

Norges miljø- og biovitenskapelige universitet

Masteroppgave 2023 30 stp Fakultet for kjemi, biokjemi og matvitenskap (KBM)

Deteksjon av betalaktamaser med utvidet spektrum (ESBL) blant bakteriestammer isolert fra akvatiske miljøer i Trondheim by gjennom fenotypiske og genotypiske metoder

Detection of Extended Spectrum Beta-lactamases (ESBLs) among Bacterial Strains Isolated from Aquatic Environments in Trondheim City through Phenotypic and Genotypic Methods

Mari Anida Hafsås Matvitenskap og ernæring

Forord

Denne oppgaven tilsvarer 30 studiepoeng, og ble utført som et avsluttende arbeid av en mastergrad i matvitenskap og ernæring ved fakultetet for kjemi, bioteknologi og matvitenskap (KBM) ved Norges miljø- og biovitenskapelige universitet (NMBU). Antibiotikaresistens er et alvorlig tema, og arbeidet med oppgaven har vært utfordrende, lærerik og spennende, og ikke minst tankevekkende.

Jeg har heldigvis ikke gjennomført denne prosessen fullstendig alene, og jeg ønsker dermed å rekke en stor takk til veileder Professor Bjørn-Arne Lindstedt som engasjert har svart på både gode og mindre gode spørsmål, og gitt viktige tilbakemeldinger. Jeg vil også utbringe en enorm takk til Senioringeniør Ahmed Abdelghani for den uvurderlige hjelpen og oppfølgingen han har gitt under arbeidet på laboratoriet.

Mine to medstudenter og venninner Martine Tjåland og Mette Lea, som jeg utførte forsøkene sammen med, fortjener også en nokså stor takk. Takk for at dere gjorde dagene både på og utenfor laben så løyen. Vi startet som tre hodeløse høns på første, andre, tredje, ... lab-dag, og sammen står vi igjen som litt mindre hodeløse høns med en fullverdig mastergrad hver.

Takk også til familie og venner for god moralsk støtte og forståelse gjennom prosessen.

Avslutningsvis ønsker jeg å utbringe en skål til hun som ene og alene har æren for at jeg generelt fullførte denne mastergraden, nemlig Birgitte Senstad. Livet i Ås hadde ikke vært den samme uten min aller største støttespiller.

Sunndalsøra, 16. juli, 2023

Mari Anida Hafsås

Abstrakt

Den eskalerende utviklingen av antibiotikaresistens blant humanpatogene bakterier anses som en av de største truslene mot den globale helsen. Betalaktamer er den mest brukte antibiotika-klassen i verden, og resistens mot disse er derfor av særlig bekymring, herunder utviklingen av betalaktamaser med utvidet spektrum (ESBL) og karbapenemresistente *Enterobacteriaceae* (CRE).

Formålet med masteroppgaven var å undersøke forekomsten av ESBLer og CRE blant bakteriestammer isolert fra lokale vannkilder i Trondheim by gjennom fenotypiske og genotypiske metoder.

Vannprøver ble innhentet fra tre ulike vannkilder i Trondheim by i januar 2023, henholdsvis fra Nidelva, Jonsvatnet og Theisendammen. Vannprøvene ble filtrert og deretter kultivert på kromogene medier selektive for CRE og ESBL-produserende bakteriestammer. Basert på fenotypisk fargescreening ble bakterieisolater valgt til DNA-ekstraksjon, som deretter ble PCR-amplifisert for deres 16S rRNA-gener for identifisering via Sanger-sekvensering. ESBL-gener ble detektert gjennom PCR med Multiplex- og Singleplex-primermikser, og isolater med positive resultater ble Sangersekvensert. PCR ble også utført for deteksjon av virulensgener for diarégivende *Escherichia coli (E. coli)*. Tre isolater ble så innsendt til helgenomsekvensering med Illumina-teknologi, og disse ble også testet for sensitivitet mot antibiotika.

Denne masteroppgaven bekreftet forekomsten av ESBLA-produserende bakterier i akvatiske miljøer i Trondheim by. Gjennom utførelsen av fenotypiske og genotypiske analysemetoder ble det gjort funn av multiresistente *E. coli* og *Klebsiella pneumoniae* (*K. pneumoniae*) i Nidelva, som begge ble detektert med genet for ESBLA-enzymet CTX-M-15. Genet for ESBLA-enzymet SHV-106 ble også detektert i *K. pneumoniae*-stammen. Det ble også gjort funn av multiresistente *Serratia fonticola* (*S. fonticola*) i Jonsvatnet, men ingen ESBL-gener ble detektert hos denne. Norge har i utgangspunktet lav forekomst av antibiotikaresistente bakterier, så det er bekymringsverdig at antibiotikaresistente bakterier kjent for å forårsake sykdom ble detektert i vannmiljøer i Trondheim. Studien er et bidrag i arbeidet med å kartlegge forekomsten av antibiotikaresistens i akvatiske miljøer.

Abstract

The escalating development of antibiotic resistance among human pathogenic bacteria is considered one of the greatest threats to global health. Beta-lactams are the most widely used antibiotic class in the world, and resistance to these are therefore of particular concern, including the development of extended-spectrum beta-lactamases (ESBL) and carbapenem-resistant *Enterobacteriaceae* (CRE).

The purpose of the master's thesis was to investigate the occurrence of ESBLs and CRE among bacterial strains isolated from local water sources in the city of Trondheim through phenotypic and genotypic methods.

Water samples were obtained from three different water sources in Trondheim city in January 2023, respectively from Nidelva, Jonsvatnet and Theisendammen. The water samples were filtered and then cultured on chromogenic media selective for CRE and ESBL-producing bacterial strains. Based on phenotypic color screening, bacterial isolates were selected for DNA extraction, which were then PCR amplified for their 16S rRNA genes for identification via Sanger sequencing. ESBL genes were detected through PCR with Multiplex and Singleplex primer mixes, and isolates with positive results were Sanger sequenced. PCR was also performed for the detection of virulence genes for diarrhea-causing *Escherichia coli (E. coli)*. Three isolates were then submitted for whole-genome sequencing with Illumina technology, and these were also tested for sensitivity to antibiotics.

This master's thesis confirmed the occurrence of ESBLA-producing bacteria in aquatic environments in Trondheim city. Through the performance of phenotypic and genotypic analysis methods, multiresistant *E. coli* and *Klebsiella pneumoniae* (*K. pneumoniae*) were discovered in Nidelva, both of which were detected with the gene for the ESBLA enzyme CTX-M-15. The gene for the ESBLA enzyme SHV-106 was also detected in the *K. pneumoniae* strain. Multiresistant *Serratia fonticola* (*S. fonticola*) was also found in Jonsvatnet, but no ESBL genes were detected in this one. Norway has a genereally low incidence of antibiotic-resistant bacteria, so it is worrisome that antibiotic resistant bacterias known to cause disease were detected in aquatic environments in Trondheim. The study is a contribution to the work of mapping the occurrence of antibiotic resistance in aquatic environments.

Innholdsfortegnelse

1.]	Innle	ednin	g1
2.	r	Teor	etisk	bakgrunn2
	2.1	•	Anti	biotika2
	2.2	2.	Virk	emåter for antibiotika
	-	2.2.1		Betalaktam-antibiotika
	2.3	8.	Anti	biotikaresistens4
	2.4	ŀ.	Klas	sifisering av antibiotikaresistens
	2.5	5.	Mek	anismer for ervervet antibiotikaresistens5
	-	2.5.1		Mutasjoner i genene
	-	2.5.2	2.	Horisontal genoverføring
	-	2.5.3	3.	Mobile genetiske elementer
	2.6	5.	Resi	stensmekanismer mot betalaktamer6
	4	2.6.1		Betalaktamaser
3.	l	Meto	odisk	teori
	3.1	•	Fend	otypisk deteksjon av antibiotikaresistens
		3.1.1		Selektive kromogene skåler
		3.1.2	2.	Sensitivitetstesting mot antibiotika
	3.2	2.	Gen	otypisk deteksjon av antibiotikaresistens10
		3.2.1	l.	Kvalitet- og kvantitetsmåling av ekstrahert DNA10
		3.2.2	2.	PCR10
		3.2.3	3.	Agarose-gelelektroforese
		3.2.4	4.	Helgenomsekvensering 11
4.]	Mate	eriale	er og metoder12
	4.1	•	Utta	k av vannprøver12
	4.2	2.	Bak	terieisolering ved filtrering og kultivering av vannprøver12
	4.3	3.	DNA	A-ekstraksjon13
	2	4.3.1	l.	Kvalitet- og kvantitetsmåling av ekstrahert DNA13
	4.4	ŀ.	Iden	tifisering med Sanger-sekvensering av PCR-produkt fra 16S rDNA14

	4.4	4.1.	PCR-amplifisering av 16S rDNA	14
	4.4	4.2.	Visualisering av PCR-produkt med agarose-gelelektroforese	15
	4.4	4.3.	Rensing og klargjøring av PCR-produkt til Sanger-sekvensering av 16S rDNA	15
	4.4	1.4.	Databehandling og analysering av Sanger-sekvenseringsresultater	16
	4.5.	Frys	sestock til fryselagring	16
	4.6.	Det	eksjon av ESBL-gener	16
	4.6	5.1.	Multiplex PCR	16
	4.6	5.2.	Singleplex PCR	18
	4.6 sel	5.3. kvense	Rensing og klargjøring av Singleplex PCR-produkt og agarosegel til Sanger-	18
	4.7.	Det	eksjon av virulensgener med Virulens PCR	19
	4.8.	Sen	sitivitetstesing mot antibiotika	20
	4.9.	Hel	geneomsekvensering med Illumina	21
	4.9	9.1.	Klargjøring av prøver til helgenomsekvensering	21
	4.9	9.2.	Databehandling og analysering av helgenomsekvenseringsresultater	21
5.	Re	sultate	er	22
	5.1.	Isol	ering og identifisering av bakteriekolonier	22
	5.2.	Det	eksjon av ESBL-gener med Multiplex og Singleplex PCR	26
	5.2	2.1.	Sanger-sekvensering av Singleplex PCR-produkt	28
	5.3.	Det	eksjon av virulensgener med Virulens PCR	29
	5.4.	Sen	sitivitetstesting mot antibiotika	30
	5.5.	Hel	genomsekvensering	31
	5.5	5.1.	Identifisering	31
	5.5	5.2.	Deteksjon av plasmider	32
	5.5	5.3.	Deteksjon av resistensgener	32
	5.5	5.4.	Deteksjon av virulens- og toksingener	37
6.	Di	skusjo	n	41
	6.1.	Ider	ntifisering av bakterieisolater	41
	6.2.	Det	eksjon av resistensgener (Multiplex, Singleplex, Sanger-sekvensering)	42

	6.3.	Helgenomsekvenserte isolater fra Nidelva	43
	6.4.	Helgenomsekvenserte isolater fra Jonsvatnet	45
	6.5.	Videre arbeid	46
	6.6.	Konklusjon	47
7	. Refe	eranseliste	48

Vedlegg

Vedlegg 1. Bilder av bakteriekoloniene kultivert på ESBL- og CRE-skåler i
Vedlegg 2. Kvalitet- og kvantitetsmålinger av isolatenes ekstraherte DNAii
Vedlegg 3. nBLAST av Sanger-sekvenseringsresultatene av isolatenes 16S rDNAiii
Vedlegg 4. Bilder av agarose-geler etter gelelektroforese av PCR-produktene til Multiplex- og
Singleplex PCRvii
Vedlegg 5. Bilder av inhibitorsonene på MH-skåler ved MIC-testingenx
Vedlegg 6. Pathogenwatch-rapport om P12(E)Nid_Klebxiii
Vedlegg 7. Plasmider detektert i PlasmidFinder-2.0 Serverxvi
Vedlegg 8. Rådata for genene detektert i CARD og NDARO xvii
Vedlegg 9. Oversikt over mutasjonen til blaFONA-Xxxviii
Vedlegg 10. Rådata for genene detektert i MyVirDBxix
Vedlegg 11. Rådata for genene detektert gjennom VFDB1
Vedlegg 12. Rådata for genene detektert gjennom PROKKA lvi

1. Innledning

Antimikrobielle midler er kjemiske forbindelser som enten dreper eller hemmer veksten av mikroorganismer, inkludert bakterier, virus, sopp og parasitter. Dette gjelder forbindelser naturlig produsert av mikroorganismer som bakterier og sopp, samt semisyntetisk og syntetisk fremstilte forbindelser. Begrepet antibiotika ble definert av Selman Waksman i 1942 som et stoff produsert av mikroorganismer som dreper eller hemmer veksten av andre mikroorganismer, og refererte dermed kun til naturlig fremstilte forbindelser (Bhattacharjee, 2022).

Implementeringen av antibiotika under den moderne antibiotika-æraen til forebygging og behandling av bakterielle infeksjoner hos mennesker anses som det største gjennombruddet for den globale helsesektoren. På et tidspunkt ble det antatt at menneskeheten hadde vunnet over kampen mot infeksjonssykdommer, noe uttalelsen *«time to close the book on infectious disease»* av en generalkirurg til USAs Kongress i 1969 tydeliggjør (Kong et al., 2010). De fleste fremskrittene innen moderne medisin ble basert på, og er avhengig av, tilgjengeligheten av effektive antibiotika, og inkluderer blant annet medisinske prosedyrer som organtransplantasjon, keisersnitt og kjemoterapi mot kreft (Yashwant & Kumar, 2019).

Massivt misbruk og overforbruk var derimot også starten på de store utfordringene rundt antibiotikaresistens. Dessverre tok gullalderen tok slutt rundt 1970-tallet, mens resistensutviklingen fortsatte. Det har ikke blitt utviklet antibiotika med nye virkningsmekanismer etter 1970. Årsaken til stillstanden i utviklingen av antibiotika siktes mot økonomi, da spesifikt lav lønnsomhet. Grunnet den store sannsynligheten for utvikling av resistens mot det nye antibiotikumet etter kort tid, som demonstrert utallige ganger tidligere, sammen med andre faktorer som regulatoriske barrierer og generelt lav kostnad, anses investering i utvikling som lite økonomisk gunstig (Yashwant & Kumar, 2019).

Akvatiske miljø som elver, bekker, innsjøer og kystlinjer fungerer både som et naturlig reservoar for antibiotikaresistente bakterier og som en kanal for videre spredning av kliniske resistensegenskaper (Suzuki et al., 2017). Husdyrhold og akvakultur er ansvarlig forforbruket av 2/3 av globalt antibiotikabruk og frigjør store mengder antibiotika til miljøet. Kontroll av antibiotikaforbruk i disse sektorene anses som mer krevende enn i helsesektoren, med økonomi som bakenforliggende årsak (Le et al., 2023). Bakterienes resistens i de akvatiske miljøene kan være iboende eller genetisk ervervet, inkludert erverving som en respons både på avrenning av landbruk og bruk av antibiotikabruk har flere negative effekter på den mikrobielle floraen, og spiller en stor rolle for utvikling og videre spredning av antibiotikaresistens. Miljøet fungerer som et viktig reservoar av potensielle resistensgener. Økosystemene i akvatiske forhold, spesielt om de jevnlig utsettes for menneskelig og animalsk aktivitet, er med på å gi gode forhold for horisontal overføring av antibiotikaresistensgener. Både animalske og menneskelige kilder er med på å introdusere de antibiotikaresistente mikrobene til de akvatiske økosystemene, der bakteriene overfører sine gener til vannbaserte mikrober, som igjen har resistensgener (Okoye et al., 2022). Høy forekomst av antibiotika er med på å øke seleksjonspresset, hvorav redusert virkning ved bruk av dette i klinisk sammenheng gir økt bekymring særlig for mennesker og husdyr. Akvatiske miljø kan fungere som «hot spots» for horisontal genoverføring, der bakterier som *Escherichia coli (E. coli)* har evnen til å overføre resistensgener i akvatiske miljøer over lang tid (Wellington et al., 2013). Formålet med denne oppgaven var å undersøke forekomsten av ESBLer og CRE blant bakteriestammer isolert fra lokale vannkilder i Trondheim by gjennom fenotypiske og genotypiske metoder.

2. Teoretisk bakgrunn

2.1. Antibiotika

Antimikrobielle midler er kjemiske forbindelser som enten dreper eller hemmer veksten av mikroorganismer, inkludert bakterier, virus, sopp og parasitter. Dette gjelder forbindelser naturlig produsert av mikroorganismer som bakterier og sopp, samt semisyntetisk og syntetisk fremstilte forbindelser. Begrepet antibiotika ble definert av Selman Waksman i 1942 som et stoff produsert av mikroorganismer som dreper eller hemmer veksten av andre mikroorganismer, og refererte dermed kun til naturlig fremstilte forbindelser (Bhattacharjee, 2022). I denne oppgaven vil begrepet antibiotika brukes spesifikt om antibakterielle midler, hvorav både naturlige, semisyntetiske og syntetiske forbindelser inngår.

Den såkalte moderne «antibiotika-æraen» krediteres ofte Paul Ehrlich og Alexander Fleming, og anses å ha startet med Ehrlich sin idé om en selektiv «magisk kule» som kun angriper den patogene mikroben, og ikke verten (Aminov, 2010). Basert på denne idéen utførte han i 1904 det som i dag anses som et systematisk screeningprogram etter medisin mot den seksuelt smittsomme sykdommen syfilis, og oppdaget således det første kommersielle antimikrobielle legemidlet arsphenamine (Salvarsan) i 1909 (Aminov, 2010; Gaynes, 2017). Den mest transformative hendelsen for moderne medisin anses likevel å være den tilfeldige oppdagelsen av penicillin i 1928 av Alexander Fleming (Yashwant & Kumar, 2019). Han var ikke den første til å observere muggsoppen Penicillium sine antimikrobielle egenskaper, men hans funn medførte utformingen av protokollen for rensing av penicillin utarbeidet av Howard Floret og Ernest Chain i 1940, som igjen resulterte i kommersialiseringen av penicillin i 1945 (Aminov, 2010). Disse hendelsene ledet opp til den såkalte «gullalderen» for antibiotika da majoriteten av alle antibiotika ble oppdaget. Dette var derimot også starten på de store utfordringene rundt antibiotikaresistens, med massivt bruk og misbruk som hovedårsak. Dessverre tok gullalderen tok slutt rundt 1970-tallet, mens resistensutviklingen fortsatte. Årsaken til stillstanden i utviklingen av antibiotika siktes mot økonomi, da spesifikt lav lønnsomhet. Grunnet den store sannsynligheten for utvikling av resistens mot det nye antibiotikumet etter kort tid,

som demonstrert utallige ganger tidligere, sammen med andre faktorer som regulatoriske barrierer og generelt lav kostnad, anses investering i utvikling som lite økonomisk gunstig (Yashwant & Kumar, 2019).

Implementeringen av antibiotika under den moderne antibiotika-æraen til forebygging og behandling av bakterielle infeksjoner hos mennesker anses som det største gjennombruddet for den globale helsesektoren. På et tidspunkt ble det antatt at menneskeheten hadde vunnet over kampen mot infeksjonssykdommer, noe uttalelsen *«time to close the book on infectious disease»* av en generalkirurg til USAs Kongress i 1969 tydeliggjør (Kong et al., 2010). De fleste fremskrittene innen moderne medisin ble basert på, og er avhengig av, tilgjengeligheten av effektive antibiotika, og inkluderer blant annet medisinske prosedyrer som organtransplantasjon, keisersnitt og kjemoterapi mot kreft (Yashwant & Kumar, 2019).

2.2. Virkemåter for antibiotika

Antibiotika kan klassifiseres på flere måter, blant annet basert på hvorvidt de har drepende eller hemmende effekt på bakterien de skal bekjempe, henholdsvis bakteriocidisk eller bakeriostatisk effekt (Bhattacharjee, 2022). En annen utbredt klassifisering baseres på de ulike virkningsmekanismene til ulike antibiotika på bakterielle mål, hvor de typisk deles inn i fem grupper: (1) inhibering av celleveggsyntesen, (2) inhibering av funksjonen til cellemembranen, (3) inhibering av proteinsyntesen, (4) inhibering av DNA-syntesen og (5) inhibering av folsyre-syntesen (Kapoor et al., 2017).

2.2.1. Betalaktam-antibiotika

Betalaktamer inkluderer antibiotikaene penicilliner, kefalosporiner, monobaktamer og karbapenemer (se Figur 1), og inngår i gruppen av antibiotika som inhiberer celleveggsyntesen (Bush & Bradford, 2020). Bakterieceller er omringet av en rigid cellevegg hovedsakelig bestående peptiodoglykan, hvorav glykanpolymerer er kryssbundet av peptidkjeder (Bhattacharjee, 2022). Hovedmålet til betalaktamene er enzymene involvert i disse kryssbindingene, henholdsvis kalt penicillin-bindende proteiner (PBP) (Bush & Bradford, 2020). Samtlige antibiotika innen klassen innehar en 3-karbon-1nitrogen betalaktam-ring, og det antas at denne etterligner D-alanyl-D-alanin-delen av peptidkjeden involvert i PBPs katalysering av kryssbindingene. Celleveggsyntesen inhiberes dermed ved at betalaktam-ringen bindes til PBP-ene og følgelig hindrer disse fra å syntetisere nye kryssbindinger, noe som igjen fører til at celleveggen etter hvert lyserer (Bhattacharjee, 2022).

Betalaktamer er den viktigste og mest brukte antibiotika-klassen nasjonalt og globalt, noe som gjelder innen både human- og veterinærmedisin (Akselsen et al., 2022; Mora-Ochomogo & Lohans, 2021). I Norge gjelder særlig naturlig penicillin og penicilliner med utvidet spektrum (Akselsen et al., 2022). Et antibiotikums spekter refererer til omfanget av mikroorganismer det er effektivt mot, og antibiotika kan deles inn i henholdsvis bredspektret antibiotika, antibiotika med utvidet spekter og smalspektret antibiotika. Naturlig penicillin (penicillin-G) er for eksempel ofte effektivt mot grampositive bakterier, men generelt ikke mot gramnegative bakterier. Dette fordi strukturen til penicillin-G ikke tillater det å trenge gjennom ytterveggen til gramnegative bakterier og dermed nå PBP-ene, og det anses derfor som et smalspektret antibiotikum. Det semisyntetiske penicillinet ampicillin har derimot utvidet spektrum, da som følge av en kjemisk modifikasjon av N-acyl-gruppen til penicillin-G. Ampicillin er dermed effektivt også mot enkelte gramnegative bakterier i tillegg til grampositive (Madigan et al., 2019).

Kefalosporiner har samme virkningsmekanisme mot bakterielle mål som penicilliner, men har generelt bredere spekter og økt resistens mot betalaktamaser (Bhattacharjee, 2022). Kefalosporiner er en svært mangfoldig gruppe, og deles typisk inn i fire generasjoner basert på deres spekter, hvorav hver påfølgende generasjon utviser et bredere spekter og økt resistens mot beta-laktamaser. For eksempel, mens 1. generasjons kefalosporiner hovedsakelig retter seg mot grampositive bakterier, har senere generasjoner som Ceftriaxone (3.) og Cefepime (4.) betydelig dekning mot gramnegative bakterier (El-Shaboury et al., 2007). Gruppen antibiotika innen betalaktam-klassen med bredest spekter er derimot karbapenemene, som er aktive mot en rekke grampositive og gramnegative bakterier. De er også unike basert på deres høye grad av resistens mot de fleste betalaktamasene, inkludert ESBL-er. Karbapenemene brukes derfor ofte som en «siste utvei» ved behandling av alvorlige bakterielle infeksjoner som blant annet utviser høy grad av resistens mot annen antibiotika (Papp-Wallace et al., 2011).

Figur 1. Generiske strukturer av de viktigste betalaktamene i klinisk sammenheng. 1) Penicillin, 2) kefalosporin, 3) karbapenem, og 4) monobaktam (Bush & Bradford, 2020).

2.3. Antibiotikaresistens

Antimikrobiell resistens (AMR) forekommer når mikroorganismer som bakterier, virus, sopp og parasitter utvikler evnen til å redusere eller motstå effekten til antibiotika (Bhattacharjee, 2022), hvorav antibakteriell resistens følgelig kun gjelder bakterier. I denne oppgaven vil antibakteriell resistens omtales som antibiotikaresistens (AR).

2.4. Klassifisering av antibiotikaresistens

Antibiotikaresistens er enten medfødt eller ervervet. Medfødt resistens oppstår når en bakterie, på grunn av sine strukturelle eller funksjonelle egenskaper, naturlig er resistent mot et antibiotikum til tross for at den ikke tidligere har blitt utsatt for antibiotikumet. Dette gjelder blant annet for gramnegative bakterier mot vancomycin, da molekylet til antibiotikumet er for stort til å krysse bakterienes yttermembran (Bhattacharjee, 2022). Ervervet resistens oppstår derimot som følge av

cellenes evne til å bli resistent mot antibiotika i en populasjon blant antibiotikasensitive bakterier. Denne formen for resistens kan bare observeres i underpopulasjoner hos noen bakteriearter. Ervervet resistens kan oppstå gjennom to hovedmekanismer, da henholdsvis gjennom punktmutasjoner og horisontal genoverføring (Bhattacharjee, 2022).

2.5. Mekanismer for ervervet antibiotikaresistens

2.5.1. Mutasjoner i genene

Genetiske mutasjoner oppstår som følge av en endring i den genetiske sekvensen i en mikroorganismes DNA, der mutasjonen skyldes manglende reparasjon av DNA eller mutagener (Gaustad, 2001). Denne formen for genetisk mutasjon kan så bidra til at når det oppstår resistente mutanter i en populasjon, vil antibiotika eliminere deler av populasjonen som ikke innehar resistens. Således vil de resistente bakteriene overleve og dominere i miljøet (Munita & Arias, 2016). Mutasjonene som medfører antibiotikaresistens er enten spontane eller vekstavhengige, og kan endre virkningen til antibiotika gjennom flere mekanismer (Gaustad, 2001). Disse mekanismene omtales videre i kapittel 2.6.

2.5.2. Horisontal genoverføring

Horisontal genoverføring (HGT) anses som den mest betydningsfulle mekanismene for spredning av antibiotikaresistens blant patogene bakterier (von Wintersdorff et al., 2016). HGT refererer til prosessen der genetisk materiale overføres mellom to bakterieceller som ikke er i direkte slekt, og kan medføre utveksling av gener mellom bakterier av både lignende og ulike arter og slekter. Dette står i kontrast med vertikal genoverføring hvor genetisk materiale overføres fra en generasjon til den neste under celledeling (Madigan et al., 2019). HGT deles hovedsakelig inn i tre mekanismer, henholdsvis transformasjon, transduksjon og konjugasjon, hvorav transformasjon er prosessen der en mottakercelle opptar og integrerer nakne, ektracellulære DNA-fragmenter fra omgivelsene (von Wintersdorff et al., 2016). Hvorvidt en bakterie er kapabel til transformasjon er genetisk betinget, og en celle med denne evnen kalles «kompetent». Under naturlige forhold er, blant annet, *E. coli* og andre gramnegative bakterier sjeldent kompetente (Madigan et al., 2019).

Prosessen for HGT gjennom transduksjon involverer bakteriofager, da virus som infiserer bakterier. Her vil en bakteriofag bli inkorporert med bakterielt DNA fra en donorbakterie, og deretter overføre DNAet til en mottakercelle under en infeksjon. Med tanke på det enorme antallet bakteriofager i naturen, antas det at transduksjon har spilt en betydelig rolle i spredningen av antibiotikaresistente gener i miljøet, deriblant shiga-toksin-lignende gener i *E. coli* (Madigan et al., 2019). Konjugasjon er derimot ansett som den viktigste mekanismen innen HGT, og innebærer direkte overføring av DNA mellom to bakterieceller gjennom en multi-stegs prosess. Denne prosessen krever celle-til-cellekontakt via adhesiner eller pilier på celleoverflaten, og igangsettes av det såkalte «konjugative maskineriet», da spesifikke gener som enten finnes i cellens kromosom eller på selv-replikerende plasmider (von Wintersdorff et al., 2016).

2.5.3. Mobile genetiske elementer

Et plasmid er et viktig mobilt genetisk element som transporterer gener og egenskaper mellom bakteriepopulasjonen, og spiller dermed en viktig rolle i utviklingen og spredningen av antibiotikaresistens (Munita & Arias, 2016). Ekstrakromosale DNA-molekylene, noe plasmider er, kan gjennom autonom replikasjon gi resistens mot hovedklassene av antibiotika, herunder betalaktamer, aminoglykosider, tetracykliner, kloramfenikol, sulfonamider, trimetoprim, makrolider og kinoloner (Carattoli, 2013). Bakterielle patogener kan lett utvikle resistens ved eksponering for antibiotika, noe som ofte forårsakes av mutasjoner av spesifikke målgener, men det skyldes først og fremst plasmider som bærer klynger med resistensgener (Chua & Howden, 2009). Plasmidene bidrar til spredning ved at de fremmer horisontal overføring av resistensdeterminanter blant bakterier av ulike arter og slekter, da avhengig av spekter og konjugative egenskaper inkludert effektiviteten av konjugeringen (Carattoli, 2013). Plasmider med konjugative egenskaper har evnen til å promotere andre plasmiders overføring fra en bakteriecelle til en annen, i tillegg til sin egen. De kan også bære virulensgener i tillegg til gener som er nyttig for bakterienes overlevelse under forhold som eksponering for antibiotika (Bennett, 2009).

2.6. Resistensmekanismer mot betalaktamer

Gjennom evolusjonen har bakterier utviklet flere forsvarsmekanismer for å beskytte seg mot den ødeleggende effekten av antibiotika. Disse resistensmekanismene faller primært innen fire kategorier: 1) endring av målet til antibiotika, 2) reduksjon av opptaket av antibiotika i cellen, 3) reduksjon av konsentrasjonen av antibiotika i cellen via efflux-pumper, og 4) enzymatisk nedbrytning eller inaktivering av antibiotika (Bhattacharjee, 2022). For resistens mot betalaktam-antibiotika gjelder samtlige av de nevnte mekanismene. Målet til betalaktamer er som nevnt PBP-er, så kategori 1 oppnås gjennom endringer i disse for å redusere bindingsevnen, blant annet gjennom HGT. Reduksjon av opptaket av antibiotika i cellen, da kategori 2, kan oppnås ved å redusere permeabiliteten til ytterveggen til gramnegative bakterieceller gjennom genetiske endringer som påvirker porinkanaler (Drawz & Bonomo, 2010). Dette kan blant annet være som følge av punktmutasjoner (Bhattacharjee, 2022). Kategori 4, enzymatisk nedbrytning eller inaktivering av antibiotika beskrives i kapittel 2.6.1.

2.6.1. Betalaktamaser

Den primære resistensmekanismen mot betalaktam-antibiotika blant gramnegative bakterier er enzymatisk inaktivering, da som følge av produksjon av betalaktamaser. Betalaktamaser er enzymer som inaktiverer betalaktamer gjennom å hydrolysere betalaktam-ringen (Drawz & Bonomo, 2010). Betalaktamaser ble for første gang identifisert i 1940, altså før den kliniske bruken av betalaktamantibiotika (Bhattacharjee, 2022). Senere viste det seg at enzymene har røtter som strekker seg millioner av år tilbake i tid, blant annet gjennom funn av betalaktamase-lignende aktivitet i en del av Lechuguilla-grotten i New Mexico som antas å ha stått uberørt i minst 4 millioner år. Selv om betalaktamasene altså er naturlig forekommende hos enkelte bakterier grunnet mutasjoner, anses bruk og overforbruk av betalaktam-antibiotika siden introduksjonen av penicillin som ansvarlig for den betraktelige økningen av betalaktamaser (Bhullar et al., 2012). Betalaktamasene kan klassifiseres på flere måter, men i denne oppgaven følges Amblers system basert på primærsekvenser og homologi mellom de ulike betalaktamase-enzymene. Amblers system deler enzymene inn i fire klasser, da klasse A-D, hvorav klasse A, C og D benytter serin som et enzymaktivt senter, mens klasse B innehar metallo-betalaktamaser som benytter et bivalent metall-ion for aktivitet, vanligvis sink (Hall & Barlow, 2005).

Den viktigste gruppen blant betalaktamase-enzymene er betalaktamaser med utvidet spektrum (ESBL), tilhørende Amblers klasse A. Disse evner å hydrolysere betalaktamer med utvidet spektrum, og kan medføre resistens mot de fleste betalaktamene (Castanheira et al., 2021). Det er ikke opparbeidet en internasjonal måte å klassifisere ESBL-enzymene, men i Norge deles de typisk inn i tre klasser basert på forslaget til Giske et al. (2009), da henholdsvis ESBL klasse A (ESBLA), diverse/«miscellaneous» ESBL (ESBLM) og ESBL med hydrolytisk aktivitet mot karbapenemer (ESBLCARBA). Denne oppgaven vil benytte denne inndelingen, som presenteres i Tabell 1.

Tabell 1. Forslag til klassifisering av ESBL klasse A (ESBLA), diverse/«miscellaneous» ESBL (ESBLM) og ESBL med
hydrolytisk aktivitet mot karbapenemer (ESBLcarba) gitt av Giske et al. (2009). Genene med relevans for oppgaven er
uthevet. (Giske et al., 2009)

ESBLA	ESBLM	ESBLCARBA
ESBLA med høy prevalens	ESBLм-с (plasmid-	ESBLcarba-a
- CTX-M	mediert AmpC)	- KPC
- TEM	- CMY	- GES-2, -4, -5, -6, -8
- SHV	- FOX	- NMC
- VEB	- MIR	- SME
- PER	- MOX	- IMI-1, -2
	- DHA	
	- LAT	
	- BIL	
	- ACT	
	- ACC	
ESBLA med lav prevalens	ESBL _{M-D} (OXA-ESBL)	ESBLCARBA-B (MBL)
- GES-1, -3, -7, -9	- OXA-10-gruppe	- IMP
- SFO-1	- OXA-13-gruppe	- VIM
- BES-1	- OXA-2-gruppe	- SPM-1
- BEL-1	- OXA-18	- GIM-1
- TLA	- OXA-45	- SIM-1
- IBC		- AIM-1
- CMT		ESBLcarba-d (OXA-
		karbapenemaser)
		- OXA-23-gruppe
		- OXA-24-gruppe
		- OXA-48
		- OXA-58-gruppe

3. Metodisk teori

3.1. Fenotypisk deteksjon av antibiotikaresistens

3.1.1. Selektive kromogene skåler

Bruk av metoder som tillater presumtiv identifisering og differensiering av resistente og ikkeresistente bakteriestammer er ofte første steg i arbeidet med deteksjon og overvåking av antibiotikaresistente bakterier i miljøet (McLain et al., 2016). I denne oppgaven ble vannprøver innhentet fra akvatiske ytre miljøer kultivert på selektive skåler for å oppnå dette formålet, da spesifikt på skåler med Oxoid Brilliance™ ESBL agar (ESBL-skåler) og Oxoid Brilliance™ CRE agar (CRE-skåler). Disse skålene screener for henholdsvis ESBL-produserende bakterier og karbapenem-resistente *Enterobacteriaceae*. De inneholder også kromogener for å differensiere mellom ulike bakterier basert på spesifikke enzymer produsert av de bakteriene som agaren screener for (Thermo Fisher Scientific, 2010; Thermo Fisher Scientific, 2011). Et kromogen-molekyl består av et substrat og en kromofor, hvorav enzymatisk splittelse av disse medfører at det isolerte kromoforet gir en distinktiv farge til gjeldene bakteriekolonier (McLain et al., 2016). Tabell 2 viser protokollen for presumtiv identifisering av kultiverte bakteriekolonier på de selektive kromogene skålene som ble benyttet i oppgaven, basert på fargescreening.

Oxoid Brilliance [™] ESBL					
	Blå	F. coli			
	Rosa				
ESBL-positive	Grønn	KESC-gruppen			
	Brun halo	Proteus, Morganella, Providencia			
	Fargeløs	Salmonella, Acinetobacter eller andre*			
	Oxoid Brilliance™ CRE				
CRE-positive	Lys rosa	E. coli			
end positive	Blå	KESC-gruppen			
Resistente	Hvit	Acinetobacter eller andre*			
CRE-negative	Fargeløs				

Tabell 2. Oversikt over protokollen for presumtiv fargescreening av kultiverte bakteriekolonier på ESBL- og CRE-skåler. Med KESC-gruppen menes Klebsiella, Enterobacter, Serratia og Citrobacter. (Thermo Fisher Scientific, 2010; Thermo Fisher Scientific, 2011)

* Andre klinisk relevante bakterier med andre resistensmekanismer kan også danne kolonier på skålene. *Proteus, Morganella* og *Providencia* kan for eksempel danne brune kolonier med halo på CRE-skåler.

Oxoid Brilliance[™] ESBL agar inneholder en blanding av antibiotika, blant annet Cefodoxime, med formål å hindre vekst av *Enterobacteriaceae* som ikke produserer ESBL. Den skal også dempe vekst av de fleste AmpC-produserende og ikke-ESBL-produserende bakterier. Agaren er som nevnt kromogen, og inneholder to kromogener for å differensiere mellom de mest utbredte ESBL- produserende bakteriene. Disse kromogenene har affinitet mot enzymene β -galactosidase og β glucuronidase, hvorav bakterier som skiller ut førstnevnte vil danne grønne kolonier (*KESC*-gruppen), og de som skiller ut sistnevnte vil danne rosa kolonier (β -galactosidase-negative *E. coli*). Bakterier som skiller ut begge gir blå kolonier (*E. coli*) (Thermo Fisher Scientific, 2010).

3.1.2. Sensitivitetstesting mot antibiotika

Et klinisk isolat kan klassifiseres basert på dets vekst ved definerte in vitro antibiotika-konsentrasjoner kalt «brytningspunkter», da enten som fenotypisk «mottakelig», «resistent» eller «mottakelig, økt eksponering» (McLain et al., 2016). Kliniske brytningspunkter måler hvorvidt en antibiotikabehandling av en in vivo bakterieinfeksjon (sannsynligvis) vil være en suksess eller ei, og angir den nødvendige dosen for å oppnå en spesifikk konsentrasjon av antibiotikumet på infeksjonsstedet. I Europa settes og oppdateres de kliniske brytningspunktene av EUCAST, og baseres på den «minimumsinhibitoriske konsentrasjonen» (MIC) for et antibiotikum (McLain et al., 2016). MIC defineres som den laveste antibiotika-konsentrasjonen som vil hemme den synlige veksten av en bakterie etter 24 timers inkubering (Andrews, 2001). Et bakterieisolat vil dermed klassifiseres som «mottakelig» for et antibiotikum dersom infeksjonen sannsynligvis hemmes av behandling med MIC av antibiotikumet, og som «resistent» dersom infeksjonen sannsynligvis vedvarer etter behandlingen. Klassifiseringen «mottakelig, økt eksponering» for et antibiotikum gis et klinisk isolat dersom en behandling med MIC er forbundet med usikker terapeutisk effekt (EUCAST, 2023b). Dette kan for eksempel være når et antibiotikum kan benyttes, men ved en høy dose.

Klinisk resistens referer til resistens forbundet med definerte patogene bakteriearter. Denne oppgaven omhandler derimot deteksjon av antibiotikaresistens blant bakterier isolert fra akvatiske miljøer, ikke kliniske, og patogenitet var dermed ikke en faktor ved fenotypisk resistensdeteksjon. Bruken av kliniske brytningspunkter til å tolke resistens blant bakterier isolert utenfor kliniske miljøer (epidemiologisk resistens) anses som en inadekvat metode (McLain et al., 2016). For måling av epidemiologisk resistens benyttes heller brytningspunktverdier kalt «epidemiologiske cut-off» (ECOFF), da satt for en bakterieart utelukkende basert på dens normaldistribuering av MIC (EUCAST, 2023a). Et isolat kan dermed klassifiseres som «mottakelig» eller «resistent» mot et antibiotikum basert på hvorvidt det har en MIC-verdi på henholdsvis over eller under gjeldende ECOFF-verdi.

MIC av et antibiotikum for en bakterie kan måles på flere måter, hvorav metoden E-test anses som den enkleste, og innebærer bruk av en test-strip som inneholder en gradvis minkende konsentrasjon av et antibiotikum. En petriskål spres først jevnt med en isolert bakteriekultur, og deretter plasseres teststripsen på midten av skålen. Etter inkubering vil bakterien ha vokst på petriskålen, men ikke i området hvor konsentrasjonen til antibiotikumet har vært høy nok til å hemme bakteriens vekst. Minimumskonsentrasjonen bestemmes dermed ved å lese av verdien på konsentrasjonsskalaen definert på test-stripsen, da på skjæringspunktet mellom observert vekst og ingen vekst (Bhattacharjee, 2022).

3.2. Genotypisk deteksjon av antibiotikaresistens

3.2.1. Kvalitet- og kvantitetsmåling av ekstrahert DNA

I denne oppgaven ble NanoDrop[™] 2000/2000c spektrofotometer benyttet til å måle konsentrasjonen og renheten til ekstrahert DNA. Dette er basert på UV-absorbans, og måler absorbansen av DNAfragmentene ved en gitt bølgelengde, hvor høyere absorbans korrelerer med høyere konsentrasjon. Ratioen mellom absorbansen ved 260 nm og 280 nm (A260/280) brukes til å indikere renheten til DNA, hvorav en ratio rundt 1,8 generelt anses som «ren». En lavere ratio kan indikere at prøven er kontaminert med fenoler, proteiner eller andre stoffer som viser høyt absorbsjonsnivå rundt 280 nm. Ratioen mellom absorbansen ved 260 nm og 230 nm (A260/230) gir en sekundærmåling for DNAets renhet, og denne verdien er ofte noe høyere enn verdien for A260/280, da som regel mellom 2,0-2,2. En lavere ratio kan indikere at prøven er kontaminert med kontaminanter som absorberer ved 230 nm (Thermo Fisher Scientific, 2009).

