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Sammendrag  

Helt siden 1980-tallet, har DNA fra biologisk åstedsmateriale blitt brukt til å identifisere 

berørte i ulike straffesaker (1). Alle individer har et unikt genmateriale og dermed også en 

unik DNA-profil. Dette kan utnyttes hvis man ønsker å knytte biologiske spor til en donor slik 

at en person kan bli rettmessig frifunnet eller for å bringe frem nyttig informasjon til 

etterforskningen og eventuelt styrke mistanken mot en mistenkt. Kunnskap om ulike 

celletyper på et åsted, kan også gi vesentlig informasjon om handlingsforløpet til en 

kriminalsak. Eksempelvis kan kunnskapen om tilstedeværelsen av vaginalt sekret eller 

sædvæske bidra til å fremme viktige opplysninger innen ulike voldtektssaker (2). 

Hos rettsmedisinske laboratorier, er det vanlig å utføre forundersøkelser som gir en indikasjon 

på om en spesifikk celletype/kroppsvæske er til stede eller ikke. Disse testene er vanligvis 

basert på kjemisk eller enzymatisk fargeendringer, men er dessverre ikke humanspesifikke og 

kan være vanskelige å tolke ved små mengder cellemateriale. Derfor må vi forvente at tester 

som inkluderer fargeendring vil være beheftet med en viss usikkerhet (3).  

RNA, ribonukleinsyre, er et molekyl som blant annet er involvert i overføringen av genetisk 

informasjon fra DNA til proteinsyntese. RNA inneholder derfor viktig informasjon om 

genuttrykket til ulike celler. Ved å se på gener som er utelukkende utrykt hos spesifikke 

celler, kan man bruke genene til å identifisere ulike celletyper (4).  

 I løpet av de siste årene har nye celleidentifikasjonsmetoder blitt introdusert hos 

rettsmedisinske laboratorier. En av disse metodene inkluderer vevsspesifikke RNA-markører 

som kan brukes til å lage RNA-profiler. Ved å se på unike kombinasjoner av RNA-markører 

til en RNA-profil, kan man identifisere flere humanspesifikke celletyper slik som blod, spytt, 

sæd, vaginalsekret, menstruasjon og hud (5).  

Til tross for at en RNA-profil kan bidra til verdifull tilleggsinformasjon om en straffesak, er 

metoden enda ikke inkorporert i rettsgenetisk saksbehandling.  En av årsakene til dette er at 

RNA-profiler har flere elementer som må tolkes på en annen måte enn hos DNA profiler (5). I 

tillegg finnes det enkelte markører som er mindre spesifikke som har vist seg å kryssreagere 

med andre celletyper. RNA-markøren MUC4, en humanspesifikk markør som koder for 

mucin-4, er for eksempel utelukkende utrykt i vaginalsekret, men har vist seg å bli detektert i 

både spytt og nesesekret (6). 
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I denne studien skal vi finne ut om vi kan bruke RNA-profiler til å lage en statistisk modell 

for celletypebestemmelse. Spesielt da med hensyn på prediksjon av ulike humanspesifikke 

celletyper i rettsgenetisk sammenheng. Analysen er basert på eksisterende data som er hentet 

fra avdeling for rettsmedisinske fag hos Oslo universitetssykehus (RESP-OUS). Vi kommer 

til å gå innom hvilke utfordringer vi kan støte på ved på ved predikering ved hjelp av RNA. 

For eksempel, kan uspesifikke markører slik som MUC4 bidra til dårlige prediksjon.   
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Abstract  

Ever since the 1980s, DNA from biological crime scene material has been used to connect 

suspects to crime scenes and victims that are affected in various criminal cases (1). All 

individuals have a unique genetic material that can be used to create a unique DNA-profile. A 

DNA-profile is an efficient way to link biological traces to a donor so that a person can be 

rightfully acquitted or to assess the investigation further and possibly strengthen the suspicion 

against the suspect. Knowledge about the different cell types at a crime scene, can also 

provide important information about the course of action from the event that occurred. For 

example, can the presence of vaginal secretion or seminal fluid give valuable information in 

various rape cases (2). 

In forensic laboratories, it is common to perform presumptive tests that confirm whether a 

specific cell type/body fluid is present or not. These tests are usually based on chemical or 

enzymatic color changes but are unfortunately not human-specific and can be hard to interpret 

if there are small amounts target material. Therefore, we must expect that some tests must be 

confirmed with a certain uncertainty (3). 

RNA, ribonucleic acid, is a molecule involved in transferring genetic information from DNA 

to protein synthesis. This means that RNA contains valuable information about the gene 

expression in various cells. By looking at genes that are exclusively expressed in specific 

cells, we can use the knowledge to identify different cell types (4). 

Today, several new cell identification methods have been introduced in forensic laboratories. 

One of these cell typing methods include tissue specific RNA markers that can be used to 

create an RNA profile. By looking at the unique combinations of RNA markers for an RNA 

profile, one can identify several human-specific cell types such as blood, saliva, semen, 

vaginal secretions, menstruation and skin (5).  

Even though an RNA profile can contribute to valuable additional information about a 

criminal case, the method has not yet been widely incorporated into forensic genetics case 

management. One of the reasons for this is because an RNA profile has several factors that 

must be interpreted in a different way than DNA profiles (5). In addition, there are certain 

markers that have been shown to be less specific and can cross-react with other cell types. The 

RNA marker MUC4, a human-specific marker that codes for mucin-4, is for example, 
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exclusively expressed in vaginal secretions, but has been shown to be detected in both saliva 

and nasal secretions (6). 

In this study, we will find out if we can use RNA profiles to create a statistical model for cell 

type prediction. We will specifically focus on prediction of human specific cell types and 

body fluids related to forensic casework. The data used in this analysis is based on existing 

data acquired from the Department of Forensic Medicine at the University Hospital in Oslo 

(RESP-OUS). The data were used in a statistical model for cell type determination. In the 

study we will mention some of the challenges that we may encounter while predicting 

different cell types/body fluids with RNA profiles. For example, non-specific markers such as 

MUC4 may contribute to poor prediction. 
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1. Introduction  

Forensic science is the application of scientific techniques and principles that is used to 

provide important evidence or context to legal investigations. The first applications in forensic 

science, can be traced all the way back to ancient Chinese and Roman societies. Antistius, 

from the ancient Rome, did for example perform the first autopsy on Julius Caesar around 44 

B.C.E. While a jurist from China, Sung Tzhu, wrote one of the greatest works within forensic 

medicine: the “Hsi Yuan Chi Lu” (The Washing Away of all Wrongs) in AD 1247 (7) (8).  

During the industrial revolution and the early nineteenth century, new scientific methods 

within the forensic field were introduced. Methods such as: fingerprint analysis, UV 

spectrophotometer for detection of organic material and the comparison microscope for 

compering microscopic patterns (7). 

However, it was not until 1985 that DNA profiling technique was initially introduced in a 

laboratory by the British geneticist, Sir Alec Jeffery (9).  DNA profiling stands as one of the 

most important advancements in forensic science, allowing the comparison of DNA samples 

from different sources to determine a person’s genetic makeup. In 1987, the DNA profiling 

technique was first used in a police forensic test, where it played a crucial role in confirming 

the veracity of a suspect's confession and securing the conviction of a murderer involved in 

the rape and murder of two teenagers (10). The first criminal case that used the technique in 

Norway was in 1988 and was also regarding a rape-murder case (11). 

Today many severe criminal cases can be solved or aided with the help of DNA profiling. The 

technique is a critical tool in forensic investigation since it can be used to identify individuals 

related to evidence in a criminal investigation or exonerate innocent individuals. A DNA 

profile is based on a unique genetic signature that comes from a small variation in the genome 

among individuals. This means that every individual, except identical twins, has their own 

specific profile that can be used to link biological samples to a donor. (12) 

The aim of forensic studies is to aid and assist the court in reaching a valid conclusion or 

judgement of a criminal investigation. Knowledge about the identity of the donor is 

unfortunately not always enough evidence to provide a proper conclusion in court. In some 

cases, the question is more centered around how the evidentiary traces got deposited, rather 

than the individual that deposited it.  
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As an example, can the prosecution scenario (H1) differ from the alternative scenario (H2) 

based on how the cellular material, got deposited. The cellular material from the suspects can, 

for example, be found on the murder weapon due to direct contact between the suspect and 

the weapon after the suspect used the weapon to murder the victim (H1). Or as alternative 

scenarios (H2):  the cellular material has been deposited after the murder was committed, the 

suspect could have been in contact with the weapon before the murder took place or the 

findings could have been transferred from the suspect to the actual killer due to secondary 

transfer. (13) 

In some cases, is it important to know the localization and the type of body fluid/tissue that 

were deposited. Some body fluids are more likely to be localized at certain areas than others. 

For example, we do not expect to find vaginal discharge on hands or certain objects. The 

identification and localization of the cellular material can therefore be a critical aspect to be 

considered in rape cases or other cases where the action of the activity is uncertain.  

Unfortunately, a DNA profile gives little information about the timing, activity nor cellular 

origin of the dispositioned biological fluid/tissue that might be crucial information for further 

investigation. 

There are fortunately several methods that are used for identification of body fluids and 

different tissues. Some of the most common body fluid/tissue identifying methods in forensic 

science are based on chemical and enzymatic assays. These tests are often called 

“presumptive” and are used to verify the presence of a specific compound, usually by 

enzymatic color changing reactions. An acid phosphatase (AP) test, is an example of a 

standard chemical reaction used in forensic labs to detect the presence of an enzyme that is 

present in sperm cells (13). 

However, none of these conventional tests are error free. Occurrences of false positives or 

false negatives are not uncommon (14). As these rapid stain identification methods (RSID) 

are not performed simultaneously and often require a significant amount of cellular material 

one can lose both time and important evidence while performing these tests. Another 

methodological problem one might encounter is cross reactivity among species and the lack of 

sensitivity and specificity towards body fluid and tissue identification (15). 
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An RNA profile can give information about the cellular origin based on their gene expression 

pattern. Different cells in the body produce a specific combination of mRNA molecules that 

are correlated to the cell’s unique protein production. We can therefore create a tissue specific 

assay based on the expression of mRNA of the cell to identify different body fluids and 

tissues. While RNA profiling is not yet widely used in forensic investigations, it holds 

promise as a complementary tool to DNA profiling. This potential results from its ability to 

provide additional information that DNA profiling alone cannot offer, making it a valuable 

tool among forensic methods. (5) 

 

1.1 RNA 

1.1.1 Structure and Function 

Ribonucleic acid (RNA) works as the intermediate product of protein biosynthesis and share a 

lot of similarities with deoxyribonucleic acid (DNA). Both nucleic acids can be found in all 

living organisms and are built up of the intracellular organic molecule: nucleotides (4). A 

nucleotide consists of a pentose (deoxyribose in DNA and ribose in RNA) and a nitrogenous 

base that share a covalent bond to one or more phosphates. In DNA the nitrogenous bases are 

Cytosine & Guanin and Thymine & Adenine. The nitrogenous bases are joined together in 

pairs by a hydrogen bond on each side of a double stranded helix. In RNA, the Thymine is 

substituted with the pyrimidine Uracil (4). 

Transcription is a cellular process where a segment of DNA is copied into a messenger RNA 

(mRNA). This mRNA contains genetic information essential for protein synthesis within the 

cell. The mRNA acts as a messenger, transporting the DNA information from the cell's 

nucleus to the cytoplasm, where proteins are produced.  

Even though RNA shares a lot of structural similarities with DNA, its function is limited due 

to its relatively short half-life. RNA is usually observed single stranded and is therefore more 

exposed to degrading cellular mechanisms such as RNA- degrading enzymes (RNases). The 

RNA can get degraded internally, by the endonuclease, and from the 5’ and 3’ end by the 

5’exonuclease and the 3’exonuclease (18). 
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There are many different types of RNAs that is either directly involved in the biosynthesis of 

proteins or play a part in the regulatory network of gene expression. Among the total amount 

of all RNA transcripts, the transcriptome, most of the RNA are non-coding RNA (ncRNA). 

The ncRNA does not encode for proteins but regulates cellular functions and physiology (19). 

On one hand, we have:  MicroRNAs, long-noncoding RNAs and circular RNAs that are 

examples of ncRNAs that are involved in transcription regulation and expression. On the 

other hand, we have the messenger RNA (mRNA), ribosomal RNA (rRNA) and transfer RNA 

(tRNA), that plays an important part in the protein biosynthesis. (4) 

 

1.1.2 Protein Production 

 

mRNA is a product of the first steps of the protein biosynthesis: the transcription. This is 

where a sequence of a DNA is transcribed into a copy of the genome sequence. The copy of 

the genome is called the mRNA which is further transformed into proteins due to the 

translation. Translation is performed in ribosomes that is built up of ribosomal RNA: rRNA. 

Transfer RNA (tRNA) is the link between a specific codon in the mRNA sequence that 

corresponds to an amino acid. The tRNA is a central key to the translation proses where 

mRNA is transformed into an unprocessed polypeptide. (4) 

Figure 1.1: Taken from www.technologynetworks.com/ /genomics/lists/what-are-the-key-differences-

between-dna-and-rna-296719 (retrieved 02.03.23) 
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mRNA is produced during the first step of protein biosynthesis, known as transcription. 

During transcription, a DNA sequence is copied to a shorter mRNA sequence. The mRNA is 

then used for protein synthesis through a process called translation. Translation takes place in 

ribosomes, which are made up of ribosomal RNA (rRNA). Transfer RNA (tRNA) plays a 

crucial role in translation by connecting specific codons in the mRNA sequence to 

corresponding amino acids. This makes tRNA a central component of the translation process, 

converting mRNA into an unprocessed polypeptide. The flow of genetic information from 

DNA to RNA to protein is called the central dogma. (4) 

 

Figure 1.2: Figure showing the flow of genetic information from DNA to RNA to proteins. The transformation 

from DNA to RNA is done through transcription. The transformation from RNA to proteins is done through 

translation. Figure 1.2 is created in word. 

The number of proteins produced in a cell is directly related to the levels of mRNA present in 

the cell. These mRNA levels can vary based on different phenotypic traits that influence 

protein production and cell function. Different cells have unique protein patterns due to 

variations in gene activity, which can also differ between species and genomes. (20) 

1.2 Biomarkers 

Biomarkers, also known as signature molecules, are measurable indicators of a biological 

process that can be found in a variety of sources including blood, urine, tissue, and other 

bodily fluids. A biomarker is a broad term that is primarily used as a medical expression for a 

measurement that is used to detect a potential hazard in the body (21). These measurements 

are linked to special characteristic of body functions that are either biological, pathological, or 

pharmacologic and may give valuable information about cell abnormalities, diseases, or cell 
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identity. Examples of biomarkers can be anything from: blood pressure, pulse to the level of 

gene expression within cells (22).  

 

1.2.1 Different types of Biomarkers  

In current research, a wide range of biomarkers has been identified and used for diverse 

applications. Among these biomarkers, genomic, epigenetic, and metabolic markers are 

notable examples used to detect and analyze various physiological abnormalities within the 

body. 

Genetic biomarkers are based on a distinctive individual’s genetic information that can be 

associated with mutations or enhanced/suppressed genes that may increase or decrease the 

production of certain proteins. Examples of genetic biomarkers include BRCA1 and BRCA2 

mutations that are associated with increased risk for breast cancer (23).  

Epigenetic biomarkers are proteins that can influence gene expression without changing the 

underlying DNA sequence. DNA methylation is an example of this, where methyl molecules 

get added to a specific region of the DNA and in the prosses alter the gene expression. This 

can affect how genes are turned on or off, affecting various cellular processes. (24) 

In contrast to genetic and the epigenetic biomarkers, metabolic and microbial biomarkers are 

not based on the genetic information but are rather based on the presence of small molecules 

and microbiota in body fluids or tissues. For example, high glucose levels can be a molecular 

biomarker for the detection of diabetes in blood. (25)(26)  

 

1.2.2 Biomarkers in forensic science  

In forensic science, biomarkers can be used as valuable tools for victim/suspect identification 

and provide crucial insights to the circumstances surrounding the crime and the crime scene. 

These biomarkers are often based on genetic markers. 

One of the most used biomarkers in forensic science is DNA. DNA can be extracted from a 

variety of biological samples, including blood, skin cells, and other bodily fluids. A DNA 

analysis can give additional information about a person’s identity and other additional 

information such as their sex and ancestry.  
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In forensic genetics, messenger RNAs (mRNAs) have gotten growing interest due to their 

ability to distinguish body fluids from other tissues of forensic significance (3).  Different cell 

types and body fluids express a various amount of mRNA due to the need of specific proteins 

associated with the cell type and its functions. Blood cells, for example, produce the 

characteristic protein hemoglobin, that contributes to the transport of oxygen from the 

respiratory system to other peripheral tissues in the body.   

The gene HBB encodes for the subunit beta-globin protein and can therefore be used as a 

biomarker for identification of venous blood cells. Another biomarker for blood identification 

is the gene CD93. CD93 encodes for a protein component that is connected to a larger 

receptor complex called C1q. This receptor is a cell surface glycoprotein that may play a 

significant function in cell–cell adhesion and removal of apoptotic cells (27). 

The ALAS2 gene is also specifically expressed in blood cells. This gene contributes to the 

synthesis of the enzyme 5'-aminolevulinate synthase 2, that plays an essential role in the early 

stages of the enzymatic pathway of the heme-synthesis. This gene can therefore be used as a 

biomarker for identification of blood (28).  

HTN3 or Histatin 3 is a protein in the histatin - family and is encoded by the HTN3 gene. 

Histatins are salivary proteins found on tooth surfaces and in saliva and can therefore be used 

to distinguish saliva from other body fluid types (29)(30). Another gene that is specific to 

saliva, is the STATH gene which encodes for a satherin protein produced in the saliva glands. 

This protein prevents precipitation of calcium phosphate in saliva and contributes to the 

ossification in the cavity (31). 

Nasal secretion is regarded as the most difficult body fluid to distinguish because of its shared 

similarities with saliva or virginal secretion. The satherin protein has been reported to be 

strongly expressed in nasal secretion and in some vaginal secretion samples despite only 

being modestly expressed in saliva. The histatin mRNA, seems to not be expressed in neither 

nasal nor vaginal secretion and is therefore more specific than the STATH marker (30).  

The protein-coding gene, BPIFA1, encodes for a lipid binding protein that has antibacterial 

activity against Gram-negative bacteria. The antimicrobial protein Plays an important role in 

the activation of an airway immune response in the nasopharyngeal regions and the upper 

airways (32). This gene is therefore one of the biomarkers associated with nasal secretion 

identification.  
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The presence of semen can be determined by examining the gene expression of: SEMG1, 

PRM1, and KLK3. SEMG1 encodes for Semenogelin 1, a protein predominantly found in 

semen. This protein is expressed in basal prostatic cells and prostatic glandular cells in the 

seminal vesicle, making it a vital marker for tissue/cell identification within forensic science. 

Additionally, Semenogelin 1, SEMG1, plays a crucial role in the formation of a gel matrix 

that encapsulates ejaculated spermatozoa (33). 

