Proof: By applying Geršgorin’s circle theorem [39] to the
matrix H̃ , the following condition for its eigenvalues αj, ∀j
stands

|αj − Cj| ≤ Rj, (46)

where

Cj = H̃j,j = Hj,j − (E−1X−1)j,j

= Bj,j +
∑
k

Bj,k cos(δ◦
k − δ◦

j )
E◦
k

E◦
j

−
1

χjE◦
j

Rj =

N∑
ℓ̸=j

|Bj,ℓ cos (δ◦
j − δ◦

l )|, (47)

are the center and the radius of the Geršgorin disk,
respectively. All eigenvalues are guaranteed to lie in the
left half of the complex plane, which yields the negative
definiteness, if Cj + Rj < 0 for all j = 1, . . . ,N . Evaluating
this condition yields

1
χj

> Bj,jE◦
j +

∑
k

Bj,k cos(δ◦
k − δ◦

j )E
◦
k

+

N∑
ℓ̸=j

E◦
j |Bj,ℓ cos (δ

◦
j − δ◦

ℓ )|. (48)

Using the bound cos(·) ≤ 1, | cos(·)| ≤ 1, and the positivity
of Bj,ℓ, a sufficient condition for negative definiteness of H̃
is obtained as

1
χj

>

N∑
ℓ=1

Bj,ℓ(E◦
j + E◦

ℓ ) . (49)

This concludes the proof. □
Corollary 2: If for any subset of nodes S ⊆ {1, 2, . . . ,N },∑

j∈S

1
χjE◦

j
≤

∑
j,ℓ∈S

Hj,ℓ, (50)

then the matrix H̃ is not negative definite and the equilibrium
is linearly unstable.
Proof: This result follows from evaluating the expression
x⊤H̃x for a trial vector x ∈ RN with entries xj = 1 ∀j ∈ S
and xj = 0 ∀j /∈ S. □
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D. COUPLED STABILITY CRITERIA
We have shown that part (a) of both stability criteria in
Lemma 2 refer to each isolated subsystem. Hence both
must be stable in themselves to enable linear stability of
the full dynamical system. The remaining parts (b) of the
stability criteria then refer to the coupled frequency and
voltage dynamics. These criteria are significantly stricter than
the isolated criteria. To see this, we focus on criterion I in
Lemma 2, assuming that 3 is positive definite on D(1)

⊥
. The

complementary condition I. (b) is

H̃ + A3+A⊤
≺ 0, (51)

where Z ≺ 0 is used as a short hand for Z being negative
definite. This condition is stricter than the condition of
pure voltage stability, H̃ ≺ 0. Hence, the stability of the
two isolated subsystems is not sufficient. Instead, they must
comprise a certain ‘security margin’ quantified by the second
term on the left-hand side of Eq. (51) in order to maintain
linear stability.

We now present several explicit stability criteria, focusing
on the interplay of internal dynamics and the grid topology.
We typically assume that the two isolated subsystems are
stable, i.e., conditions I. (a) and II. (a) in Lemma 2 are
satisfied unless stated otherwise. First, we consider the case
of small reactive power droop gains, as this is necessary to
ensure voltage stability, see Corollaries 1 and 2, and relate
stability to the connectivity of the grid.
Corollary 3: A necessary condition for the stability of an

equilibrium point is given by

λ2 >

N∑
j=1

χjE◦
j

[
N∑
k=1

Aj,kvFk

]2
+O(χ2

j ), (52)

where λ2 is the network’s algebraic connectivity and vF
denotes the Fiedler vector of the Laplacian 3 for χj ≡ 0.
Proof: A normalized Fiedler vector vF is defined at χj ≡

0 [35], [36], [37]. The actual normalized Fiedler vector, for
a particular non-zero value of the χj, is denoted v′F , such that

v′F = vF +O(χj). (53)

Following criterion II. (b) in Lemma 2, the stability of the
fixed point requires that all vectors y obey

y⊤3y > −y⊤A⊤H̃
−1
Ay. (54)

Now we consider the particular choice y = v′F to obtain
a necessary condition for stability. The left-hand side of
condition (54) then simplifies to v