3.2.2. PCR

Polymerasekjedereaksjon (PCR) er en molekylær teknikk som kopierer og mangfoldiggjør (amplifiserer) spesifikke isolerte segmenter av dobbelttrådete (ds) DNA in vitro, noe som tillater etterfølgende identifisering og analysering av DNAet. PCR brukes blant annet til identifisering av dyr, mikroorganismer, kreftceller og genetiske sykdommer, samt til oppklaring av forbrytelser med etterlatt DNA (Madigan et al., 2019). Den isolerte DNA-sekvensen brukt til PCR omtales som et DNAtemplat, og innehar målsekvensen som skal amplifiseres (Kadri, 2020). I tillegg til DNA-templatet krever prosessen to syntetiske enkelttrådede (ss) DNA oligonukleotidprimere (primere), det termostabile enzymet Taq DNA-polymerase og frie deoksyribonukleosidtrifosfater (dNTP) (Madigan et al., 2019). Første PCR-syklus består i hovedsak av tre syklustrinn, hvorav første trinn, «denaturering», innebærer varmedenaturering av DNA-templatet til to individuelle ssDNA. I andre trinn, «annealing», senkes temperaturen, noe som tillater primerne å binde seg til målsekvensene på hvert sitt ssDNA. Primerne er komplementære til den spesifikke målsekvensen som skal amplifiseres, og fungerer som et startpunkt for DNA-polymerasen til å utvide primerne fra deres 3'-OH-gruppe i tredje og siste trinn. Dette ved å feste frie dNTP med det originale ssDNAet som templat, noe som resulterer i en fordobling av DNA-målsekvensen. Denne syklusen gjentas til ønsket mengde av DNAmålsekvensen er oppnådd (Kadri, 2020), og deretter kan PCR-produktet visualiseres med agarosegelelektroforese (Madigan et al., 2019).

3.2.3. Agarose-gelelektroforese

Agarose-gelelektroforese benyttes for å verifisere og visualisere PCR-produkt ved å separere DNAfragmenter basert på deres størrelse og ladning under påvirkning av et elektrisk felt i en agarosegelmatriks. Et DNA-molekyl er negativt ladet grunnet de negativt ladde fosfatgruppene som kobler nukleotidene sammen, og i et elektrisk felt vil fragmentene derfor migrere mot den positive anoden. Separering oppstår fordi mindre DNA-fragmenter med mindre effektivt volum vil migrere kjappere gjennom matriksen enn større molekyler (Madigan et al., 2019). Vandringshastigheten gjennom den porøse gelen avhenger følgelig av størrelsen til molekylene i prøvematerialet, men styres også av spenningen over gelen og dens porestørrelse. Sistnevnte kan manipuleres basert på benyttet agarosekonsentrasjon (Rabindra & Raju, 2012). Etter fullført separering visualiseres de dannede DNAbåndene gjennom et fargestoff som bindes til nukleinsyrene og gjør båndene synlig under UV-lys. Båndstørrelsen bestemmes så ved å sammenligne båndene med en «ladder», da en standardprøve bestående av nukleinsyre-fragmenter med kjente størrelser (Madigan et al., 2019).

3.2.4. Helgenomsekvensering

Helgenomsekvensering refererer til en metode for å bestemme den komplette DNA-sekvensen til en mikroorganismes genom, da mikroorganismens helhetlige genetiske materiale (Madigan et al., 2019). I denne oppgaven ble dette utført med en Illumina «neste generasjons sekvenserings»-teknologi (NGS-teknologi), som i prinsippet bruker en metode kalt «sekvensering ved syntese» (SBS). Dette foregår på en flytcelle med korte DNA-sekvenser kalt oligonukleotid-ankre bundet til dens overflate (Valencia et al., 2013). I første steg blir DNA-templatet fragmentert, og adaptere festes til hver ende av fragmentene. Disse adapterne er komplementære til oligonukleotid-ankrene på flytcellen, og i andre steg tilsettes fragmentene til flytcellen og danner klonale klynger gjennom broamplifisering (Illumina, 2017). Klyngene blir så denaturert, kjemisk kløyvet og vasket, noe som resulterer i at kun «forward»-trådene gjenstår før sekvenseringen. Illumina-teknologien bruker dNTP-er merket med fluorescerende fargestoffer og reversibel blokkering for å registrere fluorescerende signaler i hvert trinn. Dette bygger på en metode kalt syklisk reversibel blokkering. Basert på sekvenskomplementaritet blir kun en av de fire dNTP-ene inkorporert i hver «forward»-tråd av DNA-polymerasem per syklus, og deretter fjernes overflødige reagener. Fluorescenssignalet fanges så opp av et apparat, og deretter utføres neste sekvenseringssyklus (Valencia et al., 2013).

4. Materialer og metoder

4.1. Uttak av vannprøver

Uttak av vannprøver ble utført i den 17. januar 2023 i Trondheim. Det ble tatt en prøve fra tre ulike vannkilder i byen, henholdsvis fra Nidelva, Jonsvatnet og Theisendammen. Vannprøven fra Theisendammen skulle egentlig tas direkte fra Theisendammen, men grunnet tykkelsen på isen ble det valgt å heller ta prøven fra en bekk som renner ut fra den. Jonsvatnet var også delvis islagt, og prøvetakingspunkt ble derfor tilfeldig valgt basert på tilgjengelighet. Vannprøven fra Nidelva ble innhentet fra et punkt i nærheten av og i forbindelse med St. Olavs hospital. Figur 2 viser kart over prøvetakingspunktene.

Figur 2. Prøvetakingspunkt for vannprøvene hentet fra Nidelva (P1N), Jonsvatnet (P2J) og Theisendammen (P3T), uthevet med gul sirkel.

Samtlige vannprøver ble tatt med steriliserte 700 ml glass. Før sterilisering ble glassene med tilhørende lokk først rengjort med såpe og vann, og deretter satt i en stekeovn ved 100°C i 30 minutter. Lokkene ble påskrudd glassene før nedkjøling. Vannprøvene ble innhentet ved å senke glassene under vannoverflaten til de ble fulle, og deretter påsatt lokk. Etter uttaket stod vannprøvene i kjøleskap i ett døgn før de ble fraktet med tog til Ås, og deretter satt i kjøleskap i nok et døgn.

4.2. Bakterieisolering ved filtrering og kultivering av vannprøver

Vannprøven innhentet fra Jonsvatnet inneholdt mange synlige grove partikler, deriblant jord og løv, og ble derfor grovfiltrert før videre benyttelse. Vannprøven ble først ristet for å sikre homogenitet, og ved grovfiltrering ble den i sin helhet helt i en steril trakt over en 500 ml Duran®-flaske (Duran® Laboratory Glassware, Tyskland). Trakten var utstyrt med et sterilt Whatman[™] 589/1 sortbånd filtrerpapir med 150 mm diameter (GE Healthcare Life Sciences, Tyskland), og med en porestørrelse på 12-15 µm tillot filteret gjennomstrømning av mikroorganismer, men ikke av uønskede grove partikler. Vannprøvene fra Nidelva og Theisendammen hadde ingen visuelle partikler av betydning, og ble derfor ikke grovfiltrert. Etter grovfiltrering av vannprøven fra Jonsvatnet ble samtlige vannprøver ristet, og 1 ml av hver prøve ble pipettert over på to petriskåler hver med henholdsvis Oxoid *Brilliance*TM ESBL agar (ESBL-skål) og Oxoid *Brilliance*TM CRE agar (CRE-skål) (Thermo Fisher Scientific Inc., Wessel, Tyskland), og spredt med sterile L-formede platespredere. Petriskålene ble så satt til tørking i sterilskap, og deretter til aerob inkubering ved 37°C i 1-3 døgn, avhengig av bakterievekst.

Videre ble vannprøvene finfiltrert under vakuum med vakuum-filtreringssystemet Millipore Microfil Support Stainless Steel Frit MISP00002 (Merck, KGaA). Først ble filtreringssystemet koblet til en vannkran og sterilisert med en FLAMEBOY-brenner (Integra Biosciences), og deretter ble et EZ-Pak® membranfilter (Millipore S.A.S., Molsheim, Frankrike) med porestørrelse 0,45 µM lagt på med en steril pinsett. Et sterilt plastbeger med perforert bunn ble så plassert over filteret, og totalt 100 ml av ristet vannprøve ble helt i begeret for finfiltrering. Hver vannprøve ble finfiltrert to ganger, hvorav ett filter ble lagt på en ESBL-skål og det andre på en CRE-skål. Til dette ble det benyttet en steril pinsett. Petriskålene ble så satt til aerob inkubering ved 37°C i 1-3 døgn, avhengig av bakterievekst, og deretter satt kjølig ved 4°C.

Etter inkubering av petriskålene ble de kultiverte bakteriekoloniene valgt til isolering basert på fenotypisk fargescreening etter protokollene gitt på databladene til ESBL- og CRE-skålene. Grunnet begrensede ressurser ble hovedtyngden lagt på *E. coli* og bakterier tilhørende gruppen *Klebsiella*, *Enterobacter*, *Serratia* og *Citrobacter* (*KESC*-gruppen). Disse enkeltkoloniene ble plukket opp og strøket ut med sterile podenåler på nye petriskåler med tilsvarende agar som de hadde vokst på. For selve utstrykningen ble 16-streksmetoden benyttet. Petriskålene ble så satt til aerob inkubering ved 37°C i 1-3 døgn, avhengig av bakterievekst, og deretter satt kjølig ved 4°C i påvente av videre DNA-ekstraksjon og nedfrysing.

4.3. DNA-ekstraksjon

Ekstrahering av de isolerte bakteriekolonienes DNA ble utført ved bruk av DNeasy® PowerFood® Kit (QUIAGEN®, Hilden, Tyskland) etter produsentens prosedyre, men med noen unntak. Trinn 3 i prosedyren ble første trinn i utførelsen av DNA-ekstraksjonene, og det ble her benyttet sterile podenåler for å overføre koloniene til hver sine 5 ml Eppendorf Tubes[™] tilsatt 450 µl MBL-løsning. I trinn 19 ble det tilsatt 50 µl av buffer EB, ikke 100 µl som nevnt i prosedyren. Dette for å unngå fortynning av prøvene, samt av økonomiske årsaker. I dette trinnet ble prøvene også stående i romtemperatur i 2 minutter før sentrifugering for å sikre tilstrekkelig tid til DNA-bindingsreaksjonen. Etter DNA-ekstraheringen ble isolatene fryselagret ved -20°C, og ved senere benyttelse ble de holdt på is før de ble satt tilbake til fryselagring.

4.3.1. Kvalitet- og kvantitetsmåling av ekstrahert DNA

For kvalitet- og kvantitetsmåling av ekstrahert DNA ble det benyttet et NanoDrop[™] 2000/2000C (Thermo Scientific[™]) spektrofotometer med tilhørende program NanoDrop[™] 2000 Software for

nukleinsyre. Spektrofotometerets prøvesokkel ble først rengjort med destillert vann, og deretter kalibrert med 2 μl buffer EB. For utførelsen av selve målingene ble 2 μl ekstrahert DNA pipettert over på prøvesokkelen, og deretter analysert for prøvens nukleinsyre-konsentrasjon. Verdiene for A260/280 og A260/230 ble også notert. Linsen ble tørket med linsepapir mellom hver måling.

4.4. Identifisering med Sanger-sekvensering av PCR-produkt fra 16S rDNA

4.4.1. PCR-amplifisering av 16S rDNA

Til PCR-amplifisering av isolatenes 16S rDNA ble de først klargjort med et Q5® Hot Start High-Fidelity 2X Master Mix kit (New England BioLabs® Inc., Ipswich, USA) etter produsentens prosedyre. Det ble valgt å benytte et totalvolum på 25 µl per PCR-reaksjon, da bestående av 24 µl mastermiks og 1 µl ekstrahert DNA blandet i MicroAmp® 8-Tubes (Applied Biosystems[™], Thermo Fisher Scientific). Mastermiksen ble laget først, hvorav mengde tillaget mastermiks ble tilpasset etter antall prøver som skulle amplifiseres. Tabell 3 viser oversikt over komponentene benyttet i mastermiksen per reaksjon, inkludert deres volum per PCR-reaksjon.

Tabell 3. Komponentene og deres volum i mastermiksen benyttet for PCR-amplifisering av isolatenes 16S rDNA. Tabellen viser volum per PCR-reaksjon.

Komponenter	Volum (µl) per reaksjon
10 µl Forward primer (1F)	1,25
10 µl Reverse primer (5R)	1,25
Q5 Hot Start High-Fidelity 2X Master Mix	12,5
RNase-fritt vann/dH2O	9
Totalt volum per reaksjon (μl)	24

Tabell 3 viser at primerne 1F og 5R ble benyttet som primerpar i PCR-amplifiseringen av isolatenes 16S rDNA. Tabell 4 viser oversikt over disse.

Tabell 4. Primerpar benyttet i PCR-amplifisering av isolatenes 16S rDNA, inkludert deres målgen, primersekvenser og antall basepar.

Primer	Målgen	Primersekvens (5'-3')	Basepar (bp)
Forward, 1F	16S rRNA	AGAGTTTGATCMTGGCTCAG	1505
Reverse, 5R		GYTACCTTGTTACGACTT	

PCR-amplifiseringen ble utført med apparatet C1000™ Thermal Cycler (Bio-Rad Laboratories Inc.,

California, USA). Valg av program var basert produsentens anbefaling, og fremlegges i Tabell 5.

Tabell 5. Programinnstilling benyttet for PCR-amplifisering av isolatenes 16S rDNA.

Steg	Temperatur (°C)	Tid (min)	Antall sykluser
Aktivering	98	00:30	1
Denaturering	98	00:10	
Primer annealing jo	55	00:30	32
Forlengelse	72	00:42	
Endelig forlengelse	72	02:00	1
Avkjøling	4	∞	

4.4.2. Visualisering av PCR-produkt med agarose-gelelektroforese

For å visualisere produktene fra PCR-amplifiseringen av isolatenes 16S DNA ble det utført en gelelektroforese med en 2% agarosegel. Innledningsvis ble 1X Tris-acetat-Etylendiamintetraacetat (TAE) buffer forberedt ved å blande 40 ml 50X TAE Stock Solution (Bio-Rad Laboratories Inc., Hercules, USA) og 1960 ml Ambion[™] nukleasefritt vann (Thermo Fisher Scientific Inc., Texas, USA). For tillaging av selve agarosegelen ble 4,2 g SaeKem® LE agarosepulver (Lonza Rockland Inc., ME, USA) blandet med 210 ml 1X TAE buffer i en 500-ml DURAN®-flaske, og varmet med løs kork i mikrobølgeovn ved full effekt til oppnådd kokepunkt. Blandingen ble så ristet, og varmet videre ved 90 watt til agarosepulveret ble fullstendig oppløst. Løsningen ble deretter nedkjølt til omtrent 55°C og tilsatt 2 µl SYBR® Safe DNA Stain (Edvotek®) før den ble helt i utstøpingskar med brønnkammer til stivning. Den stivnede gelen ble så plassert i gelelektroforese-systemet Sub-Cell® GT (Bio-Rad Laboratories Inc.) fylt med 1X TAE buffer, og brønnkammene ble fjernet.

Før utførelsen av gelelektroforesen ble én prøveløsning per isolat klargjort ved å blande 3 µl PCRprodukt med 6 µl Ambion[™] nukleasefritt vann og 2 µl Loading Dye Base 6X (New England BioLabs Inc.) i 96-Well Microliter[™] Microplates (Thermo Fisher Scientific Inc.). Deretter ble 10 µl av prøveløsningene applisert i hver sin brønn på agarosegelen. Det ble også applisert 10 µl Quick-Load® 100 bp DNA Ladder (New England BioLabs® Inc.) i minst en brønn på hver rad. Gelelektroforesen ble så utført ved bruk av PowerPac[™] 300 (Bio-Rad Laboratories Inc.) som strømforsyning, hvorav gelen ble kjørt på 150V til tilstrekkelig oppnådd separasjonslengde. Etter endt gelelektroforese ble agarosegelen visualisert med apparatet Gel Doc XR+ Gel Documentation System (Bio-Rad Laboratories Inc.).

4.4.3. Rensing og klargjøring av PCR-produkt til Sanger-sekvensering av 16S rDNA Produktene fra PCR-amplifiseringen av isolatenes 16S rDNA måtte renses før de ble sendt til Eurofins for Sangers-sekvensering. Til dette ble NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel) benyttet etter produsentens prosedyre, da spesifikt protokoll 5.1 PCR Clean-up, men med noen unntak. I trinn 1 ble ikke volumet justert med vann til 50-100 ml, selv om det benyttede prøvevolumet var <30 µl, da for å unngå fortynning av prøvene. Anbefalingen om å gjenta trinn 3 ble ikke fulgt, men prøvene ble sentrifugert en ekstra gang ved 11.000 x *g* i 3 minutter før trinn 4 for å sikre at NTI-bufferen ble fullstendig fjernet. I trinn 4 ble prøvene av samme årsak sentrifugert i 3 minutter, ikke 1 minutt. Siden PCR-produktet bestod av 1505 basepar ble notatet i trinn 5 fulgt, altså ble NE-buffer varmet opp til 50°C før 30 µl av denne ble tilsatt, og prøvene ble så inkubert i romtemperatur i 5 minutter for å sikre god binding. Avslutningsvis ble også produktet pipettert opp og kjørt gjennom filteret på nytt gjennom sentrifugering ved 11.000 x *g* i 1 minutt.

I forkant av innsendingen av de rensede PCR-produktene til Sanger-sekvensering ble de kvalitet- og kvantitetssikret etter samme metode som den beskrevet i kapittel 4.3.1, men det ble her benyttet buffer NE for kalibrering. Det ble deretter forberedt to individuelle prøver av hvert renset PCR-produkt; en tilsatt primer 1F og den andre tilsatt primer 5R (tabell 2). Hver prøve ble forberedt ved å tilsette og blande 5 μ l renset PCR-produkt og 5 μ l primer i et safe-lock-rør. Prøvene ble så sendt til Eurofins i Tyskland for Sanger-sekvensering.

4.4.4. Databehandling og analysering av Sanger-sekvenseringsresultater Etter Sanger-sekvenseringen ble det mottatt to nukleotidsekvenser per prøve, og programvaren BioEdit 7.2.5 ble benyttet til å tilpasse og sammenslå de to sekvensene til en konsensus-sekvens. Konsensus-sekvensene ble så lagret i FASTA-format. FASTA-sekvensene ble analysert ved bruk av verktøyet Nucleotide Basic Local Alignment Search Tool (nBLAST) (NIH, National Library of Medicine) gjennom sammenligning med nukleotidsekvenser blant referansedatabaser. «Query cover» oppgir hvor stor prosentandel av lengden til FASTA-sekvensen som matcher oppgitt sekvens fra referansedatabasen, og «prosent identitet» oppgir hvor stor prosentandel av nukleotidene i FASTAsekvensen som matcher basene i oppgitt sekvens fra referansedatabasen. Resultatene ble basert på graden av likhet med referansesekvensene.

4.5. Frysestock til fryselagring

Isolatene identifisert som *E. coli, Klebsiella, Pseudoxanthomonas, Stenotrophomonas* og *Serratia* i nBLAST etter Sanger-sekvenseringen av isolatenes 16S rDNA ble valgt til fryselagring. Først ble ferske bakteriekolonier forberedt ved å stryke ut de nedkjølte, isolerte bakteriekoloniene på nye petriskåler med tilsvarende agar som de hadde vokst på, da enten på ESBL- eller CRE-agar. Petriskålene ble deretter satt til aerob inkubering ved 37°C i 24 timer, og de ferske koloniene ble så plukket opp og podet over i safe-lock-rør tilsatt 750 µl glyserol. Rørene med frysestock ble satt til fryselagring ved -20°C i påvente av videre benyttelse.

4.6. Deteksjon av ESBL-gener

4.6.1. Multiplex PCR

Multiplex PCR ble utført for isolatene analysert som *E. coli*, *Shigella* og *Serratia* i nBLAST etter Sanger-sekvenseringen av isolatenes 16S rDNA. Isolatene ble analysert mot fire ulike mastermikser med forskjellig sammensetninger av primere som koder for ESBL-gener, da i Multiplex PCR-analyser henholdsvis kalt Multiplex 1, Multiplex 2, Multiplex 3 og Multiplex 4. Det ble også utført en kontroll, kalt Multiplex K, med primere som analyserte for de universelle genene *ropB* og *16S rRNA*. Tabell 6 viser oversikt over hvilke primere og dermed gener hver Multiplex analyserte for.

	Målgen	Primersekvens (5'-3')	Basepar (bp)	
	blaCTX-M2	F- CGTTAACGGCACGATGAC	404	
		R-CGATATCGTTGGTGGTTCCAT	404	
Multiplex 1	hloOVA	F- GGCACCAGATTCAACTTTCAAG	564	
(ESBL 1)	DIAOXA	R-GACCCCAAGTTTCCTGTAAGTG		
	hloCIIV	F- AGCCGCTTGAGCAAATTAAAC	712	
	DIASHV	R-ATCCCGCAGATAAATCACCAC	/15	
	hleCTV MO	F- TCAAGCCTGCCGATCTGGT	561	
	DIAC I A-IVI9	R-TGATTCTCGCCGCTGAAG	301	
Multiplex 2	bloCTV M1	F- TTAGGAARTGTGCCGCTGYA	688	
(ESBL 2)		R-CGATATCGTTGGTGGTRCCAT	000	
	blaTEM	F- CATTTCCGTGTCGCCCTTATTC	800	
		R-CGTTCATCCATAGTTGCCTGAC	800	
	blaNDM	F- TGGCCCGCTCAAGGTATTTT	157	
		R-GTAGTGCTCAGTGTCGGCAT		
Multiplex 3	blaVIM	F- ATAGAGCTCAGTGTGTCGGCAT	- 564 - 460	
(ESBL 3)		R- TTATTGGTCTATTTGACCGCGT		
	blaKPC	F- TCCGTTACGGCAAAAATGCG		
		R-GCATAGTCATTTGCCGTGCC		
	blaCMY	F- GCATCTCCCAGCCTAATCCC	188	
		R- TTCTCCGGGACAACTTGACG		
Multiplex 4	11-OVA 49	F- GCTTGATCGCCCTCGATT	201	
(ESBL 4)	DIaOAA-40	R-GATTTGCTCCGTGGCCGAAA	201	
	hlaD/D	F- ACAGGGGGGAATAGAGTGGCT	202	
	Dialivir	R-AGCCTGTTCCCATGTACGTT	393	
	moD	F- CAGGTCGTCACACGGTAACAAG	510	
Multiplex K	тров	R-GTGGTTCAGTTTCAGCATGTAC	512	
(Kontroll)	ntroll) 16S rRNA	F- AGAGTTTGATCMTGGCTCAG	1505	
		R-GYTACCTTGTTACGACTT	1505	

Tabell 6. Oversikt over primere benyttet i Multiplex PCR, inkludert deres målgen, primersekvens og antall basepar.

For klargjøring av isolatene til Multiplex PCR ble QIAGEN® Multiplex PCR Kit (QIAGEN®, Hilden, Tyskland) benyttet etter produsentens prosedyre, da spesifikt protokollen «Standard Multiplex PCR» uten Q-Solution. Det ble først tillaget en 100 µM primer stock solution av samtlige primere, og deretter en 10X arbeidsløsning for hver Multiplex bestående av en blanding av tilhørende primere og Ambion[™] nukleasefritt vann. Arbeidsløsningene ble så benyttet i tilhørende mastermikser, hvorav mengde tillagde mastermikser ble tilpasset etter antall prøver som skulle testes. Disse ble derimot laget med halvparten av volumet i forhold til det beskrevet i protokollen, som vist i Tabell 7. Etter tillagingen av mastermiksene ble de individuelle prøvene forberedt ved å pipettere 24 µl mastermiks over i MicroAmp® 8-Tubes før de ble blandet med 1 µl ekstrahert DNA.

Komponenter	Volum (µl) per reaksjon
2X QIAGEN Multiplex PCR Master Mix	12,5
10X arbeidsløsning	2,50
Ambion [™] nukleasefritt vann	9
DNA-isolat	1,00
Totalt reaksjonsvolum	25,00

Tabell 7. Komponentene og deres volum per reaksjon i en mastermiks brukt til Multiplex PCR.

PCR-amplifiseringen ble utført med apparatet C1000[™] Thermal Cycler, og Tabell 8 viser oversikt over programinnstillingen som ble kjørt. Prøvene ble deretter visualisert ved bruk av agarosegelelektroforese etter samme metode som den beskrevet i kapittel 4.4.2.

Steg	Temperatur (°C)	Tid (min)	Antall sykluser
Aktivering	95	15:00	1
Denaturering	94	00:30	
Primer annealing jo	60	01:30	35
Forlengelse	72	01:42	
Endelig forlengelse	72	10:00	1
Avkjøling	4	∞	

Tabell 8. Programinnstilling benyttet for Multiplex PCR-amplifisering

4.6.2. Singleplex PCR

Singleplex PCR ble utført for isolatene med bånd på agarosegelen som korresponderte med størrelsen til de ulike primerne testet i Multiplex PCR. Disse primerne ble isolert testet for de gjeldene isolatene, da for å bekrefte eller avkrefte resultatene fra Multiplex PCR. Før selve PCR-amplifiseringen ble isolatene klargjort med et Q5® Hot Start High-Fidelity 2X Master Mix kit etter produsentens prosedyre. Det ble først laget to arbeidsløsninger med primerkonsentrasjon på 10 µM per prøve, da en for «forward» og en for «reverse» primer, ved å blande 90 µl AmbionTM nukleasefritt vann og 10 µl tilhørende «stock primer solution» i 5 ml Eppendorf TubesTM. Metoden videre er lik den benyttet for 16S rDNA PCR beskrevet i kapittel 4.4.1, men det ble her benyttet samme programinnstillinger på PCR-apparatet som de for Multiplex PCR fremlagt i tabell 7. Prøvene ble deretter visualisert ved bruk av agarose-gelelektroforese etter samme metode som den beskrevet i kapittel 4.4.2.

4.6.3. Rensing og klargjøring av Singleplex PCR-produkt og agarosegel til Sangersekvensering

PCR-produktene fra Singleplex PCR med bånd på agarosegelen som korresponderte med størrelsen til de benyttede primerne ble sendt til Eurofins for Sanger-sekvensering. Dette for å bekrefte eller avkrefte resultatene. For PCR-produktet hvorav det eneste båndet på agarosegelen korresponderte med benyttet primer, ble PCR-produktet renset etter samme metode som den beskrevet i kapittel 4.4.3. For PCR-produktene med flere bånd på agarosegelen enn kun det positive for benyttet primer, måtte det positive båndet kuttes fra gelen for å sikre rensing og sekvensering av korrekt og rent DNA. UV-eksponering kan degradere DNA, og det ble derfor laget en ny gel etter samme metode som den beskrevet i kapittel 4.4.2, men denne ble ikke visualisert på angitt apparat. Båndene ble derimot kuttet under UV-lys, men kun i den korte tiden det tok å kutte, da resterende bånd ble dekket med aluminiumsfolie for å unngå eksponering.

For rensing av den kuttede gelen ble protokollen 5.2 DNA extraction from agarose gels fra NucleoSpin® Gel and PCR Clean-up kit benyttet, men med noen unntak. Prosedyren anbefaler blant annet å tilsette 200 µl NTI-buffer per 100 mg agarosegel, men agarosegelen ble tilsatt 500 µl NTIbuffer uavhengig av gelens vekt. Erfaring viser at det gir tilfredsstillende resultater (A. Abdelghani, *pers.kom.*). Prosedyren videre er lik den for protokoll 5.1 PCR Clean-up beskrevet i kapittel 4.4.3, og samme unntak ble også gjort her.

Før innsending av de rensede produktene til Sanger-sekvensering ble prøvene kvalitet- og kvantitetssikret etter samme metode som den benyttet i kapittel 4.3.1, men det ble her benyttet buffer NTI for kalibrering. Per innsendte prøve skulle ha et totalvolum på 10 µl med en primerkonsentrasjon på 5 µM, og arbeidsløsningene ble derfor fortynnet fra 10 µM til 5 µM med AmbionTM nukleasefritt vann. Mengde renset produkt ble beregnet ved å benytte konsentrasjonen gitt ved kvantitetsmålingen. Prøvene ble så blandet og innsendt i safe-lock-rør.

Etter Sanger-sekvenseringen ble sekvensene databehandlet og analysert etter samme metode som den beskrevet i kapittel 4.4.4, men siden det her kun ble innsendt én prøve per renset produkt ble BioEdit 7.2.5 kun benyttet til å omgjøre de mottatte sekvensene til FASTA-format før analysering med nBLAST.

4.7. Deteksjon av virulensgener med Virulens PCR

Isolatene identifisert som *E. coli* i nBLAST etter Sanger-sekvenseringen av isolatenes 16S rDNA ble valgt til deteksjon av virulensgener for diarégivende *E. coli* gjennom utførelse av Virulens PCR.

Tabell 9 viser oversikt over hvilke primere som ble benyttet. Metoden for Virulens PCR er lik den beskrevet for Singleplex PCR i kapittel 4.6.2, med unntak av programinnstillingene som ble kjørt på PCR-apparatet, da presentert i Tabell 10.

Primer	Primersekvens (5'-3')	Basepar (bp)	Patogen	Referanse
aggD	F: GTATACACAAAAGAAGGAAGC	254	EVEC	(Tomo at al
aggr	R: ACAGAATCGTCAGCATCAGC	234	EAEC	(10111a et al., 2002)
inell	F: GTTCCTTGACCGCCTTTCCGATACCGTC	610	Shigella	2003)
пран	R: GCCGGTCAGCCACCCTCTGAGAGTAC	019	/EIEC	
202 Å	F: TCAATGCAGTTCCGTTATCAGTT	197	EDEC	(Vidal et al.,
eaeA	R: GTAAAGTCCGTTACCCCAACCTG	482	EFEC	2004)
TTI	F: TCTCTATGTGCATACGGAGC	200		(Rappelli et
LII	R: CCATACTGATTGCCGCAAT	322		al., 2001)
	F: ATTTTTCTTTCTGTATTGTCTT		ETEC	(Lopez-
STlb	R: CCATACTGATTGCCGCAAT	190		Sauchedo et al., 2003)
otr 1	F: AAATCGCCATTCGTTGACTACTTCT	270		
StX1	R: TGCCATTCTGGCAACTCGCGATGCA	570	STEC	(Brian et al.,
stx2	F: CAGTCGTCACTCACTGGTTTCATCA	283	SIEC	1992)
	R: GGATATTCTCCCCACTCTGACACC			

Tabell 9.	Oversikt	over	primere	benyttet	i	Virulens	PCR
-----------	----------	------	---------	----------	---	----------	-----

Tabell 10. Programinnstilling benyttet for Virulens PCR-amplifisering

Steg	Temperatur (°C)	Tid (min)	Antall sykluser
Aktivering	98	00:30	1
Denaturering	98	00:10	
Primer annealing jo	55	00:20	34
Forlengelse	72	00:20	
Endelig forlengelse	72	02:00	1
Avkjøling	4	∞	

4.8. Sensitivitetstesing mot antibiotika

Til bestemmelse av grad av sensitivitet mot antibiotika ble tre isolater valgt til testing av minimunsinhibitorisk konsentrasjon (MIC) basert på resultatene fra nBLAST, Multiplex-, Singleplexog Virulens PCR. Isolatene ble analysert mot ni antibiotika, og det ble laget to paralleller for hver prøve. Tabell 11 viser oversikt over hvilke antibiotika som ble benyttet, samt hvilken klasse de tilhører.

Antibiotia-klasse	Antibiotikum
Daniaillin	Penicillin G
Peniciliin	Ampicillin
Karbapenem	Meropenem
Vafalognorin	Cefotaxime
Ketalosportii	Cefepime
Fluoroquinolon	Ciprofloxacin
Tetracyclin	Tetracyclin
Markloid	Erythromycin
Nitrofuran	Nitrofurantoin

Tabell 11. Antibiotika benyttet i test for sensitivitet mot antibiotika

For klargjøring av inokulumene ble nedfryst bakteriesuspensjon først opptint og strøket ut med sterile podenåler på petriskåler med ESBL-agar, som så ble satt til aerob inkubering ved 37°C i 24 timer. Det ble deretter laget en inokulatsuspensjon ved å overføre isolatene med en steril podenål til reagensrør med 9,9 ml sterilt saltvann. Denne ble ristet til fullstendig oppløsning, og deretter visuelt sammenlignet med en 0.5 McFarland turbiditetsstandard for å sikre en tetthet omtrent tilsvarende 1 − 2 * 10⁸ kde/ml for *E. coli*. En steril bomullspinne ble så dyppet i inokulatsuspensjonen, og overflødig suspensjon ble fjernet ved å lett presse den på innsiden av røret. Bomullspinnen ble deretter strøket utover en petriskål med Mueller-Hinton (MH) agar (Thermo Fisher Scientific Inc., Wesel, Tyskland) i tre omganger med ulik retning. Dette for å sørge for en jevn teppevekst over hele petriskålen. Etter at suspensjonen hadde tørket på mediet i sterilskap, ble en MIC Test Strip (LiofilchemTM, Roseto degli Abruzzi, Italia) med tilhørende antibiotikum plassert på skålene med en steril pinsett. Petriskålene ble deretter satt til aerob inkubering ved 37°C i 24 timer før verdiene til inhibitorsonene (MIC-verdiene) ble avlest, og gjennomsnittsverdiene ble så sammenlignet med ECOFF-brytningspunktverdier for resistens blant villtypepopulasjon av tilsvarende bakteriearter. Ved manglende ECOFF-verdier ble MIC-verdiene sammenlignet med brytningspunktverdiene for klinisk resistens fra EUCAST.

4.9. Helgeneomsekvensering med Illumina

De tre isolatene som ble valgt til MIC-testing ble også valgt til helgenomsekvensering.

4.9.1. Klargjøring av prøver til helgenomsekvensering

Innsending av isolatenes ekstraherte DNA til helgenomsekvensering ble utført av medstudent Mette Lea og senioringeniør Ahmed Abdelghani. De utførte først kvantitetsmåling av isolatenes ekstraherte DNA ved bruk av et Qbit® 2.0 Fluormeter (Thermo Fisher Scientific Inc.). De utførte også kvalitetsmåling etter metoden beskrevet i kapittel 4.3.1, og deretter en gelelektroforese etter metoden beskrevet i kapittel 4.4.2. Dette for å sikre oppfyllelse av krav oppgitt i Novagene Sample Submission Guidelines (2022, versjon 8) under 1.4 Microbial Genome Sequencing. Deretter ble 20 µl ekstrahert DNA pipettert over i safelock-rør og sendt til Novogene (Cambridge, Storbritannia) for helgenomsekvensering ved bruk av Illumina-teknologi.

4.9.2. Databehandling og analysering av helgenomsekvenseringsresultater Rådatafilene mottatt fra Novogene etter helgenomsekvenseringen ble behandlet i plattformen Galaxy EU for å generere konsensus-sekvenser gjennom å utføre en sammenslåing av F- og R-sekvensene til prøvene. Verktøyet ABRicate Mass screening of contigs for antimicrobial and virulence genes (ABRicate) ble deretter benyttet for å finne resistensgener i databasene The Comprehensive Antibiotic Resistance Database (CARD) og The National Database of Antibiotic Resistant Organisms (NDARO) fra The National Center of Biotechnology Information (NCBI). Databasene Virulence Factor Database (VFDB) og Ecoli_VF (EVF) i ABRicate ble benyttet til identifisering av virulensgener, hvorav sistnevnte kun ble benyttet for *E. coli*-bakterier. Databasen MyVirDB utviklet av Professor Bjørn-Arne Lindstedt ble også brukt til å finne virulensgener.

Verktøyet Prokaryotic genome annotation (PROKKA) i Galaxy EU ble også benyttet, da for å overføre sekvensdataen til leselig data i GenBank-format i Excel. Disse dataene ble brukt til å finne gener som koder for metallresistens, desinfeksjonsresistens, syreresistens, UV-resistens, MDR, biofilmmekanismer og toksiner. Søkeordene «resist», «metal», «efflux», «pump», «transport», «drug», «multi», «toxi», «desinf» og «biofilm» ble da benyttet. MyVirDB ble også brukt til å detektere disse genene.

Nettsiden PubMLST ble benyttet til å bekrefte isolatenes identitet gitt i nBLAST av resultatene fra Sanger-sekvenseringen av deres 16S rDNA. Bakterieisolatenes sekvenstyper (ST) ble videre analysert ved bruk av plattformen MLST 2.0.9 på nettsiden til Center for Genomic Epidemiology, hvorpå også plattformen SeroTypeFinder og ClermonTyping Report ble benyttet for å finne henholdsvis serotypen og fylogruppen til *E. coli*-isolatet. Pathogenwatch ble benyttet for å identifisere serotypen til *K. pneumoniae*-isolatet. Plasmider ble identifisert gjennom søk i PlasmidFinder-2.0 Server.

5. Resultater

5.1. Isolering og identifisering av bakteriekolonier

På skålene til de grovfiltrerte vannprøvene ble vekst kun observert på ESBL-platene til Nidelva og Jonsvatnet, henholdsvis to og en kolonier, og på CRE-platen til Theisendammen, da åtte kolonier. Samtlige kolonier hadde derimot beige farge, og ingen av disse ble derfor valgt til isolering. Disse vil ikke omtales videre. Bilder av skålene til samtlige kultiverte vannprøver vises i vedlegg 1, og bildene av de finfiltrerte vannprøvene presenteres også i Tabell 12. Merk at bildene for Nidelva ble tatt etter at fire bakteriekolonier hadde blitt plukket opp til isolering. Skålene hadde deretter stått kjølelageret i ett døgn.

Tabell 12. Bilder av bakteriekoloniene kultivert på ESBL- og CRE-skåler med filtrerte og ikke-filtrerte vannprøver hentet fra Nidelva, Jonsvatnet og Theisendammen. Bildene for Nidelva ble tatt etter at fire bakteriekolonier hadde blitt plukket opp til isolering. Skålene hadde deretter stått kjølelagret i ett døgn.

Som vist i Tabell 12 ble det generelt observert mest vekst på ESBL- og CRE-skålene med vann hentet fra Nidelva, da også i forhold til fenotypisk mangfold. På CRE-skålene til Jonsvatnet og Theisendammen ble kun blå kolonier observert, og kun beige på ESBL-skålene, med unntak av to blå kolonier på ESBL-skålen til Jonsvatnet.

Etter kultiveringen ble 29 bakteriekolonier valgt til isolering og dermed DNA-ekstrahering, da for å benytte DNAet til identifisering gjennom nBLAST av isolatenes 16S rDNA. Kvalitet- og kvantitetsmålingene utført av isolatenes ekstraherte DNA presenteres i vedlegg 2, og målingene utført av produktet av isolatenes PCR-amplifiserte 16S rDNA innsendt til Sanger-sekvensering for indentifisering presenteres i Tabell 13.

Agar	Hentet fra	Isolat	Konsentrasjon (ng/µl)	A260/280	A260/230
		P1(E)Nid_E.coli	53	2,13	0,33
		P2(E)Nid	61,2	2,12	0,63
		P3(E)Nid	54,7	2,13	0,64
		P4(E)Nid	54,6	2,19	0,41
	Nidelva	P10(E)Nid	54,8	2,19	0,26
		P11(E)Nid	59,3	2,14	0,25
ECDI		P12(E)Nid_Kleb	57	2,18	0,21
ESBL		P28(E)Nid	58,1	2,11	0,38
		P29(E)Nid	53,3	2,15	0,12
		P16(E)Jons_Serr	60,9	2,06	0,22
	Jonsvatnet	P25(E)Jons	64,4	2,21	0,25
		P26(E)Jons	56,5	2,19	0,45
	Theisendermon	P17(E)Theis	55,8	2,23	0,1
	Theisendammen	P27(E)Theis	50,5	2,18	0,78
		P5(C)Nid	51,3	2,18	0,68
		P6(C)Nid	53,9	2,18	0,56
	Nidalwa	P7(C)Nid	56	2,18	0,41
	muerva	P8(C)Nid	56,8	2,21	0,5
		P9(C)Nid	56,1	2,17	0,3
		P24(C)Nid	71,7	2,39	0,27
		P13(C)Jons	46,2	2,21	0,18
CRE		P14(C)Jons	53,8	2,16	0,18
	Jonsvatnet	P15(C)Jons	47,7	2,18	0,24
		P18(C)Jons	71,5	2,87	0,19
		P19(C)Jons	43	2,32	0,1
		P20(C)Theis	50,8	2,23	0,42
	Thoisondommon	P21(C)Theis	51	2,21	0,21
	Theisendaminell	P22(C)Theis	54,2	2,16	0,43
		P23(C)Theis	53,4	2,1	0,2

Tabell 13. Kvalitet- og kvantitetsmålinger utført av produktet av isolatenes PCR-amplifiserte 16S rDNA innsendt til Sangersekvensering for videre identifisering i nBLAST.

Tabell 13 viser at samtlige prøver som ble innsendt til Sanger-sekvensering for identifisering hadde en DNA-konsentrasjon mellom 43,0-71,7 ng/ μ l og et absorbansforhold mellom 2,10-2,87 for A260/280 nukleinsyre-ratio. Prøvenes absorbansforhold for A260/230 lå mellom 0,10-0,78.

Valg av de 29 bakteriekoloniene til isolering, DNA-ekstrahering og identifisering ble gjort basert på fenotypisk fargescreening. En oversikt over disse fremlegges i Tabell 14 og Tabell 15, inkludert hvilke bakteriearter eller slekter de ble antatt å tilhøre basert på fargescreeningsprotokollone, samt hovedresultatene fra nBLAST. Resultatene fra nBLAST er gitt i sin helhet i vedlegg 3.

Tabell 24. Oversikt over bakteriekoloniene kultivert på ESBL-agar valgt til isolering, DNA-ekstrahering og identifisering basert på fenotypisk fargescreening.