The PRM1 gene is responsible for encoding the protein protamine 1, which is synthesized in 

the testis and serves as a replacement for histones during the haploid phase of 

spermatogenesis (34). KLK3, on the other hand, encodes for Kallikrein Related Peptidase 3, a 

single chain glycoprotein synthesized in the prostate gland. This protein fulfills various 

physiological functions, including the liquefaction of the seminal coagulum, and is present in 

the seminal plasma (35). 

Differentiation between blood and menstruation blood can be crucial in criminal 

investigation, especially in rape cases where the presence of menstruation blood can indicate 

sexual activity. The matrix metalloproteinases: MMP7, MMP10 and MMP11 have proven to 

be reliable markers for differentiation between blood and menstruation blood with MMP11 as 

the most specific and reliable marker (36). Matrix metalloproteinases are proteins that can 

degrade extracellular matrix (ECM) which is especially important during the angiogenesis and 

embryonic development (37). 

Similarly to nasal secretion, vaginal secretion is one of the more difficult body fluids to 

identify. This is due to cross reactions among some of the marker used for vaginal fluid 

identification, like the MUC4 gene, that shows incomplete specificity and detectability (38). 

Mucin 4, MUC4, is a mucin protein that is encoded by the MUC4 gene. Mucins are 

components of the mucus layer that overlie the intestinal epithelial cells and are important for 

the maintenance of the physiologic hemostasis (39). Since there are mucous membranes 

covering the vaginal region, this gene can be used as an RNA marker for the identification of 

vaginal mucosa or secretion. Other RNA markers that can be used for vaginal identification 

are the MYOZ1 and CYP2B7P1 genes.  

MYOZ encodes for a protein in the myozenin family and is primary found in skeletal muscle. 

Myozinins work as intracellular binding proteins that link Z-disk proteins together (40). 

CYP2B7P1is a pseudogene which is a nonfunctional DNA that does not encode for a protein. 
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As opposed to MUC4, CYP2B7P1 is exceptionally specific with no noticeable cross reactivity 

with other body fluids/tissues (38). 

 

1.2.2.1 Housekeeping genes 

Housekeeping genes are genes that are expressed in all cells under normal and physiological 

conditions. These genes are usually essential for the survival of the cell and contribute to the 

maintenance of basic cell functions. In forensic science, one can use these genes as a positive 

control to make sure the sample contains the targeted mRNA markers. The most common 

housekeeping genes that are currently used in RNA and DNA profiling are the 18s rRNA 

gene, and the gene ACTB (41). 

The 18s rRNA is one of the basic components of the eukaryotic cytoplasmic ribosomes and is 

therefore also one of the basic components for all eukaryotic cells. Even though, the gene 

marker is a widely used control for several gene expression assays, the expression of the gene 

can sometimes be too strong and can cause disturbance in other gene expression assays in the 

same reaction (42) (43). 

ACTB is considered a housekeeping gene because of its major role as beta-actin in the non-

muscle cytoskeletal actins. Beta actin especially important for cell mobility, structure, and 

integrity in the cell (44). 

 

1.2.2.2 Sex specific genes 

Other genes such as the X inactive specific transcript (XIST) and Ribosomal protein S4 

(RPS4Y1), are commonly used to identify the gender of the cellular host. 

XIST is a non-coding-RNA molecule that is essential for the inactivation of the X-

chromosome. During the early stages of female mammal development, the XIST RNA-gene 

will exclusively be expressed and produce a coat that will inactivate one of the X-

chromosomes. Consequently, this non-coding RNA can be used as a sex marker for female 

identification in forensic RNA assays (45). 

RPS4Y1 is a Y-chromosome-specific marker and therefore only expressed in males. This 

gene has the highest average expression difference between females and males and encodes 

for a Y-specific ribosomal protein (46). 



 19 

1.3 Multiplex PCR and profiling of RNA 

All types of cells in the body have a unique combination and expression of mRNA that differ 

between each cell type. This makes it possible to create a tissue-specific assays based on the 

cell type specific genetic expression. New techniques within forensic science have made it 

possible to detect multiple RNA transcripts from DNA stains found in various crime scenes 

(47). The RNA is first co-extracted from the evidentiary sample and then amplified with 

reverse transcription polymerase chain reaction (RT-PCR). The detection of the expressed 

RNA transcripts is most frequently done by capillary electrophoresis, but some MPS panels 

have also been developed (48)(49). 

In the next section the different techniques that were used to acquire the RNA and the values 

describing the expression rate of the different transcripts will be more thoroughly introduced.  

 

1.3.1 Multiplex PCR of the RNA samples  

Polymerase chain reaction (PCR) is a groundbreaking laboratory technique that is used to 

multiply a specific sequence of DNA. PCR allows for the amplification of billions of targeted 

segments using primer sequences that hybridize to the selected regions that will be amplified. 

The enzymatic process involves repetition of heat-cool cycles that enables enzymes to 

separate and replicate the two complimentary strands of the sample DNA (50). 

By adding more primers to the mixture in the PCR reaction, one can copy multiple regions 

simultaneously in one simple PCR reaction. This is called multiplex PCR and is used to 

amplify multiple targets from multiple samples simultaneously. This can save both time, 

money and makes it easier to compare the expression of multiple genetic markers from one 

DNA sample (50). 

Unfortunately, RNA is not suitable for the PCR technique because of its single stranded 

structure and its relative short half-life due to degradation. Also, RNA cannot be amplified 

directly because PCR requires DNA as a template for amplification and not RNA. 

Consequently, one must transform the RNA into its complementary DNA (cDNA) by using a 

technique called reverse transcription (RT). Once the cDNA has been synthesized by the 

enzyme reverse transcriptase, one can continue to use the standard PCR techniques to amplify 

the cDNA (51), (52). 
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RNA transcripts can be detected with RT-PCR followed by gel or capillary electrophoresis. 

By combining these techniques, one can detect multiple RNA transcripts at the same time and 

create an RNA -profile that can be used for body fluid identification. 

By adding an additional fluorescence dye to the multiplex PCR primers, different amplicons 

can be detected and separated by emitting different fluorescence dyes during capillary 

electrophoresis. The targeted amplicon will get labeled by covalently binding to the dye 

which is attached to the primer. By having an additional fluorescence dye for each primer 

labeling the different targeted fractions, we can create even larger multiplexes since we then 

can differentiate the fragments not only by size, but also color of the dye. (50) 

 

 1.3.2 Capillary Electrophoresis   

Capillary electrophoresis (CE) is an analytic separation method that detects and separates 

DNA fragments based on their electrophoretic mobility and size (53). The migration speed of 

the fragment correlates with its size, making it possible to estimate the length of the fragment 

using CE. Furthermore, CE can utilize fluorescence emission to quantify the fragments, in 

addition to its detect and estimate the size of the fragment.  

Following the amplification process, the DNA samples undergo dilution and fluorescence 

labeling before being injected into the capillary. Typically, the samples are diluted with high-

quality deionized formamide at varying ratios (1 to 10), which ensures low conductivity. 

During the DNA amplification, primers with distinct fluorescent dyes are used to label the 

DNA fragments. This approach makes it possible to detect and separate of different amplicons 

based on their emitted fluorescence from the respective dyes (53). 

Migration of the fragments happens when a high voltage is applied to a cathode and an anode 

on each side of the thin capillary. The fragments from the DNA sample will then start to 

migrate from the negative cathode to the positive cathode. During the migration, the different 

fragments will be separated by size from smallest. This size-based separation is facilitated by 

a polymer solution acting as a sieving medium inside the capillary. 

The capillary of the CE instrument is approximately 50cm long and 50m in diameter and has 

a negative charged interior wall. The longer the capillary, the better separation of fragments 

and better resolution. However, a long capillary can also hold a disadvantage due to the 

increased running time for each sample (53). 
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Capillary electrophoresis has a high efficiency and automation due to the thin capillaries and a 

high voltage supply. Also, it only requires 0.1- 10 L sample which is really low compared to 

other separation methods. 

A specific wavelength/light occurs as a laser excites the dye of the fluorescence labeled 

amplicon at the end of the capillary. An optical filter detects and separates the emitted light 

that is later separated by a multi wavelength analyzer that captures the wavelength of the light 

through a detection window that is often located at the end of a capillary in the CE. The 

intensity of the light is correlated with the quantity of the dye that is absorbed. A detector then 

records the fluorescence signature of each fragment as well as the time the fragment use to 

migrate through the polymer. The raw data are then sent to a computer program and later 

analyzed in a computer software. (53)  
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2. Methods 

This study is based on an already available dataset that was obtained during the validation of 

mRNA analysis at the Department of Forensic biology at the University Hospital in Oslo 

(RESP). The dataset consists of 38 different samples, taken from six different body fluids and 

tissue types: blood, vaginal secretion, nose secretion, menstrual blood, semen, and salvia. All 

samples have been collected and processed through a set of different methods like extraction, 

separation and detection methods which resulted in 90 unique RNA-profiles, one for each of 

the collected samples.  

The RNA- profiles are based on 19 different markers that are either related to a specific body 

fluid/tissue, a housekeeping gene, or a gender specific mRNA marker (sex-marker). For each 

marker that was detected, there will be a corresponding fluorescence intensity (RFU) – value, 

that represents the presence and quantity of the gene that is expressed from the biological 

sample.  

One of these 90 RNA profiles had to be removed due to lack of detection among the body 

fluid specific mRNA markers including the sex specific markers. In the main parts of this 

study, we will exclude the housekeeping genes from the analysis, as they were found to be 

present in all the samples, and their inclusion would not provide additional discriminatory 

power. 

The participants donated one of the six different body fluids, providing maximum one sample 

per body fluid/tissue type. The samples were then placed in an extraction tube where the 

genetic material was co-extracted to provide one RNA and one DNA fraction. DNAase 

treatment was then performed on the RNA fraction before the reverse transcription of the 

RNA.  

The reverse transcription is a necessary step in the process because PCR, which is used to 

amplify the fragments, cannot use the single stranded RNA as a template. Reverse 

transcriptase transforms the single stranded RNA to cDNA making PCR and amplification 

possible. The targeted and amplified cDNA fragments were then separated by size with 

capillary electrophoresis (CE). The data collected from the CE was processed in the 

GeneMapper® software version 1.6 (Applied Biosystems™) and further analyzed in the R- 

software software version 4.1.3 for data and statistical analysis. The workflow of the study is 

presented in figure 2.1. 
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2.1 Sample Collection  

The samples used in this study were collected from voluntary participants from the 

Department of Forensic biology. All samples were taken after informed consent and approved 

for further data analysis. All samples in this study are and will be kept anonymous.  

There are in total 38 samples from the experimental design from the RESP department. The 

distribution of samples among the various sample types are described in Table 2.1.  

Table 2.1: Summary of the collected samples. 

Sample Type Number of samples taken from the RESP 

department at OUS 

Blood 5 

Menstrual Blood 3 

Nasal Mucosa 4 

Semen 6 

Saliva 16 

Vaginal  4 

sum 38 

 

Sample 
collection

CO-extraction 
DNAase 

treatment

Reverse 
transcription  

mRNA 
quantification 
and detection 

Data & 
statistical 
analysis

Figure 2.3: An overview of the workflow of the study. 
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The participants, both female and male, were given clear instructions on how to collect the 

specific samples. All samples, except blood, were collected by cotton swabs and carefully 

placed directly in labeled sample bags. Twenty µL of blood were taken from the participant’s 

finger and absorbed into a cotton swab. The cotton swabs were then cut with sterile scissors 

and collected in an extraction tube under clean conditions to avoid contamination from 

external genetic materials. All samples were then co-extracted and amplified using a 

multiplex PCR before an RNA-profile was created. 

Twenty-eight samples were amplified using 0.5, 1.0 and 3.0 L cDNA input. The remaining 

10 samples were amplified using only 1.0 L input. This gave a total of 94 RNA -profiles, 

where four of the profiles, two of the semen samples and two of the saliva samples, were 

removed due to undetected values of the ACTB and/or 18S-rRNA marker (housekeeping 

genes). One saliva sample with volume 0.5 was also removed from the study due to lack of 

detection among the body fluid specific mRNA markers including the sex specific markers. 

This gave us a total of 89 RNA-profiles from the six different body tissue/fluids. (See table 

2.2 and 2.3 for a summary of the distribution of RNA-profiles). 

 

Table 2.2: The total amount of RNA profiles from each body fluid type. 

Sample Type Total Number of samples  

Blood 11 

Menstrual Blood 9 

Nose secretion 12 

Sperm 12 

Saliva 33 

Vaginal Secretion 12 

Total 89 
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Table 2.3: A summary of the total 89 RNA profiles divided into their representative PCR volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Type Volume of PCR  Number of Samples  

Blood 0.5 3 

Blood 1.0 5 

Blood 3.0 3 

Menstrual Blood 0.5 3 

Menstrual Blood 1.0 3 

Menstrual Blood 3.0 3 

Nose secretion 0.5 4 

Nose secretion 1.0 4 

Nose secretion 3.0 4 

Semen 0.5 3 

Semen 1.0 5 

Semen 3.0 4 

Salvia 0.5 9 

Salvia 1.0 14 

Salvia 3.0 10 

Vaginal Secretion  0.5 4 

Vaginal Secretion  1.0 4 

Vaginal Secretion  3.0 4 

Total                                                    89  
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2.2  Co-extraction 

The co-extraction of the collected samples was done using a phenol-chloroform method with 

the QIAamp DNA mini kit (QIAGEN) and mirVANA™ miRNA isolation kit. The applied 

method was retrieved from the paper by Lindenbergh et al. and by Johannessen et al. (3)(4). 

 

2.3 DNAase Treatment 

DNAase treatment was performed on the extracted RNA fractions with the TURBO DNA-

freeTM Kit. The procedure followed the manufacturer’s protocol by Invitrogen from Thermo 

Fisher Scientific: (Invitrogen by Thermo Fisher Scientific) (54). 

 

2.4  Reverse transcription  

The transformation of the RNA to the complementary DNA (cDNA) was performed using the 

SuperScript® IV Reverse Transcriptase (invitrogen by Thermo Fisher Scientific). The 

transformation was performed in the same manner as described by Johannessen et al (6).  

 

2.5  RNA Quantification and Detection 

The amplification of the targeted RNA sequences was done using the QIAGEN multiplex 

PCR Kit (QIAGEN) with an RNA 19-plex that is optimized by the NFI. There was a total of 

19 mRNA markers that were used in the 19-plex primer mix. All 19 markers and its primer 

sequence are described in table 2.4. Each mRNA marker was labeled with a dye and the 

fragments were later separated by size through the capillary electrophoresis.  

 

Table 2.4: This table is collected from the scientific study by Helen Johannessen and described by Van 

den Berge et al. (2017). Two of the markers from the paper are replaced by two gender specific 

markers (XIST and RPS4Y1) as described in (4). The name of each mRNA marker and its 

corresponding body fluid are listed in the two left columns whereas the primer sequence and the 

length of the mRNA marker sequence are listed in the two right columns.  
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Body fluid mRNA marker Primer sequence (5’ → 3’)  Size (bp) 

Blood HBB fw: GCACGTGGATCCTGAGAACTTCAG 

rv: ATGGGCCAGCACACAGACCAG 

61 

ALAS2 fw: TTCTGCACCAGAAGGACTCAGCC 

rv: TAAATCTCGCACCCTGGCAGGATC 

103 

CD93 fw: GCTCTGGGGCTACTGGTCTATC 

rv: TCCCAGGTGTCGGACTGTACTG 

151 

Saliva HTN3 fw: CTTCACTTCAGCTTCACTGACTTCTG 

rv: CTTTGCATGTGAATCAGCTCCAGTC 

132 

STATH fw: TTCATCTTGGCTCTCATGGTTTCCATG 

rv: GCCATACCCATAACCGAATCTTCCA 

93 

Semen SEMG1 fw: GGAAGATGACAGTGATCGT 

rv: CAACTGACACCTTGATATTGG 

121 

PRM1 fw: GAGAGCCATGAGGTGCTGCC 

rv: AGGCAGGAGTTTGGTGGATGTGC 

90 

KLK3 fw: GACGTGGATTGGTGCTGCACC 

rv: CTTCTCGCACTCCCAGCCTC 

64 

Vaginal mucosa MUC4 fw: CTGCTACAATCAAGGCCACTGCTAC 

rv: AAGGGAAGTTCTAGGTTGACAGTTGG 

141 

MYOZ1 fw: CGTGTTCTCCGGTCACAGCAG 

rv: TGGATTCAGCCGGCTGCTCG 

88 

CYP2B7P1 fw: CCTCATGTCGCAGAGAGAGTCTAC 

rv: CCCATGGGGAGAAGGTCAGCA 

146 

Menstrual secretion MMP7 fw: GAACAGGCTCAGGACTATCTC 

rv: TTAACATTCCAGTTATAGGTAGGCC 

127 

MMP10 fw: GCATCTTGCATTCCTTGTGCTGTTG 

rv: GGTATTGCTGGGCAAGATCCTTGTT 

107 

MMP11 fw: CAACCGACAGAAGAGGTTCG 

rv: GAACCGAAGGATCCTGTAGG 

76 

Nasal mucosa BPIFA1 fw: CAAGTGAATACGCCCCTGGTCG 

rv: GAATGGGTGCAGTCACCAAGGAC 

131 

Male RPS4Y1 fw: TGGAAGAGGCAAAGTACAAGTTGTGC 

rv: GGATTCCCTTCACTCCCACAGTAAT 

63 

Female XIST fw: ATTTTAACTGATCCCATTGAAGATACCACGC 

rv: TCAGAATGTCCAAGAGGAGCCTAAGG 

83 

Housekeeping genes ACTB fw: CAGAGCCTCGCCTTTGCCGAT 

rv: CGCGGCGATATCATCATCCATGGT 

75 

18S-rRNA fw: GACTCAACACGGGAAACCTCACC 

rv: CTCCACCAACTAAGAACGGCCATG 

110 

 



 28 

The ionic PCR products were separated by size using the 3500xL Genetic Analyzer (3500 

Series instrument) (Applied Biosystems™). The dyed fragments were separated through 

electrokinetic migration through the thin duct of the capillary electrophoresis (CE). The 

fragments then passed a laser beam near the end of the capillary, which caused the attached 

dyes of the fragments to emit different fluorescence light that were further separated by the 

diffraction system and detected by a CCD camera. The limit of detection (LOD) was set at 50 

RFU for each allele. The signal from the fragments were then transformed into digital data 

and analyzed using the GeneMapper® software version 1.6 (Applied Biosystems™).  

 

2.6  Data analysis 

2.6.1 Data Collection  

The data collected from the Thermo Fisher genetic analyzer, were further sized and genotyped 

by the GeneMapper™ ID-X Software v1.6 and Peak ScannerTM  Software. The peak scannerTM 

software is a nucleic acid scaling program that performs preliminary sizing and detects peaks 

and fragment sizes from specific Capillary electrophoresis assays (55). The GeneMapper® 

software performs an analysis on fsa- files that are a product of a data collection software for 

fragment analysis. The product of this analysis is a fitting RNA profile containing peaks that 

represent the detected PCR fragments.  