′
⊤
F 3v′F = λ2. To simplify

the right-hand side, we expand thematrix inverse according to

−H̃
−1

= (E−1X−1
−H)−1

=

∞∑
ℓ=0

EX(EXH)ℓ,

= EX +O(χ2
j ). (55)

Substituting this expansion into condition (54), we obtain the
necessary condition to leading order in the reactive power
droop gains,

λ2 > v⊤FA
⊤EXAvF +O(χ2

j ). (56)

An equivalent result in synchronous generators can be found
in Ref. [38] and this concludes the proof. □
We recall that a necessary and sufficient criterion for the

stability of the isolated frequency subsystem is given by
λ2 > 0. In contrast, the right-hand side of condition (52) is
generally positive. Hence, additional algebraic connectivity
is needed in the grid as a ‘security margin’ to guarantee the
stability of the whole dynamical system.

We can further derive two sufficient stability criteria, one
in terms of the reactive power droop gains χ by extending
Corollary 1 and one in terms of the algebraic connectivity
λ2 of the network.
Corollary 4: An equilibrium is linearly stable if the

network’s algebraic connectivity is positive, λ2 > 0, and the
reactive power droop gains satisfy

1
χj

>

N∑
ℓ=1

Bj,ℓ + E◦
j
∥A∥2∥A⊤

∥2

λ2
, (57)

for all nodes j = 1, . . . ,N, where ∥ · ∥2 is the induced ℓ2-
norm.
Proof: A positive algebraic connectivity λ2 > 0 implies

that both 3 is positive definite on D(1)
⊥

and criterion I. (a) in
Lemma 2 is satisfied.

Consider now criterion I. (b). Using the same arguments as
in the proof of Corollary 1 one can show that the conditions
Eq. (57) imply that the matrix

H̃ +
∥A∥2∥A⊤

∥2

λ2
1l (58)

is negative definite. Noting that λ−1
2 = ∥3+

∥2 and using the
sub-multiplicativity of the ℓ2-norm, we then find that ∀y ̸=

0 we have

y⊤
[
−H̃ −

∥A∥2∥A⊤
∥2

λ2

]
y > 0

⇔ y⊤
[
E−1X−1

−H
]
y > ∥A∥2∥3

+
∥2∥A⊤

∥2∥y∥2

≥ ∥A3+A⊤
∥2∥y∥2

≥ y⊤A3+A⊤y

⇔ y⊤
[
E−1X−1

−H − A3+A⊤

]
y > 0. (59)

Hence, matrix H̃ + A3+A⊤ is negative definite. Criterion I.
(b) in Lemma 2 is satisfied and the equilibrium is linearly
stable. □
The condition given by Corollary 4 highlights that a

stable fixed point needs both a sufficiently large algebraic
connectivity λ2 and low reactive power droop gains χ .
Corollary 5: If by criterion II. (a) in Lemma 2 the matrix

H̃ is negative definite, and if the algebraic connectivity
λ2 satisfies

λ2 > ∥A⊤H̃
−1
A∥2, (60)

where ∥·∥2 is the induced ℓ2-norm, then the equilibrium point
is linearly stable.
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Proof: Condition II. (a) in Lemma 2 is satisfied by
assumption, so we can focus on condition II. (b)

The assumption (60) implies that ∀y ∈ D(1)
⊥

y⊤3y ≥ λ2∥y∥2

> ∥A⊤H̃
−1
A∥2∥y∥2

≥ y⊤A⊤H̃
−1
Ay, (61)

such that the matrix3+A⊤H̃
−1
A is positive definite onD(1)

⊥
.

Condition II. (b) in Lemma 2 is therefore satisfied and the
equilibrium is linearly stable. □

VI. TESTING THE USEFULNESS OF THE STABILITY
CRITERIA
We now compare the findings above to numerical results
for two test systems. One system consists of two inverters
and the other consists of ten inverters arranged in a tree-
like topology. In both cases, a subset of the inverters act as
net producers of electricity, which can be seen as inverters
injecting power into the system, e.g., solar panels or wind
turbines, and the remaining inverters act as consumers, which
could, for example, be batteries that are being charged for
later consumption. One of the inverters serves as a slack
node. At this inverter, the phase is set to δslack = 0, the
voltage magnitude is kept at Eslack = 1, and the equations
for the active and reactive power are not considered. The
slack node acts as an ideal voltage source that can provide an
arbitrary amount of power. Hence, we exclude the conditions
in Eq. (11) for the slack nodewhen calculating the fixed point.
If needed, the active and reactive power injections at the slack
node can be computed afterward.