Agar	Hentet fra	Isolat	Farge	Fargescreening	nBLAST av isolatenes 16S rDNA	Bilde
		P1(E)Nid_E.coli		E. coli	E. coli eller Shigella flexneri	
		P2(E)Nid	Grønn	KESC-gruppen	Klebsiella pneumoniae	5
	Nidelva	P3(E)Nid	Mørk blå	E. coli	E. coli, E. fergusonii, Lactiplantibacillus plantarum eller Shigella sonnei	N.
		P4(E)Nid	Beige	Salmonella, Acinetobacter eller andre	Pseudomonas nitroreducens	and the second s
		P10(E)Nid Grønn KESC-gru		KESC-gruppen	Serratia fonticola	
		P11(E)Nid	Grønn	KESC-gruppen	Serratia fonticola	
ESBL		P12(E)Nid_Kleb	Grønn	KESC-gruppen	Klebsiella pneumoniae	5000
		P28(E)Nid	Grønn	KESC-gruppen	Serratia fonticola	
		P29(E)Nid	Blå	E. coli	Pseudomonas protegens	1
		P16(E)Jons_Serr	Grønn	KESC-gruppen	Serratia fonticola	and the second s
	Jonsvatnet	P25(E)Jons	Grønn	KESC-gruppen	Klebsiella pneumoniae eller Hafnia psychotolerans (begge 17% «query cover» og 95,17% identitet)	
		P26(E)Jons	Beige	Salmonella, Acinetobacter eller andre	<i>Pseudomonas syringae</i> (query cover 20% og 89,68% identitet)	
	Theisen-	P17(E)Theis	Beige	Salmonella, Acinetobacter eller andre	Pseudomonas fluorescens	
	dammen	P27(E)Theis	Beige	Salmonella, Acinetobacter eller andre	Pseudomonas protegens	

Tabell 25. Oversikt over bakteriekoloniene kultivert på ESBL-agar valgt til isolering, DNA-ekstrahering og identifisering basert på fenotypisk fargescreening.

Agar	Hentet fra	Isolat	Farge	Fargescreening	nBLAST av isolatenes 16S rDNA	Bilde
		P5(C)Nid	Rødlig brun	Acinetobacter	<i>Acidovorax</i> sp. (100% «query cover» og 88,4% identitet)	
		P6(C)Nid	Grønn-blå	KESC-gruppen	Pseudoxanthomonas sp.	
	Nidelva	P7(C)Nid	Mørk blå	KESC-gruppen	Caulobacter sp.	N)
		P8(C)Nid	Brun-blå	KESC-gruppen	Stenotrophomonas maltophilia	
		P9(C)Nid	Mørk blå	KESC-gruppen	Stenotrophomonas maltophilia	
		P24(C)Nid	Mørk blå	KESC-gruppen	Stenotrophomonas maltophilia	
CRE	Jonsvatnet	P13(C)Jons	Mørk blå	KESC-gruppen	Caulobacter segnis	A CARA
		P14(C)Jons	Mørk blå	KESC-gruppen	Caulobacter segnis	E Contraction
		P15(C)Jons	Grønn-blå	KESC-gruppen	Caulobacter segnis	
		P18(C)Jons	Mørk blå	KESC-gruppen	Caulobacter segnis	
		P19(C)Jons	Mørk blå	KESC-gruppen	Caulobacter segnis	
		P20(C)Theis	Grønn-blå	KESC-gruppen	Caulobacter segnis	1
	Theisen-	P21(C)Theis	Mørk blå	KESC-gruppen	Caulobacter segnis]
	dammen	P22(C)Theis	Lys turkis	KESC-gruppen	Caulobacter segnis]
		P23(C)Theis	Blå	KESC-gruppen	Caulobacter segnis	

Tabell 14 og Tabell 15 viser at 15 (51,7%) av de 29 bakteriekoloniene ble isolert fra skålene med vann fra Nidelva, åtte (27,6%) fra Jonsvatnet og seks (20,7%) fra Theisendammen. Resultatene fra fargescreeningen for ESBL-skålen til Nidelva tydet på at tre (33,3%) av de ni isolerte bakteriekoloniene skulle være *E. coli*, fem (55,6%) skulle tilhøre *KESC*-gruppen, og en (11,1%) tilhøre enten *Salmonella*, *Acinetobacter* eller andre bakterieslekter. Resultatene for ESBL-skålen til Jonsvatnet tydet på at to (66,7%) av de tre isolatene var en del av *KESC*-gruppen, og en (33,3%) enten *Salmonella*, *Acinetobacter* eller andre bakterieslekter. Fra ESBL-skålen til Theisendammen ble kun to kolonier isolert. Begge koloniene hadde beige farge, og ble derfor antatt å tilhøre enten *Salmonella*, *Acinetobacter* eller andre bakteriekoloniene kultivert på ESBL-skålene stemte, med unntak av P29(E)Nid som ble fargescreenet som *E. coli*, men identifisert som *Pseudomonas protegens* i nBLAST. nBLAST-resultatene for isolatene fra ESBL-skålene var generelt av god kvalitet, da med «query cover» ≥99% og identitet >99%, med unntak av P25(E)Jons og P26(E)Jons hvorav toppresultatene hadde henholdsvis 17% og 20% «query cover».

Samtlige identifiserte bakteriekolonier som ble isolert fra CRE-skålene til Nidelva, Jonsvatnet og Theisendammen ble antatt å tilhøre *KESC*-gruppen, da med unntak av P5(C)Nid antatt å tilhøre slekten *Acinetobacter*. Resultatene for isolatenes identitet gitt i nBLAST motbeviste derimot alle antagelsene, hvorav samtlige isolater fra Jonsvatnet og Theisendammen isolert fra CRE-skålene ble identifisert som *Caulobacter segnis*. Blant de seks isolatene fra CRE-skålene til Nidelva ble tre (50%) identifisert som *Stenotrophomonas maltophilia* og en (17%) som *Caulobacter segnis*. Den siste, P5(C)Nid, ble identifisert som *Acidovorax sp.*, men med kun 88,4% identitet. Resterende resultater var av god kvalitet

5.2. Deteksjon av ESBL-gener med Multiplex og Singleplex PCR

Multiplex og Singleplex PCR ble utført for å detektere resistensgener blant isolatene identifisert som *E. coli, Klebsiella* og *Serratia* i nBLAST etter Sanger-sekvenseringen av isolatenes 16S rDNA. Multiplex PCR benyttet en blanding av ESBL-primere, og Singleplex PCR ble utført for å teste de positive resultatene fra Multiplex PCR mot de utslagsgivende enkeltprimerne. Multiplex PCR ble utført for ni isolater, og det store prøveantallet medførte at PCR-produktene måtte kjøres på fire ulike agarosegeler under gelelektroforesen. Ved tolkningen av gel-bildene ble det derimot gjort en forveksling mellom to geler, og valg av prøver fra Multiplex PCR som skulle testes ved Singleplex PCR ble derfor gjort basert på ukorrekte resultater for de gjeldende gelene. Bilder av gelene etter utført agarosegelelektroforese av Multiplex PCR-produktene presenteres i vedlegg 4, hvorav både de korrekte og delvis ukorrekte tolkningene av resultatene er vedlagt. En oppsummering av disse tolkningene gis i Tabell 16. Tabell 16. Oversikt over de korrekte og ukorrekte tolkningene av agarosegelene til Multiplex PCR-produktene. Gule felt markerer de ukorrekte tolkningene som ble benyttet til Singleplex PCR grunnet forveksling av to av fire geler. Grønne felt markerer de korrekte tolkningene som **ikke** ble benyttet til Singleplex PCR, og blå felt markerer de korrekte tolkningene som ble benyttet til Singleplex PCR. Felt med sterk farge indikerer et sterkt potensielt utslag for gitt målgen, og svak farge indikerer et svakt potensielt utslag.

	M [*]	ultiplex ESBL 1	: 1)	M (Multiplex 2 (ESBL 2)		Multiplex 3 (ESBL 3)			Multiplex 5 (ESBL 4)		
Prøve	CTX- M-2	OXA	SHV	CTX- M-9	CTX- M-1	TEM	NDM	VIM	KPC	CMY	OXA- 48	IMP
1	404 bp	564 bp	713 bp	561 bp	688 bp	800 bp	157 bp	564 bp	460 bp	188 bp	281 bp	393 bp
1												
2												
3												
10												
11												
12												
16												
25												
28												

Ukorrekt tolkning som ble benyttet til Singleplex PCR Korrekt tolkning som ble benyttet til Singleplex PCR Korrekt tolkning som ikke ble benyttet til Singleplex PCR

Tabell 16 viser at agarose-gelene av Multiplex PCR-produktene ble tolket korrekt kun for isolat P10(E)Nid, P11(E)Nid og P12(E)Nid_Kleb. Sterke bånd demonstrerte antatt tilstedeværelse av genet blaCTX-M-9 i P10(E)Nid og P11(E)Nid, og genene blaCTX-M-1, blaTEM og blaVIM i P12(E)Nid_Kleb. Isolat P10(E)Nid, P11(E)Nid og P12(E)Nid_Kleb viste også svake bånd for blaKPC, og P10(E)Nid og P11(E)Nid også for blaIMP. P11(E)Nid viste også et svakt bånd for genet blaNDM. Samtlige av disse ble testet videre ved Singleplex PCR, sammen med de ukorrekte tolkningene, hvorav isolat P1(E)Nid_E.coli, P2(E)Nid og P3(E)Nid ble tolket som positive for CTX-M-9, OXA-48 og IMP, og isolat P16(E)Jons_Serr, P25(E)Jons og P28(E)Nid for OXA, VIM og KPC. Isolat P2(E)Nid og P3(E)Nid ble ukorrekt tolket positive også for CTX-M-2, og isolat P28(E)Nid for SHV. De korrekte gel-tolkningene demonstrerer sterke bånd og dermed antatt tilstedeværelse av VIM og KPC i isolat P1(E)Nid_E.coli, CTX-M-1, TEM og VIM i isolat P2(E)Nid, CTX-M-1 i isolat P3(E)Nid, og CTX-M-9 i isolat P28(E)Nid. Isolat P16(E)Jons_Serr og P25(E)Jons viste svake bånd for IMP. Det er disse som burde blitt testet i Singleplex PCR.

Bilder av agarosegelene etter utført gelelektroforese av Singleplex PCR-produktene presenteres i Figur 3. Gelelektroforesen ble som nevnt utført med prøver som ble valgt basert på den delvis ukorrekte tolkningen av Multiplex PCR.

Figur 3. Bilder av agarosegelene etter utført gelektroforese av PCR-produktene fra Singleplex PCR for deteksjon av ESBLgener. Rød sirkel rundt bånd indikerer positivt utslag for gjeldende prøve mot gjeldende ESBL-gen. A viser deteksjon av ESBL-genene blaCTX-M-2, blaOXA, blaSHV, blaCTX-M-9, blaCTX-M-1 og blaKPC, og B viser deteksjon av blaNDM, blaVIM, blaIMP, blaOXA-48 og blaTEM.

Gel-bildene av Singleplex PCR-produktene presentert i Figur 3 viser antatt tilstedeværelse av genene blaCTX-M-1, blaVIM og blaTEM i P12(E)Nid_Kleb, her med sterke bånd for samtlige gener. For P2(E)Nid viser bildene antatt tilstedeværelse av blaCTX-M-9, men med noe svakere bånd enn de for P12(E)Nid_Kleb.

5.2.1. Sanger-sekvensering av Singleplex PCR-produkt

Basert på resultatene fra Singleplex PCR ble henholdsvis prøve P2(E)Nid sendt til Sangersekvensering for å teste for tilstedeværelse av genet blaCTX-M-9, og prøve P12(E)Nid_Kleb for tilstedeværelse av blaCTX-M-1, blaTEM og blaVIM. PCR-produktene for gjeldene prøver ble renset og deretter kvalitet- og kvantitetsmålt før innsending, hvorav resultatene for de innsendte prøvene renset fra agarosegel fremstilles i Tabell 17.

Tabell 17. Kvalitet- og kvantitetsmålinger utført med NanoDrop av de rensede agarosegelene til Singleplex PCR-produktene innsendt til Sanger-sekvensering for identifisering av potensielle ESBL-gener i isolat P2(E)Nid og P12(E)Nid_Kleb

Isolat	Målgen	Renset fra	Konsentrasjon (ng/µl)	260/280	260/230
P2(E)Nid	blaCTX-M-9		5,9	2,0	0,02
D12(E)NLA VIab	blaCTX-M-1	Agarose-gel	9,1	1,93	0,03
PI2(E)Nid_Kleb blaVIM			3,7	2,49	0,03

Som vist i Tabell 17 hadde samtlige prøver renset fra agarosegel en DNA-konsentrasjon mellom 3,7-9,1 ng/ μ l, og et absorbansforhold mellom 1,93-2,49 for A260/280 nukleinsyre-ratio. Prøvenes absorbansforhold for A260/230 lå mellom 0,02-0,03.

Resultatene for nBLAST av Sanger-sekvenseringsresultatene av de rensede Singleplex PCRproduktene vises i Tabell 18.

Tabell 18. Resultatene fra identifiseringen i nBLAST av de Sanger-sekvenserte potensielle ESBL-genene i isolat P2(E)Nid og $P12(E)Nid_Kleb$ identifisert ved Singleplex PCR.

Isolat	Målgen	Renset fra	Query cover	Per. Ident.	Beskrivelse
P2(E)Nid	blaCTX-M-9		84 %	96.41%	Stutzerimonas stutzeri strain ATCC 14405 chromosome, complete genomehttps://blast.ncbi.nlm.nih.gov/Blast.cgi
P12(E)Nid_Kleb	blaCTX-M-1	Agarose- gel	Agarose- 67 %		Klebsiella pneumoniae strain arums.m401.2 CTX-M family extended-spectrum class A beta- lactamase (blaCTX-M) gene, partial cds
			66 %	99.23%	Escherichia coli strain EP100d beta lactamase CTX-M15 gene, partial cds
	blaVIM		40 %	98.81%	Klebsiella pneumoniae TA8711 DNA, complete genome
	blaTEM	PCR- produkt	99 %	100%	Shigella sonnei blaTEM-1 gene for extended- spectrum beta-lactamase, partial cds, strain: S. sonnei-w9

Resultatene fra nBLAST presentert i Tabell 18 viser at P12(E)Nid_Kleb fikk utslag for genet blaCTX-M-15 for *E. coli* og CTX-M-klassen for *K. pneumoniae* ved Sanger-sekvensering med primeren blaCTX-M-1, men med lave «query covers» på henholdsvis 66% og 67%. Prøven fikk derimot et sterkt utslag for blaTEM-1 for *Shigella sonnei* ved test av blaTEM. P12(E)Nid_Kleb ble også testet for blaVIM, men resultatet bekreftet ikke tilstedeværelse av dette genet. Prøven viste dessuten en lav «query cover» for referansegenet det fikk utslag for, da bare 40%. P2(E)Nid ble kun testet for tilstedeværelse av blaCTX-M-9, men dette ble ikke bekreftet.

5.3. Deteksjon av virulensgener med Virulens PCR

Isolatene identifisert som *E. coli* i nBLAST etter Sanger-sekvenseringen av isolatenes 16S rDNA, da isolat P1(E)Nid og P3(E)Nid, ble detektert for virulensgener for diarégivende *E. coli* gjennom utførelsen av Virulens PCR. Bilder av gelene etter utført agarosegelelektroforese presenteres i Figur 4.
	S	tx1	s	tx2	-		ae	ip	aH					S S	r T		ag	gR
Ladder 100 bp	P1(E) Nid	P3(E) Nid	P1(E) Nid	P3(E) Nid	Ladder 100 bp	P1(E) Nid	P3(E) Nid	P1(E) Nid	P3(E) Nid	Ladder 100 bp	Ladder 100 bp	· P1(E) ' Nid	P3(E) Nid	P1(E) 'Nid	P3(E) Nid	Ladder 100 bp	P1(E) Nid	P3(E) Nid
II	1 - -		•	•	1	•	-				II		·			I.I.	1	
	· · · · ·	•	•	•			•		114						•		2.	
Ξ			•	• • • •	=		•	•		Ξ	Ξ	•				Ξ		•
-					-		•	•		-	-		•	· · ·	. а.,	=		
A					-				-	-	B		•		· · ·	-		

Figur 4. Bilder av agarosegelene etter utført gelektroforese av PCR-produktene til Virulens PCR for deteksjon av virulensgener for diarégivende E. coli hos isolatene P1(E)Nid og P3(E)Nid, begge identifisert som E. coli. A viser deteksjonen av virulensgenene stx1, stx2, eae og ipaH,og B viser deteksjon av virulensgenene LT, ST og aggR.

Figur 4 viser at ingen virulensgener ble detektert hos de testede isolatene P1(E)Nid og P3(E)Nid gjennom Virulens PCR.

5.4. Sensitivitetstesting mot antibiotika

MIC-testing ble utført for isolat P1(E)Nid_E.coli, P12(E)Nid_Kleb og P16(E)Jons_Serr. Disse ble valgt basert på resultatene fra identifiseringen, deteksjonen av ESBL- og virulensgener. Bilder av inhibitorsonene på skålene ses i vedlegg 5. Tabell 19 viser gjennomsnittet av MIC-verdiene til isolat P1(E)Nid_E.coli, P12(E)Nid_Kleb og P16(E)Jons_Serr for de ulike antibiotikaene som ble testet.

I tabellen sammenlignes gjennomsnittsverdiene av inhibitorsonene til P1(E)Nid_E.coli og P12(E)Nid_Kleb med ECOFF-brytningspunktverdier for resistens blant villtypepopulasjon av tilsvarende bakteriearter. Ved manglende ECOFF-verdier sammenlignes de med brytningspunktverdiene for klinisk resistens fra EUCAST. Isolatene anses som resistent mot et antibiotikum dersom MIC-verdien er høyere enn ECOFF-verdien eller den kliniske brytningspunktverdien. Dersom isolatene demonstrerer resistens mot tre eller flere klasser antibiotika vil de klassifiseres som multiresistente. Tabell 19. Gjennomsnittsverdiene til inhibitorsonene (MIC-verdiene) til de helgenomsekvenserte isolatene for ulike antibiotika. Disse sammenlignes med ECOFF sine brytningspunktverdier for resistens blant villtypepopulasjon av tilsvarende bakteriearter. P16(E)Jons_Serr, samt enkelte antibiotika for P1(E)Nid_E.coli og P12(E)Nid_Kleb uten ECOFF-verdier, sammenlignes med EUCAST sine brytningspunktverdier for klinisk resistens blant Enterobacteriaceae. Rødt tall indikerer MIC-verdi over ECOFF-verdien eller den kliniske brytningspunktverdien for gitt antibiotikum, og dermed resistens. Blått tall indikerer ingen observert inhibitorsone, og dermed fullstendig resistens. Resistens mot tre eller flere klasser antibiotika for et isolat anses som multiresistens.

		P1(E)N	lid_E.coli	P12(E)Nid_Kleb		P16(E)Jons_Serr	
		МІС	ECOFF	МС	ECOFF	МС	Kliniske verdier
Klasse	Antibiotikum	MIC	(E. coli)	MIC	(K. pneumoniae)	MIC	(Enterobacteriaceae)
Donicillin	Penicillin-G	256	-	256	-	256	-
rememm	Ampicillin	256	8	256	-	256	8
Karbapenem	Meropenem	0,012	0,06	0,032	0,125	0,04	8
Nitrofuran	Nitrofutantoin	10	64	144	-	48	64
Vafalaananin	Cefepime	2	4	7	0,125	0,127	4
Kelalosportin	Cefotaxime	24	0,25	20	0,25	7	2
Fluoroquinolon	Ciprofloxacin	0,38	0,06	32	0,125	0,014	0,125
Tetracyclin	Tetracyclin	64	8	20	8	0,38	-
Markolid	Erythromycin	256	-	256	-	256	-
	MDR?	Ja		Ja		Ja	

Tabell 19 viser at samtlige testede isolater, da P1(E)Nid_E.coli, P12(E)Nid_Kleb og P16(E)Jons_Serr, ble ansett som fenotypisk resistente mot penicillin-G og ampicillin i antibiotika-klassen penicilliner, cefotaxime i klassen kefalospriner, og mot erythromycin i klassen markolider. Innen kefalosporiner demonstrerte P12(E)Nid_Kleb også resistens mot cefepime. P1(E)Nid_E.coli og P12(E)Nid_Kleb ble videre ansett som resistente mot fluoroquinolonet ciprofloxacin, og mot tetracyclin i klassen med samme navn. P12(E)Nid_Kleb demonstrerte også resistens mot nitrofurantoin i klassen nitrofuraner. Samtlige helgenomsekvenserte isolater ble dermed bevist resistente mot tre eller flere klasser, og derfor klassifisert som multiresistente. Ingen isolater ble ansett som fenotypisk resistent mot antibiotikumet meropenem i klassen karbapenemer.

5.5. Helgenomsekvensering

Isolat P1(E)Nid_E.coli, P12(E)Nid_Kleb og P16(E)Jons_Serr ble sendt til NovaGen for helgenomsekvensering ved bruk av Illumina-teknologi. Konsensus-sekvensene fra helgenomsekvenseringen generert i Galaxy EU ble benyttet til ytterligere identifisering av isolatene, samt til deteksjon av ESBL- og betalaktamasegener, øvrige resistensmekanismer, virulensgener, toksiner og plasmider.

5.5.1. Identifisering

Nettsiden PubMLST ble benyttet for identifisering av de helgenomsekvenserte isolatene, hvorpå plattformen MLST 2.0.9 ble videre benyttet til å finne sekvenstypene (ST). P1(E)Nid_E.coli ble identifisert som *E. coli* ST219, P12(E)Nid_Kleb som *K. pneumoniae* ST307, og P16(E)Jons_Serr kun som *Serratia fonticola*. Ved bruk av SeroTypeFinder og ClermonTyping Report ble P1(E)Nid_E.coli videre klassifisert som henholdsvis serotype O138:H48 tilhørende fylogruppe E.

Pathogenwatch ble benyttet for ytterligere analyse av identiteten til P12(E)Nid_Kleb. Resultatene presenteres i vedlegg 6, og viser at P12(E)Nid_Kleb innehar kapselgenet KL102 og en variant av antigenene O1 eller O2v2, noe som gir predikert serotype O2afg. Konfidensnivået ble vurdert som veldig høyt for begge locusene, noe som indikerer \geq 99% «coverage» og \geq 95% identitet, da med ingen ekstra eller manglende gener (GitHub, 2021). Rapporten bekrefter også identifikasjonen til P12(E)Nid_Kleb som *K. pneumoniae* ST307.

Tabell 20 viser oversikt over isolatenes identitet detektert med konsensus-sekvensene fra helgenomsekvenseringen.

Tabell 20. Identiteten til de helgenomsekvenserte isolatene. Bakterieartene ble detektert gjennom PubMLST, og sekvenstypene gjennom MLST 2.0.9. Serotypen og fylogruppen til P1(E)Nid_E.coli ble detektert gjennom Center for Genomic Epidemiology, og serotypen til P12(E)Nid_Kleb gjennom Pathogenwatch.

Isolat	Bakterieart	Sekvenstype (ST)	Serotype	Fylogruppe
P1(E)Nid_E.coli	Escherichia coli	219	O138:H48	E
P12(E)Nid_Kleb	Klebsiella pneumoniae	307	O2afg	-
P16(E)Jons_Serr	Serratia fonticola	-	-	-

5.5.2. Deteksjon av plasmider

Ved søk i PlasmidFinder-2.0 Server ble plasmidgenene IncB/O/K/Z (IncB, IncO, IncK og IncZ) identifisert hos P1(E)Nid_E.coli, og plasmidgenene IncFIB(K) og IncFII(K) hos P12(E)Nid_Kleb. Funnene for P12(E)Nid_Kleb ble også bekreftet i rapporten fra Pathogenwatch (vedlegg 6). Ingen plasmider ble derimot identifisert for P16(E)Jons_Serr. Se vedlegg 7 for en helhetlig oversikt.

5.5.3. Deteksjon av resistensgener

Resistensgener mot beta-laktamer og øvrige antibiotika-klasser

Resistensgenene detektert med konsensus-sekvensene til de helgenomsekvenserte isolatene fremlegges i sin helhet i vedlegg 8, og inkluderer genene funnet i databasene CARD og NDARO. Funnene av betalaktamase- og ESBL-genene presenteres i Tabell 21.

Tabell 21. Betalaktamase- og ESBL-gener identifisert for de helgenomsekvenserte isolatene gjennom CARD (C) og NDARO (N).

		P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
Klasse D	$h_{0}OXA$ 1		N, C	
betalaktamase	UIAOAA-I			
Vlassa C	blaAMPC	С		
Klasse C	blaAMPH	С		
Detalaktamase	blaEC	N		
Klasse A	blaFONA-8			N, C
betalaktamase	blaTEM-1		N, C	
ECDL	blaCTX-M-15	N, C	N, C	
ESDLA	blaSHV-106		N, C	

Tabell 21 viser at samtlige helgenomsekvenserte isolater innehar betalaktamase-gener, hvorav P1(E)Nid_E.coli og P12(E)Nid_Kleb også innehar ESBLA-gener. Dette gjelder ESBLA-genet blaCTX-M-15 for både P1(E)Nid_E.coli og P12(E)Nid_Kleb, og blaSHV-106 for P12(E)Nid_Kleb. Hos P12(E)Nid_Kleb ble også ESBLA-genet TEM-1 identifisert, samt genet for den oxacillinhydrolyserende klasse D betalaktamasen OXA-1. Genene blaAMPC, blaAMPH og blaEC, samtlige klasse C betalaktamaser, ble detektert i P1(E)Nid_E.coli.

For isolat P16(E)Jons_Serr viser Tabell 21 deteksjon av genet blaFONA-8, da en klasse A betalaktamase. Sekvensdataen til isolatet hadde derimot en «coverage» på 100% og en identitet på 95,83%, altså avviker hele 4,17% av nukleotidene i isolatets sekvensdata i forhold til referansesekvensene for blaFONA-8. Proteindatabasen til NCBI ble derfor benyttet til å sammenligne det detekterte FONA-proteinet med blaFONA-8 (WP_024530279), og det ble her funnet en mutasjon i posisjon 96 hvor asparagin er mutert til asparaginsyre (96 N>D9).

I arbeidet med sin masteroppgave detekterte også medstudent Mette Lea en mutert blaFONA-8 i en *S. fonticola*, da isolat A15. Sammenlignet med blaFONA-8 (WP_024530279) ble det identifisert en mutasjon i posisjon 24 hvor alanin er mutert til valin (24 N>D) Se vedlegg 9 for en sammenligning av sekvensene til blaFONA-X, blaFONA-8 (WP_024530279) og blaFONA-8-mutasjonen detektert av Mette Lea.

Vedlegg 8 viser også at NDARO og CARD detekterte gener for resistensmekanismer mot øvrige antibiotika-klasser, og Tabell 22 presenterer en oversikt over funnene.

		P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
	aac(3)-IIe		C, N	
	aac(6')-Ib		C, N	
	aadA5	C, N		
Aminoglykosider	acrD	С	С	
	aph(3")-lb	C, N	C, N	
	aph(6)-Id	C, N	C, N	
	kdpE	С		
Trime de continu	dfrA14		C, N	
Trimethoprini	dfrA17	C, N		
Elucroquinclones	qnrB1		C, N	
Fluoroquinoiones	qnrS1	C, N		
Fosfomyciner	fosA6		C, N	
Makrolidar	mphA	C, N		
Makronder	mphB	C, N		
C1f	sul1	C, N		
Sunonamder	sul2	C, N	C, N	
Tetracycliner	tet(A)	C, N	C, N	

Tabell 22. Gener for resistensmekanismer mot ϕ vrige antibiotika-klasser identifisert for de helgenomsekvenserte isolatene gjennom CARD (C) og NDARO (N).

Som vist i Tabell 22 ble ingen resistensgener mot øvrige antibiotika-klasser detektert hos P16(E)Jons_Serr, men P1(E)Nid_E.coli og P12(E)Nid_Kleb innehar begge gener som koder for resistensmekanismer mot aminoglykosider (acrD, aph), fluorokinoloner (qnr), trimethoprim (dfrA), sulfonamider (sul) og tetrasykliner [tet(A)]. P1(E)Nid_E.coli har i tillegg resistensgener mot makrolider (mphA, mphB), og P12(E)Nid_Kleb mot fosfomyciner (fosA6).

MDR-gener

CARD, NDARO, PROKKA og MyVirDB ble benyttet til deteksjon av gener som koder for MDR, da spesifikt MDR efflux-pumper og mekanismer for disse, noe som presenteres i Tabell 23. Resultatene fra PROKKA og MyVirDB gis i sin helhet i henholdsvis vedlegg 10 og 12.

Tabell 23. Gener som koder for MDR efflux-pumper og mekanismer for disse identifisert i de helgensomsekvenserte isolatene gjennom NDARO (N), CARD (C), PROKKA (P) og MyVirDB (MV)

	P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
acrAB (-tolC)	С, Р	С, Р	С, Р
acrEF (-tolC)	С, Р		
emrAB (-tolC)	С, Р		
emrD	Р		
emrE	С		
emrKY(-tolC)	С, Р		
kpnEF	С		
kpnGH (-tolC)	С		
mdfA	С, Р		
mdtABC (-tolC)	С, Р	С, Р	
mdtEF (-tolC)	С, Р		
mdtG	С, Р		
mdtH	С		
mdtKL	Р		
mdtM	С, Р		
mdtNOP	С		
msbA	С	С	
oqxAB (-tolC)		C, N	
oqxB7			р
sdsRQP	Р		
tolC	С	MV	

Som vist i Tabell 23 ble genene som koder for AcrAB-komponentene i MDR efflux-systemet AcrAB-TolC detektert hos samtlige helgenomsekvenserte isolater, men genet for TolC ble derimot ikke identifisert i P16(E)Jons_Serr. Flest MDR efflux-systemer ble generelt detektert hos P1(E)Nid_E.coli, som er eneste isolat som innehar genene til AcrEF-TolC (homolog til AcrAB-TolC), EmrAB-, EmrKY-, KpnGH- og MdtEF-TolC, MdfA og sdsRQP. P1(E)Nid_E.coli innehar også, til felles med P12(E)Nid_Kleb, genene til efflux-transportsystemene MdtABC-TolC og MsbA. P12(E)Nid_Kleb innehar genene som koder for OqxAB-TolC, hvorav P16(E)Jons_Serr innehar genet til komponenten OqxB7. Sammenligning med antibiotikaresistens detektert i øvrige masteroppgaver

En oversikt over resultatene fra deteksjonen av gener som koder for antibiotikaresistens i de helgenomsekvenserte isolatene, inkludert MIC-resultatene, gis i Tabell 24 og Tabell 25. Her sammenlignes de med tilsvarende bakterieslekter/arter omtalt i masteroppgavene til Martine Tjåland og Mette Lea. Tabell 24 sammenligner de identifiserte *E. coli-* og *K. pneumonia-*isolatene, og Tabell 25 sammenligner *Serratia fonticola-*isolatet P16(E)Jons_Serr mot en *Serratia* spp. detektert av Mette Lea.

Tabell 24. Sammenligning av resistensprofilene til P1(E)Nid_E.coli og P12(E)Nid_Kleb med tilsvarende bakterieslekter omtalt i masteroppgavene til Martine Tjåland og Mette Lea. Rødt felt markerer ingen resistens. Grønt felt markerer bekreftet resistens gjennom MIC-testing, og lyst grønt felt markerer bekreftet resistens gjennom helgenomsekvensering.

		Е.	coli		K. pneumoniae
	P2.SP.MB_ ESBL	P5.SV.MB_ ESBL	FOSS9- E.coli-E	P1(E)Nid_E.coli	P12(E)Nid_Kleb
Aminoglykosider					
Karbapenemer					
Cefalosporiner (3. gen)					
Fluorokinoloner					
Fosfomycin					
Penicilliner					
Fenikoler					
Sulfonamider					
Nitrofuraner					
Tetracycliner					
Tigecyclin					
Trimethoprim					
Makrolider					
MDR?	Ja	Ja	Ja	Ja	Ja

Tabell 25. Sammenligning av resistensprofilen til P16(E)Jons_Serr med en Serratia spp. identifisert av Mette Lea. Rødt felt markerer ingen resistens. Grønt felt markerer bekreftet resistens gjennom MIC-testing, og lyst grønt felt markerer bekreftet resistens gjennom helgenomsekvensering.

	<i>Serratia</i> spp.	Serratia fonticola
	FOSS2-Serr-E	P16(E)Jons_Serr
Aminoglykosider		
Karbapenemer		
Cefalosporiner (3. gen)		
Fluorokinoloner		
Fosfomycin		
Penicilliner		
Fenikoler		
Sulfonamider		
Nitrofuraner		
Tetracycliner		
Tigecyclin		
Trimethoprim		
Makrolider		
MDR?	Ja	Ja

Sammenligningene av de helgenomsekvenserte isolatene med tilsvarende bakteriearter identifisert av Martine Tjåland og Mette Lea i Tabell 24 viser at samtlige *E. coli*- og *K. pneumonia*-isolater ble klassifisert som MDR. Alle *E. coli*-isolater ble bekreftet resistente mot kefalosporiner, fluorokinoloner og penicillin med MIC-testing, inkludert P2.SP.MB_ESBL og P5.SV.MB_ESBL isolert fra henholdsvis Sandvedparken og Stokkelandsvannet av Martine Tjåland. P1(E)Nid_E.coli og FOSS9-E.coli-E, isolert fra Fossbekken av Mette Lea, viste i tillegg resistens mot makrolider med MICtesting, hvorav P1(E)Nid_E.coli også demonstrerte resistens mot tetracycliner. Ved helgenomsekvenseringen ble resistensmekanismer mot aminoglykosider, sulfonamider og trimethoprim detektert i P1(E)Nid_E.coli. Tabell 24 viser også at *K. pneumoniae*-isolatet P12(E)Nid_Kleb og *E. coli*-isolatet P1(E)Nid_E.coli har lik resistens-profil, med unntak av fenikol- og nitrofuran-resistens detektert hos P12(E)Nid_Kleb.

Som presentert i Tabell 25, hvor P16(E)Jons_Serr sammenlignes med FOSS2-Serr-E identifisert som *Serratia* spp. isolert fra Fossbekken av Mette Lea, har begge isolatene identisk resistens-profil. De ble bekreftet resistente mot kefalosporiner, penicilliner og makrolider med MIC-testing, og ble dermed ansett som MDR.

Resistens mot metaller, desinfeksjonsmidler, syre og UV

PROKKA og MyVirDB ble benyttet til deteksjon av resistensmekanismer mot metaller, desinfeksjonsmidler, syre og UV. Tabell 26 viser en oversikt over resultatene.

		P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
Arsenikk	arsD		Р	
V - 1 1/ / 1	czcA		P, MV	Р
Kobolt/sink/kadmium	czcC			Р
	copA	P, MV	P, MV	
V-11-	copB	Р	Р	
Kobber	copCD		Р	
	pocA	MV	MV	
I Z 11 / 4	cusA	MV	MV	Р
Kobber/sølv	cusBCF	Р		
	silAE	P, MV	P, MV	
Sølv	silP		Р	
	silS	MV	MV	
Nikkel	nikA	MV		
N1'1-11/111/	cnrA	Р	Р	
N1KKel/KODOIt	rcnB	Р		
C'1-	zraP		Р	
SINK	zupT	MV		
Sink/kadmium/bly	zntA	P, MV		
Telluritt	tehAB	MV		
Tellurium	terC	MV		
	sugE	MV		

Tabell 26. Gener for resistensmekanismer mot metaller, desinfeksjonsmidler, syre og UV detektert i de helgenomsekvenserte isolatene gjennom PROKKA (P) og MyVirDB (MV).

Kvartære			Р	
ammoniums-	qacC			
forbindelser	_			
Syre	hdeAD	Р		
UV	uspD	Р		

Som vist i Tabell 26 innehar samtlige helgenomsekvenserte isolater gener som koder for resistensmekanismer mot metaller. Både P1(E)Nid_E.coli og P12(E)Nid_Kleb innehar gener assosiert med resistens mot metallene kobber, sølv, nikkel, kobolt, sink og kadmium. P1(E)Nid_E.coli demonstrerer også resistens mot bly, telluritt og tellurium, og P12(E)Nid_Kleb mot arsenikk. P16(E)Jons_Serr innehar gener assosiert med resistens mot kobolt, sink, kadmium, kobber og sølv. Tabellen viser også deteksjon av resistensmekanismer mot kvartære ammoniums-forbindelser i P1(E)Nid_E.coli og P12(E)Nid_Kleb, samt mot syre og UV i P1(E)Nid_E.coli.

5.5.4. Deteksjon av virulens- og toksingener

Virulensgener

Isolatenes virulensgener ble hovedsakelig detektert gjennom MyVirDB og VFDB, sistnevnte helhetlig fremlagt i vedlegg 11, men PROKKA ble også benyttet for deteksjon av biofilmgener. Et utvalg av genene og deres beskrivelser gitt i MyVirDB og PROKKA for P1(E)Nid_E.coli og P12(E)Nid_Kleb presenteres i Tabell 27 og Tabell 28.

Tabell 27. V	Virulensgener identi	fisert i P1(E)Nid_	E.coli.	Gener markert m	ned «*»	er identifisert	gjennom	PROKKA,	og
resterende	gjennom MyVirDB.	Gener markert i	rødt ass	sosieres med IPE	EC og Al	PEC.			

Gen/Markør navn	Kommentar/produkt
APECO1_2080	APEC O1 conserved protein from CP000468
autA	AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian
autR	Pathogenic Escherichia coli Infection
bdcA*	c-di-GMP binding protein involved in biofilm dispersal
bhsA*	Outer membrane protein involved in copper permeability, stress resistance and biofilm formation
capU	Hexosyltransferase homolog. Enteroaggregative Escherichia coli (EAEC) virulence genes of importance regulated by aggR include eilA (EAEC HilA homologue), capU (cap locus that encodes a protein 50% identical to an rfbU-related lipopolysaccharide biosynthetic gene of E. coli O157: H7)
csgABEFG	Curli fimbriae genes
chuA	Outer membrane hemin receptor
class-1 integron Integrase	Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase
ehaC	AIDA-I family autotransporter adhesin
ecpBD	Common pilus genes
eilA	EilA, a HilA-like regulator in enteroaggregative Escherichia coli
elfG	Part of the elfADCG-ycbUVF fimbrial operon, which promotes adhesion of bacteria to different abiotic surfaces
entAEH	Enterobactin biosynthesis and transportation
espY3	EspY3 of Type III Secretion System from Enterohemorrhagic Escherichia coli Is Localized in Actin Pedestals

etrA	Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian					
	permease component of transport system for ferric iron known to be involved in					
fbpB	urovirulence in the mouse model of ascending UTI					
fdeC	FdeC (factor adherence E. coli) able to mediate E. coli adhesion to mammalian cells and extracellular matrix.					
	Outer membrane ferri-siderophore receptor, an E. coli 83972 isolate during deliberate					
fecA	bladder colonization lost genes for the aerobactin siderophore system, which is					
	immunogenic, while expression of the ferric citrate receptor FecA was upregulated					
feoB	Fe(2+) transporter					
fepABC	Gene cluster involved in uptake, transport and regulation of ferric enterobactin					
ibeBC	Invasion protein					
ipaH	Invasion plasmid antigen					
ivy	Inhibitor of vertebrate lysozyme					
	matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved,					
matB	virulent clonal group					
PgaD*	Inner membrane protein involved in biofilm formation					
	Autotransporter Genes pic and tsh Are Associated with Escherichia coli Strains That					
pic	Cause Acute Pyelonephritis and Are Expressed during Urinary Tract Infection					
	Probable fimbrial chaperone SfmC; Part of the sfmACDHF fimbrial operon. Could					
sfmC	contribute to adhesion to various surfaces in specific environmental niches. Increases					
	adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes					
shiA	shiA, suppress the host inflammatory response					
shuX	Part of the Shigella Shu heme uptake system					
YceO*	Small protein involved in biofilm formation and acid stress response					
17	ycgV is an autotransporter adhesin. It is homologous to Ag43. It greatly increases adhesion					
ycgv	to solid surfaces.					
	(Autotransporter adhesin) ychO plays a role in the pathogenicity of APEC strain					
ychO	SEPT362. The ychO gene is highly expressed in the lungs and spleen during in vivo					
	infection assays by strain SEPT362.					
T	YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and					
yeeJ	promotes biofilm formation					
YmgC*	Protein involved in biofilm formation					
ygeGHJK						
yqeHIJ	Part of Escherichia coli type III secretion system 2 (ETT2)					
eivACEFGHIJ						

Tabell 28. Virulensgener identifisert i P12(E)Nid_Kleb. Gener markert med «*» ble identifisert gjennom PROKKA, og resterende gjennom MyVirDB. Gener markert i rødt assosieres med IPEC og ExPEC.

Gen/markørnavn	Kommentar/produkt
bdcA*	Cyclic-di-GMP-binding biofilm dispersal mediator protein
class-1 integron Integrase	Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance, They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes, Acquisition of gene cassettes is catalysed by the class 1 integron integrase
eitABC	Components of putative iron transport system
pduC	Propanediol dehydratase, In AIEC , the presence of pduC, which is significantly up- regulated in the presence of bile salts, has been correlated with increased cellular invasion and bacterial persistence

Tabell 27 viser at P1(E)Nid_E.coli har et stort spenn av virulensfaktorer, inkludert gener assosiert med biofilm (bdcA, bhsA, pgaD, yceO, yeeJ, ymgC), adhesjon (csg, ecpBD, elfG, fdeC, matB, sfmC, ycgV), jernopptak (entAEH, fecA, feoB, fepABC, shuX) og *E. coli* type III sekresjonssystemer (yge, yqe, eiv). Isolatet innehar også gener som bidrar til hemming av det antimikrobielle lysozymet i virveldyr (ivy), undertrykkelse av vertens inflammatoriske respons (shiA), og til invasjon av vertsceller (ibeBC). Klasse 1 integron-integrase ble også detektert for P1(E)Nid_E.coli, noe Tabell 28 viser at isolatet har til felles med P12(E)Nid_Kleb, da inkludert det biofilm-assosierte genet bdcA. P12(E)Nid_Kleb innehar også genet pduC som koder for propanediol dehydratase assosiert med AIEC (patotype innen IPEC), samt de antatte jerntransport-genene eitABC. Virulensgener assosiert med IPEC (capU, ehaC, eilA, espY3, ipaH) og ExPEC (APECO1_2080, autAR, chuA, etrA, fbpB, pic) ble også detektert i P1(E)Nid_E.coli, og vil omtales videre i neste underkapittel.