Each peak has an estimated peak-height and size (bp) that is based on the quantity and length 

of the PCR fragments. The height of the peak provides a good estimate of quantity because it 

is based on the intensity of the emitted light/relative fluorescence units (RFU). The threshold 

for a peak to be detected was set to 50 RFU, any peak with a value below this is regarded as 

noise.  

The fragment's length is measured and compared to an internal size standard that contains 

artificial DNA fragments of known size. The GeneMapper software contains two files: the 

bin-file and the panels-file, used to recognize peaks that have a value inside a particular range. 

The panel-file describes the sizes (bp) of the different markers, while the bin-file contains the 

minimum/maximum values a marker can have to be inside the panel region. If a marker has a 

size (bp) outside the panel area, it will be labeled: “Outside Marker Region” (“OMR”). 

However, if the value lies inside the panel area, but outside the bin area, it will be labeled 

“Off ladder” (“OL”). These alleles must be checked to see how large the deviation (bp) is 
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from the expected value, if they are not considered reliable, they are therefore removed from 

the RNA-profile.  

All values that lie inside the panel region of a specific mRNA marker, will be labeled 

accordingly to the representative body fluid/tissue type of that mRNA marker. Figure 2.2 

shows a portion of an unprocessed RNA profile. We can see from the figure that the STATH 

marker is detected with a bp of 7804 and the housekeeping genes, ACTB and 18S-rRNA, are 

detected with a bp of 15210 and 1973 respectively. There is also a detected marker, in the top 

window, that is an actual value from the MUC4 bio marker but is marked as “OL” since it has 

a value outside the threshold/bin area. The “OL” value will in this case be renamed “MUC4” 

and taken into the RNA-profile. The values detected outside the panel area, the “OMR” 

values, will be deleted and removed in the processed RNA profile.  



 30 

 

After the removal of the unreliable peaks, the RNA-profile, detected markers and 

corresponding peak heights, were converted, and saved as an excel-file in the Microsoft® 

Excel software (version 16.72) that is listed in Appendix 1. The excel file was then uploaded 

to the R software and run through the RStudio software version 2022.07.2. All the codes that 

were performed in the RStudio and the R-library for data analysis and statistical analysis, can 

be found in Appendix 1.  

 

2.6.2  Data transformation 

2.6.2.1 Detection rates of markers  

We calculated the detection rates of all 19 markers in the datafile by dividing two matrices. 

The first matrix contained the number of markers that were detected, and the second matrix 

contained the total amount of markers that could have been detected, but not necessarily got 

detected. This allowed us to determine the detection rates for each marker. An illustration of 

the process is explained in figure 2.3. A table that contains the detection rate for each marker 

in each body fluid can be found in table 3.2. 

Finding the detection rate of each marker made it easier to detect abnormalities in the RNA-

profiles. Examples of abnormalities that could show up are: unexpected mRNA markers in 

body fluid samples, undetected housekeeping genes or wrongly detected sex markers in sex 

specific body fluids such as: semen, vaginal secretion, or menstruation blood. Finding these 

irregularities early, is important because it could influence the statistical analysis later. The 

code that created Table 3.2 can be found in Appendix 1.  

 

 

 

Figure 2.4: An example of a part of an RNA profile. The x-axis is the projected peak height 

whereas the y-axis is the estimated size of the PCR fragment (bp). The size increases from left to 

right along the x-axis. In this study we removed the peaks that were too small and the peaks that 

were outside the allele ladder (OL) or the marker region (OMR). We were left with an RNA 

profile containing only reliable peaks that were labeled accordingly to the appropriate body 

fluid/tissue type. Above the frame, you can see the panels that is named after their representative 

mRNA marker. 

 

Figure 2.5: An example of a part of an RNA profile. The x-axis is the projected peak height 

whereas the y-axis is the estimated size of the PCR fragment (bp). The size increases from left to 

right along the x-axis. In this study we removed the peaks that were too small and the peaks that 

were outside the allele ladder (OL) or the marker region (OMR). We were left with an RNA 

profile containing only reliable peaks that were labeled accordingly to the appropriate body 

fluid/tissue type. Above the frame, you can see the panels that is named after their representative 

mRNA marker. 
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Matrix with the number of detected markers  

 Marker1 Marker2 Marker3 

Sample 1 m1s1 m2s1 m3s1 

Sample 2 m1s2 m2s2 m3s2 

 

Matrix with the total number of markers  

 Marker1 Marker2 Marker3 

Sample 1 M1S1 M2S1 M3S1 

Sample 2 M1S2 M2S2 M3S2 

 

 

 

 

 

 

 

In this study we were interested to see if the different cDNA volumes that were used 

influenced the detection rate and/or the magnitude of the detected peak. By calculating the 

detection rate among the markers in the three different volume groups, we were able to see if 

there was an increment among the 19 mRNA markers. The detection rate was calculated by 

counting all the detected mRNA markers for each volume group and dividing it by the total 

number of samples that were in the respective volume group. The calculations and plotting 

were performed in R with the ggplot2 package. The code used for calculation and plotting can 

be found in Appendix 1. An analysis of variance (ANOVA) was later performed to see if 

there was a significant difference between the three volume groups relative to the detection 

rate.  

 

 

 Marker1 Marker2 Marker3 

Sample 1 m1s1/  

M1S1 

m2s1/ 

M2S1 

m3s1/  

M3S1 

Sample 2 m1s2/  

M1S2 

m2s2/  

M2S2 

m3s2/  

M3S2 

Detection rate of markers 

 

Detection rate of markers 

Figure 2.3: The numerical matrix containing the number of detected markers 

for each body fluid/tissue is divided by the numerical matrix containing the total 

amount of markers that could have been detected for each body fluid/tissue. 

This results in a matrix containing the detection rate of all the markers for each 

body fluid/tissue type.  

 

Figure 2.3: The numerical matrix containing the number of detected markers 

for each body fluid/tissue is divided by the numerical matrix containing the total 

amount of markers that could have been detected for each body fluid/tissue. 

This results in a matrix containing the detection rate of all the markers for each 

body fluid/tissue type.  
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2.6.2.2 Data transformation before statistical analysis  

A transformation of the dataset was necessary before we could perform a logistic regression 

analysis. The logistic regression models were fit using the glm() function from the R-Stats 

package. The glm() functions requires at least three inputs: the formula that describes the 

model we wish to fit, the distribution family and the name of the dataset we want to analyze. 

The dataset needs to contain the categorical binary variable (y1…yn) and the response 

variables (xnp) that are listed as columns in the dataset (see Figure 2.4).  

 

 

 

 

 

 

The original dataset that was uploaded from Microsoft Excel contained 8 columns and 1710 

rows. Each row represented information about a marker from a sample taken from a body 

fluid or tissue from participant (P1, P2, P3 … etc). The 8 columns contain information about 

the height, what body fluid/tissue the sample is taken from, peak height, volume of PCR and 

the participant ID. 

In the study we modified the dataset to eliminate any mRNA markers that were not detected, 

leaving just the mRNA markers, their representative peak heights, and the bodily fluid or 

tissue that the marker was detected in. The transformation of the dataset was done using an R-

code that can be found in Appendix 1. An illustration of the transformation is given in figure 

2.5 and figure 2.6. The transformed dataset was then saved in R-softwere as “df1”. The 

dataset can be found in Appendix 1. The transformation made it possible to create various 

logistic regression models that we later used for prediction.  

 

 

 

 

Figure 2.4: This figure shows the structure of the dataset that we used in our regression model. The 

dataset contains (n) data cases and (p) predictor variables. The binary response variable is here (y) 

and its predictor variables is (xnp). 

 

 

Figure 2.4: This figure shows the structure of the dataset that we used in our regression model. The 

dataset contains (n) data cases and (p) predictor variables. The binary response variable is here (y) 

and its predictor variables is (xnp). 
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Figure 2.5: The transformation of the original dataset to the dataset that was further used in logistic 

regression modeling. The transformation created a dataset with the response variable as first column 

and the predictor variables as the remaining columns in the dataset. 

 

 

 

 

 

 

 

 

 

 

Participant S_type Marker … Height 

P1 Type1 Marker1 … Height_Marker1_Type1 

P1 Type1 Marker2 … Height_Marker2_Type1 

P2 Type2 Marker3 … Height_Marker3_Type2 

P2 Type2 Marker4 … Height_Marker4_Type2 

P3 Type3 Marker5 … Height_Marker5_Type3 

P3 Type3 Marker6 … Height_Marker6_Type3 

Samples Marker 1 Marker 2 Marker 3 Marker 4 Marker 5 Marker 6 

Sample  1 Height(Marker1-Sample1) … … … … Height(Marker6-Sample1) 

Sample 2 Height(Marker1- Sample2) … … … … Height(Marker6-Sample2) 

Sample 3 Height(Marker1- Sample 3) … … … … Height(Marker6- Sample3) 
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2.6.3  Statistical analysis 

2.6.3.1 Analysis of Variance (ANOVA)  

An analysis of variance (ANOVA) was used to determine if there were significant differences 

between samples with different amount of PCR input volume. The mean value of each chosen 

group is compared using one-way ANOVA to determine whether there is a statistically 

significant difference between the groups. The hypothesis that is used for this analysis was 

described as follows: 

H0: μ1 = μ2 = μ3 ... = μp 

H1: means are not all equal 

Here μk is equal to the mean value of each group k. The independent categorical variable 

(predictor variables) xp were in this study the three different volume groups: 0.5L, 1.0L and 

3.0 L (p =1, 2, 3), whereas the quantitative dependent variable (the response variable) was 

Figure 2.6: This is a visualization of a section of the original dataset that has been transformed. 
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the measured peak height of all the mRNA markers. The One-way ANOVA analysis were 

done using the R- computer software.  

We also performed a two-way ANOVA with two categorical variables (predictor variables). 

This was to estimate how the mean peak height value changed according to both the cDNA 

volume and what type of marker that was detected. This was done for all body fluid types and 

their detected markers.  

 

2.6.3.2 Logistic regression Analysis 

A logistic regression analysis was used to model the probability of the binary outcome based 

on the predictor variables: x1, …, xp. We chose the detected peak height of all the mRNA 

markers as the predictor variables in the logistic regression model. For each body fluid/tissue 

types, we created a univariate and a multiple logistic model with the response variable (y) as 

the body fluid/tissue type and the predictor variable(s) (x1, …, xp) as the mRNA markers that 

were detected in the body or tissue type that we were testing. The response variable y is 

binary and is set to either 1 or 0 depending on the body fluid or tissue we are analyzing is 

present or not:  

 

𝑃 = 𝑃(𝑦 = 1) = 𝑃("the body fluid or tissue is present ") 

Hence 

1 − 𝑃 = 𝑃(𝑦 = 0) = 𝑃("𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑓𝑙𝑢𝑖𝑑 𝑜𝑟 𝑡𝑖𝑠𝑠𝑢𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡") 

 

We use the multiple logistic model:  

ln (
𝑃

1 − 𝑃
) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 

That can be reformulated to:  

𝑃 =  
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝
 

We let PI (prognostic index) be:  

𝑃𝐼 =  𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝 
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Then: 

𝑃 =  
𝑒𝑃𝐼

1 + 𝑒𝑃𝐼 

where: 

• For the univariate logistic model we let the prognostic index (PI) be:  𝑒𝛽0+𝛽1𝑥1  

• P is the probability of the occurrence  

• 𝛽0, 𝛽1 … , 𝛽𝑛𝑝, are the estimated coefficients in the regression model.  

• x1, … xp are the values of the predictor variables  

 

2.6.3.3 The different datasets  

After transforming the original dataset, we created an univariate logistic regression model 

with the target body fluid as response variable and one of its representative RNA marker as 

predictor variable. Likewise, we created a multivariate logistic regression model with the 

target body fluid as response variable, but with all the representative RNA markers as 

predictor variables. This means that for a body fluid with n number of markers we created 

n+1 different logistic models for the targeted body fluid. 

We created three different datasets based on the original dataset collected from the numerous 

RNA profiles: df1, df2 and df3, described in detail below. Using different datasets, such as 

quantile data or datasets with varying characteristics, can provide valuable insights into the 

model's performance and generalizability. Diverse datasets help evaluate the model's 

robustness by assessing its ability to handle variations in the detection of mRNA markers in 

the different profiles. It can help us identify factors that contribute to improved or diminished 

prediction accuracy. By testing the model on multiple datasets, we can gain a better 

understanding of its reliability and determine the contexts in which it performs optimally.  

Df1 

The dataset labeled as df1 exhibited minimal alterations, maintaining consistent detected peak 

height values comparable to those in the original dataset (Figure 2.6).  

Df2 

The df2 dataset employed a quantile-based representation of the original peak height 

distribution, with values categorized into distinct quantiles ranging from 1 to 20. The value of 

the quantile is determined by a distribution based on a range of RFU values, which goes from 
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a minimum of 0 to a maximum of 32,662. The corresponding peak height ratio for each 

quantile can be found in table 2.5. 

Table 2.5: Table containing the corresponding peak height ratio for each quantile. 

Quantile 

(1-10) 

RFU -

value 

Quantile 

(11-20) 

RFU -

value 

1 0 11 16331.0 

2 1633.10 12 17964.1 

3 3266.20 13 19597.2 

4 4899.30 14 21230.3 

5 6532.40 15 22863.4 

6 8165.50 16 24496.5 

7 9798.60 17 26129.6 

8 11431.7 18 27762.7 

9 13064.8 19 29395.8 

10 14697.9 20 31028.9 < 

 

Quantile datasets can help address issues related to data skewness. In logistic regression, an 

imbalanced distribution of the predictor variable can lead to biased predictions. By using a 

quantile dataset, which represents the data distribution in a more balanced manner, the model 

can learn from a more representative sample, reducing the impact of skewed data on the 

prediction. This can result in a more accurate performance of the logistic regression model. 

Df3 

The third dataset, denoted as df3, incorporated the same quantile values as the previous 

dataset (df2). However, df3 introduced an additional penalty mechanism to account for 

mRNA markers detected in incongruent body fluid types. This penalty system aimed to reflect 

the discrepancy between the observed marker and its associated body fluid. The penalty gives 

a negative sign to the quantile value of markers that is detected in an unexpected body fluid. 
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Consequently, higher detected RFU values gain larger penalties in the same way a larger RFU 

value gives a higher quantile value. 

For instance, if the vaginal secretion marker MUC4 was mistakenly detected in a nasal sample 

with a peak height (RFU) value of 11 246, it would be assigned a transformed value of – 7. 

The number 7 is given by looking at the corresponding quantile value (see Table 2.4) and the 

negative value indicates that the marker is detected in an unexpected body fluid. The quantile 

value will still be the same as in df2, only with a different  

In logistic regression, the choice of penalty or cost function for misclassifications can impact 

the model's behavior and predictive performance. By varying the penalty for mistaken 

detection of genes, we can explore the impact the unexpected, detected RNA markers have on 

the dataset.  

Each dataset was used to create the n+1 logistic regression models for all the body fluid types 

giving a total of 3(n+1) logistic regression models with different properties.  

 

 

Figure 2.7: the distribution of all regression models created based of the three datasets. The values in 

dataset does not correspond to the correct quantiles, the values are chosen randomly.   
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3. Results  

All R-codes that were used to create the figures and tables in this section, can be found in 

Appendix 1. The datasets containing the underlying values used to create the different figures 

and tables, can be found in Appendix 2.  In this section we will first give some general 

information about the dataset containing data collected from the 90 RNA profiles generated 

from the GeneMapper software. We will then compare each body fluid based on values 

collected from its representative RNA-profile. Lastly, we will go through each body fluid 

independently and provide an informative overview of the qualities each body fluid holds and 

present some of its statistical properties.  

 

3.1 General information about the dataset 

The 38 samples that we collected from the six different body fluid/tissue types, created a total 

number of 90 RNA-profiles with 615 detected mRNA markers. The presence of the 

housekeeping genes (18S- rRNA and ACTB) is required for all RNA-profiles to be 

considered valid. The profiles that do not have these markers detected, were not taken into 

this study. Each body fluid has two to four representative mRNA markers that is exclusively 

expressed in that specific body fluid. A summary of the representative mRNA markers for 

each body fluid can be found in Table 3.1. 

Table 3.1: A summary of the various mRNA markers exclusively expressed in a specific body fluid.  

Body fluid/ tissue Markers 

Menstruation blood MMP7 MMP10 MMP11 

Blood HBB ALAS2 CD93 

Vaginal secretion  MUC4 MYOZ1 CYP2B7P1 

Semen  KLK3 PRM1 SEMG1 

Nasal secretion STATH BPIFA1 

Saliva HTN3 STATH 

Housekeeping 18S-rRNA ACTB 

Sex (F/M)  XIST RPS4Y1 
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Table 3.2 contains the detection rate of markers, i.e, the calculated fraction of the detected 

markers per all possible detections that could have occurred. We can see from the table that 

the detection rate of markers varies between the different body fluids. As expected, all body 

fluid types a have a 100% detection rate for the two housekeeping genes. The blood specific 

markers CD93 and HBB appear in all body fluid types except for the semen samples. The 

specificity for these two markers is therefore relatively low. We can see that the mRNA 

markers expressed in semen, KLK3, SEMG1 and PRM1, are among the most specific 

markers and are only detected in the semen samples.  

 

Table 3.2: A table that contains the detection rate for each marker in each body fluid. The name of the 

mRNA markers is listed in the left column and the rate of detection for each body fluid in the right. 

Because we only kept the samples that had both housekeeping genes in this study. The detection rate 

for the 18S-rRNA gene and ACTB, marked in green, has therefore a detection rate is 1.0 (100% for 

every body fluid). The sex specific mRNA markers are marked in light blue.     

mRNA marker Blood Menstruation 

blood 

Nose 

secretion  

Semen Saliva Vaginal 

secretion 

18S-rRNA 1,00 1,00 1,00 1,00 1,00 1,00 

ACTB 1,00 1,00 1,00 1,00 1,00 1,00 

ALAS2 0,91 0,33 0,00 0,00 0,03 0,00 

CD93 1,00 0,89 0,92 0,00 0,24 0,42 

HBB 1,00 1,00 0,33 0,00 0,27 0,42 

BPIFA1 0,00 0,22 1,00 0,00 0,06 0,08 

CYP2B7P1 0,00 0,44 0,17 0,00 0,00 0,42 

HTN3 0,09 0,00 0,00 0,00 0,88 0,00 

KLK3 0,00 0,00 0,00 0,33 0,00 0,00 

MMP10 0,00 1,00 0,00 0,00 0,03 0,00 

MMP11 0,00 0,78 0,00 0,00 0,00 0,25 

MMP7 0,00 0,89 0,25 0,00 0,06 0,25 

MUC4 0,09 0,89 0,92 0,00 0,77 1,00 

MYOZ1 0,00 0,89 0,00 0,25 0,59 1,00 

PRM1 0,00 0,00 0,00 0,83 0,00 0,00 



 41 

 

 

3.1.1 PCR volume: detection rate and peak height  

This section will describe how the input volume of cDNA affects the detection rate of the 

mRNA markers. Twenty-eight samples were amplified using 0.5, 1.0 and 3.0 L cDNA input, 

the remaining 10 samples were only amplified with 1.0 L. First, we will see if an increment 

of cDNA volume contributes to a higher detection rate among the mRNA markers. Later, we 

will determine if there is a statistically significant difference of the detected peak heights 

between the various volume groups by looking at the results from the analysis of variance 

(ANOVA). 