As in the example for the single inverter discussed in
Sec. III, the desired frequency is set to ωd

= 0. Since
we are in a co-rotating reference frame, this corresponds to
synchronized dynamics with the reference frequency. The
desired voltage was set to Ed = 1, the low-pass-filter time
to τ = 0.1 s, the active power droop gain κ = 1, and the
desired reactive power to Qd = 0.05. In both cases, we will
examine a scan over different values of desired power Pd ,
coupling strength B, and reactive power droop gains χ .
The two-inverter system has one inverter with a desired

active power of Pd1 = Pd and one with Pd2 = −Pd . Tracking
the physical fixed points, determining their stability, and
evaluating Corollaries 4 and 5 leads to the stability maps that
can be seen in Fig. 6. For a given desired power Pd , a stable
fixed point only exists if the coupling strengthB is sufficiently
high and the reactive power droop gain χ is kept relatively
constrained. The critical value of the coupling strength B
increases super-linearly with the desired power Pd , while the
critical reactive power droop gain decreases with Pd .
We generally find a good agreement between the explicit

stability criteria and the stability boundary resulting from the
evaluation of the eigenvalues of the Jacobian. In particular,
Corollaries 4 and 5, which represent sufficient conditions for
stability, capture the general shape of the separatrix between
stability and instability. Notably, there is a small region where

FIGURE 6. Corollary 4 (top row) and Corollary 5 (bottom row), sufficient
conditions for stability, result in a tight bound for the region with a stable
fixed point for a two-inverter system. A schematic representation of the
network is shown in the inset in the upper right of panel b, with one of
the inverters acting as a slack node (indicated by S). Panels a and c are
the results of a scan over Pd and the coupling strength B, and panels b
and d are the results of a scan over Pd and the reactive power droop gain
χ . The reactive power droop gain was chosen as χ = 0.5 for the scan in
the B-Pd plane in panels a and c, and the coupling strength B = 1.5 was
chosen for the scan in the χ-Pd plane in panels b and d. Additionally, the
low-pass-filter time τ = 0.1 s, the active power droop gain κ = 1, desired
voltage Ed = 1, and desired reactive power Qd = 0.05 were chosen. The
different colors show where the fixed point is stable or unstable, and
where the corollaries indicate a stable fixed point. The separatrix
between stable and no-stable fixed points regions is given by the dashed
black line. Note that the region where the Corollaries 4 and 5 imply the
stability of the fixed point always overlays the region where the full
Jacobian indicates a stable fixed point.

the fixed point is stable, while Corollary 4 does not point to
a stable fixed point. This is to be expected as Corollary 4 is
merely a sufficient condition.

Subsequently, we investigate a system with N = 10 nodes
in a tree-like power grid (see inset in panel b in Fig. 7)
The outer nodes are net producers of power (e.g., solar
panels) providing power to the four inner nodes that are
net consumers of power. While the outer nodes have a
desired active power of Pd,f , the inner ones have a desired
active power of −3Pd,f /2. In this case, the central node
acts as the slack node. The overall shape of the parameter
region with a stable fixed point (see Fig. 7) is similar
to the previously treated cases. A minimum value of the
coupling strength B is required for a stable fixed point,
where the critical value increases super-linearly with Pd,f

(see panel a.). Furthermore, the reactive power droop gains
χ must not exceed a critical value, which decreases with
increasing Pd,f (see panel b.). In general, Corollaries 4 and 5
describe the shape of the stable parameter region well.
Note, in comparison with the two-inverter system (see
Fig. 6), the region where Corollaries 4 and 5 indicate a
stable fixed point is smaller. This highlights again that
Corollaries 4 and 5 are sufficient conditions for a stable fixed
point that conservatively predict the stable parameter region.

In summary, the numerical simulations of the two con-
sidered test systems show the usefulness of the developed
corollaries. The developed corollaries highlight the role of
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FIGURE 7. Corollary 4 (top row) and Corollary 5 (bottom row), sufficient
conditions for stability, correctly identify the region with stable fixed
points for a considerable region in parameter space for a tree-like
topology. The six outer nodes deliver power, while the inner four ones
consume power (see inset in panel b). A slack node with fixed voltage
magnitude E1 = 1 and the reference power phase angle δ1 = 0 is located
at the center (indicated by S). The reactive power droop gain was chosen
as χ = 0.5 for the scan in the B-Pd ,f plane in panel a and c, and the
coupling strength B = 1.5 was chosen for the scan in the χ-Pd ,f plane in
panel b and d. Additionally, the low-pass-filter time τ = 0.1 s, the active
power droop gain κ = 1, desired voltage Ed = 1, and desired reactive
power Qd = 0.05 were chosen. The different colors show where the fixed
point is stable or unstable, and where the corollaries indicate a stable
fixed point. The separatrix between stable and no-stable fixed points
regions is given by the dashed black line. Note that the region where the
Corollaries 4 and 5 imply the stability of the fixed point always overlays
the region where the full Jacobian indicates a stable fixed point.

different parameters, in particular, the reactive power droop
gains χ , in shaping the parameter region with a stable fixed
point. As the corollaries were developed analytically, they
reveal the interplay of these parameters in a general and
transparent way.

VII. CONCLUSION AND DISCUSSION
In this article, we investigated the collective dynamics of
a network of droop-controlled inverters. Modern power
grids rely evermore on power-electronic devices given the
increased penetration of renewable energy sources. Since
droop-controlled inverters are a promising type of power-
electronic inverters, we need to understand how systems
of connected droop-controlled inverters behave dynamically.
More specifically, we need to know the combination of
values for the intrinsic parameters of each inverter that ensure
the desired operating state, i.e., the fixed point, is stable.
We started by considering a single inverter coupled to an
infinite grid. Using this simple setting, all fixed points and
their stability could be determined analytically. Scanning
over the desired active power Pd , the reactive power Qd ,
the coupling strength to the power grid B, and the reactive
power droop gain χ reveals when the single inverter can
operate at a stable fixed point. The numerical results show that
the existence of a stable fixed point necessitates a coupling
strength B that is sufficiently large to transmit the desired
powerPd . Furthermore, a stable fixed point can only be found

if the chosen reactive power droop gain χ does not exceed a
critical value.

To understand the stability of droop-controlled inverters
in extended networks, we examined the full set of equations
of motion for arbitrary networks of inverters in a lossless
setting. We decomposed the voltage and power-phase-angle
dynamics and employed linear stability analysis, resulting
in the central stability conditions summarized in Lemma 2.
Using these results, we were able to formulate several explicit
stability criteria (Corollaries 1 to 5). Therein, a set of stability
conditions are given as a set of inequalities, involving the
isolated frequency and voltage subsystems as well as the
full system. Notably, connectivity bounds for the full system
are tighter than for the isolated subsystems, as shown in
Corollary 3. Furthermore, an upper bound for the reactive
power droop gains χ is given in Corollary 4. Since the droop
gains can be programmed and chosen freely for each inverter,
uncovering the upper bounds for these droop gains is needed
to guarantee a stable operating state is obtained.

Subsequently, we numerically tested the derived stability
criteria for two test systems by comparing the stability given
by the full Jacobian to the one predicted by the derived
sufficient stability criteria. In general, Corollaries 4 and 5
capture the shape of the parameter regions with a stable fixed
point well. The parameter region that is stable according to
the full Jacobian is larger than the stable parameter region that
is stable according to Corollaries 4 and 5. This discrepancy
is larger for the larger test system network. While a general
statement about the tightness of the corollaries requires
further investigation of different network ensembles, which
should also consider heterogeneous parameters, Corollaries 4
and 5 are sufficient conditions for the stability of the
considered fixed point. Thus, it is to be expected that they
underestimate the size of the stable parameter region and
therefore represent a conservative estimate.

Finally, the analytical treatment of droop-controlled invert-
ers can be used to understand the dynamics of power grids
that are driven by an increasing share of inverter-connected
generation by solar and wind resources. The insights obtained
by the derived stability conditions can be used to test the
parametric dependencies of the stability regions. In particular,
the analytic results highlight the interplay of the internal
parameters of the inverters, such as the reactive power
droop gain χ , and network properties, such as the algebraic
connectivity λ2.
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