Sammenligning med sentrale virulensfaktorer detektert i øvrige masteroppgaver

Genene som koder for virulensfaktorer for ExPEC og IPEC i P1(E)Nid_E.coli (Tabell 27) sammenlignes med *E. coli*-isolatene omtalt i masteroppgavene til Martine Tjåland og Mette Lea i Tabell 29.

Tabell 29. Sammenligning av P1(E)Nid_E.coli med E. coli-isolatene omtalt i masteroppgavene til medstudentene Martine Tjåland og Mette Lea. Grønt felt under «Gener*» indikerer deteksjon av gitt gen i gitt isolat, og rødt felt indikerer ingen deteksjon. (Spurbeck et al., 2012)

Icolot	Gener*				UPEC/	APEC*	ExPEC viewlongfoltonon	IDEC vinulon faltonon
1501at	chuA	fyuA	yfcV	vat	UPEC APEC		EXF EC VII ulenslaktorer	IF EC VII ulenstaktorer
P2.SP.MB_ESBL					NEI	NEI	APECO1_2080	cfaB, ehaG, lpfA
P5.SV.MB_ESBL					NEI	NEI	APECO1_2080	cfaB, ehaG, lpfA
P1(E)Nid_E.coli					NEI	NEI	APECO1_2080, autAR, etrA,	capU, ehaC, eilA, espY3,
							fbpB, pic	ipaH
FOSS9-E.coli-E					JA	JA	aec35-37, afaE1, autAR, upaB,	draP, nfaB
							upaC, c4485, c4759, draP, irp1,	
							irp2, aerobactin, iutA, kpsMII,	
							malX, pap-pili, sat, tagBC, usp	

• Ref: (Spurbeck et al., 2012)

Blant fire *E. coli*-isolater vist i Tabell 29 ble kun isolatet FOSS9-E.coli-E isolert fra Fossbekken av medstudent Mette Lea klassifisert som UPEC og APEC. P1(E)Nid_E.coli hadde UPEC/APEC-genet chuA, i likhet med FOSS9-E.coli-E, men blant gene chuA, fyuA, yfcV og vat må tre eller flere gener detekteres for at et isolat kan klassifiseres som APEC/UPEC. Genene for transkripsjonsregulatorene AutA og AutR assosiert med ExPEC er også felles mellom P1(E)Nid_E.coli og FOSS9-E.coli-E. Isolat P2.SP.MB_ESBL og P5.SV.MB_ESBL isolert fra henholdsvis Sandvedparken og Stokkelandsvannet av Martine Tjåland viste en identisk profil for de gitte virulensfaktorene, hvorav genet APECO1_2080 var eneste detekterte ExPEC-assosierte gen. Dette genet ble også identifisert hos P1(E)Nid_E.coli. Blant samtlige isolater hadde FOSS9-E.coli-E flest virulensfaktorer assosiert med ExPEC.

Toksingener

PROKKA og MyVirDB ble benyttet til deteksjon av toksiner. Tabell 30 presenterer detekterte toksingener, og Tabell 31 gener som koder for toksin-antitoksin-systemer.

	P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
apxIB		Р	Р
higB2		Р	Р
hlyE	MV		
hokABD	Р		
hokE		Р	
ldrBD	Р		
ltxB	Р		Р
mqsR	Р		
ortT		Р	
parE1	Р		Р
ratA	MV, P	Р	Р
relE	Р	Р	Р
symE	Р		Р
tabA	Р	Р	
tisB	Р		
vgrG1	MV, P		Р
ykfI		Р	

Tabell 30. Toksingener detektert i de helgenomsekvenserte isolatene gjennom PROKKA (P) og MyVirDB (MV).

Tabell 31. Gener for toksin-antitoksin-systemer detektert i de helgenomsekvenserte isolatene gjennom PROKKA.

Toksin	Antitoksin	P1(E)Nid_E.coli	P12(E)Nid_Kleb	P16(E)Jons_Serr
cbtA	cbeA			
ccdB	ccdA			
chpB	chpS			
cptA	cptB			
ghoT	ghoS			
hicA	hicB			
hipA	hipB			
higB	higA			
mazF	mazE			
parE1	parD1			
pspC	pspB			
relE	relB			
yafQ	dinJ			
yhaV	prlF			

Som vist i Tabell 30 innehar samtlige helgenomsekvenserte isolater, da P1(E)Nid_E.coli, P12(E)Nid_Kleb og P16(E)Nid_Serr, flere toksingener, hvorav ratA og relE ble detektert hos alle. P1(E)Nid_E.coli har også toksingenet tabA til felles med P12(E)Nid_Kleb, og genene ltxB, parE1, symE og vgrG1 til felles med P16(E)Nid_Serr. Genene apxIB og higB2 ble detektert hos både P12(E)Nid_Kleb og P16(E)Nid_Serr. Det ble også detektert gener for flere toksin-antitoksin-systemer, som vist i Tabell 31, da blant annet for HipA-HipB i P1(E)Nid_E.coli og P12(E)Nid_Kleb, og RelE-RelB i P12(E)Nid_Kleb og P16(E)Nid_Serr.

6. Diskusjon

6.1. Identifisering av bakterieisolater

Resultatene fra kultiveringen av vannprøvene på ESBL- og CRE-skåler viste at det generelt ble observert mest vekst av bakteriekolonier på skålene med vannprøven fra Nidelva, da også i forhold til fenotypisk mangfold. Fra samtlige skåler ble 51,7% av de utvalgte bakteriekoloniene isolert fra skålene til Nidelva, 27,6% fra skålene til Jonsvatnet og 20,7% fra Theisendammen. Fordelingen av mikroorganismer i ulike vannkilder påvirkes av en rekke ulike faktorer, både fysiske, kjemiske og biologiske. Innunder fysiske faktorer kommer blant annet temperatur, turbiditet og bevegelse av vannet, og under kjemiske faktorer blant annet oksygennivå og næringstilgjengelighet. Biologiske faktorer inkluderer blant annet konkurranse og symbiose av mikroorganismer (Luo et al., 2020).

Theisendammen er en dam i Bymarka i Trondheim, og brukes som badeplass på sommertid og som skøytebane på vinterstid (*Theisendammen*, 2021). Vannprøven fra Theisendammen ble hentet fra en bekk som renner ut fra Theisendammen på vinterstid, noe som kan være årsaken til den lave bakterieveksten på tilhørende skåler. Rennende vann kan blant ha en fortynnende effekt som reduserer konsentrasjonen av mikroorganismer i forhold til stillestående vann, samt lavere næringsinnhold (Luo et al., 2020). Resultatene kan dermed virke motsigende i og med at Nidelva er en stor, rennende elv, men det er antageligvis store forskjeller mellom en bekk som renner i utkanten av byen og en stor elv som renner gjennom byen. Nidelva er nederste del av det 163 km lange Nea-vassdraget som renner fra Selbusjøen og ut i Trondheimsfjorden i Trondheim bysentrum. Flere vannkraftstasjoner ligger langs elva, og den er et nasjonalt laksevassdrag (Halleraker & Haugen, 2022). Grunnet dens lengde og geografi kan det antas at Nidelva utsettes for betydelig mer menneskelig aktivitet, og er mer utsatt for kontaminering fra ville dyr og husdyrhold. Siden Theisendammen var islagt, da både i forhold til temperatur og rekreasjon i vannet, er det også sannsynlig at det ville vært observert økt forekomst av bakteriekolonier på ESBL- og CRE-skålene dersom prøvene hadde vært tatt på sommerhalvåret.

Bakteriekoloniene fra ESBL- og CRE-skålene ble valgt til isolering og DNA-ekstrahering basert på fargescreening, hvorav resultatene fra fargescreeningen for ESBL-skålen med vannprøve fra Nidelva tydet på at 33% av de ni bakteriekoloniene skulle være *E. coli*, 56% en del av *KESC*-gruppen, og 11% enten *Salmonella*, *Acinetobacter* eller andre bakterieslekter. Resultatene for ESBL-skålen til Jonsvatnet tydet på at to av de tre bakteriekoloniene var en del av *KESC*-gruppen, og en enten *Salmonella*, *Acinetobacter* eller andre bakterieslekter. Fra ESBL-skålen til Theisendammen ble kun to beige kolonier isolert, hvorav begge derav ble antatt å være enten *Salmonella*, *Acinetobacter* eller andre bakterieslekter. Sanger-sekvenseringsresultatene av isolatenes 16S rRNA-gener som ble plottet inn i nBLAST viste at samtlige fargescreenings-antagelser for bakteriekoloniene kultivert på ESBL-skålene stemte, med unntak av P29(E)Nid som ble fargescreenet som *E. coli*, men som ble identifisert som *Pseudomonas protegens* i nBLAST.

De isolerte bakteriekoloniene fra CRE-skålene til Jonsvatnet og Theisendammen, henholdsvis fem og fire bakteriekolonier, ble indikert å tilhøre KESC-familien basert på fargescreeningen, men resultatene fra nBLAST identifiserte samtlige som *Caulobacter segnis*. For bakteriekoloniene isolert fra CRE-skålen til Nidelva tydet resultatene fra fargescreeningen på at fem av de seks bakteriekoloniene skulle tilhøre KESC-gruppen, og en slekten *Acinetobacter*. Samtlige av disse antagelsene ble motbevist i nBLAST. P5(C)Nid ble antatt å være en del av slekten *Acinetobacter*, men ble identifisert som *Acidovorax*. Resterende, antatt å tilhøre KESC-gruppen, ble identifisert som henholdsvis *Pseudoxanthomonas* sp., *Caulobacter* sp. og *Stenotrophomonas maltophilia*.

Årsaken til de avvikende resultatene mellom den presumtive identifiseringen gjennom fenotypisk fargecreening og den genotypiske identifiseringen gjennom Sanger-sekvensering kan komme av at protokollene for fargescreeningen er utviklet for kliniske isolater. Produsenten for protokollene har ikke definert fargescreening av villtypepopulasjoner, og avvik kan derav forekomme. Uavhengig av dette oppfordrer protokollen til påfølgende analyser, noe avvikene demonstrert i denne oppgaven også presiserer.

Ved valg av isolater til videre analysering ble fokuset lagt på bakterier inkludert på listen over antibiotikaresistente «prioriterte patogener» utformet av Verdens helseorganisasjon (WHO) basert på hvor kritisk behovet for nye antibiotika er for disse. Blant isolatene identifisert gjennom Sangersekvensering gjaldt dette kun *E. coli, K. pneumoniae* og *S. fonticola* (WHO, 2017), som samtlige ble isolert fra ESBL-skåler. Ingen av bakterieisolatene som vokste på CRE-skålene ble dermed valgt ut.

6.2. Deteksjon av resistensgener (Multiplex, Singleplex, Sanger-sekvensering) Innledende deteksjon av ESBL-gener blant isolatene identifisert som *E. coli, K. pnemumoniae* og *S. fonticola* ble utført ved bruk av Multiplex PCR, etterfulgt av Singleplex PCR for de positive utslagene. Dette ble utført for å sikre at isolatene som senere skulle helgenomsekvenseres ble valgt basert på relevans for oppgaven, da i samsvar med resultatene fra identifiseringen og virulens PCR. Ved tolkningen av agarosegelene med PCR-produktene fra multiplex PCR ble derimot to av fire geler forvekslet, og kun tre isolater ble derfor testet mot korrekte utslag i Singleplex PCR. Dette gjelder P10(E)Nid (blaCTX-M-9), P11(E)Nid (blaCTX-M-9) og P12(E)Nid_Kleb (blaCTX-M-1, blaTEM og blaVIM). Disse ble også testet for flere gener basert på svært svake antydninger, da kun for sikkerhets skyld. Blant prøvene ble kun utslagene for P12(E)Nid_Kleb bekreftet gjennom Singleplex PCR. Singelplex PCR bekreftet også den ukorrekte tolkningen av genet blaCTX-M-9 for P2(E)Nid fra Multiplex PCR, som egentlig viste båndet til kontrollgenet rpoB for P16(E)Jons_Serr.

Utslagene fra Singleplex PCR ble videre Sanger-sekvensert for ytterligere identifisering gjennom nBLAST. Resultatene bekreftet tilstedeværelse av blaCTX-M-15 og blaTEM-1 i P12(E)Nid_Kleb. Genene blaVIM og blaCTX-M-9 i henholdsvis P12(E)Nid_Kleb og P2(E)Nid ble avkreftet. Med unntak av blaTEM som ble renset fra PCR-produktet til P12(E)Nid_Kleb, hadde samtlige topp-

resultater fra nBLAST «query covers» under 85%, hvorav blaVIM kun hadde 40%. Dette kan ha en sammenheng med prøvenes lave DNA-konsentrasjoner, muligens fordi båndene på agarosegelen for disse ble kuttet fra gel før rensing og innsending til Sanger-sekvensering. Kutting av gel er en manuell prosess som krever presise kutt for å sikre at hele båndet blir med. Inadekvat kutting kan derfor være en årsak til de lave DNA-konsentrasjonene. DNA ødelegges også av UV-stråling, og selv om det ble gjort tiltak for å unngå eksponering, kan dette også være en medvirkende årsak. Samtlige resultater fra nBLAST hadde derimot en identitet på over 95%, noe som kan tyde på at resultatene er korrekte. Båndet på gelen antatt å indikere blaCTX-M-9 i P2(E)Nid i singelplex var dessuten noe svakere enn resterende, og det ble ikke observert i den korrekte tolkningen av gelen fra Multiplex PCR til isolatet. Det antas derfor at nBLAST-resultatene stemmer for dette genet i P2(E)Nid, altså at isolatet ikke innehar genet blaCTX-M-9. Genet blaVIM ble derimot testet i Singleplex PCR basert på den korrekte tolkningen til Multiplex PCR, og gel-bildene demonstrerte sterke bånd, da spesielt ved Multiplex PCR.

6.3. Helgenomsekvenserte isolater fra Nidelva

Blant bakteriene isolert fra Nidelva ble to isolater sendt til helgenomsekvensering, da P1(E)Nid_E.coli og P12(E)Nid_Kleb, identifisert som henholdsvis *E. coli* og *K. pneumoniae* via Sanger-sekvenseringen. Disse identitetene ble bekreftet gjennom helgenomsekvenseringen, som ytterligere identifiserte P1(E)Nid_E.coli som *E. coli* ST219. P12(E)Nid_Kleb ble ytterligere identifisert som *K. pneumoniae* ST307. Både *E. coli* og *K. pneumoniae* er blant de seks ledende patogene bakteriene ansvarlige for dødsfall assosiert med antibiotikaresistens, hvorav *E. coli* er rangert som nummer én (Ikuta et al., 2022). *E. coli* og *K. pneumoniae* er derav følgelig inkludert på listen over antibiotikaresistente prioriterte patogener (WHO, 2017).

K. pneumoniae-klonen ST307 ble for første gang rapportert fra Nederland i 2008, og ble deretter sporadisk detektert som ansvarlig for infeksjonsutbrudd på sykehus i Europa, Afrika, Amerika og Asia. ST307 regnes, sammen med blant annet ST258 og ST11, som en av høyrisiko-klonene av *K. pneumoniae* vedrørende antibiotikaresistens, hovedsakelig grunnet dens tendens til å bære plasmid-medierte gener for blaCTX-M-15 og karbapenemaser (KPC-2, -3, OXA-48 og NDM-1) (Núñez-Samudio et al., 2022).

I 2019 publiserte Wyres et al. en rapport med hensikt å blant annet undersøke den globale forekomsten til ST307 gjennom å utføre en komparativ analyse av data fra offentlige databaser og utgitt litteratur. Analysen ble utført for 95 helgenomsekvenser av ST307 identifisert i forskjellig geografiske områder blant 11 land, hvorav Norge var ett av landene med flest representasjoner. ST307 ble på denne tiden ansett som en relativt nyoppstått MDR-klone, da i hovedsak som ESBL-produserende, men det ble også rapportert om karbapenemresistens. En molekylær dateringsanalyse utført av Wyres et al. indikerte derimot at den oppsto i 1994. Rapporten viste videre at samtlige analyserte ST307 delte kapselgenet KL102 og antigenet O2v2, og at 97,9% av isolatene hadde gener som kodet for resistensmekanismer mot tre eller flere klasser antibiotika. ESBLA-genet blaCTX-M-15 ble detektert i 93,7% av isolatene, hvorav de fleste hadde resistensgenene sul2, dfrA14, strAB og acc(3)-IIa i tillegg (Wyres et al., 2019). Resultatene fra helgenomsekvenseringen av P12(E)Nid_Kleb viste identiske resultater, med unntak av strAB. Genet sul2 koder for resistens mot sulfonamider, dfrA14 mot trimethoprim, og acc(3)-IIa mot aminoglykosider. P12(E)Nid_Kleb viste også genotypisk resistens mot tetrasykliner [tet(A)], fluorokinoloner (qnrB1) og fosfomyciner (fosA6). Wyres et al. (2019) rapporterte om at majoriteten av isolatene ble detektert med ESBL-plasmidet IncFII(K)/IncFIB(K), noe som også var gjeldende for P12(E)Nid_Kleb. IncFII(K)/IncFIB(K) er viten kjent for å være bærer av genet blaCTX-M-15 på transposonet ISEcp1/blaCTX-M-15, noe som er svært bekymringsverdig (Wyres et al., 2019).

I likhet med P12(E)Nid_Kleb, ble blaCTX-M-15 også detektert i P1(E)Nid_E.coli. blaCTX-M-15 tilhører spesifikt klassen ESBLA. CTX-M-enzymer ble oppdaget i 1989, og overtok den tidligere posisjonen til TEM og SHV som de globalt dominerende ESBL-enzymene på tidlig 2000-tallet. Den verdensomspennende spredningen omtales som «CTX-M-pandemien». CTX-M-enzymene deles typisk inn i fem grupper basert på deres aminosyresekvenser, henholdsvis CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 og CTX-M-25 (Castanheira et al., 2021). CTX-M-15-enzymene tilhører gruppen CTX-M-1, og er de mest betydningsfulle og utbredte CTX-M-type enzymene. De invaderer stort sett alle områder av menneskers og dyrs tilstedeværelse, samt i miljøet (Cantón et al., 2012). I 2007 ble det rapportert om et utbrudd av multiresistente CTX-M-15-produserende *E. coli* fra Stavanger Universitetssjukehus, da det første i Skandinavia av denne typen. Det antas at tre pasienter døde som følge av forsinket effektiv antibiotikabehandling (Naseer et al., 2007), noe som er en av de kliniske utfordringene knyttet til antibiotikaresistens.

CTX-M-15 anses å være svært prevalent i akvatiske miljøer (Zarfel et al., 2017; Zurfluh et al., 2013), noe som også demonstreres i Norge. En norsk studie fra 2017 undersøkte tilstedeværelsen av ESBL-EC fra avløpsvann og rekreasjonsvann, og sammenlignet funnene med geografisk assosierte kliniske urinprøver. Studien viste at 40% av rekreasjonsvannprøvene og samtlige avløpsvannprøver inneholdt ESBL-EC, hvorav ESBL-genet blaCTX-M-15 var dominerende. Flere prøver inneholdt også flere ESBL-gener, med blaCTX-M og blaTEM som vanligste kombinasjon, etterfulgt av blaCTX-M og blaOXA-1 (Jørgensen et al., 2017). I P12(E)Nid_Kleb, identifisert som *K. pneumoniae* ST307, ble genene blaTEM-1 og blaOXA-1 identifisert i tillegg til blaCTX-M-15. OXA-1-enzymet tilhører den oxacillin-hydrolyserende betalaktam-klassen D, og blaTEM-1 tilhører betalaktamklasse A; disse defineres ikke som ESBL. Prevalensen av blaOXA-1 er ikke vidt kjent, men estimater tilsier at den er tilstedeværende i omtrent 30% av *K. pneumoniae*- og *E. coli*-stammer som ikke er mottakelige for ceftriaxone i USA (Manuel et al., 2022). Plasmidmedierte TEM-1 er det første TEM-enzymet som ble beskrevet, da på tidlig 1960-tallet funnet i et *E. col*i-isolat isolert fra en gresk kvinnes blod-kultur (Castanheira et al., 2021; Datta & Kontomichalou, 1965). TEM-type ESBLer er samtlige derivert fra punktmutasjoner fra TEM-1 eller TEM-2 (Cantón et al., 2012), hvorav TEM-3-enzymet var det første som utviste ESBL-fenotype (Castanheira et al., 2021).

I tillegg til blaCTX-M-15, ble også genet til ESBLA-enzymet SHV-106 detektert i P12(E)Nid_Kleb. blaSHVA-106 ble rapportert for første gang i Portugal i 2009 (Zhao et al., 2022), og har siden den gang blitt detektert i flere karbapenem-resistente *K. pneumonia*-isolater fra sykehus (Li et al., 2020; Zhao et al., 2022). SHV-enzymene oppstod som kromosomale enzymer i *K. pneumoniae*, og SHV-type ESBL-enzymer detekteres oftest fra kliniske isolater fra *K. pneumoniae*-stammer sammenlignet med andre bakterier.

P1(E)Nid_E.coli viste fenotypisk resistens mot antibiotika-klassene penicilliner, kefalosporiner, tetracycliner og makrolider, og P12(E)Nid_Kleb mot penicilliner, nitrofuraner, kefalosporiner, tetracycliner og markolider. Begge er med andre ord MDR, og begge hadde flere gener for MDR efflux-pumper.

Mennesker kan eksponeres for ESBL-produserende bakterier på flere måter, hvoriblant konsum av eller rekreasjon i forurenset overflatevann, for eksempel gjennom bading, kan føre til direkte smitte (Blaak et al., 2014). En norsk studie viste at personer som hadde badet i ferskvannskilder de siste 12 månedene hadde økt sannsynlighet for å utvikle urinveisinfeksjon av ESBL-EC (Søraas et al., 2013). Husdyr, kjæledyr og ville dyr kan også smittes på samme måte, og følgelig videreføre infeksjon til mennesker. Menneskelig indirekte smitte fra forurenset overflatevann kan også forekomme når forurenset overflatevann brukes til behandling av rå avlinger, noe som kan bidra til samfunnsmessig spredning av ESBL (Blaak et al., 2014).

Trondheim kommune har et årlig vannovervåkningsprogram inndelt i fire hovedområder, henholdsvis drikkevannsovervåkning, badevannsovervåkning, vassdragsovervåkning og utslippskontroll. I 2020 ble det tatt månedlige prøver fra seks prøvepunkter langs Nidelva, hvorav prøvepunktet Nidareid bru ligger omtrent 500 meter unna prøvepunktet for den innhentede vannprøven brukt i denne oppgaven. Rapporten melder om en observert trend om periodevise kloakkforurensninger i strekningen fra Sluppen og mot utløpet i fjorden, hvor prøvepunktet for vannprøven brukt i denne oppgaven ligger. Disse utslippene skjer hovedsakelig i forbindelse med perioder med økt nedbør og overløpsdrift. Rapporten melder også om periodevist høyt bakterieinnhold knyttet til kloakkutslipp i sidevassdrag som Leirelva og Uglabekken, hvor det blant annet vises til utfordringer rundt kloakkfortettinger og feilkoblinger på avløp (Nøst, 2021). Prøveuttaket av vannprøvene ble utført på vinterstid, og det kan antas at snøsmelting også kan være en medvirkende faktor.

6.4. Helgenomsekvenserte isolater fra Jonsvatnet

P16(E)Jons_Serr utviste fenotypisk antibiotikaresistens gjennom sensitivitetstesten mot penicilliner, 3. generasjons kefalosporiner og markolider, og er dermed multiresistent. Gjennom helgenomsekvenseringen ble P16(E)Jons_Serr detektert med et blaFONA-8-gen, da tilhørende klasse

A betalaktamaser. Det ble derimot funnet en mutasjon i posisjon 96 hvor asparagin er mutert til asparaginsyre (96N>D9). Denne mutasjonen har ikke tidligere blitt identifisert, og P16(E)Jons_Serr innehar dermed et gen som koder for en ukjent FONA-variant. Ellers ble ingen resistensmekanismer som medfører resistens mot spesifikke antibiotika-klasser identifisert, men isolatet ble detektert med genene for AcrAB-komponenten av MDR efflux-pumpen AcrAB-TolC. TolC er det ytre membranproteinet i efflux-pumpen, og er nødvendig for å danne den komplette efflux-kanalen ut av bakteriecellen (Du et al., 2014). Grunnet mangelen på tolC-genet kan det ikke antas at efflux-pumpen fungerer optimalt, eller at pumpen i det hele tatt er uttrykt. Det er også mulig at genet er til stede, men at det ikke ble detektert på grunn av eventuelle begrensninger i benyttede analysemetoder.

FONA-enzymene er ikke særlig utbredt, men det har nylig blitt rapportert om FONA-produserende *S. fonticola* i kylling fra Japan (Tanimoto et al., 2021), samt blant salgsvarer av biff-, svin- og kyllingkjøtt i Japan (Odoi et al., 2021). Deteksjon av ESBLA-gener i kjøttvarer understreker blant annet potensialet for spredning av klinsik relevante antibiotikaresistene patogener gjennom konsum av mat, særlig kjøttvarer. Dette understreker følgelig potensialet for spredning av disse bakteriene til miljøet gjennom husdyrhold.

Utover deteksjon av resistensgener mot antibiotika i P16(E)Jons_Serr, ble gener kodende for resistensmekanismer mot kobolt/sink og kobber/sølv detektert.

Jonsvatnet er en innsjø i Trondheim kommune, og er hovedvannkilden til Trondheim og Malvik kommune. Grunnet innsjøens status som drikkevannskilde er den underlagt strenge restriksjoner mot virksomheter og aktiviteter i vannet og dets omkringliggende nedslagsfelt for å unngå forurensning av drikkevannet. Dette inkluderer blant annet forbud mot bading og bruk av motorfartøy på vannet, båndtvang for hunder og forbud mot ridning i en sone på 50 meter fra vannet. Camping er forbudt i en sone på 100 meter fra vannet. I 2009 ble det også innført spesielle restriksjoner for landbruk for å unngå forurensning fra husdyr. De innførte tiltakene innebærer blant annet forbud mot beiting og mot spredning av husdyrgjødsel på sensitive areal (Trondheim kommune, 2023). Det er dermed svært bekymringsverdig at det ble detektert en multiresistent *S. fonticola* i Jonsvatnet.

6.5. Videre arbeid

PCR-produktene til Multiplex PCR ble som nevnt kjørt på fire ulike agarosegeler, og ved tolkningen av bildene fra gelelektroforesen ble det gjort en forveksling mellom to geler. Dette medførte at flere positive utslag ved Multiplex PCR ikke ble sjekket ved bruk av Singleplex PCR, og dermed ble flere potensielt relevante isolater oversett. Et forslag til videre arbeid er derfor å kultivere de nedfryste bakterieisolatene P2(E)Nid (*K. pneumonia*), P3(E)Nid (*E. coli*) og P28(E)Nid (*S. fonticola*) på nytt, og utføre Singleplex PCR med primerne CTX-M-1, TEM og VIM for P2(E)Nid, CTX-M-1 for P3(E)Nid, og CTX-M-9 for P28(E)Nid. Dette hadde vært interessant å sammenligne resultatene for disse med resultatene for isolatene som ble helgenomsekvensert i denne masteroppgaven. Prøvetakingspunktet for vannprøven hentet fra Nidelva er i nærheten av og nedstrøms for St. Olavs hospital, og det hadde vært interessant å studere grad av utslipp av antibiotika og antibiotikaresistente bakterier i forbindelse med St. Olavs hospital. Avfallsvann fra sykehus inneholder en rekke patogene mikroorganismer, og det anses som et av de største miljømessige reservoarene av patogene bakterier. Følgelig observeres også antibiotikaresistente bakterier og rester av antibiotika i avløpsvann fra sykehus, noe som beviselig kan resultere i en økning av resistente bakterier både gjennom HGO og punktmutasjoner (Yuan & Pian, 2023).

6.6. Konklusjon

Denne masteroppgaven bekreftet forekomsten av ESBLA-produserende bakterier i akvatiske miljøer i Trondheim by. Gjennom utførelsen av fenotypiske og genotypiske analysemetoder ble det gjort funn av multiresistente *E. coli* og *Klebsiella pneumoniae* (*K. pneumoniae*) i Nidelva, som begge ble detektert med genet for ESBLA-enzymet CTX-M-15. Genet for ESBLA-enzymet SHV-106 ble også detektert i *K. pneumoniae*-stammen. Det ble også gjort funn av multiresistente *Serratia fonticola* (*S. fonticola*) i Jonsvatnet, men ingen ESBL-gener ble detektert hos denne. Norge har i utgangspunktet lav forekomst av antibiotikaresistente bakterier, så det er bekymringsverdig at antibiotikaresistente bakterier kjent for å forårsake sykdom ble detektert i vannmiljøer i Trondheim. Studien er et bidrag i arbeidet med å kartlegge forekomsten av antibiotikaresistens i akvatiske miljøer.

7. Referanseliste

Akselsen, P. E., Andersen, C. T., Caugant, D. A. Y., Dansie, L. S. & Elstrøm, P. (2022).

- NORM/NORM-VET 2021: Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway: Veterinærinstituttet og Folkehelseinstituttet.
- Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. *Front Microbiol*, 1: 134. doi: 10.3389/fmicb.2010.00134.
- Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. *J Antimicrob Chemother*, 48 Suppl 1 (suppl_1): 5-16. doi: 10.1093/jac/48.suppl_1.5.
- Bennett, P. M. (2009). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria: Plasmid-encoded antibiotic resistance. *British journal of pharmacology*, 153 (S1): S347-S357. doi: 10.1038/sj.bjp.0707607.
- Bhattacharjee, M. K. (2022). *Chemistry of antibiotics and related drugs*. 2nd utg. Cham, Switzerland: Springer.
- Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A. & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. *PLoS One*, 7 (4): e34953. doi: 10.1371/journal.pone.0034953.
- Blaak, H., de Kruijf, P., Hamidjaja, R. A., van Hoek, A. H. A. M., de Roda Husman, A. M. & Schets, F. M. (2014). Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. *Vet Microbiol*, 171 (3-4): 448-459. doi: 10.1016/j.vetmic.2014.03.007.
- Bush, K. & Bradford, P. A. (2020). Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev, 33 (2). doi: 10.1128/CMR.00047-19.
- Cantón, R., González-Alba, J. M. & Galán, J. C. (2012). CTX-M Enzymes: Origin and Diffusion. *Front Microbiol*, 3: 110-110. doi: 10.3389/fmicb.2012.00110.
- Carattoli, A. (2013). Plasmids and the spread of resistance. *Int J Med Microbiol*, 303 (6): 298-304. doi: 10.1016/j.ijmm.2013.02.001.
- Castanheira, M., Simner, P. J. & Bradford, P. A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. *JAC-antimicrobial resistance*, 3 (3): dlab092-dlab092. doi: 10.1093/jacamr/dlab092.
- Chua, K. & Howden, B. P. (2009). Treating Gram-positive infections: vancomycin update and the whys, wherefores and evidence base for continuous infusion of anti-Gram-positive antibiotics. *Curr Opin Infect Dis*, 22 (6): 525-534. doi: 10.1097/QCO.0b013e328331fbcd.
- Datta, N. & Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. *Nature*, 208: 239-41.
- Drawz, S. M. & Bonomo, R. A. (2010). Three Decades of β-Lactamase Inhibitors. *Clin Microbiol Rev*, 23 (1): 160-201. doi: 10.1128/CMR.00037-09.
- Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W. & Luisi, B. F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. *Nature*, 509 (7501): 512-515. doi: 10.1038/nature13205.
- El-Shaboury, S. R., Saleh, G. A., Mohamed, F. A. & Rageh, A. H. (2007). Analysis of cephalosporin antibiotics. *J Pharm Biomed Anal*, 45 (1): 1-19. doi: 10.1016/j.jpba.2007.06.002.
- EUCAST. (2023a). Antimicrobial wild type distributions of microorganisms. Tilgjengelig fra: <u>https://mic.eucast.org/search/</u> (lest 06.08.23).
- EUCAST. (2023b). Breakpoint tables for interpretation of MICs and zone diameters Version 13.1, valid from 2023-06-29. (lest 06.08.23).
- Gaustad, P. (2001). *Mekanismer for utvikling av antibiotikaresistente bakterier*. tidsskriftet.no: Tidsskrift for Den norske legeforening. Tilgjengelig fra: <u>https://tidsskriftet.no/2001/10/tema-infeksjoner/mekanismer-utvikling-av-antibiotikaresistente-bakterier</u> (lest 14.08.).
- Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. *Emerging infectious diseases*, 23 (5): 849-853. doi: 10.3201/eid2305.161556.
- Giske, C. G., Sundsfjord, A. S., Kahlmeter, G., Woodford, N., Nordmann, P., Paterson, D. L., Cantón, R. & Walsh, T. R. (2009). Redefining extended-spectrum β-lactamases: balancing science and clinical need. *J Antimicrob Chemother*, 63 (1): 1-4. doi: 10.1093/jac/dkn444.

- GitHub. (2021). *Interpreting the results*. <u>https://github.com</u>: GitHub, Inc. Tilgjengelig fra: <u>https://github.com/klebgenomics/Kaptive/wiki/Interpreting-the-results</u> (lest 05.05.).
- Hall, B. G. & Barlow, M. (2005). Revised Ambler classification of β-lactamases. *Journal of Antimicrobial Chemotherapy*, 55 (6): 1050-1051. doi: 10.1093/jac/dki130.
- Halleraker, J. H. & Haugen, M. O. (2022). *Nidelva*. snl.no: Store norske leksikon. Tilgjengelig fra: <u>https://snl.no/Nidelva</u> (lest 05.06.).
- Ikuta, K. S., Swetschinski, L., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Fell, F., Hackett, S., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet*, 399 (10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0.
- Illumina. (2017). An introduction to Next-Generation
- Sequencing Technology. Tilgjengelig fra: <u>https://www.illumina.com/content/dam/illumina-</u> marketing/documents/products/illumina_sequencing_introduction.pdf (lest 12.08.23).
- Jørgensen, S., Søraas, A. V., Arnesen, L. S., Arnesen, L. P. S., Leegaard, T. M., Sundsfjord, A. & Jenum, P. (2017). A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. doi: https://doi.org/10.1371/journal.pone.0186576.
- Kadri, K. (2020). Polymerase Chain Reaction (PCR): Principle and Applications. Synthetic Biology -New Interdisciplinary Science.: IntechOpen. Tilgjengelig fra: <u>https://www.intechopen.com/chapters/67558</u>. doi: 10.5772/intechopen.86491.
- Kapoor, G., Saigal, S. & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. *J Anaesthesiol Clin Pharmacol*, 33 (3): 300-305. doi: 10.4103/joacp.JOACP_349_15.
- Kong, K.-F., Schneper, L. & Mathee, K. (2010). Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. *APMIS*, 118 (1): 1-36. doi: 10.1111/j.1600-0463.2009.02563.x.
- Le, T. H., Truong, T., Tran, L. T., Nguyen, D. H., Pham, T. P. T. & Ng, C. (2023). Antibiotic resistance in the aquatic environments: the need for an interdisciplinary approach. *International journal of environmental science and technology (Tehran)*, 20 (3): 3395-3408. doi: 10.1007/s13762-022-04194-9.
- Li, R., Cheng, J., Dong, H., Li, L., Liu, W., Zhang, C., Feng, X. & Qin, S. (2020). Emergence of a novel conjugative hybrid virulence multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15. *Int J Antimicrob Agents*, 55 (6): 105952-105952. doi: 10.1016/j.ijantimicag.2020.105952.
- Luo, X., Xiang, X., Yang, Y., Huang, G., Fu, K., Che, R. & Chen, L. (2020). Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. *FEMS Microbiology Ecology*, 96 (8). doi: 10.1093/femsec/fiaa132.
- Madigan, M. T., Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A. & Brock, T. D. (2019). *Brock biology of microorganisms*. Fifteenth edition.; Global edition. utg. Biology of microorganisms. NY, NY: Pearson.
- Manuel, C., Maynard, R. & Humphries, R. M. (2022). Evaluation of Piperacillin-Tazobactam ETEST for the Detection of OXA-1 Resistance Mechanism among Escherichia coli and Klebsiella pneumoniae. *J Clin Microbiol*, 60 (12): e0143022-e0143022. doi: 10.1128/jcm.01430-22.
- McLain, J. E., Cytryn, E., Durso, L. M. & Young, S. (2016). Culture-based Methods for Detection of Antibiotic Resistance in Agroecosystems: Advantages, Challenges, and Gaps in Knowledge. J Environ Qual, 45 (2): 432-440. doi: 10.2134/jeq2015.06.0317.
- Mora-Ochomogo, M. & Lohans, C. T. (2021). β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. *RSC medicinal chemistry*, 12 (1): 1623-1639. doi: 10.1039/d1md00200g.
- Munita, J. M. & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. *Microbiol Spectr*, 4 (2). doi: 10.1128/microbiolspec.VMBF-0016-2015.
- Naseer, U., Natas, O. B., Haldorsen, B. C., Bue, B., Grundt, H., Walsh, T. R. & Sundsfjord, A. (2007). Nosocomial outbreak of CTX-M-15-producing E. coli in Norway. *APMIS*, 115 (2): 120-126. doi: 10.1111/j.1600-0463.2007.apm_547.x.
- Núñez-Samudio, V., Pimentel-Peralta, G., Herrera, M., Pecchio, M., Quintero, J. & Landires, I. (2022). Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella

pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. *Antibiotics* (*Basel*), 11 (12): 1817. doi: 10.3390/antibiotics11121817.

- Nøst, T. (2021). Vannovervåking i Trondheim 2020 Resultater og vuderinger. Tilgjengelig fra: <u>https://www.trondheim.kommune.no/globalassets/10-bilder-og-filer/10-</u> <u>byutvikling/miljoenheten/naturforvaltning/vannovervaking---rapporter/vannovervaking-i-</u> <u>trondheim-2020-resultater-og-vurderinger.pdf</u> (lest 13.08.2023).
- Odoi, J. O., Takayanagi, S., Yossapol, M., Sugiyama, M. & Asai, T. (2021). Third-Generation Cephalosporin Resistance in Intrinsic Colistin-Resistant Enterobacterales Isolated from Retail Meat. *Antibiotics (Basel)*, 10 (12): 1437. doi: 10.3390/antibiotics10121437.
- Okoye, C. O., Nyaruaba, R., Ita, R. E., Okon, S. U., Addey, C. I., Ebido, C. C., Opabunmi, A. O., Okeke, E. S. & Chukwudozie, K. I. (2022). Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. *Environmental toxicology and pharmacology*, 96: 103995-103995. doi: 10.1016/j.etap.2022.103995.
- Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. (2011). Carbapenems: Past, Present, and Future. *Antimicrob Agents Chemother*, 55 (11): 4943-4960. doi: 10.1128/AAC.00296-11.
- Rabindra, P. & Raju, N. (2012). *Gel-Electrophoresis and Its Applications*. *Gel Electrophoresis Principles and Basics*.: InTechOpen. doi: 10.5772/38479.
- Spurbeck, R. R., Dinh, P. C., Walk, S. T., Stapleton, A. E., Hooton, T. M., Nolan, L. K., Kwang Sik, K. I. M., Johnson, J. R. & Mobley, H. L. T. (2012). Escherichia coli Isolates That Carry vat, fyuA, chuA, and yfcV Efficiently Colonize the Urinary Tract. *Infect Immun*, 80 (12): 4115-4122. doi: 10.1128/IAI.00752-12.
- Suzuki, S., Pruden, A., Virta, M. & Zhang, T. (2017). Editorial: Antibiotic Resistance in Aquatic Systems. *Front Microbiol*, 8: 14-14. doi: 10.3389/fmicb.2017.00014.
- Søraas, A., Sundsfjord, A., Sandven, I., Brunborg, C. & Jenum, P. A. (2013). Risk factors for community-acquired urinary tract infections caused by ESBL-producing enterobacteriaceae--a case-control study in a low prevalence country. *PLoS One*, 8 (7): e69581-e69581. doi: 10.1371/journal.pone.0069581.
- Tanimoto, K., Nomura, T., Hashimoto, Y., Hirakawa, H., Watanabe, H. & Tomita, H. (2021). Isolation of Serratia fonticola producing FONA, a minor extended-spectrum β-lactamase (ESBL), from imported chicken meat in Japan. *Japanese Journal of Infectious Diseases*, 74 (1): 79-81.
- *Theisendammen.* (2021). visittrondheim.no: Visit Trondheim. Tilgjengelig fra: <u>https://visittrondheim.no/aktiviteter-attraksjoner/utendorsaktiviteter/gatur/theisendammen/</u>.
- Thermo Fisher Scientific. (2009). NanoDrop 2000/2000c Spectrophotometer User Manual. 1. Tilgjengelig fra: <u>https://assets.thermofisher.com/TFS-Assets/CAD/manuals/NanoDrop-2000-User-Manual-EN.pdf</u> (lest 11.08.23).
- Thermo Fisher Scientific. (2010). BrillianceTM ESBL Culture Media. Tilgjengelig fra: <u>http://www.oxoid.com/pdf/oxoid-Brilliance-ESBL.pdf</u> (lest 13.04.23).
- Thermo Fisher Scientific. (2011). BrillianceTM CRE Culture Media. (lest 13.04.23).
- Trondheim kommune. (2023). *Jonsvatnet*. <u>https://www.trondheim.kommune.no</u>. Tilgjengelig fra: <u>https://www.trondheim.kommune.no/jonsvatnet/</u> (lest 24.04.).
- Valencia, C. A., Pervaiz, M. A., Husami, A., Qian, Y. & Zhang, K. (2013). Next Generation Sequencing Technologies in Medical Genetics. 2013 utg. SpringerBriefs in Genetics. New York, NY: New York, NY: Springer New York.
- von Wintersdorff, C., Penders, J., van Niekerk, J., Mills, N. D., Majumder, S., van Alphen, L., Savelkoul, P. H. M. & Wolffs, P. F. G. (2016). Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. *Front Microbiol*, 7: 173-173. doi: 10.3389/fmicb.2016.00173.
- Wellington, E. M. H. P., Boxall, A. B. A. P., Cross, P. P., Feil, E. J. P., Gaze, W. H. P., Hawkey, P. M. P., Johnson-Rollings, A. S. P., Jones, D. L. P., Lee, N. M. P., Otten, W. P., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. *Lancet Infect Dis*, 13 (2): 155-165. doi: 10.1016/S1473-3099(12)70317-1.
- WHO. (2017). *WHO publishes list of bacteria for which new antibiotics are urgently needed*. News. who.int: World Health Organization (WHO). Tilgjengelig fra:

https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-newantibiotics-are-urgently-needed (lest 12.08).