Figure 3.1 describes the detection rate among the 19 different mRNA markers in the three 

volume groups. From the plot we can see that there is an increment of detection rate among 

all mRNA markers between volume 0.5 - 1.0 L and/or 0.5- 3.0L. The R-code and dataset 

that were used to create this plot, can be found in Appendix 1 and Appendix 2 respectively. 

 

 

SEMG1 0,00 0,00 0,00 1,00 0,00 0,00 

STATH 0,09 0,11 1,00 0,00 0,94 0,00 

RPS4Y1 0,27 0,11 0,25 0,92 0,24 0,08 

XIST 0,73 1,00 0,50 0,00 0,44 0,58 
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Figure 3.1: this figure was created in R and plotted with the open-source data visualization package, 

ggplot2. The detection rate of all markers can be found along the x-axis and the three volume groups: 

0.5, 1.0 and 3.0L, along the y-axis. Each color represents an mRNA marker and is labeled at the 

right side of figure 3.1. The detection rate increases as the volume increases for all mRNA markers 

between volume 0.5 and/or 1.0L or 0.5 and 3.0L.  
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The one-way variance analysis that was performed (one way ANOVA), showed a significant 

difference of peak height between the three different volume groups (p-value = 

0.0000305***). The proportion of variation explained by the model (R2) was calculated to be 

0.972, which means that approximately 97.2% of the variation of the peak height can be 

explained by the different volume groups. A summary of the ANOVA analysis can be found 

in Table 3.3.   

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

60.4

(2097.6 + 60.4)
= 1 − 0.028 = 𝟎. 𝟗𝟕𝟐 

 

Table 3.3: A summary of the one-way ANOVA analysis based on the detected peak height 

between the different volume groups. We can see that there is a significant difference between 

the three different groups based on the calculated p-value (0.000305). 

 

 Df Sum Sq Mean Sq F-value P-value 

Volume 1 60.4 60.41 17.65 0.0000305*** 

Residuals 613 2097.6 3.42 - - 

 

We also performed a two-way analysis of variance to see if the means of the peak height 

changed according to the levels of the categorical variables: the volume and the mRNA 

markers. The two-way ANOVA showed that both the cDNA volume and the type of mRNA 

marker explained the variation in the detected peak height significantly (p value < 0.001). See 

Table 3.4 for a summary of the two-way ANOVA.  

 

Table 3.4: a summary of the two-way ANOVA analysis based on the quantitative variable (peak 

height) and the two categorical variables (cDNA volume & mRNA marker type). Both categorical 

variables explain the variation of the peak height significantly with a p-value of 3.84* 10-6 and 2.0 

*10-16 respectively. 
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 Df Sum Sq Mean Sq F-value P-value 

Volume 1 2.406e+09 2.406e+09 21.750 0.000003.84*** 

Marker 18 1.479e+10 8.216e+08 7.429 2e-16*** 

Residuals 595 6.581e+10 1.106e+08 - - 

 

 

3.1.2 The detection of sex specific mRNA markers  

In our study, sex-specific mRNA markers, namely RPS4Y1 for males and XIST for females, 

were consistently detected across various body fluid types. Figure 3.2 illustrates the 

proportion of these sex markers relative to the total number of detected markers among the 

different body fluid types. We excluded the housekeeping genes as they were found to be 

present in all the samples, and their inclusion would not provide additional discriminatory 

power. One sample from the menstruation sample had to be removed in this section due to a 

detection of both the female and male sex-specific marker.  

The proportion of sex-specific markers, relative to the total number of detected markers, 

ranged from 13% to 28%. Notably, it was unexpected to find one male-specific marker 

present in a vaginal secretion sample. In contrast, the semen samples exclusively exhibited 

detection of the male-specific gene (RPS4Y1), suggesting a higher degree of stability in the 

detection of this marker within the semen samples.  

However, the female biomarker, XIST, showed a higher frequency of occurrence across 

almost all sample types.  

Furthermore, we investigated the occurrence of sex-specific markers for all samples in a 

specific sample type. Here one of the menstruation blood samples had to be removed since 

two sex specific mRNA markers were detected in the same sample. In the analysis, we found 

out that the blood samples and menstruation blood samples had the highest detection rates, 

with all samples containing a sex-specific marker. In contrast, the saliva and vaginal secretion 

samples had the lowest detection rates, with approximately two-thirds of their respective 

samples showing the presence of a sex-specific marker. (see figure 3.3)  
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Figure 3.2: Shows the proportion of these sex markers relative to the total number of detected 

markers among the six different body fluid types: blood, menstruation blood, saliva, semen, vaginal 

secretion, and nasal secretion.  
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Figure 3.3:  pie chart that illustrate the occurrence of sex-specific markers for all samples in a 

specific sample type. 
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3.1.3 Incorrect detection of mRNA markers  

The mRNA markers represent a specific bodily fluid because they are exclusively expressed 

in a certain body fluid (see Table 1). All markers that are detected in an incorrect body fluid 

type, are considered incorrectly detected. In this study we chose to make an exception for the 

mRNA markers detected in the menstruation samples. Since the menstruation blood samples 

are extracted from the vaginal area and contains blood, will we accept the blood and vaginal 

mRNA markers as an equal representation for the menstruation samples. This means we 

consider the detection of MUC4, MYOZ1 & CYP2B7P1 and HBB, ALAS2 & CD93, as 

normal in the menstruation samples.  

 

The number of incorrect mRNA markers varies between the six different body fluids/tissues. 

The distribution of the incorrect and correct detected markers for each body fluid are 

illustrated in figure 3.4. The saliva and nasal secretion samples had in total more incorrect 

than correct detected markers with only 47% and 44% of the total amount of mRNA markers 

correctly detected. We can see that the vaginal specific markers, MUC4 and MYOZ1, appear 

frequently in both the saliva and nasal secretion samples. Surprisingly, the MYOZ1 mRNA 

marker appears in three of the semen samples and the MUC4 mRNA marker in one in the 

blood samples. The blood specific mRNA marker HBB, was also incorrectly detected in 

several other body fluid types like the saliva, vaginal and nasal secretion samples. The body 

fluid types with the most correct detected mRNA markers, were the samples collected from 

menstruation blood, blood and semen.  

The distribution of incorrectly and correctly detected mRNA markers in each body fluid are 

summed up in a table that can be found in Appendix 2.  The R code used to create the pie 

charts can be found in Appendix 1. 
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Figure 3.4: Pie charts that illustrate the distribution of the unexpected and the expected mRNA 

markers in each body fluid. The unexpected mRNA markers are represented with a specific color that 

can be found at the right side of the pie chart. The percentage of the expected mRNA markers that 

were detected are illustrated in a light blue color in each pie chart. The percentage is rounded up to 

the closest integer.  

 

3.2 In-depth analysis of each body fluid  

In this section we will individually go through each body fluid and look at the traits and 

qualities for all generated RNA-profiles related to that specific body fluid type. First, we will 

look at the detection rate and peak height value among the different volume groups and for 

each individual marker. Second, we will display the correlation between the markers that are 

specific for the body fluid we are analyzing. Lastly, we will go through the predicted values 

for each body fluid type and see how well each logistic regression models worked as a 

predicting module. The housekeeping genes were not taken into this part of the study since 

they appear in all the 38 samples and are neither body fluid specific nor sex specific markers.   

We performed a one-way ANOVA for all body fluids to see if there was a significant 

difference between the three volume groups and the detection rate in a specific body fluid 

type. We also performed a two-way ANOVA with the volume and marker as predictor 

variables to see if either volume or the marker type had an influence on the detected RFU 

value. For the ANOVA, we set the significance level at 5% (0.05*). A p-value less or equal to 

1% (0.01**) is regarded as highly significant. The results from all the ANOVA tests can be 

found in Appendix 2.  

We conducted predictive modeling using fitted logistic regression models to estimate the 

presence of mRNA markers in different body fluid types. For each body fluid type, we created 

multiple univariate logistic regression models based on a dataset. In our study, we used three 

datasets (df1, df2, and df3), resulting in n*3 univariate logistic regression models for each 

body fluid type. Additionally, we fitted a multivariate model considering all markers for each 

dataset. Consequently, we obtained a total of n*3 + 3 logistic models for all body fluid types. 

To assess the performance of these models, we used prediction techniques and evaluated their 

outcomes using a confusion matrix. 
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The logistic regression model was tested by dividing the dataset into a training set, consisting 

of 70% of the samples, and a test set, containing the remaining 30% of the samples. The goal 

was to categorize each sample as either the target body fluid (binary value: 1) or another body 

fluid type (binary value: 0). The samples were categorized based on their calculated 

probability of belonging to the target category. Samples with a probability greater than or 

equal to 0.5 were classified as the target body fluid, while samples with a probability less than 

0.5 were classified as another body fluid type. This approach enabled us to predict and assign 

categorical labels to the samples in the test set using the logistic regression model's 

probabilities. We used the same training dataset on all the logistic regression models also the 

models based of the different datasets. The distribution of the different samples that was 

tested for prediction can be found in Table 3.5.  

 

Table 3.5: the distribution of the different samples in the training dataset. 

Body fliud  Number of samples 

Blood 5 samples 

Menstruation blood 3 samples 

Semen 3 samples 

Saliva 11 samples 

Nose secretion  5 samples 

Vaginal secretion  3 vaginal 

 

3.2.1 In-depth analysis of the blood samples 

This study consisted of 11 blood samples that were used to make 11 RNA-profiles with 68 

detected markers. Twenty-two of these markers were housekeeping genes, 11 were sex 

specific genes and the remaining 35 were specific mRNA biomarkers for body fluid 

identification. Only 3 out of the 35 mRNA markers were unexpectedly detected.  

The peak height registrated in the RNA-profile, can be seen as a representative value of the 

cDNA quantity for the amplified mRNA marker. The variation in peak height value among 

the different blood specific markers, can be seen in a box plot in Figure 3.5.  
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From the plot, we can see that the mRNA marker ALAS2, had the highest variance among the 

eight different markers. The male specific sex marker, RPS4Y1, had the highest mean peak 

value (32088 RFU) while the marker CD93, had the lowest (7137 RFU).  

After performing a two-way ANOVA, we found a high significant difference in mean peak 

height for the volume groups and the eight different mRNA markers (p-value < 0.01**). (See 

table 44 in Appendix 2). However, the one-way ANOVA showed no statistically significant 

difference in detection rate between the three volume groups (p-value >0.05). An increment in 

volume, did not increase the detection rate in the blood samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: A box plot that shows the detected peak height (RFU) for each mRNA marker in the RNA-

profiles created by the 11 blood samples.  

 

3.2.1.1 Correlation between the mRNA markers in the blood samples 

We wanted to see if there was a positive or negative correlation between the three blood 

specific markers based on their peak height magnitude. A positive correlation between two 

markers indicates a common change or detection in peak height. A negative correlation can 
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indicate that a high RFU value of one marker comes with a low RFU value from another 

marker. 

The correlation between the markers: ALAS2, CD93 and HBB, is illustrated in Figure 3.6. A 

high correlation is illustrated as a larger circle while the color of the circle gives information 

about the sign of the real number calculated (red= negative, blue= positive). The color 

gradient can be seen on the right side of the plot.  

 From Figure 3.6, we can see a heigh correlation between the RFU values detected in the HBB 

marker and the ALAS2 marker (correlation = 0.67). The lowest correlation was detected 

between the HBB and the CD93 marker (correlation = 0.31). 

Figure 3.6: A plot that illustrates the calculated correlation between the three blood specific mRNA 

markers. The correlation is illustrated as a circle where the size of the circle gives information about 

the correlation value while the color gives an information about the sign of the real number calculated 

(red= negative, blue= positive).  
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3.2.1.2 Statistical properties and prediction for blood samples 

We used logistic regression to create a suitable model for blood sample prediction.  

 In this section we will first describe the summary of the logistic regression models that we created 

from the collected data from the blood samples. All summaries of the logistic regression models can 

be found in Appendix 2 from table 7 to 24. Second, we will present the results from the prediction 

based on a train and a test dataset created from each logistic regression model.  

Twelve logistic regression models were created based on three different datasets: df1, df2 and df3. The 

characteristic for each dataset is described in the method section 2.6.3.3, the datasets can also be found 

in Appendix 1. One multivariate model was created with each blood specific marker, HBB, ALAS2, 

CD93, as a predictor variable to the fitted model. Three univariate models were also generated with 

each marker as a predictor variable. The models were created as training dataset based of 70% of the 

dataset and tested with the remaining 30%.  

From the predictions, we could conclude that the multivariate logistic regression models were the best 

fitted models for prediction. Also, the univariate model based of the ALAS2 marker gave an equally 

good prediction for all datasets.  There was no noticeable difference between the three datasets, 

consequently we will only mention the result from the multivariate model created from the dataset df1. 

The results from the prediction can be summed up in a confusion matrix as in Figure 3.7.  

The confusion matrix shows the true positives (left top square), the false positives (right top square), 

the false positives (left bottom square) and the false negatives (right bottom square).  

The test dataset consisted of five blood samples. Three out of the five blood samples in the test dataset 

were detected and categorized as blood. This means that 60% of the blood samples was correctly 

categorized as blood. Two samples in the test dataset were predicted unexpectedly as false negatives 

among the 30 samples. The main difference between the expected and unexpected predicted blood 

samples was a lower detection in peak height from the ALAS2 mRNA marker.  

We can see that there were no false positive predictions, which contributed to a heigh specificity (1.0). 

Like the rest of the predicted models, the accuracy was calculated to be 93.33%.   

Summaries for all the predicted models can be found in Table 25-28 in Appendix 2. The R code that 

fitted the logistic regression models and preformed the predictions, can be found in Appendix 1. 
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Table 3.6: The accuracy of the 

prediction is calculated to be 0.93 

(93%) with a sensitivity of 0.6 and 

specificity of 1.0.  

 

 

 

Figure 3.7: a table consisting of the calculated values from the prediction of the blood samples. From the 

prediction we got 3 true positives, 25 true negatives and 2 false negatives. From all 5 blood samples the 

model managed to find and categorize 3 of them. This and all other confusion matrixes is plotted in R-

studio with the function confusionMatrix () from the caret package.  

3.2.2 In-depth analysis of the menstruation blood samples  

We had a total number of 9 menstruation samples in this study. The 9 samples created 9 

RNA-profiles consisting of 95 detected mRNA markers. 18 markers were housekeeping 

genes, 10 detected markers were sex specific markers and 67 markers body fluid specific 

mRNA markers. There were only 3 markers that were unexpectedly detected among the body 

fluid specific mRNA markers. 

Figure 3.8 illustrates a boxplot based of the peak height for each detected marker in the 

menstruation blood samples. We can see from the plot that the 4 menstruation blood specific 

markers, HBB, MMP7, MMP10 and MMP11, have a relatively heigh mean peak height 

except for the MMP11 mRNA marker. Surprisingly, we can also see a low detection in the 

male specific sex marker, RPS4Y1 (RFU= 165). All markers that are considered unexpectedly 

detected, have a very low mean peak height value.  
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We performed a two-way ANOVA to see if there was a significant difference in mean peak 

height between the three volume groups (0.5, 1.0 and 3.0 L) and between the detected 

mRNA markers. We found out that there was a significant difference in peak height between 

the three volume groups (p-value <0.05), including a significant difference between the 

mRNA markers. Also, the detection rate did not significantly increase due to an incensement 

in volume. However, by performing a one-way ANOVA with the volume groups as the only 

response variable, we found out that there was no significant difference between the volume 

groups. 

 

Figure 3.8: A box plot showing the detected peak height for each marker found in the menstruation 

blood samples.  
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3.2.2.1 Correlation between the mRNA markers in the menstrual blood samples 

A correlation matrix was created to see if there was a common change between the four 

menstruation blood markers (see Figure 3.9). There was no heigh correlation between most of 

the mRNA markers. The only two markers that had a significantly heigh correlation was the 

MMP10 and the MMP7 marker (correlation = 0.88). The MMP7 and MMP11 mRNA 

markers had a relatively low correlation compared with the others. This might be due to the 

low RFU detection in of the MMP11 marker (correlation = 0.16).  

Figure 3.9: a correlation matrix showing the correlation values between the four 

menstruation mRNA markers. The size of the circle corresponds to the value of the number 

while the color represents the sign of the value.  

 

3.2.2.2 Statistical properties and prediction for menstrual blood samples 

We created fifteen different logistic regression models based on each datasets (df1, df2 & 

df3). Like the blood samples, we fitted a univariate model for each marker that were 
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exclusively expressed in the menstruation blood samples and a multivariate model for all the 

menstruation blood specific markers combined.  

We saw no significant difference in prediction between the three datasets. There was on the 

other hand a difference in prediction between the four univariate models and the multivariate 

model. The model that gave the best prediction was the two univariate logistic regression 

models that had the MMP10 and the MMP11 marker as the response variable. These two 

models had a 100% accuracy in almost all the three datasets. The predicted values from the 

two univariate models can be illustrated in Figure 3.10. The other predictions can be found in 

table 29-31 in Appendix 2.  

All three menstruation samples from the training dataset got detected and categorized 

correctly, giving the model a faultless prediction.  

 

 

 

Table 3.7: The accuracy of the 

prediction is calculated to be 

1.0 (100%) with a sensitivity of 

1 and specificity of 0.6.  

 

 

 

Figure 3.10: All three menstruation samples got categorized correctly with 3 true positives and 25 true 

negatives. No false positives nor false negatives were predicted.  
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3.2.3 In-depth analysis of the saliva samples 

There were a total number of 34 saliva samples in this study. The 34 samples created 34 

RNA-profiles with 222 detected mRNA markers. 68 of these markers were housekeeping 

genes, 23 markers were sex specific markers and the remaining 131 detected were body fluid 

specific mRNA markers.  

Figure 3.11 shows a boxplot based on the detected peak height among the 12 different mRNA 

markers that were detected in the saliva samples. From the plot we can see that the saliva 

mRNA marker; HTN3, has the highest mean peak value of all the detected mRNA markers 

(mean RFU value = 18067). The other saliva specific marker, STATH, was also detected in 

94% of all saliva samples and had a mean peak height value of 9612 RFU. Surprisingly, both 

the vaginal secretion and menstruation blood markers were detected in many of the samples. 

The MUC4 marker and MYOZ1, that is specific for vaginal secretion, got detected in 76% 

and 59% of the samples.  

Figure 3.11: A boxplot showing the distributed peak height for all the 12 detected mRNA 

markers in the saliva samples. 
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We performed a two-way ANOVA to see if there was a significant difference in mean peak 

height between the volume groups and the 12 detected markers. from the performed ANOVA 

we found a significant difference between the mRNA markers (p-value < 0.01), but no 

significant difference between the volume groups (p-value>0.05). For the detection rate, we 

could conclude, by looking at the one-way ANOVA values, that there was no significant 

increasement in detection rate due to an increasement in volume (p-value >0.05).  

 

3.2.3.1 Correlation between the mRNA markers in the saliva samples 

The correlation between the two saliva samples HTN3 and STATH was calculated to be 

relatively low with a value of 0.37. A correlation matrix of the two mRNA markers is shown 

in Figure 3.12. The size and color of the circle indicates a low, but positive correlation 

between the saliva specific markers. 

 

Figure 3.12: A correlation matrix showing the correlation values between the two mRNA markers that 

is specific for saliva. High positive correlation gives a larger dark blue circle, while a low negative 

correlation gives a smaller red circle. 
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3.2.3.2 Statistical properties and prediction for saliva samples 

We created 9 logistic regression models for the saliva samples, two univariate models for each 

mRNA marker related to saliva and one multivariate model created based on both mRNA 

markers. We created the univariate and multivariate models for each of the three datasets.  

We used the same proportion of training and test data as the other body fluids in this study. 

We tried predicting the test dataset based on the model created from the train dataset. From 

the prediction we could conclude that the multivariate model created from the df3 dataset  was 

the model that predicted the best. This model had an 96.7% accuracy with only one false 

negative predicted. This one false negative marker had a two out of three wrong detected 

mRNA markers. The summary of the prediction can be found in a confusion matrix in figure 

3.13. From the other models, we found out that the HTN3 marker was a better predictor 

variable for prediction than the STATH mRNA marker. The lg3.b model had a 100% 

sensitivity and a 91% specificity. 

 

 

Table 3.8: The accuracy of the 

prediction is calculated to be 0.97 (97%) 

with a sensitivity of 0.91 and specificity 

of 1.0.  

 

 

 

 

 

 

 

 

Figure 3.13: In this prediction all except one saliva samples got detected and categorized correctly. One saliva 

marker did not get detected giving a false negative value.  
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3.2.4 In-depth analysis of the semen samples 

We created 12 RNA-profiles from the 12 semen samples that were collected. We detected in 

total 64 mRNA markers, 24 markers were housekeeping genes, 11 were sex specific genes 

and the remaining 29 were mRNA markers specific for a body fluid. There were three 

unexpectedly detected mRNA markers in the semen samples.  

The detection in peak height varied  among the five different detected mRNA markers. For all 

markers, the mean peak heights were generally quite low.  The male specific sex marker had 

the highest mean peak height of 9443.364 RFU. The lowest mean peak height among the 

semes specific markers was the detected among the KLK3 markers (RFU= 120.5). The 

unexpectedly detected marker, MYOZ1, had the lowest mean peak height of all markers. A 

summary of the peak heights for all markers detected in the semen samples can be found as a 

boxplot in figure 3.14. 

 

 

Figure 3.14: a box plot showing the distribution of peak heights among the detected markers in semen samples. 

after performing a one-way ANOVA, we found a slight significant difference in peak height 

between the volume groups in the semen samples after performing a one-way ANOVA (P 

value= 0.022). We did not, on the other hand, find any significant difference in detection rate 

among the different volume groups (P-value>0.05). 
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3.2.4.1 Correlation between the mRNA markers in the semen samples 

We found the correlation between the three semen markers, SEMG1, KLK3 and PRM1, and 

found a slight high positive correlation between the SEMG1 and PRM1 mRNA marker. 

(corr= 0.58). The correlation between the other semen specific markers were quite low, but 

positive. The correlation between the three markers can be summed up in a correlation matrix 

(Figure 3.15). 

 

Figure 3.15: a correlation matrix that shows the correlation values between each pair of semen specific mRNA 

markers.  A high positive correlation gives a larger dark blue circle, while a low negative correlation gives a 

smaller red circle.  

 

3.2.4.2 Statistical properties and prediction for semen samples 

For the semen samples we created 12 logistic regression models, 9 univariate models based of 

on each mRNA specific marker for each dataset and three multivariate model for all three 

markers combined.  The 12 models were created by a training dataset and tested by a test 

dataset. From the prediction we found out that all models, except from the multivariate model 

created from dataset df2 (lg2.se), had a perfect prediction with 100% accuracy with highest 

sensitivity and specificity.  
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In our test dataset we had, like the vaginal secretion samples, only three semen samples. 

Unlike the prediction form vaginal secretion that only had one out of three correct detected 

samples, the logistic regression models for prediction of semen samples managed to 

categorize all the samples correctly. 

 

 

Table 3.9: The accuracy of the 

prediction is calculated to be 1.0 

(100%) with a sensitivity of 1.0 and 

specificity of 1.0.  

 

 

 

Figure 3.16: The prediction of the semen samples gave a perfect prediction with no false negative nor false 

positives. All three semen samples from the training dataset got predicted correctly. 

 

3.2.5 In-depth analysis of the vaginal secretion samples 

This study consisted of 12 vaginal secretion samples given by voluntary participants. The 12 

RNA profile created by these samples consisted of 78 detected RNA-markers. 24 markers 

were housekeeping genes, 8 were sex specific mRNA markers and the remaining 46 were 

markers exclusively expressed in a specific body fluid type. The predictions and statistical 

analysis were calculated without the detected values from the housekeeping genes.  

A one-way ANOVA was performed to see if there was a significant difference in RFU values 

between the three volume groups. Another one-way ANOVA was performed to see if there 

was a difference in detection rate among the three different volume groups. We found no 

significant difference in the RFU values nor the detection rate between the three volume 

groups (p >0.05). There was, on the other hand, a significant difference between the RFU 
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values and the detection rate between the 10 different detected markers (p < 0.05).  A 

summary of the detected peak height for each mRNA marker is shown in a box plot in Figure 

3.17. 

The MUC4 mRNA marker had a much higher RFU value than the other markers. The MUC4 

marker had a mean value of 25713.08 RFU, while the MYOZ1 markers, that had the second 

highest mean value, had a mean value of only 3645.58 RFU. The unexpectedly detected 

mRNA markers have a rather low detection in peak height. 

 

Figure 3.17: a box plot showing all detected peak heights for each marker. The detected mRNA markers can be 

found along the Y-axis, while the corresponding RFU value for each detected sample can be found along the X-

axis. 

3.2.5.1 Correlation between the mRNA markers in the vaginal secretion samples 

We used the R-programing software to calculate the correlation between the three markers 

that were specific for vaginal secretion: MUC4, MYOZ1 and CYP2B7P1.  The result is 

summed up in a correlation matrix (figure 3.18). From the figure we can see that there a high 

positive correlation between the MYOZ1 and the CYP2B7P1 marker (correlation = 0.65), but 

a rather low positive correlation between the MUC4 and the other two markers (correlation 

<0.35). 
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Figure 3.18: a correlation matrix containing the calculated correlation between the vaginal specific mRNA 

markers. A high positive correlation is illustrated as a larger dark blue circle, while a negative correlation is 

illustrated as a smaller red circle.  

 

3.2.5.2 Statistical properties and prediction for the vaginal samples 

12 logistic regression models were created by a train dataset and tested by a test dataset. 9 of 

the models were univariate model based on each vaginal marker created from df1, df2 and 

df3. Three multivariate models based on a combination of all markers were created from each 

dataset and tested with the same random selected samples.  

The prediction among the univariate and the multivariate models were mostly similar between 

all models. The model that gave the best outcome was created from the df3 dataset with the 

multivariate and the univariable for MUC4.  The other models did not identify any of the 

three vaginal samples from the other samples and had therefore no specificity. The vaginal 
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samples that did not get detected had no unexpected detected markers, while the vaginal 

sample that was detected in the multivariate model had two unexpected detected markers. 

Since the df3 dataset had penalty for the unexpectedly detected markers it could have 

contributed to a better prediction.  

Since we only had three vaginal secretion samples in our test dataset, gave this us difficulty in 

getting a good overview of the models ability to distinguish the vaginal samples from the 

other body fluid types.  

 

 

 

 

Table 3.10: The accuracy of the 

prediction is calculated to be 

0.93 (93%) with a sensitivity of 

0.33 and specificity of 0.6.  

 

 

Figure 3.19: From the prediction of vaginal secretion, we only found 1 out of the 3 vaginal secretion samples. 

Two of the samples did not get detected and ended up as false negative values.  

 

3.2.6 In-depth analysis of the nasal secretion samples 

In this study there was a total number of 12 RNA-profiles, created from the 12 nose secretion 

samples. 24 housekeeping genes were detected along with 6 female and 3 male sex markers. 

The remaining 55 markers were markers associated to a specific body fluid where 56% of 

these markers were unexpectedly detected.  

There was no significant difference between the detected mean RFU value or detection rate 

between the three volume groups (p-value > 0.05). There was, on the other hand, a strong 
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significant difference between the RFU values and detection rate between each RNA marker 

that was detected in the nose secretion samples (p-value< 0.01). 

The detected RFU values varied between the 9 different detected markers that were found in 

the nose secretion samples. The highest detected mean values were found among the MUC4, 

RPS4Y1 and STATH markers with a mean value of 23939.18, 26110.5 and 20571 RFU. Most 

of the wrong detected markers, except the MUC4 marker, have a relatively low mean RFU 

value. Figure 3.20 shows a boxplot of the detected peak height for each of the 9 detected 

markers.  

 

figure 3.20: a boxplot showing the detected peak height value for all the detected mRNA markers in 

the nose secretion samples. Each marker can be found along the y-axis, while the RFU value is listed 

along the x-axis. This plot was created in the R-studio software. 
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3.2.6.1 Correlation between the mRNA markers in the nasal secretion samples 

We calculated the correlation values between the mRNA markers: STATH and the BPIFA1. 

The calculations were done and plotted in the R-studio software. From the correlation matrix 

(Figure 3.21), we can see that the correlation between the two nasal specific markers is quite 

high with a positive value of 0.67. 

 

Figure 3.21: a correlation matrix with the calculated correlation between the STATH and BPIFA1 RFU 

values. A high value gives a larger circle. Negative correlation gives a red color that increase in color 

when the value increases. A positive value gives a blue color that gets darker when the value increases. 

 

3.2.6.2 Statistical properties and prediction for nasal secretion samples 

Three multivariate logistic regression models were created from the df1, df2 and df3 datasets. 

Six univariate models were created with each marker as a predictor variable. A prediction was 

performed based on a training and a test dataset. Both the model based of the BPIFA1 marker 

(lg1.n2, lg2.n2 & lg3.n2) and the multivariate model (lg1.n, lg2.n & lg3.n) were equally good 

in all the different datasets.  
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Out of the five nasal samples from the test dataset, only four got detected and categorized as 

the targeted body fluid. Although this gives a considerably good prediction with 80% correct 

prediction.  

 

 

Table 3.11: The accuracy of the prediction 

is calculated to be 0.80 (80%) with a 

sensitivity of 0.8 and specificity of 1.0.  

 

 

 

Figure 3.22: The prediction of the nasal samples gave a almost perfect prediction with only one  false negative 

prediction. This gives the prediction an accuracy of 80%.  

 

3.3 Summary of ANOVA - Detection rate and cDNA volume  

3.3.1 cDNA Volume  

The six one-ANOVA analysis we performed based on the detected peak height value showed 

us that there was no significant difference between the volume groups in most of the body 

fluid types. The only body fluid that showed any significant difference between the mean 

RFU values in the three volume groups, was values form the blood samples. However, by 

running a two way-ANOVA with both the volume and marker type as predictor variables, we 

found out that both the menstruation and blood samples had significant difference in mean 

RFU value between the different volume groups.  

 

Table 3.12: A table consisting of the calculated p-value from the one-way ANOVA analysis with the 

three volume groups as predictor variables and the peak height values as response variable. A p-value 

less than 0.05 shows that that it is a significant difference between the three volume groups. A value 

above this threshold indicates no significant difference.  
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Body fluid Volume group (p-value) Significant 

Blood 0.0379 Yes  

Menstruation blood 0.0578 No 

Saliva 0.122 No 

Semen 0.209 No 

Vaginal secretion  0.68 No 

Nasal secretion 0.199 No 

Total dataset  0.00596 yes 

 

 

3.3.1 Detection rate  

Based on the results of the six one-way ANOVA analyses performed, it can be concluded that 

there was no statistically significant difference observed among the volume groups in terms of 

the detection rate. (See Table 3.1)  

  

Table 3.13: A table consisting of the calculated p-value from the one-way ANOVA analysis with the 

volume group as predictor variable and the detection rate as response variable. A p-value less than 

0.05 shows that that it is a significant difference between the three volume groups. A value above this 

threshold indicates no significant difference.  

 

Body fluid Detection rate (p-value) Significant 

Blood 0.328 No 

Menstruation blood 0.909 No 

Saliva 0.671 No 

Semen 0.743 No 

Vaginal secretion  0.471 No 

Nasal secretion 0.913 No 

Total dataset  0.476 No 
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3.4 Summary of the predicted values   

3.4.1 Multivariate logistic regression models 

For each dataset (df1, df2, and df3), a separate multivariate logistic regression model was 

fitted for every body fluid type. The accuracy of the models exhibited variations ranging from 

0% to 100% across different body fluids and from 33% to 100% across the various datasets. 

(See Table 3.14)     

Table 3.14: the accuracy calculated from the fitted multivariant models for all three datasets in all six 

body fluid types.  

Sample type   Df1 Df2 Df3 

 

Blood 60% 60% 60% 

Menstruation blood 33% 66% 33% 

Saliva 64% 64% 91% 

Semen 100% 33% 100% 

Vaginal secretion  0% 0% 33% 

Nasal secretion  80% 80% 80% 
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3.4.2  The best fitted model for the univariate logistic regression models  

The univariate models are fitted based on only one specific marker associated with the target 

body fluid. We found the mRNA marker that gave the best accuracy in their representative 

univariate model for each dataset. We can see form table 3.15 that there was no difference in 

accuracy between the best fitted models among the univariate logistic regression models.  

There was not much difference between the accuracy of the multivariate models and the best 

predicted univariate models. The only exception was the multivariate model from dataset df3, 

that was able to detect one of the vaginal secretion samples, which the other models couldn't 

do. However, we can see that all the univariate models from the semen samples had an 

accuracy of 100% while the multivariate model from df2 only had 33% detection accuracy.  

 

Table 3.15: The table displays the univariate models with the highest accuracy among all three 

datasets. The accuracy is presented as a percentage, and the marker used as the predictor variable in 

each univariate model is indicated within parentheses. For cases where multiple univariate models 

show comparable levels of prediction performance, these models are listed within the same set of 

parentheses. 

Sample type   Df1 Df2 Df3 

Blood 60%                     

(ALAS2)  

60%                    

(ALAS2) 

60%                    

(ALAS2/ HBB) 

Menstruation 

blood  

100%  

(MMP10/MMP11) 

100%                 

(MMP11) 

100%  

(MMP10/MMP11) 

Saliva 64%                      

(HTN3) 

64%                      

(HTN3) 

64%                      

(HTN3) 

Semen 100% 

(KLK3/PRM1/SEMG1) 

100% 

(KLK3/PRM1/SEMG1) 

100% 

(KLK3/PRM1/SEMG1) 

Vaginal 

secretion  

0% 0% 0% 

Nasal 

secretion  

80%                   

(BPIFA1) 

80%                   

(BPIFA1) 

80%                   

(BPIFA1) 
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4. Discussion  

4.1 The datasett  

The dataset used in this study consisted of samples from six different body fluids: blood, 

menstrual blood, saliva, semen, vaginal secretion, and nasal secretion. It comprised a total of 

90 samples, with varying sample numbers for each body fluid type, with nasal secretion as the 

largest sample group with 34 samples. It is worth mentioning that the sample distribution 

across the different body fluid types was different, with saliva having the largest number of 

samples. 

 

The dataset size was determined based on the availability of samples within the study's reach. 

While a larger dataset could provide more statistical power and generalizability, the sample 

size in this study was determined to be sufficient for the specific research objectives. (56).   

It is important to acknowledge that the varying sample numbers across body fluid types can 

lead to some limitations regarding statistical comparisons and the robustness of the predictive 

models. The relatively smaller sample sizes for some body fluid types, such as menstrual 

blood and blood samples, should be considered when interpreting the results. 

 

Future studies could consider expanding the dataset to include a larger number of samples for 

each body fluid type, enabling more robust statistical analyses and improving the accuracy of 

the predictive models. Additionally, one can later ensure a more balanced distribution of 

samples across the different body fluid types, facilitating more comprehensive comparisons 

and evaluations. 

 

 

4.2 Volume and RFU values 

In this study, we looked at the cDNA volume's effect on marker detection and peak height for 

different body fluids. We performed a one-way ANOVA to study the relationship between the 

volume of cDNA (predictor variable) and the peak height (response variable).  

 

When the ANOVA was performed on the entire dataset, the volume of cDNA showed a 

significant effect on peak height, with a p-value below 0.01, which indicates a strong 

significant variation among the different volume groups. However, upon further analysis by 

separating the dataset based on each body fluid type, the significance of the volume as a 
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predictor was increased to a value above the p-value threshold indicating no significant 

difference between the groups. The individual ANOVA tests conducted within each body 

fluid type, except for the blood samples, revealed p-values higher than 0.05, indicating that 

the volume was not a significant factor in determining peak height within each group. This 

suggests that the volume of cDNA may have a more pronounced effect on peak height in 

blood samples than other body fluid types (See table 3.12).  

 

We also performed a two-way ANOVA with both cDNA volume and marker type as 

predictors to see if there were potential interactions between these variables. The results 

indicated that in addition to the volume of cDNA, the marker type also played a significant 

role in determining peak height among the menstruation blood and blood samples. In the 

menstruation and blood samples the p-value for significant differences among the volume 

groups decreased to a p-value below 0.05 (see table 44 and 45 in Appendix 2). This suggests 

that the combination of marker type and cDNA volume may have a joint effect on the 

observed peak height in the menstruation and blood samples.  

 

In forensic genetics, the cell type and quantity of biological material are often unknown 

before analysis. To address this, we tested different volumes added to the PCR reaction. We 

observed variations in peak heights, which depended on the specific cell types. 

Consequently, recommending an optimal volume for PCR addition is challenging when the 

cell type is still being determined.  

 

 

4.3 Volume and Detection Rate  

In addition to examining the impact of cDNA volume on peak height, we also investigated its 

effect on the detection rate of mRNA markers among the samples. We performed a one-way 

ANOVA to see if the volume of cDNA influenced the detection rate. Surprisingly, our results 

revealed that the volume of cDNA did not significantly affect the detection rate across all 

body fluid types, as indicated by a p-value greater than 0.05. 

 

This finding suggests that variations in cDNA volume, within the range tested in our study, 

did not significantly impact the ability to detect mRNA markers in the samples. These results 

indicate that the volume of cDNA may not be a critical factor affecting our study's overall 

detection rate of mRNA markers. However, the samples included in this study were mainly of 
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good quality, and a larger effect is expected on samples containing lower amounts of 

degraded RNA. 

 

Another factor one may consider is the detection threshold. The threshold for detection is 50 

RFU, which could be considered low. Raising this threshold could lead to a more pronounced 

influence on marker detection. An increased threshold could also contribute to less detection 

of the unexpected mRNA markers in different body fluids. This is because most of the mRNA 

markers that have been in another expected body fluid have a relatively low RFU value. 

Additionally, other factors, such as RNA quality and extraction efficiency, still play a role in 

the overall detection rate and should be considered in future studies.  

 

4.4 Detection of sex-specific mRNA markers 

Our study aimed to analyze the detection of sex-specific mRNA markers, XIST for females 

and RPS4Y1 for males, in various body fluid types. We made several interesting observations 

among the 19 different markers analyzed in our study, including two housekeeping genes, two 

sex-specific genes, and the remaining mRNA markers exclusively expressed in specific body 

fluids. 

 

Firstly, we found that both the menstrual and blood samples showed the presence of a sex 

marker in all their respective samples. This observation suggests a high level of reliability in 

detecting sex markers within these body fluid types. 

 

The detection of sex markers in other body fluid types varied. The saliva samples showed a 

detection rate of a sex marker in only 68% of the samples, indicating a lower frequency of 

occurrence. On the other hand, the semen samples showed a higher detection rate of 92%, 

suggesting a more reliable identification of male-specific markers in this body fluid type. 

Similarly, the vaginal secretion samples showed a detection rate of 67%, while the nasal 

secretion samples showed a detection rate of 75%.  

 

It is worth noting that one vaginal secretion sample demonstrated the unexpected detection of 

a male-specific marker. This finding highlights the potential for cross-contamination or other 

sexual activity before sample collection. On the other hand, there were some restrictions 

regarding the time since sexual activity before collection samples to avoid mixtures. 
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However, semen could have persevered for a longer time and been detected in one of the 

samples.  

 

Furthermore, our analysis revealed that more female sex markers were detected compared to 

male-specific markers. This discrepancy can be attributed to the larger number of female 

participants in our study, leading to a higher prevalence of female-specific markers across the 

body fluid types analyzed. This finding underscores the influence of participant demographics 

on the detection patterns of sex markers. 

 

 

4.5 The influence of the STATH mRNA marker in saliva and nasal secretion samples 

In this study, we investigated the detection of specific mRNA markers in saliva and nasal 

secretion samples. It was previously reported in a study by Sakurada et al. (30) that the 

marker STATH, which is commonly associated with saliva samples, can also be detected in 

nasal secretion samples. So, we explored the possibility of improving the prediction model for 

nasal samples by including both the BPIFA1 marker, specific to nasal secretion and the 

STATH marker. 

 

Upon analyzing the results, we observed that the logistic model using only the BPIFA1 

marker achieved a relatively high prediction accuracy, correctly identifying 4 out of 5 nasal 

samples. This suggests that BPIFA1 alone exhibits a strong association with nasal secretion 

samples and can effectively predict nasal fluid identification. 

 

Surprisingly, when we incorporated the STATH marker into the model, we noticed a decrease 

in the prediction accuracy, with 3 out of 5 nasal samples correctly identified. This result was 

unexpected since the inclusion of STATH, which is commonly associated with saliva, was 

anticipated to enhance the prediction for nasal samples. However, the introduction of STATH 

led to two false positives and two false negatives, indicating a less accurate prediction 

compared to the model using only BPIFA1. 

 

We can see from Figure 3.4 that the STATH marker often appear in various body fluids, 

especially nasal samples. The presence of STATH in nasal samples might represent a 

contamination or crossover effect from the adjacent oral cavity, leading to false-positive 

predictions. Additionally, the differential expression patterns or regulation mechanisms of 
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STATH and BPIFA1 in nasal secretion samples could potentially conflict, resulting in the 

misclassification of some nasal samples. 

 

These findings highlight the importance of thoroughly investigating marker specificity and 

considering potential cross-reactivity or overlapping expression patterns when designing 

prediction models.  

  

4.6 Correlation and prediction  

In examining the influence of marker correlation on the logistic regression models, we aimed 

to determine if markers with high correlation could impact the predictive performance. Within 

the blood samples, the ALAS2 and HBB markers exhibited the highest correlation. 

Interestingly, these two markers demonstrated the most accurate predictions among the three 

fitted univariate models. This suggests that the strong correlation between ALAS2 and HBB 

may contribute to their combined effectiveness as predictors in the logistic regression model 

for blood samples. 

 

However, in the menstruation samples, the MMP10 and MMP7 markers displayed the highest 

correlation. Surprisingly, the univariate logistic regression models based of the MMP10 and 

MMP11 markers gave better prediction than the multivariate model based of all markers and 

the univariate model based on MMP7 marker. This might indicate that it could be other 

factors that can affect the prediction, such as different patterns in the detection of the markers 

in the menstruation samples.  

 

Furthermore, we investigated the correlation between the STATH and BPIFA1 markers in 

saliva and nasal secretion samples. Despite a relatively low correlation, we explored whether 

incorporating both markers would improve the prediction. However, our findings revealed 

that the inclusion of STATH did not enhance the prediction more than was achieved by solely 

using the BPIFA1 marker.  

Other factors, such as marker specificity, may have a more significant impact on the accuracy 

of the logistic regression model since the BPIFA1 marker is more specific than the STATH 

marker.  

 

Our study demonstrates that marker correlation does not consistently dictate the predictive 

power of logistic regression models. While markers with high correlation, such as ALAS2 and 
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HBB, may yield improved predictions, other factors, including marker specificity and 

differential expression patterns, should also be considered. Further studies are necessary to 

understand the relationships between markers and their impact on the predictive modeling for 

body fluid identification.  

 

4.7 Specificity among mRNA markers and prediction  

The presence of unexpected markers in various body fluid types gives an interesting view of 

our study. One such marker is MUC4, which is typically expressed exclusively in vaginal 

secretion but was unexpectedly detected in blood (3%), nasal secretion (20%), and saliva 

(20%) samples. Similarly, the STATH marker, associated with saliva, appeared in both blood 

(3%) and menstruation blood (1%) samples. The HBB marker appeared in 11% of vaginal 

secretion samples, 7% of saliva samples, and 7% of nasal secretion samples. This suggests 

that HBB, STATH, and MUC4 markers have low specificity and are, therefore, more 

unreliable in a prediction model. 

 

Detecting these markers in unexpected body fluids highlights potential cross-contamination or 

trace amounts of these fluids in the samples. For instance, can traces of blood be present in the 

nose or oral cavities due to the breakage of small blood vessels. 

 

Analyzing the prevalence of unexpectedly detected markers across body fluid types, we 

observed that vaginal secretion samples had the highest proportion (37%) of unexpected 

detected markers, followed by saliva samples (43%) and nasal secretion samples (46%).  

The impact of these unexpected markers on prediction accuracy is notable, as reflected in the 

performance of the logistic regression models. For instance, the vaginal secretion samples 

showed the poorest prediction performance, identifying only 1 out of 3 samples from the best-

fitted model multivariate model based on the df3 dataset (lg3.v). Similarly, the blood samples 

displayed suboptimal prediction accuracy, with only 3 out of 5 samples correctly identified. 

These discrepancies can be attributed to unanticipated markers, which likely influence the 

performance of the logistic regression models. 

 

Overall, the presence of unexpected markers highlights the complexity of mRNA profiling 

and the challenges associated with accurately predicting body fluid types. Cross-

contamination can contribute to the unexpected detection of markers in various body fluids.  
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4.8. Multivariate vs. univariate modeling 

Since the univariate models only considered a single predictor variable, they were less 

successful than the multivariate models. Each univariate model focused on a single feature or 

marker without considering the combined impact of several markers. The multivariate 

models, on the other hand, included several markers while accounting for their connections 

and interactions. As a result, the data could be analyzed more thoroughly.  
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Appendix 1 

During the programming in  R-studio and R-software, we used the packages: Tidyverse, Corrplot, 

Ggplot2, Stats and Caret.  

 

1. The  Df1 datsett 
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Type HBB MYOZ1 MMP10 MMP7 MMP11 CD93 MUC4 CYP2B7P1

Menstruasjonsblod31763 2329 32546 32662 942 1888 0 0

Menstruasjonsblod17251 192 6416 14520 497 1444 1433 0

Menstruasjonsblod17864 1923 2343 0 1010 0 5005 297

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Spytt 0 733 0 0 0 0 875 0

Spytt 0 361 0 0 0 0 0 0

Spytt 0 1692 0 0 0 0 895 0

Spytt 52 0 0 0 0 0 0 0

Spytt 0 0 0 0 0 374 1001 0

Spytt 0 358 0 0 0 0 0 0

Menstruasjonsblod31707 3710 31961 32555 514 1781 31761 0

Menstruasjonsblod1086 0 542 1490 0 218 137 0

Menstruasjonsblod29460 29665 20373 1504 8293 1600 32406 2103

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Spytt 0 1487 0 0 0 0 1720 0

Spytt 0 194 0 0 0 0 146 0

Spytt 0 3947 0 0 0 0 1657 0

Spytt 0 144 0 0 0 0 534 0

Spytt 0 55 0 0 0 0 64 0

Spytt 0 438 0 0 0 0 0 0

Menstruasjonsblod31427 3144 32511 32626 1620 3629 31852 0

Menstruasjonsblod31722 499 32510 32569 0 17232 16662 135

Menstruasjonsblod28762 32534 32355 8982 24406 2759 31932 14399

Sæd 0 171 0 0 0 0 0 0

Sæd 0 66 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 96 0 0 0 0 0 0

Spytt 0 2497 714 0 0 0 2689 0

Spytt 73 225 0 0 0 0 415 0

Spytt 0 15571 0 0 0 0 4486 0

Spytt 0 0 0 0 0 0 0 0

Spytt 0 0 0 0 0 0 1479 0

Spytt 0 0 0 0 0 0 354 0

Blod 31281 0 0 0 0 2002 0 0

Blod 30545 0 0 0 0 696 0 0

Blod 31502 0 0 0 0 1632 0 0

Spytt 0 0 0 0 0 257 2560 0

Spytt 87 4025 0 0 0 0 675 0

Spytt 0 0 0 0 0 0 0 0

Blod 31020 0 0 0 0 7529 0 0

Blod 23977 0 0 0 0 1117 0 0

Blod 22124 0 0 0 0 2647 0 0

Spytt 77 213 0 0 0 0 1837 0

Spytt 0 0 0 0 0 0 0 0

Blod 30848 0 0 0 0 18850 0 0
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SEMG1 PRM1 KLK3 STATH HTN3 BPIFA1 ALAS2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

340 3942 117 0 0 0 0

50 0 0 0 0 0 0

190 5164 0 0 0 0 0

0 0 0 103 401 0 0

0 0 0 167 297 229 0

0 0 0 0 482 0 0

0 0 0 8739 32541 0 0

0 0 0 4664 23426 0 57

0 0 0 8475 32610 0 0

0 0 0 0 0 434 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1248

1085 4667 0 0 0 0 0

323 2972 67 0 0 0 0

116 1674 0 0 0 0 0

0 0 0 677 1170 0 0

0 0 0 914 0 0 0

0 0 0 330 729 0 0

0 0 0 4420 20883 0 0

0 0 0 6936 32314 0 0

0 0 0 7007 32144 0 0

0 0 0 403 0 723 0

0 0 0 0 0 0 1178

0 0 0 0 0 0 9129

1560 19483 77 0 0 0 0

611 8576 221 0 0 0 0

906 30627 0 0 0 0 0

519 11648 0 0 0 0 0

0 0 0 2123 3678 0 0

0 0 0 2257 5327 0 0

0 0 0 4446 4394 0 0

0 0 0 31362 32194 0 0

0 0 0 19145 32477 0 0

0 0 0 15589 32539 0 0

0 0 0 0 0 0 16948

0 0 0 0 0 0 20734

0 0 0 0 0 0 7802

0 0 0 599 1946 0 0

0 0 0 7804 32372 0 0

0 0 0 907 0 0 0

0 0 0 0 0 0 31957

0 0 0 0 0 0 14068

0 0 0 0 0 0 7790

0 0 0 355 473 0 0

0 0 0 4590 14618 0 0

0 0 0 0 0 0 31771
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2. Df2 datasett 

 
 

Type HBB MYOZ1 MMP10 MMP7 MMP11 CD93 MUC4 CYP2B7P1

Menstruasjonsblod20 2 20 20 1 2 1 1

Menstruasjonsblod11 1 4 9 1 1 1 1

Menstruasjonsblod12 2 2 1 1 1 4 1

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 2 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Menstruasjonsblod20 3 20 20 1 2 20 1

Menstruasjonsblod 1 1 1 1 1 1 1 1

Menstruasjonsblod19 19 13 1 7 1 20 3

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 2 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 3 1 1 1 1 2 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Menstruasjonsblod20 2 20 20 2 3 20 1

Menstruasjonsblod20 1 20 20 1 11 11 1

Menstruasjonsblod19 20 20 6 20 2 20 15

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Sæd 1 1 1 1 1 1 1 1

Spytt 1 2 1 1 1 1 2 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 10 1 1 1 1 3 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Blod 20 1 1 1 1 2 1 1

Blod 20 1 1 1 1 1 1 1

Blod 20 1 1 1 1 2 1 1

Spytt 1 1 1 1 1 1 2 1

Spytt 1 3 1 1 1 1 1 1

Spytt 1 1 1 1 1 1 1 1

Blod 20 1 1 1 1 5 1 1

Blod 16 1 1 1 1 1 1 1

Blod 14 1 1 1 1 2 1 1

Spytt 1 1 1 1 1 1 2 1

Spytt 1 1 1 1 1 1 1 1

Blod 20 1 1 1 1 12 1 1
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SEMG1 PRM1 KLK3 STATH HTN3 BPIFA1 ALAS2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

3 3 11 1 1 1 1

1 1 1 1 1 1 1

2 4 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 6 20 1 1

1 1 1 3 15 1 1

1 1 1 6 20 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

9 4 1 1 1 1 1

3 2 7 1 1 1 1

1 2 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 3 13 1 1

1 1 1 5 20 1 1

1 1 1 5 20 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 6

13 13 7 1 1 1 1

5 6 20 1 1 1 1

8 20 1 1 1 1 1

5 8 1 1 1 1 1

1 1 1 2 3 1 1

1 1 1 2 4 1 1

1 1 1 3 3 1 1

1 1 1 20 20 1 1

1 1 1 12 20 1 1

1 1 1 10 20 1 1

1 1 1 1 1 1 11

1 1 1 1 1 1 13

1 1 1 1 1 1 5

1 1 1 1 2 1 1

1 1 1 5 20 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 20

1 1 1 1 1 1 9

1 1 1 1 1 1 5

1 1 1 1 1 1 1

1 1 1 3 9 1 1

1 1 1 1 1 1 20
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3. Df3 

 

Type HBB MYOZ1 MMP10 MMP7 MMP11 CD93 MUC4 CYP2B7P1

Menstruasjonsblod20 2 20 20 1 2 0 0

Menstruasjonsblod11 1 4 9 1 1 1 0

Menstruasjonsblod12 2 2 0 1 0 4 1

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Spytt 0 -1 0 0 0 0 -1 0

Spytt 0 -1 0 0 0 0 0 0

Spytt 0 -2 0 0 0 0 -1 0

Spytt -1 0 0 0 0 0 0 0

Spytt 0 0 0 0 0 -1 -1 0

Spytt 0 -1 0 0 0 0 0 0

Menstruasjonsblod20 3 20 20 1 2 20 0

Menstruasjonsblod 1 0 1 1 0 1 1 0

Menstruasjonsblod19 19 13 1 7 1 20 3

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Spytt 0 -1 0 0 0 0 -2 0

Spytt 0 -1 0 0 0 0 -1 0

Spytt 0 -3 0 0 0 0 -2 0

Spytt 0 -1 0 0 0 0 -1 0

Spytt 0 -1 0 0 0 0 -1 0

Spytt 0 -1 0 0 0 0 0 0

Menstruasjonsblod20 2 20 20 2 3 20 0

Menstruasjonsblod20 1 20 20 0 11 11 1

Menstruasjonsblod19 20 20 6 20 2 20 15

Sæd 0 -1 0 0 0 0 0 0

Sæd 0 -1 0 0 0 0 0 0

Sæd 0 0 0 0 0 0 0 0

Sæd 0 -1 0 0 0 0 0 0

Spytt 0 -2 -1 0 0 0 -2 0

Spytt -1 -1 0 0 0 0 -1 0

Spytt 0 -10 0 0 0 0 -3 0

Spytt 0 0 0 0 0 0 0 0

Spytt 0 0 0 0 0 0 -1 0

Spytt 0 0 0 0 0 0 -1 0

Blod 20 0 0 0 0 2 0 0

Blod 20 0 0 0 0 1 0 0

Blod 20 0 0 0 0 2 0 0

Spytt 0 0 0 0 0 -1 -2 0

Spytt -1 -3 0 0 0 0 -1 0

Spytt 0 0 0 0 0 0 0 0

Blod 20 0 0 0 0 5 0 0

Blod 16 0 0 0 0 1 0 0

Blod 14 0 0 0 0 2 0 0

Spytt -1 -1 0 0 0 0 -2 0

Spytt 0 0 0 0 0 0 0 0

Blod 20 0 0 0 0 12 0 0
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SEMG1 PRM1 KLK3 STATH HTN3 BPIFA1 ALAS2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3 3 11 0 0 0 0

1 0 0 0 0 0 0

2 4 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 1 1 -1 0

0 0 0 0 1 0 0

0 0 0 6 20 0 0

0 0 0 3 15 0 -1

0 0 0 6 20 0 0

0 0 0 0 0 -1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

9 4 0 0 0 0 0

3 2 7 0 0 0 0

1 2 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 1 0 0

0 0 0 3 13 0 0

0 0 0 5 20 0 0

0 0 0 5 20 0 0

0 0 0 -1 0 -1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 6

13 13 7 0 0 0 0

5 6 20 0 0 0 0

8 20 0 0 0 0 0

5 8 0 0 0 0 0

0 0 0 2 3 0 0

0 0 0 2 4 0 0

0 0 0 3 3 0 0

0 0 0 20 20 0 0

0 0 0 12 20 0 0

0 0 0 10 20 0 0

0 0 0 0 0 0 11

0 0 0 0 0 0 13

0 0 0 0 0 0 5

0 0 0 1 2 0 0

0 0 0 5 20 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 20

0 0 0 0 0 0 9

0 0 0 0 0 0 5

0 0 0 1 1 0 0

0 0 0 3 9 0 0

0 0 0 0 0 0 20
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4. Code for transformation of dataset 
 

table.rmarker<- function(data.file){ 

  data<- data.file %>% 

    na.omit() %>% 

    filter(Allele != "Housekeeping") %>% 

    filter(Marker!="XIST") %>% 

    filter(Marker!="RPS4Y1") 

 

  samples =unique(data$S_Name) 

  markers = unique(data$Marker) 

  Type=c() 

  dat = NULL 

  for(sample in samples){ 

    sub= subset(data, S_Name==sample, select= c(Type, Height, Marker)) 

    newrow= sub$Height[match(markers,sub$Marker)] 

    Type= c(sub$Type[1],Type) 

    dat=rbind(dat,newrow) 

  } 

 

  rownames(dat)<-samples 

  Type= data$Type[match(samples,data$S_Name)] 

  dat <- cbind(Type,dat) 

  colnames(dat) = c("Type",markers) 

  dat[is.na(dat)] <- 0 

  dat <- as.data.frame(dat) 

  dat[,2:ncol(dat)] <-as.data.frame(sapply(dat[,2:ncol(dat)], as.numeric)) 

  return(dat) 

} 
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5.  Code for calculation of detection rate 
marker.dist= function(datafile){ 

  df1<- datafile 

  df2 <- datafile %>% 

    na.omit() 

 

  num.marker.tot <- as.data.frame.matrix(table(df1$S_type,df1$Marker)) # table of the total amount of 

all the different markers in the datafile 

  num.marker <- as.data.frame.matrix(table(df2$S_type,df2$Marker)) # table of the total amount of all 

the different markers that were detected 

 

  data.frame.marker <- round(as.data.frame.matrix(num.marker/num.marker.tot),3) 

 

  return(data.frame.marker) 

 

} 

 

6. Code figure 3.1 
 

data <- RNA.data %>% 

  filter(`Allele` != "Housekeeping") %>% 

  na.omit() 

 

t.data <- data %>% 

  dplyr::select(Marker, Volum) 

 

tbl.t.data <- as.data.frame(table(t.data)) 

 

row_sub = apply(tbl.t.data, 1, function(row) all(row !=0 )) 

tbl.t.data <- tbl.t.data[row_sub,] 

 

 

 

tbl.t.data <- within(tbl.t.data, tbl.t.data$per  <- ifelse(Volum=="0.5", tbl.t.data$Freq/27, 
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                                                           ifelse(Volum=="1", tbl.t.data$Freq/34, 

                                                                  ifelse(Volum=="3", tbl.t.data$Freq/28, 0)))) 

tbl.t.data <- tbl.t.data$tbl.t.data 

tbl.t.data <- tbl.t.data %>% 

  mutate(x_pct= per*100) 

 

 

# plot 

 

my_colors <- c("#f7fbff", "#e0ecf4", "#bfd3e6", "#9ebcda", "#8c96c6", "#8c6bb1", "#88419d", 

"#810f7c", 

               "#8c2d04", "#b35806", "#e08214", "#fdb863", "#fee0b6", "#f7f7f7", "#d8daeb", "#b2abd2", 

               "#8073ac", "#542788", "#2d004b") 

 

data.bar <- ggplot(tbl.t.data, aes(x = as.character(Volum), y = per, fill = Marker)) + 

  ggtitle("Percentage of detected mRNA markers in volume group: 0.5mL, 1.0 mL & 3.0mL") + 

  xlab("Volume of cDNA (micro L.)") + 

  ylab("Percentage of detected mRNA markers") + 

  geom_bar(stat = "identity", position = "dodge") + 

  scale_fill_manual(values = setNames(my_colors, unique(tbl.t.data$Marker))) + 

  scale_y_continuous(labels = scales::percent, name = "Percentage of detected mRNA markers") + 

  theme(axis.text.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0))) + 

  coord_flip() 

 

 

7. Code for figure 3.2 and 3.3 (we use blood as example) 
(3.2) 

data <- RNA.data %>% 

  filter(`Allele` != "Housekeeping") %>% 

  filter(S_Name != "03-P3MRTPLUS") %>% 

  na.omit() 
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#Blood 

b.data <- data %>% 

   filter(Type=="Blod") %>% 

    dplyr::select(Marker) 

 

b.data$sex.marker <- ifelse(b.data$Marker=="XIST" | b.data$Marker=="RPS4Y1", b.data$Marker, 

"No sex-marker") 

 

b.data <- as.data.frame(table(b.data$sex.marker)) 

 

b.sex.chart <- ggplot(b.data, aes(x="", y=Freq, fill=Var1)) + 

  geom_bar(stat="identity", width=1) + 

  coord_polar("y", start=0) + 

  theme(panel.background = element_rect(fill = "white"))+ 

  scale_fill_manual(values = c("#e0ecf4", "#8c96c6","#f7f7f7")) + 

  labs(title= "Blood",x= NULL, y= NULL, fill= "Type of mRNA marker") + 

  geom_text(aes(label = paste0(round((Freq/sum(b.data$Freq))*100), "%")), 

            position = position_stack(vjust = 0.5)) 

 

 

 

(3.3) 

b.data <- data %>% 

  filter(Type == "Blod") %>% 

  dplyr::select(Marker) 

 

b.data$sex.marker <- ifelse(b.data$Marker == "XIST" | b.data$Marker == "RPS4Y1", "Sex-marker", 

"No sex-marker") 

 

b.data <- as.data.frame(table(b.data$sex.marker)) 

b.data <- b.data[2,] 

 

b.data <- b.data %>% 
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  add_row(Var1 = "Total", Freq = 11) 

 

new_value <- b.data$Freq[2] - b.data$Freq[1] 

 

b.data <- b.data %>% 

  add_row(Var1 = "nonsex", Freq = new_value) %>% 

  filter(Var1 != "Total") 

 

bp.sex.chart <- ggplot(b.data, aes(x = "", y = Freq, fill = Var1)) + 

  geom_bar(stat = "identity", width = 1) + 

  coord_polar("y", start = 0) + 

  theme(panel.background = element_rect(fill = "white")) + 

  scale_fill_manual(values = c("#8c96c6", "#e0ecf4"), 

                    labels = c("Not sex marker","Sex marker")) + 

  labs(title = "Blood", x = NULL, y = NULL, fill = NULL) + 

  geom_text(aes(label = paste0(round((Freq / sum(Freq)) * 100), "%")), 

            position = position_stack(vjust = 0.5)) 

 

 

 

 

8. Code for figure 3.4 
 

my_colors <- c("#f7fbff", "#e0ecf4", "#bfd3e6", "#9ebcda", "#8c96c6", "#8c6bb1", 

               "#88419d", "#810f7c", "#8c2d04", "#b35806", "#e08214", "#fdb863", 

               "#fee0b6", "#f7f7f7", "#d8daeb", "#b2abd2","#8073ac", "#542788", "#2d004b") 

 

 

data <- RNA.data %>% 

  filter(`Allele` != "Housekeeping") %>% 

  filter(`Allele` != "Female") %>% 
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  filter(`Allele` != "Male") %>% 

  na.omit() 

 

 

#Blood 

b.data <- data %>% 

  filter(Type=="Blod") %>% 

  dplyr::select(Marker) 

 

b.data$corr.marker <- ifelse(b.data$Marker=="HBB" | 

b.data$Marker=="ALAS2"|b.data$Marker=="CD93", "Correct", b.data$Marker) 

 

b.data <- as.data.frame(table(b.data$corr.marker)) 

 

b.chart <- ggplot(b.data, aes(x="", y=Freq, fill=Var1)) + 

  geom_bar(stat="identity", width=1) + 

  coord_polar("y", start=0) + 

  theme(panel.background = element_rect(fill = "white"))+ 

  scale_fill_manual(values = c("#e0ecf4", "#8c96c6","#f7f7f7","#8c6bb1")) + 

  labs(title= "Blood",x= NULL, y= NULL, fill= "Detection of mRNA marker") + 

  geom_text(aes(label = paste0(round((Freq/sum(b.data$Freq))*100), "%")), 

            position = position_stack(vjust = 0.5)) 

 

9. Code for box plots  (results) – we use blood as example 

 
B.data <- data %>%   

  filter(S_type=="Blod") %>%  

  dplyr::select(Height, Marker, Volum) 

 

B.data.Box <- B.data %>% 

  ggplot( aes(x= Marker, y= Height, fill= Marker)) + 

    geom_boxplot() + 

    scale_fill_viridis(discrete = TRUE, alpha=0.6) + 
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    geom_jitter(color="black", size=0.4, alpha=0.9) + 

    theme_ipsum() + 

    theme( 

      legend.position="none", 

      plot.title = element_text(size=14) 

    ) + 

    ggtitle("Detected mRNA markers in blood samples") + 

    xlab("mRNA Markers") + 

    ylab("Peak Height") + 

    coord_flip() 

 

 

10. Code for correlation plots  (results) – we use blood as example  

 
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) { 

  usr <- par("usr") 

  on.exit(par(usr)) 

  par(usr = c(0, 1, 0, 1)) 

  Cor <- abs(cor(x, y)) 

  txt <- paste0(prefix, format(c(Cor, 0.123456789), digits = digits)[1]) 

  if(missing(cex.cor)) { 

    cex.cor <- 0.4 / strwidth(txt) 

  } 

 

  text(0.5, 0.5, txt, 

       cex = 1 + cex.cor * Cor)  

} 

 

corrplot.mixed(cor(data[,c(2,7,16)]),  # collumns with the blood markers 

               lower = "number", 

               upper = "circle", 

               tl.col = "black") 
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11. Code for prediction of body fluids (blood as example with dataset 1 df1)  
 

 

org.data<- table.rmarker(RNA.data) 

 

# model fitting 

df1$Type <- ifelse(df1$Type=="Blod", 1,0) 

df1$Type <- as.factor(df1$Type) 

 

df2$Type <- ifelse(df2$Type=="Blod", 1,0) 

df2$Type <- as.factor(df2$Type) 

 

df3$Type <- ifelse(df3$Type=="Blod", 1,0) 

df3$Type <- as.factor(df3$Type) 

 

 

 

#make this example reproducible by defining a seed number 

set.seed(123) 

 

#create train/test data with 2/3 train and 1/3 test data 

df1$id <- 1:nrow(df1) 

df2$id <- 1:nrow(df2) 

df3$id <- 1:nrow(df3) 

 

#train dataset 

train.df1 <- df1 %>% dplyr::sample_frac(0.66) 

idx.train <- list(train.df1$id) 

idx.train <- idx.train[[1]] 

train.df2 <- df2[idx.train,] 

train.df3 <- df3[idx.train,] 
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#test dataset 

test.df1  <- dplyr::anti_join(df1, train.df1, by = 'id') 

idx.test <- list(test.df1$id) 

idx.test <- idx.test[[1]] 

test.df2  <- df2[idx.test,] 

test.df3  <- df3[idx.test,] 

 

 

#we find the response 

idx.response <- match(rownames(test.df1), rownames(df1)) 

 

 

B.types <- as.data.frame(org.data[idx.response,1]) 

B.types$Classification <- ifelse(B.types$`org.data[idx.response, 1]` =="Blod",1,0) 

B.types$Classification <- as.factor(B.types$Classification) 

 

 

test.df1 <- test.df1 %>% 

  select(-c(Type,id)) 

test.df2 <- test.df2 %>% 

  select(-c(Type,id)) 

test.df3 <- test.df3 %>% 

  select(-c(Type,id)) 

 

train.df1 <- train.df1 %>% 

  select(-id) 

train.df2 <- train.df2 %>% 

  select(-id) 

train.df3 <- train.df3 %>% 

  select(-id) 
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#model1- df1 

lg1.b1<- glm(Type~HBB, data= train.df1, family = binomial) 

lg1.b2<- glm(Type~ALAS2, data= train.df1, family = binomial) 

lg1.b3<- glm(Type~CD93, data= train.df1, family = binomial) 

lg1.b<- glm(Type~HBB+ALAS2+CD93, data= train.df1, family = binomial) 

 

 

#model2- df2 

lg2.b1<- glm(Type~HBB, data= train.df2, family = binomial) 

lg2.b2<- glm(Type~ALAS2, data= train.df2, family = binomial) 

lg2.b3<- glm(Type~CD93, data= train.df2, family = binomial) 

lg2.b<- glm(Type~HBB+ALAS2+CD93, data= train.df2, family = binomial) 

 

 

#model3- df3 

lg3.b1<- glm(Type~HBB, data= train.df3, family = binomial) 

lg3.b2<- glm(Type~ALAS2, data= train.df3, family = binomial) 

lg3.b3<- glm(Type~CD93, data= train.df3, family = binomial) 

lg3.b<- glm(Type~HBB+ALAS2+CD93, data= train.df3, family = binomial) 

 

 

 

#prediction model1- df1 

pred.lg1.b1 <- predict(lg1.b1,test.df1, type="response") 

pred.lg1.b2 <- predict(lg1.b2,test.df1, type="response") 

pred.lg1.b3 <- predict(lg1.b3,test.df1, type="response") 

pred.lg1.b <- predict(lg1.b,test.df1, type="response") 

 

#prediction model2- df2 

pred.lg2.b1 <- predict(lg2.b1,test.df2, type="response") 
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pred.lg2.b2 <- predict(lg2.b2,test.df2, type="response") 

pred.lg2.b3 <- predict(lg2.b3,test.df2, type="response") 

pred.lg2.b <- predict(lg2.b,test.df2, type="response") 

 

#prediction model3- df3 

pred.lg3.b1 <- predict(lg3.b1,test.df3, type="response") 

pred.lg3.b2 <- predict(lg3.b2,test.df3, type="response") 

pred.lg3.b3 <- predict(lg3.b3,test.df3, type="response") 

pred.lg3.b <- predict(lg3.b,test.df3, type="response") 

 

 

# we categorize the different values in df1 

 

df1.b1.pred.tbl <- data.frame(Blood = pred.lg1.b1 , 

                              not.Blood = 1 - pred.lg1.b1, 

                              Classification = if_else(pred.lg1.b1  > 0.5, 1, 0)) %>% 

  mutate(Classification = factor(Classification, levels = c(0, 1)), 

         org.data= B.types$`org.data[idx.response, 1]`) 

 

 

 

df1.b2.pred.tbl <- data.frame(Blood = pred.lg1.b2 , 

                              not.Blood = 1 - pred.lg1.b2, 

                              Classification = if_else(pred.lg1.b2  > 0.5, 1, 0)) %>% 

  mutate(Classification = factor(Classification, levels = c(0, 1)), 

         org.data= B.types$`org.data[idx.response, 1]`) 

 

df1.b3.pred.tbl <- data.frame(Blood = pred.lg1.b3 , 

                              not.Blood = 1 - pred.lg1.b3, 

                              Classification = if_else(pred.lg1.b3  > 0.5, 1, 0)) %>% 

  mutate(Classification = factor(Classification, levels = c(0, 1)), 

         org.data= B.types$`org.data[idx.response, 1]`) 
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df1.b.pred.tbl <- data.frame(Blood = pred.lg1.b , 

                              not.Blood = 1 - pred.lg1.b, 

                              Classification = if_else(pred.lg1.b  > 0.5, 1, 0)) %>% 

  mutate(Classification = factor(Classification, levels = c(0, 1)), 

         org.data= B.types$`org.data[idx.response, 1]`) 

 

 

lg1.b1.conf <- confusionMatrix( data =df1.b1.pred.tbl$Classification, 

reference=B.types$Classification) 

lg1.b2.conf <- confusionMatrix( data =df1.b2.pred.tbl$Classification, 

reference=B.types$Classification) 

lg1.b3.conf <- confusionMatrix( data =df1.b3.pred.tbl$Classification, 

reference=B.types$Classification) 

lg1.b.conf <- confusionMatrix( data =df1.b.pred.tbl$Classification, reference=B.types$Classification) 

 

 

 

 

 

Plotting confusion matrix:  

 

cm <- confusionMatrix(factor(B.types$Classification), factor(df1.b.pred.tbl$Classification ), dnn = 

c("Prediction", "Reference")) 

 

plt <- as.data.frame(cm$table) 

plt$Prediction <- factor(plt$Prediction, levels=rev(levels(plt$Prediction))) 

 

pt <- ggplot(plt, aes(Prediction,Reference, fill= Freq)) + 

  geom_tile() + geom_text(aes(label=Freq)) + 

  scale_fill_gradient(low="white", high="#009194") + 

  labs(x = "Reference",y = "Prediction") + 

  scale_x_discrete(labels=c("Positive","Negative"),position="top") + 



 105 

  scale_y_discrete(labels=c("Negative","Positive")) 

 

plot(pt) 
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APPENDIX 2  

Table 1-6: a summary of the model system structure for the univariable and multivariable logistic 

models fitted with data frame df1, df2 and df3 for marker1 +…+ marker4. The respective model 

names can be found in the R codes in Appendix 1 in file ‘logistic regression models.R’.  The same 

names will be listed in the summary for the logistic regression models bellow.  

 

Table 1: Names for the logistic regression models for blood. 

 Univariable  multivariable 

HBB ALAS2 CD93 HBB + …+ CD93 

Original data (df1) lg1.b1 lg1.b2 lg1.b3 lg1.b 

Quantile data (df2)  lg2.b1 lg2.b2 lg2.b3 lg2.b 

Quantile data (penalty for 

unexpected detection) (df3)  

lg3.b1 lg3.b2 lg3.b3 lg3.b 

  

Table 2: Names for the logistic regression models for the menstruation blood samples 

 Univariable  multivariable 

HBB MMP7 MMP10 MMP11 HBB + …+  MMP11 

Original data (df1) lg1.m1 lg1.m2 lg1.m3 lg1.m4 lg1.m 

Quantile data (df2)  lg2.m1 lg2.m2 lg2.m3 lg2.m4 lg2.m 

Quantile data (penalty for 

unexpected detection) (df3)  

lg3.m1 lg3.m2 lg3.m3 lg3.m4 lg3.m 

 

Table 3: Names for the logistic regression models for the saliva samples 

 Univariable  multivariable 

HTN3 STATH HTN3 + STATH 

Original data (df1) lg1.s1 lg1.s2 lg1.s 

Quantile data (df2)  lg2.s1 lg2.s2 lg2.s 

Quantile data (penalty for unexpected 

detection) (df3)  

lg3.s1 lg3.s2 lg3.s 
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Table 4: Names for the logistic regression models for the semen samples  

 Univariable  multivariable 

KLK3 PRM1 SEMG1 KLK3 +…+ SEMG1 

Original data (df1) lg1.se1 lg1.se2 lg1.se3 lg1.se 

Quantile data (df2)  lg2.se1 lg2.se2 lg2.se3 lg2.se 

Quantile data (penalty for 

unexpected detection) (df3)  

lg3.se1 lg3.se2 lg3.se3 lg3.se 

 

Table 5: Names for the logistic regression models for the vaginal secretion samples  

 Univariable  multivariable 

MUC4 MYOZ1 CYP2B7P1 MUC4  + …+ CYP2B7P1 

Original data (df1) lg1.v1 lg1.v2 lg1.v3 lg1.v 

Quantile data (df2)  lg2.v1 lg2.v2 lg2.v3 lg2.v 

Quantile data (penalty for 

unexpected detection) (df3)  

lg3.v1 lg3.v2 lg3.v3 lg3.v 

 

Table 6: Names for the nasal secretion samples 

 Univariable  multivariable 

STATH BPIFA1 STATH+ BPIFA1 

Original data (df1) lg1.n1 lg1.n2 lg1.n 

Quantile data (df2)  lg2.n1 lg2.n2 lg2.n 

Quantile data (penalty for 

unexpected detection) (df3)  

lg3.n1 lg3.n2 lg3.n 

 

Logistic regression models 

 

The blood samples  

Table 7: Logistic regression summary of the original data from the blood samples (df1)  

 Univariate Multivariate 

Variable (x,..xn) b-value p-value b-value p-value 

HBB   (lg1.b1) 1.635e-04 3.56e-05 5.771e-05 0.414118 
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ALAS (lg1.b2) 0.0005862 0.00116 4.533e-04 0.034822 

CD93 (lg1.b3) 9.022e-05 0.0198 -7.509e-06 0.967379 

 

Table 8: logistic regression summary of the original data from the blood samples (df2)  

 Univariate Multivariate 

Variable (x,..xn) b-value p-value b-value p-value 

HBB    (lg2.b1) 1.3122 0.001303 0.827448 0.19826 

ALAS  (lg2.b2) 2.896 0.00495 2.011363 0.06512 

CD93   (lg2.b3) 0.6967 0.001505 -0.007026 0.99038 

 

Table 9: logistic regression summary of models created from the blood samples. the quantile data set 

with registrated penalty for unexpected detection from the blood samples (df3)  

 Univariate Multivariate 

Variable (x,..xn) b-value p-value b-value p-value 

HBB   (lg3.b1) 0.6846 0.0185 0.1567 0.7359 

ALAS (lg3.b2) 0.6008 7.82e-06 0.3254 0.0317 

CD93  (lg3.b3) 0.6657 0.00340 0.2982 0.5184 

 

 

The menstruation blood samples 

Table 10: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

MMP7    (lg1.m1) 0.0003432 0.00492 3.429e-04 0.3961   

MMP10 (lg1.m2) 0.008951 0.03440 9.936e-03 0.1006   

MMP11 (lg1.m3) 0.010390 0.00219 -8.103e-03 0.9074 

HBB       (lg1.m4) 1.145e-04 0.000265 2.149e-05 0.9354 

 

Table 11: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 
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Variable (x,..xn) b-value p-value b-value p-value 

MMP7   (lg2.m1) 0.7398 0.003650 6.194e-02 1.000 

MMP10 (lg2.m2) 22.86 0.997 5.914e+01 0.997 

MMP11 (lg2.m3) 0.5400 0.006320 -7.320e+00 0.998 

HBB        (lg2.m4) 0.9966 0.00316 6.289e+00 0.999 

 

 

Table 12: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

MMP7    (lg3.m1) 2.580 0.996 8.546e-02 1.000 

MMP10 (lg3.m2) 5.594 1.000 5.517e+00 1.000 

MMP11 (lg3.m3) 2.3316 0.996 -1.456e-01 1.000 

HBB        (lg3.m4) 0.5518 0.00861 1.723e-02 1.000 

 

 

The Saliva samples 

Table 13: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

HTN3  (lg1.s1) 0.0003004 0.0201 3.066e-04 0.0149 

STATH (lg1.s2) 2.805e-05 0.14815 -4.118e-05 0.3282 

 

Table 14: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

HTN3    (lg2.s1) 1.1631 2.84e-06 1.17677 4.04e-06 

STATH   (lg2.s2) 0.4119 4.31e-05 -0.03674 0.826 

 

Table 15: logistic regression summary of the original data from the blood samples (df1)  
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 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

HTN3   (lg3.s1) 3.0412 0.993 3.1945 0.995525    

STATH (lg3.s2) 0.38579 5.47e-07 0.2683 0.071573 

 

 

The semen samples  

Table 16: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

SEMG1  (lg1.se1) 0.844 0.997 8.899e-01 0.998 

PRM1     (lg1.se2) 0.01275 0.996 -2.391e-02 0.999 

KLK3       (lg1.se3) 0.2700 0.991 -1.326e+00 0.998 

 

Table 17: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

SEMG1 (lg2.se1) 20.68 0.996 22.4379 0.998 

PRM1   (lg2.se2) 0.9879 0.000742 -0.2332 0.918 

KLK3     

(lg2.se3) 

0.06696 0.54254 -0.6466 0.221 

 

 

 

Table 18: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

SEMG1 (lg3.se1) 5.764 1.000 22.4379 0.998 

PRM1   (lg3.se2) 2.4239 0.994 -0.2332 0.918 
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KLK3     

(lg3.se3) 

1.9830 0.992 -0.6466 0.221 

 

 

The vaginal secretion samples  

Table 19: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

MUC4        (lg1.v1) 9.807e-05 0.000381 9.740e-05 0.000711 

MYOZ1      (lg1.v2) 5.364e-05 0.219 -7.955e-05 0.329567 

CYP2B7P1 (lg1.v3) 1.812e-04 0.0512 1.825e-04 0.208061 

 

Table 20: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

MUC4        (lg2.v1) 0.16240 0.000393 0.16175 0.04765 

MYOZ1      (lg2.v2) 0.07300 0.333 -0.16039 0.278040 

CYP2B7P1 (lg2.v3) 0.18051 0.0531 0.20009 0.194948 

 

Table 21: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

MUC4        (lg3.v1) 0.21827 4.19e-06 0.28756 1.81e-05 

MYOZ1      (lg3.v2) 0.13944 0.047 -0.26516 0.0696 

CYP2B7P1 (lg3.v3) 0.18916 0.0405 0.13410 0.3735 

 

 

The nasal secretion samples  

Table 22: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 
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Variable (x,..xn) b-value p-value b-value p-value 

HTN3   (lg1.n1)  -0.04908 0.993 -0.046644 0.99670 

BPIFA1 (lg1.n2) 0.007109 0.035793 0.006411 0.04884 

 

Table 23: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

HTN3    (lg2.n1) -14.99 0.995 -14.65 0.998 

BPIFA1 (lg2.n2) 21.69 0.995 23.31 0.998 

 

 

 

Table 24: logistic regression summary of the original data from the blood samples (df1)  

 Univariant Multivariant 

Variable (x,..xn) b-value p-value b-value p-value 

HTN3   (lg3.n1) -0.15835 0.104 -0.1075 1.000   

BPIFA1 (lg3.n2) 44.24 0.002 44.0505 0.998 
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Prediction of the models  

 

The blood samples  

Table 25: Results from the prediction based of the Df1 dataset 

 Univariate Multivariate 

HBB ALAS2 CD93 HBB+ALAS2+CD93 

True positives 1 3 0 3 

True Negatives 24 25 23 25 

False positives  1 0 2 0 

False Negatives  4 2 5 2 

Accuracy 0.8333   0.9333 0.7667 0.9333   

Sensitivity 0.9600   1.000 0.9200   1.0000     

Specificity 0.2000 0.6000 0.0000 0.6000 

 

Table 26: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

HBB ALAS2 CD93 HBB+ALAS2+CD93 

True positives 0 3 0 3 

True Negatives 25 25 23 25 

False positives  0 0 2 0 

False Negatives  5 2 5 2 

Accuracy 0.8333   0.9333 0.7667 0.9333 

Sensitivity 1.000 1.000 0.9200 1.000 

Specificity 0.000 0.6000 0.0000 0.6000 

 

Table 27: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

HBB ALAS2 CD93 HBB+ALAS2+CD93 

True positives 3 3 1 3 

True Negatives 24 25 23 25 
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False positives  1 0 0 0 

False Negatives  2 2 4 2 

Accuracy 0.9 0.9333 0.8667 0.9333 

Sensitivity 0.9600 1.0000 1.0000 1.0000 

Specificity 0.6000 0.6000 0.2000 0.6000     

 

 

The menstruation blood samples  

Table 28: Results from the prediction based of the Df1 dataset 

 Univariate Multivariate 

HBB MMP7 MMP10 MMP11 HBB +…+MMP11 

True positives 0 2 3 3 1 

True Negatives 27 27 27 27 27 

False positives  0 0 0 0 0 

False Negatives  3 1 0 0 2 

Accuracy 0.9   0.9667 1.000 1.000 0.9333 

Sensitivity 1.000 1.000 1.000 1.000 1.000 

Specificity 0.000 0.6667 1.000 1.000 0.333 

 

 

Table 29: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

HBB MMP7 MMP10 MMP11 HBB+ … +MMP11 

True positives 0 2 2 3 2 

True Negatives 27 27 27 27 27 

False positives  0 0 0 0 0 

False Negatives  3 1 1 0 1 

Accuracy 0.9   0.9667 0.9667 0.9   0.9667 

Sensitivity 1.000 1.000 1.000 1.000 1.000 

Specificity 0.000 0.6667 1.000 1.000 0.333 
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Table 30: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

HBB MMP7 MMP10 MMP11 HBB+ … +MMP11 

True positives 1 2 3 3 1 

True Negatives 24 27 27 27 27 

False positives  3 0 0 0 0 

False Negatives  2 1 0 0 2 

Accuracy 0.8333   0.9667 0.9   0.9   0.9333 

Sensitivity 0.8889 1.000 1.000 1.000 1.000 

Specificity 0.3333 0.6667 0.000 0.000 0.3333 

 

The Saliva samples  

Table 31: Results from the prediction based of the Df1 dataset 

 Univariate Multivariate 

HTN3 STATH HTN3+STATH 

True positives 7 2 7 

True Negatives 19 16 19 

False positives  0 3 0 

False Negatives  4 9 4 

Accuracy 0.8667 0.6000 0.8667 

Sensitivity 1.0000 0.8421 1.0000 

Specificity 0.6364 0.1818 0.6364 

 

Table 32: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

HTN3 STATH HTN3+STATH 

True positives 7 1 7 

True Negatives 19 16 19 

False positives  0 3 0 
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False Negatives  4 10 4 

Accuracy 0.8667 0.5667   0.8667 

Sensitivity 1.0000 0.84211 1.0000 

Specificity 0.6364 0.09091 0.6364 

 

 

Table 33: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

HTN3 STATH HTN3+STATH 

True positives 7 2 10 

True Negatives 19 15 19 

False positives  0 4 0 

False Negatives  4 9 1 

Accuracy 0.8667 0.5667   0.9667 

Sensitivity 1.0000 0.7895 1.0000 

Specificity 0.6364 0. 1818 0.9091 

 

 

The semen samples  

Table 34: Results from the prediction based of the Df1 dataset 

 Univariate Multivariate 

KLK3 PRM1 SEMG1 KLK3+PRM1+SEMG1 

True positives 3 3 3 3 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  0 0 0 0 

Accuracy 1.000   1.000   1.000   1.000   

Sensitivity 1.000 1.000 1.000 1.000 

Specificity 1.000 1.000 1.000 1.000 
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Table 35: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

KLK3 PRM1 SEMG1 KLK3+PRM1+SEMG1 

True positives 3 3 3 1 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  0 0 0 2 

Accuracy 1.000   1.000   1.000   0.9333 

Sensitivity 1.000 1.000 1.000 1.000 

Specificity 1.000 1.000 1.000 0.3333 

 

 

 

 

 

 

Table 36: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

KLK3 PRM1 SEMG1 KLK3+PRM1+SEMG1 

True positives 3 3 3 3 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  0 0 0 0 

Accuracy 1.000   1.000   1.000   1.000   

Sensitivity 1.000 1.000 1.000 1.000 

Specificity 1.000 1.000 1.000 1.000 

 

The vaginal secretion samples  

Table 37: Results from the prediction based of the Df1 dataset 
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 Univariate Multivariate 

MUC4 MYOZ1 CYP2B7P1 MUC4+ MYOZ1+CYP2B7P1 

True positives 0 0 0 0 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  3 3 3 3 

Accuracy 0.900  0.900  0.900  0.900  

Sensitivity 1.000 1.000 1.000 1.000 

Specificity 0.000 0.000 0.000 0.000 

 

Table 38: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

MUC4 MYOZ1 CYP2B7P1 MUC4+ MYOZ1+CYP2B7P1 

True positives 0 0 0 0 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  3 3 3 3 

Accuracy 0.900  0.900  0.900  0.900  

Sensitivity 1.000 1.000 1.000 1.000 

Specificity 0.000 0.000 0.000 0.000 

 

Table 39: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

MUC4 MYOZ1 CYP2B7P1 MUC4+ MYOZ1+CYP2B7P1 

True positives 1 0 0 1 

True Negatives 27 27 27 27 

False positives  0 0 0 0 

False Negatives  2 3 3 2 

Accuracy 0.9333 0.900  0.900  0.9333 

Sensitivity 1.000 1.000 1.000 1.000 
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Specificity 0.3333 0.000 0.000 0.3333 

 

Nasal secretion samples  

Table 40: Results from the prediction based of the Df1 dataset 

 Univariate Multivariate 

HTN3 BPIFA1 HTN3+ BPIFA1 

True positives 3 4 4 

True Negatives 25 25 25 

False positives  2 0 0 

False Negatives  0 1 1 

Accuracy 0. 8333 0.9667 0.9667 

Sensitivity 1.0000 1.0000 1.0000 

Specificity 0.0000 0.8000 0.8000 

 

Table 41: Results from the prediction based of the Df2 dataset 

 Univariate Multivariate 

HTN3 BPIFA1 HTN3+ BPIFA1 

True positives 3 4 4 

True Negatives 25 25 25 

False positives  2 0 0 

False Negatives  0 1 1 

Accuracy 0. 8333 0.9667 0.9667 

Sensitivity 1.0000 1.0000 1.0000 

Specificity 0.0000 0.8000 0.8000 

 

Table 42: Results from the prediction based of the Df3 dataset 

 Univariate Multivariate 

STATH BPIFA1 STATH + BPIFA1 

True positives 3 4 4 

True Negatives 23 25 25 
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False positives  2 0 0 

False Negatives  2 1 1 

Accuracy 0. 8333 0.9667 0.9667 

Sensitivity 1.0000 1.0000 1.0000 

Specificity 0.0000 0.8000 0.8000 

 

 

Summary of the unexpected detection of markers. The prediction from the five models can be 

illustrated in figure 3.7. Both the code and the dataset that were used to create this result, can be found 

in Appendix 1 and Appendix 2 respectfully.  

 

Table 43: Summary of the counted number of the unexpectedly detected mRNA markers in each body 

fluid. The percentage of the expected and unexpected detected markers are shown in brackets.  

 

 

 

 

 

Summary of the one- and two-way ANOVA values  

 

Blood samples 

Table 44: Two way ANOVA: Height ~ Volum + Marker 

 Df Sum Sq Mean Sq F-value P-value 

 Blood Semen Saliva Menstruation 

blood 

Nose 

secretion  

Vaginal 

secretion  

Unexpected number of 

markers (%)  

3  

(8.6%) 

3 

(10.3%) 

69 

(52.7%) 

3   

(4.5%) 

31 

(56.4%) 

17 

(37%)  

Expected number of  

Markers (%) 

32  

(91.4%) 

26 

(89.7%) 

62 

(47.3%) 

64 

(95.5%) 

24 

(43.6%) 

29 

(63%) 

Total number of 

detected markers (%) 

35  

(100%)  

29 

(100%) 

131 

(100%) 

67 

(100%)  

55 

(100%)  

46 

(100%)  
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Volume 2 7.935e+08 396772503 8.566 0.000906*** 

Marker 7 3.158e+09 451181700 9.741 9.54e-07*** 

Residuals 36 1.667e+09 46317443 - - 

 

Menstruation blood samples  

Table 45: Two way ANOVA: Height ~ Volume + Marker 

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.001e+09 500358283 4.281 0.018129* 

Marker 12 5.247e+09 437267404 3.741 0.000287 *** 

Residuals 62 7.246e+09 116873312 - - 

 

Salvia samples  

Table 46: Two way ANOVA: Height ~ Volume + Marker 

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 4.585e+08 229247907 2.903 0.0582 

Marker 11 5.197e+09 472499023 5.984 5.98e-08*** 

Residuals 140 1.106e+10 78965516 - - 

 

Semen samples 

Table 47: Two way ANOVA: Height ~ Volume + Marker 

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.879e+08 93968945 2.567 0.092038 

Marker 4 9.215e+08 230369975 6.292 0.000706*** 

Residuals 33 1.208e+09 36611968 - - 
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Vaginal samples 

Table 48: Two way ANOVA: Height ~ Volume + Marker 

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.155e+08 57735033 0.994   0.378 

Marker 9 5.150e+09 572246997 9.856 6.39e-08*** 

Residuals 42 2.439e+09 58061023 - - 

 

Nasal samples 

Table 49: Two way ANOVA: Height ~ Volume + Marker 

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 5.746e+08 287315071 2.887 0.0645 

Marker 8 5.308e+09 663558930 6.668 5.25e-06 *** 

Residuals 53 5.274e+09 99517161 - - 

 

 

 

One way – ANOVA  

Blood samples 

Table 50: One way ANOVA: Height ~ Volum  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 7.935e+08 396772503 3.535 0.0379 

Residuals 43 4.826e+09 112225578 - - 

 

Menstruation blood samples  

Table 51: One way ANOVA: Height ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.001e+09 500358283 2.964 0.0578 

Residuals 74 1.249e+10 168829111 - - 
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Salvia samples  

Table 52: One way ANOVA: Height ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 4.585e+08 229247907 2.13 0.122 

Residuals 151 1.625e+10 107633520 - - 

 

 

Semen samples 

Table 53: one way ANOVA: Height ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.879e+08 93968945 1.633 0.209 

Residuals 37 2.130e+09 57558780 - - 

 

Vaginal secretion  

Table 54: one way ANOVA: Height ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 1.155e+08 57735033 0.388 0.68 

Residuals 51 7.589e+09 148799724 - - 

 

Nose secretion  

Table 55: one way ANOVA: Height ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Volume 2 5.746e+08 287315071 1.656 0.199 

Residuals 61 1.058e+10 173489852 - - 

 

 

One- way ANOVA (Detection rate)  

 

Blood samples 
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Table 56: One way ANOVA: Per ~ Volume 

 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.2778 0.1389 1.203 0.328 

Residuals 15 1.7311 0.1154 - - 

 

Menstruation blood samples  

Table 57: One way ANOVA: Per ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.015 0.00749 0.095 0.909 

Residuals 30 2.355 0.07851 - - 

 

 

 

 

 

Salvia samples  

Table 58: One way ANOVA: Per ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.095 0.04775 0.402 0.671 

Residuals 48 5.700 0.11876 - - 

 

Semen samples 

Table 59: one way ANOVA: Per ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.0531 0.02654 0.307 0.743 

Residuals 10 0.8656 0.08656 - - 

 

Vaginal secretion  

Table 60: one way ANOVA: Per ~ Volume 
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 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.1687 0.08434 0.783 0.471 

Residuals 19 2.0472 0.10775 - - 

 

Nose secretion  

Table 61: one way ANOVA: Per ~ Volume  

 Df Sum Sq Mean Sq F-value P-value 

Detection rate 2 0.0228 0.01138 0.091 0.913 

Residuals 23 2.8811 0.12526 - - 
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