- Wright, G. D. (2010). Q&A: Antibiotic resistance: where does it come from and what can we do about it? *BMC Biol*, 8 (1): 123-123. doi: 10.1186/1741-7007-8-123.
- Wyres, K. L., Hawkey, J., Hetland, M. A. K., Fostervold, A., Wick, R. R., Judd, L. M., Hamidian, M., Howden, B. P., Löhr, I. H. & Holt, K. E. (2019). Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. *J Antimicrob Chemother*, 74 (3): 577-581. doi: 10.1093/jac/dky492.
- Yashwant, K. & Kumar, Y. (2019). *Antimicrobial resistance : a global threat*. 1st utg. Antimicrobial resistance. London, England: IntechOpen.
- Yuan, T. & Pian, Y. (2023). Hospital wastewater as hotspots for pathogenic microorganisms spread into aquatic environment: A review. *Frontiers in environmental science*, 10. doi: 10.3389/fenvs.2022.1091734.
- Zarfel, G., Lipp, M., Gürtl, E., Folli, B., Baumert, R. & Kittinger, C. (2017). Troubled water under the bridge: Screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. *Sci Total Environ*, 593-594: 399-405. doi: 10.1016/j.scitotenv.2017.03.138.
- Zhao, H., He, Z., Li, Y. & Sun, B. (2022). Epidemiology of carbapenem-resistant Klebsiella pneumoniae ST15 of producing KPC-2, SHV-106 and CTX-M-15 in Anhui, China. BMC microbiology, 22 (1): 1-262. doi: 10.1186/s12866-022-02672-1.
- Zurfluh, K., Hachler, H., Nuesch-Inderbinen, M. & Stephan, R. (2013). Characteristics of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae Isolates from Rivers and Lakes in Switzerland. *Appl Environ Microbiol*, 79 (9): 3021-3026. doi: 10.1128/AEM.00054-13.

Tabell 32. Bilder av bakteriekoloniene kultivert på ESBL- og CRE-skåler med filtrerte og ikke-filtrerte vannprøver hentet fra Nidelva, Jonsvatnet og Theisendammen. Bildene for Nidelva ble tatt etter at enkelte bakteriekolonier hadde blitt plukket opp til isolering og skålene hadde stått kjølelagret i ett døgn

	ES	BL		CRE		
	Filter	Ikke filter	Filter	Ikke filter		
Nidelva				Ingen vekst		
Jonsvatnet				Ingen vekst		
Theisendammen		Ingen vekst				

Agar	Hentet fra	Isolat	Konsentrasjon (ng/µl)	260/280	260/230	
		P1(E)Nid_E.coli	50,5	1,88	0,55	
		P2(E)Nid	46,6	1,95	1,73	
		P3(E)Nid	28,8	2,06	1,37	
		P4(E)Nid	101,1	1,94	1,41	
	Nidelva	P10(E)Nid	52,2	1,92	1,83	
		P11(E)Nid	61,5	2,01	0,18	
ECDI		P12(E)Nid_Kleb	56,5	1,91	1,18	
ESBL		P28(E)Nid	47,3	2,94	0,84	
		P29(E)Nid	107,8	2,19	0,83	
		P16(E)Jons_Serr	22,4	7,70	0,90	
	Jonsvatnet	P25(E)Jons	53,8	2,83	0,96	
		P26(E)Jons	12,5	-4,39	0,08	
	Theigandommon	P17(E)Theis	30,9	4,51	1,08	
	Theisendammen	P27(E)Theis	26,8	1,68	0,20	
		P5(C)Nid	64,6	1,98	0,28	
		P6(C)Nid	132,2	1,93	1,44	
	Nidalwa	P7(C)Nid	65,5	1,97	1,68	
	Muerva	P8(C)Nid	185,9	1,94	1,99	
		P9(C)Nid	66,4	1,99	1,79	
		P24(C)Nid	34,8	4,01	0,57	
		P13(C)Jons	28,5	5,08	0,95	
CRE		P14(C)Jons	21,8	8,45	0,34	
	Jonsvatnet	P15(C)Jons	28,3	5,15	0,86	
		P18(C)Jons	9,2	-2,15	0,54	
		P19(C)Jons	12,4	-3,55	0,26	
		P20(C)Theis	18,6	40,13	0,57	
	Thoisondommon	P21(C)Theis	14,1	-6,68	0,24	
	Theisendammen	P22(C)Theis	9,2	-2,19	0,31	
		P23(C)Theis	-1,8	0,18	0,05	

Tabell 33. Kvalitet- og kvantitetsmålinger utført av isolatenes ekstraherte DNA rett etter ekstraksjon.

Agar	Hentet fra	Prøve	Description	Scientific name	Max score	Total score	Query cover	e-value	Per. ident.	Acc.len	Accesion
			Escherichia coli strain 1613 chromosome, complete genome	Escherichia coli	2429	16945	99 %	0.0	100%	5490388	<u>CP082835.1</u>
		P1(E)Nid_E.coli	Shigella flexneri strain C7 16S ribosomal RNA gene, partial sequence	Shigella flexneri	2429	2429	99 %	0.0	100%	1400	<u>OP218173.1</u>
		P2(E)Nid	Klebsiella pneumoniae strain E1 16S ribosomal RNA gene, partial sequence	<u>Klebsiella</u> pneumoniae	2462	2462	100 %	0.0	99.85%	1530	<u>OP889686.1</u>
	Nidelva		Escherichia coli strain SA4 16S ribosomal RNA gene, partial sequence	Escherichia coli	2447	2447	100 %	0.0	99.55%	1446	<u>MT535590.1</u>
		D	D2/E/NI:4	Escherichia fergusonii strain Uyi_44 16S ribosomal RNA gene, partial sequence	<u>Escherichia</u> <u>fergusonii</u>	2447	2447	100 %	0.0	99.48%	1358
ESBL		P3(E)INIO	Lactiplantibacillus plantarum strain CAU10295 16S ribosomal RNA gene, partial sequence	<u>Lactiplantibacillus</u> <u>plantarum</u>	2447	2447	100 %	0.0	99.48%	1369	<u>MF098215.1</u>
			Shigella sonnei strain T-B7A 16S ribosomal RNA gene, partial sequence	Shigella sonnei	2447	2447	100 %	0.0	99.48%	1406	<u>KJ806511.1</u>
		P4(E)Nid	<u>Pseudomonas nitroreducens strain</u> <u>Atecer2S 16S ribosomal RNA gene,</u> <u>partial sequence</u>	Pseudomonas nitroreducens	2503	2503	100 %	0.0	99.49%	1392	<u>MT386129.1</u>
		P10(E)Nid	Serratia fonticola strain FDAARGOS_411 chromosome, complete genome	Serratia fonticola	2457	17111	100 %	0.0	100%	5725385	<u>CP023956.1</u>
		P11(E)Nid	Serratia fonticola strain CV2.2.2W 16S ribosomal RNA gene, partial sequence	Serratia fonticola	2459	2459	100 %	0.0	99.78%	1435	<u>MH379711.1</u>

Tabell 34.Resultatene fra nBLAST av Sanger-sekvenseringsresultatene av isolatenes 16S rDNA.

Agar	Hentet fra	Prøve	Description	Scientific name	Max score	Total score	Query cover	e-value	Per. ident.	Acc.len	Accesion
		P12(E)Nid_Kleb	Klebsiella pneumoniae strain TZT- 18-63 16S ribosomal RNA gene. partial sequence	<u>Klebsiella</u> pneumoniae	2488	2488	100 %	0.0	99.85%	1441	<u>MH930397.1</u>
	Nidelva	P28(E)Nid	Serratia fonticola strain CV2.2.2W 16S ribosomal RNA gene, partial sequence	Serratia fonticola	2418	2418	100 %	0.0	99.92%	1435	<u>MH379711.1</u>
		P29(E)Nid	Pseudomonas protegens strain 31B5 16S ribosomal RNA gene, partial sequence	Pseudomonas protegens	2433	2433	100 %	0.0	99.92%	1413	<u>MG269638.1</u>
		P16(E)Jons_Serr	Serratia fonticola strain MBLB2508 16S ribosomal RNA gene, partial sequence	Serratia fonticola	2409	2409	100 %	0.0	99.92%	1360	<u>MZ824455.1</u>
ESBL		P25(E)Jons	<u>Klebsiella pneumoniae strain BW003</u> <u>16S ribosomal RNA gene, partial</u> <u>sequence</u>	<u>Klebsiella</u> pneumoniae	235	235	17 %	9,00E- 57	95.17%	1368	<u>KU946990.1</u>
			Hafnia psychrotolerans strain AAU5 16S ribosomal RNA gene, partial sequence	<u>Hafnia</u> psychrotolerans	231	231	17 %	1,00E- 55	95.17%	1401	<u>OP776067.1</u>
	Jonsvatnet		Serratia proteamaculans strain CHR3- <u>1 16S ribosomal RNA gene, partial</u> <u>sequence</u>	<u>Serratia</u> proteamaculans	228	436	17 %	2,00E- 54	94.48%	1787	<u>KF625184.1</u>
			Raoultella terrigena strain MA-120 16S ribosomal RNA gene, partial sequence	Raoultella terrigena	226	226	17 %	5,00E- 54	94.48%	763	<u>OQ225588.1</u>
			Pectobacterium atrosepticum strain ZB18111 16S ribosomal RNA gene, partial sequence	Pectobacterium atrosepticum	226	226	17 %	5,00E- 54	94.48%	1543	<u>OP941565.1</u>
			Yersinia ruckeri strain NVI-492 chromosome, complete genome	Yersinia ruckeri	226	1584	17 %	5,00E- 54	94.48%	3654750	<u>CP099813.1</u>

Agar	Hentet fra	Prøve	Description	Scientific name	Max score	Total score	Query cover	e-value	Per. ident.	Acc.len	Accesion
	Jonsvatnet	P26(E)Jons	Pseudomonas syringae strain SWZQ13 16S ribosomal RNA gene. partial sequence	Pseudomonas syringae	226	226	20 %	5,00E- 54	89.68%	931	<u>MZ854182.1</u>
ESBL	Theirondommon	P17(E)Theis	Pseudomonas fluorescens strain 28Bb-06 16S ribosomal RNA gene, partial sequence	Pseudomonas fluorescens	2516	2516	100 %	0.0	100%	1487	<u>HQ606463.1</u>
	Theisendammen	P27(E)Theis	Pseudomonas protegens strain L21 16S ribosomal RNA gene, partial sequence	Pseudomonas protegens	2436	2436	100 %	0.0	99.92%	1416	<u>MT505104.1</u>
		P5(C)Nid	<u>Acidovorax sp. strain DE011 16S</u> <u>ribosomal RNA gene, partial</u> <u>sequence</u>	Acidovorax sp.	1402	1402	100 %	0.0	88.44%	1443	<u>KY883995.1</u>
		P6(C)Nid	<u>Pseudoxanthomonas sp. strain</u> <u>NyZ600 16S ribosomal RNA gene,</u> <u>partial sequence</u>	<u>Pseudoxanthomonas</u> <u>sp.</u>	2521	2521	99 %	0.0	99.85%	1415	<u>MT560351.1</u>
		P7(C)Nid	Caulobacter sp. strain AFS010273 16S ribosomal RNA gene, partial sequence	<u>Caulobacter sp.</u>	2438	2438	100 %	0.0	99.85%	1472	<u>OP986543.1</u>
CRE	Nidelva	P8(C)Nid	Stenotrophomonas maltophilia strain PEG-305 chromosome, complete genome	<u>Stenotrophomonas</u> <u>maltophilia</u>	2519	10057	100 %	0.0	100%	4495508	<u>CP040437.1</u>
		PO(C)Nid	<u>Stenotrophomonas maltophilia strain</u> <u>OsEnb_HZB_H21 16S ribosomal</u> <u>RNA gene, partial sequence</u>	<u>Stenotrophomonas</u> <u>maltophilia</u>	2494	2494	100 %	0.0	99.85%	1405	<u>MN889407.1</u>
		19(0)1110	[Pseudomonas] hibiscicola strain Os_Ep_VPA_6 16S ribosomal RNA gene, partial sequence	[Pseudomonas] hibiscicola	2488	2488	100 %	0.0	99.78%	1416	<u>MN932274.1</u>
		P24(C)Nid	Stenotrophomonas maltophilia strain PEG-305 chromosome, complete genome	Stenotrophomonas maltophilia	2098	8395	100 %	0.0	100%	4495508	<u>CP040437.1</u>
			Pseudomonas sp. ZR3 16S ribosomal RNA gene, partial sequence	Pseudomonas sp. ZR3	2098	2098	100 %	0.0	100%	1469	<u>JQ433923.1</u>

Agar	Hentet fra	Prøve	Description	Scientific name	Max score	Total score	Query cover	e-value	Per. ident.	Acc.len	Accesion
		P13(C)Jons	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2409	2409	100 %	0.0	100%	1339	<u>MG322236.1</u>
		P14(C)Jons	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2394	2394	100 %	0.0	99.85%	1339	<u>MG322236.1</u>
	Jonsvatnet	P15(C)Jons	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2281	2281	100 %	0.0	99.92%	1339	<u>MG322236.1</u>
		P18(C)Jons	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2276	2276	100 %	0.0	99.76%	1339	<u>MG322236.1</u>
CRE		P19(C)Jons	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2357	2357	100 %	0.0	99.92%	1339	<u>MG322236.1</u>
		P20(C)Theis	Caulobacter segnis strain DSB C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2307	2307	100 %	0.0	100%	1339	<u>MG322236.1</u>
	Theirenderson	P21(C)Theis	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2294	2294	100 %	0.0	100%	1339	<u>MG322236.1</u>
	I neisendammen	P22(C)Theis	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2228	2228	100 %	0.0	100%	1339	<u>MG322236.1</u>
		P23(C)Theis	Caulobacter segnis strain DSB_C4 16S ribosomal RNA gene, partial sequence	Caulobacter segnis	2322	2322	100 %	0.0	100%	1339	<u>MG322236.1</u>

Figur 4. Bilde av en av fire agarosegeler etter utført gelelektroforese av PCR-produktene fra Multiplex PCR for deteksjon av ESBL-gener. A(korrekt) viser den korrekte tolkningen av gelen, og B(ukorrekt) viser den ukorrekte tolkningen. Singleplex PCR ble basert på den ukorrekte gelen.

Figur 5. Bilde av en av fire agarosegeler etter utført gelelektroforese av PCR-produktene fra Multiplex PCR for deteksjon av ESBL-gener. A (korrekt) viser den korrekte tolkningen av gelen, og B (ukorrekt) viser den ukorrekte tolkningen. Singleplex PCR ble basert på den ukorrekte gelen.

Figur 6. Bilder av to av fire agarose-geler etter utført gelelektroforese av PCR-produktene fra Multiplex PCR for deteksjon av ESBL-gener. Både A og B ble korrekt tolket.

	P1(E)Ni	id_E.coli	P12(E)N	lid_Kleb	P16(E)Jons_Serr		
Antibiotikum	Parallell 1	Parallell 2	Parallell 1	Parallell 2	Parallell 1	Parallell 2	
Penicillin G							
Ampicillin				Part		THE	
Meropenem					LE OT		
Nitrofurantioin							

Tabell 35. Bilder av inhibitorsonene på MH-skålene ved MIC-testen for de helgenomsekvenserte isolatene.

	P1(E)Ni	id_E.coli	P12(E)Nid_Kleb		P16(E)Jons_Serr		
Antibiotikum	Parallell 1	Parallell 2	Parallell 1	Parallell 2	Parallell 1	Parallell 2	
Cefotaxpime			EXCEPTION OF THE PROPERTY OF T				
Ciprofloxacin							
Tetracyclin							
Erythromycin		Ingen bilde					

Pathogenwatch genome report A12_Contigs

https://pathogen.watch/genomes/all?sort=country&uploadedAt=2023-0...

A12_Contigs

Klebsiella pneumoniae

MLST - Multilocus sequence typing

https://bigsdb.pasteur.fr/klebsiella/

Sequence type	Profile						
307	gapA	infB	mdh	pgi	phoE	rpoB	tonB
View all ST 307 Z	4	1	2	52	1	1	7

cgMLST classification – Core genome MLST profile comparison

Sourced from the Pasteur Institute.

Sublineage	Clonal group	LIN code
307	307	0_0_369_0_0_0_*_*_*
Core genome sequence type	Closest defined cgST(s)	Identity
*dd16	21268/439	99.5231% (626/629)

View all cgST *dd16

Capsule (K) and O serotype predictions

Sourced from Kaptive

Klocus	Predicted capsule type	Confidence
KL102	Unknown (not serologically de-	Very high
View all KL102	fined)	
wzi		
wzi173		
0 locus	Predicted 0 type	Confidence
01/02v2	O2afg	Very high
View all 01/02v2		

AMR - Antimicrobial resistance

Sourced from Kleborate

Drug/Class	Resistance Determinants		
Aminoglycosides	aac(3)-IIa, aac(6')-Ib-cr, strA, strB		
Carbapenems	None found		

1 av 3

03.05.2023, 06:57

Pathogenwatch genome report A12_Contigs

https://pathogen.watch/genomes/all?sort=country&uploadedAt=2023-0...

Drug/Class	Resistance Determinants
Cephalosporins (3rd gen.)	CTX-M-15
Cephalosporins (3rd gen.) + β-lactamase inhibitors	None found
Colistin	None found
Fluoroquinolones	qnrB1, GyrA-83I, ParC-80I
Fosfomycin	None found
Penicillins	OXA-1, TEM-1D, SHV-28
Penicillins + β-lactamase inhibitors	None found
Phenicols	CatB4
Sulfonamides	sul2
Tetracycline	tet(A)
Tigecycline	None found
Trimethoprim	dfrA14 (homolog)

Plasmid Inc types

Database sourced from https://cge.cbs.dtu.dk/services/PlasmidFinder/

Contig Inc type	Match ID	% Identity	% Coverage
	IncFII(K)_1	95.946	100
	IncFIB(K)_1	98.929	100

Core families

Families matched

100%

1972

Virulence

Sourced from Kleborate

Virulence score

0 – no virulence loci

Hypermucoidy (RmpADC / rmpA2)

-/-

Core stats

Core matches 1972

Complete alleles 1969

Non-core 61.0%

Pathogenwatch reference 60325_E01

2 av 3

03.05.2023, 06:57
Pathogenwatch genome report A12_Contigs

https://pathogen.watch/genomes/all?sort=country&uploadedAt=2023-0..

Organism prediction

Taxonomy ID 573	Organism name Klebsiella pneumoniae	RefSeq reference Klebsiella_pneumo- niae/0042.fna.gz
Mash distance	p-value	Matching hashes
0.00115999	0	953/1000

03.05.2023, 06:51

Isolat	Plasmid	Identity	Query/Template length	Contig	Position in contig	Accession number
P1(E)Nid_E.coli	IncB/O/K/Z	99,34	152/152	contig00024 len=73534 cov=35.9 corr=0 origname=NODE_24_length_73534_cov_35.885336 sw=shovill-spades/1.1.0 date=20230426	6305063201	GQ259888
P12(E)Nid_Kleb	IncFIB(K)	98,93	560/560	contig00016 len=78407 cov=31.1 corr=0 origname=NODE_16_length_78407_cov_31.126916 sw=shovill-spades/1.1.0 date=20230425	6520565764	JN233704
	IncFII(K)	95,95	148/148	contig00016 len=78407 cov=31.1 corr=0 origname=NODE_16_length_78407_cov_31.126916 sw=shovill-spades/1.1.0 date=20230425	17651912	CP000648

Tabell 36. Rådata for plasmid-genene detektert i P1(E)Nid_E.coli og P12(E)Nid_Kleb gjennom PlasmidFinder-2.0 Server.

Tabell 37. Rådata for genene detektert i P1(E)Nid_E.coli gjennom CARD og NDARO.

	P1(E)Nid_E.coli								
Gen	Database	Coverage (%)	Identitet (%)	Resistens mot	Kommentar	Acc. nr.			
acrB	CARD	100	99,27	Cephalosporin, fluoroquinolone, glycylcycline, penam, phenicol, rifamycin, tetracycline, triclosan	Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.	U00096.3:484403- 481253			
acrD	CARD	100	99,07	Aminoglycoside	AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole and is regulated by baeRS and cpxAR.	AP009048.1:2586250- 2589364			
acrE	CARD	100	99,66	Cephalosporin, cephamycin, fluoroquinolone, penam	AcrE is a membrane fusion protein similar to AcrA.	U00096:3413863- 3415021			
acrF	CARD	100	98,58	Cephalosporin, cephamycin, fluoroquinolone, penam	AcrF is a inner membrane transporter similar to AcrB.	U00096:3415032- 3418137			
acrS	CARD	100	99,7	Cephalosporin, cephamycin, fluoroquinolone, glycylcycline, penam, phenicol, rifamycin, tetracycline, triclosan	AcrS is a repressor of the AcrAB efflux complex and is associated with the expression of AcrEF. AcrS is believed to regulate a switch between AcrAB and AcrEF efflux.	U00096:3413465- 3412802			
APH(3")-Ib	CARD	100	99.75	Aminoglycoside	APH(3")-Ib is an aminoglycoside phosphotransferase encoded by plasmids transposons integrative conjugative elements and chromosomes in	AF313472:15593- 16397			
	NDARO				Enterobacteriaceae and Pseudomonas spp.	NG_056002.2			
APH (6) Id	CARD	100	99,88	Aminoglycoside	APH(6)-Id is an aminoglycoside phosphotransferase encoded by plasmids integrative conjugative elements and chromosomal genomic islands in K.	AF024602:3155-3992			
APH(6)-Id	NDARO	- 100 -	100 Ar	Ammogrycosuc	Pseudomonas spp. V. cholerae Edwardsiella tarda Pasteurella multocida and Aeromonas bestiarum	NG_047464.1			
bacA	CARD	99,76	99,51	Peptide	The bacA gene product (BacA) recycles undecaprenyl pyrophosphate during cell wall biosynthesis which confers resistance to bacitracin.	U00096.3:3204131- 3203309			
baeR	CARD	100	96,96	Aminocoumarin, aminoglycoside	BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.	AP009048.1:2166412- 2167135			

baeS	CARD	100	98,43	Aminocoumarin, aminoglycoside	BaeS is a sensor kinase in the BaeSR regulatory system. While it phosphorylates BaeR to increase its activity BaeS is not necessary for overexpressed BaeR to confer resistance.	AP009048:2165012- 2166416
blaEC	NDARO	100	99,3	Beta-lactam	BlaEC family class C beta-lactamase	NG_047496.1
cpxA	CARD	100	98,33	Aminocoumarin, aminoglycoside	CpxA is a membrane-localized sensor kinase that is activated by envelope stress. It starts a kinase cascade that activates CpxR which promotes efflux complex expression.	BA000007.3:4905062- 4903688
CRP	CARD	100	99,37	Fluoroquinolone, macrolide, penam	CRP is a global regulator that represses MdtEF multidrug efflux pump expression.	AP009048.1:4154296- 4153663
CTX-M-15	CARD NDARO	100	100	Cephalosporin	CTX-M-15 is a beta-lactamase found in the Enterobacteriaceae family	AY044436:1435-2311 NG_048935.1
dfrA17	CARD NDARO	100	100 99,79	– Diaminopyrimidine	dfrA17 is an integron-encoded dihydrofolate reductase found in Escherichia coli	DQ838665:0-474 NG_047710.1
emrA	CARD	100	98,98	Fluoroquinolone	EmrA is a membrane fusion protein providing an efflux pathway with EmrB and TolC between the inner and outer membranes of E. coli a Gram-negative bacterium.	AP009048:2810082- 2811255
emrB	CARD	100	97,99	Fluoroquinolone	emrB is a translocase in the emrB -TolC efflux protein in E. coli. It recognizes substrates including carbonyl cyanide m-chlorophenylhydrazone (CCCP) nalidixic acid and thioloactomycin.	U00096:2812615- 2814154
emrK	CARD	100	98,2	Tetracycline	emrK is a membrane fusion protein that is a homolog of EmrA. Together with the inner membrane transporter EmrY and the outer membrane channel TolC it mediates multidrug efflux.	D78168:536-1592
emrR	CARD	100	100	Fluoroquinolone	EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.	U00096.3:2810769- 2811300
emrY	CARD	100	97,47	Tetracycline	emrY is a multidrug transport that moves substrates across the inner membrane of the Gram-negative E. coli. It is a homolog of emrB.	D78168:1591-3130
eptA	CARD	100	98,84	Peptide	PmrC mediates the modification of Lipid A by the addition of 4-amino-4- deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine resulting in a less negative cell membrane and decreased binding of polymyxin B.	AP009048:4340268- 4338624
<i>E. coli</i> acrA	CARD	100	99,83	Cephalosporin, fluoroquinolone, glycylcycline, penam, phenicol, rifamycin, tetracycline, triclosan	AcrA is a subunit of the AcrAB-TolC multidrug efflux system that in E. coli.	U00096.3:485619- 484425

<i>E. coli</i> ampC	CARD	100	98,33	Cephalosporin, penam	A class C ampC beta-lactamase (cephalosporinase) enzyme described in Escherichia coli shown clinically to confer resistance to penicillin-like and cephalosporin-class antibiotics.	U00096.3:4378944- 4377810
<i>E. coli</i> ampC1 beta- lactamase	CARD	100	95,71	Cephalosporin, penam	An ampC-like beta-lactamase identified from Escherichia coli.	FN649414.1:2765050- 2766355
<i>E. coli</i> ampH	CARD	100	98,88	Cephalosporin, penam	AmpH is a class C ampC-like beta-lactamase and penicillin-binding protein identified in Escherichia coli.	AP012030.1:396711- 395553
<i>E. coli</i> emrE	CARD	100	98,8	Macrolide	Member of the small MDR (multidrug resistance) family of transporters; in Escherichia coli this protein provides resistance against a number of positively charged compounds including ethidium bromide and erythromycin; proton- dependent secondary transporter which exchanges protons for compound translocation	Z11877.1:485-818
<i>E. coli</i> mdfA	CARD	100	96,92	Benzalkonium chloride, rhodamine, tetracycline	Multidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.	JQ394987:0-1233
evgA	CARD	100	100	Fluoroquinolone, macrolide, penam, tetracycline	EvgA when phosphorylated is a positive regulator for efflux protein complexes emrKY and mdtEF. While usually phosphorylated in a EvgS dependent manner it can be phosphorylated in the absence of EvgS when overexpressed.	BA000007.3:3212025- 3212640
evgS	CARD	100	97	Fluoroquinolone, macrolide, penam, tetracycline	EvgS is a sensor protein that phosphorylates the regulatory protein EvgA. evgS corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.	U00096:2484373- 2487967
gadW	CARD	100	95,75	Fluoroquinolone, macrolide, penam	GadW is an AraC-family regulator that promotes mdtEF expression to confer multidrug resistance. GadW inhibits GadX-dependent activation. GadW clearly represses gadX and in situations where GadX is missing activates gadA and gadBC.	CP015085.1:2552440- 2551711
gadX	CARD	100	98,67	Fluoroquinolone, macrolide, penam	GadX is an AraC-family regulator that promotes mdtEF expression to confer multidrug resistance.	AP009048.1:3974604- 3975429
H-NS	CARD	100	99,28	Cephalosporin, cephamycin, fluoroquinolone, macrolide, penam, tetracycline	H-NS is a histone-like protein involved in global gene regulation in Gram- negative bacteria. It is a repressor of the membrane fusion protein genes acrE mdtE and emrK as well as nearby genes of many RND-type multidrug exporters.	BA000007.3:1738104- 1737690
kdpE	CARD	100	97,05	Aminoglycoside	kdpE is a transcriptional activator that is part of the two-component system KdpD/KdpE that is studied for its regulatory role in potassium transport and has been identified as an adaptive regulator involved in the virulence and	U00096.3:721733- 721055

					intracellular survival of pathogenic bacteria. kdpE regulates a range of virulence loci through direct promoter binding.	
marA	CARD	100	99,48	Carbapenem, cephalosporin, cephamycin, fluoroquinolone, glycylcycline, monobactam, penam, penem, phenicol, rifamycin, tetracycline, triclosan	In the presence of antibiotic stress E. coli overexpresses the global activator protein MarA which besides inducing MDR efflux pump AcrAB also down-regulates synthesis of the porin OmpF.	AP009048.1:1621287- 1621671
mdtA	CARD	99,95	97,6	Aminocoumarin	MdtA is the membrane fusion protein of the multidrug efflux complex mdtABC.	U00096:2154015- 2155263
mdtB	CARD	100	97,41	Aminocoumarin	MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.	U00096:2155262- 2158385
mdtC	CARD	100	96,95	Aminocoumarin	MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.	U00096:2158385- 2161463
mdtE	CARD	100	99,05	Fluoroquinolone, macrolide, penam	MdtE is the membrane fusion protein of the MdtEF multidrug efflux complex. It shares 70% sequence similarity with AcrA.	AP009048.1:3981183- 3980025
mdtF	CARD	100	99	Fluoroquinolone, macrolide, penam	MdtF is the multidrug inner membrane transporter for the MdtEF-TolC efflux complex.	U00096:3660413- 3663527
mdtG	CARD	100	98,7	Fosfomycin	The MdtG protein also named YceE appears to be a member of the major facilitator superfamily of transporters and it has been reported when overexpressed to increase fosfomycin and deoxycholate resistances. mdtG is a member of the marA-soxS-rob regulon.	CP000800.1:1192954- 1191727
mdtH	CARD	100	98,68	Fluoroquinolone	Multidrug resistance protein MdtH	U00096:1125326- 1124117
mdtM	CARD	100	96,27	Acridine dye, fluoroquinolone, lincosamide, nucleoside, phenicol	Multidrug resistance protein MdtM	U00096.3:4568519- 4567286
mdtN	CARD	100	98,55	Acridine dye, nucleoside	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride.	AP009048.1:4307588- 4306556
mdtO	CARD	100	97,9	Acridine dye, nucleoside	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride	AP009048.1:4306557- 4304505

mdtP	CARD	100	97,55	Acridine dye, nucleoside	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride	AP009048.1:4304509- 4303042
mah A	CARD	- 100	100 99,67	Maanalida	The mphA gene encodes for resistance enzyme MPH(2')-I which preferentially inactivate 14-membered macrolides (e.g. erythromycin talithromycin ravithromycin) over 16 membered macrolides (a g tylogin	D16251.1:2531-1625
mpnA	NDARO			- Macronae	spiramycin). It phosphorylates macrolides at 2'-OH hydroxyl of desosamine sugar of macrolides in a GTP-dependent manner.	NG_047986.1
mphB	CARD	100	98,95	Macrolide	The mphB gene encodes for MPH(2')-II. This enzymes phosphorylates 14- membered and 16-membered macrolides. It phosphorylates macrolides in GTP- dependent manner at 2'-OH hydroxyl of desosamine sugar of macrolides.	AE005174.2:3397370- 3397847
msbA	CARD	100	98,91	Nitroimidazole	MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A a major component of the bacterial outer cell membrane and is the only bacterial ABC transporter that is essential for cell viability.	U00096.3:966620- 968369
pmrF	CARD	100	99,38	Peptide	PmrF is required for the synthesis and transfer of 4-amino-4-deoxy-L- arabinose (Ara4N) to Lipid A which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. pmrF corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.	U00096:2367070- 2368039
QnrS1	CARD	100	100	Fluoroquinolone	QnrS1 is a plasmid-mediated quinolone resistance protein found in Shigella	DQ485529.1:0-657
•	NDARO				flexneri	NG_050543.1
sul1	NDARO	100	100	Sulfonamide	Sull is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.	NG 048082 1
sul2	CARD	100	100	Sulfonamide	Sul2 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria usually found on small plasmids.	AY055428.1:21084- 20268 NG 051852.1
tet(A) NDAI	CARD	87,80	100	Tetracycline	TetA is a tetracycline efflux pump found in many species of Gram-negative	AF534183.1:2970- 4245
	NDARO	100	1	-	Dacteria.	NG_048154.1

tolC	CARD	100	98,92	Aminocoumarin, aminoglycoside, carbapenem, cephalosporin, cephamycin, fluoroquinolone, glycylcycline, macrolide, penam, penem, peptide, phenicol, rifamycin, tetracycline, triclosan	TolC is a protein subunit of many multidrug efflux complexes in Gram negative bacteria. It is an outer membrane efflux protein and is constitutively open. Regulation of efflux activity is often at its periplasmic entrance by other components of the efflux complex.	FJ768952:0-1488
ugd	CARD	100	97	Peptide	PmrE is required for the synthesis and transfer of 4-amino-4-deoxy-L- arabinose (Ara4N) to Lipid A which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin	U00096:2099613- 2098446
yojI	CARD	100	99,21	Peptide	YojI mediates resistance to the peptide antibiotic microcin J25 when it is expressed from a multicopy vector. YojI is capable of pumping out microcin molecules. The outer membrane protein TolC in addition to YojI is required for export of microcin J25 out of the cell. Microcin J25 is thus the first known substrate for YojI.	U00096.3:2308615- 2306971
aadA5	CARD	100	100	Aminoglycoside	aadA5 is an aminoglycoside nucleotidyltransferase gene encoded by plasmids transposons and integrons in E. coli K. pneumoniae Kluyvera georgiana P. aeruginosa and E. cloacae	AF137361:63-852
aadA5	NDARO	100	100	Streptomycin	ANT(3")-Ia family aminoglycoside nucleotidyltransferase AadA5	NG_047357.1

Tabell 38. Rådata for genene detektert i P12(E)Nid_Kleb gjennom CARD og NDARO.

	P12(E)Nid_Kleb								
Gen	Database	Coverage (%)	Identitet (%)	Resistens	Kommentar	Acc. Nr.			
acrB	CARD	99,75	83,85	Cephalosporin, fluoroquinolone, glycylcycline, penam, phenicol, rifamycin, tetracycline, triclosan	Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.	U00096.3:484403-481253			
acrD	CARD	99,90	80,05	Aminoglycoside	AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole and is regulated by baeRS and cpxAR.	AP009048.1:2586250- 2589364			
ADU(2") IL	CARD	100	99,75	Aminoglycosida	APH(3")-Ib is an aminoglycoside phosphotransferase encoded by plasmids	AF313472:15593-16397			
N(3)-10	NCBI	100	100	Ammogrycoside	Enterobacteriaceae and Pseudomonas spp.	NG_056002.2			
CARD	CARD	100	99,88	Aminoglycoside	APH(6)-Id is an aminoglycoside phosphotransferase encoded by plasmids integrative conjugative elements and chromosomal genomic islands in K. pneumoniae Salmonella spp. E. coli Shigella flexneri Providencia alcalifaciens Pseudomonas spp. V. cholerae Edwardsiella tarda Pasteurella multocida and Aeromonas bestiarum	AF024602:3155-3992			
AF H(0)-10	NCBI	100	100			NG_047464.1			
baeR	CARD	98,62	81,63	Aminocoumarin, aminoglycoside	BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.	AP009048.1:2166412- 2167135			
cpxA	CARD	99.49	82	Aminocoumarin, aminoglycoside	CpxA is a membrane-localized sensor kinase that is activated by envelope stress. It starts a kinase cascade that activates CpxR which promotes efflux complex expression.	BA000007.3:4905062- 4903688			
CRP	CARD	100.00	87,99	Fluoroquinolone, macrolide, penam	CRP is a global regulator that represses MdtEF multidrug efflux pump expression.	AP009048.1:4154296- 4153663			
CTX-M-15	CARD NCBI	100	100	Cephalosporin	CTX-M-15 is a beta-lactamase found in the Enterobacteriaceae family	AY044436:1435-2311 NG_048935.1			
dfrA14	CARD NCBI	100	99,79 100	Diaminopyrimidine	dfrA14 is an integron-encoded dihydrofolate reductase found in Escherichia coli	EU780012:2162-2645 NG_056035.1			

emrR	CARD	96,05	83,14	Fluoroquinolone	EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.	U00096.3:2810769- 2811300
E.A.C	CARD	100	00.76	E of much	fosA6 is a plasmid-encoded enzyme that confers resistance to fosfomycin	KU254579.1:59421-59841
FOSA6	NCBI	100	99,76	Fostomycin	in Escherichia coli by breaking the epoxide ring of the molecule.	NG_051497.1
H-NS	CARD	97,83	87,16	Cephalosporin, cephamycin, fluoroquinolone, macrolide, penam, tetracycline	H-NS is a histone-like protein involved in global gene regulation in Gram- negative bacteria. It is a repressor of the membrane fusion protein genes acrE mdtE and emrK as well as nearby genes of many RND-type multidrug exporters.	BA000007.3:1738104- 1737690
K. pneumoniae acrA	CARD	99.75	97,91	Cephalosporin, fluoroquinolone, glycylcycline, penam, phenicol, rifamycin, tetracycline, triclosan	AcrA is a subunit of the AcrAB multidrug efflux system that in K. pneumoniae which is encoded by the acrRAB operon.	AJ318073.1:793-1990
K. pneumoniae KpnE	CARD	100.00	99,45	Aminoglycoside, cephalosporin, macrolide, peptide, rifamycin, tetracycline	KpnE subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime ceftriaxon colistin erythromycin rifampin tetracycline and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate deoxycholate dyes benzalkonium chloride chlorhexidine and triclosan	AP006725.1:2483889- 2484252
K. pneumoniae KpnF	CARD	100.00	100	Aminoglycoside, cephalosporin, macrolide, peptide, rifamycin, tetracycline	KpnF subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime ceftriaxon colistin erythromycin rifampin tetracycline and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate deoxycholate dyes benzalkonium chloride chlorhexidine and triclosan.	AP006725.1:2484238- 2484568
K. pneumoniae KpnG	CARD	100.00	99,32	Aminoglycoside, carbapenem, cephalosporin, fluoroquinolone, macrolide, penam, penem, peptide	KpnG consists of ~390 residues and resembles EmrA of E. coli. Disruption of the pump components KpnG-KpnH significantly decrease resistance to azithromycin ceftazidime ciprofloxacin ertapenem erythromycin gentamicin imipenem ticarcillin norfloxacin polymyxin-B piperacillin spectinomycin tobramycin and streptomycin	ACWO01000051.1:22092- 23265
K. pneumoniae KpnH	CARD	99.94	84,16	Aminoglycoside, carbapenem, cephalosporin, fluoroquinolone, macrolide, penam, penem, peptide	KpnH consists of ~511 residues resembles EmrB of E. coli and is probably a translocase in the KpnGH-TolC efflux protein in K. pneumoniae. Disruption of the pump components KpnG-KpnH significantly decrease resistance to azithromycin ceftazidime ciprofloxacin ertapenem erythromycin gentamicin imipenem ticarcillin norfloxacin polymyxin-B piperacillin spectinomycin tobramycin and streptomycin.	ASTU01000063.1:61248- 62787

K. pneumoniae OmpK37	CARD	99.91	95,42	Carbapenem, cephalosporin, cephamycin, monobactam, penam, penem	Klebsiella pneumoniae outer membrane porin protein. Is preferentially detected in porin-deficient strains. Functional characterization of this new porin revealed a narrower pore than those of porins OmpK35 and OmpK36 which did not allow penetration by certain beta-lactams. Also when a resistant strain expresses porin OmpK37 is less susceptible to cefotaxime and cefoxitin than when it is expressing either OmpK36 or OmpK35.	AJ011502.1:300-1425
marA	CARD	96.09	81,57	Carbapenem, cephalosporin, cephamycin, fluoroquinolone, glycylcycline, monobactam, penam, penem, phenicol, rifamycin, tetracycline, triclosan	In the presence of antibiotic stress E. coli overexpresses the global activator protein MarA which besides inducing MDR efflux pump AcrAB also down- regulates synthesis of the porin OmpF.	AP009048.1:1621287- 1621671
mdtB	CARD	99.94	81,12	Aminocoumarin	MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.	U00096:2155262-2158385
mdtC	CARD	100.00	81,94	Aminocoumarin	MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.	U00096:2158385-2161463
msbA	CARD	100.00	80,62	Nitroimidazole	MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A a major component of the bacterial outer cell membrane and is the only bacterial ABC transporter that is essential for cell viability.	U00096.3:966620-968369
oqxA	CARD	100	98,89	Diaminopyrimidine, fluoroquinolone, glycylcycline, nitrofuran, tetracycline	RND efflux pump conferring resistance to fluoroquinolone	EU370913.1:46651-47827
oqxA5	NCBI	100	99,41	Phenicol, qunolone	multidrug efflux RND transporter periplasmic adaptor subunit OqxA5	NG_050423.1

oqxB	CARD	100	98,57	Diaminopyrimidine, fluoroquinolone, glycylcycline, nitrofuran, tetracycline	RND efflux pump conferring resistance to fluoroquinolone	EU370913.1:47850-51003
oqxB19	NCBI	100	99,4	Phenicol, quinolone	multidrug efflux RND transporter permease subunit OqxB19	NG_050437.1
OXA-1	CARD NCBI	100	100	Cephalosporin, penam	OXA-1 is a beta-lactamase found in E. coli	JN420336.1:2230-1399 NG_049392.1
qnrB1	NCBI	100	100	Qunilone	quinolone resistance pentapeptide repeat protein QnrB1	NG_050469.1
QnrB17	CARD	99,85	99,12	Fluoroquinolone	QnrB17 is a plasmid-mediated quinolone resistance protein found in Citrobacter freundii	AM919398:0-681
ramA	CARD	94,40	80,84	Carbapenem, cephalosporin, cephamycin, fluoroquinolone, glycylcycline, monobactam, penam, penem, phenicol, rifamycin, tetracycline, triclosan	RamA (resistance antibiotic multiple) is a positive regulator of AcrAB- TolC and leads to high level multidrug resistance in Klebsiella pneumoniae Salmonella enterica and Enterobacter aerugenes increasing the expression of both the mar operon as well as AcrAB. RamA also decreases OmpF expression.	JQ727668:0-375
SHIV 104	CARD 100	100	00.99	Carbapenem, cephalosporin,	SHV-106 is an extended-spectrum beta-lactamase that has been found in	AM941847:0-861
SH V-100	NCBI	100	99,88	penam	clinical isolates.	NG_049996.1
ou1 7	CARD	100	100 Sulfonomida	Sulfonomido	Sul2 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria usually found on small plasmids.	AY055428.1:21084-20268
Sul2	NCBI		100	Suironamide		NG_051852.1
TEM-1	CARD	100	99,88Cephalosporin, monobactam, penam, penemTEM-1 is a broad-spectrum beta-lactamase found in many Gram-neg bacteria. Confers resistance to penicillins and first generation cephalosphorins.	Cephalosporin, monobactam,	TEM-1 is a broad-spectrum beta-lactamase found in many Gram-negative bacteria. Confers resistance to penicilling and first generation	AL513383:161910- 162771
	NCBI	100		cephalosphorins.	NG_050145.1	
4-4(A)	CARD	97,80	100	Tetra and line	TetA is a tetracycline efflux pump found in many species of Gram-	AF534183.1:2970-4245
tet(A)	NCBI	100	100	Tetracycline	negative bacteria.	NG_048154.1
$\Lambda \Lambda C(2)$ IIa	CARD	100	99,53	Aminoglygogida	AAC(3)-IIe is a plasmid-encoded aminoglycoside acetyltransferase in E.	EU022315.1:0-861
AAC(3)-IIe	NCBI	100	99,77	Anniogrycoside	coli	NG_047244.1
AAC(6')-Ib- cr	CARD	100	100	Aminoglycoside, fluoroquinolone	AAC(6')-Ib-cr is an aminoglycoside acetyltransferase encoded by plasmids transposons integrons in Enterobacteriaceae. The aac(6')-Ib-cr variant gene can induce resistance against aminoglycoside and fluoroquinolone simultaneously	DQ303918:0-600
aac(6')-Ib- D181Y	NCBI	100	99,82	Amikacin, kanamycin, tobramycin	AAC(6')-Ib family aminoglycoside 6'-N-acetyltransferase	NG_067946.1

Tabell 39. Rådata for genene detektert i P16(E)Jons_Serr gjennom CARD og NDARO.

	P16(E)Jons_Serr								
Gen	Database	Coverage (%)	Identitet (%)	Resistens	Kommentar	Acc. Nr.			
CRP	CARD	100	84,83	Fluoroquinolone, macrolide, penam	CRP is a global regulator that represses MdtEF multidrug efflux pump expression.	AP009048.1:4154296- 4153663			
FONA-6	CARD	- 100 95,83	05.92	Penam FONA-6 is a class A	FONA 6 is a class A hote lastemase gone found in Serretic fonticele	AJ251244.1:1053-1941			
FUNA-0	NDARO		95,85		FONA-0 is a class A deta-factamase gene found in Serfatia fonticola.	NG_049097.1			
H-NS	CARD	97,10	81,34	Cephalosporin, cephamycin, fluoroquinolone, macrolide, penam, tetracycline	H-NS is a histone-like protein involved in global gene regulation in Gram- negative bacteria. It is a repressor of the membrane fusion protein genes acrE mdtE and emrK as well as nearby genes of many RND-type multidrug exporters.	BA000007.3:1738104- 1737690			

Sammenligning av sekvensene til blaFONA-genet detektert i P16(E)Jons_Serr og i isolat A15 (Serratia spp.) omtalt i masteroppgaven til Mette Lea med referanse-sekvensene for blaFONA-8 (WP_024530279). Sammenligningen er utført av Professor Bjørn-Arne Lindstedt gjennom bruk av «multiple sequence alignment»-programmet Clustal Omega fra EMBL European Bioinformatics Institute (EMBL-EBI).

P16(E)Jons_Serr omtales som Serratia_A16_ESBL, og A15 omtales som Serratia_A15_ESBL.

CLUSTAL O(1.2.4) multiple sequence alignment

Serratia_A15_ESBL FONA8_WP_024530279 Serratia_A16_ESBL	MVKNTLRQTTLMVATVMPLLFGS V PLWAQSANAKANIQQQLSELEKNSGGRLGVALIDTA MVKNTLRQTTLMVATVMPLLFGSAPLWAQSANAKANIQQQLSELEKNSGGRLGVALIDTA MVKNTLRQTTLMVATVMPLLFGSAPLWAQSANAKANIQQQLSELEKNSGGRLGVALIDTA ************************************	60 60 60
Serratia_A15_ESBL FONA8_WP_024530279 Serratia_A16_ESBL	DNSQILYRADERFPMCSTSKVMAVSALLKQSETDKNLLAKRMEIKQSDLVNYNPIAEKHL DNSQILYRADERFPMCSTSKVMAVSALLKQSETDKNLLAKRMEIKQSDLVNYNPIAEKHL DNSQILYRADERFPMCSTSKVMAVSALLKQSETDKDLLAKRMEIKQSDLVNYNPIAEKHL ************************************	120 120 120
Serratia_A15_ESBL FONA8_WP_024530279 Serratia_A16_ESBL	DTGMTLAEFSAATIQYSDNTAMNKILEHLGGPAKVTEFARTIGDKTFRLDRTEPTLNTAI DTGMTLAEFSAATIQYSDNTAMNKILEHLGGPAKVTEFARTIGDKTFRLDRTEPTLNTAI DTGMTLAEFSAATIQYSDNTAMNKILEHLGGPAKVTEFARTIGDKTFRLDRTEPTLNTAI ******************	180 180 180
Serratia_A15_ESBL FONA8_WP_024530279 Serratia_A16_ESBL	PGDKRDTTSPLAMAKSLQNLTLGKALGEPQRAQLVEWMKGNTTGGASIRAGLPTTWVVGD PGDKRDTTSPLAMAKSLQNLTLGKALGEPQRAQLVEWMKGNTTGGASIRAGLPTTWVVGD PGDKRDTTSPLAMAKSLQNLTLGKALGEPQRAQLVEWMKGNTTGGASIRAGLPTTWVVGD ********************************	240 240 240
Serratia_A15_ESBL FONA8_WP_024530279 Serratia_A16_ESBL	KTGSGDYGTTNDIAVIWPANHAPLVLVTYFTQPQQNAEARKDVLAAAAKIVTEGL KTGSGDYGTTNDIAVIWPANHAPLVLVTYFTQPQQNAEARKDVLAAAAKIVTEGL KTGSGDYGTTNDIAVIWPANHAPLVLVTYFTQPQQNAEARKDVLAAAAKIVTEGL	295 295 295

Tabell 40. Rådata for genene detektert i P1(E)Nid_E.coli gjennom MyVirDB.

	P1(E)Nid_E.coli								
Gen/ Markør navn	Nukleotid match (%)	Coverage	Kommentar	Acc. nr.	Contig ID	Location			
AcrA	99,83	1194/1194	Multidrug efflux pump subunit AcrA	NC_000913	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	13852713972 0			
acs	97,65	1959/1959	Acetyl-coenzyme A synthetase. APEC acs- yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages.	NC_000913	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	2514727105			
actP	97,76	1650/1650	Cation/acetate symporter ActP. APEC acs- yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages.	NC_000913	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	2298624635			
aer	98,49	1521/1521	Aerotaxis receptor	NC_011751	contig00012 len=136733 cov=26.6 corr=0 origname=NODE_12_length_136733_cov_26.639341 sw=shovill-spades/1.1.0 date=20230426	1646417984			
ampC	98,24	1134/1134	AmpC β-lactamases (also termed class C or group 1) are typically encoded on the chromosome of many Gram-negative bacteria	CP009072	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	11008011121 3			
APEC O1 conserved protein (APECO1 _2080)	97,29	2140/2202	APEC O1 conserved protein from CP000468	CP000468	contig00015 len=115480 cov=28.4 corr=0 origname=NODE_15_length_115480_cov_28.437865 sw=shovill-spades/1.1.0 date=20230426	4769749836			
arnC	99,38	969/969	Undecaprenyl-phosphate 4-deoxy-4- formamido-L-arabinose transferase	NC_000913	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	32979433076 2			
atoC	98,63	1386/1386	Member of the two-component regulatory system AtoS/AtoC	NC_011751	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	37660237798 7			

atoE	99,32	1323/1323	Short chain fatty acid transporter [Escherichia coli UMN026], positive in EPEC1 and negative in EPEC2	NC_011751	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	37377537509 7
atoS	98,96	1827/1827	Member of the two-component regulatory system AtoS/AtoC	NC_011751	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	37798437981 0
autA	97,48	795/795	AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection	KT965673	contig00028 len=50682 cov=26.7 corr=0 origname=NODE_28_length_50682_cov_26.654209 sw=shovill- spades/1.1.0 date=20230426	1359114385
Autotransp orter gene (G900_RS 00500)	96,55	2664/2664	Autotransporter (these proteins are often associated with virulence)	NZ_KE701 455	contig00029 len=45217 cov=25.0 corr=0 origname=NODE_29_length_45217_cov_24.967787 sw=shovill- spades/1.1.0 date=20230426	26605307
autR	98,56	762/762	AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection	KT965673	contig00028 len=50682 cov=26.7 corr=0 origname=NODE_28_length_50682_cov_26.654209 sw=shovill- spades/1.1.0 date=20230426	1267613437
bcr	97,06	1191/1191	Bicyclomycin resistance protein	CP027060	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	41838741957 7
bcsA (cellulose synthase)	99,18	1347/1347	Catalytically active subunit of cellulose synthase (Biofilm related)	CP006632	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	14870115004 7
BlaAMPH	98,88	1158/1158	A weak beta-lactamase	AP012030	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	4355644713
cadA (lysine decarboxyl ase)	99,02	2148/2148	Inducible lysine decarboxylase	CP025573	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	8874990896
capU	99,33	597/822	hexosyltransferase homolog. Enteroaggregative Escherichia coli (EAEC) virulence genes of importance regulated by aggR include eilA (EAEC HilA homologue), capU (cap locus that encodes a protein 50% identical to an rfbU- related lipopolysaccharide biosynthetic gene of E. coli O157: H7)	AF134403	contig00034 len=20444 cov=27.8 corr=0 origname=NODE_34_length_20444_cov_27.770521 sw=shovill- spades/1.1.0 date=20230426	76288224

cas1 (CRISPR associated)	99,57	924/924	CRISPR-associated endonuclease Cas1	BA000007	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	13736813829 1
cheW	99,01	504/504	Chemotaxis protein	CP027060	contig00023 len=74609 cov=25.8 corr=0 origname=NODE_23_length_74609_cov_25.811888 sw=shovill- spades/1.1.0 date=20230426	3756038063
cheY	99,49	390/390	Chemotaxis protein	CP028306	contig00023 len=74609 cov=25.8 corr=0 origname=NODE_23_length_74609_cov_25.811888 sw=shovill- spades/1.1.0 date=20230426	4346043849
chuA	98,69	1983/1983	Outer membrane hemin receptor	CP025573	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	19335719533 9
cirA	98,84	1980/1980	Outer membrane receptor for colicins IA and IB	CP018206	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	45132445330 3
cka	99,6	1761/1755	colicin K activity protein	NC_006881. 1	contig00043 len=7105 cov=108.0 corr=0 origname=NODE_43_length_7105_cov_108.044896 sw=shovill- spades/1.1.0 date=20230426	37045464
class-1 integron Integrase	99,89	944/944	Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase	CP031216	contig00045 len=5996 cov=34.3 corr=0 origname=NODE_45_length_5996_cov_34.315718 sw=shovill- spades/1.1.0 date=20230426	3031246
copA	96,85	2505/2505	Copper-exporting P-type ATPase	AE014075	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	16276816527 2
CRISPR- associated protein CasE	97,08	789/789	CRISPR system Cascade subunit CasE	BA000007	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	13658313737 1
CRT46_R S20765	98,57	1188/1188	type III effector protein	NZ_CP0238 20	contig00016 len=105785 cov=28.0 corr=0 origname=NODE_16_length_105785_cov_27.989278 sw=shovill-spades/1.1.0 date=20230426	3796339150

csgA	99,09	439/450	curli fimbriae gene	NZ_CP0428 92	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	34054234098 0
csgB	100	456/456	curli fimbriae gene	CP027060	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	34004634050 1
csgE	100	390/390	curli fimbriae gene	NC_002655	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	33824733863 6
csgF	98,8	417/417	curli fimbriae gene	NC_011750	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	33780633822 2
csgG	98,92	834/834	curli fimbriae gene	LT903847	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	33694633777 9
CTX-M- 15	100	876/876	Extended-spectrum β-lactamase (ESBL) CTX- M-15	KF055402	contig00030 len=35080 cov=31.3 corr=0 origname=NODE_30_length_35080_cov_31.306128 sw=shovill- spades/1.1.0 date=20230426	90089883
cusA	97,39	3144/3144	Part of a cation efflux system that mediates resistance to copper and silver.	NZ_NMMD 01000001	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	23765524079 8
CvaA- colicin V secretion protein	97,58	1242/1242	Involved, in conjunction with CvaB, in the secretion of colicin V.	GG773553	contig00032 len=26264 cov=28.6 corr=0 origname=NODE_32_length_26264_cov_28.568348 sw=shovill- spades/1.1.0 date=20230426	1611917357
dfrA17	100	474/474	dfrA17 is an integron-encoded dihydrofolate reductase found in Escherichia coli conferring resistance to the antibiotic trimethoprim	NZ_MSJW0 2000186	contig00045 len=5996 cov=34.3 corr=0 origname=NODE_45_length_5996_cov_34.315718 sw=shovill- spades/1.1.0 date=20230426	14041877
ecotin	98,57	419/419	General inhibitor of pancreatic serine proteases	CP025268	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	39513039554 8
ecpB (common pilus)	99,7	669/669	common pilus gene	NZ_QOON 01000045	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	1502315691

ecpD (common pilus)	97,63	1644/1644	common pilus gene	NZ_UASG0 1000005	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	1823219875
ECs3706/y qeK (ETT2- related)	98,12	426/426	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2418324608
ECs3707y geF (ETT2- related)	96,54	492/492	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2326223753
ECs3725/e paP (ETT2- related)	97,9	666/666	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1127911944
ECs3735 (ETT2- related)	100	180/180	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	15401719
ECs3736/p kgA (ETT2- related)	99,81	1048/1059	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	4261473
EcSMS35 _3916	99,31	1296/1296	Fic family protein, EcSMS35_3916, positive in EPEC1 absent from EPEC2	NC_010498	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	8458785882
ehaC	97,92	3753/3753	AIDA-I family autotransporter adhesin	BA000007	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	35567135942 3
eilA	97,35	1698/1698	EilA, a HilA-like regulator in enteroaggregative Escherichia coli	CP003034	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	5652262
eivA	99,13	2061/2061	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_C00269 5	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	56577717

eivC	98,41	1320/1320	Part of Escherichia coli type III secretion system 2 (ETT2)	BA000007	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	77229041
eivE	99,56	1146/1146	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_C00269 5	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	45195664
eivF	99,73	750/750	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_C00269 5	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	20652814
eivG	99,71	1704/1704	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_C00269 5	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	28114514
eivH	98,3	294/294	Part of Escherichia coli type III secretion system 2 (ETT2)	DQ077151	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1417514468
eivI	97,43	428/426	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	90229449
eivJ	95,4	348/348	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	999510342
elaD	95,7	1233/1233	Deubiquitinating Protease (elaD is present in all intestinal pathogenic E. coli strains) doi: 10.1371/journal.pone.0000381	CP006262	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	31389631512 0
elfG	97,01	1071/1071	Part of the elfADCG-ycbUVF fimbrial operon, which promotes adhesion of bacteria to different abiotic surfaces	CP011134	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	20659420766 4
entA	97,86	747/747	enterobactin biosynthesis and transportation	CP027060	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21102721177 3
entE	96,52	1611/1611	enterobactin biosynthesis and transportation	CP027060	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21264421425 4
entH	95,89	414/414	enterobactin biosynthesis and transportation	CP027060	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21061121102 4

epaO			Part of Escharishia coli type III secretion		contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	96,2	948/948	sustem 2 (ETT2)	KU684470	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1034211289
related)			system 2 (E112)		spades/1.1.0 date=20230426	
epaQ			Port of Eacharishia coli type III connection		contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	96,17	261/261	Part of Eschericina con type in secretion	NC_002695	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1195412214
related)			system 2 (ETT2)		spades/1.1.0 date=20230426	
epaR			Dout of Each orights coli terms III connection		contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	97,27	768/768	Part of Escherichia con type in secretion	KU684470	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1221612983
related)			system 2 (ETT2)		spades/1.1.0 date=20230426	
epaS1			Dout of Each orights coli terms III connection		contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	97,44	468/468	Part of Escherichia con type III secretion	KU684470	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1299213452
related)			system 2 (ETT2)		spades/1.1.0 date=20230426	
epaS2			Deut of Feel anishie and it to be a fit to be a set in a		contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	96,14	363/363	Part of Escherichia coli type III secretion	KU684470	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1375114113
related)	-		system 2 (ETT2)		spades/1.1.0 date=20230426	
EprI					contig00005 len=261094 cov=27.0 corr=0	
(ÊTT2-	98,75	240/240	Part of Escherichia coli type III secretion	NC_002695	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1642116660
related)	-		system 2 (E112)	_	spades/1.1.0 date=20230426	
eprJ					contig00005 len=261094 cov=27.0 corr=0	
(ETT2-	97	333/333	Part of Escherichia coli type III secretion	KU684470	origname=NODE_5_length_261094_cov_27.036933 sw=shovill-	1668017012
related)			system 2 (E112)		spades/1.1.0 date=20230426	
					contig00003 len=388553 cov=25.0 corr=0	220146 24104
espL1	97,42	1899/1899	Putative type III secreted effector	NC_002695	origname=NODE 3 length 388553 cov 25.006868 sw=shovill-	23914624104
•	-			110_002075	spades/1.1.0 date=20230426	4
					contig00027 len=57923 cov=28.1 corr=0	
espL4	99,27	2187/2187	Type III secretion system effector EspL4	BA000007	origname=NODE_27_length_57923_cov_28.145160 sw=shovill-	72479433
I	,				spades/1.1.0 date=20230426	
espL4/shE			ShET2/EspL2 family type III secretion system		contig00027 len=57923 cov=28.1 corr=0	
T2 effector	99,27	2187/2187	effector toxin [Escherichia coli]	NZ_PDAP0	origname=NODE 27 length 57923 cov 28.145160 sw=shovill-	72479433
Toxin	,		/locus_tag=="CRE04_RS20960"	1000031	spades/1.1.0 date=20230426	
					contig00014 len=126991 cov=25.0 corr=0	100 11 1 100 1
espR1	99.36	1251/1260	T3SS effector leucine-rich repeat protein EspR1	BA000007	origname=NODE 14 length 126991 cov 25.012279	10961411086
I	,				sw=shovill-spades/1.1.0 date=20230426	4
					contig00014 len=126991 cov=25.0 corr=0	100000 10050
espR2	99,6	505/504	O-I 62 effector gene	BA000007	origname=NODE 14 length 126991 cov 25.012279	10829210879
T	,				sw=shovill-spades/1.1.0 date=20230426	0

espX1	95,78	1422/1422	Putative type III secreted effector	CP003034	contig00020 len=89561 cov=27.2 corr=0 origname=NODE_20_length_89561_cov_27.207524 sw=shovill- spades/1.1.0 date=20230426	3878940210
espX4	96,49	1539/1539	Putative type III secreted effector	NC_017646	contig00027 len=57923 cov=28.1 corr=0 origname=NODE_27_length_57923_cov_28.145160 sw=shovill- spades/1.1.0 date=20230426	4714948687
espX5	97,45	1293/1293	Putative type III secreted effector	NC_013008	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	2151622808
espX6	95,75	1578/2208	Putative type III secreted effector	NC_002695	contig00015 len=115480 cov=28.4 corr=0 origname=NODE_15_length_115480_cov_28.437865 sw=shovill-spades/1.1.0 date=20230426	5845960015
espY1	97,48	753/753	EspY1 appears to be involved in apoptosis/cell cycle regulation.	NC_002695	contig00017 len=98768 cov=26.7 corr=0 origname=NODE_17_length_98768_cov_26.673607 sw=shovill- spades/1.1.0 date=20230426	143895
espY3	97,65	1572/1572	EspY3 of Type III Secretion System from Enterohemorrhagic Escherichia coli Is Localized in Actin Pedestals	NC_002695	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	8957291143
etrA	97,8	501/501	Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian pathogenic Escherichia coli	KU684467	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1447014970
fbpB	98,85	2079/2079	permease component of transport system for ferric iron known to be involved in urovirulence in the mouse model of ascending UTI	LR134081	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	2780829886
fdeC (intimin- like protein)	96,78	4254/4254	FdeC (factor adherence E. coli) able to mediate E. coli adhesion to mammalian cells and extracellular matrix.	NZ_QOON 01000045	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	1364389
fecA	99,83	2325/2325	Outer membrane ferri-siderophore receptor, an E. coli 83972 isolate during deliberate bladder colonization lost genes for the aerobactin siderophore system, which is immunogenic, while expression of the ferric citrate receptor FecA was upregulated	NC_011751	contig00034 len=20444 cov=27.8 corr=0 origname=NODE_34_length_20444_cov_27.770521 sw=shovill- spades/1.1.0 date=20230426	1501217336

feoB	97,55	2322/2322	Fe(2+) transporter	HG941718	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	12154812386 9
fepA	97,48	1945/1947	Ferrienterobactin receptor	CP000468	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	22773022967 4
fepB	96,33	954/957	Ferrienterobactin-binding periplasmic protein	AE014075	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21562821658 1
fepC	97,18	816/816	Predicted ATP-binding subunit of a ferrric enterobactin ABC transporter	AE014075	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	22002522084 0
fepD	95,08	1017/1017	Ferric enterobactin (Enterochelin) transport	AE014075	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21802321903 9
fepG	97,18	993/993	Ferric enterobactin transport system permease protein	CP025573	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	21903622002 8
fes	97,51	1125/1125	Enterochelin esterase	CP027060	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	22628522740 9
fiu	98,64	2283/2283	Catecholate siderophore receptor	CP023820	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	3801240294
flgD	99,28	696/696	Basal-body rod modification protein	CP027060	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	36795236864 7
flgM	98,62	290/294	Negative regulator of flagellin synthesis	CP028192	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	36593736622 6
fsr (Fosmido mycin resistance)	98,77	1221/1221	Fosmidomycin resistance protein	CP027060	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	15747015869 0

gspD (Shigella)	97,41	1851/1836	Type II secretion system protein	NC_007606	contig00012 len=136733 cov=26.6 corr=0 origname=NODE_12_length_136733_cov_26.639341 sw=shovill-spades/1.1.0 date=20230426	12381912566 9
hlyD- family gene	96,51	1176/1176	HlyD is a component of the prototypical alpha- haemolysin (HlyA) bacterial type I secretion system,	NZ_CP0238 20	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	19250319367 8
HlyE	99,13	918/918	Toxin, which has some hemolytic activity towards mammalian cells. Acts by forming a pore-like structure upon contact with mammalian cells.	BA000007	contig00029 len=45217 cov=25.0 corr=0 origname=NODE_29_length_45217_cov_24.967787 sw=shovill- spades/1.1.0 date=20230426	1255813475
ibeB	96,97	1384/1383	Invasion protein	AF094824	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	24240524378 7
ibeC	97,4	1734/1734	Invasion protein	CP019777	contig00022 len=76162 cov=27.8 corr=0 origname=NODE_22_length_76162_cov_27.785828 sw=shovill- spades/1.1.0 date=20230426	1875220485
invH (ETT2- related)	98,3	294/294	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_018658	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1417514468
ipaD- family gene	96,59	1350/1350	Type III secretion system needle tip complex protein family gene	NZ_CP0238 20	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	24653814
ipaH	97,38	841/843	Invasion plasmid antigen	CU928164	contig00029 len=45217 cov=25.0 corr=0 origname=NODE_29_length_45217_cov_24.967787 sw=shovill- spades/1.1.0 date=20230426	2379124631
IS26- transposas e	100	437/705	The IS26 transposase catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route.	AP018456	contig00087 len=451 cov=225.8 corr=0 origname=NODE_87_length_451_cov_225.847059 sw=shovill- spades/1.1.0 date=20230426	15451
iss (O55:H7)	99,66	294/294	The increased serum survival gene	NC_013941	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	1102011313
ivy	98,73	474/474	Inhibitor of vertebrate lysozyme	CP025268	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	5442854901

lktB- homolog	96,65	2121/2121	Homolog of lktB (Leukotoxin translocation ATP- binding protein)	NC_002695	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	19038619250 6
matB	99,15	588/588	matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group	LS483297	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	1437814965
matD	97,86	2526/2526	Predicted outer membrane protein associated with E. coli common pilus (ECP) formation in pathogenic E. coli strains	HM102365	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	1571718242
mdfA	98,46	1233/1233	Multidrug transporter	NZ_AP0219 63	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	8338984621
mdtH	98,51	1209/1209	Multidrug resistance protein	CP019777	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	36021636142 4
MphA	100	906/906	The mphA gene encodes for resistance enzyme MPH(2')-I which preferentially inactivate 14- membered macrolides (e.g.erythromycin, telithromycin, roxithromycin)	DQ445270	contig00050 len=4349 cov=31.0 corr=0 origname=NODE_50_length_4349_cov_31.045304 sw=shovill- spades/1.1.0 date=20230426	32644169
mviM	97,51	924/924	Putative virulence factor	CU928164	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	36290436382 7
nikA	97,33	1575/1575	Nickel-binding periplasmic protein	CU928163	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	4162843202
nlpD- lipoprotein	98,95	1140/1140	NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli	NC_017634	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	14814114928 0
ompA	95,73	1053/1041	Outer membrane protein A	CP027060	contig00002 len=432210 cov=25.5 corr=0 origname=NODE_2_length_432210_cov_25.455953 sw=shovill- spades/1.1.0 date=20230426	22380022485 2
ompW	95,48	642/639	Outer membrane protein W	CP027060	contig00021 len=79226 cov=25.2 corr=0 origname=NODE_21_length_79226_cov_25.205106 sw=shovill- spades/1.1.0 date=20230426	5677357411

pocA	99,78	1818/1818	Copper resistant protein, multicopper oxidase	NZ_CP0308 76	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	1931121128
pic	95,06	3480/4044	Autotransporter Genes pic and tsh Are Associated with Escherichia coli Strains That Cause Acute Pyelonephritis and Are Expressed during Urinary Tract Infection	AEZZ02000 039	contig00046 len=5946 cov=49.8 corr=0 origname=NODE_46_length_5946_cov_49.779606 sw=shovill- spades/1.1.0 date=20230426	24705946
PP91_RS1 6430	97,99	1296/1296	TolC family type I secretion outer membrane protein	NZ_JSLB01 000085	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	16815916945 4
ppk	99,23	2067/2067	Polyphosphate kinase	CP025268	contig00008 len=200759 cov=26.1 corr=0 origname=NODE_8_length_200759_cov_26.082268 sw=shovill- spades/1.1.0 date=20230426	9290094966
qnrS1	100	657/657	Plasmid-Mediated Quinolone Resistance Gene	NC_020086	contig00030 len=35080 cov=31.3 corr=0 origname=NODE_30_length_35080_cov_31.306128 sw=shovill- spades/1.1.0 date=20230426	37114367
recG	95,42	2072/2082	RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria.	CP019455	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	2107023141
sapA	97,93	1644/1644	Antimicrobial peptide ABC transporter substrate-binding protein [Escherichia coli UMN026]	NC_011751	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	8412385766
sbmC (DNA Gyrase inhibitor)	99,37	474/474	sbmC, a stationary-phase induced SOS Escherichia coli gene, whose product protects cells from the DNA replication inhibitor microcin B17	CP027060	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	62533562580 8
sfmC	99,13	693/693	Probable fimbrial chaperone SfmC; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes	CP032667	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	25842625911 8
shiA	97,95	1317/1317	shiA, suppress the host inflammatory response	NC_011751	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	63923264054 8

shuX (Shigella)	98,79	495/495	Part of the Shigella Shu heme uptake system	NC_007606	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	18989719039 1
silA	99,94	3147/3147	Silver efflux pump. Silver Resistance	DQ517526	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	1108214228
silE	100	549/549	Silver binding protein. Silver Resistance	NC_018658	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	48795427
silS	99,93	1482/1482	Membrane sensor kinase. Silver Resistance	KU248944	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	55557036
sipB	95,74	1783/1782	YopB/SseC family type III secretion system translocon subunit	NZ_AP0221 73.1	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	50226803
Slp- lipoprotein	99,65	567/567	The Escherichia coli O157:H7 carbon starvation-inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. https://doi.org/10.1371/journal.pone.0216791	NZ_NLYY0 1000004	contig00009 len=199002 cov=28.1 corr=0 origname=NODE_9_length_199002_cov_28.126577 sw=shovill- spades/1.1.0 date=20230426	19716319772 9
sroH	100	161/161	SroH is only conserved in E. coli K12 and O157 strains	NC_011751	contig00031 len=31184 cov=27.7 corr=0 origname=NODE_31_length_31184_cov_27.746436 sw=shovill- spades/1.1.0 date=20230426	1751417674
stcD (Fimbrial adhesin)	98,07	1035/1035	Putative fimbrial-like adhesin protein gene	NC_018658	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	51964252067 6
sugE	99,06	318/318	Quaternary ammonium compound-resistance SugE	CP018976	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	10914410946 1
sul1	100	867/867	Sull is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.	NC_022652	contig00045 len=5996 cov=34.3 corr=0 origname=NODE_45_length_5996_cov_34.315718 sw=shovill- spades/1.1.0 date=20230426	33164182
Sul2	99,39	816/816	Sul2 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria, usually found on small plasmids.	DQ464881	contig00024 len=73534 cov=35.9 corr=0 origname=NODE_24_length_73534_cov_35.885336 sw=shovill- spades/1.1.0 date=20230426	60346849

tehA	99,4	993/993	Tellurite resistance protein TehA	CP027060	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	18651018750 2
tehB	98,32	594/594	Tellurite resistance protein TehB	CP027060	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	18749918809 2
terC	99,06	959/966	Tellurite resistance protein TerC	NC_000913	contig00011 len=184628 cov=27.4 corr=0 origname=NODE_11_length_184628_cov_27.449688 sw=shovill-spades/1.1.0 date=20230426	17902017997 8
tetA	100	1247/1275	TetA is a tetracycline efflux pump found in many species of Gram-negative bacteria.	CP031106	contig00042 len=7900 cov=30.9 corr=0 origname=NODE_42_length_7900_cov_30.852613 sw=shovill- spades/1.1.0 date=20230426	52086454
tnpM21	100	281/281	this gene is reported to enhance Tn21 transposition	KX117210	contig00042 len=7900 cov=30.9 corr=0 origname=NODE_42_length_7900_cov_30.852613 sw=shovill- spades/1.1.0 date=20230426	269549
tonB	98,33	720/720	TonB is a component of the energy transducing Ton system	CP027060	contig00021 len=79226 cov=25.2 corr=0 origname=NODE_21_length_79226_cov_25.205106 sw=shovill- spades/1.1.0 date=20230426	5384254561
tssG (Type-6 secretion gene)	99,82	1089/1089	Type VI secretion system baseplate subunit	NC_011741	contig00018 len=96874 cov=26.7 corr=0 origname=NODE_18_length_96874_cov_26.736025 sw=shovill- spades/1.1.0 date=20230426	7009871186
ybbP (putative ABC- transporter permease)	97,35	2415/2415	YbbP is the predicted membrane-spanning subunit of a putative ATP-binding cassette (ABC) exporter complex	NC_011751	contig00007 len=208513 cov=25.8 corr=0 origname=NODE_7_length_208513_cov_25.757733 sw=shovill- spades/1.1.0 date=20230426	20491520732 9
ybdO	99,67	903/903	YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis	NZ_KI3039 15.1	contig00004 len=290873 cov=26.0 corr=0 origname=NODE_4_length_290873_cov_25.956621 sw=shovill- spades/1.1.0 date=20230426	20270720360 9
ycgV	98,64	1908/2868	ycgV is an autotransporter adhesin. It is homologous to Ag43. It greatly increases adhesion to solid surfaces.	NC_011751	contig00021 len=79226 cov=25.2 corr=0 origname=NODE_21_length_79226_cov_25.205106 sw=shovill- spades/1.1.0 date=20230426	1112018
ychO (Autotrans	98,21	1395/1395	ychO plays a role in the pathogenicity of APEC strain SEPT362. The ychO gene is highly expressed in the lungs and spleen during in vivo	NC_009801	contig00021 len=79226 cov=25.2 corr=0 origname=NODE_21_length_79226_cov_25.205106 sw=shovill- spades/1.1.0 date=20230426	1939220786

4						· · · · · · · · · · · · · · · · · · ·
adhesin)			10.1186/s12866-016-0654-2			
yecI (ferritin- like protein 2)	98,21	504/504Gene encoding a ferritin-like protein (FtnB). Ferritin Mutants of Escherichia coli Are Iron Deficient and Growth Impaired		AE014075	contig00023 len=74609 cov=25.8 corr=0 origname=NODE_23_length_74609_cov_25.811888 sw=shovill- spades/1.1.0 date=20230426	2424724750
yeeJ	96,88	8011/8010	YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation	NZ_NMFR 01000026	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	64217765018 6
yejO	97,49	2511/2511	Putative autosecreted adhesin/ATP-binding component of transport system. YejO shows sequence similarity to the α 43 subunit of Ag43	NC_011750	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	40924741175 7
yfcI	97,29	885/903	Putative transposase	NC_011750	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	27869327957 7
yfdV (transporte r gene)	98,52	945/945	Predicted transporter. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon	NC_011750	contig00001 len=748429 cov=25.7 corr=0 origname=NODE_1_length_748429_cov_25.664931 sw=shovill- spades/1.1.0 date=20230426	21850921945 3
ygeG/ECs 3708 (ETT2- related)	98,15	487/492	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2255123037
ygeH (ETT2- related)	97,82	1377/1377	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2083522211
ygeJ/PBL (ETT2- related)	95,63	504/503	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1986220365
ygeK/ECs 3712 (ETT2- related)	98,42	633/633	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	1921219844
ygfI	99,44	897/897	regulatory RNA gene	CU928163	contig00013 len=136140 cov=27.4 corr=0 origname=NODE_13_length_136140_cov_27.436627 sw=shovill-spades/1.1.0 date=20230426	6791268808

yjaA	98,44	384/384	YjaA is involved in the cellular response to hydrogen peroxide and acid stress	CP021288	contig00027 len=57923 cov=28.1 corr=0 origname=NODE_27_length_57923_cov_28.145160 sw=shovill- spades/1.1.0 date=20230426	179562
yjcH	99,05	315/315	APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages.	NC_000913	contig00006 len=226191 cov=27.7 corr=0 origname=NODE_6_length_226191_cov_27.667158 sw=shovill- spades/1.1.0 date=20230426	2463224946
урјА	95,88	4590/4587	adhesin-like autotransporter	CP001368	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	23170423627 2
yqeH (ETT2- related)	99,68	633/633	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2637527007
yqeI (ETT2- related)	97,16	810/810	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2523226041
yqeJ (ETT2- related)	95,86	483/483	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750	contig00005 len=261094 cov=27.0 corr=0 origname=NODE_5_length_261094_cov_27.036933 sw=shovill- spades/1.1.0 date=20230426	2475725239
yqfA (Hemolysi n-III family gene)	98,79	660/660	When expressed from plasmids, three genes (dkgA, yqhD, and yqfA) were found to decrease furfural tolerance. Encoding an inner membrane protein of the hemolysin 3 family with putative oxidoreductase function.	CP027060	contig00013 len=136140 cov=27.4 corr=0 origname=NODE_13_length_136140_cov_27.436627 sw=shovill-spades/1.1.0 date=20230426	9149792156
YqgB (putative virulence promoting factor)	100	147/147	Gene of unknown class or function significantly induced by AI-2 quorum signaling	CP023258	contig00013 len=136140 cov=27.4 corr=0 origname=NODE_13_length_136140_cov_27.436627 sw=shovill-spades/1.1.0 date=20230426	4370243848
zntA	96,04	2199/2199	Zinc/cadmium/lead-transporting P-type ATPase.	AP010958	contig00010 len=185529 cov=27.4 corr=0 origname=NODE_10_length_185529_cov_27.382363 sw=shovill-spades/1.1.0 date=20230426	4860450802
znuA	99,36	933/933	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	CP027060	contig00003 len=388553 cov=25.0 corr=0 origname=NODE_3_length_388553_cov_25.006868 sw=shovill- spades/1.1.0 date=20230426	37770537863 7

ZnuB	99,36	786/786	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	BA000007	contig00003 len=388553 cov=25.0 corr=0 origname=NODE_3_length_388553_cov_25.006868 sw=shovill- spades/1.1.0 date=20230426	37946838025 3
znuC	99,6	756/756	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	NC_000913	contig00003 len=388553 cov=25.0 corr=0 origname=NODE_3_length_388553_cov_25.006868 sw=shovill- spades/1.1.0 date=20230426	37871637947 1
zupT	98,06	774/774	Zinc transporter	CP027060	contig00012 len=136733 cov=26.6 corr=0 origname=NODE_12_length_136733_cov_26.639341 sw=shovill-spades/1.1.0 date=20230426	4560446377

Tabell 41. Rådata for genene detektert i P12(E)Nid_Kleb gjennom MyVirDB.

	P12(E)Nid_Kleb									
Gen/ Markør navn	Nukleotid match (%)	Coverage	Kommentar	Acc. Nr.	Contig ID	Location				
BlaAmpH	99,14	1161/1161	A weak beta-lactamase	CP003785	contig00004 len=502531 cov=27,7 corr=0 origname=NODE_4_length_502531_cov_27,743328 sw=shovill-spades/1,1,0 date=20230425	343934,,345094				
class-1 integron Integrase	99,89	944/944	Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance, They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes, Acquisition of gene cassettes is catalysed by the class 1 integron integrase	CP031216	contig00026 len=7009 cov=32,5 corr=0 origname=NODE_26_length_7009_cov_32,486808 sw=shovill-spades/1,1,0 date=20230425	5342,,6285				
CTX-M-15	100	876/876	Extended-spectrum β -lactamase (ESBL) CTX-M-15	KF055402	contig00025 len=9014 cov=29,4 corr=0 origname=NODE_25_length_9014_cov_29,445692 sw=shovill-spades/1,1,0 date=20230425	688,,1563				
CusA/CzcA	97,87	3150/3150	CusA/CzcA family heavy metal efflux RND transporter	NZ_CP018056,1	contig00021 len=20020 cov=31,0 corr=0 origname=NODE_21_length_20020_cov_30,970968 sw=shovill-spades/1,1,0 date=20230425	7850,,10999				
ecnB	100	192/192	entericidin B, bacteriolytic lipoprotein	CP000647,1	contig00010 len=224895 cov=29,2 corr=0 origname=NODE_10_length_224895_cov_29,222071 sw=shovill-spades/1,1,0 date=20230425	197675,,197866				
eitA	98,3	999/999	putative iron transport system, periplasmic binding protein	DQ381420	contig00002 len=559594 cov=25,8 corr=0 origname=NODE_2_length_559594_cov_25,845182 sw=shovill-spades/1,1,0 date=20230425	376988,,377986				
eitB	98,07	1038/1038	putative iron transport system, permease component	DQ381420	contig00002 len=559594 cov=25,8 corr=0 origname=NODE_2_length_559594_cov_25,845182 sw=shovill-spades/1,1,0 date=20230425	375951,,376988				
eitC	98,95	765/765	Putative iron transport system component	DQ381420	contig00002 len=559594 cov=25,8 corr=0 origname=NODE_2_length_559594_cov_25,845182 sw=shovill-spades/1,1,0 date=20230425	375190,,375954				

fecA	98,19	2325/2325	Outer membrane ferri-siderophore receptor, an E, coli 83972 isolate during deliberate bladder colonization lost genes for the aerobactin siderophore system, which is immunogenic, while expression of the ferric citrate receptor FecA was upregulated	NC_011751	contig00022 len=19616 cov=32,8 corr=0 origname=NODE_22_length_19616_cov_32,828408 sw=shovill-spades/1,1,0 date=20230425	4654,,6978
fosA	95,24	420/420	FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic,	NZ_CP018056	contig00007 len=378071 cov=29,2 corr=0 origname=NODE_7_length_378071_cov_29,218679 sw=shovill-spades/1,1,0 date=20230425	354777,,355196
IS26- transposase	100	616/705	The IS26 transposase catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route,	AP018456	contig00050 len=668 cov=281,1 corr=0 origname=NODE_326_length_668_cov_281,055655 sw=shovill-spades/1,1,0 date=20230425	53,,668
oqxA	99,32	1176/1176	The oqxAB gene generally locates on chromosome and/or plasmids flanked by IS26- like elements in clinical isolates of Enterobacteriaceae and Klebsiella pneumoniae, conferring low to intermediated resistance to quinoxalines, quinolones tigecycline, nitrofurantoin, several detergents and disinfectants (benzalkonium chloride, triclosan and SDS),	KJ875817	contig00006 len=462693 cov=28,5 corr=0 origname=NODE_6_length_462693_cov_28,492060 sw=shovill-spades/1,1,0 date=20230425	37144,,38319
oqxB	98,57	3153/3153	The oqxAB gene generally locates on chromosome and/or plasmids flanked by IS26- like elements in clinical isolates of Enterobacteriaceae and Klebsiella pneumoniae, conferring low to intermediated resistance to quinoxalines, quinolones tigecycline, nitrofurantoin, several detergents and disinfectants (benzalkonium chloride, triclosan and SDS),	NC_010378	contig00006 len=462693 cov=28,5 corr=0 origname=NODE_6_length_462693_cov_28,492060 sw=shovill-spades/1,1,0 date=20230425	38343,,41495
рсоА	99,83	1818/1818	Copper resistant protein, multicopper oxidase	NZ_CP030876	contig00018 len=62549 cov=31,7 corr=0 origname=NODE_18_length_62549_cov_31,681652 sw=shovill-spades/1,1,0 date=20230425	45282,,47099

pduC	99,46	1665/1665	Propanediol dehydratase, In AIEC , the presence of pduC, which is significantly up-regulated in the presence of bile salts, has been correlated with increased cellular invasion and bacterial persistence,	NC_016845	contig00006 len=462693 cov=28,5 corr=0 origname=NODE_6_length_462693_cov_28,492060 sw=shovill-spades/1,1,0 date=20230425	304531,,306195
ratA	99,77	438/438	ribosome association toxin RatA	KQ088520	contig00006 len=462693 cov=28,5 corr=0 origname=NODE_6_length_462693_cov_28,492060 sw=shovill-spades/1,1,0 date=20230425	25627,,26064
SHV12	99,08	867/867	SHV-12 is an extended-spectrum beta-lactamase	KJ933392	contig00001 len=736250 cov=25,0 corr=0 origname=NODE_1_length_736250_cov_24,977997 sw=shovill-spades/1,1,0 date=20230425	386376,,387242
silA	100	2864/2883	Silver efflux pump, Silver Resistance	CP018351	contig00018 len=62549 cov=31,7 corr=0 origname=NODE_18_length_62549_cov_31,681652 sw=shovill-spades/1,1,0 date=20230425	52470,,55333
silS	98,25	1482/1482	Membrane sensor kinase, Silver Resistance	KU248944	contig00018 len=62549 cov=31,7 corr=0 origname=NODE_18_length_62549_cov_31,681652 sw=shovill-spades/1,1,0 date=20230425	59380,,60861
Sul2	99,39	816/816	Sulfonamide resistance in gram-negative bacilli generally arises from the acquisition of either of the two genes sul1 and sul2, encoding forms of dihydropteroate synthase that are not inhibited by the drug	DQ464881	contig00025 len=9014 cov=29,4 corr=0 origname=NODE_25_length_9014_cov_29,445692 sw=shovill-spades/1,1,0 date=20230425	7666,,8481
TEM1B	100	861/861	TEM-1 is the most commonly encountered beta- lactamase in Gram-negative bacteria, Up to 90% of ampicillin resistance in E, coli is due to the production of TEM-1,	LN735560	contig00025 len=9014 cov=29,4 corr=0 origname=NODE_25_length_9014_cov_29,445692 sw=shovill-spades/1,1,0 date=20230425	4385,,5245
tetA	100	1247/1275	Tetracycline resistance protein, class C	CP031106	contig00024 len=13629 cov=35,1 corr=0 origname=NODE_24_length_13629_cov_35,085664 sw=shovill-spades/1,1,0 date=20230425	2625,,3871
tnpA iSEcp1- transposase	100	1266/1266	Typically associated with CMY-type beta- lactamases	NC_014384	contig00025 len=9014 cov=29,4 corr=0 origname=NODE_25_length_9014_cov_29,445692 sw=shovill-spades/1,1,0 date=20230425	1819,,3084
vgrG	97,79	1583/2487	Actin cross-linking toxin VgrG1	CP031562	contig00002 len=559594 cov=25,8 corr=0 origname=NODE_2_length_559594_cov_25,845182 sw=shovill-spades/1,1,0 date=20230425	254196,,255778

AACA4	98,65	519/519	Aminoglycoside N(6')-acetyltransferase type 1, Catalyzes the transfer of an acetyl group from acetyl-CoA to the 6'-amino group of aminoglycoside molecules conferring resistance to antibiotics containing the purpurosamine ring including amikacin and kanamycin	AJ295229	contig00034 len=2407 cov=29,9 corr=0 origname=NODE_36_length_2407_cov_29,939460 sw=shovill-spades/1,1,0 date=20230425	1651,,2169
-------	-------	---------	---	----------	---	------------

Tabell 42. Rådata for genene detektert i P16(E)Jons_Serr gjennom MyVirDB.

	P16(E)Jons_Serr						
Fasta header	Identity	Query / Template length	Contig	Position in contig			
FONA3gbAJ251241	95.38	888 / 888	contig00006 len=288803 cov=26.8 corr=0 origname=NODE_6_length_288803_cov_26.786156 sw=shovill-spades/1.1.0 date=20230425	1989220779			

P1(E)Nid_E.coli					
Gene	Coverage	Coverage (%)	Identity (%)	Product	Acc. Nr.
aec15	1-2145/2145	100	97,76	hypothetical protein	gi:291282560
aec17	1-501/501	100	99,8	hypothetical protein	gi:386612393
aec18	1-1476/1476	100	99,93	hypothetical protein	gi:410484140
aec19	1-414/414	100	99,76	hypothetical protein	gi:260842457
aec22	1-1089/1089	100	99,54	hypothetical protein	gi:218693690
aec23	1-1302/1302	100	99,69	hypothetical protein	gi:15799907
aec24	1-525/525	100	99,24	hypothetical protein	gi:15799906
aec25	1-1332/1332	100	99,7	hypothetical protein	gi:15799905
aec26	1-762/762	100	100	hypothetical protein	gi:291281043
aec28	1-744/744	100	99,6	hypothetical protein	gi:15799902
aec29	1-1413/1413	100	94,83	ImpA domain protein	gi:291281040
aec30	1-3525/3525	100	98,1	hypothetical protein	gi:387505144
aec31	1-1500/1500	100	99,13	ImpA domain protein	gi:291281038
aec32	1-480/480	100	100	hypothetical protein	gi:291281037
artj	1-732/732	100	91,8	E.coli artP artI artQ artM and artJ genes.	SPG000096
aslA	1-1428/1428	100	94,05	putative arylsulfatase	gi:9965749
b2854	1-477/477	100	95,61	Putative lytic transglycosylase Adherence Hemorrhagic coli pilus	SPG000125
b2972	1-810/810	100	95,8	Prepilin peptidase Adherence Hemorrhagic coli pilus	SPG000090
cadA	1-2176/2176	100	99,31	gb AY319765.1 :1081-3256 Escherichia coli cadBA operon partial sequence	SPG000027
cheA	1-1965/1965	100	99,64	chemotaxis protein CheA	gi:15802300
cheB	1-1050/1050	100	99,33	chemotaxis-specific methylesterase	gi:15802295
cheR	1-861/861	100	99,65	chemotaxis methyltransferase CheR	gi:15802296
cheW	1-504/504	100	99,41	purine-binding chemotaxis protein	gi:15802299
cheY	1-390/390	100	99,74	chemotaxis regulatory protein CheY	gi:15802294
cheZ	1-645/645	100	98,92	chemotaxis regulator CheZ	gi:15802293
chuA	1-1983/1983	100	99,5	outer membrane heme/hemoglobin receptor ChuA	gi:291284872
chuS	1-1029/1029	100	99,12	hypothetical protein	gi:15833633
chuT	1-993/993	100	97,68	putative periplasmic binding protein	gi:218707131
chuU	1-993/993	100	98,99	permease of iron compound ABC transporter	gi:291284878
chuV	1-801/801	100	98,38	ATP-binding hydrophilic protein ChuV	gi:26250140
chuW	1-1338/1338	100	98,28	coproporphyrinogen III oxidase	gi:218707132
chuX	1-495/495	100	99,6	hypothetical protein	gi:15804048
chuY	1-622/624	99,68	97,27	hypothetical protein	gi:15804049
cib	1-1881/1881	100	99,26	Colicin IB	gi:73476856
cka	1-1647/1647	100	99,58	colicin K	gi:1124900
clpV	1-2766/2766	99,78	97,97	ATP-dependent chaperone protein ClpB	gi:386612383
csgA	1-459/459	99,35	92,59	cryptic curlin major subunit	gi:15801159
csgB	1-483/483	100	99,79	minor curlin subunit CsgB	VFG045792
csgC	1-333/333	100	98,5	putative curli production protein CsgC	VFG045794
csgD	1-651/651	100	99,69	DNA-binding transcriptional regulator CsgD	gi:15801157
csgE	1-390/390	100	100	curli assembly protein CsgE	gi:15801156
csgF	1-417/417	100	99,76	curli assembly protein CsgF	gi:15801155

Tabell 43. Rådata for genene detektert i P1(E)Nid_E.coli gjennom VFDB.
csgG	1-834/834	100	99,4	curli production assembly/transport	gi:15801154
	1 4054/4054			component 2nd curli operon	· • • • • • • • • • • • • • • • • • • •
eaeH	1-4254/4254	100	98,28	invasin	g1:209400580
ecpA	1-588/588	100	99,66	fimbrillin MatB	gi:157155651
ecpB	1-717/717	100	98,05	Hypothetical protein yagY precursor	gi:26246301
ecpC	1-2526/2526	100	99,13	E. coli common pilus usher EcpC	gi:15799996
ecpD	1-1644/1644	100	98,66	hypothetical protein	gi:157158770
ecpE	1-756/756	100	98,15	hypothetical protein	gi:291281182
ecpR	1-591/591	100	99,32	transcriptional regulator	gi:410484079
ECs3712	1-633/633	100	98,42	hypothetical protein	gi:15832966
ECs3728	1-234/234	100	97,01	hypothetical protein	gi:15832982
ECS88_3547	1-885/885	100	99,77	lipoprotein NlpI	gi:218560235
ehaB	1-2979/2979	100	98,69	flagellin structural protein	gi:260842574
eibG	1-1527/1527	100	86,64	immunoglobulin binding protein	gi:299150344
eivA	1-2061/2061	100	99.13	EivA	gi:15832985
eivC	1-1320/1320	100	98.41	ATP synthase SpaL	gi:15832984
eivE	1-1146/1146	100	99.56	EivE	gi:15832986
eivF	1-750/750	100	99.73	EivF	gi:15832988
eivG	1-1704/1704	100	99 71	EivG	gi:15832987
eivI	1-336/336	100	97.62	FivI	gi:15832983
eivI	1-618/618	100	94.82	FivI	gi:15832981
0173	1-010/010	100	74,02	23 dihudro 23 dihudrovuhonzooto	gi.15052701
entA	1-747/747	100	95,45	dehvdrogenase	gi:26246575
entB	1-858/858	100	97,44	isochorismatase	gi:26246574
entC	1-1188/1188	100	98.23	isochorismate synthase 1	gi:26246572
			, -	phosphopantetheinyl transferase component	0
entD	1-771/771	100	94.55	of enterobactin synthase multienzyme	gi:26246560
				complex	8
				23-dihydroxybenzoate-AMP ligase	
entE	1-1611/1611	100	95.53	component of enterobactin synthase	gi:26246573
CITE	1 1011/1011	100		multienzyme complex	8
				enterobactin synthase multienzyme	
entF	1-3854/3882	99,25	95,82	complex component ATP-dependent	gi:26246565
entS	1-1250/1251	99.92	95.76	enterobactin exporter iron-regulated	gi:26246570
_				surface presentation of antigens protein	
epaO	1-987/987	100	96,96	SpaO	gi:15832980
				surface presentation of antigens protein	
epaP	1-666/666	100	97,9	SpaP	g1:15832979
epaQ	1-261/261	100	96,17	EpaQ	gi:15832978
epaR	3-466/468	99,15	96,77	-	VFG042210
	1 1100/1100	100	07 (9	surface presentation of antigens protein	-1.15020075
epas	1-1122/1122	100	97,68	SpaS	g1:15832975
eprH	1-735/735	100	98,09	EprH	gi:15832973
eprI	1-240/240	100	98,75	EprI	gi:15832972
eprJ	1-333/333	100	98,5	EprJ	gi:15832971
eprK	1-735/735	100	98,64	EprK	gi:15832970
espL1	1-1899/1899	100	97,42	hypothetical protein	gi:15831681
· ·				gi 47118301:4652971-4654848 Escherichia	~
	1 1050/1050	100	00.15	coli O157:H7 str. Sakai DNA complete	and and a t
espL3	1-18/8/1878	100	99,15	genome PTS system arbutin-like IIC	SPG000024
				component	
espL4	1-2187/2187	100	99,27	Type III secretion system effector EspL4	gi:15804603
espR1	1-1251/1260	99,29	99,44	hypothetical protein	gi:291282572

espR2 1-1257/127 100 98.9 Escherichia coli DEC3F SPG000044 espR3 1-140/140 100 96.84 hypothetical protein gi:29128310 espX3 1-1422/1422 100 97.82 Type III secretion system effector EspX1 gi:1590704 espX4 1-1422/1422 100 97.82 Type III secretion system effector EspX2 gi:1590704 espX3 1-1188/1188 100 99.75 GCID_FCOLID_00025_NODE_12.cg_1 SPG000055 espX4 1-1581/158 100 99.49 Type III secretion system effector EspX4 gi:15804631 espX5 1-1224/2142 90.5 94.13 hypothetical protein gi:15928483 espX4 1-1581/158 100 99.47 Type III secretion system effector EspX4 gi:1599741 espX5 1-224/2142 90.5 94.41 Type III secretion system effector EspX1 gi:15799753 espY3 1-572/572 100 97.71 hypothetical protein gi:23875433 espY4 1-240/2409 100 96.55 hypothetic					gb AIFJ01000038.1 :95193-96449	
espR2 1-1257/1257 100 98,49 gec1PEC3F contig 37_1 whole genome shotguns sequence lexine Rich Repeat family protein SPG000044 espR3 1-1140/1140 100 96,84 hypothetical protein gi:15799704 espX1 1-1422/1422 100 97,82 Type III secretion system effector EspX1 gi:15799704 espX2 1-2017/2013 100 97,52 Type III secretion system effector EspX2 gi:1580050 espX3 1-188/1581 100 99,75 GCID_CCOLD_00025,NODE_12.c2 SPG000055 espX4 1-1581/1581 100 99,49 Type III secretion system effector EspX4 gi:15804631 espX5 1-2214/2214 90,55 94,13 hypothetical protein gi:291285137 espX4 1-1581/1581 100 97,74 Type III secretion system effector EspX1 gi:1590973 espX5 1-238/2385 100 98,55 hypothetical protein gi:329128137 espY4 1-2409/2409 100 97,55 Ferrienterobactin ABC transporter gi:26246561 etrX4 1-2409/2409					Escherichia coli DEC3F	
Image Solution sequence leacine Rich Repeat Image protein Solution Rich Repeat Image protein Solution Rich Repeat Image Protein Solution Rich Repeat Image Protein espX1 1-14221422 100 97.82 Type III secretion system effector EspX1 gi:15799704 gi:15799704 espX2 1-2013/2013 100 97.52 Type III secretion system effector EspX2 gi:1580050 gi:15799704 espX3 1-1188/1188 100 99.75 GCID_LCOLID_00025_NODE_12.cg_1 whole genome shortgun sequence type III SPC000055 espX4 1-1581/158 100 99.49 Type III secretion system effector EspX1 gi:15799713 gi:1291285137 espX4 1-1581/158 100 99.49 Type III secretion system effector EspX1 gi:15799731 gi:13799741 espX1 1-573/753 100 97.48 Type III secretion system effector EspX1 gi:13799751 gi:13799741 espY3 1-1572/1571 100 97.71 typothetical protein gi:13799743 espY3 1-238/2385 100 98.51 typothetical protein gi:15804531 espY3 1-238/2385 100 97.55 fe	espR2	1-1257/1257	100	98,49	gecDEC3F.contig.37_1 whole genome	SPG000044
epR3 1-140/1140 100 96.84 hypothetical protein gi:291283110 espX1 1-14221/122 100 97.82 Type III secretion system effector EspX1 gi:15799704 espX2 1-2012/013 100 97.52 Type III secretion system effector EspX2 gi:1580050 espX3 1-188/1188 100 99.75 GC1D_FCOLID_0002S_NODE_1-C.q.1 SPC000055 espX4 1-158/1188 100 99.49 Type III secretion system effector EspX4 gi:15800453 espX5 1-1291/123 100 97.6 hypothetical protein gi:29128543 espX5 1-1214/214 90.5 94.13 hypothetical protein gi:379741 espX5 1-2214/2214 90.5 94.13 hypothetical protein gi:379741 espY3 1-570570 100 97.77 hypothetical protein gi:37505433 espY4 1-2409/2409 00 85.75 99.65 EaC gi:752352 fepA 1-2241/2241 100 97.55 ferrienterobactin ABC transporter ATPase	1			,	shotgun sequence leucine Rich Repeat	
cspR1 1-1421/142 100 96.84 hypothetical protein csp21283110 cspX2 1-2013/2013 100 97.82 Type III secretion system effector EspX2 gi:15800550 cspX2 1-2013/2013 100 97.82 Type III secretion system effector EspX2 gi:15800550 cspX3 1-188/1188 100 97.82 Type III secretion system effector EspX4 gi:15804631 cspX4 1-1581/1581 100 99.49 Type III secretion system effector EspX4 gi:15709741 cspX5 1-1229/1293 100 97.6 hypothetical protein gi:291285433 cspX4 1-214/214 99.05 94.13 hypothetical protein gi:15709741 cspX5 1-1572/157 100 97.71 hypothetical protein gi:37505433 cspY4 1-420/4204 100 85.5 hypothetical protein gi:37505433 cspY4 1-240/2409 100 85.5 hypothetical protein gi:37505322 cspY4 1-240/2401 100 97.55 Farrienterobactin ABC transporter </td <td></td> <td></td> <td></td> <td></td> <td>family protein</td> <td></td>					family protein	
epX1 1-1422/1422 100 97.82 Type III secretion system effector EspX2 gi:1599704 espX2 1-2013/2013 100 97.52 Type III secretion system effector EspX2 gi:15800550 espX3 1-1188/1188 100 97.52 Type III secretion system effector EspX2 gi:1580055 espX3 1-1581/1581 100 99.49 Type III secretion system effector EspX4 gi:15804631 espX5 1-2214/2214 99.05 94.13 hypothetical protein gi:15804631 espX5 1-2214/2214 99.05 94.13 hypothetical protein gi:1580451 espX4 1-1581/1581 100 97.47 Type III secretion system effector EspX4 gi:1580431 espX5 1-2234/2231 100 97.71 hypothetical protein gi:291285137 espY4 1-510/1501 100 97.21 transcriptional regulator gi:15804316 espY4 1-2434/2008 85.75 99.056 EacC gi:752332 gi:1582974 esac2 1-24347/4008 85.75 99.056 <td>espR3</td> <td>1-1140/1140</td> <td>100</td> <td>96,84</td> <td>hypothetical protein</td> <td>gi:291283110</td>	espR3	1-1140/1140	100	96,84	hypothetical protein	gi:291283110
espX2 1-2013/2013 100 97.52 Type III secretion system effector EspX2 gi:15800550 espX3 1-1188/1188 100 97.52 GCID_ECOLD_00025_NODE_12.ctg_1 whole genome shotgun sequence type III effector protein SPG000055 espX4 1-1581/1581 100 97.6 hypothetical protein gi:291285483 espX5 1-2293/1293 100 97.6 hypothetical protein gi:291285483 espX4 1-1581/1581 100 97.44 Type III secretion system effector EspX4 gi:1590741 espX5 1-2214/2214 99.05 100 97.71 hypothetical protein gi:15905433 espY3 1-5725/753 100 97.71 hypothetical protein gi:158054316 espY4 1-2409/2409 100 98.5 hypothetical protein gi:158054316 espY4 1-2409/2409 100 97.55 ferrienterobactin ABC transporter gi:26246561 espX4 1-2241/2241 100 97.58 ferrienterobactin ABC transporter ATPase gi:26246567 fepD 1-0171/101	espX1	1-1422/1422	100	97,82	Type III secretion system effector EspX1	gi:15799704
sepX3 1-1188/1188 100 99.75 (pbLQS001000015.1):7729-78486 (scherichia coli strain GN02235) GCID_ECOLID_00025_NODE_12.ctg_1 whole genome shogun sequence type III effector protein SPG000055 espX4 1-1581/1581 100 99.49 Type III secretion system effector EspX4 gi:1504031 espX5 1-1293/1293 100 97.6 hypothetical protein gi:291285143 espX6 1-224/1224 99.05 94.13 hypothetical protein gi:15099711 espX3 1-1573/753 100 99.47 Type III secretion system effector EspY2 gi:15799753 espY4 1-578/753 100 99.77 hypothetical protein gi:291285171 espY4 1-2409/2400 100 85.5 hypothetical protein gi:15804316 espY4 1-2409/2400 100 85.5 hypothetical protein gi:15804316 espY4 1-240/2401 100 97.21 transporter gi:26246561 espX 1-241/2241 100 97.55 terrinterobactin ABC transporter gi:26246567 fepD 1-1017/107 <td< td=""><td>espX2</td><td>1-2013/2013</td><td>100</td><td>97,52</td><td>Type III secretion system effector EspX2</td><td>gi:15800550</td></td<>	espX2	1-2013/2013	100	97,52	Type III secretion system effector EspX2	gi:15800550
cspX3 1-1188/1188 100 99,75 GCD pCOLD D0025_NODE_12.cg_1 whole genome shotgun sequence type III effector protein SPG000055 cspX4 1-1581/1581 100 99,49 Type III secretion system effector EspX4 gi:12185717 SPG000055 cspX5 1-1237/123 100 97,6 hypothetical protein gi:221285717 cspX6 1-2214/2214 99,05 94,13 hypothetical protein gi:15799753 cspX7 1-1572/1572 100 97,77 hypothetical protein gi:15799753 cspY3 1-1572/1572 100 97,77 hypothetical protein gi:15832974 cspY4 1-2409/2409 100 88,5 hypothetical protein gi:15832974 cspY5 1-2385/2385 100 97,55 fericalcrobactin outer membrane gi:26246561 cspX4 1-241/2241 100 97,55 fericalcrobactin ABC transporter ATPase gi:26246567 fepB 1-957957 100 96,24 ferrienterobactin ABC transporter ATPase gi:262465667 fepD 1-1017/1017 100					gb LQSO01000015.1 :77299-78486	
espX3 1-1188/1188 100 99,75 GCID_ECOLID_00025_NODE_12_ctg_1 SPG00055 espX4 1-1581/1581 100 99,49 Type III secretion system effector EspX4 gi:15804631 espX5 1-1293/1293 100 97,6 hypothetical protein gi:291285483 espX6 1-2214/2214 99,05 94,13 hypothetical protein gi:291285177 espY2 1-570/570 100 97,74 hypothetical protein gi:15909733 espY3 1-1572/1572 100 97,77 hypothetical protein gi:15909733 espY3 1-2409/200 98,83 hypothetical protein gi:15804316 etax 1-2409/200 100 98,53 hypothetical protein gi:15804316 etax 1-2409/200 100 97,55 ferrienterobactin outer membrane gi:26246561 etax 1-2409/200 100 97,55 ferrienterobactin ABC transporter gi:26246567 fepD 1-1017/1017 100 95,08 ferrienterobactin ABC transporter gi:26246563					Escherichia coli strain GN02235	
expX4 instant whole genome shotgun sequence type III effector protein espX4 1-1581/1581 100 99,49 Type III secretion system effector EspX4 gi:15804631 espX5 1-1293/1293 100 97,6 hypothetical protein gi:291285717 espX6 1-214/2214 90,05 94,13 hypothetical protein gi:15799741 espX3 1-1572/1572 100 97,77 hypothetical protein gi:15799753 espY3 1-1572/1572 100 97,77 hypothetical protein gi:15804316 espY4 1-2385/2385 100 98,33 hypothetical protein gi:15837974 esaC 1-34374008 85,75 99,65 EaaC gi:26246561 fepA 1-221/2241 100 97,55 ferrienterobactin ABC transporter gi:26246561 fepD 1-1017/1017 100 95,08 ferrienterobactin ABC transporter ATPas gi:26246567 fepD 1-1134/134 100 94,62 ferrienterobactin ABC transporter ATPas gi:26246569 fepL	espX3	1-1188/1188	100	99,75	GCID_ECOLID_00025_NODE_12.ctg_1	SPG000055
expX41-1581/158110099,49Type III secretion system effector ExpX4gi:15804631expX51-1293/129310097.6hypothetical proteingi:291285717expX61-2214221499.0594.13hypothetical proteingi:291285717expY11-753/75310097.48Type III secretion system effector ExpY1gi:1579973expY21-570/57010097.47Type III secretion system effector ExpY1gi:1579973expY31-1572/157210097.77hypothetical proteingi:387505433expY41-2409/240910088.5hypothetical proteingi:15804316etrA1-501/50110097.21transcriptional regulatorgi:1582974ecacc1-3437/400885.7599.65EaaCgi:7523532fepA1-2241/224110097.25ferrienterobactin ABC transportergi:26246561fepB1-95795710096.24ferrienterobactin ABC transportergi:26246567fepD1-1017/101710095.08ferrienterobactin ABC transportergi:26246569fepG1-993/99310095.06ion-enterobactin ABC transportergi:26246563fimA1-549/54910099.27major type 1 subunit fimbrin (plin)gi:16132135fimB1-603/60310099.43tyrosine recombinase finversion of on/offgi:26246563fimA1-549/54910099.25minor component of type 1 fimbria gi:1480484fimB1-603/603 <td></td> <td></td> <td></td> <td></td> <td>whole genome shotgun sequence type III</td> <td></td>					whole genome shotgun sequence type III	
espX4 1-1581/1581 100 99.49 Type III secretion system effector EspX4 gi:15804631 espX5 1-2231/2234 100 97.6 hypothetical protein gi:291285433 espX6 1-2214/2214 99.05 94.13 hypothetical protein gi:291285717 espY1 1-7570757 100 97.48 Type III secretion system effector EspY2 gi:15799753 espY2 1-1572/1572 100 97.77 hypothetical protein gi:291285137 espY4 1-2409/2409 100 88.5 hypothetical protein gi:291285137 espY4 1-2387/3285 100 97.55 Face gi:15814316 etrA 1-501/01 100 97.21 transcriptional regulator gi:25246561 etrA 1-241/2241 100 97.55 Face ferrienterobactin ABC transporter gi:26246561 fepB 1-957/957 100 96.24 ferrienterobactin ABC transporter ATPase gi:26246569 fepE 1-1017/1017 100 95.08 ferrienterobactin ABC transport					effector protein	
espX5 1-1293/1293 100 97.6 hypothetical protein gi:291285483 espX6 1-2214/2214 99.05 94.13 hypothetical protein gi:3717 espY1 1-753.753 100 97.48 Type III secretion system effector EspY2 gi:15799741 espY2 1-570/570 100 97.47 hypothetical protein gi:387505433 espY4 1-2409/2409 100 98.3 hypothetical protein gi:291285137 espY5 1-2385/2385 100 98.33 hypothetical protein gi:26246561 ecaC 1-3437/4008 85.75 99.65 Faac gi:26246561 fepA 1-2241/2241 100 97.55 ferrienterobactin ABC transporter gi:26246561 fepB 1-957/957 100 95.08 ferrienterobactin ABC transporter ATPase gi:26246567 fepD 1-1017/1017 100 95.06 ferrienterobactin ABC transporter premase gi:26246563 fepG 1-993/993 100 95.06 incor-entorobactin ABC transporter gi:262465	espX4	1-1581/1581	100	99,49	Type III secretion system effector EspX4	gi:15804631
espX6 1-2214/2214 99.05 94.13 hypothetical protein gi:291285717 espY1 1-753/753 100 97.48 Type III secretion system effector EspY1 gi:15799741 espY2 1-570/570 100 99.47 Type III secretion system effector EspY2 gi:15799753 espY3 1-1572/1572 100 97.77 hypothetical protein gi:387505433 espY4 1-2409/2409 100 98.55 hypothetical protein gi:387505433 espY5 1-2385/2385 100 98.53 hypothetical protein gi:15804316 etaxC 1-34374008 85.75 99.65 EaxC gi:26246561 fepA 1-2241/2241 100 97.55 ferrienterobactin ABC transporter gi:26246561 fepD 1-917/1017 100 95.08 ferrienterobactin ABC transporter Parease gi:26246567 fepE 1-1134/1134 100 94.62 ferrienterobactin ABC transporter gi:26246563 fmg6 1-993.993 100 95.06 iron-enterobactin ferrie torebactin ester	espX5	1-1293/1293	100	97,6	hypothetical protein	gi:291285483
espY1 I-753/75 100 97.48 Type III secretion system effector EspY1 gi:15799741 espY2 1-570/570 100 99.47 Type III secretion system effector EspY2 gi:15799753 espY3 1-1572/1572 100 98.53 hypothetical protein gi:15804316 espY4 1-2409/2409 100 98.33 hypothetical protein gi:15804316 espY3 1-2385/2385 100 97.75 transcriptional regulator gi:15804316 eac 1-3437/4008 85.75 99.65 EaaC gi:7523532 ferpA 1-2241/2241 100 97.55 ferrienterobactin ABC transporter gi:26246561 fepD 1-1017/1017 100 95.08 ferrienterobactin ABC transporter premease gi:26246569 fepD 1-1017/1017 100 95.08 ferrienterobactin ABC transporter gi:26246561 ferg 1-93/993 100 95.06 iron-enterobactin ABC transporter gi:26246563 ferg 1-93/993 100 95.06 iron-enterobactin ABC transporte	espX6	1-2214/2214	99,05	94,13	hypothetical protein	gi:291285717
espY2 1-570/570 100 99,47 Type III secretion system effector EspY2 gi:387505433 espY4 1-1572/1572 100 97,77 hypothetical protein gi:387505433 espY4 1-2409/2409 100 98,53 hypothetical protein gi:15804316 espY5 1-2385/2385 100 98,33 hypothetical protein gi:15832974 eaaC 1-3437/4008 85,75 99,65 EaaC gi:7523532 fepA 1-2241/2241 100 97,55 ferrienterobactin outer membrane transporter gi:26246561 fepD 1-957/957 100 96,24 ferrienterobactin ABC transporter gi:26246567 fepD 1-1017/1017 100 95,06 ferrice enterobactin ABC transporter permease gi:26246566 fepG 1-993/93 100 95,06 iron-enterobactin ABC transporter gi:26246563 fmA 1-549/549 100 99,27 major type 1 subunit fimbrin (pilin) gi:1612135 fmB 1-603/603 100 99,28 fregulator of fimA	espY1	1-753/753	100	97,48	Type III secretion system effector EspY1	gi:15799741
	espY2	1-570/570	100	99,47	Type III secretion system effector EspY2	gi:15799753
espY4 1-2409/2409 100 88.5 hypothetical protein gi:291285137 espY5 1-2385/2385 100 98,33 hypothetical protein gi:15804316 etrA 1-501/501 100 97,51 transcriptional regulator gi:15832974 eaaC 1-3437/4008 85,75 99,65 EaaC gi:7523532 fepA 1-2241/2241 100 97,55 ferrienterobactin outer membrane transporter gi:26246561 fepB 1-957/957 100 96,24 ferrienterobactin ABC transporter gi:26246567 fepD 1-1017/1017 100 95,08 ferrienterobactin ABC transporter permease gi:26246569 fepG 1-933/993 100 94,62 ferrie enterobactin ABC transporter gi:26246568 fes 1-1203/1203 100 96,18 enterobactin/ferric enterobactin setrase gi:26246563 fimA 1-549/549 100 99,72 Periplasmic chaperone FimC gi:386622104 fimB 1-603/603 100 99,83 tyrosine recombinase/inversion of o	espY3	1-1572/1572	100	97,77	hypothetical protein	gi:387505433
espY5 1-2385/2385 100 98,33 hypothetical protein gi:15804316 etrA 1-501/501 100 97,21 transcriptional regulator gi:15832974 eaaC 1-3437/4008 85,75 99,65 EaaC gi:7523532 fepA 1-2241/2241 100 97,55 ferrienterobactin ABC transporter gi:26246561 fepB 1-957/957 100 96,24 ferrienterobactin ABC transporter ATPase gi:26246567 fepD 1-1017/1017 100 95,08 ferrienterobactin ABC transporter permease gi:26246566 fepE 1-1134/1134 100 94,62 iron-enterobactin ABC transporter permease gi:26246563 fes 1-1203/1203 100 95,06 iron-enterobactin/ferric enterobactin seterase gi:26246563 fimA 1-549/549 100 99,27 major type 1 subunit fimbrin (pilin) gi:16132135 fimB 1-603/603 100 99,72 Periplasmic chaperone FimC gi:386622104 fimF 1-521/531 100 99,25 minor compo	espY4	1-2409/2409	100	88,5	hypothetical protein	gi:291285137
etrA1-501/50110097.21transcriptional regulatorgi:15832974eaaC1-3437/400885.7599.65EaaCgi:7523532fepA1-2241/224110097.55ferrienterobactin outer membrane periplasmic binding proteingi:26246561fepB1-957/95710096.24ferrienterobactin ABC transporter periplasmic binding proteingi:26246571fepC1-816/81610097.18ferrienterobactin ABC transporter ATPase periplasmic binding proteingi:26246567fepD1-1017/101710095.08ferrie enterobactin ABC transporter permease permeasegi:26246566fepG1-993/99310095.06iron-enterobactin ABC transporter permeasegi:26246563fimA1-549/54910099.27major type 1 subunit fimbrin (pilin) gi:16132135gi:16132135fimB1-603/60310099.83tyrosine recombinase/inversion of on/off regulator of fimAgi:386622104fimF1-528/262810099.25minor component of type 1 fimbriae gi:386622104gi:386622104fimF1-531/53110099.25minor component of type 1 fimbriae gi:158014894gi:386622108fimH1-903/90310099.48fimbrial morphologygi:15801489fimG1-544/54810099.85fimbrial morphologygi:15801189fimG1-660/66010098.94flagellar basal body rod protein FigBgi:15801190figB1-417/41710099.52flagell	espY5	1-2385/2385	100	98,33	hypothetical protein	gi:15804316
eaaC $1.3437/4008$ $85,75$ $99,65$ $EaaC$ gi:7523532fepA $1.2241/2241$ 100 $97,55$ ferrienterobactin outer membrane transportergi:26246561fepB $1.957/957$ 100 $96,24$ ferrienterobactin ABC transporter periplasmic binding proteingi:26246571fepC $1.816/816$ 100 $97,18$ ferrienterobactin ABC transporter ATPasegi:26246567fepD $1.1017/1017$ 100 $95,08$ ferrienterobactin ABC transporter permeasegi:26246569fepE $1.1134/1134$ 100 $94,62$ ferric enterobactin ABC transportergi:26246568fes $1.203/1203$ 100 $95,06$ iron-enterobactin/ferric enterobactin resterasegi:26246563fimA $1.549/549$ 100 $99,27$ major type I subunit fimbrin (pilin)gi:16132135fimB $1-603/603$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1.2628/2628$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimF $1.531/531$ 100 $99,25$ minor component of type I fimbriaegi:43615873fimG $1.504/504$ 100 $99,85$ FimI fimbrial proteingi:15804894fimI $1-660/660$ 100 $99,85$ FimI fimbrial proteingi:1580189figg $1.417/417$ 100 $99,52$ flagellar basal body rod protein FlgEgi:15801191figD $1-660/606$ 100 $99,85$ FimI fimbrial proteingi:15801192<	etrA	1-501/501	100	97,21	transcriptional regulator	gi:15832974
fepA1-2241/224110097,55ferrienterobactin outer membrane transportergi:26246561fepB1-957/95710096,24ferrienterobactin ABC transporter periplasmic binding proteingi:26246571fepC1-816/81610097,18ferrienterobactin ABC transporter ATPase periplasmic binding proteingi:26246567fepD1-1017/101710095,08ferrienterobactin ABC transporter permease permeasegi:26246569fepE1-1134/113410094,62ferric enterobactin ABC transporter permease permeasegi:26246568fes1-1203/120310095,06iron-enterobactin ransport protein FepEgi:26246563fimA1-549/54910099,27major type I subuit fimbrin (pilin) regulator of fimAgi:260847128fimC1-726/72610099,72Periplasmic chaperone FimCgi:386622104fimB1-603/60310099,43type I fimbriae outer membrane usher protein FimDVFG045778fimE1-597/597100100tyrosine recombinasegi:386622104fimF1-531/53110099,25minor component of type I fimbriaegi:386622104fimH1-903/90310099,85FimI fimbrial proteingi:291285696figA1-660/66010098,87Find rabal body rod protein FIgBgi:15801190figB1-417/41710099,52flagellar basal body rod protein FIgBgi:15801191figD1-660/66010098,77flagellar basal bo	eaaC	1-3437/4008	85,75	99,65	EaaC	gi:7523532
TepA $1-2241/2241$ 100 $97,55$ transportergi:26246561fepB $1-957/957$ 100 $96,24$ ferrienterobactin ABC transportergi:26246571fepC $1-816/816$ 100 $97,18$ ferrienterobactin ABC transporter ATPasegi:26246567fepD $1-1017/1017$ 100 $95,08$ ferrienterobactin ABC transporter permeasegi:26246569fepE $1-1134/1134$ 100 $94,62$ ferric enterobactin transport protein FepEgi:26246568fepG $1-993/993$ 100 $95,06$ form-enterobactin ABC transportergi:26246563fes $1-1203/1203$ 100 $96,18$ enterobactin/ferric enterobactin esterasegi:26246563fimA $1-549/549$ 100 $99,27$ major type 1 subuni fimbrin (pilin)gi:16132135fimB $1-603/603$ 100 $99,27$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,43$ type 1 fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,45$ Mannose-specific adhesin FimHgi:386622108fimI $1-660/660$ 100 $99,52$ flagellar basal body P-ring biosynthesis protein FigAgi:15801190figA $1-660/660$ 100 $98,57$ flagellar basal body rod protein FigBgi:15801191figD $1-660/660$ 100 $98,57$ flagellar basal body rod protein FigB <td< td=""><td>C A</td><td>1 00 41 /00 41</td><td>100</td><td>07.55</td><td>ferrienterobactin outer membrane</td><td>: 0.0046561</td></td<>	C A	1 00 41 /00 41	100	07.55	ferrienterobactin outer membrane	: 0.0046561
fepB $1-957/957$ 100 $96,24$ ferrienterobactin ABC transporter periplasmic binding proteingi:26246571fepC $1-816/816$ 100 $97,18$ ferrienterobactin ABC transporter ATPasegi:26246567fepD $1-1017/1017$ 100 $95,08$ ferrienterobactin ABC transporter permeasegi:26246569fepG $1-993/993$ 100 $95,06$ ferric enterobactin ABC transporter permeasegi:26246563fes $1-1203/1203$ 100 $96,18$ enterobactin/ferric enterobactin esterasegi:26246563fimA $1-549/549$ 100 $99,27$ major type 1 subunit fimbrin (pilin)gi:16132135fimB $1-603/603$ 100 $99,27$ Perjlasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,72$ Perjlasmic chaperone FimCgi:386622104fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622104fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:34635873fimG $1-504/504$ 100 $99,45$ Mannose-specific adhesin FimHgi:326622108fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimHgi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body rod protein FlgBgi:15801190flgE $1-1206/1206$ 100 $98,94$ flagellar basal body rod protein FlgEgi:15801191flgE $1-269/696$ 100 $99,28$ flagellar basal body rod protein FlgE<	fepA	1-2241/2241	100	97,55	transporter	g1:26246561
IepB $1-95//957$ 100 $96,24$ periplasmic binding proteingi:26/465/1fepC $1-816/816$ 100 $97,18$ ferrienterobactin ABC transporter ATPasegi:262/46569fepD $1-1017/1017$ 100 $95,08$ ferrienterobactin ABC transporter ATPasegi:262/46569fepE $1-1134/1134$ 100 $94,62$ ferric enterobactin ABC transporter permeasegi:262/46566fepG $1-993/993$ 100 $96,18$ enterobactin transport protein FepEgi:262/46563fes $1-1203/1203$ 100 $96,18$ enterobactin/ferric enterobactin esterasegi:262/46563fimA $1-549/549$ 100 $99,27$ major type I subuit fimbrin (pilin)gi:16132135fimB $1-603/603$ 100 $99,27$ periplasmic chaperone FimCgi:38662104fimC $1-726/726$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,43$ type I fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimH $1-903/903$ 100 $99,85$ fimbrial morphologygi:151804894fimH $1-903/903$ 100 $99,85$ fimbrial morphologygi:15804189fimH $1-903/903$ 100 $99,85$ fimbrial morphologygi:15801190figB $1-417/417$ 100 $99,25$ flagellar basal body rod protein FigBgi:15801190figD $1-660/66$	6 D	1-957/957	100	04.04	ferrienterobactin ABC transporter	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tepB		100	96,24	periplasmic binding protein	g1:26246571
fepD1-1017/101710095.08ferrienterobactin ABC transporter permeasegi:26246569fepE1-1134/113410094,62ferric enterobactin transport protein FepEgi:26246566fepG1-993/99310095.06iron-enterobactin ABC transporter permeasegi:26246568fes1-1203/120310096.18enterobactin/ferric enterobactin esterasegi:26246563fimA1-549/54910099.27major type 1 subunit fimbrin (pilin)gi:16132135fimB1-603/60310099.83tyrosine recombinase/inversion of on/off regulator of fimAgi:260847128fimC1-726/72610099.72Periplasmic chaperone FimCgi:386622104fimD1-2628/262810099.43tyrosine recombinasegi:386622104fimE1-597/597100100tyrosine recombinasegi:386622101fimF1-51/53110099.25minor component of type 1 fimbriaegi:44361873fimG1-648/64810099.85fimI fimbrial morphologygi:15804894fimI1-669/66010098.87flagellar basal body P-ring biosynthesis protein FlgAgi:15801193flgB1-417/41710099.52flagellar basal body rod protein FlgEgi:15801191flgG1-206/120610098.77flagellar basal body rod protein FlgEgi:15801192flgE1-1206/120610098.79flagellar basal body rod protein FlgEgi:15801193flgE1-1206/1206 <td< td=""><td>fepC</td><td>1-816/816</td><td>100</td><td>97,18</td><td>ferrienterobactin ABC transporter ATPase</td><td>gi:26246567</td></td<>	fepC	1-816/816	100	97,18	ferrienterobactin ABC transporter ATPase	gi:26246567
fepE $1-1134/1134$ 100 $94,62$ ferric enterobactin transport protein FepEgi:26246566fepG $1-993/993$ 100 $95,06$ iron-enterobactin ABC transporter permeasegi:26246568fimA $1-549/549$ 100 $96,18$ enterobactin/ferric enterobactin esterase gi:26246563gi:26246563fimA $1-549/549$ 100 $99,27$ major type 1 subunit fimbrin (pilin)gi:16132135fimB $1-603/603$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622104fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:443615873fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimHgi:386622108fimH $1-903/903$ 100 $99,85$ FimI fimbrial proteingi:21282696figA $1-660/660$ 100 $99,85$ FimI fimbrial proteingi:15801189flagellar basal body rod protein FlgBgi:15801190flagellar basal body rod protein FlgBgi:15801191flgE $1-1206/1206$ 100 $98,09$ flagellar basal body rod protein FlgEgi:15801192flgG $1-756/756$ 100 $98,15$ flagellar basal body rod protein FlgFgi:15801192flgG $1-756/756$ 100 $98,09$ flagellar basal body rod protein FlgFgi:15801194	fepD	1-1017/1017	100	95,08	ferrienterobactin ABC transporter permease	gi:26246569
fepG $1-993/993$ 100 $95,06$ iron-enterobactin ABC transporter permeasegi:26246568fes $1-1203/1203$ 100 $96,18$ enterobactin/ferric enterobactin esterasegi:26246563fimA $1-549/549$ 100 $99,27$ major type 1 subunit fimbrin (plin)gi:16132135fimB $1-603/603$ 100 $99,83$ tyrosine recombinase/inversion of on/offgi:260847128fimC $1-726/726$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,43$ type 1 fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,85$ fimbrial morphologygi:15804894fimH $1-903/903$ 100 $99,85$ FimI fimbrial morphologygi:15804894fimI $1-660/660$ 100 $99,85$ FimI fimbrial proteingi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body rod protein FlgBgi:15801190flgE $1-1206/1206$ 100 $98,77$ flagellar basal body rod modification proteingi:15801192flgE $1-756/756$ 100 $98,09$ flagellar basal body rod modification proteingi:15801193flgG $1-737/83$ 100 $99,36$ flagellar basal body rod protein FlgEgi:15801193flgG $1-769/756$ 100 $98,09$ flagellar basal body rod protein FlgGgi:15	fepE	1-1134/1134	100	94,62	ferric enterobactin transport protein FepE	gi:26246566
TepG 1-993/995 100 95,06 permease 91.20240508 fes 1-1203/1203 100 96,18 enterobactin/ferric enterobactin esterase gi:26246563 fimA 1-549/549 100 99,27 major type 1 subunit fimbrin (pilin) gi:16132135 fimB 1-603/603 100 99,83 tyrosine recombinase/inversion of on/off regulator of fimA gi:260847128 fimC 1-726/726 100 99,72 Periplasmic chaperone FimC gi:386622104 fimD 1-2628/2628 100 99,43 type 1 fimbriae outer membrane usher protein FimD VFG045778 fimE 1-597/597 100 100 tyrosine recombinase gi:386622101 fimF 1-531/531 100 99,25 minor component of type 1 fimbriae gi:443615873 fimG 1-648/648 100 99,85 fimbrial morphology gi:15804894 fimI 1-648/648 100 99,85 FimI fimbrial protein gi:291285696 figA 1-660/660 100 98,94 flagellar basal body rod	for	1 002/002	100	05.06	iron-enterobactin ABC transporter	~:
fes $1-1203/1203$ 100 $96,18$ enterobactin/ferric enterobactin esterase $gi:26246563$ fimA $1-549/549$ 100 $99,27$ major type I subunit fimbrin (pilin) $gi:16132135$ fimB $1-603/603$ 100 $99,83$ tyrosine recombinase/inversion of on/off regulator of fimA $gi:260847128$ fimC $1-726/726$ 100 $99,72$ Periplasmic chaperone FimC $gi:386622104$ fimD $1-2628/2628$ 100 $99,43$ type I fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinase $gi:386622101$ fimG $1-504/504$ 100 $99,25$ minor component of type I fimbriae $gi:443615873$ fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimH $gi:2816622108$ fimI $1-660/660$ 100 $99,85$ FimI fimbrial protein $gi:291285696$ flagA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgA $gi:15801189$ flgD $1-696/966$ 100 $99,28$ flagellar basal body rod protein FlgB $gi:15801191$ flgE $1-1206/1206$ 100 $98,99$ flagellar basal body rod protein FlgE $gi:15801193$ flgG $1-783/783$ 100 $99,28$ flagellar basal body rod protein FlgE $gi:15801193$ flgE $1-1206/1206$ 100 $98,94$ flagellar basal body rod protein FlgE $gi:15801193$ flgE $1-29/699$ 100 $99,2$	TepG	1-995/995	100	95,00	permease	g1:20240308
fimA1-549/54910099,27major type 1 subunit fimbrin (pilin)gi:16132135fimB1-603/60310099,83tyrosine recombinase/inversion of on/off regulator of fimAgi:260847128fimC1-726/72610099,72Periplasmic chaperone FimCgi:386622104fimD1-2628/262810099,43type 1 fimbriae outer membrane usher protein FimDVFG045778fimE1-597/597100100tyrosine recombinasegi:386622101fimF1-531/53110099,25minor component of type 1 fimbriaegi:443615873fimG1-504/50410099,85fimbrial morphologygi:15804894fimH1-903/90310099,45Mannose-specific adhesin FimHgi:386622108figA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB1-417/41710099,52flagellar basal body rod protein FlgBgi:15801191flgD1-696/69610098,94flagellar basal body rod modification proteingi:15801192flgE1-1206/120610098,99flagellar basal body rod protein FlgEgi:15801193flgG1-783/78310099,36flagellar basal body rod protein FlgFgi:15801194flgG1-783/78310099,36flagellar basal body rod protein FlgGgi:15801195flgH1-699/69910099,28flagellar basal body rod protein FlgGgi:15801195	fes	1-1203/1203	100	96,18	enterobactin/ferric enterobactin esterase	gi:26246563
fimB $1-603/603$ 100 $99,83$ tyrosine recombinase/inversion of on/off regulator of fimAgi:260847128fimC $1-726/726$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,43$ type 1 fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:443615873fimG $1-504/504$ 100 $99,8$ fimbrial morphologygi:15804894fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimHgi:386622108fimI $1-648/648$ 100 $99,85$ FimI fimbrial proteingi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgD $1-696/696$ 100 $98,77$ flagellar basal body rod protein FlgCgi:15801190flgD $1-696/696$ 100 $98,99$ flagellar basal body rod modification proteingi:15801192flgE $1-1206/1206$ 100 $98,09$ flagellar basal body rod protein FlgEgi:15801193flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgFgi:15801194flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgGgi:15801195flgH $1-699/699$ 100 $99,28$ flagellar basal body rod prot	fimA	1-549/549	100	99,27	major type 1 subunit fimbrin (pilin)	gi:16132135
Ininb1-003/00310099,33regulator of fimAgi.200847123fimC1-726/72610099,72Periplasmic chaperone FimCgi:386622104fimD1-2628/262810099,43type 1 fimbriae outer membrane usher protein FimDVFG045778fimE1-597/597100100tyrosine recombinasegi:386622101fimF1-531/53110099,25minor component of type 1 fimbriaegi:443615873fimG1-504/50410099,8fimbrial morphologygi:15804894fimH1-903/90310099,45Mannose-specific adhesin FimHgi:386622108fimI1-648/64810099,85FimI fimbrial proteingi:291285696flgA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgD1-405/40510098,77flagellar basal body rod protein FlgBgi:15801190flgE1-1206/120610098,09flagellar basal body rod modification proteingi:15801192flgE1-1206/120610098,09flagellar basal body rod protein FlgEgi:15801193flgG1-783/78310099,36flagellar basal body rod protein FlgEgi:15801194flgG1-783/78310099,36flagellar basal body rod protein FlgGgi:15801195flgH1-699/69910099,36flagellar basal body rod protein FlgGgi:15801195	fimB	1 603/603	100	00.83	tyrosine recombinase/inversion of on/off	ai.260847128
fimC $1-726/726$ 100 $99,72$ Periplasmic chaperone FimCgi:386622104fimD $1-2628/2628$ 100 $99,43$ type 1 fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:443615873fimG $1-504/504$ 100 $99,88$ fimbrial morphologygi:15804894fimH $1-903/903$ 100 $99,45$ Manose-specific adhesin FimHgi:386622108fimI $1-648/648$ 100 $99,85$ FimI fimbrial proteingi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgD $1-405/405$ 100 $98,77$ flagellar basal body rod protein FlgBgi:15801190flgE $1-1206/1206$ 100 $98,09$ flagellar basal body rod modification proteingi:15801192flgG $1-756/756$ 100 $98,15$ flagellar basal body rod protein FlgEgi:15801193flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgEgi:15801194flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgGgi:15801195flgH $1-699/699$ 100 $99,36$ flagellar basal body rod protein FlgGgi:15801195		1-005/005	100	99,03	regulator of fimA	g1.200647126
fimD $1-2628/2628$ 100 $99,43$ type 1 fimbriae outer membrane usher protein FimDVFG045778fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:443615873fimG $1-504/504$ 100 $99,8$ fimbrial morphologygi:15804894fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimHgi:386622108fimI $1-648/648$ 100 $99,85$ FimI fimbrial proteingi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgD $1-417/417$ 100 $99,52$ flagellar basal body rod protein FlgBgi:15801190flgD $1-696/696$ 100 $98,77$ flagellar basal body rod modification proteingi:15801191flgE $1-1206/1206$ 100 $98,09$ flagellar basal body rod protein FlgEgi:15801192flgG $1-756/756$ 100 $98,15$ flagellar basal body rod protein FlgEgi:15801193flgG $1-783/783$ 100 $99,28$ flagellar basal body rod protein FlgGgi:15801194flgH $1-699/699$ 100 $99,28$ flagellar basal body rod protein FlgGgi:15801195flgH $1-699/699$ 100 $99,28$ flagellar basal body rod protein FlgGgi:15801195	fimC	1-726/726	100	99,72	Periplasmic chaperone FimC	gi:386622104
InitD12020/202810099,45protein FimDV10043778fimE1-597/597100100tyrosine recombinasegi:386622101fimF1-531/53110099,25minor component of type 1 fimbriaegi:443615873fimG1-504/50410099,8fimbrial morphologygi:15804894fimH1-903/90310099,45Mannose-specific adhesin FimHgi:386622108fimI1-648/64810099,85FimI fimbrial proteingi:291285696flgA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgC1-405/40510098,77flagellar basal body rod protein FlgBgi:15801190flgD1-696/69610099,28flagellar basal body rod modification proteingi:15801191flgE1-1206/120610098,09flagellar hook protein FlgEgi:15801193flgG1-783/78310099,36flagellar basal body rod protein FlgFgi:15801194flgH1-699/69910099,38flagellar basal body rod protein FlgGgi:15801195	fimD	1 2628/2628	100	00 /3	type 1 fimbriae outer membrane usher	VEG045778
fimE $1-597/597$ 100 100 tyrosine recombinasegi:386622101fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriaegi:443615873fimG $1-504/504$ 100 $99,8$ fimbrial morphologygi:15804894fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimHgi:386622108fimI $1-648/648$ 100 $99,85$ FimI fimbrial proteingi:291285696flgA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB $1-417/417$ 100 $99,52$ flagellar basal body rod protein FlgBgi:15801190flgC $1-405/405$ 100 $98,77$ flagellar basal body rod protein FlgCgi:15801191flgD $1-696/696$ 100 $99,28$ flagellar basal body rod modification proteingi:15801192flgE $1-1206/1206$ 100 $98,15$ flagellar basal body rod protein FlgEgi:15801193flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgGgi:15801194flgH $1-699/699$ 100 $99,28$ flagellar basal body rod protein FlgGgi:15801195		1-2028/2028	100	99,43	protein FimD	VT0043778
fimF $1-531/531$ 100 $99,25$ minor component of type 1 fimbriae $gi:443615873$ fimG $1-504/504$ 100 $99,8$ fimbrial morphology $gi:15804894$ fimH $1-903/903$ 100 $99,45$ Mannose-specific adhesin FimH $gi:386622108$ fimI $1-648/648$ 100 $99,85$ FimI fimbrial protein $gi:291285696$ flgA $1-660/660$ 100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgA $gi:15801189$ flgB $1-417/417$ 100 $99,52$ flagellar basal body rod protein FlgB $gi:15801190$ flgC $1-405/405$ 100 $98,77$ flagellar basal body rod protein FlgC $gi:15801191$ flgD $1-696/696$ 100 $99,28$ flagellar basal body rod modification protein $gi:15801192$ flgE $1-1206/1206$ 100 $98,09$ flagellar hook protein FlgE $gi:15801193$ flgG $1-783/783$ 100 $99,36$ flagellar basal body rod protein FlgG $gi:15801194$ flgH $1-699/699$ 100 $99,28$ flagellar basal body rod protein FlgG $gi:15801195$	fimE	1-597/597	100	100	tyrosine recombinase	gi:386622101
fimG1-504/50410099,8fimbrial morphologygi:15804894fimH1-903/90310099,45Mannose-specific adhesin FimHgi:386622108fimI1-648/64810099,85FimI fimbrial proteingi:291285696flgA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB1-417/41710099,52flagellar basal body rod protein FlgBgi:15801190flgC1-405/40510098,77flagellar basal body rod protein FlgCgi:15801191flgD1-696/69610099,28flagellar basal body rod modification proteingi:15801192flgE1-1206/120610098,09flagellar basal body rod protein FlgEgi:15801193flgG1-783/78310099,36flagellar basal body rod protein FlgGgi:15801194flgH1-699/69910099,28flagellar basal body rod protein FlgGgi:15801195	fimF	1-531/531	100	99,25	minor component of type 1 fimbriae	gi:443615873
fimH1-903/90310099,45Mannose-specific adhesin FimHgi:386622108fimI1-648/64810099,85FimI fimbrial proteingi:291285696flgA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB1-417/41710099,52flagellar basal body rod protein FlgBgi:15801190flgC1-405/40510098,77flagellar basal body rod protein FlgCgi:15801191flgD1-696/69610099,28flagellar basal body rod modification proteingi:15801192flgE1-1206/120610098,09flagellar basal body rod protein FlgEgi:15801193flgG1-756/75610098,15flagellar basal body rod protein FlgFgi:15801194flgG1-783/78310099,28flagellar basal body rod protein FlgGgi:15801195flgH1-699/69910099,28flagellar basal body rod protein FlgGgi:15801195	fimG	1-504/504	100	99,8	fimbrial morphology	gi:15804894
fimI1-648/64810099,85FimI fimbrial proteingi:291285696flgA1-660/66010098,94flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB1-417/41710099,52flagellar basal body rod protein FlgBgi:15801190flgC1-405/40510098,77flagellar basal body rod protein FlgCgi:15801191flgD1-696/69610099,28flagellar basal body rod modification proteingi:15801192flgE1-1206/120610098,09flagellar basal body rod protein FlgEgi:15801193flgG1-783/78310099,36flagellar basal body rod protein FlgGgi:15801195flgH1-699/69910099,28flagellar basal body rod protein FlgGgi:15801195	fimH	1-903/903	100	99,45	Mannose-specific adhesin FimH	gi:386622108
flgA1-660/660100 $98,94$ flagellar basal body P-ring biosynthesis protein FlgAgi:15801189flgB1-417/417100 $99,52$ flagellar basal body rod protein FlgBgi:15801190flgC1-405/405100 $98,77$ flagellar basal body rod protein FlgCgi:15801191flgD1-696/696100 $99,28$ flagellar basal body rod modification proteingi:15801192flgE1-1206/1206100 $98,09$ flagellar hook protein FlgEgi:15801193flgF1-756/756100 $98,15$ flagellar basal body rod protein FlgFgi:15801194flgG1-783/783100 $99,28$ flagellar basal body rod protein FlgGgi:15801195flgH1-699/699100 $99,28$ flagellar basal body rod protein FlgGgi:15801196	fimI	1-648/648	100	99,85	FimI fimbrial protein	gi:291285696
IngA I-000/000 100 98,94 protein FlgA gi.13801189 flgB 1-417/417 100 99,52 flagellar basal body rod protein FlgB gi:15801190 flgC 1-405/405 100 98,77 flagellar basal body rod protein FlgC gi:15801191 flgD 1-696/696 100 99,28 flagellar basal body rod modification protein gi:15801192 flgE 1-1206/1206 100 98,09 flagellar hook protein FlgE gi:15801193 flgF 1-756/756 100 98,15 flagellar basal body rod protein FlgF gi:15801194 flgG 1-783/783 100 99,36 flagellar basal body rod protein FlgG gi:15801195 flgH 1-699/699 100 99,28 flagellar basal body rod protein FlgG gi:15801195	flad	1 660/660	100	08.04	flagellar basal body P-ring biosynthesis	gi-15801180
flgB $1-417/417$ 10099,52flagellar basal body rod protein FlgBgi:15801190flgC $1-405/405$ 10098,77flagellar basal body rod protein FlgCgi:15801191flgD $1-696/696$ 10099,28flagellar basal body rod modification proteingi:15801192flgE $1-1206/1206$ 10098,09flagellar hook protein FlgEgi:15801193flgF $1-756/756$ 10098,15flagellar basal body rod protein FlgFgi:15801194flgG $1-783/783$ 10099,36flagellar basal body rod protein FlgGgi:15801195flgH $1-699/699$ 10099,28flagellar basal body L-ring proteingi:15801196	ligA	1-000/000	100	90,94	protein FlgA	gi.15001109
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	flgB	1-417/417	100	99,52	flagellar basal body rod protein FlgB	gi:15801190
flgD 1-696/696 100 99,28 flagellar basal body rod modification protein gi:15801192 flgE 1-1206/1206 100 98,09 flagellar hook protein FlgE gi:15801193 flgF 1-756/756 100 98,15 flagellar basal body rod protein FlgF gi:15801194 flgG 1-783/783 100 99,36 flagellar basal body rod protein FlgG gi:15801195 flgH 1-699/699 100 99,28 flagellar basal body L-ring protein gi:15801196	flgC	1-405/405	100	98,77	flagellar basal body rod protein FlgC	gi:15801191
Ing. I-050/050 IO 99,26 protein gi:15801192 flgE 1-1206/1206 100 98,09 flagellar hook protein FlgE gi:15801193 flgF 1-756/756 100 98,15 flagellar basal body rod protein FlgF gi:15801194 flgG 1-783/783 100 99,36 flagellar basal body rod protein FlgG gi:15801195 flgH 1-699/699 100 99,28 flagellar basal body L-ring protein gi:15801196	flaD	1 606/606	100	00.28	flagellar basal body rod modification	ai:15801102
flgE1-1206/120610098,09flagellar hook protein FlgEgi:15801193flgF1-756/75610098,15flagellar basal body rod protein FlgFgi:15801194flgG1-783/78310099,36flagellar basal body rod protein FlgGgi:15801195flgH1-699/69910099,28flagellar basal body L-ring proteingi:15801196		1-090/090	100	77,20	protein	gi.13001192
flgF 1-756/756 100 98,15 flagellar basal body rod protein FlgF gi:15801194 flgG 1-783/783 100 99,36 flagellar basal body rod protein FlgG gi:15801195 flgH 1-699/699 100 99,28 flagellar basal body L-ring protein gi:15801196	flgE	1-1206/1206	100	98,09	flagellar hook protein FlgE	gi:15801193
flgG 1-783/783 100 99,36 flagellar basal body rod protein FlgG gi:15801195 flgH 1-699/699 100 99,28 flagellar basal body L-ring protein gi:15801196	flgF	1-756/756	100	98,15	flagellar basal body rod protein FlgF	gi:15801194
flgH 1-699/699 100 99,28 flagellar basal body L-ring protein gi:15801196	flgG	1-783/783	100	99,36	flagellar basal body rod protein FlgG	gi:15801195
	flgH	1-699/699	100	99,28	flagellar basal body L-ring protein	gi:15801196

flgI	1-1098/1098	100	97,72	flagellar basal body P-ring protein	gi:15801197
flgJ	1-942/942	100	99,47	flagellar rod assembly protein/muramidase	gi:15801198
flgK	1-1644/1644	100	99,45	flagellar hook-associated protein FlgK	gi:15801199
flgL	1-954/954	100	97,06	flagellar hook-associated protein FlgL	gi:15801200
flgN	1-417/417	100	99,52	flagella synthesis protein FlgN	gi:15801187
flhA	1-2079/2079	100	98,7	flagellar biosynthesis protein FlhA	gi:15802291
flhB	1-1149/1149	100	99,04	flagellar biosynthesis protein FlhB	gi:15802292
flhC	1-579/579	100	99,83	transcriptional activator FlhC	gi:15802303
flhD	1-360/360	100	99,44	transcriptional activator FlhD	gi:15802304
flhE	1-393/393	100	97.2	flagellar protein	gi:15802290
fliA	1-720/720	100	98,75	flagellar biosynthesis sigma factor	gi:15802357
fliD	1-1398/1398	100	98,44	flagellar capping protein	gi:15802359
fliE	1-315/315	100	99.05	flagellar hook-basal body protein FliE	gi:15802372
fliF	1-1659/1659	100	98,97	flagellar MS-ring protein	gi:15802373
fliG	1-996/996	100	99.3	flagellar motor switch protein G	gi:15802374
fliH	1-687/687	100	98,84	flagellar assembly protein H	gi:161367588
fliI	1-1374/1374	100	98,84	flagellum-specific ATP synthase	gi:161367587
fliJ	1-444/444	100	100	flagellar biosynthesis chaperone	gi:15802377
fliK	1-1128/1128	100	98,05	flagellar hook-length control protein	gi:15802378
fliL	1-465/465	100	98,71	flagellar basal body-associated protein FliL	gi:15802379
fliM	1-1005/1005	100	99,2	flagellar motor switch protein FliM	gi:15802380
fliN	1-414/414	100	98,55	flagellar motor switch protein FliN	gi:15802381
fliO	1-366/366	100	98,36	flagellar biosynthesis protein FliO	gi:161367586
fliP	1-738/738	100	99,46	flagellar biosynthesis protein FliP	gi:15802383
fliQ	1-270/270	100	97,41	flagellar biosynthesis protein FliQ	gi:15802384
fliR	1-786/786	100	99,49	flagellar biosynthesis protein FliR	gi:15802385
fliS	1-411/411	100	97,57	flagellar protein FliS	gi:15802360
fliT	1-366/366	100	99,45	flagellar biosynthesis protein FliT	gi:15802361
fliY	1-801/801	100	98,13	cystine transporter subunit	gi:15802355
fliZ	1-588/588	100	98,98	flagella biosynthesis protein FliZ	gi:15802356
flk	1-996/996	100	99,3	flagella biosynthesis regulator	gi:15802868
gadX	1-633/633	100	98,42	gb ADUM01000070.1 :99762-100394 Escherichia coli 3431 gec3431.assembly.48 whole genome shotgun sequence HTH-type transcriptional regulator gadX	SPG000043
gspC	1-960/960	100	96,35	putative type II secretion protein GspC	gi:157156659
gspD	1-2061/2061	100	98,35	general secretion pathway protein D	g1:157157281
gspE	1-1494/1494	100	96,05	general secretory pathway protein E	g1:157159001
gspF	1-1224/1224	100	95,26	general secretion pathway protein F	g1:157154920
gspG	1-456/456	100	96,49	general secretion pathway protein G	g1:15/15/959
gspH	1-564/564	100	95,57	general secretion pathway protein H	g1:15/158634
gspl	1-3/2/3/2	100	96,5	general secretion pathway protein I	g1:157156956
gspJ	1-598/600	99,67	96,82	general secretion pathway protein J	g1:157157609
gspK	1-9/8/9/8	100	96,01	general secretion pathway protein K	g1:157155920
gspL	1-11/9/11/9	100	93,81	GspL-like protein	g1:15/156601
gspM	1-537/537	100	95,9	yghD	gi:157154814
hcp	1-519/519	100	100	hypothetical protein	gi:15799915
hlyE	1-1056/1056	100	99,24	hemolysin E	gi:209398688
hofB	1-1386/1386	100	98,27	hypothetical protein	gi:15799791
hofC	1-1203/1203	100	98,5	type IV pilin biogenesis protein	gi:15799790
hofq	1-1239/1239	100	99,35	Outer membrane secretin Adherence Hemorrhagic coli pilus	SPG000051

ibeB	1-1383/1383	100	98,55	copper/silver efflux system outer membrane	gi:15800285
it. C	1 1724/1724	100	00.60	protein CusC	. 20((1(702
ibeC	1-1/34/1/34	100	98,62	hypothetical protein	g1:386616783
int	1-1014/1014	100	100	integrase/recombinase	SPG000069
ipad	1-1350/1350	100	96,67	Escherichia coli IAI39	gi:218698419:4423335- 4424684
iss2	1-308/309	99,68	95,45	Escherichia coli Iss (iss) gene complete cds.	SPG000143
motA	1-888/888	100	99,55	flagellar motor protein MotA	gi:15802302
motB	1-927/927	100	98,17	flagellar motor protein MotB	gi:15802301
nada	1-1044/1044	100	98,47	Escherichia coli str. K-12 substr. MG1655 complete genome	SPG000048
nadb	1-1623/1623	100	97,84	Escherichia coli str. K-12 substr. MG1655 complete genome	SPG000049
orgA	1-582/582	100	97,42	hypothetical protein	gi:15832969
orgB	1-432/432	100	96,53	hypothetical protein	gi:15832967
pkgA	1-180/180	100	100	hypothetical protein	gi:15832989
ppda	1-471/471	100	98,3	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000131
ppdb	1-564/564	100	99,11	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000112
ppdc	1-324/324	100	98,77	Pilin-like protein minor pilin or pseudopilin Adherence Hemorrhagic coli pilus	SPG000140
ppdD	1-441/441	100	100	putative major pilin subunit	gi:15799792
tar/cheM	1-1662/1662	100	99,1	methyl-accepting chemotaxis protein II	gi:15802298
UMNK88_238	1-1851/1851	100	99,24	hypothetical protein	gi:386612389
vgrG	1-2142/2142	100	98,55	hypothetical protein	gi:15799916
virk	1-951/951	100	97,58	Escherichia coli plasmid pAA2 Shf (shf) hexosyltransferase homolog (capU) and VirK (virK) genes complete cds.	SPG000078
ycbF	1-738/738	100	99,05	putativi pili assembly chaperone	gi:15804987
ycbQ	1-549/549	100	99,27	putative fimbrial-like protein	gi:15800799
ycbR	1-702/702	100	98,01	putative chaperone	gi:15800800
ycbS	1-2601/2601	100	98,85	PapC-like porin protein involved in fimbrial biogenesis	gi:15804976
ycbT	1-981/981	100	98,88	fimbrial protein	gi:15800801
ycbU	1-477/477	100	99,16	hypothetical protein	gi:15800802
ycbV	1-564/564	100	99,47	putative fimbrial-like protein	gi:15800803
ygdb	1-408/408	100	95,1	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000137
ygeG	1-487/492	98,98	98,15	hypothetical protein	gi:15832962
ygeH	1-1377/1377	100	97,82	transcriptional regulator	gi:15832963
yggr	1-981/981	100	97,04	Retraction ATPase Adherence Hemorrhagic coli pilus	SPG000074
yghg	1-411/411	100	98,54	Pilotin Secretion system Type II Secretion System	SPG000136
yjaa	1-420/420	100	98,57	hypothetical protein	SPG000135
Z0263	1-225/225	100	100	hypothetical protein	gi:15799912
Z0265	1-144/144	100	99,31	hypothetical protein	gi:15799914
Z1307	1-1041/1041	100	95,63	outer membrane protein A	gi:15800816

P12(E)Nid_Kleb					
Gene	Coverage	Coverage (%)	Identity (%)	Product	Acc. Nr.
entA	2-747/747	99,2	80,43	(entA) 23-dihydro-23-dihydroxybenzoate dehydrogenase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752614
entB	1-858/858	99,18	81,84	(entB) isochorismatase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752613
fepC	17-788/816	94,61	80,96	(fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752606
yagV/ecpE	3-756/756	99,74	85,28	(yagV/ecpE) E. coli common pilus chaperone EcpE [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286006
yagW/ecpD	1-1644/1644	100	88,81	(yagW/ecpD) polymerized tip adhesin of ECP fibers [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286007
yagX/ecpC	1-2526/2526	99,96	87,34	(yagX/ecpC) E. coli common pilus usher EcpC [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286008
yagY/ecpB	1-669/669	100	88,19	(yagY/ecpB) E. coli common pilus chaperone EcpB [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286009
yagZ/ecpA	1-584/588	99,32	89,9	(yagZ/ecpA) E. coli common pilus structural subunit EcpA [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286010
ykgK/ecpR	11-591/591	98,31	86,23	(ykgK/ecpR) regulator protein EcpR [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286011
ompA	1-1041/1041	100	83,75	(ompA) outer membrane protein A [OmpA (VF0236)] [Escherichia coli O18:K1:H7 str. RS218]	AAF37887

Tabell 44. Rådata for genene detektert i P12(E)Nid_Kleb gjennom VFDB.

Tabell 45. Rådata for genene detektert i P16(E)Jons_Serr gjennom VFDB.

P16(E)Jons_Serr					
Gene	Coverage	Coverage (%)	Identity (%)	Product	Acc. Nr.
fliG	1-993/993	100	81,47	(fliG) flagellar motor switch protein G [Flagella (VF0394)] [Yersinia enterocolitica subsp. enterocolitica 8081]	YP_001006742
fliM	1-1005/1005	99,9	81,51	(fliM) flagellar motor switch protein FliM [Flagella (VF0394)] [Yersinia enterocolitica subsp. enterocolitica 8081]	YP_001006748
fliP	8-686/687	98,84	80,41	(fliP) flagellar biosynthetic protein FliP [Flagella (VF0394)] [Yersinia enterocolitica subsp. enterocolitica 8081]	YP_001006751
flgG	7-654/654	99,08	80,4	(flgG) flagellar basal-body rod protein FlgG [Flagella (VF0394)] [Yersinia enterocolitica subsp. enterocolitica 8081]	YP_001006759

Tabell 46.Rådata for genene detektert i PROKKA for P1(E)Nid_E.coli, inkludert toksin- og anti-toksingener, resistensgener mot metaller, syre og UV, samt gener for MDR, MDR efflux-pumper og biofilm.

P1(E)Nid_E.coli									
	Gen	Produkt/Beskrivelse							
	ccdA	Antitoxin CcdA							
	ccdB	Toxin CcdB							
	chpB	ChpB toxin of the ChpB-ChpS toxin-antitoxin system							
	chpS	ChpS antitoxin of the ChpB-ChpS toxin-antitoxin system							
	cptA	toxin of the CptA-CptB toxin-antitoxin system							
	cptB	antitoxin of the CptA-CptB toxin-antitoxin system							
	dinJ	DinJ antitoxin of YafQ-DinJ toxin-antitoxin							
	yafQ	toxin of the YafQ-DinJ toxin-antitoxin system							
	hicA	toxin of the HicA-HicB toxin-antitoxin system							
	hicB	antitoxin of the HicA-HicB toxin-antitoxin system							
	hipA	Serine/threonine-protein kinase toxin HipA							
	hipB	HipB-HipA antitoxin/toxin complex and DNA-binding transcriptional repressor							
	hokA	small toxic membrane polypeptide							
	hokB	small toxic membrane polypeptide							
	hokD	Qin prophage; small toxic polypeptide							
	ldrB	small toxic polypeptide LdrB							
Toksiner og	ldrD	LdrD peptide of the LdrD-RdlD toxin-antitoxin system							
anti-toksiner	ltxB	Leukotoxin export ATP-binding protein LtxB							
	mazE	MazE antitoxin of the MazF-MazE toxin-antitoxin							
	mazF	MazF toxin of the MazF-MazE toxin-antitoxin							
	mqsR	mRNA interferase, toxin of the MqsR-YgiT toxin-antitoxin system							
	parD1	Antitoxin ParD1							
	parE1	Toxin ParE1							
	prlF	PrlF antitoxin							
	yhaV	ThaV toxic endonuclease							
	- 	Stimulates PspC-mediated transcriptional activation of the psp operon; antitoxin of a							
	рѕрВ	PspC-PspB toxin-antitoxin pair							
	pspC	PspC transcriptional regulator; toxin of a PspC-PspB toxin-antitoxin pair							
	ratA	50S ribosomal subunit-binding toxin of a predicted toxin-antitoxin pair							
	relE2	Toxin RelE2							
	symE	toxin-like protein of the SOS response							
	tabA	toxin-antitoxin biofilm protein							
	tisB	toxic peptide TisB							
	vgrG1	Actin cross-linking toxin VgrG1							
	hha A	outer membrane protein involved in copper permeability, stress resistance and biofilm							
	DIISA	formation							
	cnrA	membrane protein conferring nickel and cobalt resistance							
	copA	Copper resistance protein A							
	copB	Copper resistance protein B							
	copA	Cu+ efflux ATPase							
Resistens mot	cusA	copper / silver efflux transport system - membrane subunit							
metall, syre	cusB	copper / silver efflux transport system - membrane fusion protein							
og UV	cusC	copper / silver efflux transport system - outermembrane porin							
	cusF	copper / silver efflux transport system - periplasmic binding protein							
	hdeD	acid-resistance membrane protein							
	rcnB	periplasmic protein involved in nickel/cobalt efflux							
	silE	Silver-binding protein SilE							
	uspD	stress protein involved in resistance to UV irradiation							
	zntA	zinc, cadmium and lead efflux system							

		P1(E)Nid_E.coli						
	Gen	Produkt/Beskrivelse						
	acrD	AcrAD-TolC multidrug efflux transport system - permease subunit						
	acrE	AcrEF-TolC multidrug efflux transport system - membrane fusion protein						
	acrF	AcrEF-TolC multidrug efflux transport system - permease subunit						
	bcr	multidrug efflux transporter Bcr						
	emrA	EmrAB-TolC multidrug efflux transport system - membrane fusion protein						
	emrB	EmrAB-TolC multidrug efflux transport system - membrane subunit						
	emrD	multidrug efflux transporter EmrD						
	emrE	multidrug efflux transporter EmrE						
	emrK	EmrKY-TolC multidrug efflux transport system - membrane fusion protein						
	emrY	EmrKY putative multidrug efflux transporter - membrane subunit						
	mdfA	multidrug efflux transporter MdfA						
MDR og	mdtA	MdtABC-TolC multidrug efflux transport system - putative membrane fusion protein						
MDR efflux	mdtB	MdtABC-TolC multidrug efflux transport system - membrane subunit						
	mdtC	MdtABC-TolC multidrug efflux transport system - membrane subunit						
	mdtE	MdtEF-TolC multidrug efflux transport system - membrane fusion protein						
	mdtF	MdtEF-TolC multidrug efflux transport system - permease subunit						
	mdtG	multidrug efflux transporter MdtG						
	mdtK	multidrug efflux transporter MdtK						
	mdtL	multidrug efflux transporter MdtL						
	mdtM	multidrug efflux transporter MdtM						
	sdsP	SdsRQP multidrug efflux transport system - predicted outer membrane factor						
	sdsQ	SdsRQP multidrug efflux transport system - uncharacterized component						
	sdsR	SdsRQP multidrug efflux transport system - predicted membrane fusion protein						
	tap	Multidrug efflux pump Tap						
	bdcA	c-di-GMP binding protein involved in biofilm dispersal						
	bhsA	outer membrane protein involved in copper permeability, stress resistance and biofilm formation						
	bssR	regulator of biofilm formation						
Biofilm	bssS	regulator of biofilm formation						
	pgaD	inner membrane protein involved in biofilm formation						
	yceO	small protein involved in biofilm formation and acid stress response						
	ymgC	protein involved in biofilm formation						

Tabell 47. Rådata for genene detektert i PROKKA for P12(E)Nid_Kleb, inkludert toksin- og anti-toksingener, resistensgener mot metaller og desinfeksjonsmidler, samt gener for MDR, MDR efflux-pumper og biofilm.

P12(E)Nid_Kleb								
	Gen	Produkt/Beskrivelse						
	apxIB	Toxin RTX-I translocation ATP-binding protein						
	cbeA	Cytoskeleton bundling-enhancing antitoxin CbeA						
	cbtA	Cytoskeleton-binding toxin CbtA						
	higA	Antitoxin HigA						
	higB2	Putative toxin HigB2						
	hipA	Serine/threonine-protein kinase toxin HipA						
Toksiner og	hipB	Antitoxin HipB						
anti-toksiner	hokE	Toxic protein HokE						
	ortT	Orphan toxin OrtT						
	ratA	Ribosome association toxin RatA						
	relB	Antitoxin RelB						
	relE	mRNA interferase toxin RelE						
	tabA	Toxin-antitoxin biofilm protein TabA						
	ykfI	Toxin YkfI						
	arsD	Arsenical resistance operon trans-acting repressor ArsD						
	cnrA	Nickel and cobalt resistance protein CnrA						
	copA	Copper resistance protein A						
Posistons mot	copB	Copper resistance protein B						
motall og	copD	Copper resistance protein D						
desinfeksions-	copC	Copper resistance protein C						
midler	qacC	Quaternary ammonium compound-resistance protein QacC						
indici	smvA	Methyl viologen resistance protein SmvA						
	zraP	Zinc resistance-associated protein						
	silE	Silver-binding protein SilE						
	silP	Silver exporting P-type ATPase						
Biofilm	bdcA	Cyclic-di-GMP-binding biofilm dispersal mediator protein						
Diomin	bssS	Biofilm regulator BssS						
	bmr3	Multidrug resistance protein 3						
	emrD	Multidrug resistance protein D						
	mdlB	Multidrug resistance-like ATP-binding protein MdlB						
	mdtA	Multidrug resistance protein MdtA						
	mdtB	Multidrug resistance protein MdtB						
	mdtC	Multidrug resistance protein MdtC						
	mdtD	Putative multidrug resistance protein MdtD						
	mdtH	Multidrug resistance protein MdtH						
MDR og	mdtK	Multidrug resistance protein MdtK						
MDR efflux	mdtL	Multidrug resistance protein MdtL						
in Directing	mdtM	Multidrug resistance protein MdtM						
	mdtN	Multidrug resistance protein MdtN						
	mexA	Multidrug resistance protein MexA						
	mexB	Multidrug resistance protein MexB						
	stp	Multidrug resistance protein Stp						
	yheI	putative multidrug resistance ABC transporter ATP-binding/permease protein YheI						
	acrA	Multidrug efflux pump subunit AcrA						
	acrB	Multidrug efflux pump subunit AcrB						
	oqxB19	multidrug efflux RND transporter permease subunit OqxB19						

Tabell 48. Rådata for genene detektert i PROKKA for P16(E)Jons_Serr, inkludert toksin- og anti-toksingener, metallresistensgener, samt gener for MDR, MDR efflux-pumper og biofilm.

		P16(E)Jons_Serr					
	Gen	Produkt/Beskrivelse					
Toksiner og	apxIB	Toxin RTX-I translocation ATP-binding protein					
anti-toksiner	ghoS	Endoribonuclease antitoxin GhoS					
	ghoT	Toxin GhoT					
	higB2	Putative toxin HigB2					
	ltxB	Leukotoxin export ATP-binding protein LtxB					
	parE1	Toxin ParE1					
	ratA	Ribosome association toxin RatA					
	relB	Antitoxin RelB					
	relE	mRNA interferase toxin RelE					
	symE	Toxic protein SymE					
	vgrG1	Actin cross-linking toxin VgrG1					
Metallresistens	czcA	Cobalt-zinc-cadmium resistance protein CzcA					
	czcC	Cobalt-zinc-cadmium resistance protein CzcC					
	smvA	Methyl viologen resistance protein SmvA					
	yddG	Methyl viologen resistance protein YddG					
Biofilm	bdcA	Cyclic-di-GMP-binding biofilm dispersal mediator protein					
	bdlA	Biofilm dispersion protein BdlA					
	bssS	Biofilm regulator BssS					
MDR og	bmr3	Multidrug resistance protein 3					
MDR efflux	emrD	Multidrug resistance protein D					
	emrK	putative multidrug resistance protein EmrK					
	emrY	putative multidrug resistance protein EmrY					
	mdlB	Multidrug resistance-like ATP-binding protein MdlB					
	mdtA	Multidrug resistance protein MdtA					
	mdtB	Multidrug resistance protein MdtB					
	mdtC	Multidrug resistance protein MdtC					
	mdtD	Putative multidrug resistance protein MdtD					
	mdtG	Multidrug resistance protein MdtG					
	mdtH	Multidrug resistance protein MdtH					
	mdtK	Multidrug resistance protein MdtK					
	mdtL	Multidrug resistance protein MdtL					
	mdtN	Multidrug resistance protein MdtN					
	mdtO	Multidrug resistance protein MdtO					
	stp	Multidrug resistance protein Stp					
	yheI	putative multidrug resistance ABC transporter ATP-binding/permease protein YheI					
	acrA	Multidrug efflux pump subunit AcrA					
	acrB	Multidrug efflux pump subunit AcrB					
	cusA	Cation efflux system protein CusA					
	oqxB7	multidrug efflux RND transporter permease subunit OqxB7					

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway