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“A great silence is spreading over the natural world even as the sound of
man is becoming deafening”

- Bernie Krause -



Image:
A 9-day soundscape showing circadian patterns in CVR-index values for Fuzaca
Island in the Balbina Hydroelectric Reservoir, plotted in the polar coordinate

system.
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1 Abbreviations and definitions

Abbreviation Meaning

ADI Acoustic Diversity Index
AEI Acoustic Evenness Index
Al Artificial Intelligence
ASU Acoustic Space Use
BHR Balbina Hydroelectric Reservoir
BI Bioacoustic Index
CE Current Era
CVR Acoustic Cover Index
dB Decibel
ENS Effective Number of Species
FFT Fast Fourier Transformation
GPS Global Positioning System
H Acoustic Entropy
Hf Spectral Entropy
HPC High Performance Computer
Hz Hertz
IBT Island Biogeography Theory
IUCN International Union for the Conservation of Nature
kHz Kilohertz
LPR Living Planet Report
MCH Morphological Contraint Hypothesis
ML Machine Learning
0osu Operational Sound Unit
PCH Phylogenetic Contstraint Hypothesis
RFCx Rainforest Connection
ROI Region Of Interest
SAR Species-Area Relationship
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SIE
SIR
SNR
SSAR
TB

Small Island Effect
Species-Isolation Relationship
Signal-to-Noise Ratio
SoundScape-Area Relationship

Terrabyte
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3 Abstract

Tropical rainforests harbour up to 66% of the world’s terrestrial biodiversity but
have been reduced in extent by up to 60% due to persistent deforestation and forest
degradation, resulting in the population decline or loss of ecologically and socio-
economically important wildlife species. In recognition of the biodiversity crisis as
an actor of global change, several international initiatives, including the Convention
of Biological Diversity and its ‘Aichi Biodiversity Targets for 2020’, have been
implemented to curb biodiversity loss. Here, the collection of primary data that
provide an objective record of community-level biodiversity is crucial to
understanding fundamental ecological processes, the trends and drivers of change,
and the progress made towards conservation targets. Yet, the rapid and global
nature of the biodiversity crisis means that monitoring biodiversity at appropriate
spatio-temporal scales is riddled with difficulties. Passive Acoustic Monitoring
(PAM) yields promising perspectives, such as increased taxonomic breadth and the
potential for automation. Still, deriving taxonomic information from acoustic data is
complicated by the time-consuming nature or aural annotation and the lack of
existing automated species identifiers and reference databases. Ecoacoustic is a new
field of research that instead is aimed at inferring ecological information from the
soundscape - or collection of sounds emanating from the landscape - without the
need for species identification. Here, mathematical formulae called acoustic indices
are used to summarise the diversity of acoustic signals in sound files and link values
to diversity patterns. Although this discipline has made substantial progress
towards becoming a useful monitoring tool, the ability of acoustic indices to reflect
biodiversity trends or ecological patterns must be validated before this technology
is implemented on a global scale. Several limitations and research opportunities

remain to be addressed and will be the focus of this thesis.

This thesis presents a novel analytical workflow that combines ecoacoustic methods
with the analytical framework of Hill numbers, resulting in a comprehensive set of
intuitive acoustic indices for measuring soundscape diversity patterns at multiple
scales. Chapter I introduces the analytical approach, confirming that the derived
acoustic indices adhere to essential criteria for diversity indices, while also
evaluating their effectiveness in capturing richness patterns of sound-producing

species in tropical rainforests. In Chapter II, the investigation delves deeper into the



spatial variations of soundscape richness within a highly insularised rainforest
system, revealing a positive correlation between island size and soundscape
richness across multiple scales, and linking the observed patterns to underlying
ecological mechanisms. Chapter III introduces soundscapeR, a user-friendly
software tool implemented in the R coding language, facilitating the use of the
workflow. Collectively, these chapters demonstrate the potential of this new
approach, presenting a valuable addition to the ecoacoustic monitoring toolbox that
can be used to shed light on ecological mechanisms and their drivers in acoustically

complex rainforest settings.



4 Norsk sammendrag

Tropiske regnskoger huser opptil 66 % av verdens biologiske mangfold pa land,
men har blitt redusert i omfang med opptil 60 % pa grunn av vedvarende avskoging
og skogforringelse, noe som har resultert i en nedgang i antallet individer eller tap
av gkologisk og sosiogkonomisk viktige dyrearter. I anerkjennelse av naturkrisen
som en bidragsyter til de globale endringene vi star overfor, har flere internasjonale
initiativer, inkludert Konvensjonen om biologisk mangfold (Convention on
Biological Diversity, forkortet CBD) og Aichi-malene (Aichi Biodiversity Targets for
2020), blitt iverksatt for a stanse tapet av biologisk mangfold. For & evaluere
fremskritt mot bevaringsmalene, trender og drivere av endring, og forsta
grunnleggende gkologiske prosesser er innsamling av feltdata, som gir en objektiv
oversikt over biologisk mangfold pa samfunnsniva, avgjgrende. Likevel betyr
naturkrisens raske og globale karakter at det er vanskelig a overvake biologisk
mangfold i tilstrekkelig utstrekning i tid og rom. Passiv Akustisk Overvaking
(Passive Acoustic Monitoring, forkortet PAM) er i denne sammenheng en lovende
metode og bidrar med gkt taksonomisk bredde og potensial for automatisering.
Likevel er det krevende a utlede taksonomisk informasjon fra akustiske data.
Mangel pa eksisterende automatiserte metoder for a identifisere arter og mangel pa
referansedatabaser gjgr det anstrengende og tidskrevende a klassifisere
lydkomponenter i et maskinforstaelig format utefra hvilket arter kan bestemmes.
Pkoakustikk (Ecoacoustic) er et nytt forskningsfelt som i stedet tar sikte pa a utlede
gkologisk informasjon fra lydbildet - eller samlinger av lyder som kommer fra
landskapet - uten behov for artsidentifikasjon. Her brukes matematiske formler kalt
akustiske indekser for 8 oppsummere mangfoldet av akustiske signaler i lydfiler og
knytte verdier til mangfoldsmgnstre. Selv om betydelige fremskritt har blitt gjort pa
dette feltet mot a bli et nyttig overvakingsverktgy, ma akustiske indeksers evne til &
reflektere biologisk mangfoldstrender eller gkologiske mgnstre valideres fgr denne
teknologien kan brukes pa global skala. Flere begrensninger og
forskningsmuligheter gjenstar a adressere og disse har vert fokus for denne

oppgaven.

Denne oppgaven presenterer en ny analytisk arbeidsflyt som kombinerer
gkoakustiske metoder med det analytiske rammeverket til Hill-tallene. Dette

resulterer i et omfattende sett med intuitive akustiske indekser som kan brukes for



a male lydlandskapsmangfoldsmgnstre pa flere skalaer. Kapittel I introduserer den
analytiske tilneermingen, viser at de akustiske indeksene overholder essensielle
kriterier for mangfoldsindekser, og evaluerer indeksenes kapasitet til 3 reflektere
mgnstre i artsmangfold for lydproduserende arter i tropiske regnskoger. I kapittel I
gar undersgkelsen dypere inn i de romlige variasjonene av lydlandskapsmangfoldet
i et sveert isolert regnskogsystem, og avslgrer en positiv korrelasjon mellom
gystgrrelse og lydlandskapsmangfold pa tvers av flere skalaer. Kapittel II kobler sa
de observerte mgnstrene til underliggende gkologiske mekanismer. Kapittel 111
introduserer soundscapeR, et brukervennlig programvareverktgy i R-kodesprak,
som underletter arbeidsflyten. Samlet viser disse kapitlene potensialet til denne
nye, gkoakustiske tilneermingen. De utgjgr dermed et verdifullt bidrag til de
akustiske overvakingsmetodene som kan brukes for a kaste lys over gkologiske

mekanismer og deres drivere i akustisk komplekse regnskogsmiljger.



5 Synopsis

5.1 Introduction
5.1.1 Biodiversity in the Anthropocene

The Anthropocene marks a newly proposed geological epoch in which human
activities have fundamentally altered the Earth's systems, leading to profound
changes in the atmosphere, biosphere, hydrosphere, and geosphere (Crutzen and
Stoermer 2000; Steffen et al. 2011). Despite the debate on its onset (Smith and
Zeder 2013), the impact of human activities on planetary processes is undeniable
and many indicators suggest we’re well outside the boundaries the planet can
sustain (Steffen et al. 2015). Today, up to 75% of the Earth's terrestrial land surface
has been altered by humans (Shukla et al. 2019) and every year, approximately 40%
of the world's primary productivity is appropriated for human consumption (Imhoff
et al. 2004; McGill et al. 2015). Following the industrialisation and globalisation of
human production and trade, the planet’s biogeochemical cycles have been thrown
out of kilter, including a projected doubling of atmospheric CO2 by 2050 (Hofmann
etal. 2009), a doubling of biologically available nitrogen (Millennium Ecosystem
Assessment 2005), and a 75% increase in phosphorous storage in terrestrial and
freshwater ecosystems (Bennett et al. 2001). The compounding and synergistic
effects of these anthropogenic pressures are rapidly destabilising the functioning of

planetary processes.

The human impact on the Earth transcends biogeochemical cycles alone, also
leading to a dramatic alteration of the biosphere (Schramski et al. 2015). For
instance, the Earth’s plant biomass has declined approximately twofold since the
start of human civilisation, and while the present-day biomass of all mammals has
increased four-fold in this period, the biomass of wild mammals has decreased
seven-fold. This stark difference can be attributed to the expansion of the human
population and associated livestock and the decrease in wild mammal populations.
Yet, the impact of human activities on the biosphere is not just limited to changes in
the biomass. Between 100,000 - 500 years before the present, our planet lost more
than 10% of its mammal species, 23% of its turtle and tortoise species, and 10% of

its bird species (Johnson et al. 2017), among other groups. This loss was especially



pervasive for large-bodied species (Dirzo et al. 2014), with 80% of megaherbivores
and 60% of megacarnivores going extinct during this period (Malhi et al. 2016).
Although this remains a topic of debate (Stewart et al. 2021), these extinction events
largely track the movement of early humans across the planet and are thus believed
to be the consequence of anthropogenic actions (Duncan et al. 2013; Bartlett et al.
2016; Malhi et al. 2016). In more recent times (500 CE - present), 711 vertebrate
species, and almost 600 species of plants and invertebrates, have gone extinct (IUCN
2023; Johnson 2023). Considering many groups remain unassessed by the
International Union for the Conservation of Nature (IUCN), the true number is likely
much higher (Dirzo et al. 2014).

While species losses are important, they do not fully reflect humanity’s impact on
the biosphere. If we look beyond global species extinctions, it becomes clear that
species population declines are widespread and accelerating. The Living Planet
Report (LPR), a biennial report investigating population trends for approximately
32,000 populations, suggests that global species population abundance has declined
by 69% on average since 1970 (Almond et al. 2022). While the populations included
in the LPR report only represent a fraction of global populations, and the
interpretation of the metric has been criticised for being misleading (Leung et al.
2020), the pervasive nature of human-induced population declines has been
numerously shown at regional (Heikkinen et al. 2004; Seibold et al. 2019) and global
(Newbold et al. 2015; Jung et al. 2019; Morton et al. 2021) scales for a broad range
of taxonomic groups. The effects of these population declines translate into the
extinction risk of species. According to the IUCN Red List of Threatened Species,
currently, 27% of mammals, 13% of birds, 41% of amphibian species, and 21% of
reptiles are threatened with extinction (IUCN 2023). Although much less is known
about other taxonomic groups, such as insects, many reports highlight pervasive

declines in formerly abundant species (Wagner et al. 2021).

5.1.2 The fate of tropical forests

The degradation of biotas and the subsequent loss of individuals, populations, and
species exhibit non-random patterns, displaying nestedness within specific regions,
ecosystems, and phylogenetic groups. Understanding the distribution of biodiversity
and human threats is crucial for effective conservation efforts.

Tropical rainforests, which cover a mere 6.5% of the Earth's terrestrial surface area,

are estimated to sustain up to two-thirds of the world's terrestrial biodiversity
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(Malhi et al. 2014; Gardner 2011; Rainforest Foundation Norway 2020).
Paradoxically, these ecosystems also face some of the highest degrees of human
threat. The intensification of global agriculture, urbanization, forestry, and
infrastructure development in the Anthropocene has resulted in extensive
deforestation, leading to forest destruction, degradation, and fragmentation
(Gardner et al. 2009). These primary threats are compounded by secondary factors,
including increased wildfire prevalence (Aragao et al. 2018), overexploitation of
natural resources through hunting and wildlife trade (Peres 2000; Morton et al.
2021), altered biogeochemical cycles (Leite-Filho et al. 2021), the introduction of
invasive species and pathogens (Ghazoul and Sheil 2010; Lips 2016), and climate
change (Brodie et al. 2012). Consequently, tropical rainforests have been reduced by
one-third of their original extent, with only half of the remaining forests considered
intact (Rainforest Foundation Norway 2020). This has led to a significant risk of
extinction for the biological communities inhabiting these ecosystems. Notably, 28-
34% of endemic tropical forest vertebrates and up to 42% of amphibians face the
threat of extinction (Pillay et al. 2022).

The spatial relationship between high biodiversity and high anthropogenic threat in
tropical rainforests is exemplified by the concept of "biodiversity hotspots" (Pimm
and Raven 2000). Biodiversity hotspots are areas that support at least 1,500
endemic plant species and have experienced a reduction of 70% or more in their
primary vegetation (Myers et al. 2000; Habel et al. 2019). Globally, only 2.5% of the
Earth's land surface qualifies as a biodiversity hotspot (Myers et al. 2000).
Remarkably, 60% of these hotspots are located within tropical rainforests,
emphasizing the critical conservation concern for these ecosystems (Corlett and
Primack 2008). The vulnerability of tropical rainforest species to human pressures
varies across the tree of life, with the fossil record suggesting that animals are more
susceptible to mass extinction events than plants (Stork et al. 2009). Extinction risk
for animals is heightened among rare species with small populations, limited
geographic ranges, high endemicity, slow population growth, specialized ecological
habits, poor dispersal, large size, and high trophic levels (McKinney 1997; McKinney
and Lockwood 1999; Dirzo et al. 2014). Consequently, small and large vertebrate

species face an elevated risk of extinction (Ripple et al. 2017).
The health of tropical rainforests and the biodiversity they support are crucial for

the functioning of these ecosystems and the services they provide to humankind

(Malhi et al. 2014). Tropical forests, for instance, store more living biomass than any
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other ecosystem on the planet, making them vital for climate regulation (Rainforest
Foundation Norway 2020). Moreover, the wildlife within rainforests constitutes a
vital source of sustenance, timber, and medicine, supports the livelihoods of many
communities, among others (Brandon 2014). To reverse negative biodiversity
trends, it is vital that we understand the trends and drivers of change, the ecological
consequences of anthropogenic disturbances, and the progress we make towards
conservation targets (Gardner 2011; Proenca et al. 2017). However, the global and
rapid nature of the biodiversity crisis makes it exceedingly difficult to gather fine-
scale data on biodiversity trends at the spatio-temporal scales relevant to

conservation, especially for tropical rainforests, which cover vast areas.

5.1.3 Ecological monitoring in tropical rainforests

Various approaches to ecological monitoring in tropical rainforests exist, each with
distinct advantages and limitations. Traditionally, biodiversity surveys in tropical
rainforests have relied on human observers conducting fieldwork and using visual
or acoustic cues to detect wildlife and their associated signs (Zwerts et al., 2021). In-
field human observations have been successfully applied to monitor tropical
rainforest biodiversity in a wide range of contexts and taxonomic groups (e.g., Oppel
2006; Maas et al. 2009; Endo et al. 2010). This approach is particularly suitable for
research projects with limited financial resources, as it requires minimal upfront
investment and technological tools. More so, it allows for direct in-field species
identification, reducing post-processing workloads (Zwerts et al., 2021).
Nevertheless, the unique characteristics of tropical rainforest environments present
challenges that can compromise the validity of observational data if not carefully
considered. Tropical rainforests are characterized by limited visibility, high
biological complexity, exceptional species richness, and numerous cryptic species
living at low population densities (Zwerts et al., 2021). These factors contribute to a
low detection probability for most tropical rainforest species, which means that
biodiversity surveys require substantial effort (Witmer, 2005). Tropical rainforests
often span vast expanses of remote and logistically challenging habitats, and the
concentration and cognitive strain required for this type of work impose limits on
the number of hours an expert can remain focused (Loffeld et al., 2022).
Consequently, getting a comprehensive diversity profile using in-field observation
can require thousands of person-hours, making multi-taxa studies at broad spatial

scales a slow, laborious, and costly endeavour (Gardner et al., 2008).
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The probability of detecting species can also vary significantly, thereby increasing
the risk of introducing bias into diversity estimates. In-field human observations
tend to favour easily detectable species, such as large, vocal, diurnal, and abundant
mammals and birds (Zwerts et al. 2021). Conversely, rare, small, nocturnal, and
cryptic species are often overlooked (Zwerts et al. 2021). An observer's ability to
discriminate between individuals of different species also significantly impacts the
outcome of ecological monitoring efforts but is subject to multiple sources of bias
(Tuia et al., 2022). Observers may differ in their overall skill level, taxonomic
specialization, or audio-visual acuity (Faanes and Bystrak, 1981). The cognitive
demands of visual and acoustic surveys can also affect an observer's accuracy in
detecting and identifying individuals to the species level, potentially varying with
the time of day or duration of the field season (Lardner et al., 2019). Although it is
possible to mitigate these biases to some extent (Fitzpatrick et al., 2009), data
resulting from these surveys are inherently linked to the observer and cannot be
validated at a later stage (Sethi, 2020b; Tuia et al., 2022). This lack of an objective
record of community-level diversity introduces challenges regarding research

reproducibility.

In summary, our ability to monitor biodiversity patterns in tropical forests using
traditional observational methods is hindered by: (i) the required in-field effort; (ii)
potential observer biases; (iii) the lack of an objective diversity record; and (iv) the
required temporal and financial investment. If we are to understand how
ecosystems respond to human disturbance or conservation actions, we require
scalable and reliable field survey methods that can easily provide us with bias-free
fine-scale biodiversity data at broad spatial and temporal scales at a reduced cost. In
recent times, the information revolution has brought about major advances in
computer and communications technologies, which have the potential to transform
the way we monitor ecosystems by removing some of the aforementioned
limitations (Hampton et al. 2013). Several technological breakthroughs, paired with
the maturing of existing technologies, have reduced the cost and size of autonomous
sensors, including camera traps (Glover-Kapfer et al. 2019), GPS tags (Beuchert et al.
2022), satellite-borne cameras (Yang et al. 2014), drone-borne multi-spectral
sensors (Kays et al. 2019), and microphones (Hill et al. 2018). These devices now
allow us to collect, analyse and store novel types of data at faster speeds, larger
volumes, and broader spatial and temporal scales (Pimm et al. 2015). Additionally,

this new generation of monitoring tools can increasingly operate semi- or fully
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autonomously (Sethi et al. 2018), thus providing scalable solutions to complement
the traditional ecological monitoring approaches mentioned before. When paired
with wireless sensor networks and on-board machine learning capabilities, in the
future, these sensors could be integrated into the Internet of Things, thus providing
real-time data on a broad range of ecological phenomena (Gallacher et al. 2021) or
human threats (ARBIMON RFCx 2022).

It is important to acknowledge, however, that most of these technologies are still in
their infancy and will require substantial refinement, training, and validation before
they can be deployed in a fully autonomous manner. More so, many of these
technological breakthroughs present their own challenges, such as extensive post-
processing, technology-specific biases, or substantial field effort for their
deployment. For the remainder of this thesis, I will focus on one of these
technological approaches in particular, passive acoustic monitoring, discussing its
biodiversity monitoring opportunities, limitations, and areas requiring further

development.

5.1.4 Acoustic sensors as an addition to the monitoring toolbox
5141 The strength of passive acoustic monitoring

Many species use sound to convey ecologically important information to sympatric
individuals (Darwin 1872), including contacting conspecifics (Bond and Diamond
2005), attracting a mate (Gerhardt et al. 2003), navigating and hunting (Madsen and
Surlykke 2013), fighting (Versluis et al. 2000), or as a defence mechanism (Smith
and Langley 1978) - be it through vocalisations, stridulations, or by interacting with
their environment (Caldwell 2014). As such, the cumulative collection of sounds
that emanate from a landscape, also known as the soundscape, carries ecologically
relevant information, including information on species' presence, abundance,
behaviour, and interactions (Gibb et al. 2019). In addition to biological sounds (i.e.,
biophony), soundscapes also contain information on non-biological phenomena,
such as geophysical sounds (i.e., geophony - sounds produced by the natural
processes of the Earth) and anthropogenic sounds (i.e., anthropophony - sounds
produced by humans), which can shed light on broader ecosystem-level processes

or anthropogenic threats (Krause 1987; Pijanowski et al. 2011b).
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Recording environmental sound to infer ecological patterns, a field that we will
henceforth refer to as ‘ecoacoustics’ (Sueur and Farina 2015), offers a multitude of
advantages against other ecological monitoring tools. First, recent advances in the
technology, size, and cost of semi- or fully autonomous passive acoustic recording
devices mean that recordings can now be taken continuously, over long periods, and
with reduced human effort, thus greatly increasing the temporal scope and spatial
scalability of this tool (Hill et al. 2018; Gibb et al. 2019; Roe et al. 2021). Moreover,
the resulting big acoustic datasets maintain a high resolution in the frequency and
temporal domain, meaning ecological phenomena can be investigated on a broad
range of timescales, ranging from seconds (Ofiate-Casado et al. 2023) to years
(Phillips et al. 2017). These unique properties of acoustic datasets open novel
avenues of research that allow us to examine the interplay between fine-scale and
large-scale ecological processes (Sugai et al. 2019b; Sethi 2020b). Additionally,
when these acoustic sensors are applied to gather high-resolution data at large
spatio-temporal scales, they have the potential to be more cost-effective relative to
conventional methods, though this is dependent on the research question at hand
(Gascetal.2013; Wood et al. 2019).

Second, as opposed to the narrow taxonomic focus of most other methods, passive
acoustic sensors are distinct in the wealth of information they capture from a single
data source (Ross et al. 2023). For instance, the acoustic fingerprint of the
environment contains sounds of a wide range of taxonomic groups (e.g., insects,
birds, mammals, amphibians, fish, reptiles, crustaceans), as well as human threats
(e.g., hunting, illegal logging, forest fires), and geophysical events (e.g., rainstorms,
treefalls, wind, wildfires; Sethi 2020b). Furthermore, since acoustic sensors can
record sounds that are inaudible to the human ear (ultrasound), they allow us to
monitor species that are otherwise hard to study, such as bats (Froidevaux et al.
2014) or katydids (Symes et al. 2022).

Third, acoustic recordings represent an objective and permanent record of the
sound-producing community at a specific place and moment in time. These records
can be cross-examined at any point, thus overcoming issues with research
reproducibility that trouble in-field aural identification of species by a human
observer. In addition to their current importance, these acoustic data may hold a
key role in future research efforts. Recordings of environmental sound can be seen
as a type of ‘bioacoustic time capsule’, providing baseline information on the state of

sound-producing communities at some point in the past, and potentially containing
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records on the activity of species that were previously unknown to science or have

since gone extinct (Sugai and Llusia 2019).

In summary, passive acoustic sensors represent a valuable addition to the ecological
monitoring toolbox, allowing us to scale up ecological monitoring studies at a
reduced cost and with relative ease, while at the same time retaining a high
resolution for a broad range of taxonomic groups. Yet, despite the promise of
passive acoustic monitoring, several pertinent barriers remain before this tool can

be implemented to monitor the state of ecosystems on a global scale.

5.1.4.2 Challenges in acoustic biodiversity monitoring
Ecoacoustics as a big data science

To illustrate the challenging nature of deriving ecological information from acoustic
datasets, let’s imagine a simple example. Say we would like to conduct a high-
resolution study that investigates the acoustic community of a protected area
spanning 100 km2. The protected area has a certain degree of habitat heterogeneity,
so as a trade-off between coverage and cost, we decide to deploy the acoustic
sensors at a density of 1 sensor/kmz2 (100 sensors) and record the audible part of
the soundscape (sampling rate: 48 kHz) continuously for 1 month (31 days) using
the AudioMoth (Hill et al. 2018) recording device. As we want to account for a
potential temporal turnover in the acoustic community throughout the year, we
repeat the data collection 4 times per year. Using this setup, our study would
generate approximately 100 TB of data spanning 297,600 total recording hours, or
12,400 days of recording. Should we want to include the ultrasonic part of the
frequency spectrum using AudioMoth’s upper frequency limit (sampling rate: 384
kHz), we would produce 806 TB of data.

Admittedly, this hypothetical case study represents an optimal sampling scenario,
and we could probably achieve robust results with fewer sensors or a lower
temporal/frequency coverage, yet it illustrates this point nicely: even a study in a
single area with reasonable sampling assumptions (Metcalf et al. 20203) produces
vast amounts of data, especially when ultrasonic sounds are also of interest.
Although big data has been a buzzword in science for the past few decades, and this
wealth of information brings numerous opportunities to the table, a new set of

challenges now presents itself: how do we manage and analyse these vast datasets?
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Storing ecoacoustic data in perpetuity

The first obstacle in the big acoustic data workflow is presented by the deluge of
data that is generated and how we should manage it (Truskinger et al. 2014; Gibb et
al. 2019). After data collection, soundscape recordings need to be stored, and later,
archived in perpetuity (Villanueva-Rivera and Pijanowski 2012; Darras et al. 2020).
Ideally, this data should be freely available to the scientific community on a user-
friendly platform (Deichmann et al. 2018), be accompanied by all relevant metadata

(Roch etal. 2016), and if annotated, be checked for accuracy.

Although, for now, most acoustic datasets don’t reach an equivalent size to those in
the fields of genomics, astronomy, or particle physics (Stephens et al. 2015), the
permanent storage of ecoacoustic data in global databases is complicated by several
factors. Firstly, whereas fields such as astronomy or genomics are relatively mature,
having dealt with the challenges of big data for several decades (Stephens et al.
2015), the big data aspect of ecoacoustic research is a relatively novel development
(Towsey et al. 2014a). Secondly, in these other disciplines, much of the raw data can
be processed to less storage-demanding forms before being archived (Stephens et
al. 2015). For ecoacoustics, part of the value of the data lies in its ability to serve as a
historical record of the structure and dynamics of ecosystems at a given moment in
time (Sugai and Llusia 2019), acting as a type of ‘acoustic fossil’. Therefore, the raw
data must be stored in perpetuity, highlighting the need for a global ecoacoustic

archiving system.

Presently, the required infrastructure for the permanent archival of ecoacoustic
datasets is lagging. Several databases exist for the storage of acoustic data of species’
calls (bioacoustics data), including the Macaulay Library (macaulaylibrary.org) and
Xeno-Canto (xeno-canto.org), however, only the second hosts soundscape
recordings (Deichmann et al. 2018). Existing databases dedicated to the storage of
ecoacoustic data include Ecosounds (www.ecosounds.org), Biosounds (Darras et al.
2020), the Terrestrial Ecosystem Research Network EcoAcoustics Portal
(bioacoustics.tern.org.au), the Sound of Norway (thesoundofnorway.com), the
Remote Environmental Assessment Laboratory
(remoteenvironmentalassessmentlaboratory.com), the Center for Global
Soundscapes (centerforglobalsoundscapes.org) and its Record The Earth project
(recordtheearth.org), and the ARBIMON platform (arbimon.rfcx.org). Yet, several of
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these repositories are exclusive to data collected in specific countries or regions,
and none of them allows users to upload or download large ecoacoustic datasets in
bulk using a simple web-interface (Deichmann et al. 2018). More so, since these
ecoacoustic datasets exist in many disparate archives, discovering what data is out
there, and harmonising the different database architectures to extract and

synthesise the ecological information held within, represents a sizeable challenge.

If we are to make the most out of existing datasets to address questions at larger
spatial scales and over longer timeframes, and avoid redundancy in data collection
efforts, we need to create a centralised ecoacoustic data archive that allows the
scientific community to work collaboratively to collect, archive and share
ecoacoustic data between locations, projects, and research groups (Hampton et al.
2013). Successful examples of global data repositories in other scientific disciplines
include Wildlife Insights for camera trapping (https://www.wildlifeinsights.org/)
and the Barcode of Life Database for genetic and genomic data (boldsystems.org),

among others.

Analysing large acoustic datasets

Even if we manage to store and archive all ecoacoustic data successfully, there is a
mismatch between the ever-growing volume of raw audio recordings acquired for
ecological studies, and our ability to distil ecologically meaningful information from

these recordings rapidly and at large scale (Tuia et al. 2022).

The extraction of taxonomic information on the sound-producing species in
ecoacoustic datasets generally consists of two data processing steps: (i) isolating the
time-frequency coordinates of potential signals or regions of interest (ROIs) from
the raw data files; and (ii) classifying those ROIs into species’ detections or non-
detections (Wood et al. 2019). Historically, these steps were performed by trained
taxonomic experts by manually annotating sound files using aural and visual cues
(Eldridge et al. 2018; Kahl et al. 2021a). Yet, as ecoacoustics emerges as a big data
science, the time-consuming and knowledge-demanding nature of manual
annotations renders this approach highly impractical in theory, and impossible in
reality (Kahl et al. 2020). This is exemplified by the hypothetical case study: should a
taxonomic expert be able to listen to the data non-stop for 8 hrs/day, it would take
them 37,200 work days, or 102 years, to listen to the data just once. Even if this

were a feasible approach, the resulting data would still be subject to the effects of
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observer bias. Hence, we require automated methods to accurately convert
ecoacoustic data into relevant information that can inform ecology and conservation

biology.

Here, artificial intelligence (AlI) can provide solutions. Machine learning (ML)
algorithms, for instance, are skilled at learning patterns from the data they are
presented with (Marvin et al. 2016; Farley et al. 2018). We can distinguish two
general ML techniques: (i) supervised ML, where algorithms are trained with large
amounts of raw data that are labelled with their expected classification outcomes
(e.g. species identity), thus learning a mathematical function that uses some of the
data’s features to accurately classify previously unseen data into the correct
categories; and (ii) unsupervised ML, where no training data is provided, but
algorithms classify the input data based only on distinguishable patterns in the
data’s features (Sethi 2020). These computational models have the potential to
massively speed up classification tasks such as species identification (Mac Aodha et
al. 2018), while at the same time reducing the cost and error rates (Tuia et al. 2022).
Nonetheless, even though ML algorithms have been widely developed in other
ecological disciplines, including camera trapping (Ahumada et al. 2020) or remote
sensing (Zhu et al. 2017), their application to big ecoacoustic datasets has been
more limited (Tuia et al. 2022).

The broad uptake of ML in ecoacoustics is hindered by several factors. The vast size
of ecoacoustic datasets means that applying ML models to identify species from
sound files comes with high computational requirements, for which advanced
computing infrastructure is needed (Tuia et al. 2022). Purchasing High-Performance
Computing (HPC) platforms is prohibitively expensive for most research groups, a
cost which is added onto by the continued price of running and maintaining these
machines (Carlyle et al. 2010). The need for private HPC infrastructure can be
overcome by using the computing resources of the institution (e.g., university), or by
employing cloud-based computing services. However, these also bring about
considerable costs (Carlyle et al. 2010; Tuia et al. 2022), and the use of the former is
often slowed down by competition for computing resources (personal observation).
Finally, as these platforms are energy-intensive, they also have a significant carbon
footprint (Portegies Zwart 2020).

Aside from computational power, to build accurate supervised ML-algorithms for
signal classification of sound files, we require large training datasets. Although

several projects have started aggregating these data into robust and large-scale
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libraries, including Xeno-Canto and the Macaulay Library for birds, there is a
discrepancy between the quality of the acoustic signals of interest in these training
datasets, and the quality of field recordings collected using passive acoustic sensors.
The labelled sound files that are available in these online libraries generally boast
high signal-to-noise ratios (SNR), mostly collected using high-quality handheld
devices (Sethi 2020). Conversely, the non-targeted way passive acoustic sensors
record sound using omnidirectional microphones means that the resulting
ecoacoustic datasets tend to be quite noisy, and thus have low SNRs (Goéau et al.
2018). The task of ML-classifiers is further complicated by the complexity of natural
soundscapes and acoustic competition between species (Tuia et al. 2022;
Truskinger et al. 2014), leading to overlap in the vocalisations of sympatric species.
Currently available training datasets usually only carry a label for the signal with the
highest quality in the recording, leaving the quieter background signals unlabelled
(Denton et al. 2022). Therefore, ML-algorithms that are trained on singularly
annotated sound files from high-quality training datasets struggle to reach high
classification accuracies when applied to raw soundscape data (Wimmer et al. 2013;
Truskinger et al. 2014; Goéau et al. 2018; Denton et al. 2022). Furthermore, apart

from birds, training datasets are missing for most other sound-producing taxa.

Building accurate ML classifiers is especially challenging in tropical rainforests.
These ecosystems are particularly species-rich and contain many poorly known or
elusive species for which few reference acoustic signals are available (Riede 2018).
Moreover, rainforests represent one of the noisiest habitats on Earth, showcasing
high call densities and considerable call overlap (Gasc et al. 2013), which further
complicates the performance of ML algorithms. The problematic nature of
automated acoustic species classification in tropical rainforests is exemplified by the
BirdCLEF challenge, the largest bird sound recognition competition in terms of
dataset size and species diversity. Across all entries in the 2020 edition, the ML
algorithms consistently performed the worst for soundscape recordings from the
Peruvian Amazon compared to other localities, reaching low overall classification
scores (Kahl et al. 2020).

Ironically, ML algorithms tend to perform the worst for species of conservation
concern, such as those naturally existing in low population densities, small home
ranges, or species that are endangered by extinction. This is due to a lack of training
data for these species, a situation which is exacerbated when ecosystems are species

rich (Kahl et al. 2021a), such as in tropical rainforests. Generally, where training
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datasets exist, they are often unbalanced in the diversity of geographic locations,
sensor types, or the abundance of labelled signals for different species (LeBien et al.
2020; Tuia et al. 2022). This matters, as unbalanced training data can lead to bias in
the ML-algorithm’s classification performance (Tuia et al. 2022). For instance,
species’ vocalisations can vary regionally (i.e., regional dialects - Martins et al.
2018). Hence, if a training dataset has insufficient coverage of a species’ acoustic
signals across its distribution, the resulting ML-algorithm may bear the risk of

working well locally, but not generalise to other regions (Sethi 2020).

Although signal processing and machine learning have taken considerable steps
towards the automated classification of sounds, and several deep-learning
algorithms now exist in Europe and North-America (Mac Aodha et al. 2018; Kahl et
al. 2021b) and the tropics (LeBien et al. 2020), there is a lack of existing automated
species identifiers and reference databases for the majority of taxa and regions
(Gibb et al. 2019), rendering large-scale taxonomic diversity assessments in tropical

rainforest using ecoacoustic datasets impossible.

5.1.5 Soundscape analysis
5.1.51 Selective pressures on acoustic trait diversity

In addition to their taxonomic information, species' sounds also carry functional
significance, playing a crucial role in various social interactions, including courting,
territorial defence, predator avoidance, and food sharing (Darwin 1872; Seyfarth
and Cheney 2003). Therefore, sounds are subject to selective pressures at multiple
scales, resulting in an immense diversity of acoustic traits in the landscape,
expressed through the timing, frequency, and amplitude features of acoustic signals
(Zsebbk et al. 2021).

In any environment, sounds travelling through a medium experience attenuation, or
the decrease in signal amplitude as a function of the distance to the sound source. In
ideal conditions, sounds propagating through air experience an approximate 6 dB
(decibel) reduction in signal amplitude every time the distance is doubled. However,
in reality, sounds are further attenuated through the effects of reflection,
absorption, reverberation, and scattering (Wiley and Richards 1978). Therefore, the

physical structure of the surrounding environment influences the success of signal
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transmission by sound-producing species. For instance, in areas with dense
vegetation, sounds experience greater attenuation than in open environments
(Morton 1975). This is especially true for high-frequency vocalisations, which
attenuate more rapidly than low-frequency sounds (Morton 1975). Similarly, the
temporal patterning of species vocalisations also affects sound attenuation, with
short notes repeated at greater time intervals experiencing less sound reverberation
in densely vegetated environments (Slabbekoorn et al. 2002). According to the
Acoustic Adaptation Hypothesis (AAH), these physical habitat attributes put
selective pressure on species‘ vocalisations, forcing the evolution of sound signals to
minimise attenuation and maximise propagation in their habitat (Morton 1975).
Conversely, the Acoustic Habitat Hypothesis (AHH) states that sound-dependent
species actively select their habitats based on their acoustic characteristics,
favouring those environments that suit a species’ functional needs and maximise
sound production and reception (Mullet et al. 2017). Regardless of which
mechanism is at work, both hypotheses posit that the physical structure of the
habitat shapes the acoustic properties of the soundscape, imposing an
environmental filter that leads to the homogenisation of acoustic trait diversity at
local scales and the diversification of acoustic traits across space (Dingle et al. 2008;
Sueur and Farina 2015).

The Acoustic Niche Hypothesis (ANH), also known as the theory of acoustic niche
partitioning, is a cornerstone theory of ecoacoustics that proposes acoustic space as
a fundamental ecological resource for which sound-producing organisms compete
(Krause 1987). Overlap in the time-frequency domain of acoustic signals produced
by different species leads to inefficient signal transmission and reduced fitness
(Magrath et al. 2015; Allen-Ankins and Schwarzkopf 2021), and consequently,
sympatric species partition their acoustic niche to avoid overlap. Species may
partition their acoustic niche in various ways (Fig. 1), such as shifting the location of
vocalisation in 3-dimensional space (Sueur 2002), shifting the dominant frequency
peak at which they produce sound (Villanueva-Rivera 2014), shifting the peak of
temporal activity in the 24h circadian cycle (Hart et al. 2015), or shifting the peak of
temporal activity seasonally (Boquimpani-Freitas et al. 2007). Following this
reasoning, the ANH suggests that a more speciose community should experience
increased competition, and thus, lead to increased partitioning of acoustic niche
space, resulting in a greater diversity of acoustic traits at local scales (Pijanowski et
al. 2011a; Sueur and Farina 2015). These hypotheses (ANH, AAH, AHH) are

reflections of the same underlying mechanism: sensory systems (sound emission,
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propagation, and reception) are under selective pressure to maximise signal
transmission in the local environment, known as the sensory drive hypothesis
(Endler 1992).

It is worth noting here that the AAH, AHH and ANH are not universally accepted in
the scientific community, with both evidence for (e.g., Villanueva-Rivera 2014; Hart
etal. 2015; Mullet et al. 2017; Goutte et al. 2018; Hart et al. 2021) and against (e.g.,
Boncoraglio and Saino 2007; Tobias et al. 2014; Mikula et al. 2021) their existence.
Still, in evolutionary terms, the adaptation of acoustic signal production to the
surrounding acoustic environment, be it biotic or abiotic, is entirely tenable
(Eldridge et al. 2016).
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Figure 1: A graphical representation of the various ways in which species can
partition their acoustic niche. A. Spatial niche partitioning: species minimise signal
overlap by producing sound at a different location in 3D space; B. Spectral niche
partitioning: species minimise signal overlap by shifting their dominant frequency
peak; C. Temporal niche partitioning: species minimise signal overlap by shifting

their peak of vocal activity. The seasonal shift in vocalisation timing is omitted here.

Aside from selection for optimal signal transmission, the diversity of acoustic traits
in the landscape is also the result of the evolutionary legacy of the sound-producing

23



organisms (Hart et al. 2021). The Morphological Constraint Hypothesis (MCH)
suggests that the acoustic repertoire of a species is constrained by its morphological
parameters (Ryan and Brenowitz 1985; Pearse et al. 2018; Mikula et al. 2021). For
example, in birds, the size of the sound-producing organ is correlated with body
mass, and the larger the sound-producing organ, the lower the frequency it
produces (Tietze et al. 2015). This is why body mass exhibits a strong negative
relationship with the sound frequency a species can produce. Similarly, the
Phylogenetic Constraint Hypothesis (PCH) proposes that the evolutionary ancestry
of a species limits the range of sound frequencies it can produce (Pearse et al. 2018;
Mikula et al. 2021). Deviations from the negative allometric relationship between
body size and vocalisation frequency may occur due to variations in the morphology
of the sound-producing organ resulting from evolutionary history. Finally, if the
acoustic features of a signal reflect a species’ size, dominance, fighting ability, or
health, the species' sounds could be subject to sexual selection (the sexual selection

hypothesis; Mikula et al. 2021).

It is likely that a combination of various selective pressures operate on the diversity
of acoustic traits in the landscape simultaneously, and vary across space and time,
thus generating a rich tapestry of unique soundscapes within and between habitats.
This diversity of acoustic traits in the soundscape contains useful information

regarding the ecological and evolutionary mechanisms at work.

5.1.5.2 Ecoacoustics beyond species

To bypass the need for species identification and support the analysis and
interpretation of big acoustic datasets, a new sub-discipline of ecoacoustics has
emerged in the last two decades: soundscape analysis (Pijanowski et al. 2011a;
Metcalf et al. 2023). This field of research exploits the variation in acoustic traits in
the landscape, and its link to the underlying selective pressures and ecological
mechanisms, to infer information about the ecological processes shaping biological
communities (Bradfer-Lawrence et al. 2019). Instead of focussing on the diversity or
relationship between individual vocalisations in the soundscape, soundscape
analytical methods focus on the signal diversity of all sounds emanating from a

population, community, or landscape (Sueur et al. 2008; Pijanowski et al. 2011b).
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The underlying premise is that animal sounds constitute a major source of variation
in the acoustic trait diversity of the soundscape, and if ecological processes or
human activities alter the composition of the sound-producing community, these
changes will be reflected in the diversity of acoustic traits emanating from the
landscape. Furthermore, if the ANH holds, a greater species diversity should lead to
increased competition for acoustic niche space, resulting in a greater diversity of
acoustic traits in the soundscape (Pijanowski et al. 2011a; Sueur and Farina 2015),
thus establishing a theoretical link between acoustic trait diversity and the

underlying diversity of sound-producing species.

Acoustic indices

To quantify the diversity of acoustic traits in the soundscape, soundscape analysis
takes inspiration from the biodiversity indices that have long been used in ecology.
The discipline summarises the acoustic trait diversity and complexity of the
soundscape in space and time using acoustic diversity indices (Sueur et al. 2014).
These acoustic indices are mathematical formulae that summarise the presence,
distribution, and complexity of acoustic energy across the time-frequency
dimensions of the soundscape (Eldridge et al. 2018; Sueur et al. 2014). Since the
first acoustic index was proposed in 2007 (Boelman et al. 2007), the design,
development, and application of acoustic indices have surged (Alcocer et al. 2022). A
decade later, more than 65 unique acoustic indices had been described (Buxton et

al. 2018), a figure that has undoubtedly increased since.

These indices can be categorised in several ways (Sueur et al. 2014; Alcocer et al.
2022). Firstly, a distinction can be made between within-group indices (e.g., alpha
indices), which quantify the acoustic diversity within certain sound sample (e.g.,a 1-
minute sound files), and between-group indices (beta indices), which quantify the
between-sample similarity or dissimilarity (Sueur et al. 2014; Burivalova et al.
2019). Within the alpha indices, metrics can be divided into: (i) intensity indices,
which focus on the amplitude of the sound sample; (ii) complexity indices, which
summarise the complexity of the amplitude variation across the time/frequency-
domain of the soundscape; and (iii) soundscape indices, that quantify the
contribution of different soundscape components (e.g., biophony, geophony,
anthropophony) to the overall soundscape (Sueur et al. 2014). Another distinction
can be made between indices that quantify the variation in the sound sample’s

signal amplitude across the temporal domain, frequency domain, or time-frequency
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domain. Additionally, indices can be grouped into first-order indices, that use a
single index to quantify the acoustic diversity, or second-order indices, that combine
the properties of multiple indices into a new index (Towsey et al. 2014a). Finally,
acoustic indices can be distinguished between those that quantify the acoustic
diversity in a short-duration sample of the soundscape (often 1-minute sound files;

Truskinger and Towsey 2019), or over longer durations (e.g., 24h period).

The vast majority of acoustic indices used in the literature are short-duration, first-
order alpha indices that summarise the diversity or complexity of the amplitude
variation in the temporal or frequency domain. These indices have been widely
applied to find a link between the acoustic diversity in sound files, and landscape
configuration (Tucker et al. 2014), ecosystem health (Fuller et al. 2015), diel
patterns in different environments (Rodriguez et al. 2014; Farina et al. 2015),
seasonal changes in soundscapes (Farina et al. 2011), habitat identity (Villanueva-
Rivera et al. 2011; Depraetere et al. 2012), among others. Moreover, the
performance of these indices as proxies for the underlying diversity (e.g., richness,
abundance, diversity, evenness) of species or acoustic morphospecies (or
sonotypes; Sueur et al. 2008b; Pieretti et al. 2011; Buxton et al. 2016; Papin et al.
2019; Farina et al. 2013; Sousa-Lima et al. 2018; Burivalova et al. 2019), and
phylogenetic diversity or functional diversity (Gasc et al. 2013) is often investigated.
Most recently, these indices have been used as acoustic features for convolutional
neural networks to categorise soundscapes by their structure and dynamics and

detect acoustic anomalies in big acoustic datasets (Sethi et al. 2020).

The advantage of these acoustic indices is that they offer a simple solution to
describe the complexity of acoustic data using a single value (Sueur et al. 2014). In
doing so, the information contained in sound recordings is greatly condensed, which
allows researchers to efficiently process, inspect, and analyse acoustic datasets
across larger spatial and temporal scales. This facilitates the exploration of complex
ecological questions that were previously infeasible. Although this discipline has
made substantial progress towards becoming a useful biomonitoring tool, its ability
to reflect ecological patterns and biodiversity trends must validated before this
technology is implemented. While many acoustic indices have been developed, there
is no consensus on the optimal set of indices to use for different ecological
applications (Alcocer et al. 2022). The performance of acoustic indices can also be
affected by factors such as the quality of the recordings, the presence of non-target

sounds (e.g., anthropophony and geophony), and the environmental context. As a
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result, we must carefully consider the choice of acoustic indices and the methods

used to process the data.

Limitations and research opportunities

The last decade has shown that caution should be used when applying these indices
as biological indicators (Alcocer et al. 2022), particularly when using them as
proxies for biodiversity. A series of recent works have drawn attention to the fact
that the performance of acoustic indices as biodiversity indicators is highly variable
within and between communities (Bradfer-Lawrence et al. 2019; Metcalf et al. 2021;
Alcocer et al. 2022), sometimes even showing contrasting results when using the
same index (e.g., Mammides et al. 2017 versus Bradfer-Lawrence et al. 2020).
Furthermore, studies investigating the relationship between acoustic indices and
ground-truthed diversity show a decline in effect sizes over time since the start of
this line of research (Alcocer et al. 2022). Several factors potentially contribute to
these contradictory results. Below, I outline 10 points that [ believe complicate the
use and comparability of acoustic indices between studies and warrant attention in

future efforts for the design and application of acoustic indices.

Point 1. In real-world environments, the acoustic trait diversity in soundscapes is
influenced by factors beyond the diversity of the sound-producing community
(Depraetere et al. 2012; Gasc et al. 2015). For instance, human-related noise, wind
and rain, or broad-band choruses by stridulating insects (orthopterans and cicadas)
may mask the acoustic signal of other sound-producing groups (Metcalf et al. 2021)
and disconnect acoustic index values from the taxonomic group used for index
validation (Hart et al. 2015; Fairbrass et al. 2017; Metcalf et al. 2021; Ross et al.
2021). Additionally, the values of certain acoustic indices are sensitive to the
relative amplitude of songs in the recording, which in turn is influenced by the
physical structure of the surrounding vegetation, meteorological conditions, the
distance between the sound source (a vocalising individual) and the sensor, and
inherent biological differences between species (Sueur et al. 2014). Finally, the
observed acoustic trait diversity in the soundscape is subject to differences in the
vocal repertoire size of the species in the community (Alcocer et al. 2022).
Therefore, the efficacy of acoustic indices as biological indicators will depend on
their ability to capture ecological processes while remaining insensitive to these

potentially confounding factors.
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Point 2. The novelty of ecoacoustics as a field brings about challenges in the
standardisation of data collection and analytical procedures (Bradfer-Lawrence et
al. 2019). Until recently, there was no agreement on the required data quantity,
sampling intensity, data compression, noise reduction, acoustic index selection, and
data processing (e.g., FFT window length), all of which may introduce variation in
the data and contribute to inconsistent index behaviours in the literature (Bradfer-
Lawrence et al. 2019; Sugai et al. 2020; Heath et al. 2021; Metcalf et al. 2021). To
resolve this, recent studies have started to shed light on the variability introduced
by these methodological differences, and proposed guidelines for the use of acoustic
indices (Bradfer-Lawrence et al. 2019; Heath et al. 2021; Metcalf et al. 2023).
Establishing the influence of methodological choices on index behaviours should
become common practice for any newly proposed index, or the novel application of

existing indices.

Point 3. Most studies to date have used individual acoustic indices to describe their
acoustic environment (Buxton et al. 2018). These indices condense the information
contained in acoustic recordings into a single value. Although this allows
researchers to process big acoustic datasets more easily, this extreme information
reduction likely leads to the loss of ecologically relevant data. When only
considering a single index, which has a limited range of potential values, it seems
unlikely we can properly capture the full complexity of a wide range of soundscapes
(Towsey et al. 2014b; Buxton et al. 2018; Alcocer et al. 2022). Although many
researchers have argued several acoustic indices should be used in concert to
describe the soundscape accurately (Towsey et al. 2014b; Bradfer-Lawrence et al.
2019; Buxton et al. 2018; Alcocer et al. 2022), the design, development, and

application of multi-index protocols have remained limited.

Point 4. Most acoustic indices to date either provide a statistical summary of the
amplitude variation in the temporal domain (collapsed in the frequency domain) or
the frequency domain (collapsed in the temporal domain; Eldridge et al. 2016). This
means these indices are fundamentally limited in their ability to detect amplitude
variations across the time-frequency domains simultaneously. Yet, the spectro-
temporal partitioning of the acoustic niche (as described by the ANH) is a
foundational premise of ecoacoustic research. As quoted from Eldridge et al. (2016):
“If acoustic niches exist, they’re unlikely to lie along 1-dimensional vectors in the
frequency and time domain, but dance dynamically across the time-frequency-

amplitude domain”. Furthermore, this uni-dimensionality means indices are
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constrained in the range of values they can take, and the type of acoustic features
they can capture. As a result, many acoustic indices that operate along the same
acoustic dimension tend to be highly correlated (e.g., ADI, AEve and H; Heath et al.
2021), limiting their use in multi-index studies or as acoustic features in ML-based

soundscape classification (Sethi et al. 2020b).

Point 5. There are large differences between indices in terms of their conceptual
background, computation, and interpretation, as well as variations in how the same
index is calculated between studies (Alcocer et al. 2022). Acoustic indices can be
presented in different forms, such as single values (e.g., summary indices) or vectors
of values (e.g.,, spectral indices). They can be also computed as scalar quantities,
ratios, averages, or normalised values (Alcocer et al. 2022), and measure a wide
range of parameters, including energy intensity, energy variability, and the richness,
evenness, diversity, or abundance of energy in the time or frequency domains
(Sueur et al. 2014). Even within the acoustic indices that are derived from the same
taxonomic diversity metric (e.g., the Shannon index), and operate along the same
dimensions (e.g., the frequency domain), indices differ in their unit of diversity
measurement, equations, and the duration of the sound recording on which they are
calculated (e.g., Hf, H’, ADI - Sueur et al. 2008b; Villanueva-Rivera et al. 2011; Pekin
etal. 2012; Eldridge et al. 2016). Although there is value in capturing different
aspects of the acoustic diversity using these various approaches, this lack of a
unified unit of diversity measurement and mathematical framework for diversity
quantification can lead to confusion and complicates the interpretation of index

values between studies, potentially contributing to the reported contradictions.

Point 6. Many of the commonly used acoustic indices are derived from the Shannon
index and associated functions and are thus measures of entropy (Sueur et al.
2008b; Sueur et al. 2014; Eldridge et al. 2016). Yet, there are some conceptual and
statistical problems with applying these functions to acoustic analyses (outlined in
section 5.2.1.1). Entropy metrics are often criticised in biodiversity research
because they lack a fixed range, condense two unrelated biodiversity variables
(richness and abundance) into a single value, are very sensitive to small samples,
and penalise rare species (Jost 2006). Moreover, entropy indices are notorious for
having ecologically counter-intuitive behaviours that can cause misleading
interpretations of results (Jost 2006; Sandoval et al. 2019). For instance, Shannon
index values do not scale linearly with the underlying diversity of the system (the

replication principle or doubling property). This lack of a proportional diversity-
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index value relationship complicates the interpretation of results and reduces the
utility of these indices for comparative studies or meta-analyses (Sandoval et al.
2019). Finally, Shannon indices measure the uncertainty of the occurrence of a
random variable (Pielou 1966). However, the vocalisations of sound-producing
communities are non-random, showing predictable circadian and seasonal patterns,
and non-random responses to biotic or abiotic events, thus violating the

randomness assumption (Sandoval et al. 2019).

Point 7. Most acoustic indices are calculated from short-duration sound files,
usually around 1 minute long (Truskinger and Towsey 2019; Alcocer et al. 2022).
Yet, many species exhibit circadian patterns in their vocalisations that repeat every
24h (e.g., Agostino et al. 2020). Hence, natural soundscapes show daily acoustic
regimes with clear temporal and spectral structures that are ecologically significant
and result from underlying ecosystem processes (Sankupellay et al. 2015; Phillips et
al. 2018; Wang et al. 2019). Sankupellay et al. (2015) suggested that this 24h cycle in
acoustic activity is unique to a given habitat or location and can therefore be used as
a type of acoustic fingerprint. Therefore, it is likely that the assembly processes
structuring the presence and distribution of sound in acoustic trait space also
operate at a broader temporal scale, such as the 24h period over which circadian
patterns repeat. However, there are currently very few tools available to investigate

soundscape diversity at this scale.

Various visualisation tools, such as false colour spectrograms and ribbon plots
(Towsey et al. 2014c; Phillips et al. 2017), have been developed to examine the
acoustic structure of sounds at broader temporal scales. However, quantitative
protocols for comparing acoustic diversity between sites or periods have been
scarce. Sankupellay et al. (2015) used vectors of acoustic indices derived from 24h
sound recordings to cluster "acoustic states" in the daily cycle and compare them
within the same site across multiple days, and between sites, to identify acoustic
fingerprints. Building on this, Wang et al. (2019) used social network analysis on
these clusters to identify differences in acoustic states over time. While these
methods are a step in the right direction, they rely on visual inspection, are more
complicated than the approach used by most acoustic indices, and are not fully
quantitative, making them less popular in the ecoacoustic literature. An alternative
approach, described by Aide et al. (2017), measured the saturation of the 24h

acoustic trait space (known as the Acoustic Space Use; ASU), which strongly
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correlated with the richness of acoustic morphospecies such as birds, anurans, and

insects. Further development of this approach could be promising.

Point 8. Biodiversity indices, such as the commonly used entropy indices in
ecoacoustics, generally measure two aspects of diversity: richness and abundance
(Daly et al. 2018). In short-duration acoustic indices that use entropy-based
methods, richness is measured by the number of frequency or temporal bins that
have sound, and abundance is measured by the proportion of sound in each bin
(Sueur et al. 2008b). At larger temporal scales, the ASU metric only quantifies the
richness of sound in the acoustic trait space, without quantifying its abundance
(Aide et al. 2017). As of yet, to my knowledge, no framework currently exists for the
quantification of both the richness and evenness of sound at broad temporal scales.
Many indices quantify abundance as the amplitude or amount of sound in a time or
frequency bin. I argue that exploring different aspects of abundance could provide
new insights into the use of the acoustic trait space. For instance, the temporal
prevalence of sound in the same section of the acoustic trait space has not been

explored but could shed light on potential patterns of dominance or rarity.

Point 9. Although the variation in the composition of ecological communities
represents one of the most fundamental diversity aspects (Jost et al. 2010), and the
demand for metrics that accurately compare the composition of acoustic
communities is growing (Zhang et al. 2023), the development of beta indices in
ecoacoustics has been limited compared to alpha indices (Sueur et al. 2014). The
first beta acoustic indices were proposed by Sueur et al. (2008), who measured the
temporal (Dt) and spectral (Df) dissimilarity between short-duration sound files in
Tanzania, and showed a linear increase with the number of unshared species.
Further developments of beta indices have included the Kolmogorov-Smirnov
distance, the Symmetric Kullback-Leibler distance, and the Vectorial Correlation
Coefficient (Gasc et al. 2013), which were shown to correlate with functional and
phylogenetic components of avian diversity. Yet, despite promising initial results,
further investigation in a broader range of settings revealed that these indices
generate high dissimilarity values for highly similar samples due to slight time- or
frequency-shifts (Depraetere et al. 2012; Sueur et al. 2014; Lellouch et al. 2014). The
one-dimensional nature of these indices, combined with the pointwise comparison
of time-steps/bins in amplitude envelopes/frequency profiles, means that perfect
temporal homology is required between amplitude envelopes or frequency spectra,

which is rarely attained (Sueur et al. 2014). Furthermore, these beta indices also
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present issues with the sensitivity to song overlap, the distance of the sound source
to the sensor, and background noise, meaning there is currently no universally

accepted dissimilarity measure for sound (Burivalova et al. 2019).

Burivalova et al. (2019) proposed an alternative approach, using the pairwise mean
dissimilarity calculated on a sub-section of the acoustic trait space (1 hour * 1,376
Hz) as a proxy for beta diversity to investigate differences in soundscapes between
logging concessions. This approach successfully revealed a higher beta diversity in
unlogged forests and the homogenisation of soundscapes in logging concessions.
Still, this method does not operate at broader temporal scales (e.g., 24h) and does
not provide a direct link to other diversity aspects, such as the overall system

diversity (gamma) and its local diversity (alpha) components.

Point 10. Finally, ecoacoustic research suffers from taxonomic and geographic
biases. For instance, to date, most research in ecoacoustics has focussed on northern
temperate regions, whereas tropical regions have received considerably much less
attention (Buxton et al. 2018; Sugai et al. 2019b). Tropical ecosystems like
rainforests are extremely species-rich and constitute one of the noisiest
environments on the planet, with highly saturated and complex soundscapes (Gasc
etal. 2013; Pijanowski et al. 2011a; Alcocer et al. 2022), which likely affects the
performance of acoustic indices in these places. Additionally, tropical rainforests
contain many poorly known species, complicating the validation of acoustic index
performance against the diversity of sound-producing species. Finally, most
research investigating the performance of acoustic indices as biodiversity proxies
has focussed on birds (e.g., Towsey et al. 2014a; Mammides et al. 2017; Eldridge et
al. 2018; Bradfer-Lawrence et al. 2020), whereas validation against other taxonomic
groups or whole soniferous communities has received far less attention (Alcocer et
al. 2022).

To conclude, acoustic indices act as powerful tools for extracting ecologically
meaningful information from large acoustic datasets. However, while this approach
has already shown great promise in a variety of ecological applications, continued
development and refinement of these indices and associated computational
methods will be essential to realise the full potential of passive acoustic monitoring

for ecological research.
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5.1.6 Thesis objectives

This thesis seeks to address some of the limitations hindering the broad uptake of
acoustic indices in tropical rainforest research and open new avenues of scientific
inquiry. To achieve this objective, a novel analytical pipeline is developed to
facilitate the rapid visual exploration and diversity quantification of large

ecoacoustic datasets. Specifically, the overarching aims are to:

1. Develop a conceptual workflow to facilitate the visual exploration and
diversity quantification of large ecoacoustic datasets using Hill numbers as

a unified framework (Chapter I).
This workflow:

a. Addresses some of the limitations and research opportunities
highlighted in 5.2.2.

b. Provides a suite of acoustic indices that facilitate the measurement
of various diversity aspects (e.g, richness, evenness, and diversity)
at a range of spatial scales (e.g., gamma, alpha and beta diversities),
and spectro-temporal subsets using a single unit of diversity

measurement (or species equivalents).

c. Generates acoustic indices that are ecologically intuitive and abide

by several fundamental properties for biodiversity indices.

d. Provides clear methodological guidelines regarding data collection

and workflow parameter choices.
e. Accurately captures patterns in the taxonomic richness of sound-

producing species in the complex acoustic environment

characteristic of tropical rainforests.
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2. Assess whether the newly proposed acoustic indices succeed in capturing

ecological patterns in complex ecosystems at various spatial scales and

provide insights into the mechanisms structuring acoustic trait diversity in

space (Chapter II).

a.

Test whether the acoustic indices can capture one of the most

fundamental ecological patterns: the species-area relationship.

If so, assess whether the acoustic indices display a breakdown in
the diversity-area relationship at the smallest spatial scales, known
as the small-island effect.

Partition the acoustic indices into multiple diversity components
(gamma, alpha, and beta) and link observed patterns to the

mechanisms driving diversity in fragmented landscapes.

3. Create an open-source and user-friendly tool for implementing the

analytical workflow (Chapter III).

a.

Create a new suite of visualization tools for the exploration of big
ecoacoustic data.

Create functions for the implementation of the workflow described

in point one.

Provide a user guide for the tool.

34



5.1.7 Thesis structure

This thesis comprises three chapters, one of which has been published (Chapter I),
another submitted for publication (Chapter II), and a third to be submitted soon
(Chapter III).

Chapter I presents a new analytical framework based on Hill numbers for the
analysis of big ecoacoustic datasets. Three newly proposed acoustic indices are
evaluated for their desirable properties and ability to act as proxies for the
taxonomic richness of sound-producing species in the tropical rainforests of

Brazilian Amazonia.

Chapter II assesses whether one of the newly proposed acoustic indices, the
soundscape richness index, can capture one of the most fundamental ecological
patterns: the spatial scaling of diversity with patch size (species-area relationship).
The results demonstrate that the spatial scaling of diversity extends to the realm of
ecoacoustics, showing a strong positive relationship between the soundscape
richness and the island size, which is termed the ‘SoundScape-Area Relationship’
(SSAR). The findings are interpreted in light of the ecological mechanisms
structuring spatial diversity patterns in an insular landscape and shed light on

potential drivers of acoustic diversity.

Chapter III introduces the soundscapeR R package, a user-friendly and open-source
tool for implementing the workflow presented in Chapter . The package includes a
range of functions for quantifying soundscape diversity using Hill numbers, for
various diversity facets, spatial scales, and spectro-temporal subsets. It also
provides highly customisable visualisation tools for the rapid exploration of

soundscape data.
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5.2 Materials and Methods

As this thesis is primarily methodological in nature, [ will not repeat the
methodological details provided in the individual chapters here. Instead, I outline
the thought process underlying the conceptualisation of the workflow and elucidate

how the various chapters contribute to the overarching goals of the project.

5.2.1 Designing the workifow

In biodiversity research, the diversity of ecological communities is generally
quantified by: (i) defining what constitutes a sample of the natural environment
(e.g., a bucket of pond water); (ii) collecting samples; (iii) delineating individuals in
a sample (e.g., individual invertebrates); (iv) classifying these individuals into
groups with shared characteristics (e.g., species); (v) attributing an importance
value to each group (e.g.,, raw counts per species), and finally; (vi) applying some
type of mathematical equation to quantify and compare different aspects of

biodiversity between samples (e.g., water from other ponds).

For the workflow in this thesis, the same procedure is followed to quantify the
diversity of sounds emanating from the landscape, asking the following questions to

guide workflow design:

1. What constitutes a meaningful sample of the soundscape?

2. When renouncing the identification of individual vocalisations from sound
files, how should the soundscape equivalent of individuals be delineated

and grouped into units of diversity measurement?

3. What constitutes a meaningful measure of importance (or abundance) in

the context of the workflow?

4. What mathematical framework provides the most intuitive way to compute

biodiversity metrics?

Following this structure, for each step, the choices and associated reasoning are
outlined in Chapter [: ‘A framework for quantifying soundscape diversity using Hill
numbers’. In the next section, I provide additional detail with regard to point 4:

mathematical frameworks for diversity quantification.
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5211 A note on diversity indices

Any study exploring the diversity of a system requires a quantitative measure to
explore and compare patterns across space, over time periods, and more. Over the
past century, a multitude of mathematical equations, known as ‘diversity indices’,
have been put forth to quantify diversity patterns. However, the plethora of
available indices, combined with the lack of a unified set of mathematical
behaviours and ecological interpretations, have led to widespread confusion among
ecologists, leading some to question the validity of diversity as a concept at large
(Hurlbert 1979; Daly et al. 2018). The source of this confusion, however, should not
be attributed to the notion of diversity, but rather to the indices that are used to
measure it (Jost 2006).

The most used diversity index in ecology is the Shannon-Wiener index, also known
as the Shannon index (Jost 2006). This is a measure of entropy that quantifies the
uncertainty associated with predicting the identity of an individual (e.g., species or
equivalent) in a sample (Jost 2006; Daly et al. 2018). The Shannon index works as a
diversity index because, in more diverse systems, the uncertainty of predicting the
identity of an individual becomes higher. Therefore, the Shannon index increases
with the diversity of the system. Similarly, other classical diversity indices such as
Pielou’s evenness index or the Gini-Simpson diversity index are also measures of
entropy (Daly et al. 2018).

Although these entropy-based metrics scale positively with the uncertainty of the
sampling process, they do not track the underyling diversity of the system in a linear
manner. If we merged two equally diverse but completely distinct samples (no
shared species), intuitively, we expect the diversity value to double (known as the
replication principle; Hill 1973; Jost 2006). However, this is not true for entropy-
based diversity indices (Jost 2006). For instance, the relationship between the
Shannon index and the species richness is non-linear. At low levels of species
richness, adding a single species will have a large effect on the Shannon index value,
whereas at elevated levels of richness, the Shannon index value will only increase
marginally (Daly et al. 2018). This non-linear behaviour means that, although we
can evaluate whether two communities are statistically different in terms of their
diversity index values, comparing the magnitude of these differences reliably is not
possible. Additionally, when calculating diversity ratios such as the beta diversity (8

=Yy / ), the non-linear scaling of entropy metrics introduces mathematical artefacts
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in the diversity values (Jost 2007). Indeed, for the Shannon diversity index, this ratio
always approaches 1 (suggesting highly similar systems) when the mean within-
group diversity (alpha) is high, even when the systems being compared are distinct
(Jost 2007; Tuomisto 2010; Chao et al. 2010).

To resolve the issues with the non-linear scaling of entropy metrics, commonly-used
entropy-based diversity metrics can be converted to their number of ‘species
equivalents’ or ‘effective number of species’ (ENS)- that is, the number of species
(or species equivalents) in a perfectly even community (identical abundance values)
that would yield the same diversity index value (Hill 1973; Jost 2006; Daly et al.
2018). To do so, simple algebraic conversions can be used (see Table 1).
Interestingly, no matter what entropy metric we start with, all the associated ENS
equations (Table 1 - column 4) can be reformulated to a single overarching

equation:

This is the equation to calculate Hill numbers, with S being the number of species
(or species equivalents), pi the relative abundance of species i, and g the order of
diversity. Using this equation, the sensitivity to the relative abundance of species
can be modulated using the parameter g without changing the interpretation of 9D.
For instance, when g=0, the relative abundance is disregarded and the equation
yields 4D = S, i.e,, the richness of species. The higher the g-value, the more
importance is given to abundant species. When g=1, 1D equals the exponential of the

Shannon entropy, or the number of common species.

By expressing the diversity as the ENS, Hill numbers represent ‘true diversities’: they
capture the diversity of the underlying system in a linear manner (Jost 2006). For
instance, if one community has an ENS value of 10, and a second community has an
ENS of 30, we can say truly that the latter is three times more diverse than the

former, which is not the case for entropy indices. Therefore, by using Hill numbers
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as a mathematical framework of diversity measurement, no matter the importance
given to common or rare species, all diversity values will have a common unit of
measurement (ENS) and can be measured and compared easily. This avoids
misinterpretation stemming from the non-linearity of indices. For these reasons, the
unified mathematical framework provided by Hill numbers was selected to develop

the workflow presented in this thesis.

Table 1: Algebraic conversion of commonly-used entropy indices to their effective

number of species. Modified from www.loujost.com

. . Algebraic Converted
Index name Original equation . .
conversion equation
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5.2.2 Testing workflow characteristics using simulated
soundscapes

Prior to adopting the newly proposed acoustic diversity indices generated by the
workflow, it is imperative to assess whether these metrics abide by a set of
desirable properties for biodiversity indices and behave in an ecologically intuitive

manner.

As such, following the criteria for trait-based diversity indices outlined in Ricotta
(2005), Villéger et al. (2008) and Mouchet et al. (2010), and supplemented by
behaviours deemed important for these metrics, this thesis tested the acoustic

indices for the following properties:

1. Indices can only have positive values

2. Indices can be strictly contained between 0-1

3. Indices are conceptually independent of the species richness
4. Indices are independent of one another

5. Indices for a subset of the community should have lower values than the

whole community (set monotonicity principle)

6. Index values change proportionally with the underlying diversity of the

system (replication principle)

7. Indices can be decomposed into their alpha, beta, and gamma components

For points 1-3, these behaviours arise implicitly from how the workflow is designed
and should therefore not be tested. To test points 4-7, in Chapter I - Supplementary
material 5, a series of simulated soundscapes is generated to assess these
behaviours under a series of hypothetical scenarios. As highlighted in Villéger et al.
(2008), here, each index does not have to abide by each criterion, but rather that the
ensemble of indices does.
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5.2.3 Testing workflow performance in a tropical rainforest
ecosystem

To assess the utility of the workflow as an addition to the ecological monitoring
toolbox, the acoustic indices were tested for their ability to: (i) act as a proxy for the
species richness of the sound-producing community in an acoustically complex
tropical rainforest ecosystem (Chapter I); and (ii) capture ecological patterns at
multiple spatial scales, as well as shed light on the underlying mechanisms driving

the diversity of acoustic traits across space (Chapter II).

5.2.31 Hydroelectric reservoirs as an experimental system

Hydroelectric reservoirs represent an ideal study system for this purpose. On the
one hand, they constitute a rapidly emerging threat to Neotropical rainforest
ecosystems. As developing nations are trying to keep up with the increasing demand
for energy, the Neotropics is becoming a new frontier for the construction of
hydroelectric dams (Finer and Jenkins 2012; Emer et al. 2013; Fearnside 2006). In
areas with low elevational gradients, such as the Brazilian Amazon, hydroelectricity
projects require large and shallow reservoirs, causing the inundation of vast areas of
rainforest, and the creation of heavily fragmented archipelagos of land bridge
islands. This results in high methane emissions and dire consequences for local
diversity (Tundisi et al. 2014). Yet, the impact of this threat on natural soundscapes

remains largely unknown (but see Han et al. 2022).

On the other hand, hydroelectric reservoirs represent an ideal experimental system
against which to test the performance of the newly proposed acoustic indices for
both ecological monitoring applications. They deal with several potentially
confounding factors when investigating spatial diversity patterns (Whittaker and
Fernandez-Palacios 2007). For instance, all patches were formed simultaneously
due to a single disturbance event. Moreover, these reservoirs have a uniform and
largely untraversable matrix, a spatial scale comparable to terrestrial patches and
were formed recently enough so that evolution and species adaptations have yet to
take effect.
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5232 Mechanisms driving species richness in fragmented
landscapes

In fragmented ecosystems, the diversity of species is influenced by two key
landscape-scale variables: island size and isolation (MacArthur and Wilson 1967).
According to the principles of Island Biogeography Theory (MacArthur and Wilson
1967), these variables play a crucial role in shaping colonisation and extinction
dynamics, which give rise to two fundamental observations: (i) larger islands
exhibit higher species richness compared to smaller islands, as described by the
Species-Area Relationship (SAR); and (ii) more connected islands demonstrate
greater species richness than more isolated islands, as represented by the Species-
Isolation Relationship (SIR).

The SAR is arguably the most universally accepted law in ecology, having been
documented numerously across a wide range of taxonomic groups, biogeographic
regions, spatial scales, and ecological disciplines (Arrhenius 1921; Rosenzweig
2010). Several mechanisms are believed to shape, regulate, and maintain SARs.
Firstly, SARs may arise merely through sampling effects (Hill et al. 1994). For
instance, larger islands require more intense sampling to characterise the diversity
of biological communities, which leads to more individuals being sampled, and by
probability, leads to more species being detected (sampling artefacts; Schoereder et
al. 2004). Secondly, the theory of disproportionate effects suggests that SARs arise
because island size affects the biological processes of species richness regulation,
whereby larger islands experience reduced rates of extinction and increased rates of
colonisation (target effects), among others (Chase et al. 2019). Disproportionate
effects lead to an increase in both the local (plot-scale or alpha) and regional (island-
wide or gamma) species richness with island size (Chase et al. 2019). Thirdly, the
theory of heterogeneity effects postulates that larger islands contain a wider variety
of habitats, each of which contains a set of uniquely specialised species, which
increases the island-wide species richness (Kadmon and Allouche 2007). In this
case, an increase in the gamma species richness, as well as the between-plot beta

diversity, would be expected with increasing island size (Chase et al. 2019).
Compared to SARs, the mechanisms proposed to explain SIRs in patchy systems are

simpler: increased geographic distance between islands and the source species pool

(mainland or nearby islands) reduces the colonisation probability of isolated
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islands, leading to reduced rescue effects, increased extinctions, and consequently, a

reduced species richness (Giladi et al. 2014).

These ecological mechanisms underlying spatial diversity patterns in fragmented
systems have been the subject of scientific inquiry at a range of spatial scales for
over a century, and thus, provide an essential context against which to compare
observed soundscape diversity patterns. Additionally, they could potentially help
shed light on the mechanisms driving the diversity of acoustic traits across space,
which is discussed in section 5.3.3.2.

5.2.3.3 Study system & data collection

In this thesis, long-duration acoustic recordings collected at the Balbina
Hydroelectric Reservoir (BHR) in central Brazilian Amazonia (1° 40’ S, 59° 40’ W)
were used. The BHR is a highly insularised system created when the area was
flooded by the damming of the Uatama River in 1987, turning over 3,500 former
hilltops into islands of variable size (Fearnside 2006). Strong SARs have previously
been demonstrated at the BHR for several taxonomic groups (Benchimol and Peres
2015a; Palmeirim et al. 2017; Storck-Tonon and Peres 2017), including several
sound-producing groups (Benchimol and Peres 2015b; Bueno and Peres 2019;
Bueno et al. 2020), providing a strong gradient in species richness against which to
assess the performance of the acoustic indices described in this thesis as

biodiversity proxies (Chapter I).

Acoustic surveys were carried out at the BHR for a previous study, collecting sound
recordings between July-December 2015 for 151 plots situated on 74 islands and 4
continuous forest sites in 17 riparian and 134 non-riparian habitats. At each plot, an
acoustic recorder was deployed at 1.5 m height with the microphone pointing
downward. The device was set to record the soundscape for 1-min/5-min for 5
consecutive days at a sampling rate of 44.1 kHz using the ARBIMON Touch
application. This total dataset was subsetted based on the availability of species
richness data for birds, anurans, and large vertebrates (Chapter I), the quality of the
sound recordings (e.g., faulty recorders, persistent rain or wind; Chapter I and 2),
and a proportional relationship between the number of recorders per island and
island size (Chapter II). For a full overview of data collection and site selection,
consult Chapter I - Supplementary materials 6 and Chapter II - Supplementary

materials 1.
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5.2.4 Guiding data collection and workflow parameter choices

In addition to outlining the step-by-step procedure of the workflow and associated
acoustic indices, it is important to quantify the variability in index performance in
relation to methodological variations such as data collection and workflow
parameters choices, and to provide guidelines for how these choices should be made
(Bradfer-Lawrence et al. 2019).

As such, Chapter I - Supplementary materials 1 assessed the influence of the
sampling duration and sampling regime on: (i) the relative relationship between
sites in terms of the soundscape richness index; and (ii) the correlation between the
soundscape richness index and the richness of sound-producing species. In Chapter
[ - Supplementary materials 2, the influence of the window length used in the Fast
Fourier Transformation on the relationship between the soundscape richness index
and soniferous species richness was tested. Finally, Chapter I - Supplementary
materials 3 investigated the impact of threshold choice (a workflow parameter) on
the observed soundscape richness-species richness relationship. Based on the
results of these analyses, best-practice recommendations for using the workflow are

provided.

5.2.5 Building software for workflow implementation

The growing complexity of tools to analyse big datasets means researchers require
sophisticated statistical skills and software (Rocchini and Neteler 2012). However,
oftentimes, such software tools are difficult to use, require advanced programming
skills, or could be locked behind a paywall (Paradis 2020). Therefore, the

development of easy-to-use and open-source software tools is imperative.

In Chapter III, the soundscapeR package is outlined, a user-friendly and open-source
analytical pipeline implemented in the R coding language. The R coding language is
an ideal platform for developing new software tools for ecology, due to its robust
statistical capabilities, its widespread adoption and support within the scientific
community, and its vast collection of libraries and packages, including several
packages dedicated to acoustic analysis (e.g., seewave - Sueur et al. 2008a;
soundecology - Villanueva-Rivera et al. 2018). Additionally, R also has an active
community of developers who contribute to its packages and libraries or provide

online support when problems arise. To ensure optimal uptake by potential users, a
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comprehensive online vignette is provided, outlining the functionality of the

package in detail (see Chapter III - Appendix).

5.3 Results and discussion

The workflow presented in this thesis expands on previous work in the field of
ecoacoustics, building on the principles of acoustic niche theory to establish new
insights into the diversity of acoustic signals in the soundscape and their
relationship with landscape-scale ecosystem processes. The workflow presents
several innovations that could open new avenues of scientific inquiry, and addresses

limitations currently hindering the existing suite of acoustic indices.

5.3.1  Workflow novelty
Extending the temporal scale of a soundscape sample to 24h

As previously mentioned, the acoustic diversity of short-duration samples (e.g., 1-
minute sound files) of the soundscape has been well explored in the literature.
Conversely, analytical procedures to investigate the relationships between sounds
at broader temporal scales, and quantify their diversity, have received
comparatively less attention. The workflow presented in this thesis followed
Sankupellay et al. (2015) and Aide et al. (2017), considering the relationship
between sounds over a 24h sample period. Sampling the acoustic trait space over
24h could open new insights into the relationships between soundscapes and their
sounds. For instance, many species’ vocalisations display circadian rhythms,
repeating their acoustic signalling activities at intervals of 24h in response to photic,
temperature, humidity, or acoustic cues (Jianguo et al. 2011; Wang et al. 2012; da
Silva et al. 2014; Agostino et al. 2020). Therefore, landscapes with stable sound-
producing communities should display a predictable spectro-temporal acoustic
structure at this scale, a concept which was termed an ‘acoustic fingerprint' by
Sankupellay et al. (2015). If these acoustic fingerprints are unique to a specific site,
these can be used to classify soundscapes, determine the change in the use of the
acoustic trait space over time, gauge the response of acoustic trait diversity to
disturbances, and more. As species have previously been shown to shift their daily
peak of vocal activity to avoid spectro-temporal overlap with other species (e.g.,

Hart et al. 2015), it is highly likely that some of the temporal partitioning of the
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acoustic niche space occurs at these broader 24h scales. Therefore, quantifying
soundscape diversity patterns at this scale may shed new light on the mechanisms

underlying acoustic niche partitioning.

Aide et al. (2017) previously quantified the diversity of acoustic traits over a 24h
period using the ASU metric, which correlated with the diversity of unique sound
types (i.e., acoustic morphospecies) for birds, frogs, and insects. This index was also
successfully applied to investigate the influence of elevation (Campos-Cerqueira and
Aide 2017), natural gas exploration (Deichmann et al. 2017), gold mining (Alvarez-
Berrios et al. 2016), forest certification (Campos-Cerqueira et al. 2020), protected
area establishment (Herrera-Montes 2018), and habitat restoration (Ramesh et al.
2023) on natural soundscapes. The workflow in this thesis expands on these

diversity quantification efforts in several ways, and these are outlined below.

Formalising a unit of soundscape diversity measurement

The unit of diversity measurement adopted here is defined as: the ‘Operational
Sound Unit’ (OSU). These OSUs are obtained by dividing the acoustic trait space
(00:00-23:59h; 0-20,000 Hz) into many discrete spectro-temporal bins, which are
the soundscape equivalent of time-frequency bins in a spectrogram. By doing so,
0SUs group sounds with shared spectro-temporal properties (having similar
coordinates in the acoustic trait space) into units that can be used to measure
diversity, and that can be compared between soundscapes. Although these OSUs are
conceptually alike to the time-frequency bins used for diversity quantification in
Aide et al. (2017), there is value in explicitly formalising what is being measured. By
doing so, the attempt is to alleviate some of the confusion troubling studies on
acoustic indices regarding what constitutes the unit on which diversity indices are
computed (i.e., the soundscape equivalent of species; Alcocer et al. 2022), and ease
the interpretation, transferability, and comparison of diversity measures between
studies. These OSUs differ from the time-frequency bins in Aide et al. (2017) in the
amplitude features that are used to determine the presence and prevalence of sound

in the acoustic trait space, and the resolution of bins along the temporal axis.

Including a measure of temporal sound incidence

The workflow presented here goes beyond measuring the richness of acoustic traits

in the soundscape (e.g., ASU) by including a measure of importance (e.g., relative
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abundance) in the soundscape diversity quantification. To do so, an incidence-based
framework was used, determining the detection (1) / non-detection (0) of OSUs in
each 24h sample of the soundscape using a detection threshold, and calculating the
incidence frequency (or relative abundance) of each OSU across the recording
period (all 24h soundscape samples). To my knowledge, no acoustic index has
explored the temporal incidence of sound in the same section of the acoustic trait
space over multiple days. Yet, using the occurrence of sound at the same time-
frequency coordinates over multiple days as a measure of relative abundance could
provide new insights into the use of the acoustic trait space. By quantifying the
evenness, the temporal dominance or rarity of sound in different sections of the
acoustic trait space could be explored and compared between soundscapes and over
time. This approach could reveal how effectively the acoustic trait space is used as a
resource over time and shed new light on the competition for the acoustic niche
within the ANH framework (Krause 1987).

Integrating soundscape diversity quantification with the framework of Hill
numbers

The current study moves away from the entropy-based diversity indices that are
commonly used in ecoacoustics (Sandoval et al. 2019). Instead, the diversity
quantification is integrated with the framework of Hill numbers (Jost 2006).
Although this statistical framework was suggested to be suitable for ecoacoustics
almost a decade ago (Sueur et al. 2014), to my knowledge, the current workflow
represents the first example of the application of Hill numbers for ecoacoustics.

Hill numbers provide several advantages. Firstly, Hill numbers provide a unified
statistical framework that is sufficiently robust and flexible to accommodate the
quantification of different dimensions of diversity. For instance, Hill numbers can be
used to quantify not only the soundscape diversity, but also taxonomic, functional,
and phylogenetic diversity (Chao et al. 2014a). Using a unified framework for the
measurement of different diversity dimensions gives the metrics a common
behaviour and ensures that the observed relationships between diversity
dimensions (e.g., soundscape diversity ~ taxonomic diversity) result from true
ecological patterns, and not just from differences in the mathematical formulae used
to calculate diversity (Chao et al. 2014b).

Secondly, unlike entropy-based metrics, Hill numbers scale linearly with the

underlying diversity of the system (the replication principle or doubling property;
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see 9.2 and Hill 1973; Jost 2006). This gives the resulting acoustic indices more
intuitive behaviours and allows direct comparison of the magnitude of soundscape
diversity values between studies. Additionally, using Hill numbers, the soundscape
diversity can be partitioned into its different diversity components (e.g., richness,
evenness, diversity), orders of diversity (e.g., q=0, q=1, q=2, ...), or spectro-temporal
subsets (e.g., day, night, dawn, dusk). By doing so, the workflow can shed light on
various aspects of acoustic diversity while maintaining the same analytical
framework, unit of measurement (OSUs), and index behaviours, which facilitates the

interpretation of values between indices and studies.

Thirdly, Hill numbers can also be used to reliably partition the regional diversity
(gamma) into its within- (alpha) and between-group (beta) components using a
simple multiplicative relationship (Jost 2007). Indeed, in ecology, the ratio of the
mean within-group diversity (alpha) to the total pooled diversity (gamma) is often
used as a measure of compositional similarity or dissimilarity (beta) between
groups (Jost et al. 2010). Yet, for entropy-based indices, using this ratio as a measure
of compositional differentiation can lead to serious misinterpretation of results due
to the non-linear scaling of the index-diversity relationship (Jost 2006). Since Hill
numbers scale linearly with the underlying diversity of the system, this issue is
resolved (Daly et al. 2018). This is further discussed in section 5.3.2.

Hence, the current workflow provides a metric of compositional similarity between
soundscapes (beta) at a 24h scale with intuitive behaviours, a link to the other
diversity components (alpha and gamma), and a common unit of diversity
measurement (OSUs). Although the beta soundscape turnover can range from 1 - N
(the number of soundscapes being compared), this metric can easily be transformed
into a measure of similarity or dissimilarity (ranging from 0 - 1) by using equations
such as the Jaccard dissimilarity or the Sgrensen-Dice dissimilarity (Jost et al.
2010). Because this index of compositional differentiation operates on soundscapes
at a more course resolution (OSUs collapse the features of sounds across 1-minute
files), at broader temporal scales, and uses incidence data rather than raw
amplitude values, I argue that the beta soundscape turnover will be less sensitive to

the time- or frequency-shifts that trouble many of the existing beta acoustic indices.
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5.3.2 Index characteristics

In Chapter I - Supplementary materials 5, it was tested whether the newly proposed
acoustic indices abided by some essential properties for diversity indices, as well as

some additional behaviours that were deemed important.

Firstly, the principle of ‘set monotonicity’ was tested, which states that any subset of
the community under investigation should yield a lower richness and diversity
value than the total community (Ricotta 2005; Villéger et al. 2008). The evenness,
however, is not expected to follow this principle, as a subset of the community can
have a more even relative abundance distribution than the community as a whole.
These expectations are confirmed by our results: the monotonicity criterion held for
the soundscape richness and the soundscape diversity, but not for the soundscape
evenness (Chapter I - Fig. S8). The same observation was made by Villéger et al.
(2008), who found that their index of functional richness abided by the
monotonicity principle, but the functional evenness did not. The simulations further
demonstrated that the soundscape richness and soundscape evenness indices are
independent of one another (Chapter I - Fig. S9). Conversely, the soundscape
diversity index was not independent, which follows expectations since it

incorporates both measures of richness and evenness into the same value.

Next, the newly proposed acoustic indices were tested on their compliance to the
replication principle (or doubling property; Hill 1973; Jost 2006). Unlike many
entropy-based indices, which do not scale linearly with the underlying diversity of
the system and therefore violate the replication principle, the acoustic indices
presented in this thesis were shown to follow this intuitive notion of diversity
(Chapter I - Fig. S10). This resolves the issues with the non-linear behaviour of
diversity metrics, reduces the chances of index misinterpretations, and increases the
comparability of index values between studies. Furthermore, this allows the beta
diversity, calculated as the ratio of alpha to gamma diversity, to accurately reflect
the compositional similarity of assemblages (Jost 2007; Daly et al. 2018). The metric
of beta soundscape turnover described here (at q=0) followed this notion of

compositional similarity (Chapter I - Fig. S12).

By confirming that these indices abided by these criteria, one can be confident that
the proposed acoustic indices will represent true patterns, and not stem from

unintuitive index behaviours or differences in mathematical formulae.

49



5.3.3 Indices as biodiversity proxies or ecological indicators
5.3.31 Indices as biodiversity proxies

Since their inception, a common aim for acoustic indices has been to provide a tool
that can act as a proxy for biological diversity, mostly species richness or
abundance, without the need for species identification from sound files (Boelman et
al. 2007; Sueur et al. 2008; Farina et al. 2011). Subsequent studies have focussed on
using acoustic indices in a variety of different ways, including as indicators of
ecosystem health (e.g., Tucker et al. 2014) or landscape configuration (e.g., Fuller et
al. 2015). However, the overall ambition to use these indices as biodiversity proxies
has persisted as the field has matured (Alcocer et al. 2022).

Most of the work attempting to validate the performance of acoustic indices as
biodiversity proxies has focussed on their relationship with the richness or
abundance of birds in recordings (e.g., Depraetere et al. 2012; Mammides et al.
2017; Buxton et al. 2016; Eldridge et al. 2018; Bradfer-Lawrence et al. 2020), while
studies investigating their relationship with the diversity of anurans, insects,
mammals, or the soniferous community at large, remain scarce (but see Sousa-Lima
etal. 2018; Aide et al. 2017). A recent meta-analysis by Alcocer et al. (2022) on the
performance of acoustic indices as biodiversity proxies revealed mixed results,
demonstrating substantial variability in index performance across target groups,
study systems, and methodological approaches, and diminishing effect sizes over
time. These observations are casting doubt on the use of these indices as direct
biodiversity proxies and challenge the validity of the underlying theoretical and
empirical assumptions. Concerningly, there is an increasing number of studies
employing acoustic indices as direct biodiversity proxies without validating their
performance against ground-truthed biodiversity, leading to an unsustainable

situation that jeopardises the credibility of the field.

Consequently, it is essential to conduct index validation before utilising any new
acoustic index or applying a previously described index in a new study system.
Additionally, to avoid introducing additional uncertainty in the index-biodiversity
relationships reported in the literature, it is critical to evaluate the impact of
methodological variations on index performance and provide best-practice
recommendations for data collection and index parameterisation. Therefore, one of

the objectives of this thesis was to assess the performance of two recently proposed
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acoustic indices (soundscape richness and evenness) as proxies for the richness of
sound-producing organisms in the study system investigated here. To achieve this, a
compound species richness index was constructed by aggregating the richness of
three major sound-producing groups in tropical rainforests: birds, anurans, and
primates. Although taxonomic richness data was missing for insects, a dominant
sound-producing group, the combined activity of these three groups was deemed to
be sufficient to influence rainforest soundscape and the proposed acoustic indices.
Through simple linear regressions, the association between the compound richness
metric and soundscape richness and evenness was examined across 35 sites
spanning a species richness gradient in the BHR. Furthermore, the influence of the
sampling regime, sampling duration, and Fast Fourier Transformation window
length on the observed relationship between the index and species richness was

investigated.

The soundscape richness

The soundscape richness exhibited a strong positive correlation with the richness of
sound-producing species at the BHR (r = 0.85; R2 =0.72; p <0.001). The soundscape
richness index performed well compared to other conceptually similar acoustic
indices that also measure the richness or saturation of the acoustic trait space and
compare them with the overall diversity of the soniferous community. For instance,
Aide et al. (2017) found a strong positive correlation (Spearman's p = 0.85) between
the ASU metric and the richness of unique acoustic calls (or acoustic
morphospecies) for birds, anurans, and insects, albeit with a relatively small sample
size (8 sites). Similarly, the soundscape saturation metric (which measures the
saturation of the acoustic trait space at a 1-minute scale) in Burivalova et al. (2019)
showed a moderate correlation (r = 0.56 and R2 = 0.31) with the richness of unique
vertebrate calls in the same sound files. Importantly, both studies compared index
values with the richness of unique acoustic morphospecies, whereas Chapter |
compared this metric against the richness of soniferous species without specific
knowledge of the diversity of their acoustic signals. The former approach is
expected to have a more direct influence on the diversity of acoustic traits in the
landscape since different calls in a species’ acoustic repertoire tend to be spectro-
temporally distinct (Alcocer et al. 2022), leading to improved correlations between
the acoustic indices and measured biodiversity variables. Despite this discrepancy,
the soundscape richness metric demonstrates equal or improved correlations,

attesting to its robustness.

51



The performance of the soundscape richness index as a proxy for species richness
was also found to be relatively insensitive to methodological variations. The
soundscape richness - species richness relationship remained consistently high (r >
0.8) across all tested sampling regimes, even when only 1 minute per hour was
sampled. Additionally, the performance of the soundscape richness as a biodiversity
proxy was virtually unaffected by the window length used in the Fast Fourier
Transformation. The relative relationship between sites in terms of soundscape
richness was found to stabilise after a minimum of 24h of continuous recording,
spread over 5 days. This suggests that the acoustic indices described in this thesis
require less intensive sampling compared to previous studies (e.g., Bradfer-
Lawrence et al., 2019, who recorded for 120 hours). However, it is important to note
that the results at longer sampling durations in Chapter I are based on extrapolation
rather than actual sampled data due to the nature of our testing data (i.e., 1-minute
or 5-minute sampling regime, < 10 days of recording). This may compromise the
comparability of the results. Therefore, to remain conservative, and considering that
ecosystems may have different rates of acoustic turnover compared to our system, I
recommend that users record their soundscapes for a minimum of 5 days and, if

possible, for longer durations or more intensively.

These findings suggest that the soundscape richness metric holds promise as a
biodiversity proxy. However, several limitations must be addressed before it can be
widely accepted in this capacity. First, the metric's performance as a biodiversity
proxy was only evaluated based on the richness of the sound-producing community.
Soundscape analyses operate on the assumption that alterations in the diversity of
the soniferous community reflect broader changes at the community level, resulting
from shared ecosystem dynamics or disturbances (Bradfer-Lawrence et al. 2019;
Alcocer et al. 2022). Yet, this assumption has seldom been rigorously tested. If the
diversity trends observed in vocal groups do not align with those of non-vocal
groups, or if non-vocal/quiet taxonomic groups are disproportionately affected by
negative anthropogenic activities, employing acoustic indices as proxies for overall
community biodiversity could lead to a misleading assessment of the biological
community's health. Still, all biodiversity monitoring tools for tropical rainforest
wildlife are taxonomically biased (Zwerts et al. 2021), and compared to other
automated sensing methods, acoustic sensors capture a comparatively broad range
of taxonomic groups (Sethi 2020).
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Second, although a strong positive correlation between the species richness of
sound-producing organisms and the richness of OSUs (soundscape richness) was
demonstrated, it is important to note that these two units of diversity measurement
are unlikely to be directly proportional. In other words, the addition of one species
does not correspond to the addition of one OSU (Aide et al. 2017; Burivalova et al.
2018). This disparity arises from the fact that different species or taxonomic groups
exhibit distinct spectro-temporal call structures and vocal repertoires (Aide et al.
2017), which directly influences their likelihood of a species’ vocal activity
triggering the detection of OSUs using the analytical framework I propose, as well as
their potential impact on the acoustic trait space occupancy. For example, a loud,
continuous, broadband cicada chorus is more likely to trigger the detection of OSUs
using our workflow than sporadic short-duration calls, such as the alarm calls of
brocket deer. Furthermore, insects and anurans primarily employ a single repeated
call over time whereas birds can possess incredibly diverse vocal repertoires (Riede
1996), with each vocalisation exhibiting unique spectro-temporal characteristics
within the acoustic trait space. These inherent differences significantly impact the
contribution of vocalisations from different taxonomic groups to the soundscape
richness metric. A study by Aide et al. (2017) previously explored the variable
influence of different groups on the acoustic trait space, revealing that insects exert
a greater influence than birds and anurans on the ASU metric. The case study
presented in Chapter I lacked information on the richness or signal diversity of
insects, which represents a significant gap in our understanding, given their
substantial vocal presence within tropical rainforests. Thus, it is strongly
recommended that future investigations employing the acoustic indices described
here assess the relative influence of various species or taxonomic groups on the

resulting metric values.

Third, the performance of the acoustic indices has only been tested in a single
environment. Previous meta-analyses have revealed that the efficacy of indices as
biodiversity proxies tends to decrease as they are applied to a broader range of
ecological settings or taxonomic groups (Alcocer et al. 2022). Therefore, it will be
crucial for future efforts to assess whether the indices that are described in this
thesis will hold up in a wider variety of systems. Finally, although the proposed
workflow incorporated several steps aimed at reducing the influence of non-target
sounds on the acoustic index values, the performance of these new indices under a

range of background noise conditions has yet to be assessed. Previous work has
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shown that few indices can capture biodiversity patterns in a broad range of sonic

conditions (Ross et al. 2021), highlighting the need for future work in this area.

In summary, the soundscape richness shows great potential to act as a proxy for the
richness of sound-producing species in tropical rainforests, especially when the
diversity of the resident soniferous community is poorly known, but further

validation is required before it is broadly adopted in this capacity.

The soundscape evenness

The correlation analysis between the soundscape evenness metric and the richness
of sound-producing species revealed a weak positive relationship (r = 0.40; R2 =
0.16: p < 0.05). Based on theoretical expectations, a link between the richness of
soniferous species and the evenness of the soundscape was not anticipated.
However, it is possible that the mechanisms influencing species richness in the BHR
also impact the temporal dominance or rarity of sounds during the recording

period.

The soundscape evenness measures the distribution of relative abundances of
Operational Sound Units within the acoustic trait space over time. The positive
correlation observed between soundscape evenness and species richness suggests
that acoustic communities with a higher number of species tend to utilise the
available acoustic trait space more evenly over time. In contrast, communities with
fewer species exhibit a greater discrepancy between common and rare sounds over
time. This observation potentially aligns with the ANH, which proposes that
disturbed species-poor sites may have an imbalanced equilibrium within their
acoustic communities. It is plausible that such disturbances lead to a scenario where
only a few acoustically dominant species coexist with numerous rare or transient
sound-producing species, leading to the observed pattern. However, it is crucial to
note that, to my knowledge, the temporal prevalence of sound in the acoustic trait
space has not yet been investigated in soundscape research. Therefore, any
proposed mechanisms explaining the observed patterns are purely speculative at

this stage and require empirical testing before definitive conclusions can be drawn.

Nevertheless, | suggest that investigating not only the diversity of acoustic traits in a

soundscape, but also the consistency of acoustic trait space occupancy over time,
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could yield valuable and novel insights into the mechanisms that structure acoustic

communities. Further exploration in this direction is warranted.

5.3.3.2 Indices as a tool to capture ecological patterns and drivers of
acoustic trait diversity

Spatial patterns in acoustic diversity

In Chapter II, the spatial variation of the soundscape richness index was assessed in
the BHR, linking acoustic diversity values to two core variables driving diversity
patterns in insularised systems: the island size and isolation (MacArthur and Wilson
1967). Although studies have previously used soundscape analysis tools to
investigate biogeographic patterns in acoustic diversity across space (Tucker et al.
2014; Fuller et al. 2015; Miiller et al. 2020), the mechanisms governing the diversity
of acoustic traits in fragmented systems have received surprisingly little attention
(but see Han et al. 2022).

Unfortunately, due to the inherent negative correlation between the island size and
isolation that exists in many hydroelectric reservoirs, including the BHR, the effect
of island isolation on soundscape richness could not be reliably assessed. When
omitting the isolation variable from the analysis, a strong positive relationship
(R?%adj = 0.45; z-value = 0.14; log10c = 1.28) between the island-wide (gamma)
soundscape richness and island size was demonstrated, which was termed a
‘SoundScape-Area Relationship’ (SSAR). This SSAR displayed a breakdown at the
smallest spatial scales (< 9.4 ha), indicative of a small island effect (SIE), whereby
the effect of island size on the richness is obscured by stochastic effects (Lomolino
and Weiser 2001). When excluding the islands below this threshold from
subsequent analyses, the observed correlation improved considerably (R%adj = 0.71;
z-value = 0.28; log10c = 1.03).

These results suggest that the soundscape richness index is sensitive to one of the
most ubiquitous ecological patterns, the species-area relationship. Indeed, the
strength and slope values of the observed SSAR correspond well with those
described in previous studies investigating SARs for soniferous species at the BHR
(see Chapter II - Table 2). Moreover, the observed SIE threshold aligns with those
previously reported at the BHR. For instance, for large vertebrates, Benchimol and

Peres (2015b) reported a breakdown of SARs below 10 ha. Similarly, for anurans,
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SARs were weak below 100 ha, and non-significant below 4 ha (Bueno et al. 2020).
These observations imply that the soundscape richness metric captures the same
mechanisms that drive SARs at the BHR.

Several studies have previously investigated the role of habitat fragmentation or
insularisation on the integrity and diversity of soundscapes. For instance, Tucker et
al. (2014) investigated the impact of forest fragmentation on soundscapes across
urban and rural landscapes in Australia, demonstrating an increase in low-
frequency sound (1-2 kHz) and a decrease in mid- to high-frequency sound (3-11
kHz) with decreasing habitat patch size and connectivity. Similarly, Fuller et al.
(2015) found that a habitat’s decreasing biocondition (linked to decreasing patch
size and connectedness) lead to an increase in human noise and a decrease in
biophony, as well as an increase in acoustic entropy. Finally, Miiller et al. (2020)
found that smaller habitat patches in agricultural landscapes had a lower value for
the Acoustic Diversity Index. These studies suggest that small and isolated habitat
fragments experience an increase in the anthropophony and a decrease in acoustic
diversity, which can potentially be linked to a reduced biophony.

Yet, positive diversity-area relationships can emerge through a range of
mechanisms, including sampling effects (sampling artefacts and passive sampling),
disproportionate effects, and heterogeneity effects. Furthermore, the observed
correlation between the soundscape richness and island size (SSAR) could be the
result of a direct effect of the richness of sound-producing species on the acoustic
diversity but could equally arise through other underlying ecological or
evolutionary mechanisms driving the diversity of acoustic traits in the landscape,
which may have implications on the interpretation of the soundscape richness as a

biodiversity proxy.

Drivers of acoustic trait diversity in a landscape

In the field of ecoacoustics, researchers generally consider two predominant
mechanisms as drivers of acoustic trait diversity in a landscape: (i) the Acoustic
Niche Hypothesis (ANH); and (ii) the Acoustic Adaptation Hypothesis (AAH) /
Acoustic Habitat Hypothesis (AHH). The former hypothesis posits that the acoustic
trait space itself represents a crucial ecological resource that is partitioned within
the time-frequency domain to prevent signal overlap with sympatric species

(Krause 1987), leading to the diversification of acoustic traits at local scales. The
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later hypotheses suggest that the surrounding environment functions as an
environmental filter, actively selecting for specific traits acoustic traits that optimise
sound transmission and minimise attenuation in the habitat (Morton 1975; Mullet et
al. 2017), either through evolutionary mechanisms (AAH) or through the ecological
phenomenon of habitat selection (AHH). Ultimately, this filtering process leads to
the homogenisation of acoustic traits at local scales. These two conceptual
frameworks are not mutually exclusive; rather, they represent complementary
perspectives that together contribute to our understanding of the complex dynamics

underlying the diversity of acoustic traits in the landscape.

For this reason, the positive relationship between the island-wide (gamma)
soundscape richness and the island size may be explained in multiple ways. First, it
is possible that neither of the aforementioned mechanisms is driving the diversity of
acoustic traits at the BHR, and the observed SSAR is simply the result of sampling
effects. For instance, larger islands need a higher sampling effort to accurately
characterise the biological community, which leads to more acoustic signals being
sampled, and by probability, increases the chance of detecting more OSUs (sampling
artefacts; Hill et al. 1994). If this is true, the relationship between the gamma
soundscape richness and island size should disappear after equalising the sampling

effort among islands using rarefaction (Chase et al. 2019).

Second, the correlation could indicate that the ANH holds, and disproportionate
effects are causing a greater species richness in large islands, leading to more
competition for acoustic niche space and the diversification of acoustic traits. In this
way, species richness has a direct effect on the richness of acoustic traits in the
landscape. If this is the only acting mechanism driving acoustic trait diversity, a
positive relationship between the island size and the plot-scale (alpha) soundscape
richness and island-wide (gamma) richness, but not the between-plot (beta)

soundscape turnover, is expected.

Third, the observed pattern could also arise if larger islands have a greater habitat
diversity than small ones, as predicted by the theory of heterogeneity effects. This
could lead to both an increase in the gamma species richness (unique species in
each habitat) and the gamma richness of acoustic traits (unique acoustic
adaptations to each habitat), as described by the AAH or the AHH. This would
suggest an indirect link between the species richness and acoustic trait richness,

through the effects of habitat diversity. If this was the only acting mechanism, a
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positive relationship between the island size and the gamma soundscape richness,
as well as the between-plot (beta) soundscape turnover, but not the alpha

soundscape richness, is expected.

By decomposing the soundscape richness values into components of island-wide
and plot-scale soundscape richness, as well as a between-plot soundscape turnover
component, and linking them to theoretical expectations based on the theory of
island biogeography, the mechanisms structuring the diversity of acoustic traits in
our study system may be elucidated. The second part of Chapter Il dove deeper into
these mechanisms. Although slightly weakened, the gamma SSAR persisted after
equalising the sampling effort between islands (temporal-effort-based rarefaction:
R?adj = 0.54, z-value = 0.17,log10 c = 1.15; plot-based rarefaction: R?adj = 0.40, z-
value = 0.13,1og10 c = 1.20), confirming that the observed pattern is caused by
mechanisms beyond sampling artefacts. Additionally, the plot-scale alpha
soundscape richness (R?adj = 0.39; z-value = 0.13; log10c = 1.20), but not the
between-plot beta soundscape turnover (R?adj = 0.00; z-value = 0.00; log10c =
0.14), was found to scale positively with island size. This indicates that
heterogeneity effects, paired with the AAH or AHH, are unlikely to be the dominant
mechanism structuring acoustic trait diversity in the BHR. Instead, the perceived
patterns line up well with the theoretical expectations under the ANH. In addition to
the increased competition for the acoustic trait space within more speciose
communities, the ANH posits that stable ecosystems achieve an evolutionary
equilibrium in the spectro-temporal structure of sounds within their landscapes
(Krause 1987). However, when these ecosystems undergo disturbances, detectable
gaps in the utilisation of the acoustic trait space emerge, resulting in reduced
acoustic diversity. Considering that the islands in the BHR were formed after a
disturbance event, and severe edge effects have previously been shown at the BHR
(Benchimol and Peres 2015a), it is plausible that the small islands have experienced
losses of species occupying unique acoustic niches. This loss would lead to both
diminished species richness and a reduction in acoustic trait diversity, as indicated

by the soundscape richness metric.

Yet, correlation does not establish causation, and therefore, conclusive evidence for
the ANH as a driving mechanism at the BHR cannot be provided. As highlighted in
Sugai et al. (2021), there are other hypotheses potentially influencing the diversity
of acoustic traits in the landscape, which have received comparatively less attention

in the field of ecoacoustics. For instance, species sorting in the landscape may be
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subject to a non-sensory environmental filter, promoting certain morphological or
phylogenetic traits which exert an indirect influence on the diversity of acoustic
traits. For instance, body size is an important trait involved in community assembly
(Farjalla et al. 2012), but also exhibits a strong correlation with the potential
frequency range species can produce (Tietze et al. 2015). As such, a selective
pressure on body size would most likely also alter the distribution of trait values in
the landscape. Similarly, phylogenetically close species often have similar acoustic
traits (Gingras et al. 2013), so if an environmental filter selects for traits associated
with a specific taxonomic group, this likely also filters the range of acoustic traits in
the landscape. Finally, the observed patterns in Chapter Il may match the
expectations under the ANH, but could actually result from past evolutionary
legacies, where traits evolved in an ecological context that is unrelated to the
patterns that are observed today (Sugai et al. 2021). To fully elucidate the relative
contribution of sexual selection, non-sensory morphological or phylogenetic
selection, and sensory-driven selection on the acoustic trait diversity in the
landscape, acoustic diversity patterns need to be studied in relation to phylogenetic,
morphological, and the past and present ecological characteristics of communities
(Sugai etal. 2021).

Only one other study has investigated the mechanisms driving the relationship
between acoustic diversity indices and island biogeographic patterns in insular
systems. Han et al. (2022) investigated the relationship between three acoustic
indices (Acoustic Complexity Index - ACI, Bioacoustic Index - Bl, Acoustic Evenness
Index - AEI, Acoustic Entropy Index - H) and the island size and isolation at
Thousand Island Lake in China. They reported a significant positive relationship
between the island size and the Acoustic Complexity Index, Bioacoustic Index and
Acoustic Evenness Index, but not the Acoustic Entropy Index. The Acoustic Evenness
Index was also found to decrease with an increasing degree of island isolation.
These findings suggest that, for indices calculated on short-duration sound files (1-
minute) collected at dawn, larger islands exhibited a greater acoustic diversity and
lower evenness. Furthermore, using structural equation models, these authors
showed that the increase in the soundscape diversity values with island size could
likely be attributed to the lack of vocal species on small islands. Contrary to the
findings in Chapter II, this study also demonstrated an effect of habitat diversity on
the relationship between island size and the acoustic complexity index, attributing

the greater acoustic complexity to a rising diversity of background noise with
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increasing habitat diversity, and the effect of acoustic adaptation to local habitats
(Han et al. 2022).

The results of Chapter Il demonstrate that measuring the soundscape richness index
at multiple spatial scales, and linking observed patterns to ecological theory, can be
used to unravel complex ecological mechanisms and shed light on potential drivers
of soundscape diversity. This expands the potential of the acoustic indices described
in the thesis beyond proxies for species richness, highlighting their use as non-
invasive and efficient tools to study the biogeography and spatial dynamics in
complex rainforest systems. Finally, this work shows that habitat destruction and
insularisation have severe effects on the acoustic complexity of ecological
communities, leading to the depletion of natural soundscapes, which may have

adverse consequences for the functioning of rainforest ecosystems.

5.3.4 soundscapeR: a new addition to the ecoacoustics toolbox

Recent advancements in technology have led to the miniaturization of acoustic
sensors and the increased capacity of data storage devices at a reduced cost. As a
result, there has been a significant increase in the collection of large ecoacoustic
datasets (Sugai et al. 2019b). However, the development of robust analytical
methods to extract ecologically relevant information from these datasets has lagged
behind (Gibb et al. 2019; Vella et al. 2022).

In Chapter I1I, we introduced soundscapeR, a user-friendly software tool designed to
facilitate the workflow described in Chapter I. Implemented in the R coding
language, soundscapeR enables efficient exploration, visualization, diversity
quantification, and comparison of environmental sound using Hill numbers. The tool
guides users through a series of easy-to-use functions, categorized into four
workflow steps: (i) file management; (ii) soundscape preparation; (iii) exploration
and diversity quantification of single soundscapes; and (iv) diversity quantification
and comparison of multiple soundscapes. To enhance the usability of the workflow,
we present a novel S4 data object called the 'soundscape' object. This data object is
created during the 'soundscape preparation’' phase and saves the resulting data,
metadata, and parameter choices in predetermined slots as users progress through
the analytical pipeline. By standardizing the expected data input for each slot, the

soundscape object minimizes the risk of accidental errors during the soundscape
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preparation phase. Furthermore, this data object serves as the foundation upon
which all subsequent functions operate, allowing for easy saving and sharing of data

between studies.

To demonstrate the efficacy of the soundscapeR workflow, we conducted a
comparative analysis of the soundscapes of two islands with differing sizes in the
BHR (Andre Island: 2.08 ha; Mascote Island: 668.03 ha) using the functions available
in the package. Using soundscape heatmaps (ss_heatmap), we visually explored the
soundscapes of Andre Island, revealing a distinct dawn chorus and a less diverse
soundscape during the daytime. Further analysis using four types of soundscape
diversity plots (ss_diversity_plot) unveiled patterns in the spectro-temporal usage of
the acoustic trait space, confirming the presence of the dawn chorus and day-night
patterns while also highlighting a significant absence of sound above 15,000 Hz. By
utilizing differential heatmaps (ss_compare) to compare the soundscapes of Andre
Island and Mascote Island, we discovered clear differences in the usage of the
acoustic trait space. Mascote Island exhibited a considerably higher amount of
sound during the daytime and featured two distinct bands of nocturnal sound above
15,000 Hz. These differences in acoustic trait space occupancy were also evident in
the quantification of soundscape diversity (ss_diversity), with Mascote Island
demonstrating a much higher richness value than Andre Island. Furthermore,
Principal Coordinate Analysis (ss_pcoa) and dissimilarity quantification (ss_pairdis)
revealed that the plot on Andre Island was the most dissimilar from all the plots on
Mascote Island. Additionally, this analysis revealed a slight within-island variability
in the usage of the acoustic trait space for Mascote Island, albeit to a lesser extent.
To assist in the implementation of the workflow and further investigate patterns in
soundscape diversity for the islands in the case study, we provided a comprehensive

vignette (Chapter III - Appendix).
In summary, Chapter III solidifies soundscapeR as a valuable addition to the

ecoacoustics toolbox, simplifying the exploration and analysis of large-scale acoustic
data.
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54 Conlusion and future perspectives

In this thesis, a novel framework for quantifying soundscape diversity patterns at
broader temporal scales was outlined. This framework incorporates the temporal
incidence of sound in the diversity quantification process and integrates the
diversity measurement with the framework of Hill numbers. This allows one to
quantify distinct aspects of diversity (richness, evenness, and diversity), partition
diversity values into its sub-components (gamma, alpha, beta), calculate
dissimilarity metrics and investigate soundscape diversity patterns for different
spectro-temporal subsets using a single statistical framework. The acoustic indices
presented in this thesis have a common unit of measurement which was termed the
‘Operational Sound Unit’, a common set of behaviours, and an ecologically intuitive
interpretation. The utility of the soundscape richness and evenness indices as a
proxy for the species richness of the soniferous community was assessed,
demonstrating the potential of the soundscape richness index for this purpose.
Moreover, this thesis showcased how decomposing the soundscape richness into its
local (alpha), regional (gamma) and turnover (beta) components, and linking spatial
patterns to ecological theory, may shed light on the mechanisms driving acoustic
diversity in a landscape. Furthermore, this work also provided evidence for a strong
simplification of the soundscape diversity with increasing habitat fragmentation,
which potentially has severe consequences for the functioning of acoustic
communities. Finally, soundscapeR was presented, a user-friendly and open-source
software for the implementation of our workflow, as well as the visual exploration

of big acoustic datasets.

Based on the foundations laid out in this thesis, I envision future developments in

several areas, which are discussed below.

5.41 Further framework development

The soundscape dispersion

As previously discussed, most biodiversity indices consider only two aspects of
diversity: the richness of diversity units (e.g., species richness), and the equitability

in the abundances of these diversity units (e.g., species evenness). This view on

diversity is known as the ‘species-neutral diversity’ (Chao et al. 2010; Daly et al.
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2018) and assumes that all species (or other diversity units) are equally similar.
However, this does not fully capture the intuitive notion of diversity. For instance, a
community consisting of 10 vastly different species is expected to be more diverse
than a community consisting of 10 very closely related species. Yet, these
differences are not captured by the richness or evenness of the community. The
same is true for the workflow presented in this thesis. The acoustic diversity indices
treat OSUs as being equally similar. In reality, however, these OSUs are correlated in
the acoustic trait space. 0SUs with similar time-frequency coordinates should be
perceived as being more similar, whereas OSUs on opposite sides of the acoustic
trait space should be perceived as more different. These differences are not
captured by the acoustic indices presented in this work. This third aspect of
diversity, which includes the similarity between diversity units, is known as
‘dispersion’ or ‘disparity’ (Scheiner et al. 2017). Indices that include the dispersion
aspect are known as ‘similarity-sensitive’ indices and are comparatively much rarer
than ‘species-neutral’ indices (Leinster and Cobbold 2012). To account for the
dispersion between diversity units, a measure of similarity or distance needs to be
incorporated, based on an attribute that is considered important in the diversity
quantification process. For the proposed acoustic indices, at first glance, an obvious
measure of similarity would be the pairwise distance between OSUs in the acoustic
trait space. However, upon further reflection, designing such a measure is more

complicated.

Firstly, the acoustic trait space that was defined in this thesis does not exist on a
plane. This is because the temporal dimension that was measured is not linear. To
illustrate what is meant by this, let us think of an example. Imagine two OSUs, one
existing five minutes before midnight, and one five minutes after midnight.
Functionally, there two OSUs are similar - they are only 10 minutes apart. This
should be reflected in their distance in the acoustic trait space. Yet, if their distance
is quantified on a plane, they would be on exact opposite sides of the acoustic trait
space, and therefore be perceived as distant. Hence, the temporal dimension of the
acoustic trait space is circular, and therefore, the acoustic trait space can better be
envisioned as a closed cylinder. Consequently, any pairwise distance measurement
between OSUs should be measured as the shortest distance between points on the

surface of a cylinder, which complicates the process.

Second, as discussed previously, any measure of diversity should be independent of

other diversity aspects (e.g., soundscape richness and evenness), and be scalable
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between 0-1. Theoretically, something like this could be achieved for the
soundscape dispersion by calculating the sum of all pairwise distances between
0SUs on the cylinder and dividing this number by the maximum possible sum of
pairwise distances for the same number of OSUs, but maximally spread apart on the
surface of the cylinder. This would yield a metric that is scalable, independent from
other diversity aspects, and captures the degree of dispersion of OSUs in the
acoustic trait space compared to the maximal possible dispersion. Yet, considering
the number of OSUs involved, there is an impractically large number of
configurations in which OSUs can exist, which makes deriving the maximal

attainable dispersion mathematically infeasible.

In conclusion, although there may be value in adding soundscape dispersion to our
framework, potentially opening up a new dimension of soundscape diversity that is
currently unexplored, at the moment, progress in this respect is restricted by
mathematical complications. I am open to exploring this subject further with anyone

who may have suggestions or solutions to tackle the issues highlighted above
Second-order indices

Currently, the proposed framework makes use of the Acoustic Cover (CVR) spectral
index to capture the acoustic features of sound in each frequency bin. However,
previous work has suggested that, because these first-order indices capture a single
‘type’ acoustic feature and tend to have a limited range of potential values, it is
unlikely they can capture the full complexity of a wide range of soundscapes using a
single value (Towsey et al. 2014a; Heath et al. 2021; Alcocer et al. 2022). Instead, it
has been suggested that using the properties of several indices in concert by
constructing weighted combinations of ‘raw’ first-order indices might improve the
sensitivity towards certain acoustic features of taxonomic groups of interest
(Towsey et al. 2014a). Indeed, false colour spectrograms already exploit this
concept (Towsey et al. 2014b), combining the properties of multiple spectral indices
to provide a unique visual perspective on the usage of the acoustic trait space, and

even revealing the vocalisations of individual species.

I see potential for future development of our workflow in this respect. Instead of
using the CVR index to capture the acoustic features of interest, I envision that using
a combination of multiple spectral indices could be useful to target specific sounds.

For instance, previous work has suggested that a combination of three spectral
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indices can be used to target the acoustic features of cicada chorusing (Brown et al.
2019; Ferroudj et al. 2014; Towsey et al. 2014a). This approach can be extended to
our workflow, combining the properties of these indices to capture the acoustic
features of cicadas, and following the workflow to provide a range of cicada-specific

soundscape diversity indices.
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1 | INTRODUCTION

Passive acoustic monitoring (PAM) offers promising opportunities
for ecological monitoring. Automated acoustic sensors can record
environmental sound at broad spatiotemporal scales with reduced
cost and human effort compared to equivalent active acoustic sam-
pling by an in-situ observer (Gibb et al., 2019). Using acoustic data,
the taxonomic diversity of a biological community can be derived by
isolating and identifying species' calls, thus providing an objective
and permanent record of the resident soniferous (sound producing)
biological community (Gibb et al., 2019; Sugai et al., 2019). Yet, ob-
taining species-level information for broad spatiotemporal scales or
taxonomic breadth presents numerous analytical difficulties, such
as the time-consuming and knowledge-demanding nature of aural
annotation, and the paucity of reliable automated species identifiers
and reference databases for most taxa and regions (Gibb et al., 2019;
Kahl et al., 2021; Sugai et al., 2019; Toledo et al., 2015).

In addition to taxonomic information, species' sounds carry func-
tional significance. Acoustic signals are crucial for a broad range of
social interactions including courting behaviour, territorial defence,
predator avoidance and food sharing (Darwin, 1872; Seyfarth &
Cheney, 2003). As such, species' sounds are subject to selective
pressures at multiple scales (Zseb6k et al., 2021), resulting in a wide
variety of acoustic traits that are expressed in the timing, frequency
and amplitude features of acoustic signals. The field of soundscape
ecology exploits this variation in acoustic traits, attempting to infer
ecological information from the soundscape—thatis, the collection of
biological (biophony), geophysical (geophony) and human-produced
(anthrophony) sounds emanating from a landscape—without the
need for species identification (Krause, 1987; Pijanowski, Farina,
et al., 2011; Pijanowski, Villanueva-Rivera, et al., 2011). This ap-
proach assumes that the diversity of acoustic traits in the land-
scape can be used to understand ecological processes across spatial
and temporal scales (Pijanowski, Villanueva-Rivera, et al., 2011).
Consequently, more than 60 acoustic indices have been developed
(Buxton et al., 2018), each of which reflects some aspect of the di-
versity of acoustic traits in a sound file.

The diversity of acoustic signals in trait space can illuminate un-
derlying ecological and evolutionary mechanisms (Gasc et al., 2013).
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4. Our workflow generates novel insights into acoustic niche usage at a landscape
scale and provides a useful tool for biodiversity monitoring. Moreover, Hill numbers
can also be used to measure the taxonomic, functional and phylogenetic diversity.
Using a common framework for diversity measurement gives metrics a common
behaviour, interpretation and standardised unit, thus ensuring comparisons be-
tween soundscape diversity and other metrics represent real-world ecological pat-
terns rather than mathematical artefacts stemming from different formulae.

acoustic indices, acoustic niche usage, ecoacoustics, Hill numbers, Operational Sound Units
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For instance, one of the cornerstone theories of soundscape ecol-
ogy is the Acoustic Niche Hypothesis, which views acoustic space
as a core ecological resource for which soniferous sympatric spe-
cies compete, leading to partitioning of the soundscape in the
time-frequency domain to avoid spectro-temporal overlap in sound
production (Krause, 1993). Therefore, a more speciose community
should lead to increased competition and partitioning of acoustic
niche space, which is reflected in the diversity of acoustic traits.
Indeed, acoustic indices have been successfully applied as proxies for
the diversity of species (Depraetere et al., 2012; Towsey et al., 2014)
or sound types (Pijanowski, Villanueva-Rivera, et al., 2011).

Despite recent advances, several aspects of soundscape diversity
quantification remain unexplored. For instance, most indices capture
acoustic patterns using either time-averaged spectrograms (collapsed
in the temporal domain) or measures of variation in amplitude over
time (collapsed in the frequency domain). Hence, indices are funda-
mentally limited in their ability to detect diversity patterns across
both the spectral and temporal dimensions simultaneously (Eldridge
et al., 2016). Since spectro-temporal partitioning might be one of the
mechanisms dictating acoustic community assembly, considering both
the spectral and temporal dimensions of the acoustic trait space si-
multaneously may be key to evaluating how acoustic niches are struc-
tured. Moreover, most existing acoustic indices are calculated over
relatively short-duration time-scales (e.g. 1-min sound files). We sug-
gest that assembly processes structuring the presence and distribution
of sound in acoustic trait space should also be considered at broader
temporal scales. As many species' sound emissions follow circadian
patterns (Agostino et al.,, 2020), some of the temporal partitioning of
acoustic niches likely occurs in the 24-hr time domain. Yet, to date,
explicit quantification of the relationship among sounds in the 24-hr
acoustic trait space at a landscape scale has been scarce (but see Aide
et al., 2017). To do so, we require a robust framework that produces
informative metrics that capture within- and between-soundscape dif-
ferences in spectro-temporal trait space usage.

Here, we describe a workflow to decompose the diversity of sound
in acoustic trait space, hereafter referred to as soundscape diversity.
This workflow is grounded in the principles of acoustic niche theory and
leans heavily on trait-based ecological research. However, rather than
focussing on fine-scale temporal patterns (i.e. bioacoustics studies) or
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assessing the soundscape diversity of an acoustic assemblage at a partic-
ular time of day (i.e. many soundscape studies), we propose a framework
to investigate the relationship among all sounds produced in a broader
24-hr acoustic trait space at a given geographical location. We develop a
novel unit of diversity measurement, the Operational Sound Unit (OSU),
which groups sounds by their shared properties in acoustic trait space
(i.e. sounds occupy the same temporal and frequency space). Using OSUs
and building on the framework of Hill numbers (a mathematically unified
family of diversity indices), we introduce three metrics that capture dif-
ferent aspects of the acoustic trait diversity of the soundscape: (i) sound-
scape richness, (i) soundscape diversity and (iii) soundscape evenness.
Our workflow offers unique insights that complement existing
soundscape diversity metrics. Dissecting the soundscape diversity
into its facets can provide insights into various aspects of 24-hr
acoustic trait space usage, including patterns of acoustic niche satu-
ration, evenness, dominance or rarity. Moreover, using Hill numbers,
we can quantify soundscape diversity at various scales, decom-
posing the regional metacommunity diversity (y-diversity) into its
local diversities (a-diversity) and a community turnover component
(p-diversity) using a simple multiplicative relationship. Additionally,
Hill numbers can also be used to quantify taxonomic, functional
and phylogenetic diversity, which ensures that observed relation-
ships between soundscape diversity and other facets of biodiver-
sity represent real-world ecological patterns. If the Acoustic Niche
Hypothesis holds, this means these various soundscape diversity
components could shed light on the species richness or diversity of
soniferous communities using a common framework of reference.
Toillustrate our approach, we show that the proposed soundscape
diversity metrics follow a set of fundamental criteria for trait-based
diversity metrics and act in an ecologically intuitive way. Moreover, in
our case study, we use an acoustic dataset from Brazilian Amazonia to
investigate how the soundscape diversity metrics behave along a gra-
dient of species richness. We find positive correlations for both sound-
scape richness and evenness with the richness of soniferous species.

2 | METHODS

The implementation of this workflow is facilitated by the sounp-
scapeR package, written in the R-programming language (R Core
Team, 2020) and found on GitHub (https://github.com/ThomasLuyp
aert/soundscapeR).

2.1 | Defining acoustic trait space

The timing, frequency and amplitude of sounds are important acous-
tic traits that are subject to evolutionary processes and influence
community assembly. As such, we use the timing and frequency of
sounds as the variables that delineate a two-dimensional acous-
tic trait space and employ an amplitude-based threshold value to
quantify the detection/non-detection of sounds within this acoustic

space.

Although soniferous species produce sounds ranging from in-
frasound to ultrasound, we recommend constraining the upper-
frequency limit to 22,050 Hz, which is approximately the maximal
frequency audible to humans (Farina, 2013). Most wildlife sounds
can be found in this frequency range (Farina & James, 2016), so
the evolutionary mechanisms structuring acoustic assemblages
are likely strongest in this range. Moreover, in downstream anal-
yses, we use a spectral acoustic index to capture soundscape
structure, and the effects of ultrasonic frequencies on such in-
dices are not well studied. In the temporal domain, we follow
Aide et al. (2017) and consider acoustic trait space over 24 hr.
The reasoning here is twofold. First, we are interested in inves-
tigating the presence of all sounds produced at a given site for a
particular time of year, not just sounds at a particular time of day.
Second, almost all living organisms have 24-hr circadian rhythms
in sound emission (Agostino et al., 2020; Cui et al., 2011; da Silva
et al., 2014; Wang et al., 2012), making 24 hr an ecologically rele-
vant sample duration.

2.2 | Defining a unit of soundscape diversity
measurement

In trait-based ecology, diversity metrics are usually based on the
traits of taxonomic species and their abundance (Shaner et al., 2021).
Yet, taxonomic information is not always available. In some fields of
research where the taxonomic identity of individuals is unknown,
Operational Taxonomic Units (OTUs)—or groups of related individu-
als which share a set of observed properties (Sokal & Sneath, 1963)—
are used to infer system diversity. Here, we attempt to measure and
compare the acoustic properties of entities (sounds) in a system
(acoustic trait space) without a taxonomic link to the source organ-
isms. Hence, to quantify the soundscape diversity, we require a unit
of measurement that groups sounds by their shared acoustic proper-
ties without the need for taxonomic information.

In analogy to OTUs, we propose a novel unit of diversity mea-
surement, Operational Sound Units (OSUs), which group sounds
by their shared spectro-temporal properties. OSUs are obtained by
subdividing acoustic trait space into many discrete spectro-temporal
bins which are the soundscape equivalent of the time-frequency
bins in a spectrogram. Despite being conceptually analogous to the
time-frequency bins used to calculate the ‘Acoustic Space Use’ (ASU)
metric in Aide et al. (2017), the OSU differs in the amplitude features
that are used to capture the presence and abundance of sound in
acoustic trait space, and in the resolution along the temporal axis
(see below).

2.2.1 | Assessing the presence of sound in acoustic
trait space

Methodological choices made during acoustic data collection, such
as the temporal sampling regime and sampling rate, will affect
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subsequent analyses. We provide recommendations regarding these
choices in the context of our workflow in 51 and Sé.1. Here, we use
a sampling regime of 1min of recording every 5 min (henceforth
1 min/5 min) and a sampling rate of 44,100 Hz.

We are interested in all biological sounds produced at a given site,
regardless of which source they emanate from. Therefore, we focus
on the presence of sounds exceeding a 3-dB amplitude threshold for
a certain duration of time in each 1-min recording. We pool sound
files from the acoustic survey at a specific site into 24-hr samples
of the acoustic trait space, each sample containing all 1-min sound
files obtained in a single day (00:00-23:59 hr; Figure 1a). To deter-
mine where (frequency domain) and when (time domain) sound is
present in the acoustic trait space, we use the Acoustic Cover (CVR)
spectral acoustic index. For each 1-min sound file, the CVR index
produces a vector of values, one value for each frequency bin of the
spectrogram. Each value reflects the proportion of cells in a noise-
reduced frequency bin that exceeds a 3-dB threshold and ranges
between 0 and 1 (see Towsey, 2017 for a detailed breakdown of
index computation). We calculate the CVR index for all 1-min sound
files in each 24-hr sample. Acoustic recordings are processed follow-
ing Towsey (2017), computing indices using the QUT Ecoacoustics
Analysis Programs software (Towsey et al., 2018; Figure 1b).

The CVR index vectors for all 1-min files in a sample are concate-
nated chronologically, creating a data frame with the time of record-
ing as columns, the frequency bins as rows, and the value of the CVR
index for each time-frequency bin as cells. This reveals the presence
and distribution of sound in each sample of the 24-hr acoustic trait
space (Figure 1c).

2.2.2 | The Operational Sound Unit (OSU)

By assessing the presence of sound in acoustic trait space as de-
scribed in Section 2.2.1., we have divided the trait space into discrete
time-frequency bins, grouping sounds by their acoustic properties
(shared time and frequency values in trait space), thus capturing our
concept of Operational Sound Units (Figure 2).

As with time-frequency bins in spectrograms, the resolution of
OSUs in acoustic trait space, and thus the total number of OSUs,
is variable. The temporal width of OSUs is dictated by the sound
file length and the total number of OSUs in the temporal domain
by the recording schedule. The 1-min duration employed for index
calculation retains enough detail in the acoustic features for long-
duration soundscape analysis, facilitates rapid computation, and
has been used as the de facto standard in most soundscape studies
(Truskinger & Towsey, 2019).

In the frequency domain, OSU resolution is determined by the
width of the frequency bins of the CVR index vector. This is dictated
by the sampling rate and window length, which are specified in the
Fast Fourier Transformation (FFT). Choosing the appropriate window
length depends on the soniferous community of interest. In 5.2, we
provide guidance on window length choice and recommend using a
256-sample window length. With our recording settings (44,100 Hz
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sampling rate, 1 min/5 min sampling regime and a window length of
256), the frequency domain consists of 128 frequency bins (number
of bins = window length/2) of 172Hz width (bin width = [sampling
rate/2]/number of bins). The temporal domain consists of 288 bins
(24 hr = 1440min with 1 min/5 min recorded = 288 bins). As such,
the total number of detectable OSUs in the trait space using these
settings is 36,864 (128 frequency bins * 288 temporal bins).

2.3 | Assessing the prevalence of OSUs in acoustic
trait space

Next, we need to attribute an importance value to each OSU.
Instead of using the raw CVR values obtained in Section 2.2.1, we
use an incidence-based approach to derive an importance value for
each OSU.

For every 24-hr sample of each site, we use a site-specific thresh-
old to convert the OSU's raw CVR values to a binary variable. This
binary variable captures the detection (CVR value 2 threshold = 1) or
non-detection (CVR value < threshold = 0) of sound for the section
of the acoustic trait space delineated by each OSU (Figure 3a). The
choice of the threshold depends on the study system and is influ-
enced by the sound transmission characteristics of the habitat and
the amount of ambient noise in the surrounding environment (Darras
et al., 2014). For a comparison of thresholding methods, consult S.3.

To ensure site-specific binarisation thresholds are objective,
we use the ‘IsoData’ binarisation algorithm, available in the auto-
THRESHOLDR R-package (Landini et al., 2017). The IsoData algorithm is
borrowed from image segmentation analysis and is designed to sep-
arate pixels in the foreground from those in the background (Ridler &
Calvard, 1978). In the context of our workflow, the algorithm deter-
mines an initial threshold value based on the mean CVR index value
of the site's soundscape. Based on this threshold, it divides the OSUs
into two classes (foreground and background), calculates their mean
CVRindex values and updates the threshold to be the mean of these
two mean values. This process is repeated iteratively until threshold
convergence is achieved.

Finally, we compute the mean relative OSU abundance by av-
eraging each OSU's binary values across all 24-hr samples of the
acoustic trait space for a site (Figures 3b,c). To avoid confusion
between sound frequency (Hz) and incidence frequency (relative
number of OSU occurrences), we henceforth refer to the OSU im-
portance value as the relative abundance.

2.4 | Quantifying soundscape diversity using
Hill numbers

When quantifying the diversity of a system, diversity is typi-
cally broken down into two components: richness and evenness
(Hill, 1973). Here, we add a third component, soundscape diver-
sity, which incorporates aspects of the former two. Although a
large number of indices have been proposed to measure diversity,
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FIGURE 1 Avisual representation of the workflow steps used to assess the presence of sound in acoustic trait space. (a) Sounds in the
recording period (7 days) are pooled into 24-hr samples of the acoustic trait space. (b) For each sample, all sound files are cut into 1-min
segments. Each 1-min segment is subjected to a Fast Fourier Transformation (FFT), followed by modal noise subtraction and spectral index
computation, resulting in a spectral index vector (CVR index) for each 1-min file. (c) For all sound files per 24-hr sample, the CVR index
vectors are concatenated chronologically, resulting in a data frame with time-of-day as columns, frequency bins as rows and the CVR values
as cells. Finally, we obtain repeated samples of the 24-hr acoustic trait space, each of which shows the presence of sound in the time-

frequency domain.

there is a growing consensus that Hill numbers are the most ap-
propriate framework to separate system diversity into its vari-
ous components (Chao et al., 2014; Hill, 1973; Jost, 2006). Unlike
entropy indices, Hill numbers scale proportionally with underly-
ing diversity—when system diversity doubles, so does the index
value (the replication principle—see S.5.4 for demonstration).
Moreover, Hill numbers can be used to measure not only sound-
scape diversity, but also taxonomic, functional and phylogenetic

diversity, giving metrics a common behaviour, interpretation and
standardised unit (Chao et al., 2014). This ensures comparisons
between soundscape diversity and other diversity types repre-
sent real-world ecological patterns, rather than mathematical ar-
tefacts stemming from different formulae. Finally, this framework
also allows decomposing the regional metacommunity diversity
(y-diversity) into its local diversity (e-diversity) and community
turnover (p-diversity) components.
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FIGURE 2 A conceptual visualisation
of Operational Sound Units (OSUs) in the

24-hr acoustic trait space. Each 24-hr 20,000
sample of the acoustic trait space can be

divided into sections which we define N 15000
as OSUs. These OSUs are delineated by L

the frequency-bin width of the spectral o

. ] £ 10000
index vector (frequency domain) and the T
recording interval of the sampling regime g.
(temporal domain), and group sounds o 5000
by their shared functional properties in -

acoustic space. 0

QQSP

Hill numbers are computed as follows:

s \T9
ap= ( Zp?) (1)
i=1

With S being the number of OSUs, pi the relative abundance of OSU
i, and q the order of diversity. This equation expresses the diversity of
the system as the ‘effective number of entities' (OSUs)—the number of
equally abundant OSUs that would yield the same value of diversity.

Here, we briefly describe the soundscape richness, diversity and
evenness components and introduce the indices used for their mea-
surement in the acoustic trait space.

24.1 | Soundscape richness and diversity

Sensitivity to the relative abundance of OSUs is modulated using
the order of diversity (g) without changing the interpretation of
9D. When g = 0, relative abundance is disregarded and Equation (1)
yields 9p=8§, that is, the richness of OSUs in acoustic trait space—or
soundscape richness. In our workflow, soundscape richness meas-
ures the amount of acoustic trait space occupied by OSUs through-
out the acoustic survey at a site without considering their relative
abundance. Conceptually, our soundscape richness metric is analo-
gous to the soundscape saturation metric in Burivalova et al. (2018);
however, they measure the saturation of acoustic trait space at a
1-min scale. Similarly, our metric is related to the acoustic space use
(ASU) metric described in Aide et al. (2017), which quantifies the
saturation of acoustic trait space on a 24-hr scale, but uses a differ-
ent methodology to detect sounds and aggregates those sounds at
broader 1-hr intervals.

The higher the order of diversity g, the greater the weight given
to highly abundant OSUs. For instance, when g = 1, soundscape
diversity D equals the exponential of the Shannon entropy or the
number of common OSUs in the soundscape. When g = 2, the
soundscape diversity 2D equals the inverse of the Simpson index,
or the number of dominant or highly abundant OSUs in the sound-
scape. These three Hill numbers represent simple transformations
of the traditional and well-established diversity indices and calculate

CVR-Index Value
e Moo Mo Mo Mo B oo Bo om0 100

98
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= adelineated section of the 24h acoustic trait space

5504

5332

5,160

4,988

4816

) AP O DD
L LSS S LS

Time of day (h)

mean species rarity using the arithmetic (g = 0), geometric (g = 1) and
harmonic means (g = 2; Hill, 1973). Although the soundscape rich-
ness and diversity metrics are usually expressed in the total number
of OSUs, soundscape metrics can still be compared between sound-
scapes with differing dimensions (a different number of detectable
OSUs due to window length/sampling regime differences) by divid-
ing the soundscape richness or diversity by the total number of de-

tectable OSUs in the soundscape.

2.4.2 | Soundscape evenness

Evenness describes the equitability of abundances (Hill, 1973).
Various measures of evenness can be calculated by taking the
ratio between Hill numbers 9D with g = 1, 2, ..., and the richness
°D (Jost, 2010). Here, the choice of g-value determines the impor-
tance of OSU abundance on the evenness metric. For instance, since
'p roughly represents the number of common OSUs in the acous-
tic trait space, the evenness ratio *D/°D represents the proportion
of common OSUs in the community. Similarly, as 2D represents the
number of dominant OSUs, the evenness ratio represents the pro-
portion of dominant OSUs. Different g-values differ in the sharpness
of the cut-off between rarity, commonness or dominance.

These patterns in evenness are best represented by construct-
ing diversity profiles, a type of visualisation showing a series of Hill
numbers derived using a continuous function of the order of diver-
sity g (Chao et al., 2012; Jost, 2007; see Figure S11). Diversity pro-
files provide the most complete representation of the soundscape
evenness, giving the relative abundance distribution of OSUs in the
soundscape, and highlighting changes in diversity with changing im-
portance of rarity. As soundscape diversity and evenness can both
be calculated for an infinite number of g-values, for the remainder of
this work we will follow Jost (2006) and define diversity as 2D and
evenness as 2D/°D. We make this choice because q= 2 corresponds
to a common biodiversity metric used in literature (the Simpson
index) and the g-value is large enough to incorporate patterns of rar-
ity and dominance in the acoustic community.

In S.4, we outline the theoretical framework for decomposing the
soundscape diversity into its alpha, beta and gamma components.
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FIGURE 3 A conceptual representation of the methodology used to attribute an importance value to OSUs in acoustic trait space. (a) Per
site, a binarisation algorithm is applied to each sample of acoustic trait space, resulting in a binary variable representing the detection/non-
detection of OSUs across samples; (b). For each OSU, the detection (1) or non-detection (0) values are summed across all 24-hr samples of
acoustic trait space for that site and divided by the number of samples to obtain the OSU's relative abundance (incidence frequency); (c) The
presence, relative abundance and distribution of OSUs in acoustic trait space.

In S.5, we illustrate the behaviour and intuitive properties of the
proposed soundscape diversity metrics by simulating artificial
soundscapes. The simulated datasets serve to demonstrate the be-
haviour of the metrics with respect to some fundamental criteria for
trait-based diversity metrics, as outlined in Ricotta (2005), Villéger
et al. (2008), and Mouchet et al. (2010).

3 | CASESTUDY

To explore the behaviour of our metrics of soundscape diversity in a
real-life ecological setting, we characterised the soundscape richness

99

and evenness along a gradient in soniferous species richness using
an empirical dataset from Brazilian Amazonia (1°40'S, 59°40'W).
Acoustic data were collected at 35 sites for 4-10days in the Balbina
Hydroelectric Reservoir (BHR) in Brazilian Amazonia (see Supporting
Information 56.2 and Bueno et al., 2020 for further details). This work
was conducted under the SISBIO 49068 research permit.

Under the Acoustic Niche Hypothesis, we expected soundscape
richness to be positively related to soniferous species richness
(Krause, 1993). For soundscape evenness, we did not expect a rela-
tionship with species richness unless changing species richness was
associated with a shift in the relative abundance distribution of the
acoustic community (Wilsey et al., 2005).
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3.1 | Compound species richness of soniferous taxa

To assess the relationship between the soundscape diversity met-
rics and soniferous species richness, we generated a compound
species richness index of three major tropical forest soniferous
taxa: (i) anurans (Bueno et al., 2020), (ii) birds (this study) and (jii)
primates (Benchimol & Peres, 2015). Species richness data for
these three groups came from a manual and automated extraction
from audio recordings and data from the literature (see Supporting
Information S6.3). A total of 34 anuran species, 71 bird species and 7
primate species were detected across the 35 sites. We summed the
richness values for these three taxa to obtain the compound rich-
ness index. Due to the absence of available taxonomic richness data,
this compound richness did not include insects, a dominant acous-
tic group in tropical forests (Aide et al., 2017). However, we deem
the combined acoustic activity of these three taxonomic groups to
be sufficiently strong to influence the rainforest soundscape, and
therefore be detectable with our soundscape diversity metrics.

3.2 | Soundscape diversity data

We calculated the soundscape richness and evenness for all sites
using the workflow described above (see 5.6.4). A priori knowledge
of acoustic space usage can be used to subset the acoustic trait space
to those time-frequency coordinates used by the soniferous groups
of interest (Metcalf et al., 2020). This can reduce signal masking, and
increase the sensitivity of soundscape metrics to species richness.
We restricted the frequency domain below 11,025Hz, where most
anuran, bird and primate sounds are found, and excluded the part
of the frequency spectrum dominated by insects. As the sampling
duration was unequal between plots in the study, and we wished
to retain the maximal amount of information, we used sample size-
based rarefaction to equalise sampling effort among plots (see S.1).
At most, we extrapolated to double the minimal sample size (Chao
& Jost, 2012). We used the R-package ‘INEXT’ (Hsieh et al., 2016) to
calculate soundscape richness (°D) and evenness (2D/°D) at a sam-
pling effort of 8days (twice the minimal sampling duration). Finally,
we used a simple linear regression model to investigate the relation-
ship between soundscape richness and evenness, and compound
soniferous species richness. We provide additional analyses on the
effect of sampling regime and window length on the relationship be-
tween soundscape richness and species richness in 5.1.2.2 and S.2.

4 | RESULTS

4.1 | Properties of soundscape diversity metrics
Soundscape richness, evenness and diversity had strictly positive
values constrained between O and 1, and are theoretically inde-

pendent of the species richness (5.5.1). The monotonicity criterion
held true for the soundscape richness and diversity metrics, but not

for soundscape evenness (S.5.2). Soundscape richness and evenness
were independent of one another and described unique aspects
of the soundscape diversity (5.5.3). Conversely, soundscape diver-
sity at g = 2 displayed a positive relationship with both soundscape
richness and evenness, and thus did not conform to the independ-
ence criterion. Unlike some commonly used biodiversity indices
(i.e. Shannon-Wiener and Simpson biodiversity index), our metrics
scaled linearly with the underlying diversity of the system—a theo-
rem known as the replication principle (S.5.4). Finally, the same ana-
lytical workflow can be used to quantify the soundscape diversity
at multiple scales or hierarchical levels, decomposing the regional
metacommunity diversity (y-diversity) into its local diversity (a-
diversity) and community turnover (g-diversity) components using a

simple multiplicative relationship (5.4; 5.5.6).

4.2 | Relationship between soundscape
metrics and species richness

The correlation between soundscape richness and soniferous spe-
cies richness in our case study was strongly positive (r = 0.85;
R? =0.72; p <0.001; Figure 4a-1; Table S4). This positive correlation
was consistent, even for lower intensity sampling regimes (S.1.2.2),
with r values staying high (>0.8) at all tested sampling intensities.
We found that window length had a negligible impact on the cor-
relation between both metrics (r >0.83 for all window lengths; see
S.2). Based on the visual inspection of acoustic trait space, sites con-
taining a lower richness of soniferous species (Figure 4a-2) appeared
to have more empty and less complex trait spaces than species-rich
sites (Figure 4a-3). The trait space of low-richness sites had impov-
erished daytime soundscapes and lacked many of the sounds ex-
ceeding 5000Hz that were present at taxonomically rich sites. For
soundscape evenness, the correlation with soniferous species rich-
ness was weakly positive (r = 0.40; R? =0.16; p <0.05: Figure 4b-1).
For low-evenness sites, low abundance sounds were more common
compared to sites with a high soundscape evenness (Figure 4b-2 and
3).

5 | DISCUSSION
5.1 | Advantages of the workflow

Our soundscape metrics abided by a set of fundamental criteria for
trait-based diversity indices (Mouchet et al., 2010; Ricotta, 2005;
Villéger et al., 2008) and behaved in an ecologically intuitive man-
ner. Furthermore, separating soundscape diversity into richness,
evenness and diversity, and assessing how these behaved along a
gradient of species richness, shed light on patterns of acoustic niche
usage. Among the various theories that explain acoustic community
assembly and niche usage, two hypotheses prevail in the soundscape
literature: the Acoustic Adaptation Hypothesis and the Acoustic
Niche Hypothesis (Pijanowski, Farina, et al., 2011; Pijanowski,
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FIGURE 4 (a) The relationship between the soundscape richness and the richness of soniferous species (al) with a visual representation
of the 24-hr acoustic trait space for low-richness (a2) and high-richness (a3) soundscapes. The Pearson correlation coefficient and associated
R?- and p-values indicate a strong positive relationship (r = 0.85) between the soundscape richness and species richness of sound-producing
vertebrates. (b) The relationship between the soundscape evenness and the richness of soniferous species (b1) with a visual representation
of low-evenness (b2) and high-evenness (b3) soundscapes. The Pearson correlation coefficient and associated R?- and p-values indicate a
weak positive correlation (r = 0.40) between the soundscape evenness and species richness.

Villanueva-Rivera, et al., 2011). The former posits that species'
acoustic traits (e.g. signal frequency, amplitude, timing and duration)
are more similar than expected by chance as the environment filters
for traits that maximise effective sound propagation and minimise
attenuation (Mullet et al., 2017). The latter states that acoustic trait
space is a core ecological resource and sonically sympatric spe-
cies partition their acoustic niche so as to avoid spectro-temporal
overlap in their vocalisations, which would lead to inefficient com-
munication (Garcia-Rutledge & Narins, 2001; Krause, 1993). The
Acoustic Niche Hypothesis implies that evolutionarily archaic and
undisturbed ecosystems have acquired an evolutionary balance be-
tween all sounds in the landscape, resulting in soundscapes with
high spectro-temporal complexity and signal diversity, and mini-
mal overlap (Eldridge et al., 2016; Krause, 1993; Pijanowski, Farina,
et al., 2011; Pijanowski, Villanueva-Rivera, et al., 2011). Conversely,
disturbed systems in which ‘acoustically optimised’ species have been
lost from the habitat are then characterised by an unbalanced equi-
librium, showing readily detectable gaps in the soundscape.

Our soundscape richness metric quantifies the amount of
acoustic niche space occupied by OSUs independent of how fre-
quently OSUs were occupied over multiple days (the relative abun-
dance). In our case study, we found a strong positive correlation

(r=0.85; R? =0.72; p <0.001) between soundscape richness and
soniferous species richness. Soundscape richness is theoretically
independent of species richness, so the observed relationship
likely arose through processes of species assembly. Following the
Acoustic Adaptation Hypothesis, we expected the richness of
OSUs, driven by the richness of acoustic trait values, to be mostly
insensitive to the richness of soniferous species. Given the strong
positive relationship between soundscape richness and soniferous
species richness, it is likely the acoustic community in the case
study was structured by competition for acoustic niche space. As
the species richness gradient in our study area originated from a
disturbance event, it is plausible that the observed correlations
between soundscape richness and species richness stemmed from
the loss of species occupying unique acoustic niches in the acous-
tic trait space, resulting in a lower niche saturation at lower spe-
cies richness.

The soundscape evenness metric captures the degree to which
the relative abundances of OSUs are distributed in niche space.
Hence, it quantifies how evenly the available acoustic resources
are used at a landscape scale and sheds light on patterns of dom-
inance and rarity. In the case study, soundscape evenness dis-
played a weak positive correlation (r = 0.40; R? =0.16: p <0.05)
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with soniferous species richness. Changes in soniferous species
richness were associated with changes in the distribution of the
relative abundance of sounds in acoustic trait space. We posit
that the correlation between soundscape evenness and sonifer-
ous species richness could reflect an unbalanced equilibrium, in
which the acoustic community consists of a few acoustically dom-
inant and many rare sound-producing species (Krause, 1993). As
such, it appears that disturbed species-poor acoustic communities
used acoustic niche resources less effectively (Mason et al., 2005).
Indeed, the combination of both richness and evenness metrics
provides unique insights into acoustic niche usage. Yet, many ex-
isting soundscape diversity metrics focus solely on the presence
of sound in a short duration recording without accounting for the
prevalence of sound in those same areas of acoustic trait space
over the course of multiple days, thus overlooking the evenness
component of soundscape diversity.

Qur workflow potentially offers a robust and cost-effective
method to track biodiversity changes at large spatial and temporal
scales, or in systems where the knowledge of the resident biological
community is incomplete. The strong positive correlation between
soundscape richness and an independent estimate of soniferous
species richness suggests this metric can be used as a proxy to
infer taxonomic diversity patterns. Hence, it could be used as an
early warning system, alerting researchers when declines in sound-
scape diversity exceed natural fluctuations (Krause & Farina, 2016;
Pijanowski, Farina, et al, 2011; Pijanowski, Villanueva-Rivera,
et al., 2011). The soundscape richness metric performed well as a
biodiversity proxy compared to analogous metrics in the literature.
For instance, in Burivalova et al. (2019), soundscape saturation
(saturation of acoustic niche space for 1-min sound files), achieved
a correlation of r = 0.56 and R? =0.31 with the number of unique
vertebrate calls (sonotypes) identified in the same sound file. The
Acoustic Space Use metric in Aide et al. (2017) has a similarly strong
relationship to our metric (Spearman's p = 0.85), but had a relatively
small sample size (8 plots). Moreover, both studies investigated the
correlation with the number of unique calls, whereas our study in-
vestigated the correlation with species richness. The former can
be expected to attain higher correlations, as different calls tend to
take up different parts of acoustic trait space and thus influence the
soundscape saturation or acoustic space use more directly. Still, our
workflow achieved high correlations, corroborating the robustness
of the method.

Furthermore, even when a correlation is absent, our method
allows us to measure where and when in acoustic trait space the
occurrence and relative abundance of sound changes across space,
time or hierarchical levels (e.g. local, regional or global) without re-
quiring a link to the taxonomic identity of OSUs. In our case study, a
visual comparison of acoustic trait space use between two extremes
of the soundscape richness gradient showed that low-richness sites
had an impoverished daytime soundscape and lacked sounds over
5000Hz. Moreover, the low-evenness soundscape had a higher pro-
portion of rare OSUs, suggesting the acoustic niche resource was
used less effectively.

Finally, our workflow is robust, identifying an ecological gradient
in an acoustically complex tropical rainforest setting. We used an
amplitude threshold to remove transient and non-biological sounds.
Although this step did not remove persistent non-focal high ampli-
tude sounds, such as rain showers, thunder or wind, from the data,
we still found strong positive correlations with species richness.
Moreover, both the window length and sampling intensity had a min-
imal effect on the soundscape richness-soniferous species richness
correlation. Additionally, the soundscape variability was captured
with fewer hours of recording (a minimum of 24 hr) than previously
suggested (i.e. 120 hr in Bradfer-Lawrence et al., 2019), although the
minimum acoustic survey length needed to be the same (5 days). Yet,
as ecosystems can differ in their sound turnover rate and therefore
require different sampling efforts, we recommend sampling the
soundscape for longer durations and/or higher sampling intensity if
possible.

5.2 | Avenues of future research

The soundscape diversity metrics outlined herein treated all OSUs
as equally similar. In reality, OSUs are not independent elements,
but rather correlated units in acoustic trait space. As such, future
work on our soundscape diversity metrics should incorporate the
difference in acoustic trait values (time-frequency coordinates) of a
particular OSU from all other OSUs in the acoustic space (Scheiner
et al., 2017). Incorporating the distinctiveness of OSUs in acous-
tic trait space (soundscape dispersion) would allow us to further
quantify the degree to which acoustic trait space is partitioned,
providing further insights into acoustic niche differentiation and
resource competition (Mason et al., 2005). For instance, if acous-
tic communities are structured by competition for acoustic space,
we might expect overdispersion in acoustic trait space compared to
the same number of OSUs drawn randomly from the regional OSU
pool. Conversely, when the dispersion of OSUs in acoustic space is
lower than expected compared to the randomly drawn OSU pool,
environmental filtering is likely to be an acting process (Scheiner
etal., 2017).

In this paper, we opted for an incidence-based approach to attri-
bute an importance value to OSUs. Yet, the use of threshold values
to convert continuous variables to detection/non-detection data
has been critiqued in the literature (Lawson et al., 2014), as it results
in information loss and complicates comparisons between differ-
ent sites/studies for which different optimal threshold values may
apply. Still, we posit this approach can be appropriate for sound-
scape data. Although acoustic indices are known to capture animal
activity, there is an ongoing debate about their ability to capture
patterns of abundance (Boelman et al., 2007; Bradfer-Lawrence
et al., 2020). Moreover, acoustic indices can be sensitive to con-
founding environmental factors (Gasc et al., 2015). For instance,
CVRindex values may respond to abiotic sounds, such as geophony
and anthrophony, which are considered confounding factors if the
aim is to capture biophonic sounds. Additionally, the index values
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can also be susceptible to the relative amplitude of songs in record-
ings, which, in turn, are shaped by the properties of the surrounding
vegetation, the distance of the sound-emitting animal to the sensor,
inherent biological differences between species and meteorological
conditions (Bradfer-Lawrence et al., 2020). We argue that convert-
ing raw CVR index values to binary detection/non-detection data
will reduce potential differences among sites and eliminate the
non-focal transient and low amplitude sounds from the data. Even
50, the influence of incidence-based versus continuous importance
values on the observed patterns warrants further investigation.

Nonetheless, choosing a threshold value that is valid in all eco-
logical contexts and accurately removes non-target sounds while
retaining enough information to capture patterns in niche usage
represents a challenge. Deriving a unique threshold value for each
study system by validating the ability of the soundscape diversity
metrics to capture a species richness gradient is not a feasible ap-
proach, as taxonomic data will not always be available. We found
that the approach in Burivalova et al. (2018), for which the chosen
threshold yields the most normal distribution of the obtained sound-
scape metric, did not yield the strongest correlation with species
richness. Although a constant threshold value worked well for our
specific case study, this threshold value will likely be different for
other ecosystems, seasons or levels of non-target sound. We recom-
mend that future studies derive incidence data using context-aware
binarisation algorithms (see S.3). These algorithms produce a unique
binarisation threshold per site by considering the distribution of CVR
values in the acoustic trait space, which, in turn, is influenced by
the soniferous community and sound transmission characteristics
of the habitat. We found that the ‘IsoData’ binarisation algorithm
worked best for our data, but further research in a wider variety of
habitats is needed to confirm that this algorithm is consistently most
appropriate.

Finally, we only used the CVR index to capture the amplitude
features of our soundscapes. We posit that other spectral indices,
alone or in combination, may better reflect sounds from specific
taxonomic groups. For instance, cicada choruses are characterised
by loud and long-duration stridulations, usually restricted to narrow
frequency bands and often leaving wide frequency band footprints
due to harmonics. Previous work suggests these features can be
captured by a set of spectral indices: low spectral entropy, high back-
ground noise and high spectral density (Brown et al., 2019; Ferroudj
et al,, 2014; Towsey et al., 2014). Thus, these three indices could be
combined into a compound soundscape diversity index, which could
then be used to decompose the diversity of cicada choruses in 24-hr
acoustic trait space.

6 | CONCLUSION

In this study, we present a novel workflow for the quantification of
soundscape diversity that builds on trait-based ecology and uses Hill
numbers to generate a robust set of soundscape diversity metrics.

By broadening the temporal scope of soundscape diversity quanti-
fication to cover 24 hr, and considering the spectral and temporal
traits of sound simultaneously, these soundscape diversity metrics
can yield novel insights into acoustic trait space usage at multi-
ple spatiotemporal scales and act as a useful tool for biodiversity

monitoring.
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Supplementary Information

A framework for quantifying soundscape diversity using Hill numbers

Thomas Luypaert, Anderson S. Bueno, Gabriel S. Masseli, Igor L. Kaefer, Marconi Campos-Cerqueira, Carlos A.
Peres and Torbjgrn Haugaasen

S.1: Assessing the effect of sampling duration and sampling regime on soundscape diversity metrics
and their observed relationship with richness of soniferous species

In this section, we assessed the effect of sampling duration (i.e., the number of full sampling days (24 hours) in
the acoustic survey) and sampling regime (i.e., the temporal schedule that is used to record the soundscape
throughout the acoustic survey) on the soundscape diversity metrics described in the main text. Additionally, we
were interested in how these two factors influenced the observed relationship between the soundscape richness
and the richness of soniferous species. Our aim here was to offer recommendations regarding sampling design
using the soundscape diversity workflow described in this work and provide a framework for

rarefaction/extrapolation in case of unequal sampling size between sites.

To address these questions, we used the same set of plots as described in the empirical case study (main text —
section 3), for which 4-9 full days of soundscape recordings were acquired using a 1 min/5 min sampling regime
at a 44.1 kHz sampling rate in Brazilian Amazonia. For a detailed overview of the data collection and processing,
consult supplementary material S6. To assess the effect of the sampling regime, we subsetted the obtained
08U-by-sample matrix for each plot using the following recording schedules: 1 min/10 min; 1 min/15 min; 1
min/20 min; 1 min/30 min; 1 min/60 min. For sampling sites containing multiple plots, the obtained OSU-by-

sample incidence matrices were grouped across plots.
1.1. A protocol for sampling effort equalization using iNEXT

To simulate the soundscape diversity metrics for a range of sampling durations, we used the obtained OSU-by-
sample incidence matrices to compute sample-size-based rarefaction/extrapolation curves for each site at
multiple orders of diversity using the R-package iINEXT (Hsieh et al. 2016). This package provides a range of
functions for the computation of Hill numbers from raw incidence data and rarefaction and extrapolation with 95%

confidence intervals. If the goal of the study is to simply rank the soundscape diversity of multiple communities,
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the sample extrapolation size can be extended several times the observed sample size (Chao & Jost, 2012). Yet,
if the goal is to estimate exact relationships between communities, Chao and Jost (2012) recommend
extrapolation to double the observed reference sample size at most. In the empirical case study described in the
main text, we wanted to quantify the exact relationships in the soundscape diversity metrics for a set of sites
along a gradient in the richness of soniferous species (anurans, birds and primates). As the minimal sample size
is four full days, we interpolated/extrapolated the soundscape diversity metfrics to eight days of sampling (twice
the minimal observed reference sample size) for each site and sampling regime. This way, we accounted for

unequal sampling effort among sites while retaining the maximum amount of information in the datasets.

1.2. Providing recommendations regarding the sampling duration

1.2.1.  The impact of sampling duration and regime on the relative soundscape richness ranking between sites

Using our workflow, we were interested in providing accurate quantification and comparison of soundscape
diversity values for sites in a landscape. As such, we hoped to provide recommendations regarding what
constitutes an ideal in-field sampling effort to reliably quantify relationships between sites. Yet, the sampling
duration can only be reliably extrapolated to double the minimal sampling effort to quantify the exact relationships
among sites. Given the constraints of our dataset, as the minimal sampling duration is 4 days, we could not
reliably assess how longer sampling durations (e.g., >20 days) influence these exact relationships. Instead, we
focussed on the relative soundscape richness ranking among sites, which can be extrapolated to multiple times

the minimal sampling effort in a reliable manner (Chao & Jost, 2012).

To do so, we investigated the change in the soundscape richness ranking among sites along a sampling effort
gradient for a set of sampling regimes. Specifically, we computed the soundscape richness of each site and
sampling regime for a set of sampling effort values ranging from 1-28 days. Next, we calculated the richness
ranking among sites at each sample effort value (i.e. the number of 24-hour sampling days). To quantify at which
sampling effort the richness ranking stabilises among sites, thus providing the most accurate picture of the
relationship among sites in the landscape, we computed the Mean Rank Shift (MRS) value using the ‘codyn’ R-
package (v2.0.5; Hallet et al., 2016). This metric quantifies the average change in a ranked list between two
consecutive periods. Finally, to elucidate at which sampling duration the Mean Rank Shift approaches a zero

asymptote, we fitted negative exponential models (y ~ a * exp(-b * x)), using the ‘SSasymp’ function for self-
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starting models from the ‘stats’ R-package (R Core Team, 2020) to obtain starting values, and the ‘nls’ package

(v1.0-2; Baty et al., 2015) to fit the models (Fig. S1; Table S1).
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Figure S1: A set of scatterplots displaying the relationship between the sampling effort (number of 24-hour sampling days) and the Mean
Rank Shift in the soundscape richness values for 35 sites and six sampling regimes in an Amazonian rain forest landscape. The maroon
line represents a negative exponential model approaching an asymptote zero (y ~ a * exp(-b * x)). The herizontal dashed lines represent
the point at which the function start approaching the zero asymptote (Mean Rank Shift = 0.1).

Table S1: Summary of the negative exponential models (y ~ a * exp (-b * x)) fitted for different sampling regimes, in which y represents
the Mean Rank Shift and x represents the number of full sampling days (p < 0.001 for all fitted models).

Sampling regime parameters value SE

a 5.6950 0.9582

1 min /5 min b 0.6136 0.0816
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4 min /10 mi a 4.3993 0.7114
min /10 min b 0.5078 0.0711
i 115 i a 3.9223 0.4809
min /15 min b 0.4481 0.0502

_ _ a 3.5522 0.4487

1 min/ 20 min b 04078 0.0489
_ _ a 4.9609 0.8691

1 min/ 30 min b 0.5484 0.0803
] ) a 31705 0.4295

1 min/ 60 min b 0.4089 0.0525

We found that the negative exponential models with a zero-asymptote fit the data well (Fig. S1). Moreover, the
parameter values were all significantly different from zero and have low standard errors. Based on these models,
the Mean Rank Shift among sites seemed to approach an asymptote for MRS ~ 0.1 at approximately 7-9
sampling days for all sampling regimes. As such, knowing that the sampling effort can be reliably extrapolated to
double the minimum reference sample size, we recommend future studies looking for the exact relationship in

the soundscape diversity between sites attempt to record the soundscape for a minimum of 5 days per site.

Given that the sampling regime employed in this study (1 min / 5 min) did not correspond with regimes used in
other studies assessing the required sampling effort (e.g. continuous sampling), we could not directly compare
the number of required sampling days to capture the soundscape reliably. Instead, we used the total number of
sampling hours per site as an indicator of the required effort. We deem this a good proxy for sampling effort for
two reasons: (i) the total number of hours that can be recorded per site is directly influenced by the storage
space available on the acoustic sensor's memory card, a factor which is often limiting the sampling effort in field
studies; and (ii) the total number of hours can be directly compared for studies with differing sampling regimes.
Considering the recommended minimum sampling effort of 5 days and knowing that our most intense sampling
regime was 1 min /5 min, this corresponds to 24 hours of recording per site. This recording duration associated
with the optimal sampling duration is considerably lower than other minimal sampling durations previously

reported in the literature (e.g. 120 hours in Bradfer-Lawrence et al., 2019).

1.2.2.  The impact of sampling regime on the observed soundscape richness — species richness relationship
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In addition to the soundscape richness rank change in function of sampling effort and regime, we investigated
how the sampling regime influences the soundscape richness — species richness relationship among sites for a
fixed sampling effort (number of 24-hour recording days). As we were now interested in the exact relationship
between sites, and since we wanted to account for unequal sampling effort between sites, we
interpolated/extrapolated the sampling effort to 8 days (twice the minimal sampling effort) using INEXT (Hsieh et
al., 2016). Although this sampling duration was at the lower end of the recommended sampling duration (see
S.1.2.1), an inspection of Fig. S1 revealed that at 8 sampling days, for each additional sampling day the Mean
Rank Shift changed by less than 0.1 on average. Moreover, the Mean Rank Shift decreased towards the zero
asymptote as more sampling days were added. As such, the change in the overall relationship between the

soundscape richness and richness of soniferous species at longer sampling durations was likely minimal.

For each of the sites, after rarefaction/extrapolation, we computed the soundscape richness and assessed the
relationship with the richness of soniferous species. As the sampling regime influences the number of OSUs
which can be detected in acoustic trait space, we divided the soundscape richness values by the total number of
detectable OSUs in this space to get the percentage of space occupied. Finally, we computed the Pearson
correlation coefficient and R2-value for a simple linear regression model between the soundscape richness and

the richness of soniferous species (Fig. S2).
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Figure 82: Relationships between the soundscape richness (as the percentage of acoustic trait space occupied by OSUs) and the
richness of soniferous species for a wide range of sampling regimes. Pearson correlation coefficients and associated p-values, which are

given for each sampling regime (p < 0.001 in all instances), show that the predictive power of soundscape richness is largely invariant in
relation to these sampling regimes.

The scatterplots and associated Pearson correlation coefficients (Fig. S2) revealed that, at equal sampling effort,
the relationship between the soundscape richness and the richness of soniferous species remained high (r =
0.81) even for the sparse sampling regimes. This was contrary to previous findings reported in the literature (e.g.
Bradfer-Lawrence et al., 2019), which found that intense sampling regimes (e.g. continuous sampling) were
required to capture soundscapes reliably — suggesting the workflow described here is robust and can pick up on

ecological patterns, even at sampling regimes of lower intensity.
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8.2: Assessing the effect of window length on soundscape diversity metrics

As with time-frequency bins in spectrograms, the resolution of OSUs in the frequency domain of acoustic trait
space is dictated by the sampling rate and window length with which the Fast Fourier Transformation is
performed. The data of the empirical case study was acquired using a 44,100 Hz sampling rate and then
truncated at 11,025 Hz. As such, it is the choice of window length that dictates the resolution in the frequency
domain. The choice of window length determines the sensitivity of the CVR index values to different types of
sound and depends on the soniferous community in the study area of interest. A window length of 256 (e.g.
Campos-Cerqueira et al., 2020), 512 (Gasc et al., 2013; Rodriguez et al., 2013; Eldridge et al., 2018; Burivalova
etal., 2018; Phillips et al., 2018) and 1024 samples (e.g. Machado et al., 2017) have all been used to capture the

audible soundscape in a range of environments.

Here, we investigated the effect of window length choice on the proposed soundscape diversity metrics and their
relationship with the richness of soniferous species in the landscape. To do so, we computed the CVR index for
each one sound minute file using a sampling rate of 44,100 Hz and a window length of 128, 256, 512 and 1024
samples. For each of these window lengths, we applied the same analytical workflow as described in the main
body of this manuscript. We calculated the soundscape richness and assessed its relationship with the richness

of soniferous species using the Pearson correlation test and R2-value for a simple linear regression model.
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Figure S3: A set of scatterplots showing the relationship between the soundscape richness (as the percentage of the total number of
detectable OSUs) and the richness of soniferous species for a sef of window lengths (wl = 128; 256, 512; 1024). For each window length,
the Pearson correlation coefficient (r) and R%-value are provided (p < 0.001 in all instances).

We found that the choice of window length had a negligible impact on the observed relationship between the
soundscape richness and the richness of soniferous species (Fig. S3) — suggesting the proposed soundscape
richness metric is sensitive to ecological patterns regardless of these methodological variations. For future
studies, we advise the use of a 256-sample window length, as this has been previously used in the literature and

provides the highest correlation with the richness of sound-producing organisms.
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8.3: Assessing the effect of threshold choice on the soundscape richness - species richness

relationship

The 3 dB amplitude threshold used to calculate the CVR index and the binarisation threshold used here are both
aimed at removing the influence of low-amplitude and transient or short-duration noise on the soundscape
diversity metrics described in this study, thus increasing the sensitivity to the soniferous species richness.
Choosing the binarisation threshold which is used to obtain detection / non-detection values for each OSU in the
24-hour acoustic trait space constitutes an important step in our workflow. The choice of this threshold value
depends on the sound fransmission characteristics of the habitat under investigation, and the amount and type of

background noise in the environment.

Several thresholding approaches exist to achieve this objective. For instance, in Burivalova et al. (2018), a range
of amplitude threshold values were trialled, looking for the value which yielded a near-normal distribution of the
variable of interest across all sites in the study. In Aide et al. (2017), a fixed threshold value was used across all
sites to determine the presence of sound. Here, we investigated various approaches and how they influenced the
observed relationship between the soundscape richness and the richness of soniferous species. The preferred
thresholding method is the one that increases the sensitivity of the proposed metrics to the richness of soniferous

species.

3.1. Applying a constant threshold value across all sites

For our first approach, we applied a constant threshold value for all sites in the study. We applied the same
analytical workflow as described in the main text and S.6, however, to assess which constant threshold value
yields the best relationship between the soundscape richness and the richness of soniferous species, we trialled
a range of constant threshold values between 0.01 and 0.5 at 0.01 intervals. For each of these threshold values,
we calculated the soundscape richness. Finally, per Burivalova et al. (2018), we assessed which of the threshold
values yielded the best near-normal distribution of soundscape richness values, and which of the threshold

values yielded the best correlation with the richness of soniferous species.
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Figure S5: A. The relationship between the binarisation threshold value and Pearson’s correlation coefficient (r) obtained from the
Pearson correlation test between the resulting soundscape richness and the richness of soniferous species.; B. The relationship between
the binarisation threshold value and the p-value obtained from the Pearson correlation test between the resulting soundscape richness
and the richness of soniferous species. The dashed red line represents the threshold value (threshold = 0.10) for which the correlation
between the soundscape richness and richness of soniferous species is highest (r = 0.85). The shaded blue area represents the values
for which the correlation is not significant, whereas the shaded yellow area represents the values for which correlations are significant.

The most normal distribution of soundscape richness values was obtained at a constant binarisation threshold of
0.21 (Figs. S4A and S4B; r=0.71; R2= 0.51; p < 0.001), yet this value does not correspond to the binarisation
threshold which yields the highest correlation with the richness of soniferous species (threshold = 0.1; r = 0.85;
R2=0.72; p <0.001; Figs. S5A and S5B). In the next section, we investigated the use of site-dependent

thresholding using binarisation algorithms.
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3.2. Applying a site-dependent threshold using binarisation algorithms

For our second approach, instead of applying a constant binarisation threshold, we applied a site-dependent

threshold to each of the plots described in the main text. To determine the threshold value for each plot, we

made use of the binarisation algorithms available in the autothresholdr’ R-package (v1.3.11; Landini et al., 2017

— for algorithm descriptions, consult: https://imagej.net/plugins/auto-threshold). Every binarisation algorithm

provides a unique binarisation threshold per plot, and unlike the previous method, threshold values can be

variable between plots. We omitted the following binarisation algorithms from the analysis, as they were not

suitable for our type of data: “Intermodes”, “MaxEntropy”, “Minimum”, “Yen”. Finally, we assessed which of the

binarisation algorithms produced the best relationship between the soundscape richness and the richness of

soniferous species using the Pearson correlation coefficient and R2-value for a simple linear regression model.
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Figure S6: A set of scatterplots displaying the relationship between the soundscape richness (as the percentage of the total number of
detectable OSUSs) and the richness of soniferous species for the various binarisation algorithms available in the ‘autothresholdr’ R-
package (Landini et al. 2017). The Pearson correlation coefficient (r) and R2-values are given for each binarisation aigotithm.
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Figure S7: A visual representation of the pre- (A.) and post-binarisation (B.) soundscapes using a subset of binarisation methods
available in the ‘autothresholdr’ R-package (Landini et al. 2017) for one of the sites in the study period. Post-binarisation plots are ranked
from high (“lUDefault” and “IsoData’), to medium (“Huang” and “Huang 2") and low (“Percentile” and “MinErrorl”) correlation with species
richness. Visual inspection of pre- and post-binarisation plots provides insight into how the acoustic structure is captured and which
threshold stringency results in good correlation with species richness.

We found high Pearson correlation coefficients (r > 0.80) for the relationship between the soundscape diversity

and the richness of soniferous species using the ‘IsoData’, ‘Moments’, ‘lJDefault’ and ‘Otsu’ binarisation
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algorithms (Fig. S6), the value of which was similar to the correlation coefficients found for constant binarisation
thresholds (Fig. S5). A visual inspection of the pre- and post-binarisation plots (Fig. S7) revealed that the more
stringent thresholding methods (e.g “IsoData” and “IJDefault’), where more sound is removed, resulted in higher

correlations with species richness.

The binarisation algorithms produce a unique binarisation threshold per plot that is determined by the distribution
of CVR-values in the acoustic trait space, which in turn is influenced by the soniferous community, amount and
type of background noise, and sound transmission characteristics of the habitat. As such, these binarisation
algorithms generate data-driven threshold values. Conversely, although we found that a thresholding value of
around 0.1 worked well for the plots in our study, other habitats with differing sound transmission characteristics,
noise levels, or acoustic communities might have a different optimal threshold value. As such, since the
threshold value for binarisation algorithms is determined directly by the acoustic fingerprint of the plot, we
recommend using one of the binarisation algorithms highlighted above. Further research in a wider variety of

habitats is needed to confirm that the ‘IsoData’ algorithm performs the best consistently.
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S.4. A framework for decomposing soundscape diversity into its alpha, beta, and gamma components

In addition to quantifying the soundscape richness (°D), diversity (D with g =1, 2, ...), and evenness (D /D)
components, the workflow proposed in this manuscript can be used to decompose the regional metacommunity
diversity (y-diversity) into its local diversities (a-diversity) and a community turnover component (B-diversity).
Moreover, it can be used to generate several measures of similarity or dissimilarity and overlap. Here, we
outlined the theoretical framework for decomposing the soundscape diversity into its alpha, beta, and gamma

components. In S.5.5, we provided a working example of this theoretical framework in practice.

The framework of Hill numbers follows a multiplicative relationship to decompose the soundscape diversity into

its various components (Eqn. 1):

(1) D, = 9D, x 9Dg

1 S N (1-q)
(2) qDa:N ZZ(ijij)q
=17=1
1
s EAYEET)
(3) 9, = Z Z(W}‘Pu)
=1 \j=1
q
(4) qDﬁ = —Dy
ap,

Here, N refers to the total number of sub-systems (soundscapes), j refers to each individual sub-system, and w;
represents the relative weight given to each sub-system in the system. If all soundscapes are weighted equally,
w; equals 1/N. The alpha diversity is the Hill number of the averaged basic sums of the soundscapes (Eqn. 2).
The gamma diversity is computed by taking the average of the relative abundance of each OSU across the
soundscapes in the system and calculating the Hill number of the pooled system (Eqn. 3). The beta diversity
captures the degree of heterogeneity in the OSU composition across sites (Eqn. 4). It ranges from 1 to N and
quantifies the relationship between the regional and local diversity, that is, how many times more diverse is the

whole system in the effective number of OSUs compared to the sub-systems on average (Alberdi & Gilbert,
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2019). The beta diversity can also be seen as the effective number of completely distinct soundscapes in the
system (Tuomisto, 2010).

The framework of Hill numbers also allows us to define several measures of similarity between soundscapes in
the wider system. Because beta diversity ranges between 1-N, it is not independent of the number of
soundscapes in the system, and can thus not be used as a measure of similarity directly (Alberdi & Gilbert,
2019). Instead, to compare the relative compositional difference between soundscapes across multiple systems
with a different number of soundscapes, some simple transformations can be performed on the beta diversity to
remove the dependence on the number of soundscapes (Jost, 2007; Chao et al., 2012; Chiu et al., 2014; Alberdi

& Gilbert, 2019).
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Equations (5) and (6) are measures of overlap between soundscapes. The local or Sgrensen-type overlap (CgN)
quantifies the effective average proportion of a soundscape’s OSUs which are shared across all soundscapes
(Chiu et al., 2014). It captures the overlap between soundscapes from the sub-system’s perspective (Alberdi &
Gilbert, 2019). For N soundscapes each having S equally common OSUs and sharing A OSUs between them,
this function reduces to Cjv=A/S. The regional or Jaccard-type overlap (Ug) quantifies the effective proportion of
shared OSUs in a pooled assemblage of soundscapes, and thus captures the overlap between soundscapes
from a regional perspective. Assume N soundscapes in a region with S unique and equally abundant OSUs.
Here, R OSUs are shared between all soundscapes and the remaining OSUs (S-R) are distributed evenly among

N soundscapes. In this scenario, Eqn. 8 reduces to Uy = R/S.

N - 4D
2 qu=%
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Equations (7) and (8) are measures of turnover in OSUs between soundscapes (Harrison et al., 1992; Jost,
2007). The local or Sarensen-type turnover complement (Vyy) quantifies the normalised OSU turnover rate with
respect to the average soundscape (Alberdi & Gilbert, 2019). It measures the proportion of a typical soundscape
which changes as one goes from one soundscape to the next (Harrison et al., 1992; Chao et al., 2012; Jost,
2007). The regional or Jaccard-type turnover complement (S,v) quantifies the proportion of the regional
soundscape diversity contained in the average assemblage and is a measure of regional homogeneity. All of the
aforementioned similarity indices can be transformed into metrics of dissimilarity by taking their one-complement

(1= Xzn) (Alberdi & Gilbert, 2019).
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$.5: Simulating artificial soundscapes to demonstrate the soundscape diversity workflow’s desirable

properties

In this section, we used simulated artificial soundscapes to construct simple examples which illustrate that the
proposed soundscape diversity framework abides by a set of fundamental criteria for trait-based diversity indices
and behave in an ecologically intuitive manner. To do so, we adopted some of the criteria relevant to our
workflow outlined in Ricotta (2005), Villéger et al. (2008) and Mouchet et al. (2010), and added to these some
key behaviours we deemed fundamental for our workflow to work as required (Table S2). As suggested in
Villéger et al. (2008), here it is not important that each index matches each criterion, but rather that the ensemble
of the indices does. In section S.5.1, we discussed the criteria which can be confirmed without a need for explicit
testing. Further on, in sections S.5.2 - 8.5.6, we used simulated artificial soundscapes to prove that the workflow

abided by the fundamental properties we desire.

Table S2: A summary of some desired criteria and properties for the soundscape diversity indices described in this workfiow. A green tick
mark indicates the index follows the criterion, whereas a red tick mark indicates if does not. For criterion 4, two symbols are provided,
indicating whether that soundscape diversity metric follows this criterion for the closest other metric in the table, looking from left to right.
For instance, the soundscape richness is not independent from the soundscape diversity at q=2 but is independent from the soundscape
evenness.

Criterion Soundscape richness (°D) Soundscar; di}rersity 00, Soundscapeoz\)ienness il
(1) The indices can only have positive values v v v
(see section 5.1)

(2) The indices can be strictly contained between 0 - 1 v v v
(see section 5.1)

(3) The indices are independent of the species richness v v v
(see section 5.1)

(4) The indices are independent of one another xv XX v X
(see section 5.3)

(5) The indices are monatonous v v x
(see section 5.2)

(6) The indices abide by the replication principle

(see section 5.4) v v x
(7) The indices can be decomposed into alpha, beta,

and gamma components (see section 5.6) v v x

5.1. Fundamental properties of trait-based diversity indices

Several of the desired properties of our soundscape diversity workflow were fulfilled because of how the workflow

and diversity indices have been set up, and thus did not need explicit testing. For instance, all our indices were
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strictly positive and could be constrained between 0-1. The soundscape richness and diversity (atg=1, 2, ...)
could be constrained between 0-1 by dividing by the diversity value by the maximum possible detectable OSUs
in the acoustic trait space. The soundscape evenness values were constrained between 0-1 by default.
Moreover, the criterion of independence from the species richness was true for all indices, as we did not use any
taxonomic information in our workflow. As such, any potential correlation between the diversity measures and the
species richness stemmed from underlying processes of species assembly, and not inherent correlations
stemming from how the metrics are computed. In the next section, we tested the remaining criteria and

behaviours using simulated soundscapes.

5.2. The soundscape richness, evenness and diversity are monotonous

The criterion of monotonicity states that a subset of the community should always have a lower diversity value
than the total community. To test this, we created 100 simplified simulated soundscapes sampled using a 1 min /
5 min sampling regime (resulting in 288 temporal bins in a 24-hour period), and a 0 - 11,025 Hz frequency
domain generated using a 256-frame window length (resulting in 64 frequency bins). In this case, the total
number of detectable OSUs was 18,432 (288 * 64). We considered each soundscape to be completely filled,
having a soundscape richness of 18,432 OSUs. For every simulated soundscape, the relative abundance values
of OSUs were sampled so that the number of highly abundant OSUs in the community (relative abundance = 1)
ranges from 1-100% of OSUs — the remainder of OSUs being rare (relative abundance = 0.01). By doing so, we
altered the proportion of dominant species in the community, thus creating one hundred evenness classes for
each soundscape. For each of these 100 soundscapes, we subsetted the soundscape using sample sizes
ranging between 1-99% of the total soundscape richness at 1% increments. Then, for each sample size, we
randomly sampled the correct number of OSUs 100 times, resulting in a total of 1,000,000 replicates (100
soundscapes with different evenness values * 100 subset sizes * 100 replicates). We calculated the soundscape
richness, diversity (g=2), and evenness (2D /?D) for each soundscape. To test whether each of the metrics
abides by the criterion of monotonicity, we subtracted the richness, diversity, and evenness metrics for each
subsetted soundscape from their respective original soundscape metrics. If any negative values are present in
the data, this suggests the soundscape diversity metric of the subsetted soundscape was larger than that of the

original soundscape, and thus the criterion of monotonicity does not hold.
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As expected, the monotonicity criterion held true for the soundscape richness and soundscape diversity (Fig.
S8), as a subset of OSUs could never be richer than the total pool. For the evenness, however, the criterion of
monotonicity did not hold, as a subset of OSUs could result in a higher evenness value than the total pool if the

relative abundances of the subset were more even (Fig. S8).
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Figure S8: A barplot displaying the proportion of observations that had a negative, zero or positive sign for the difference between the
soundscape richness, diversity (q=2) and evenness of the original soundscape and the respective metric of the subsefted soundscape.
Negative values indicate the value of the subset metric was larger than the original value, and thus the metric does not abide by the
criterion of monotonicity. Above each bar, the raw number of observations for that sign is displayed.

5.3. Soundscape diversity metrics are independent of one another

For our next criterion, we wanted to assess whether our soundscape diversity metrics are strictly independent of
one another, capturing unique aspects of acoustic trait space usage. To test this, we generated simulated
soundscapes with randomised variation in the trait values. We considered the same simplified acoustic trait
space as in section 5.2, consisting of 18,432 detectable OSUs. We considered one hundred soundscape
richness classes (1-100% of OSUs detected). For each of these richness classes, the equivalent number of
OSUs in acoustic trait space was generated. For instance, for the acoustic trait space with 18,432 potential
0SUs, the 10% richness class resulted in 0.1*18,432 = 1843 OSUs. As before, for each richness class, the
relative abundance values of OSUs were sampled so that the number of highly abundant species in the
community (relative abundance = 1) ranges from 1-100% of OSUs - the remainder of OSUs being rare (relative

abundance = 0.01). As such, we have created 10,000 replicates along the richness-evenness range. The
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soundscape richness, diversity and evenness were computed for these 10,000 datasets, and the Pearson
correlation coefficient and R2-value for a simple linear regression model were calculated for each combination of
indices to assess independence. We expected the soundscape richness and evenness to be strictly independent
of one another, capturing unique aspects of the soundscape. Conversely, as the soundscape diversity at g=2
incorporates both aspects of the soundscape richness and evenness, we expected it to be positively correlated

with an increasing soundscape richness and evenness.

r=-92e-06, R =84e-11,p=1 r=0867,R*=045_p <0001 r=064.R*=041,p<0.001
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Figure S9: The relationship between the soundscape diversity variables (soundscape richness, evenness, and diversity) for 10,000
simulated soundscapes with richness values ranging between 1-100% of the total number of detectable OSUs, and relative abundance
values sampled so that the evenness value covers the range from 0-1. The Pearson correlation coefficient (r < 0.001) and associated R2-
value (R? < 0.001) reveal there is no relationship between the soundscape richness and evenness, confirming they are strictly
independent. The soundscape diversity at q = 2 is positively correlated with both the soundscape richness (r = 0.67) and the soundscape
evenness (r = 0.64).

The Pearson correlation coefficient and associated R2-value obtained for the simulated soundscapes
demonstrated that the soundscape richness and evenness were independent of one another (Fig. S9), thus
satisfying our independence criterion. Moreover, as expected, the soundscape diversity at =2 demonstrated a

positive relationship with both the soundscape richness and evenness, being sensitive to changes in both.
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5.4. Soundscape metrics abide by the replication principle

For our next test, we wanted to test whether the diversity indices described in this study abide by some
fundamental behaviours required for biodiversity indices. The replication principle states that for two equally
diverse communities with identical relative abundance distributions and no shared species, the diversity of the
pooled community assemblage should be twice as high (Hill, 1973; Jost, 2006). Inversely, when the number of
OSUs in the system is reduced by half, so should the diversity. Yet, classical diversity indices such as the
Shannon and Simpson indices do not follow this intuitive notion of diversity. For these indices, the change in
index values is not proportional to the change in the underlying diversity of the system. As such, treating these
diversity indices as diversity values can lead to gross misinterpretation of results (Alberdi & Gilbert, 2019). Hill
numbers follow the replication principle, which makes changes in their magnitude easily interpretable and
ensures that the beta diversity, computed as the ratio between alpha and gamma, accurately reflects the

compositional similarity of soundscapes.

Here, we demonstrated that the soundscape diversity indices (?D with ¢ = 0, 1, 2, ...) proposed in this study
abided by the replication principle. To do so, we modified a real-life soundscape which was generated for one of
the sites in the case study, to create three artificial soundscapes. The first two artificial soundscapes we made to
be equally diverse with an identical relative abundance distribution, but no shared species. To achieve this, for
the OSUs occurring between 12:00h - 23:59h in the real-life soundscape, we set the incidence values to zero,
thus generating a half-filled soundscape that represents our first artificial soundscape (Fig. S10 — soundscape 1).
Next, to generate our second artificial soundscape with an equal diversity and relative abundance distribution but
no shared OSUs, we copied the OSUs and their relative abundance values occurring between 00:00h - 11:59h
to the period from 12:00h — 23:59h. Next, we set the incidence values for the OSUs occurring between 00:00h —
11:59h to zero (Fig. S10 — soundscape 2). This way, our second artificially generated soundscape contained the
exact diversity and relative abundance distribution of OSUs, but no shared OSUs. For our final artificial

soundscape, we pooled artificial soundscapes 1 and 2 (Fig. S10 — pooled soundscape).

To demonstrate that the diversity of the pooled assemblage is twice the diversity of the sub-soundscapes
(soundscapes 1 and 2), we computed the soundscape diversity (¢ =0, 1, 2), as well as equivalent classical

diversity indices, the Shannon and Simpson diversity indices, for all artificially generated soundscapes.
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Figure $10: A visual representation of our workflow’s adherence to the replication principle, demonstrated using artificial soundscapes.
The replication principle states that, for two soundscapes that are equally diverse and have an identical relative abundance distribution,
but without any species in common (soundscape 1 and soundscape 2), the diversity of the pooled soundscape should be twice as high.
We demonstrate this holds true for the Hill numbers applied to our workflow (green shaded areas), but not for the equivalent classical
diversity indices (red shaded areas).

Using these artificially generated soundscapes, we demonstrated that the soundscape diversity metrics
proposed in this study abided by the replication principle, whereas the Shannon and Simpson indices which are

commonly used in soundscape research did not.
5.5. Diversity profiles

Even when diversity metrics abide by the replication principle, a single diversity metric only portrays part of the
information. The perceived diversity of a soundscape depends on the importance the researcher gives to the
commonness or rarity of OSUs, which is modulated by parameter g. For instance, one soundscape might have a
higher richness but lower evenness than another — information that is lost when only looking at a single index.
Diversity profiles plot Hill numbers in function of the parameter g, thus providing an accurate graphical
representation of the shape of the acoustic community — or a type of soundscape fingerprint (Fig. S11). They
provide insight into the change in perceived soundscape diversity as the emphasis shifts from rare to common
08Us, graphically illustrating the evenness and degree of dominance in the community (Leinster & Cobbold,
2012; Chao et al., 2014). The left-hand side of the diversity profile yields information about the soundscape

richness, valuing rare and common species equally. The right-hand side gives information about the diversity of
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common or dominant OSUs. Thus, they allow researchers to investigate the diversity of the soniferous
community from multiple perspectives, providing a more comprehensive method for inter-soundscape

comparison than any single index (Chao & Jost, 2015).

We demonstrated the utility of diversity profiles by generating a set of four simulated soundscapes with an equal
soundscape richness, but varying soundscape diversity and evenness. To do so, we used one of the
soundscapes we previously produced in the case study and modified the relative abundance distribution of the
0OSUs in the community to simulate different degrees of soundscape evenness. We simulated four soundscapes
along the evenness gradient by modifying the OSU abundances so that the number of highly abundant species
in the community (relative abundance = 1) ranged from 25%, 50%, 75% and 100% of OSUs. The remainder of
rare OSUs were obtained by randomly sampling their relative abundance along a range of 0.01-0.5 using a 0.01
interval. For each of these simulated soundscapes along the evenness gradient, we computed the soundscape
diversity along a range of diversity orders g from 0.01-5.0 at 0.01 intervals. Finally, to produce the soundscape
diversity profiles, we plotted the soundscape diversity in function of diversity order q for the four simulated
soundscapes with differing evenness (Fig. S11). In addition to the soundscape diversity profile, we provided a

graphical representation of the acoustic trait space for each of the simulated soundscapes.
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Figure $11: A soundscape diversity profile displaying the change in the soundscape diversity in function of the order of diversity (q) for
four soundscapes with differing evenness (°D/ 2D) values. The lower the evenness of the soundscape, the more rapidly the soundscape
diversity drops in function of the order of diversity.

5.6. Soundscape diversity can be decomposed into its alpha, beta, and gamma components

The soundscape diversity can be assessed with reference to the wider ecological system by breaking it down
into its respective alpha, beta and gamma components (Whittaker, 1960). Within the framework of Hill numbers,

these components take a simple multiplicative relationship in which gamma equals alpha times beta.

To illustrate the meaning of these components, in the following example (Fig. $12) we computed the alpha, beta

and gamma components for three hypothetical scenarios: (i) a system comprised of two identical and equally
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diverse soundscapes (Fig. S12A); (ii) a system comprised of two unique but equally diverse soundscapes (Fig.
S12B); (iii) a system comprised of two partially overlapping soundscapes (Fig. S12C). To create these
hypothetical scenarios, we used the same artificial soundscapes generated in section S.5.4. For the first
scenario, we replicated the same soundscape twice (soundscape 1 and soundscape 1), and computed the
alpha, beta, and gamma components for the system. For the second scenario, we took the two equally diverse
soundscapes with no common OSUs (soundscape 1 and soundscape 2) and computed the three components.
Finally, for the third scenario, we computed alpha, beta and gamma for a system comprised of soundscape 1

and the pooled soundscape, which partially overlaps the former.

When two soundscapes were identical, alpha equalled gamma and thus beta equalled 1. When two
soundscapes were equally diverse but unique, gamma was double alpha, and thus beta equalled 2. When two
soundscapes overlapped partially, beta ranged between 1 and N (the total number of soundscapes). In this case,
beta could be seen as the effective number of equally large and completely distinct soundscapes in the overall
system — or a measure of how many times more diverse the whole system (gamma) was in the effective number

of OSUs compared to its soundscapes on average.
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Figure $12: A simple example illustrating soundscape diversity partitioning for three scenarios: A. Two equally diverse and completely
identical soundscapes with the same relative abundance distribution. In this scenario, gamma equals alpha, and beta — or the number of
equally large and completely distinct soundscapes — is one. B. Two equally diverse but unique soundscapes. In this scenario, gamma is
twice alpha, and the number of distinct soundscapes (beta) is 2 - or the number of subsystems. C. Two partially overiapping
soundscapes, one of which is twice as diverse as the other. In this scenario, beta ranges between 1 and N (the number of soundscapes).
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$.6. Additional case study information

6.1: A note on data collection

Before assessing the soundscape diversity, acoustic data needs to be collected. For this, several decisions need
to be made. First, the sampling rate and bit depth of the acoustic recorder need to be chosen. These parameters
will dictate the frequency and amplitude resolution. The sampling rate should be twice the desired maximal
frequency, a principle known as the Nyquist-Shannon sampling theorem. In this study, the sampling rate needs
to be a minimum of 44,100, as we are interested in sounds up to 22,050 Hz. The choice of sampling rate and bit
depth also constitutes a trade-off between the desired resolution on the one hand, and the available storage on
the memory card and the battery life of the sensor on the other hand, as higher sampling rates and bit depths are
more storage- and energy-demanding. Next, the recording schedule and duration for each site should be
determined. For soundscape studies, sound files are usually collected for 1-minute durations. If multiple
soundscapes are to be compared in the same study, the same recording schedule should be used. The
soundscape can be recorded either continuously or using a regular-interval sampling regime (1 min/5 min; 10
min/30 min; etc.). However, sparse sampling regimes are generally discouraged as they require the soundscape
to be recorded for long periods before the soundscape variability is captured adequately, which in turn introduces
issues related to seasonal variation (Bradfer-Lawrence et al., 2019). In S.1, we provide recommendations

regarding the choice of sampling duration and regime using our workflow.
6.2. Site selection

Acoustic data were collected at the Balbina Hydroelectric Reservoir (BHR) in Brazilian Amazonia (1°40'S,
59°40'W). Surveys were conducted between July and December 2015, the local dry season, sampling 151 plots
at 78 sampling sites (74 forest islands and 4 continuous forest sites) in the mainland (Bueno et al., 2020). At
each plot, a single acoustic recorder was deployed at 1.5 m height and set to record the soundscape for 1-
minute every 5-min for 5-9 consecutive days at a sampling rate of 44.1 kHz using the ARBIMON Touch
application. For the purposes of this case study, only the plots for which data on the richness of soniferous
species was available were retained (see section 6.3. for further details). Moreover, all plots located in riparian
habitats near streams were removed from the dataset. Additionally, the sound recordings for all plots were

visually inspected using long-duration false-colour spectrograms (LDFCSs) (see Towsey et al., 2016; Towsey et
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al., 2018), and plots with signs of microphone failure or persistent noise were removed. If multiple plots were
present at the same site, data were aggregated across plots, resulting in a final sample size of 35 sites. For more

detailed information on data collection through passive acoustic monitoring, see Bueno et al. (2020).

Table 83: Overview of the sites and their respective sub-plots included in the case study

Island name Plot name Island name Plot name
Abusado Abusado Jabuti_A
Ad Adeus_A Jabuti Jabuti_B
ous Adeus_B Jabuti_C
Aline Aline Jiquitaia Jiquitaia
Andre Andre Joaninha Joaninha
Arrepiado Arrepiado Martelo_B
Bacaba Bacaba_B Martelo Martelo_C
Beco_do_Catitu_A Mascote_A1
! Beco_do_Catitu_B Mascote_A2
Beco_do_Catitu Beco_do_Catitu D Mascote Mascote_B1
Beco_do_Catitu_E Mascote_B2
Cafundo | Cafundo ’ Moita_A
T ’ - Moita .
CF Grid CF_Grid_CampTrail_A Moita_B
- CF_Grid_NS3_1200 Palhal Palhal
CF L CF_Loreno_A Panema Panema
~-oreno CF_Loreno_B Pe_Torto Pe_Torto
CF_WABA_B Piquia Piquia
CF_WABA CF_WABA_C Pontal Pontal_B
Cipoal_A Pontal_C
Cipoal Cipoal_B Porto_Seguro_B
Cipoal_C Porto_Seguro Porto_Seguro_C
Coata Coata Porto_Seguro_D
Formiga Formiga Relogio Relogio_B
. Furo_de_Santa_Luzia_B Sapupara_A
Furo_de_Santa_Luzia Furo_de_Santa_Luzia_C Sapupara Sapupara_B
Fuzaca_B Torem Torem
Fuzaca Fuzaca_C Tristeza_A
Fuzaca_D Tristeza Tristeza_B
Garrafa Garrafa Tristeza_C
Gaviao_real_A Tucumari_A
Gaviao real Gaviao_real B Tucumari Tucumari_B
- Gaviao_real_C Tucumari_C
Gaviao_real_D

6.3. Compound richness of soniferous species

To assess the relationship between the soundscape diversity metrics and the species richness of sound-

producing organisms in the study area, we calculated the compound richness of three major vocalising groups in
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tropical rain forests: (i) anurans; (ii) birds; and (jii) primates. Below, we outlined how the species richness for

each of these groups was determined.
6.3.1. Anuran data

The anuran species richness was determined using passive acoustic monitoring data obtained at BHR. Per plot,
a subset of 62 1-minute recordings was selected for aural identification of anuran species, taking the first 1-
minute of recording every 10-min over 5 hours between 17:00h-22:01h during sampling days 2 and 4. In each
sound recording, anuran species were identified using both aural identification and visual inspection of
spectrograms by a trained expert (GSM) using the RFCx Arbimon Il Visualizer Tool (https://arbimon.rfcx.org/). All
species identifications were cross-validated by a second reviewer (ILK) to ensure accuracy, and species records

were discarded if they could not be readily identified or if spectrograms were inadequate.

6.3.2, Bird data
The detection history of species in the audio recordings was acquired through three steps. First, an expert (MC-
C) manually searched for species in recordings from two non-consecutive days in each plot and created a
preliminary list of species and a call template for each species detected. Second, in the RFCx-ARBIMON
platform, we used the template matching procedure to classify the audio recordings. In this step, we created two
audio playlists: a) all diurnal (05:00h - 18:00h) recordings and b) all nocturnal (18:00h - 05:00h) recordings. All
bird templates, except for Glaucidium hardyi were assigned to the nocturnal playlist. The classification of
recordings based on the pattern matching procedures searches through the audio data (all 1-minute recordings)
for acoustic signals and detects regions that have a high correlation with a template that has been selected by
the user. All regions of interest (ROls) with values above the selected correlation threshold (0.1) were presented
as potential detections for posterior validations (LeBien et al., 2020). We then used a filter to display only the
best matches per plot per day. The selection of a low threshold resulted in a high number of false positives,
though the number of false negatives was negligible. In the third step, one of us (MC-C) manually reviewed the
template matching results using a filter that displays only the best matches per plot and per day. In this step, we
annotated the results as either positive or negative, indicating the corresponding species presence or absence.
This ensured that the final data set used in the analyses only included expert verified detections and the

exclusion of all false positive detections.

137



6.3.3. Primate data

The primate data was compiled from Benchimol and Peres (2015). In this study, vertebrate surveys including
primates were conducted on 37 islands and 3 continuous forest sites. Primate surveys were conducted based on
diurnal line-transect censuses, although some species were also detected using a systematic camera-trapping
programme (Benchimol & Peres, 2021). For each of the sites, one to five line-transects of variable length were
cut based on the island size and shape. For the continuous forest sites, three parallel 4-km transects were
established with a 1-km separation. At each of the sites, line-transect surveys were conducted by expert
observers, walking the transects at a constant speed (~ 1 km/h) in the morning (06:15h - 10:30h) and afternoon
(14:00h - 17:30h) following a standard protocol (Peres & Cunha, 2011). For each sampling year of the study
(2011 and 2012), four line-transect surveys were conducted per site, each of which was separated by 30

sampling days to minimize the impact of time of day and seasonality.

In addition to the line-transect surveys, sign surveys for vertebrate activity were conducted on the return walks,
and species identifications were recorded. Moreover, to supplement these surveys, Reconyx HC 500 Hyperfire
camera traps were deployed at each site. For each sampling site, two to ten camera traps were deployed at 30-
40 cm height, separating individual camera traps at an approximate distance of 500 m depending on island size
and shape. For the continuous forest sites, 15 camera traps were deployed, installing five camera traps per
transect. All camera trap stations were active for 30 days in each sampling year, taking a sequence of five
photos for every detection event, and using 15-second intervals between consecutive detections. Camera
trapping efforts were always temporally separated from line-transect surveys to prevent disturbance of the local
fauna. All data from line-transect surveys, sign surveys and camera trapping were compiled into presence-

absence data per island for the species known to present in the study area.

6.3.4. Compound species richness

A subset of the species richness data was taken, including only the sites and plots outlined in section 6.3 (Table
S3). For sampling sites containing multiple plots, the site-wide species richness was calculated for each

taxonomic group. Finally, for each site, the richness values for the anurans, birds and primates were summed to
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obtain the compound richness of soniferous species. This metric of species richness was compared against the

soundscape diversity metrics to assess their behaviour along this ecological gradient (Table S4).

Table S4: Soundscape diversity and species richness data for 35 sites at the Balbina Hydroelectric Reservoir

Soundscape diversity data Species richness data
Site soundscape soundscape anuran bird primate compound
richness (%) evenness richness richness richness richness
Abusado 35.66 0.67 9 4 3 16
Adeus 61.04 0.69 7 15 2 24
Aline 4299 0.62 4 6 0 10
Andre 26.17 0.60 9 3 1 13
Arrepiado 33.37 0.64 5 10 1 16
Bacaba 48,78 0.68 4 10 4 18
Beco_do_Catitu 66.84 0.71 17 20 6 43
Cafundo 45.40 0.77 7 10 0 17
CF_Grid 61.72 0.74 12 21 7 40
CF_Loreno 69.05 0.73 10 21 7 38
CF_Waba 64.08 0.69 12 16 7 35
Cipoal 63.52 0.68 13 25 7 45
Coata 49.67 0.64 10 15 2 27
Formiga 39.02 0.67 7 3 0 10
Furo_de_Santa_Luzia 62.37 0.69 7 17 5 29
Fuzaca 56.76 0.72 16 18 7 41
Garrafa 21.01 0.63 6 6 1 13
Gaviao_real 5415 0.71 13 24 5 42
Jabuti 70.12 0.73 11 21 7 39
Jiquitaia 4379 0.61 1 4 3 8
Joaninha 36.04 0.65 4 3 0 7
Martelo 66.36 0.70 10 21 7 38
Mascote 69.31 0.73 13 28 7 48
Moita 54.73 0.67 7 17 4 28
Palhal 41.33 0.65 3 6 2 "
Panema 37.32 0.76 3 2 0 5
Pe_Torto 42,34 0.66 3 7 1 "
Piquia 48.87 0.66 7 9 1 17
Pontal 55.44 0.67 10 21 5 36
Porto_Seguro 64.42 0.7 21 27 7 55
Relogio 54.26 0.67 8 8 6 22
Sapupara 66.99 0.69 10 11 5 26
Torem 29.29 0.77 3 2 1 6
Tristeza 74.06 0.76 13 23 7 43
Tucumari 58.01 0.67 9 26 4 39
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6.4. Soundscape diversity data

To derive the soundscape diversity metrics, the set of recordings described in section 3.1 of the main text was
used (see Table S3). Per plot, we quantified the presence of sound in the acoustic trait space by computing the
CVR index for each 1-minute file using a 256-frame window length (see S.2. for more information on window
length choice) and 44,100 Hz sampling rate. This measure quantifies the fraction of cells in each noise-reduced
frequency bin that exceed a 3 dB amplitude value. Next, we concatenated the CVR files chronologically per plot.
Then, we determined a binarisation threshold for each plot using the ‘IsoData’ binarisation algorithm in the
‘autothresholdr’ R-package (v1.3.11; Landini et al. 2017; see S3 for more details). Using this site-specific
threshold, we binarised the CVR-values to obtain a detection (1) / non-detection (0) variable for each OSU (see
S.3. for a detailed breakdown of thresholding methods). After, we separated the binarised spectral index files into
24-hour samples (288 files using a 1 min/5 min sampling regime) of the soundscape. Furthermore, we subsetted
the frequency domain to include only the sounds below 11,025 Hz. Finally, an OSU-by-sample incidence matrix
for each plot was obtained. For sampling sites containing multiple plots, the obtained OSU-by-sample incidence
matrices were grouped across plots. We then computed the soundscape richness and evenness as described in

the main manuscript.
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Abstract

The rise in species richness with area is one of the few ironclad ecological
relationships. Yet, little is known about the spatial scaling of alternative dimensions
of diversity. Here, we provide empirical evidence for a relationship between the
richness of acoustic traits emanating from a landscape, or soundscape richness, and
island size, which we term the Soundscape-Area Relationship (SSAR). We show a
positive relationship between the gamma soundscape richness and island size. This
relationship breaks down at the smallest spatial scales, indicating a small-island
effect. Moreover, we demonstrate a positive spatial scaling of the plot-scale alpha
soundscape richness, but not the beta soundscape turnover, suggesting
disproportionate effects as an underlying mechanism. We conclude that the general
scaling of biodiversity can be extended into the realm of ecoacoustics, implying
soundscape metrics are sensitive to fundamental ecological patterns and useful in

disentangling their complex mechanistic drivers.
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1. Introduction

The Island biogeography theory (IBT; MacArthur and Wilson 1967) posits that the
species richness in insular systems is modulated by the interplay between island
size and isolation. These factors influence the extinction-colonisation dynamics on
islands, leading to two foundational observations: (i) smaller islands hold fewer
species than larger islands (species-area relationship or SAR); and (ii) less isolated
islands hold more species than more isolated islands (species-isolation relationship
or SIR; Giladi et al. 2014).

The spatial scaling of species richness with area (SAR) is one of the oldest, best-
documented, and most ubiquitous ecological patterns (Arrhenius 1921; Gleason
1922; Connor and McCoy 1979; Rosenzweig 1995; Lomolino 2000; Drakare et al.
2006; Matthews et al. 2016). Although SARs can take many different forms, here we
will focus on the Island Species-Area Relationship (ISAR or Type IV SAR), which
quantifies the increase in species richness with increasing island or habitat patch
size (Scheiner 2003). The relationship is typically positive, except for particularly
small islands, where stochastic processes overcome the effect of area on species
richness (the small island effect; Niering 1963; Lomolino 2000). Yet, there is
considerable ambiguity regarding the underlying mechanisms that shape, regulate,
and maintain the SAR across space despite its importance to conservation
biogeography (Scheiner et al. 2011; Chase et al. 2019; Gooriah 2020).

The null hypothesis is that ISARs result solely from sampling effects. Firstly, ISAR
patterns could be caused by sampling artefacts (Preston 1962; Schoereder et al.
2004), with larger islands requiring a larger sampling effort to properly describe
their species richness. Consequently, more individuals are sampled, which by
chance alone increases the number of species detected (Hill et al. 1994). Secondly,
passive sampling effects dictate that species richness in island systems is controlled
by ecological sampling processes, in which larger islands represent a larger sample
of the original species pool than small islands and, by probability, sample more
species (Chase et al. 2019). Alternatively, [ISARs may result from biological
differences linked to island size. According to the theory of disproportionate effects,
island size affects the biological processes regulating species richness (Schoereder
et al. 2004). Extinction rates are inversely proportional to population sizes, and the
number of individuals an island can sustain is proportional to island size, resulting

in higher extinction rates and reduced species richness on small islands. Moreover,
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disproportionate effects can emerge through reduced colonisation rates (e.g.,
through target effects), edge-effects, and reduced trophic levels (see Chase et al.
2019). Finally, the theory of heterogeneity effects posits that island size influences
the compositional heterogeneity of species because larger islands contain a wider
spectrum of unique habitats, each with a distinct set of species, thereby increasing

species richness (Williams 1964).

In contrast to SARs, evidence for the SIR is limited (but see Giladi et al. 2014). The
SIR can be attributed to the effects of lower immigration from source habitat
patches, leading to reduced rescue effects, higher extinction rates, and, ultimately,
lower species richness (Helmus et al. 2014). In patchy habitat systems, however,
immigrants travel predominantly from nearby habitat patches rather than a
mainland area (Fahrig 2013). Hence, patch isolation depends on the total area of
surrounding habitat and isolation can be defined as the landscape-scale habitat
amount. Under this whole-landscape context, SARs and SIRs can merely result from
the sample area effect: larger and less isolated patches are often surrounded by
larger local landscape-scale habitat amounts, which contain more individuals, and
by extension, more species (the habitat amount hypothesis or HAH; Fahrig 2013). In
summary, the importance of the patch-scale habitat amount and isolation (following
the IBT) versus the local landscape-scale habitat amount (following the HAH) will
depend on the degree to which patches behave as closed units to the inhabiting
community, which is determined by the hostility of the matrix and the dispersal
ability of the taxonomic group under investigation. However, elucidating which
ecological mechanisms operate at different scales has proven challenging.
Additionally, investigations into spatial biodiversity patterns in insular systems
have traditionally been restricted to taxonomic species richness, overlooking other

dimensions of biodiversity (Galiana et al. 2022; Gonzalez et al. 2020).

One alternative dimension of biodiversity can be derived from the field of
ecoacoustics, which makes use of the soundscape, or the combination of all ambient
sounds in the landscape, to make inferences about landscape-scale ecological
processes (Farina and Gage 2017). The premise is that changes in ecosystems and
their organisms that are linked to ecological processes or disturbances will be
reflected by the sounds emanating from the landscape (Stowell and Sueur 2020).
However, rather than deriving taxonomic information by identifying species’ calls,
ecoacoustic methods detect ecological signals through acoustic indices (Sueur et al.

2014). These mathematical equations extract information on the diversity of
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acoustic traits by quantifying the amplitude variation across the time-frequency
domain of sound files (Eldridge et al. 2018). If these metrics respond consistently
and predictably to underlying changes in the ecosystem, acoustic indices could be
used to lift the veil on landscape-scale processes (Bradfer-Lawrence et al. 2020).
Indeed, acoustic indices have been successfully applied to answer ecological
questions such as identifying habitat disturbances (e.g., Burivalova et al. 2018),
distinguishing habitat types (e.g., Bormpoudakis et al. 2013), and assessing
landscape configuration (e.g., Fuller et al. 2015). Moreover, the soundscape richness
metric described in Luypaert et al. (2022) was positively correlated with the species
richness of sound-producing organisms. Yet, the spatial scaling of these acoustic
indices and the mechanisms that govern them in space have received surprisingly
little attention (but see Tucker et al. 2014; Fuller et al. 2015; Miiller et al. 2020; Han
etal. 2022).

Here, we examine the spatial variation in soundscape richness using the world’s
largest man-made tropical forest archipelago. In doing so, we aim to assess the
relative importance of island size and isolation on soundscape richness, and

elucidate which mechanisms drive this relationship.

2. Methods

2.1. Data collection

2.1.1. A multi-scale sampling protocol to uncover spatial biodiversity patterns

Much of the contention relating to the ecological mechanisms driving biodiversity
patterns in insular systems is linked to methodological inconsistencies (Chase et al.
2019; Gooriah 2020). For instance, many studies have investigated ISARs using
uniform sampling protocols (an invariant sampling effort across the island size
gradient), characterising the relationship between the island-wide richness and
island size (Schoereder et al. 2004; Chase et al. 2019). Although this approach is
useful in capturing the shape of ISARs while dealing with confounding non-
biological sampling processes, it can tell us little about the potential ecological
mechanisms driving observed patterns. Equalising sampling efforts for varying
island (or habitat patch) sizes may obscure variation in habitat diversity, thereby
missing out on important beta-diversity effects (e.g., heterogeneity effects;

Schoereder et al. 2004). Moreover, by focusing on island-wide patterns in biological
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richness, local-scale (alpha) biodiversity patterns are overlooked (e.g.,

disproportionate effects).

To elucidate which ecological mechanisms underlie spatial patterns of biodiversity
in our study system, we employed a modified version of the generalised multi-scale
and multi-metric framework outlined in Chase et al. (2019). We used a standardised
spatial sampling design, scaling the number of plots per island with island size (Fig.
1C). By pooling sampling plots per island, we can derive the island-wide gamma
soundscape richness. This metric can be used to assess the relative importance of
island size versus isolation. We further examine the soundscape richness at sub-
island scales to shed light on the ecological mechanisms governing ISARs. To
account for sampling artefacts, we compare the unrarefied and rarefied gamma
soundscape richness. Moreover, to discern whether the soundscape-area
relationship is not just the result of passive sampling, we investigate the soundscape
richness at both local plot scales (alpha soundscape richness) and between-plot
turnover (beta soundscape turnover). If island size affects processes of biodiversity
regulation (disproportionate effects), we expect the local-scale alpha soundscape
richness to positively covary with island size. Conversely, if ISARs result from higher
habitat diversity on larger islands (heterogeneity effects), we expect soundscape

turnover between plots to positively covary with island size.

2.1.2. Acoustic sampling

Acoustic data were collected at the Balbina Hydroelectric Reservoir (BHR) in
Brazilian Amazonia (Fig. 1). The BHR is one of the largest hydroelectric reservoirs
on Earth and was formed when the Uatuma River, a tributary of the Amazon, was
dammed in 1987 (Fearnside 1989). This flooding event turned the hilltops of the
former primary forest into > 3,500 islands covering an area of approximately
300,000 ha and ranging in size from 0.2 to 4,878 ha (Benchimol and Peres 2015a).

Long-duration acoustic surveys were conducted at the BHR between July and
December 2015, sampling 74 forest islands (see Bueno et al. 2020). The number of
sampling plots per island ranged from 1 to 7 and increased with island size (see S1
for details). At each sampling plot, a passive acoustic sensor was deployed on a tree
trunk at 1.5 m above ground with the microphone pointing downward. Each
acoustic sensor consisted of an LG smartphone enclosed within a waterproof case

with an external connector linked to an omnidirectional microphone and was set to
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record 1 in every 5 min at a sampling rate of 44.1 kHz for 4-10 days using the
ARBIMON Touch application (ARBIMON, https://arbimon.rfcx.org/). Due to poor
recording quality, and to retain a proportional sampling scheme, several sites were
excluded from the study (see S1), finally retaining 69 sampling plots (1-4 plots per
island) on 49 islands (0.45 - 668.03 ha; Fig. S1; Table S1).
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Figure 1: A. Location of the Balbina Hydroelectric Reservoir (BHR; orange star) in
central Amazonia (light green), Brazil. B. A detailed overview of the BHR (blue)
showing over >3,500 hilltop islands (grey), surrounded by continuous forest (green).
For this study, 69 sites (orange) were sampled on 49 islands. C. An overview of the
spatial sampling design employed in this study. The green area represents an island,
with multiple acoustic sampling plots in yellow. This sub-island scale sampling design
allows to quantify not only the island-wide gamma soundscape richness, but also the

local-scale alpha soundscape richness and beta turnover components.

2.2. Calculating model variables

2.2.1. Response variable - a metric of soundscape richness

To quantify the diversity of acoustic traits emanating from the landscape, we
followed the analytical pipeline outlined in Luypaert et al. (2022) to calculate the

soundscape richness acoustic index. This metric is positively correlated with the

species richness of sound-producing BHR organisms (Luypaert et al. 2022). To
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capture ecological patterns without the need for species identification, the pipeline
quantifies the richness of Operational Sound Units (OSUs), a unit of measurement
that groups sound by their shared acoustic traits in the time-frequency domain of

the acoustic space in which species produce sound.

Briefly, we equalised the sampling effort across all sampling plots to 5 sampling
days (Supplementary Materials S2). Next, we calculated the acoustic cover (CVR)
spectral index for each 1-min sound file at every plot (i.e., recording station) using a
sampling rate of 44,100 Hz and a window length of 256 frames. For each plot, the
spectral CVR-index files were concatenated chronologically into a time-by-
frequency data frame of CVR-index values. We then determined the detection/non-
detection of OSUs per 24h sample of each soundscape by converting the raw CVR-
index values into a binary variable using the ‘IsoData’ binarisation algorithm. In
doing so, we obtained an OSU-by-sample incidence matrix per plot, capturing the
detection/non-detection of OSUs for each 24h soundscape sample in the 5-day
acoustic survey. This matrix forms the base of all subsequent soundscape richness

computations.

To quantify the island-wide gamma soundscape richness, we pooled the OSU-by-
sample incidence matrices across all sampling plots on each island. Next, we
calculated the unrarefied island-wide gamma soundscape richness by counting the
number of unique OSUs detected on each island. Moreover, we investigated the
spatial scaling of soundscape richness using the: (i) rarefied gamma soundscape

richness; (ii) alpha soundscape richness; and (iii) beta soundscape turnover.

2.2.2. Predictor variables

Island size corresponds to the total forest cover per island. We downloaded a
classified image from MapBiomas (30m resolution; MapBiomas Project- Collection 2
of the Annual Series of Land Use and Land Cover Maps of Brazil, accessed in 2015
through mapbiomas.org; Souza et al. 2020) and calculated the amount of ‘dense
forest’ per island (pixel value 3), as other pixel values contained either heavily

degraded or non-forest cover types (Bueno et al. 2020).

For the isolation metric, we followed MacDonald et al. (2018), using QGIS to
calculate island isolation as the proportion of water (1 - proportion of land area)

within a range of buffer sizes calculated from the island perimeter. To determine the
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optimal scale-of-effect for our isolation variable (see Jackson and Fahrig 2015), we
trialled 40 different buffer sizes (50-2000m at 50m intervals), choosing the spatial
scale at which the isolation metric attains the strongest relationship with
soundscape richness. The highest correlation between the soundscape richness and
our isolation metric was attained at a scale-of-effect of 650 m (see S3 for a detailed

overview).

2.3. Patch- vs landscape-scape effects on soundscape richness

Although debated (see Tjgrve 2003, 2012; Triantis et al. 2012), ISARs are most often
mathematically approximated by the power law function (Arrhenius 1921), defined
as S = cAz, where S is the number of species units, A is the habitat patch area, and c
and z represent the slope and intercept of the equation in log-log space. The power-
law model provides the best ISAR fits at intermediate spatial scales, such as in our
study system (He and Legendre 1996; Triantis et al. 2012; Matthews et al. 2016).
We compare the strength and slope of a potential soundscape-area relationship to
conventional ISAR studies for a range of taxonomic groups in the study area using a
power-law model framework. All power-law models were fitted using the ‘lin_pow’
function of the ‘sars’ R-package (v1.3.5 - Matthews et al. 2019) using a log;,

transformation.

In addition to island size, we examine the influence of island isolation (i.e., the
inverse of landscape-scale habitat amount). To assess the relative importance of
these two predictors, we first used partial regression plots to visually explore each
variable’s influence on the unrarefied soundscape richness while accounting for the
other variable. Next, we assessed whether there was an interaction between island
size and isolation using conditioning scatterplots. Finally, we fitted a series of linear
models and used an information theoretic approach for model selection (Burnham
and Anderson 2004):

(1) logl0(gamma soundscape richness) ~log10(island size) + isolation +

log10(island size)*isolation

(2) logl0(gamma soundscape richness) ~ log10(island size)

(3) log10(gamma soundscape richness) ~ log10(island size) + isolation
(4) logl10(gamma soundscape richness) ~ isolation

(5) logl0(gamma soundscape richness) ~ 1
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As our predictor variables were correlated with one another (see $4.2), we checked
for multicollinearity between the predictors by calculating the Variance Inflation
Factor (VIF) using the ‘vif function from the ‘car’ R-package (Fox and Weisberg
2019 - version 3.1-0). We observed a VIF of 1.44, which is within the acceptable
range to retain both predictor variables (Johnston et al. 2018). For each model, we
tested whether the following assumptions were met: (i) a normal distribution of
residuals; (ii) homoscedasticity of residuals; (iii) a zero-mean of residuals; and (iv)

independence of residual terms (Supplementary Material S4).
2.4. Decomposing the ecological mechanisms underlying ISARs

Due to stochastic effects, species-area relationships often break down at very small
scales, a phenomenon known as the small island effect. As such, we checked for the
presence of a small-island effect by comparing four ISAR models for the unrarefied
gamma soundscape richness using the ‘sar_threshold’ function from the ‘sars’ R-
package (v1.3.5 - Matthews et al. 2019): (i) a continuous one-threshold model; (ii) a
left-horizontal one-threshold model; (iii) a power-law model without the small-
island effect; and (iv) an intercept-only model. We performed model selection using
several metrics (small-sample correct Akaike Information Criterion (AICc), Bayesian
Information Criterion (BIC) and adjusted R?). If a small-island effect was detected,
we excluded all islands below the threshold value from subsequent analyses

investigating soundscape richness-area patterns (Supplementary Material S5).

To account for potential sampling artefacts due to an unequal sampling effort, we
calculated the rarefied gamma soundscape richness per island. Here, we employed
both temporal-effort-based and plot-based rarefaction to calculate the rarefied
gamma soundscape richness, rarefying the sampling effort of the pooled OSU-by-
sample incidence matrix to five sampling days and 1 plot per island, respectively
(Supplementary Material S2). We tested for the role of disproportionate effects by
assessing the relationship between plot-scale alpha soundscape richness and island
size. We sub-sampled the total dataset to obtain a uniform sampling regime
consisting of one plot per island, ensuring all plots had equal weight on the final
alpha soundscape richness-area relationship by repeating the sub-sampling process
until all possible combinations of 1-plot subsets across all islands were generated at
110,592 subsets. To assess whether heterogeneity effects were driving SSARs, we

assessed the relationship between the beta soundscape turnover and island size. We
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calculated the beta soundscape turnover per island using the multiplicative
framework provided by Hill numbers, whereby beta is calculated by dividing the
regional (unrarefied island-wide gamma) soundscape richness by the average local
(alpha) soundscape richness. The beta-turnover captures the degree of
heterogeneity in the OSU composition across plots and ranges from 1 to N, where N
is the number of plots per island. The beta-turnover can be seen as the effective
number of completely distinct soundscapes per island (Tuomisto 2010). As the beta-
turnover cannot be computed for islands containing a single sampling plot, 1-plot
islands were removed from the data (remaining islands = 13). Next, we subsampled
the total dataset to obtain a uniform sampling regime consisting of two plots per
island. As before, we repeated the sub-sampling process until all possible
combinations of two-plot subsets across all islands in the study were generated (#
subsets = 972). We calculated the beta soundscape turnover by dividing the gamma
soundscape richness (pooled richness across 2 plots) by the alpha soundscape

richness (mean richness across 2 plots).

The relationship between the soundscape richness (rarefied gamma, alpha and

beta) and island size was quantified by fitting power-law models.

3. Results

3.1. The effect of island size and isolation on soundscape richness

When controlling for the effect of isolation, island size still explains a significant
proportion of the variation (R2 = 0.44; Fig. 2-A1), showing a strong positive
relationship between the island size (log10) and unrarefied gamma soundscape
richness (log10 x). Conversely, when controlling for the effect of island size,
isolation does not explain any more meaningful additional variation (R2 = 0.04; Fig.
2-A2). Conditioning scatterplots indicated that there was an interaction between
island size and isolation on the unrarefied gamma soundscape richness, with
isolation acting as a modulator variable (Fig. 2B). In increasingly isolated islands,
the effect of island size on the gamma soundscape richness becomes shallower and
eventually negative on the most isolated islands. Model selection confirmed the
negative area x isolation interaction (interaction term: -0.73). The most
parsimonious model (model 1) describes the change in unrarefied gamma
soundscape richness as a function of island size, isolation, and the area x isolation
interaction (AICc =-79.1; R2adj = 0.64; Table 1). The model conforms to most
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underlying assumptions, but the residuals show a slight deviation from normality
(Table S2; Fig. S7).

Table 1: Output of five models compared using an information-theoretic approach.
Parameter significance codes: **** =p < 0.001; **=p < 0.01; *=p < 0.05; *=p < 0.1;
““=p>0.01.

Island Isolation *

Model Integer Isolation size island size  df RZagj AlCc delta
(log10) (log10)

1 0.56™" 0.71 0.85™ -0.73" 5 0.64 -79.1 0.00

2 1.28™ 0.14™ 3 045 -61.6 17.55

3 112" 0.18 0.15™ 4 046 -61.0 18.12

4 1.64" -0.28" 3  0.05 -34.6 44.50

5 1.427 2 -33.4 45.70
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Figure 2: A. Partial regression plots showing the relationship between island size (A1)

and isolation (A2), and the unrarefied soundscape richness, considering the variation

accounted for by the other variable; B. Scatterplots showing the relationships between

the unrarefied gamma soundscape richness and island size (log1o x) conditioned on

island isolation, which is divided into four equal-sized classes with 50% overlap

between neighbouring classes.
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3.2. Ecological mechanisms underlying ISARs

We find evidence for a small island effect, as indicated by the comparable support
for continuous one-threshold and left-horizontal one-threshold models with
threshold values at 9.40 and 12.68 ha, respectively (Supplementary Material S5, Fig.
S9). As we were interested in the island size effect on soundscape richness and its
underlying mechanisms, we excluded all islands smaller than the lowest of these
threshold values (9.40 ha) from all subsequent analyses (44 plots retained on 24
islands). In doing so, the power-law model showed a substantially improved
positive relationship between island size and the gamma soundscape richness in
log-log space (Fig. 3A; R%adj = 0.71; z-value = 0.28; log10 ¢ = 1.03) compared to the
full dataset (Fig. 3A; R%adj = 0.45; z-value = 0.14; log10c = 1.28). Although slightly
weaker, this relationship persisted when accounting for unequal sampling effort
using either temporal-effort-based rarefaction (Fig. 3-B1; R?adj = 0.54; z-value =
0.17;10g10 c = 1.15) or plot-based rarefaction (Fig. 3-B2; R%adj = 0.40; z-value =
0.13;1og10 c = 1.20). At the plot-scale, the power-law model showed a positive log-
log relationship between island size and the alpha soundscape richness (Fig. 44; ),
but not the beta soundscape turnover (Fig. 4B; R?adj = 0.00; z-value = 0.00; log10c =
0.14).
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Figure 3: A. Relationship between (log1o) island size and the (logio) unrarefied
gamma soundscape richness for all islands (n = 49; light grey) and for islands larger
than the 9.4-ha small-island threshold (n = 24; yellow). B1. Relationship between
(log1o) island size and the unrarefied (brown) and rarefied (yellow) (log10) gamma
soundscape richness, using temporal effort-based rarefaction (5 sampling days/island)
for the islands larger than 9.4 ha. B2. Relationship between (logio) island size and the
(log1o) unrarefied (brown) and rarefied (yellow) gamma soundscape richness using
plot-based rarefaction (1 plot/island) for the islands larger than 9.4 ha. For islands
with a single plot, the unrarefied and rarefied values are equal, and thus only the

rarefied values (yellow) are shown.
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Figure 4: Scatterplots showing the log-log relationship between island size and (A)
plot-scale alpha soundscape richness, and (B) beta soundscape turnover. For both
plots, solid black lines represent a linear regression fitted to all the data combined
(all subset combinations) and coloured lines represent linear regressions fitted to
each individual subset (red: 1-plot-per-island subsets; blue: 2-plot-per-island
subsets). Due to the large number of subsets for the alpha soundscape richness, only

~10% of subsets were selected for plotting.
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Table 2: Slope- (z) and R?-values for log-log linear power law models fitted to different
dimensions of biological richness, including the soundscape richness (this study), and
the species richness derived using direct sampling of vocally-active terrestrial
vertebrates (other studies) at the Balbina archipelagic landscape. Since semi-log
linear models were reported in the anuran literature, for comparability, the raw data
presented in the paper’s supplementary material was used to construct log-log linear
power models retroactively. For forest birds, no rarefaction was performed since the

sampling design had a uniform sampling effort across all islands in the study.

Size
) R2- Model #
Richness type Effort z-value A range Reference
value type islands
(ha)
Unrarefied 0.28 0.71
Soundscape Log-log 24 9.42 - This stud
is stu
richness ) 017/ 0.54/ linear 668 v
Rarefied
0.13 0.40
. Log-log 0.83 - Palmeirim et al.
Small mammals Rarefied 0.29 0.69 25
linear 1,466 (2018)
. Log-log 0.45 -
Frogs Rarefied 0.18 0.40 . 74 Bueno et al. (2020)
linear 1,699
Large . Log-log 0.83 - Benchimol & Peres
Unrarefied 0.29 0.89 37
vertebrates linear 1,690 (2015)
. . Log-log 0.63 -
Forest birds Uniform 0.41 0.74 . 33 Bueno et al. (2019)
linear 1,699
4. Discussion

In insular systems, local species richness is governed by island size and isolation, a
well-known tenet of island biogeography theory. Here, we extended this ecological
paradigm to the realm of ecoacoustics, testing the relative importance of island size
and island isolation as predictors of the spectro-temporal richness of acoustic traits
emanating from the landscape, or soundscape richness. Moreover, we decomposed
the soundscape richness at sub-island scales and assessed its relationship with
island size to gain insights into the ecological mechanisms that drive observed

spatial patterns of acoustic trait diversity.
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Overall, our best-fit model provides support for a strong positive effect of island size
on the unrarefied gamma soundscape richness. Moreover, a strong negative
interaction term in the model vindicates the strength of the soundscape richness x
island size relationship, which decreases in increasingly isolated islands (Fig. 2B;
Table 1). This negative interaction is at odds with expectations from the theory of
island biogeography (MacArthur and Wilson 1967; Kadmon and Allouche 2007) and
a study on Euglossine bees at BHR (Storck-Tonon and Peres 2017), where
decreasing immigration rates associated with increasing isolation steepened the
ISAR curve. Yet, our island size and isolation variables were negatively correlated,
indicating that highly connected small islands and highly isolated large islands were
largely missing from the dataset. As we demonstrate a small-island effect, it is
plausible that the flattening of the ISAR slope for highly isolated (and small) islands
results from stochastic effects obscuring ISAR patterns on small islands, or vice

versa.

When we disregard any potential interaction effect, we find that a model containing
only island size as a predictor best described the variation in the unrarefied gamma
soundscape richness (Table 1; model 2; R2adj = 0.44; z-value = 0.13; log10c = 1.28).
As we measured the island isolation as the inverse of the landscape-scale habitat
amount, the absence of an isolation effect suggests that the sampling effect
underlying the habitat amount hypothesis (Fahrig 2013) is not the driving
mechanism behind the soundscape richness gradient. Indeed, the importance of
island- versus landscape-scale factors in governing species richness regulation in
insular systems is dependent on the degree of ‘islandness’ of the habitat patches,
which in turn depends on the matrix permeability and species dispersal abilities
(Bueno and Peres 2019). The lack of a landscape-scale habitat amount effect (HAH)
is expected at the BHR, as the habitat patches are separated by an inhospitable
open-water matrix that is largely prohibitive to between-patch dispersal for many
taxonomic groups (Bueno et al. 2020). In fact, the absence of isolation effects has
previously been described for birds (Aurélio-Silva et al. 2016), large vertebrates
(Benchimol and Peres 2015b), lizards (Palmeirim et al. 2017) and harvestmen
(Tourinho et al. 2020) at the BHR.

ISAR patterns have been repeatedly demonstrated for species-richness and are
consistent with several theoretical predictions (MacArthur and Wilson 1967;
Connor and McCoy 1979). However, to my knowledge, this represents the first

empirical evidence of a positive relationship between whole-island (gamma)
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soundscape richness and island size, referred to here as the SoundScape-Area
Relationship (SSAR). This term had been previously coined by de Camargo et al.
(2019), but these authors derived traditional taxonomic richness data from sound
files, thereby capturing a conventional species-area relationship using acoustic
methods, which does not fully justify the use of a novel term. Yet, positive ISARs can
emerge through a range of mechanisms, including sampling effects (sampling
artefacts and passive sampling), disproportionate effects, and heterogeneity effects.
We disentangled which of these mechanisms generated the SSAR by dissecting the

soundscape richness at various spatial scales.

Prior to assessing the mechanisms underlying observed SSARs, we examined the
small-island threshold, below which island size exerts little or no effect on
soundscape richness. A piecewise regression revealed the presence of a small-island
effect (threshold = 9.4 ha). Small islands at the BHR are affected by severe edge
effects, including windfalls and episodic wildfires, which markedly reduce structural
forest habitat complexity and resource availability (Benchimol and Peres 2015a).
The stochasticity associated with these edge effects can obscure the effect of island
size on soundscape richness, leading to the breakdown of the ISARs at small spatial
scales. Indeed, operational small-island effects have previously been suggested in
our study area for several sound-producing vertebrate taxa. For instance, for
anurans, ISARs had weak inferential power below 100 ha (Bueno et al. 2020).
Similarly, both large vertebrates and understory birds had much shallower or non-
existent ISARs below 10 ha (Benchimol and Peres 2015b; Bueno and Peres 2019).
Once islands smaller than 9.40 ha were excluded, the relationship between the
unrarefied gamma soundscape richness and island size displayed a much-improved
fit (R%adj = 0.71; z-value = 0.28; log10 ¢ = 1.03).

We found a positive relationship between island size and soundscape richness for
both the temporal (Fig. 3-B1; R%adj = 0.54; z-value = 0.17; log10 c = 1.15) and plot-
based rarefaction (Fig. 3-B2; R%adj = 0.40; z-value = 0.13; log10 c = 1.20), suggesting
the relationship is driven by underlying mechanisms beyond sampling artefacts. As
expected, the slope and R?-values of the SSARs are slightly weaker than most studies
based on species richness of known sound-producing taxa reported in the BHR
literature (Table 2). This is expected, as acoustic indices can be sensitive to non-
target sounds, including abiotic sounds such as rain, wind, or vegetation turbulence
(Gasc et al. 2015), thereby introducing undesirable variability into the model.

Moreover, the strength of the effect and explanatory power of SAR-models are
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sensitive to the range of island sizes under consideration, with both z- and R?-values
increasing as larger islands are included (Bueno et al. 2020). The largest island
included in this study (668 ha) was smaller than those in other SAR-studies at the
BHR (approx. 1,500 ha), thus potentially depressing the observed slope and R?-

values of the log-log linear model.

Alpha soundscape richness showed a positive relationship with island size (Fig. 4A;
R?adj = 0.39; z-value = 0.13; log10 ¢ = 1.20), indicating that SSARs were at least
partly generated by disproportionate (Schoereder et al. 2004) or heterogeneity
effects (e.g., through spillover effects - see Giladi et al. 2014). The fact that island size
was unrelated to beta soundscape turnover (Fig. 4B; R?adj = <0.01; z-value = <0.01;
log10 c = 0.14) rules out heterogeneity effects, validating disproportionate effects as
the main biological mechanism underlying the SSAR. This suggests that island size
affects processes that regulate soundscape richness at a local scale. A meta-analysis
of plant ISARs found that ~40% of all studies demonstrated a positive relationship
between the alpha species richness and island size (Giladi et al. 2014). Moreover,
Chase et al. (2019) found that disproportionate effects were an important SAR-
generating mechanism for orthopterans and lizards, but not for shrubs. Here, the
authors posited that the importance of disproportionate effects versus sampling
effects is dictated by the type of matrix and taxa under investigation. For
assemblages isolated by hostile matrices, or taxa exhibiting severe dispersal
limitation, local processes likely outweigh regional sampling effects, leading to
disproportionate effects. Indeed, the vast open-water matrix at BHR typically deters
gap-crossing movements, further explaining the importance of disproportionate

effects in generating the observed SSARs.

In addition to shedding light on the ecological mechanisms that modulate
soundscape richness along a landscape gradient, we can elucidate which
mechanisms generate acoustic trait diversity. The strong positive relationship
between island size and plot-scale alpha soundscape richness, and the absence of a
relationship with beta soundscape turnover, suggest that the landscape-scale
richness of acoustic traits is unlikely governed by environmental filtering for
optimal sound propagation (acoustic adaptation hypothesis). Otherwise, we would
expect the composition of acoustic traits to be uniquely adapted to each habitat and
showcase minimal overlap (Mullet et al. 2017). Instead, soundscape richness is
much more likely a function of the species richness of sound-producing organisms,

as posited by the acoustic niche hypothesis (Krause 1993). Indeed, a strong positive
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relationship between soundscape richness and taxonomic richness of vocally-active
organisms (frogs, birds, and primates) has previously been shown at the BHR
(Luypaert et al. 2022).

The acoustic niche hypothesis states that, over evolutionary timescales, undisturbed
ecosystems acquire an equilibrium between sounds in the landscape, resulting in
soundscapes with high spectro-temporal complexity and signal diversity, and
minimal overlap (Eldridge et al. 2016; Krause 1993; Pijanowski et al. 2011a;
Pijanowski et al. 2011b). In fragmented landscapes such as the one in this study, this
equilibrium is disturbed, and locally-adapted species are lost from the ecosystem as
land-bridge islands become smaller. Previous work at the BHR has shown that,
along the island size gradient, forest habitat specialists tend to be lost or replaced
with habitat generalists, leading to functional impoverishment (Palmeirim et al.
2017). In the context of the acoustic niche hypothesis, it is plausible that acoustically
optimised species are lost from their ecosystem and replaced with generalists that
are poorly adapted to the specific acoustic environment they inhabit, leading to
overlap in acoustic signals, readily detectable gaps in the soundscape, and

ultimately, a lower soundscape richness on more defaunated forest islands.

Although rarely assessed, previous work in Amazonian fragmented landscapes
shows that, for large-bodied forest vertebrates, the abundance of nearly all species
decreased with either habitat patch (Michalski and Peres 2007) or island size
(Benchimol and Peres 2021). Moreover, island size also affects the operational
group size of several vocal species, such as primates and trumpeters, which exhibit
smaller groups on small islands (Benchimol and Peres 2021). It is likely that these
abundance-area relationships also contribute to the observed soundscape-area
relationship. For social species, calling rates for both populations (Payne et al. 2003)
and individuals (Radford and Ridley 2008; Fernandez et al. 2017) are positively
correlated with group size. Moreover, group-living animals exhibiting more complex
socioecology produce more complex vocal repertoires, as individuals have to
navigate more vocal interactions within and between social groups (Teixeira et al.
2019). The simplified acoustic environment resulting from severe defaunation on
smaller islands most likely leads to less elaborate vocal repertoires with lower
spectro-temporal complexity and signal diversity. Moreover, for vocalisations
associated with competition for resources, a lower abundance of conspecifics on
smaller islands may also lead to a reduction in calling rates due to competitive
release (Radford and Ridley 2008).
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5. Conclusion

This study adds to the growing body of literature on ecoacoustics. We provide
evidence for a positive relationship between the richness of acoustic features in a
landscape, or the soundscape richness, and island size - which we term the
SoundScape Area Relationship (SSAR). We demonstrate that the unrarefied and
rarefied gamma soundscape richness, and plot-scale alpha soundscape richness,
scale positively with island size, while beta soundscape turnover does not. This
suggests that disproportionate effects, but not heterogeneity effects, play an
important role in the spatial scaling of soundscape richness at the Balbina
Hydroelectric Reservoir. Moreover, we show that this relationship breaks down at
the smallest spatial scales, a phenomenon known as the small-island effect. The
observed small island threshold corresponds with those previously demonstrated in
the study area, confirming that the soundscape metrics we adopted can effectively
capture true ecological patterns in the complex acoustic environment characteristic

of tropical rainforests.

These findings have broader implications for understanding the effects of habitat
fragmentation and insularisation on biodiversity. Our study demonstrates that the
consequences of anthropogenic habitat destruction and fragmentation extend
beyond species loss to a general reduction in the complexity of ecological
communities, including the impoverishment of natural soundscapes, with potential
consequences for the functioning of ecosystems. The systematic scaling of
soundscape richness with area suggests that acoustic communities experience a
predictable simplification with habitat destruction. By measuring soundscape
richness at a range of spatial scales, we can unravel complex ecological patterns and
their driving factors, demonstrating the value of soundscape analysis as a non-

invasive and efficient method for assessing spatial biodiversity patterns.
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Supplementary material 1: Data collection
1.1. Collection of acoustic data
The study system
Hydroelectric reservoirs represent an excellent study system to assess the spatial
scaling of biodiversity. On the one hand, they constitute a rapidly emerging threat to
Neotropical rainforest ecosystems (Finer and Jenkins 2012; Emer et al. 2013;
Fearnside 2006). On the other hand, hydroelectric reservoirs are considered a
perfect experimental system to study the effects of island area while controlling for
confounding effects. For instance, they allow us to capitalise on the fact that all
patches were formed simultaneously due to a single disturbance event. Moreover,
they have a uniform and largely untraversable matrix, a spatial scale comparable to
terrestrial patches and were formed recently enough so that evolution and species

adaptation have yet to take effect.

Our study was conducted at the Balbina Hydroelectric Reservoir (BHR) in Brazilian
Amazonia (1°40’S, 59°40'W; Fig. 1), one of the largest hydroelectric reservoirs on
Earth. The reservoir was formed when a tributary of the Amazon, the Uatuma River,
was dammed in 1987, turning the former hilltops of primary continuous forest into
> 3,500 islands spanning an area of approximately 300,000 ha (Fearnside 2006).
The artificial tropical rainforest archipelago now contains islands spanning a wide
range of sizes, ranging from 0.2 to 4,878 ha (Benchimol and Peres 2015). The area’s
vegetation is characterised by a submontane dense ombrophilous (terra firme)
forest. Moreover, the forest structure of larger islands resembles a continuous
forest, with large-seeded and canopy tree species dominating assemblies.

Conversely, smaller islands are dominated by pioneer species due to edge effects
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(Benchimol and Peres 2015). Finally, virtually all islands lack perennial streams due

to the submergence of lowland areas.

Data collection: see Bueno and Peres (2019) for a detailed overview of data collection

Acoustic surveys were conducted between July and December 2015, recording long-
duration acoustic data at 151 plots on 74 islands and 4 continuous forest sites. As
mentioned in the main text, the number of plots per area was proportional to the
habitat area associated with each plot and varied between 4-10 for continuous
forest sites and 1-7 for islands. At each plot, a passive acoustic sensor (an LG
smartphone enclosed in a waterproof case linked to an external omnidirectional
microphone) was attached to a tree trunk at 1.5 m height and set to record the
soundscape for 1 minute every 5 minutes for 4-10 days at a sampling rate of 44,100

Hz using the ARBIMON Touch application (ARBIMON, https://arbimon.rfcx.org/).

Site selection

Several islands and sampling plots were removed from this study: (i) mainland
sites; (ii) riparian habitats; (iii) plots with microphone failure; and (iv) plots with
overly noisy recordings. Due to the removal of these plots from the study data, some
islands deviated from the proportional sampling regime. We rectified this by
retroactively removing islands that deviated from the proportional sampling regime
(r=0.87; R2=0.75 p < 0.001; Fig. S1). Ultimately, we retained 69 plots on 49 islands

for further analysis (Table S1).

179



4 o
r=0.87,R*=0.75,p<22e16
”’
o)
c 3 o
(] ”’
N rd
0 -,
[ -
Q P
o s’
o S
o 2 o oo oo
= e
N 7~
(@] -,
P4
P P
0 s
g '] o 000 o ,oe'ocncmnmoo oo
- P
rd
rd
rd
rd
P
0
0 1 2

Island size (ha) - log10 transformed

Figure $1: A scatterplot with regression line showing the proportional relationship
between the island size (log10 transformed) and the number of acoustic sampling
plots per island (r = 0.87; R2 = 0.75; p < 0.001 for the final set of islands used in the
study.
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Supplementary material 2: Soundscape richness
To quantify the richness of acoustic traits emanating from the landscape for each
island in the study, we employed the analytical pipeline outlined in Luypaert et al.
(2022) to calculate the soundscape richness acoustic index. As soundscape diversity
metrics aim to capture ecological patterns without the need to isolate and identify
species’ vocalisations from sound files, they generally lack a unified unit of diversity
measurement (e.g., species). To overcome this, the pipeline groups sounds by their
shared spectro-temporal properties in the 24h trait space in which species produce
sound, better known as ‘Operational Sounds Units’ or OSUs. Using an incidence-
approach, the relative abundance of these OSUs is quantified throughout the
recording period and soundscape diversity metrics are calculated using the

analytical framework of Hill numbers.

To assess potential patterns of soundscape richness in our insular system and
elucidate which underlying mechanisms might drive these, we quantified the
soundscape richness using an adapted version of the multi-scale and multi-metric
framework outlined in Chase et al. (2019). We analysed the spatial biodiversity
scaling using four soundscape metrics at various spatial scales: (i) the unrarefied
island-wide gamma soundscape richness; (ii) the rarefied island-wide gamma
soundscape richness; (iii) the local plot-scale alpha soundscape richness; and (iv) a

beta soundscape turnover metric between plots per island.
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2.1. Gamma soundscape richness

Unrarefied gamma soundscape richness

To assess the relative importance of island size versus island isolation (i.e., the
proportion of water surrounding the island), and uncover the shape of the island
soundscape-area relationship (SSAR), firstly, we quantified the unrarefied island-
wide gamma soundscape richness. To do so, we pooled the OSU-by-sample
incidence matrices across all plots per island. Per example, for an island consisting
of 4 sampling plots with 5 sampling days each, pooling the OSU-by-sample incidence
matrices across all plots (each matrix consisting of 5 columns of OSU detection (1) /
non-detection (0) data for that sample) would result in a pooled matrix consisting of
20 columns (soundscape samples) containing OSU incidence data. Using the pooled
0SU-by-sample incidence matrix per island, we quantified the unrarefied gamma
soundscape richness by counting how many unique OSUs were detected across all

soundscape samples.

Rarefied gamma soundscape richness

As we employed a proportional sampling scheme, for which larger islands were
sampled more intensely, we might expect a positive relationship between the
unrarefied gamma soundscape richness and our predictor variables because of
sampling effects (sampling artefacts). To account for this unequal sampling effort
among islands, we adopted a rarefaction procedure to calculate the rarefied gamma
soundscape richness per island. The framework outlined by Chase et al. (2019)

employs an individual-based rarefaction framework to equalise the sampling effort
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between islands. However, due to the nature of the soundscape richness metric used
here, for which we renounced the isolation and identification of individual
vocalisations from sound files, this type of individual-based abundance data is not
available. Instead, the soundscape richness metric was calculated using sampling-
unit-based incidence data. As such, to equalise the sampling effort among islands,

we employed a sample-based rarefaction procedure.

For our workflow, what exactly constitutes a sample of the soundscape in the OSU-
by-sample incidence matrix is dependent on the scale at which we regard the
soundscape. At a plot scale, each 24h period in the acoustic survey represents a
sample of the soundscape for which we determine the detection (1) / non-detection
(0) of OSUs. As such, when performing sample-based rarefaction, the temporal
sampling effort (number of 24h sampling periods in the acoustic survey) is

equalised.

However, when regarding the soundscape richness on an island scale, we have
multiple sampling plots per island, each with its own OSU-by-sample incidence
matrix. When rarefying the sampling effort at this scale, what constitutes a sample
of the soundscape can be viewed in one of two ways. If we do not take the spatial
heterogeneity between plots into account and assume that OSUs are distributed
randomly across the island, we can pool the OSU-by-sample incidence matrices
across all plots on the island into one island-scale OSU-by-sample incidence matrix
and equalise the sampling effort between islands using the number of 24h
soundscape samples. However, if habitat heterogeneity influences the presence and

distribution of OSUs across the island, we expect that an increase in the number of
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plots per island will inflate the number of detected OSUs. In this case, rather than
treating each 24h sampling period in the acoustic survey as a soundscape sample,
we should treat each plot as a sample of the soundscape and rarefy the sampling
effort using the number of plots per island. In this study, to account for the potential
confounding influence of sampling artefacts on the soundscape-area relationship,
we rarefied the island-wide gamma soundscape richness using both the temporal-

and plot-based rarefaction procedures.

For the temporal rarefaction, we pooled the OSU-by-sample incidence matrices
across all plots per island and rarefied the sampling effort between islands to 5
sampling days. For the plot-based rarefaction, we converted each plot’s OSU-by-
sample incidence matrix to a vector containing the detection (1) / non-detection (0)
of OSUs at that plot across the whole acoustic survey. Then, we constructed a novel
island-scale OSU-by-sample incidence matrix with plots as samples. We performed
plot-based rarefaction to one plot per island. The results of the relationship between
island size and the rarefied soundscape richness are presented in the main text

(section 3.2).
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Supplementary Material 3: Calculating the isolation variable

To examine the degree to which landscape-scale habitat amount (or island isolation)
was informative, we follow the approach outlined in MacDonald et al. (2018).
Accordingly, isolation was quantified for all islands in the study by calculating the
proportion of water (1 - the proportion of land area) within a range of buffer sizes
calculated from the island edge. To determine the optimal scale-of-effect for our
isolation variable (Jackson and Fahrig 2015), we considered 40 different buffer

sizes, ranging from 50 to 2000 m at 50-m intervals.

The computation of the isolation metric was performed using a combination of the
open-source QGIS software (QGIS Association 2022 - version 3.2.2) and the R

environment (R Core Team 2022 - version 4.1.2).

3.1. Deriving the total land area shapefiles for islands in the study

First, we downloaded a land cover map for Brazil in 2015 (the time at which the
surveys were conducted) using the ‘MapBiomas’ online download tool (collection 2
https://storage.googleapis.com/mapbiomas-public/brasil/collection-
6/lclu/coverage/brasil_coverage_2015.tif). Next, the MapBiomas GeoTIFF raster file
was uploaded into QGIS and clipped to contain the study landscape (BHR). The
‘identify features’ tool was used to sample the raster values corresponding to the
water matrix within the Hydroelectric Reservoir (value = 33). We then used the
‘raster calculator’ to binarise the raster values, setting the water matrix values to 0,
and all surrounding land area to 1. The binary matrix was then converted to a set of

polygon shapefiles using the ‘polygonize’ function. To retain only the land area as
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polygons and remove the water matrix from the shapefile, the attribute table of the
polygonised binary raster data was edited, removing all shapefiles containing zero
values. This shapefile was merged with the previously generated ‘island forest area’
shapefile to get the final islands shapefile for the study area. To do so, we used the
‘merge’ and ‘dissolve’ functions and patched any holes within polygons using the
‘delete holes’ function. A visual inspection of the island shapefiles with an ESRI

satellite base map revealed an excellent approximation of island shapes at the BHR.

3.2. Generating the buffer rings around the islands in the study

We further isolated individual islands from the final shapefiles of all islands using
the ‘multiparts to singleparts’ function and selected the islands in the study area
based on the coordinates of the sampling plots using the ‘select by location’ function.
For all islands included in the study area, we generated 40 buffers around each focal
island using a range of buffer sizes calculated from the island edge (from 50m to
2000m at 50m intervals). Since we want the buffers to exclude the original island
from the buffer area, we used the ‘multi-ring buffer’ QGIS plugin function. For each
buffer size, we calculated the total area covered by the buffer using the attribute
table field calculator. Next, to calculate the area covered by land (island or
mainland) within each buffer area, we used the ‘clip’ function, clipping the buffer
shapefiles with the shapefile of all islands. Then, we calculated the total land area
within each buffer using the attribute table field calculator. The attribute tables
were exported from QGIS and imported into R for further analysis. For each island
and buffer size, the proportion of land within the buffer area was calculated by

dividing the land area by the total area of the buffer. Finally, the proportion of water
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within the buffer area was calculated (proportion of water = 1 - the proportion of
land). In doing so, we obtained a metric of isolation (proportion of water within the
surrounding buffer) which can range from 0 to 1 for 40 different buffer sizes around
each of the islands in this study, where lower values indicate less isolated islands

and higher values indicate more isolated islands.

3.3. Determining the scale-of-effect

To determine the spatial scale at which the isolation metric attains the strongest
relationship with soundscape richness, we calculated the correlation between the
unrarefied island-wide gamma soundscape richness and the proportion of water for

each of the 40 buffer sizes under investigation.
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Figure S2: A visual representation of the spatial scale at which the landscape-
scale isolation metric derived in this study (proportion of water within the buffer
area of each island) attains the highest correlation value with the soundscape
richness metric (unrarefied gamma soundscape richness); this is better known as
the ‘scale-of-effect’ (Jackson and Fahrig 2015). The blue shading represents buffer
distances for which the correlation between soundscape richness and the isolation
metric was not significant (p > 0.05), whereas orange shading represents
significant correlations. The highest correlation value was reached at a buffer
distance of 650 m. The inset plot displays the correlation between the soundscape
richness and our isolation metric at the scale-of-effect (650 m).

The highest correlation between soundscape richness and our isolation metric was

attained at a scale-of-effect of 650 m (Fig. S2). At this spatial scale, we observed a
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significant negative correlation between the degree of island isolation and

soundscape richness (r = -0.32; p < 0.05).
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Supplementary Material 4: Modelling island size versus isolation

The highest correlation between soundscape richness and our isolation metric was
attained at a scale-of-effect of 650 m (Fig. S2). At this spatial scale, we observed a
significant negative correlation between the degree of island isolation and

soundscape richness (r = -0.32; p < 0.05).

4.1. Checking variable distributions

Before modelling the data, we assessed the distribution of the three variables under
investigation (unrarefied gamma soundscape richness, island size, and island
isolation) using raincloud plots and Quantile-Quantile plots (Fig. S3, S4 and S5). We
observed a right-skewed distribution for the gamma soundscape richness and island
area (Fig. S3 and S4). To account for this, these variables were log-transformed

(log10 x).
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Figure $3: A visual representation of the distribution of unrarefied gamma
soundscape richness using (A) density plots and (B) quantile-quantile plots for both
untransformed (1; orange) and logio-transformed (2; blue) data.
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Figure S4: A visual representation of the distribution of the island size variable using
(4) density plots and (B) quantile-quantile plots for both untransformed (1; orange)
and logio-transformed (2; blue) data.
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plots.
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4.2. Exploring the relationship between predictor variables

In fragmented landscapes, there is often a correlation between the island size and

isolation, with smaller islands also being more isolated, or larger islands more

connected. As this correlation could have consequences for subsequent modelling

procedures, first, we explored the relationship between the size and isolation for the

islands contained in the study (Fig. S6).
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Figure S6: A scatterplot displaying the relationship between the island area (ha -
logio scale) and island isolation (proportion of water within 650 m buffer around the

island edge).

196



Indeed, as anticipated, our two predictor variables have a strong and negative
correlation, a typical observation in fragmented landscapes. Our study system is
missing highly connected small islands and highly isolated large islands. We will

keep this in the back of our minds as we continue our analysis.

4.3. Exploring the relationship between predictor and response variables

using partial regression plots

Before fitting our linear regression models, we visually explored the relationship
between the unrarefied gamma soundscape richness, and the island size and
isolation. However, when using regressions that involve multiple potential predictor
variables, the use of bivariate plots to show the relationship between X~Y may be
misleading, as the regression coefficients may change in magnitude and sign when
more than one predictor influences the response variable (Moya-Larafio and
Corcobado 2008). Instead, we made use of partial regression plots (also known as
added variable plots or adjusted variable plots), which allowed us to plot the effects
of area and isolation separately while accounting for the variation taken up by the

other variable (Fig. 3A).

Say we are interested in the relationship between log10(soundscape richness) ~
log10(island size), the plot displays the relationship between the residuals of a
model between log10(soundscape richness) ~ isolation and the residuals of a model
between log10(island size) ~ isolation. In doing so, the plot shows the relationship
of log10(island size) on the soundscape richness while eliminating the effect of
isolation. Similarly, if we are interested in the relationship between

log10(soundscape richness) ~ isolation, the plot displays the relationship between
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the residuals of a model between log10(soundscape richness) ~ log10(island size)

and the residuals of a model between isolation ~ log10(island size).

4.4. Assessing the presence of an interaction effect between island size and

isolation

In addition to visually exploring the relationship between the predictors and the
response variable, we were also interested in assessing whether an interaction
effect between our continuous predictor variables existed. To test this, we made use
of a conditioning plot (also known as a co-plot), a type of scatterplot that shows the
relationship between two variables when ‘conditioned’ on a third variable. In our
case, we visualised the potential interaction between the island size and isolation by
plotting the relationship between the log10(soundscape richness) ~ log10(island
size) for four classes along the isolation range, where each isolation class contained
approximately the same number of data points and had a 50% overlap with its

neighbouring classes (Fig. 3B).

The conditioning plot shows that the strength of the positive relationship between
the unrarefied gamma soundscape richness (log10) and island size (ha - log10)
decreases with increasing isolation. This is suggestive of a negative interaction effect
between the island area and isolation. As such, we included a model with an

interaction term when fitting linear models in the next section.
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4.5. Fitting linear models

For model fitting, first, we constructed a global model using the following equation:

(1) logl0(gamma soundscape richness) ~ log10(island area) + isolation +

log10(island area)*isolation

As we know our predictor variables are correlated with each other (Fig. S6), we
checked for multicollinearity between the predictors by calculating the Variance
Inflation Factor (VIF) for the model without an interaction term (model 3) using the
‘vif’ function from the ‘car’ R-package (Fox and Weisberg 2019 - version 3.1-0). We
observed a VIF of 1.44, which is within the acceptable range to retain both predictor

variables in the model (Johnston et al. 2018).

Next, we fitted four other candidate models:

(2) logl0(gamma soundscape richness) ~ log10(island area)

(3) log10(gamma soundscape richness) ~ log10(island area) + isolation

(4) logl0(gamma soundscape richness) ~ isolation

(5) logl0(gamma soundscape richness) ~ 1

4.6. Testing model assumptions

For each of these models, we assessed whether the following assumptions were

met: (i) a normal distribution of residuals; (ii) homoscedasticity of residuals; (iii) a
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zero-mean of residuals; and (iv) independence of residual terms. We found that all
models had a near-zero mean of residuals and independence of residual terms
(Table S2). For model 4, the residuals displayed heteroscedasticity, as indicated by
the Studentized Breusch-Pagan test. Furthermore, for model 1, the Shapiro-
Wilkinson test suggests that the residuals deviate from the assumption of normality
slightly, however, this is not confirmed by the Kolmogorov-Smirnov test (Table S2;

Fig. S7).
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Figure S7: Diagnostic plots showing the residual-vs-fitted plot, residuals qq-plot,

residuals boxplot and residuals histogram in clockwise order from the top left to the
bottom left for the best fitting model (model 1).
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Figure $8: Diagnostic plots showing the residual-vs-fitted plot, residuals qq-plot,

residuals boxplot and residuals histogram in clockwise order from the top left to the
bottom left for the second-best fitting model (model 2).
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Table S2: A diagnostic table for five fitted models with results for the following model

assumption tests: (i) normal distribution of residuals; (ii) homoscedasticity of

residuals; (iii)a zero-mean of residuals; and (iv) independence of residuals terms.

Green indicates the assumption is met, orange indicates a marginal acceptance of the

assumption, and red indicates the assumption is not met.

Homoscedacity
i . Independent
Normality of residuals of i
. residuals
residuals
Zero mean
residuals
Studentized
Shapiro-Wilk Kolmogorov- Durbin-Watson
. Breusch-
test Smirnov test test
Pagan test
Model| W=0.95;p= KS=0.08;p= Mean =-1.54 * 10~
BP = 0.62; p = 0.89 D-W = 1.76; p = 0.40
1 0.05 0.85 £8
Model | W=0.97;p= Mean =-9.55 * 10-
KS =0.13; p = 0.36|BP = 1.59; p = 0.21 D-W =1.89; p=0.70
2 0.18 1
Model | W=0.97;p= KS=0.10; p=
BP =1.30; p=0.52|Mean = 3.15 *10-18| D-W = 1.89; p= 0.77
3 0.20 0.66
Model| W=0.98;p= BP=9.05;p= |Mean=-2.26*10"
KS =0.06; p = 0.99 D-W =2.22; p=0.44
4 0.78 0.003 e
Model| W=0.97;p= KS=0.12;p= Mean =-3.57 * 10~
NA D-W =2.13;p=0.70
5 0.16 0.40 1
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Supplementary material 5: The small-island effect

The perceived slope of the species-area relationship is sensitive to the scale at which
ISARs are considered. According to Lomolino and Weiser (2001), untransformed
ISARs should exhibit a sigmoidal form with three distinct phases: (i) at very small
spatial scales, a phase with no strong relationship between the species richness and
island size (the small-island effect or SIE); (ii) at intermediate scales, a phase with a
rapid rise in richness with increasing island size; and (iii) at large scales, a phase
with a flattening of the slope towards an asymptote, as the number of species per
island reaches the levels of the mainland species pool. Each of these phases is
delineated by a turnover point at which the predominant mechanisms that govern

species richness in space change.

For our assessment of potential soundscape-area relationships and the mechanisms
driving them, we were only interested in the effect of the island area on soundscape
richness (phase 2). As such, we tested whether there was a spatial scale below
which the effect of island area on the soundscape richness broke down (the small
island effect). To do so, we used breakpoint linear regression, following the criteria
outlined in Dengler (2010) for robust SIE detection: (i) a goodness-of-fit measure
that penalised the model complexity; (ii) inclusion of at least three relevant SIE
models (a linear, left-horizontal, and continuous one-threshold model); (iii) model
selection in the same S-space; and (iv) inclusion of islands with zero-richness. We
employed the ‘sar_threshold’ function in the ‘sars’ R-package (Matthews et al. 2019)
to fit four SIE models: (i) a continuous one-threshold model; (ii) a left-horizontal

one-threshold model; (iii) a log-log linear model (log10); and (iv) an intercept-only
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model. As the scales considered in this study ranged from small to intermediate, and
to avoid overfitting, we did not test for the presence of phase 3 using two-threshold
models. We selected the best model fit while penalising for added model complexity
by considering the sample-size-correct Akaike Information Criterion (AICc),

Bayesian Information Criterion (BIC) and the adjusted R? value.

Considering all model selection factors, we found a comparable fit for the
continuous one-threshold and left-horizontal one-threshold models with thresholds
at 9.40 and 12.68 ha respectively (Table S3; Fig S9). As such, we used the smaller of
both threshold values (threshold = 9.40 ha) as our cut-off for the small island effect
in our study. Thus, for all subsequent analyses investigating species-area patterns,

we will include only the islands above 9.40 ha.

Table S3: A table containing the small island effect (SIE) model output.

R2- Threshold Threshold

adj

AlC AlCc BIC R2
(log1o - ha) (ha)

Continuous 9.40
303.42 304.82 31288 0.82 0.81 0.97
one-threshold

Left-horizontal 30441 30532 311.98 081 0.80 1.10 12.68
Li -

Nearpower 54275 34328 34843 056 0.53 NA NA
law

Intercept-only 380.86 381.12 384.64 0.00 0.00 NA NA
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Figure S9: A series of scatterplots with fitted lines (light grey) showing the
relationship between the unrarefied gamma soundscape richness and island size
(log1o) for four models: (i) a continuous one-threshold model; (ii) a horizontal one-
threshold model; (iii) a log-linear model; and (iv) and intercept-only model. The blue
and orange dots indicate data points below and above the model’s threshold
respectively, with the dashed black line indicating the island size threshold for that
model. Grey dots indicate the model did not include any threshold
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Abstract

1.

As passive acoustic monitoring technologies continue to gain popularity, the
amount of environmental sound recordings has greatly increased. However,
researchers still face challenges in extracting ecologically relevant information
from these recordings. To overcome the species identification bottleneck,
researchers often use acoustic indices, which provide a summary of the spectral
and temporal distribution of the energy in acoustic recordings. Although these
indices have been broadly applied, methods for analysing big ecoacoustic
datasets are still evolving.

In a recent publication, we introduced an analytical pipeline that combines the
statistical framework of Hill numbers with the computation of acoustic diversity
indices, granting us novel insights into acoustic niche usage. Despite the
potential of this approach for ecological research, there is currently no software
tool available for its implementation.

To address this gap, we present soundscapeR, an R package that provides an
analytical pipeline for exploring, visualising, quantifying, and comparing
soundscapes. Specifically designed to process long-duration acoustic recordings
of the environment, the package provides flexible functions that allow for the
quantification of soundscape diversity across a range of diversity types, scales,
and spectro-temporal subsets. Additionally, the package includes a suite of
customisable visualisation tools that simplify the exploration of large acoustic
datasets.

We demonstrate the utility of soundscapeR by applying the package to an

acoustic dataset from Brazilian Amazonia. Our case study illustrates the
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potential of soundscapeR to provide novel insights into acoustic niche usage

and to help elucidate the relationships among soundscapes.
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1. Introduction

Passive Acoustic Monitoring (PAM) tools have been widely adopted in recent years
(Sugai et al. 2019b), yet the effective extraction of ecological information from large
acoustic datasets remains a major analytical bottleneck (Gibb et al. 2019; Vella et al.
2022). This has encouraged the development of ecoacoustics, which characterises
ecosystems using the collective sounds emanating from the landscape, known as the
soundscape (Sueur and Farina 2015). The soundscape encompasses all sounds of
biological origin (biophony), as well as those generated by geophysical (geophony)
and human (anthropophony) activities (Pijanowski et al. 2011a). Rather than
relying on species identification, soundscape analyses aim to establish a relationship
between the diversity of acoustic signals in the soundscape and the ecological
processes affecting biological communities (Bradfer-Lawrence et al. 2019). Acoustic
indices summarise the distribution of acoustic energy across the time and frequency
dimensions of sound files, thus condensing information from large acoustic datasets

(Eldridge et al. 2018).

At least 65 acoustic indices exist (Buxton et al. 2018), and several software tools
have been developed for their computation, including online software (e.g.,
ecoSound-web: Darras et al. 2020b; ARBIMON: Aide et al. 2013), R-packages (e.g.,
seewave: Sueur et al. 2008b; soundecology: Villanueva-Rivera et al. 2018b), or
terminal-based programs (e.g., AnalysisPrograms: Towsey et al. 2021). Acoustic
indices can be classified based on the temporal scale over which the values are
calculated. For instance, some of the most widely used indices (e.g., Acoustic

Complexity Index or Bioacoustic Index) are generally computed over relatively
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short periods (e.g., 1-minute sound files; Truskinger and Towsey 2019a).
Conversely, other metrics, such as the Acoustic Space Use (ASU, available in
ARBIMON), quantify acoustic diversity patterns over 24h periods (Aide et al. 2017),

offering a different perspective on the use of the acoustic trait space.

In a recent publication, we presented an analytical pipeline that falls in the second
category (Luypaert et al. 2022), quantifying soundscape diversity patterns over a
24h period. We proposed three soundscape diversity metrics (soundscape richness,
evenness, and diversity) that retain information in both the temporal and frequency
dimensions, incorporate the temporal incidence of sound, and integrate the
diversity calculations with the mathematically unified framework of Hill numbers.
These metrics can be used to calculate diversity values at a range of scales (alpha,
beta, gamma) and for spectro-temporal subsets, providing an intuitive way to gain
novel insights into acoustic niche usage. We previously demonstrated a positive
relationship between soundscape richness and evenness and the taxonomic
richness of sound-producing species (Luypaert et al. 2022). Additionally, we showed
that soundscape richness is sensitive to one of the most fundamental patterns in
ecology: the positive scaling of richness with island size, which we termed the

soundscape-area relationship (Luypaert et al. 2023).

In this paper, we introduce soundscapeR, an R-package designed to facilitate the
implementation of our approach, with functions aiding the exploration,
visualisation, diversity quantification, and comparison of soundscapes. The package
allows the user to quantify soundscape diversity across a range of diversity types,

scales, and spectro-temporal subsets. The package also features a suite of

214



customisable visualisation tools, simplifying the visual exploration of large acoustic

datasets.

2. Package description

2.1. Installation and documentation

The soundscapeR package can be installed from GitHub using the

‘install github’ function from the remotes R- package (Csardi et al. 2021):
remotes::install github (“ThomasLuypaert/soundscapeR”).We also
provide a comprehensive vignette, which contains specific use cases for all the

functions in the package: thomasluypaert.github.io/soundscapeR_vignette.

2.2.Data

The soundscapeR package is designed to work with long-duration soundscape
recordings collected using either continuous or regular-interval (e.g., 1 minute every
5 minutes) sampling regimes using a 1-minute file length (see Truskinger and
Towsey 2019). Although the soundscapeR functions can handle ultrasonic data in
principle, the application of acoustic indices (and CVR in particular) has not been
widely used with ultrasonic data. For guidance on soundscape data collection, see

Metcalf et al. (2023).

To demonstrate the utility of soundscapeR, we analyse a dataset from Brazilian
Amazonia consisting of soundscape recordings from two islands in the Balbina
Hydroelectric Reservoir (see Bueno et al. 2020): Andre Island (2.08 ha) and Mascote
Island (668.03 ha). The number of plots at which we collected soundscape data was

proportional to island size: 1 plot at Andre Island and 4 plots at Mascote Island,
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totalling 5 plots. At each of these plots, sound was recorded for 1 minute every 5
minutes for 5 days (1440 1-min sound files per plot) using a 44,100 Hz sampling

rate.

The raw sound files for these islands can be downloaded from Data Dryad:
https://datadryad.org/stash/share/JUnmstefWNy3UUkjko86mA3iGKxOrSI9iHsLz

mPoOs

The R code supporting this case study can be found in Supplementary Materials 2.

2.3. Workflow overview

In this section, we outline a step-by-step approach for using the soundscapeR
package to implement the workflow presented in Luypaert et al. (2022). Moreover,
we present a range of visualisation tools that allow the user to explore and compare

soundscapes.

The Hill-based diversity quantification of soundscapes presented in Luypaert et al.
(2022) consists of three key steps:

Step 1: Grouping sounds into Operational Sound Units (OSUs) and assessing OSU
presence in each sample of the 24h acoustic trait space.

Step 2: Evaluating the prevalence (or incidence) of OSUs across the recording
period.

Step 3: Quantifying the soundscape diversity using the framework of Hill numbers.
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To simplify the use of our package, we have created an S4-object called a
'soundscape’ object (see Table S1). This data object has slots containing all relevant
metadata and data objects generated during the workflow (steps 1 and 2 above).
The soundscape object serves as the basis for all downstream functions in the
workflow (step 3 above). Hence, metadata only need to be entered once and is
remembered downstream. Additionally, all chosen parameters in the workflow are
stored by the soundscape object and can be easily accessed. Finally, the slots
containing the various metadata and data objects have strict expectations of what
each data input looks like, minimising the chance of accidental errors.
To perform the steps described above, as well as conduct additional analyses, the
functions in the soundscapeR package can be divided into four categories (Fig.
1):
1. Functions for file management:
ss_find filesandss assess files
2. Functions for preparing the soundscape object (steps 1 and 2):
ss_index calcandss create
3. Functions for visualising and quantifying the diversity of a single
soundscape (step 3) ss_heatmap, ss_diversity, ss_evenness,
and ss_diversity plot
4. Functions for comparing the diversity of multiple soundscapes:

ss_compare,ss_pcoa,ss_divpart,and ss pairdis

A comprehensive summary of the functions currently available in soundscapeR is

provided in Table S2.
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Figure 1: An overview of the soundscapeR workflow. The suite of functions in
soundscapeR can be divided into four categories: (1) file management; (2)
soundscape preparation; (3) exploring the diversity of a single soundscape; and (4)

comparing the diversity of multiple soundscapes.
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3. Function descriptions

3.1.File management: ss_find filesand ss_assess_files

We assume the user has successfully collected soundscape recordings at one or
multiple sites and that these files are stored on the user’s device, external hard

drive, or High-Performance Computing platform.

The ss_find files function automatically detects all sound files within a
specified parent directory and subdirectories. The function returns a list of vectors
containing the location of each sound file for each site or period. Next,

ss_assess filesisappliedtothe ss find files output. This function
automatically detects the temporal sampling regime (i.e.,, continuous or regular-
interval) that was used to record the soundscape and uses this information to
identify missing files. Furthermore, the function can be used to exclude any sound
files that are not part of a full sampling day (24h period). The result of this process

is a cleaned list of vectors with sound file locations.

fileloc <- ss_find files(parent directory = output dir)

fileloc <- ss assess files(file locs = fileloc, full days
= TRUE)

3.2. Preparing a soundscape object: ss_index_calcand ss_create

To quantify the soundscape diversity in the 24h acoustic trait space, a novel unit of
diversity measurement called the Operational Sound Unit (OSU) was introduced by
Luypaert et al. (2022). OSUs group all sounds occurring into a 24h sample of the

soundscape by their shared spectro-temporal properties. Like time-frequency bins
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in a spectrogram, OSUs divide the acoustic trait space into discrete spectro-temporal
bins, allowing for a comprehensive representation of the distribution of sounds in

the soundscape.

To compute the OSUs, the Acoustic Cover (CVR) spectral acoustic index (formerly
called 'Activity’ or 'ACTsp'; Towsey 2017) is employed to capture the acoustic
characteristics of sound in 1-minute recordings. The CVR index generates a vector of
values, where each value corresponds to a frequency bin in a 1-minute spectrogram.
These values indicate the proportion of cells in a noise-reduced frequency bin that
exceed a 3-dB threshold, ranging from 0 to 1. To perform this task, we input the
sound file locations (obtained using ss find filesandss assess files)
into the ss_index calc function. This function calculates the CVR index for each

sound file in a folder and saves the output as a “csv’ file in a user-specified directory.

To calculate the CVR indices for each 1-min file of Andre Island, we use:

ss_index calc(file list = fileloc[[“Andre™]],
window = 256,
parallel = FALSE)

After index computation, we use ss_create to create a soundscape object. This
function is a wrapper that applies three sub-functions in sequence. First,
ss_index merge performs chronological concatenation of the previously
calculated CVR index into a time-frequency data frame. Second, ss_binarize
converts the raw CVR values into a binary detection (1)/ non-detection (0) variable
for each day in the recording period using a threshold determined with the IsoData

binarisation algorithm (see the package documentation for available binarisation
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options). Last, ss_aggregate calculates the incidence (or relative abundance) of
each time-frequency bin in a 24h period (each bin is an OSU) across all sampled
days. Although each of these sub-functions can be used individually, in most cases,
the ss_create function will meet the user's needs in a single step. The

ss_create function returns an S4 soundscape object (Table S1) that contains all
the information required for subsequent diversity quantification using Hill numbers
(OSUs presence and relative abundance), as well as relevant metadata and workflow
parameter choices.

To create a soundscape object, we can use:

# Direct method

Andre soundscape <-
ss_create(fileloc = pasteO (output dir, "/Andre"),
samplerate = 44100,
window = 256,

index = "CVR",

date = "2015-10-10",

lat = -1.58462,

lon = -59.87211,

method = "IsoData",

output = "incidence freq")

# Step-by-step
#1. Merge CVR files

Andre soundscape merged <-
ss_index merge (fileloc = pasteO(output dir, "/Andre"),
samplerate = 44100,

window = 256,

index = "CVR",
date = "2015-10-10",
lat = -1.58462,
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lon = =-59.87211)

#2. Binarise CVR values

Andre_soundscape binarized <-
ss _binarize (merged soundscape = Andre soundscape merged,
method = "IsoData")

3. Calculate OSU incidence

Andre soundscape aggregated <-
ss_aggregate (binarized soundscape =
Andre_soundscape binarized,

output = "incidence freq")

3.3. Example dataset

The raw sound files of our case study data are too large to include in the package as
example data. If we repeat phase 1 (file management) and phase 2 (soundscape
preparation) for both case study islands, we obtain a list of soundscape objects that
can be used for all downstream analyses. This data is included in the soundscapeR
package to support all downstream code examples and can be loaded as follows:
data (balbina)

For additional information on the dataset, use:

?balbina

The remaining functions in the soundscapeR package can be classified into two
types: (i) functions for exploring and visualising the diversity of a single
soundscape; and (ii) functions for visualising and contrasting the diversity of

multiple soundscapes.
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3.4. Exploring the diversity of a single soundscape

In this section, we will access the soundscape for one of our islands in the list using:
balbina[ ["Andre"]]

3.4.1. The ss_heatmap function

The ss_heatmap function generates a visual heatmap representation of the
presence and abundance of OSUs within the soundscape. It offers considerable
flexibility, including the ability to: (i) automatically annotate the heatmap with local
sunrise and sunset times, (ii) subset acoustic trait space to a specific spectro-
temporal region of interest, (iii) display the heatmap using either cartesian or polar
coordinate systems, (iv) modify the visual aesthetics of the heatmap, such as the
colour palette and axis labels, and (v) produce interactive heatmaps to explore OSU
values.

To produce a heatmap for the Andre Island soundscape (Fig. 2), we can use:

# Regular heatmap with annotation

ss_heatmap (soundscape obj = balbinal["Andre"]],
type = "regular",

annotate = TRUE)

# Polar heatmap with annotation

ss_heatmap (soundscape obj = balbinal[["Andre"]],
type = "polar",

annotate = TRUE)
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Figure 2: Two heatmaps produced using the ss _heatmap function. The heatmaps
show the presence and prevalence (or relative abundance) of OSUs for the Andre
Island soundscape. The annotation argument allows the user to automatically
annotate the heatmap with the time of sunrise and sunset (vertical dashed lines; grey =
night; yellow = day), and the boundary between the audible and ultrasonic frequencies

(dashed horizontal lines). A. A regular heatmap. B. A polar heatmap.

3.4.2. The ss_diversityand ss_evenness functions

The ss_diversity function computes the richness and diversity of the
soundscape using Hill numbers (Table 1). The g-parameter can be adjusted to
modify the impact of common or rare OSUs on diversity values. The ss_evenness
function computes soundscape evenness (Table 1). Both functions allow soundscape
diversity metrics to be calculated at various spectro-temporal scales by specifying
custom time-frequency limits, computing the soundscape metrics for various built-
in diurnal-phase presets (dawn, day, dusk, night), or for every individual recording
in the 24h cycle. The resulting diversity metrics can be returned in two ways: (i) as
the effective number of OSUs (output = "raw"), where the maximum number of

detectable OSUs in the soundscape equals the number of soundscape time-
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frequency bins; or (ii) the percentage of the acoustic trait space that is saturated
with sound (output = "percentage"), where the number of detected OSUs is
divided by the number of detectable OSUs and multiplied by 100.

To calculate the soundscape richness, diversity, and evenness of Andre Island, we

can use:

# Richness

SSR <- ss_diversity(soundscape obj = balbina[["Andre"]],
gvalue = 0,
subset = "total",
output = "percentage")

# Diversity

SSD <- ss_diversity(soundscape obj = balbina[["Andre"]],
gvalue = 2,
subset = "total",
output = "percentage")

# Evenness

SSE <- ss_evenness (soundscape obj = balbina[["Andre"]],

subset = "total")
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Table 1: An overview of the soundscape diversity metrics that can be computed using

the soundscapeR package. Note that the equation for the soundscape evenness was

updated compared to Luypaert et al. (2022) to reflect recommendations in Chao and
Ricotta (2019) and Chao et al. (2020).

Code
Name Abbreviation Equation example
value
Soundscape s (11,1)
SSR SSR = (Z plq> withq =0 15.13%
richness :
i=1
Soundscape s (liq)
SsD SSD = Zp? withg >0 | 1067%
diversity =
Soundscape (SSD=2 — 1)
SSE SSE = ———F——= 0.70
=0 _
evenness (SSR4 D

3.4.3. The ss_diversity plot function

The ss diversity plot function produces area plots showing the variation in

soundscape richness or diversity by the time of day. The soundscape metrics can be

shown for the full frequency range (type = "total") or the relative contribution

of different frequency bins with user-specified width (type = "frequency",

"normfreq" or "linefreq"). Moreover, the function allows the user to: (i)

calculate the temporal variation in soundscape metrics for user-specified time-

frequency subsets; (ii) apply a moving average filter of user-specified width; and

(iii) produce interactive plots to explore diversity values.
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To calculate the four different diversity plot types for Andre Island (Fig. 3), we can

use:
# Total
ss_diversity plot (soundscape obj = balbina[["Andre"]],
gvalue = 0,
graphtype = "total",

maxfreq = 20000,
smooth = TRUE,

movavg = 20)

# Frequency

ss_diversity plot (soundscape obj = balbina[["Andre"]],
gvalue = 0,
graphtype = "frequency",

maxfreq = 20000,
nbins = 4,
smooth = TRUE,

movavg = 20)

# Normalised frequency

ss_diversity plot (soundscape obj = balbina[["Andre"]],
gvalue = 0,
graphtype = "normfreqg",

maxfreq = 20000,
nbins = 4,
smooth = TRUE,

movavg = 20)

# Line frequency

ss_diversity plot (soundscape obj = balbina[["Andre"]],
gvalue = O,
graphtype = "linefreqg",

maxfreq = 20000,
nbins = 4,
smooth = TRUE,
movavg = 20,

timeinterval = "4 hours")
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Figure 3: A summary of the plot types available using the ss_diversity plot

function. Each plot shows the variation in soundscape richness by the time of day. A.

Soundscape richness for the total soundscape (graphtype = "total").B. The

contribution of four frequency bins to soundscape richness (graphtype =
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"frequency"). C. The proportional contribution of four frequency bins to
soundscape richness (graphtype = "normfreq"). D. The individual variation in

soundscape richness for four frequency bins (graphtype = "linefreqg").

3.5. Comparing the diversity of multiple soundscapes

3.5.1. The ss_compare and ss_pcoa functions

The ss_compare function takes two soundscape objects and produces differential
soundscape heatmaps contrasting the difference in OSU presence and prevalence
between the soundscapes. Like the ss heatmap function, the visual appearance of

the heatmaps produced by ss compare is customisable.

To compare the soundscapes of Andre Island and one of the plots on Mascote Island

(Fig. 4), we can use:

ss_compare (soundscape obj A balbinal[["Andre"]],
soundscape obj B = balbina[["Mascote Al1"]],

type = "regular")

OSU RELATIVE ABUNDANCE CIFFERENGR 81 03U COMPOATIOY. OSU RELATIVE ABUNDANGE

ol oW Rec W Wl o o e E ) B
: a

0000

Figure 4: A differential heatmap produced using the ss_compare function. The
differential heatmap (middle) displays the differences in the OSU presence and
prevalence (or relative abundance) between soundscape A (left) and soundscape B
(right). Colder colours (blue) indicate OSUs were found more in soundscape A, whereas
warmer colours (red) indicate OSUs were found more in soundscape B. When OSU

prevalence was equal in both soundscapes, pixels are coloured white.
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The ss_pcoa function takes a list of soundscape objects and uses a Principal
Coordinate Analysis (PCoA) to plot the soundscapes in two-dimensional space based
on the Bray-Curtis dissimilarity in the OSU composition.

To produce a PCoA plot of our soundscapes (Fig. 5), we can use:

Ss_pcoa (soundscape list = balbina,
grouping = c("Andre", "Mascote", "Mascote",
"Mascote", "Mascote"),
screeplot = TRUE)
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Figure 5: A. Principal Coordinate Plot produced using the ss_pcoa function showing
the relationship between the soundscapes in two-dimensional space, based on pairwise
Bray-Curtis dissimilarity between the OSU composition of the soundscapes. B.
Screeplot showing the cumulative percentage of the variation explained as additional

principal coordinate axes are added.

3.5.2. The ss_divpart and ss_pairdis function
The ss_divpart function takes a list of soundscape objects and performs multi-
level diversity partitioning, decomposing the soundscape diversity into its

respective alpha, beta and gamma diversities following a multiplicative relationship
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based on Hill numbers (Luypaert et al. 2022). As a default, the function partitions
the diversity based on a two-level hierarchical structure (Level 1: alpha; Level 2:
gamma), however, a multi-tier hierarchical structure can be supplied using the
"hier_table” argument. Moreover, the diversity can be partitioned for a range of g-

values (0-n) and time-frequency subsets.

To partition the soundscape richness and diversity (q = 0, 1, 2) into its alpha, beta
and gamma components using a two-level hierarchical structure (Table 2), we can

use:

ss_divpart (soundscape list = balbina,
gvalue = 0)

ss_divpart (soundscape list = balbina,
gvalue = 1)

ss_divpart (soundscape list = balbina,

gvalue = 2)

Table 2: A table produced using the ss_divpart function, showing the diversity
components at the sub-system scale (alpha), the whole-system scale (gamma), and the
between-system turnover (beta). The soundscape richness and diversities were

decomposed using a two-level hierarchical structure.

Hierarchical levels # sub-systems (N1)  # systems (N2) Alpha Beta Gamma

q=0 2 5 1 31.4 57.2 1.82
q=1 2 5 1 24.9 40.6 1.63
q=2 2 5 1 20.1 31.0 1.54
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The ss_pairdis function takes a list of soundscape objects and computes the
pairwise dissimilarities among soundscapes as the complement of the: (i) Sgrensen-
Dice overlap; (ii) Jaccard overlap; (iii) Serensen-Dice turnover; or (iv) Jaccard-

subset turnover.

To compute the pairwise dissimilarities between our soundscapes based on the

soundscape richness (Table 3), we can use:

ss_pairdis (soundscape list = balbina,

gvalue = 0)

Table 3: Pairwise dissimilarities (range: 0-1) between the five case study soundscapes,
produced using the ss_pairdis function. Dissimilarity values were computed for all

dissimilarity equations, but only the Sgrensen-Dice and Jaccard overlap are displayed.

Sgrensen-Dice overlap

Andre Mascote_A1l Mascote_A2 Mascote_B1 Mascote_B2

Andre

Mascote_A1 0.61

Mascote_A2 0.61 0.41
Mascote_B1 0.61 0.31 0.37
Mascote_B2 0.62 0.26 0.37 0.27

Jaccard overlap

Andre Mascote_A1l Mascote_A2 Mascote_B1 Mascote_B2

Andre

Mascote_A1 0.76

Mascote_A2 0.75 0.58
Mascote_B1 0.76 0.48 0.54
Mascote_B2 0.76 0.42 0.54 0.43
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4. Summary

The R-package soundscapeR offers a streamlined and accessible workflow for
exploring, visualising, quantifying, and comparing soundscapes through the
analytical framework of Hill numbers. With a minimal background in ecoacoustics,
users can gain insight into patterns in large acoustic datasets. Users can visually
explore the presence and prevalence of sound across entire soundscapes and time-
frequency subsets. Additionally, users can visually contrast multiple soundscapes,
efficiently uncovering differences in acoustic features. By utilising Hill numbers, a
variety of soundscape diversity metrics can be easily quantified at various scales
and orders of diversity. The package provides a means to partition system-wide
diversity into its diversity components and quantify and visualise pairwise
dissimilarity among soundscapes. In summary, soundscapeR is a valuable tool that

simplifies the exploration and analysis of big acoustic data.

233



5. References

Aide, T.M.; Hernandez-Serna, A.; Campos-Cerqueira, M.; Acevedo-Charry, O.;
Deichmann, J.L. (2017). Species richness (of insects) drives the use of acoustic
space in the tropics. Remote Sensing, 9(11).

Aide, T.M.; Corrada-Bravo, C,; Campos-Cerqueira, M.; Milan, C.; Vega, G.; Alvarez, R.
(2013). Real-time bioacoustics monitoring and automated species identification.
Peer], 1, e103.

Bradfer-Lawrence, T.; Gardner, N.; Bunnefeld, L.; Bunnefeld, N.; Willis, S.G.; Dent,
D.H. (2019). Guidelines for the use of acoustic indices in environmental
research. Methods in Ecology and Evolution, 10(10), pp.1796-1807.

Bueno, A.S.; Masseli, G.S.; Kaefer, L.L.; Peres, C.A. (2020). Sampling design may
obscure species-area relationships in landscape-scale field studies. Ecography,
43(1), pp.107-118.

Buxton, R.T.; McKenna, M.F.; Clapp, M.; Meyer, E.; Stabenau, E.; Angeloni, L.M.;
Crooks, K.; Wittemyer, G. (2018). Efficacy of extracting indices from large-scale
acoustic recordings to monitor biodiversity. Conservation Biology, 32(5),
pp.1174-1184.

Chao, A;; Kubota, Y.; Zeleny, D.; Chiu, C-H; Li, C-F; Kusumoto, B; Yasuhara, M.; Thorn,
S.; Wei, C.L.; Costello, M.].; Colwell, R.K. (2020). Quantifying sample
completeness and comparing diversities among assemblages. Ecological
Research, 35(2), pp.292-314.

Chao, A; Ricotta, C. (2019). Quantifying evenness and linking it to diversity, beta
diversity, and similarity. Ecology, 100(12), e02852.

Csardji, G.; Hester, ].; Wickham, H.; Chang, W.; Morgan, M.; Tenenbaum, D. (2021).
remotes: R Package Installation from Remote Repositories. https://cran.r-
project.org/web/packages/remotes/index.html.

Darras, K.F.A,; Pérez, N.; Mauladi; Dilong, L.; Hanf-Dressler, T.; Markolf, M.; Wanger,
T.C. (2020). ecoSound-web: an open-source, online platform for ecoacoustics.
F1000Research, 9, p.1224.

Eldridge, A.; Guyot, P.; Moscoso, P.; Johnston, A.; Eyre-Walker, Y.; Peck, M. (2018).

Sounding out ecoacoustic metrics: Avian species richness is predicted by

234



acoustic indices in temperate but not tropical habitats. Ecological Indicators, 95,
pp.939-952.

Gibb, R.; Browning, E.; Glover-Kapfer, P.; Jones, K. (2019). Emerging opportunities
and challenges for passive acoustics in ecological assessment and monitoring.
Methods in Ecology and Evolution, 10(2), pp.169-185.

Luypaert, T.; Bueno, A.S.; Masseli, G.S.; Kaefer, I.L.; Campos-Cerqueira, M.; Peres,
C.A.; Haugaasen, T. (2022). A framework for quantifying soundscape diversity
using Hill numbers. Methods in Ecology and Evolution, 13(10), pp.2262-2274.

Luypaert, T.; Bueno, A.S.; Haugaasen, T.; Peres, C.A. (2023). Extending species-area
relationships into the realm of ecoacoustics: The soundscape-area
relationship.bioRxiv.

Metcalf, 0.C.; Abrahams, C.; Ashington, B.; Baker, E.; Bradfer-Lawrence, T.;
Browning, E.; Carruthers-Jones, J.; Darby, J.; Dick, |.; Eldridge, A.; Elliott, D.
(2023). Good practice guidelines for long-term ecoacoustic monitoring in the
UK. UK Acoustics Network.

Pijanowski, B.C.; Farina, A.; Gage, S.H.; Dumyahn, S.L; Krause, B.L. (2011). What is
soundscape ecology? An introduction and overview of an emerging new science.
Landscape ecology, 26, pp.1213-1232.

Sueur, J.; Aubin, T.; Simonis, C. (2008). Seewave, A free modular tool for sound
analysis and synthesis. Bioacoustics, 18(2), pp.213-226.

Sueur, |.; Farina, A. (2015). Ecoacoustics: The Ecological Investigation and
Interpretation of Environmental Sound. Biosemiotics, 8(3), pp.493-502.

Sugai, L.S.M;; Silva, T.S.F.; Ribeiro, ].W.; Llusia, D. (2019). Terrestrial Passive
Acoustic Monitoring: Review and Perspectives. BioScience, 69(1), pp.15-25.
Towsey, M. (2017): The calculation of acoustic indices derived from long-duration
recordings of the natural environment. Technical Report. Available online at
https://eprints.qut.edu.au/110634/1/QUTePrints110634_TechReport_Towsey

2017August_AcousticIndices%20v3.pdf

Towsey, M.; Truskinger, A.; Cottman-Fields, M.; Roe, P. (2021).
QutEcoacoustics/audio-analysis: Ecoacoustics Audio Analysis Software

v21.7.0.4: Zenodo.

235



Truskinger, A.; Towsey, M. (2019). QUT Ecoacoustics | Why do we analyze data in
1-minute chunks? Available online at
https://research.ecosounds.org/2019/08/09/analyzing-data-in-one-minute-
chunks.html.

Vella, K,; Capel, T.; Gonzalez, A.; Truskinger, A.; Fuller, S.; Roe, P. (2022). Key Issues
for Realizing Open Ecoacoustic Monitoring in Australia. Frontiers in Ecology and
Evolution, 9, p.1010.

Villanueva-Rivera, L.J., Pijanowski, B.C. (2018). Package ‘soundecology’. R package
version, 1(3), p.3.

236






i 5_,:]

(ke

NTARY MATERIALS



238



soundscapeR: An R-package for the exploration, visualisation, diversity
quantification and comparison of soundscapes

Supplementary Materials 1

239



0¥¢

‘da3s uonestreulq

93 10J pasn Sem ey} P[OYSaIy3 Y[, 910 a[qnop proysaayy
"uonesLIeulq Xopul-yA) J10j pasn spoyiaui ay], Breqosj, J9joeIeyd poyiow uonezLIeUIq
"UOTRUWLIOJSUE.L],

J9LINO, IS, 913 10J pash YISUS[ MOPUIM ], 9627 a[qnop Mopuim

*(zH ur) adeospunos
9y} p102a1 03 pasn a3el Surjdwes ay], 00TV a[qnop jesodwes
‘punos jo aouasaxd ayy
SUIULISIAP 0} Pasn Xapul d13snode [ex3dads ay, JAD, J9joeIeyd Xopul
"pa103s aae Sa[y
punos meu ay) a.19ym 03 yyed yidus-[[nJ ay L, 2Ipuy/sadesspunos/:), J9)0eIRD J0[3[Y
‘josuns jo swin ay [, 0~ LY 1S:LT 0T-01-ST0Z PXISOd jesuns
"9SLIUNS JO 9w} 3], 0-9€:€1:S0 0T-01-ST0Z PXISOd asuuns
"Pa329[[00 2.19M sFuIpI0da.x
2deaspunos ) YoIym Ul SUOZ SWI) Y], Sheuepy/esrawy,, J930e.IRD VAl
"Pa329[[02 2.19M SZUIPI0dT
adeospunos a3 a1eym apnyduoy ay], 112.8°6S- a[qnop uop
*(se9139p [eWIOAP) PaIIA[[0d dIaM
s3urp10oa1 adeospunos ay3 a1aym apnine[ Ay, 79%8S'T- a[qnop e[
103[qo adeaspunos
oy} 105 pottad 3uIp10a1 Y3 Jo Aep 3s1y Y, $0-0T-0T-ST0Z PXIS0d KepTisay

ardurexy ad4, 10[S

uondrsaqg
puejs] sapuy

rowpujoTsyloelqo edeospunos
:buisn Y ul passaddb aq ubd s30]s ay [ "auljadid ay3 ul pasn Sad1oyd 4a32up.ivd ay3 pub adpISpunos ay3 3noqb bIPPLIAU

pup DIDP JUDA3[2.4 BulUIDIU0I SI0]S §T JO BuIISISU0D 22[qo 2dpISpunos S ub fo 2.4n3on.43s pasiypullof aya buimoys ajqol v : IS ajqoL



|5 44

‘(sAep

G) potrad Suip.1o2a1 ay sso1oe (00:00:00) 1 T T T T €ESTT

Wy Srupru ye suiq Aouanbauy anoy doy oy T T T T T S0L1¢

10J 90UapIdUI (1SO Y3 10j umoys si a[dwexs ue T T T T T LLBTC

‘1o "poriad Surp.aodal ay3 ul dwn anbun yoea 1 1 0 1 0 0502¢

10J SISO JO ddudpHUI AP 3y} SUIMOYS ISI[ V 00-:00-00 -00:00:00 00:00:00 00:00-00 00:00:00

0T 0T 0T €ESTC

‘(enfea 0T 0T 0T S0LTC

2ouapul [euonrodoad ayy se auay pakerdsip) 0T 0T 0T LL8TT

potiad urp.aoda. ay3 ssodoe (SO 1od Louanbauy 90 0T 90 0S022
90uapIoul A1) SUIUIRIUO0D SWRL BIep Y 00:50:9T 00:00:9T 00:5S:ST

1 T 1 €ESTC

1 T 1 S0LTC

‘dwely elep Jp_pagdtow ayy SulsLieulq T T T LLBTTC

Aq paure}qo ‘sanjea UORIIIOP-UOU/U01}DIP T T T 0S0¢e
1SO pasiieulq ay3 SurureIU0D Wy BIRp 00:50:9T 00:00:9T 00:5S:ST

€6T9T9TE0  9SLTLSYED 9LZ6EVIED | €ESIT

€0250005°0 LB8BTEY0S'0 TS92ZLI6Y0 | SOLIC

‘(smou) uiq T9€LE06%'0 8156908%'0 L8B8600ST0 | LLBICZ

Kuanbay pue (suwn(od) sa[y punos 1ad sanfea 9G€6068T°0 LZIV¥9Z8T'0  88880%61°0 | 0502Z¢
XapuI-yAD MEI Y] SUIUILIU0D W BIep i 00:50:9T 00:00:9T 00:5S:ST

"pa19939p aIaM S(1SO
sown jo uon.aodo.ad ay3 10j baiyeouspiout,
J0 QUN0d )SO AN[osqe a3 10j Mel, a1e suondQ

‘pakerdsip s1 e3ep aouapdul (SO aY3 Aem ay],

baiy eouapnour,

Iy

aweljelep

awelyelep

Jwreyeyep

J93dereyd

awn 1ad Jp pajedaidde

Jp poredaadse

Jp pozLreurq

Jp padiaw

mdino



"(00:0T:00) 3ySruprw
ised 0T pue (00:00:00) Sruprur usamiaq
umoys si sjdwexs uy ‘awn anbiun 1ad (poriad
y$Z e sso.oe sgurp.aoda.l adedspunos) sajdues

adeaspunos jo Jequnu ay3 Sumoys s

v

S
S

00:0T:00
00:50:00
00:00:00

sojdures adeaspunos jo JaquinN

oug,

st

awn 1ad 310J)9



"(6T0Z weyspIpm) yeynasse {(qzzoz uoIsapm)
yoea.oJ {(6T0Z uyo[zirg pue paes)) ssaxdod ((ezz0oz
u03saM) MONSOP :(Z2Z0Z wea], 910D y) [o[rered
‘(agz0z Te 30 weypIm) 14pn (€207 suewlry)
.19 (G007 }291puayloLn pue sia[iaz) 00z (q800¢
‘[e 19 .In3aNS) 9ABMIIS {(£Z0Z €39 Sa8817) Youny

(zz0oz wea [, 210D yY) Y aseq

(zzoz wes, 210D ) Y aseq

sapuapuadaq

eve

'SadIpUl
o1snoode [ea3dads 9y} S9)e[NI[BI pUue SSTTJ SS8Sse ss

10 SSTTJ putj ss jondino ayy sayey,

‘(Apnas

a3 wo.y sAep pajdwes Ajen.aed aaowal) sAep Surdwes

[[nJ ATuo urejuod 03 1opjoj 1ad sajly Jo Joquunu Ay} 39sqns

03 .I9SN 33 SMO[[e Uonouny ay3 ‘1940310 *(sa[y Suissiut 03
anp “b2) awida. Surjdwes pajoadxa 9y} Wo.j S9ILIAID 19P[0]
© Ul S9[1J JUdde[pe Usamiaq [BAIIUT W] S JAYIdYM SHIIYD
pue safy [[e jo awidaa Suijdures ay3 $30939p A[[edrrewoIne
uonounj Ay L, 'Sa[y 9yl U0 S} [B.12AdS surio}1ad

pue uonouny ,SSTTF PUTJF SS, 3y} Jo sy Indino ayy saxe],
21n30nas A1030a11p 9y} Sururejurew 3sij paweu

B Ul PIAES SI 9]l ABM* PISA0ISIP Yoed 03 yied yadua]-[[nj
9y, "S9[J ABM" SUTUTEIUO0D SALI0IDAIIPNS PUE SILIOIDAIIP [[B

10J SY00[ A[9AISINJAI pue A10303.1p Jualed e 03 yaed ay) saye],

uondrsag

sadeaspunos
aaedaaq

OTeD XOpUuT SS

SSTTJ Ssosse ss

juswdSeuew 1]

S9TT3 PuUTj ss

suweu uonouny

"MOL3L0m aY3 ul asn Jo aouanbas ay3

ul pa.ap.1o ‘salpuapuadap paanidossp pub abvyapd Y Yadpaspunos ay3 ul a]qojIvAp SuodUnf ay3 bulqliosap ajqpl Lipwwns y : zs ajqu,



(zz0z wea, 210D y) spoyzaw {(TZ0Z uay)
3811 £(Z2202 J2[MIN) sW {(6T0Z WeYPIM) Ieyn.Iasse

(2z0z wea, 210D y) spoyrow :(£T0Z e 32
rpue) Ip[oysaayiome (6T 0z WeydIp)) Ieylniasse

‘(zzoz
wed ], 3107 ) spoyraul {(Zz0Z MoelyIew|sq pue
[PuLmary) oreauns :(zzoz weysprpm) 18urns {(zzoz
J9[[NA) swy {(6TOZ 1oYdNaL) ZaN| {(ZZ0Z ULSeAIuLIS
pue apmo() ajqererep (6T 0Z Wey oI ) IeyrrIasse

444

"109[qo
,odeospunos, §§ ue suIn3ay ‘porrad urp.10da1 9y SSo.10e
(nS0) nupn punos reuonesad( yoes jo Aouanbay souaproul

93 Sa1B[NO[BD pUB ©ZTIRUTY SS Jo 3ndIno ay) sayey,

‘anfea
PIOYSa.Iy) Wo3snd k.10 ‘Uondenqns [epouwt ‘(410 ‘Uol[en 3
‘penoy ‘lopuey ‘wipue]) agexded IpToyssayroine ayy ul
a[qe[eae sjoo) Surpoysalyl adew ay) Juisn Joy3Io ‘O[qe[leae
a.Je spoyauwl SuIp[oysay) [B19AdS P[OYSI.IY) UOLIESLIBUI]

9} aUIULI}AP 0], '9[qeLiea () uonodajap-uou/(1) uonialap
AIeuiq e ojul sanjea xapul [e130ads med s,SQ Yoea Sul19Au0d
Aq a@s1ou puno.assdeq woj s)SQ 2ANE A[[ed1Isnode

sojesedas pue xopuT obasw ss jo Indino oyl seye],

*S[[9D Se San[eA YA pue Smo. se sulq Aouanba.y

pue suwn[od se Aep Jo WL Y} YIIM dWE.TJ BIEP B SE [[9M

SE ‘e1epejoul JULAS[A. WIOS YHM SIO[S SUIeIuod Jety) 19a(qo
adeospunos %S ue seonpo.ad uonouny ay ], ‘A[jeardojouo.ayd a[y
punos urw-T yoes 10j (Uonouny OTed X2puT Ss ayy uisn
panduwod) s.10309A Xapul [e1309ds a3 Se3eusleduod ‘(911s
9[3uis e 3e porrad 3uip.1oda.l a3 ul sa[yy punos [[e) ajdwes
adeospunos 194 *des ©Ted xopuT ss ay) SuLinp paaes

919M S9[1J XopUI-YAD Y3 219Yym A1030a.11p Indino ayy saye],

:309[qo edeospunos §§ ue 93ead

0} MO[a( SUOTOUNY Y} SAUIqUIOD Jey) uonduny Joddeim y

sqeboibbe ss

9ZTIeUT SS

XopuT obasw ss

o3e210 SS




(zz0z ussapad) spromydred {(zz0z wea], 210D )
pus {(TZ0Z e 39 Io1uIen) SIpLia {(£Z0Z BISMONIMOIS)
[0da.33 (9107 weysdrm) zao1dss (qezoz Te
19 weyIM) 14pn {(2z0z wea, 910D Y) s1es {(L00Z
‘[e 39 usuesy ) uesaa (6T 0z WeydIM) IeyrIasse

(zz0z ussiapad)
sptomyded ‘(0z0z 10491S) Apoid {(zzoz [9p1es pue
weysaIpm) sa[eds (zz0z wea, 210D y) s (9102
weyxdIM)z101d38 (1707 e 39 191uten) sipLiia ((£007
weyIpM) zadeysal (6T 07 WeydIAL) 1eyn.1asse

(6T02Z 313q[ID pue 1p1aq[y) AIp[IY (2202
Ja[[NIN) swy {(TZ0Z e 39 Ia1uren) sipLia {(e€z0z
‘&30 weysaim) JAdp {(0z0z 310491S) Apord (zz0z
wea [, 2100 ) P8 {(2Z0 [9pIas pue WeysdIp) safeds
‘(9107 weydIip) z3o1dSS (zzoz s1eydlog) ewnoerd
‘(zz0z weyspip) 18urns {(6T0Z WeydIA)) Jeyiiasse

(6102 312q[ID pue 1p1aq[y) AIp[IY
‘(zzoz 101mpn) swy {(6T0Z WeydIM) JeynIasse

(6T0Z 312910 pue IpIaq[y) AIP[[IY
‘(zz0oz 1o1mmN) swy {(6T0Z WeydIM) IeynIasse

(0z0z1194315) Apoid {(zz0z [9p1aS pue
weyydIM) sa[eds {(zz0z wes, 9103 ) pud (9107
weysI)zio[dss (1207 e 39 1a1uren) sipLia {(£002Z
weyPIpM) zadeysal (6T 07 WeydIAL) 1eyn.Iasse

St

‘uonisodwod NSO Y3
ur ALreqruaissip snany-Aelg ayl uo paseq adeds [euoisuswuip
-om) e ut sadeaspunos ay3 1o[d 03 (YoDd) sishjeuy

aeurpaoo) redmoutid sasq) 's309[(qo adeaspunos jo Isi| e saye],

‘sadeaspunos om) usamiaq aduaeaa.ld pue sduasard NSO
9 Ul 90UIAYIP 9y ISe.auod A[[ensia 0} deuneay adesspunos

[enUAIIJIP B sa0Npo.{ 's309[qo adeaspunos om) saxe],

‘poLiad yi z € ul A}ISISAID
pue ssauydLI 9dedspunos oy} Ul UO}BLIBA 9} SSI[ENSIA

03 sy01d eage saonpo.ad pue 303(qo adeaspunos e saxe],

‘slaqunu
[[IH jo y1omawej [eansnels ay Suisn (JSS) Ssouuasa

adeaspunos a3 saandwod pue 303(qo adeaspunos e saye],

'SIoquINU [[IH JO Iomawelj [eonsnels ay3 Suisn
(0 < b :gss) Ai1s1aa1p adeaspunos 1o (o = b {yss) ssauydL

adeaspunos a3 saandwod pue 303(qo adeaspunos e saye],

‘portad Suip.aodal a3 SuLmnp adusfesa.ld pue aduasard
NSO a3 Suimoys ‘@deds j1e) 21ISN0JE B} JO Uoneuasatdal

deunjeay [ensia e saonpo.ad pue 303[(qo adeaspunos e saye],

eood ss

sxedwoo ss

jo1d A3TSISATP SS

SssauusAs sS

A3TsasATp SS

dewjeay ss

uosrredurod

£)1S19A1p adeodspunos-nnp

JUDUWISSISSE A)ISI9A1p adedspunos 9[3uls



9r¢

(6107 319910 pue p1aq[y) AIP[IY
{(zz0z wes, 210D ) s3e3s {(£207 e 30 WeyPIMm)
IA1dp “(ZZ0Z B[N Swy ‘(6TOZ WEYIIM) IBYNIaSSE

(6102 112q[1D pue IpI3q[y) AIP[[IY
‘(zz0z wea, 210D ) s3eas {(£207 e 30 WeypIMm)
1A1dp “(zz0z 11NN swy (6TOZ WeYsdIM) IeyNIasse

“J9A0ULINY JOSNS-P.IedDE[ LI9AOULINY

921(J-uasualgs ‘de[1oA0 paedde[ ‘de[I9A0 321(J-UdSUIBS

:Jo auo 3uIsn 3sI] 8y} ul $309(qo adedspunos usamlaq aduelIsIp
asimuared a3 sanduwo) *s109(qo adeaspunos Jo IsI| e Saye,

sIequinu

[ITH jo sdiysuone[al aanesdnimu ay3 Suimorjoy syusuodwod
ewiwed pue ejaq ‘eydie aA1ndadsal sy 0jul A}SIDAIP 10
ssauypL1 adeospunos a3 Suisodwodap ‘Suruonin.red ASIoAIp

[9Ad[-II[NW SULIOJId '$199(q0 adeaspunos jo 1sI| e saye],

stpated ss

jaedaTp ss




References

Alberdi, A;; Gilbert, M.T.P. (2019). hilldiv: an R package for the integral analysis of
diversity based on Hill numbers. Biorxiv, p.545665.

Borchers, H. W. (2022). pracma: Practical Numerical Math Functions. Available
online at https://CRAN.R-project.org/package=pracma.

Csardi, G.; FitzJohn, R. (2019). progress: Terminal Progress Bars. Available online
at https://CRAN.R-project.org/package=progress.

Dowle, M.; Srinivasan, A. (2022). data.table: Extension of ‘data.frame’. Available
online at https://CRAN.R-project.org/package=data.table.

Garnier, S.; Ross, N.; Rudis, B.; Filipovic-Pierucci, A.; Galili, T.; Greenwell, B. (2021).
viridis: Zenodo.

Hijmans, R. ]. (2023). terra: Spatial Data Analysis. Available online at
https://CRAN.R-project.org/package=terra.

Landini, G.; Randell, D. A;; Fouad, S.; Galton, A. (2017). Automatic thresholding from
the gradients of region boundaries. Journal of Microscopy 265(2), pp.185-195.

Ligges, U,; Krey, S.; Mersmann, O.; Schnackenberg, S. (2023). tuneR: Analysis of
Music and Speech. Available online at https://CRAN.R-
project.org/package=tuneR.

Miiller, K. (2022). hms: Pretty Time of Day. Available online at https://CRAN.R-
project.org/package=hms.

Oksanen, |.; Kindt, R.; Legendre, P.; O’'Hara, B.; Stevens, M. Henry H. (2007). The
vegan package. Community ecology, 10, p.719.

Pedersen, T. L. (2022). patchwork: The Composer of Plots. Available online at
https://CRAN.R-project.org/package=patchwork.

R Core Team (2022). R: A Language and Environment for Statistical Computing.
Vienna, Austria. Available online at https://www.R-project.org/.

Ren, K. (2021). rlist: A Toolbox for Non-Tabular Data Manipulation. Available
online at https://CRAN.R-project.org/package=rlist.

Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and
shiny. Available online at https://plotly-r.com.

SlowikowskKi, K. (2023). ggrepel: Automatically Position Non-Overlapping Text
Labels with ‘ggplot2’. Available online at https://CRAN.R-
project.org/package=ggrepel.

Sueur, |.; Aubin, T.; Simonis, C. (2008). Seewave: a free modular tool for sound

analysis and synthesis. Bioacoustics, 18, pp.213-226.

247



Teucher, A. (2019). lutz: Look Up Time Zones of Point Coordinates. Available
online at https://CRAN.R-project.org/package=lutz.

Thieurmel, B.; Elmarhraoui, A. (2022). suncalc: Compute Sun Position, Sunlight
Phases, Moon Position and Lunar Phase. Available online at https://CRAN.R-
project.org/package=suncalc.

Weston, S. (2022a). doSNOW: Foreach Parallel Adaptor for the 'snow’ Package.
Available online at https://CRAN.R-project.org/package=doSNOW.

Weston, S. (2022b). foreach: Provides Foreach Looping Construct. Available online
at https://CRAN.R-project.org/package=foreach.

Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of
Statistical Software, 21(12), pp.1-20. Available online at
http://www.jstatsoft.org/v21/i12/.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag
New York. Available online at https://ggplot2.tidyverse.org.

Wickham, H. (2019). assertthat: Easy Pre and Post Assertions. Available online at
https://CRAN.R-project.org/package=assertthat.

Wickham, H. (2022). stringr: Simple, Consistent Wrappers for Common String
Operations. Available online at https://CRAN.R-project.org/package=stringr.

Wickham, H.; Frangois, R.; Henry, L.; Miiller, K.; Vaughan, D. (2023a). dplyr: A
Grammar of Data Manipulation. Available online at https://CRAN.R-
project.org/package=dplyr.

Wickham, H.; Seidel, D. (2022). scales: Scale Functions for Visualization. Available
online at https://CRAN.R-project.org/package=scales.

Wickham, H.; Vaughan, D.; Girlich, M. (2023b). tidyr: Tidy Messy Data. Available
online at https://CRAN.R-project.org/package=tidyr.

Zeileis, A.; Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular
Time Series. Journal of Statistical Software, 14(6), pp.1-27.

248



soundscapeR: An R-package for the exploration, visualisation, diversity
quantification and comparison of soundscapes

Supplementary Materials 2

S o
# Welcome!
# This R scripts support the analysis outlined in Luypaert
et # al. (2023): soundscapeR: An R-package for the
exploration, # visualisation, diversity quantification and
comparison of # soundscapes.
# Feel free to follow along all the workflow's steps that
we # presented in the soundscapeR paper using the
instructions # provided below.

To dive into the functions with greater detail, consult
the package vignette available online here:
thomasluypaert.github.io/soundscapeR vignette

') If you don't want to wait for the index computation
step, which is the most time-consuming skip ahead to
'PART 2: EXPLORE, VISUALISE AND QUANTIFY DIVERSITY'
S

R

# 0. PRIORS —————m— oo oo
# Before we get started, if you haven't done so already,

# download and install the soundscapeR R-package using the
# code provided below.
remotes::install github ("ThomasLuypaert/soundscapeR")

library (soundscapeR)

# For the sake of the code demonstration, we assume you

have # downloaded and unzipped the raw sound files and

saved them # in a directory called ‘output dir’.

# 1. PART 1: CREATE SOUNDSCAPE OBJECTS —-—-=-—-———————————————
# 1.1. Download the raw sound files

# Download link:

https://datadryad.org/stash/share/JUnmste-

fWNy3UUkjko86mA3iGKxOrSI9iHsLzmPoOs

# Instruction: Download the raw sound files from the link

# above and unzip the downloaded folder

# Instruction: Go inside the unzipped directory and copy
the # file path to the output dir object below
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# Instruction: Inside the unzipped directory, you will
find 5 # zipped folders. Unzip each of these to the same
location.
# Instruction: Now proceed with the code below.
output dir <-
"PASTE THE FULL PATH TO THE LOCATION OF THE DOWNLOADED AND
_UNZIPPED FILES HERE"

# 1.2. Load metadata
metadata <- read.csv(file = paste0 (output dir,
"/metadata.csv"))

# 1.3. Search for the raw sound files in the folders

fileloc <- ss find files(parent directory = output dir)

# 1.4. Check if everything is in order with the files

fileloc <- ss assess files(file locs = fileloc, full days
= TRUE)

names (fileloc) <- c("Andre", "Mascote Al", "Mascote A2",
"Mascote B1", "Mascote B2")

# 1.5. Add the folder path to each soundscape to the
metadata

metadata$Sfolderloc <- sapply(fileloc, function (x)
dirname (x[1]))

# 1.6. Calculate the CVR index for each l1-min file at
Andre Island

# Note: This step might take a while... You can speed it

up
# by setting parallel = TRUE.

# Note: If you need to interrupt your index computation,
you # can do so without problems. Just resume the
calculation

# later and the function will automatically detect where
it

# left off.

# Note: If you have access to a High-Performance Computing
# (HPC) platform, this will speed up the process
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# considerably, especially if you're dealing with large
# studies

ss_index calc(file list = fileloc[["Andre"]],
window = 256,
parallel = FALSE)

# 1.7. Create a soundscape object for Andre Island
# Direct way

Andre_ soundscape <-
ss_create(fileloc = metadata$folderloc[1l],

samplerate = 44100,
window = 256,
index = "CVR",
date = metadata$first dayl[1],
lat = metadata$lat[1l],
lon = metadata$lon[1l],
method = "IsoData",
output = "incidence freqg")

# Step-by-step

Andre soundscape merged <-
ss_index merge(fileloc = metadataSfolderloc[1l],

samplerate = 44100,
window = 256,
index = "CVR",
date = metadata$first dayl[1l],
lat = metadataS$lat[1l],
lon = metadata$lon[1l])

Andre soundscape binarized <-
Ss _binarize (merged soundscape = Andre soundscape merged,
method = "IsoData")

Andre_ soundscape aggregated <-
ss_aggregate (binarized soundscape =
Andre soundscape binarized,
output = "incidence freqg")

# Great work! We've successfully created a soundscape
object # for Andre Island. In the next section, we'll
demonstrate

# how we can use these soundscape objects to explore,
# visualise, quantify, and compare the soundscape

251



diversity of # these sites. To get the soundscapes of the
other islands,

# we can load a list of soundscape objects saved in the

# soundscapeR package

data ("balbina")

# 2. PART 2: EXPLORE, VISUALISE AND QUANTIFY DIVERSITY ---
# 2.2. Make heatmaps

heatmap 1 <- ss_ heatmap (soundscape obj =
balbina[["Andre"]],
type = "regular",
annotate = TRUE)

heatmap 2 <- ss_heatmap (soundscape obj =
balbina[["Andre"]],
type = "polar",
annotate = TRUE)

# 2.3. Compute the soundscape metrics for various diurnal-
phase subsets

ss_diversity(soundscape obj = balbina[["Andre"]],
gvalue = 0,
subset = "total") # Richness
ss_diversity (soundscape obj = balbinal[["Andre"]],
gvalue = 2,
subset = "total") # Diversity
Ss_evenness (soundscape obj = balbina[["Andre"]],
subset = "total") # Evenness

# 2.4. Calculate four different diversity plot types for
Andre island

# Total
ss_diversity plot (soundscape obj = balbina[["Andre"]],
gvalue = 0,
graphtype = "total",

maxfreq = 20000,
smooth = TRUE,
movavg = 20)

# Frequency
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diversity plot 2 <- ss diversity plot (soundscape obj

balbina[["Andre"]],

gvalue = 0,

graphtype = "frequency",
maxfreq = 20000,

nbins = 4,

smooth = TRUE,

movavg = 20)

# Normalised frequency

ss_diversity plot (soundscape obj

balbina[ ["Andre"]],

gvalue = 0,

graphtype = "normfreq",
maxfreq = 20000,

nbins = 4,

smooth = TRUE,

movavg = 20) +

guides (fill

# Line frequency

ss diversity plot (soundscape obj

guide legend(nrow =
title.position
title.
title.vjust
label.position
label.

1,

"top",
hjust =

0.5,
= 0.5

4

"top",
0.5))

hjust

balbina[["Andre"]],

gvalue = 0,

graphtype = "linefreq",
maxfreq = 20000,

nbins = 4,

smooth = TRUE,

movavg = 20,

timeinterval = "4 hours")

# 2.5. Compare the soundscapes
Mascote Al

diff heatmap <-

Ss_compare (soundscape obj A =

soundscape obj B
type "regular",
maxfreqg 20000,
timeinterval = "4
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of Andre island and

balbinal[ ["Andre"]],
balbina[["Mascote A1"]],

hours")



# 2.6.

Produce a PCAO plot showing the five sites on two

islands:

ss_pcoa (soundscape list = balbina,

grouping = c("Andre", "Mascote", "Mascote",

"Mascote", "Mascote"),

# 2.7.

screeplot = TRUE)

Partition the soundscape diversity using a two-

level hierarchy

ss_divpart (soundscape list = balbina,

gvalue = 0)

ss_divpart (soundscape list = balbina,

gvalue = 1)

ss_divpart (soundscape list = balbina,

# 2.8.

gvalue = 2)

Compute pairwise dissimilarities between

soundscapes

ss pairdis (soundscape list = balbina,

gvalue = 0, )
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soundscapeR R-package

Welcome!

Hithere!

Welcome to the case study vignette of the soundscaper R-package.
Here, we demonstrate the use of the functions contained in the
package using data from a real-world ecological system. The goal of

soundscapeR is to provide a standardized analytical pipeline for the
computation, exploration, visualization, diversity quantification and
comparison of soundscapes using Hill numbers. The package is
designed to work with either continuous or regular-interval long-
duration acoustic recordings, and can quantify the diversity of
soundscapes using a range of different diversity types (richness,
evenness & diversity), spatial scales (alpha, beta and gamma
diversities), and spectro-temporal subsets.

If you are unfamiliar with the soundscaper workflow, head on over to
Luypaert et al. (2022) and take a look at the theoretical concepts.
Moreover, additional background information can be found on the GitHub landing page for this R-package.

Without further ado, let’s get started!

Case study data

The studv svstem
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For the case study presented here, we will be comparing the soundscapes of two islands of differing size in the
Balbina Hydroelectric Reservoir (BHR; Fig. 1) in the Brazilian Amazon. The BHR is one of the largest hydroelectric
reservoirs on Earth and was formed when a tributary of the Amazon, the Uatuma River, was dammed in 1987,
turning the former hilltops of primary continuous forest into > 3,500 islands spanning an area of approximately
300,000 ha (Bueno and Peres 2019). The artificial tropical rainforest archipelago now contains islands spanning a
wide range of sizes, ranging from 0.2 to 4,878 ha.

Figure 1: An aerial photograph of the Balbina Hydroelectric Reservoir, showcasing a highly fragmented landscape consisting of many islands of different sizes.

Picture credit belongs to Luke Gibson.

Long-duration acoustic data was collected at 151 plots on 74 islands (size range: 0.45-1699 ha) and 4 continuous
forest sites at the BHR between July and December 2015. The number of plots per island was proportional to the
habitat area associated with each island, and varied between 4-10 for continuous forest sites and 1-7 for islands. At
each plot, a passive acoustic sensor (an LG smartphone enclosed in a waterproof case linked to an external
omnidirectional microphone) was attached to a tree trunk at 1.5m height and set to record the soundscape for 1
minute every 5 minutes for 4-10 days at a sampling rate of 44,100 Hz using the ARBIMON Touch application.

Why the BHR?

Previous work has shown that the soundscape diversity metrics that can be computed using the soundscaper R-
package are a good proxy for the taxonomic diversity at the Balbina Hydroelectric Reservoir (Luypaert et al. 2022).
Moreover, more recently, we showed that the soundscape richness is sensitive to one of the most fundamental
patterns in ecology, the positive scaling of richness with island size, which we termed the soundscape-area
relationship (SSAR - see Luypaert et al. 2023).

Clearly, the BHR is an informative system to explore how soundscapes can be used to uncover ecology’s secrets. As

enirh inthic fraca ctiidu s invactinata tha calinderanac af fuiin iclande Af Aiffarina civa +a damanctrata tha ctane in
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the soundscaper workflow.
The selected islands

For this case study, we will be looking at the soundscapes of two islands at the BHR: Andre island (2.08 ha) and
Mascote island (668.03 ha). Since the number of plots at which we collected soundscape data is proportional to the
island size, we will use acoustic data for 1 plot at Andre island and 4 plots at Mascote island (Fig. 2). At each of these
plots, sound was recorded for 1 minute every 5 minutes for 5 days (1440 1-min sound files per plot).

ANDRE ISLAND MASCOTE ISLAND
2.08 HA 668.02 HA

Figure 2: A schematic representation of the islands used in this case study.

The raw sound files for these 5 plots on 2 island can be downloaded from the online repository here.

The workflow

Before we start

Before starting the practical part of the case study, first, we will download and install the soundscaper R-package
from GitHub and load it into R.

If you haven't already installed the package, uncomment the first command below and run the code chunk:

# devtools::install_github(repo = "ThomasLuypaert/soundscapeR")

library(soundscapeR)
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Workflow overview

The Hill-based diversity quantification of soundscapes presented in Luypaert et al. (2022) consists of three key
steps:

« Step 1: Grouping sounds into Operational Sound Units (OSUs) and evaluating OSU presence in each sample of the
24h acoustic trait space

« Step 2: Assessing the prevalence (or incidence) of OSUs across the recording period

« Step 3: Quantifying the soundscape diversity using the framework of Hill numbers

To simplify the use of the soundscaper package, we created an S4-object which we term a ‘soundscape’ object. This
data object has a formally defined structure consisting of slots, containing all relevant metadata and data objects that
are generated during the workflow (step 1 and 2). The soundscape object forms the basis on which all functions
downstream in the workflow are applied (step 3). Using this object-oriented programming approach ensures that
metadata only needs to be entered once and is remembered downstream. Moreover, all chosen parameters in the
workflow are stored by the soundscape object and can be accessed easily. Finally, the slots containing the various
metadata and data objects have strict expectations of what each data input looks like, thus minimizing the chance of
accidental errors.

Take a look at Figure 3 for an overview of the soundscaper workflow:

o PREPARE SOUNDSCAPE OBJECT
:J
RAW SOUND FILES

VISUALLY EXPLORE SOUNDSCAPES
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CALCULATE SPECTRAL INDICES

ss_index_calc()

'
]

]

]

I

i

I

1

)

i

)

]

1

1

¥ ! QUANTIFY SOUNDSCAPE DIVERSITY .
: V // Richness: 36.6%

CREATE A SOUNDSCAPE RJECT i ’ = i 8% diverwity() = Diversity: 26.2%

1

i

|

H

1

§

1

1

]

I

I

]

1

1

]

]

]
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ss_pcoa() *
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RAr R \ COMPARE SOUNDSCAPE DIVERSITIES

MULTIPLE SOUNDSCAPE ss_divpart() ’
OBJECTS ss_pairdis()

Figure 3: A schematic overview of the soundscapeR workflow

As you can see, there are three phases to the soundscaper workflow:

» Phase 1: Prepare a soundscape object using the ss_index_calc function for index calculationand the ss_create
function for calculating OSU presence and incidence across the recording period

» Phase 2: Explore the diversity of a single soundscape using the ss_heatmap , ss_diversity , ss_evenness ,and
ss_diversity_plot functions

» Phase 3: Compare the diversity of multiple soundscapes using the ss_compare , ss_pcoa, ss_divpart ,and
ss_pairdis functions

Below, we will go over each of these phases and show you how to use each function using the case study data
outlined above.

Phase I: Preparing soundscapes

11. The ss_index_calc function

A.In theory

To quantify the presence of OSUs in each day of the recording period, first, we will make use the Acoustic Cover
(CVR) spectral acoustic index (also known as ACTsp in the Towsey 2017 technical report) to capture the acoustic
properties of sound in our 1-minute recordings. Per sound file, this index captures the fraction of cells in each noise-
reduced frequency bin whose value exceeds a 3 dB threshold. By using this spectral acoustic index, we greatly
condense the amount of information contained in these sound files while retaining important data on their time-
frequency features. For more information on spectral acoustic indices are their use, check out this website.

To calculate these spectral indices, we will use the ss_index_calc() function. This function calls on the

‘AnalysisPrograms’ software tool, developed by the QUT Ecoacoustic group, to compute a series of spectral acoustic
indices.

Let’s take a look at the input parameters of the ss_index_calc function:

Function input parameters

« fileloc:
The full-length path to the folder containing the sound files for which to compute indices. In our case, for each
plot, we stored the sound files in a separate folder which we will supply to the fileloc argument.

« outputloc:
The full-length path to the location where you wish to save the output files. Defaults to the same location as
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the fileloc.

» samplerate:
The number of times the sound was sampled each second. This is a fixed parameter determined by your
recording setup, although downsampling to a lower sampling rate is possible.

* window:
A variable of the Fast Fourier Transformation, expressed as the number of samples. The window size of choice
depends on the fundamental frequency, intensity and change of the signal of interest, and influences the
temporal and frequency resolution of the analysis. The window size is generally a power of 2.

o parallel:
A boolean flag (TRUE of FALSE) indicating whether parallel processing should be enabled for index
computation. Set to FALSE by default.

In case the duration of each sound file is longer than 1 minute, the function cuts the files into 1-minute segments
before index calculation.

B. In practice

Below, you can find the code to calculate the CVR-index for all sound files in a folder.

# ss_index_calc(fileloc = "filepath_here",
# outputloc = "filepath_here",
# samplerate = 44100,

# window = 256,

# parallel = FALSE)

Because the index calculation can be time consuming, for the purposes of this vignette, here we will download the
CVR-index ‘csV’ files we previously calculated from the KNB repository:

# 1. Download the metajam package
# install.packages("metajam")

# 2. Set folder location to save data
setwd("G:/soundscapeR_case_study")

dir.create(paste@(getwd(), "/case_study_data"))

## Warning in dir.create(paste@(getwd(), "/case_study_data")):
## 'G:\soundscapeR_case_study\case_study_data' already exists

output_dir <- paste®(getwd(), "/case_study_data")
# 3. Download data and metadata

# metajam: :download_d1_data(data_url = “"https://knb.ecoinformatics.org/knb/d1/mn/v2/object/urn%3Auuid%3Acfccc67
#

# # 4. Unzip

#

# to_unzip <- list.files(output_dir, full.names = TRUE)

#
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# sapply(to_unzip, function(x) unzip(zipfile = x,exdir = output_dir, overwrite = TRUE))
# Specify the folder locations
folder_locs <- list.dirs(path = output_dir, recursive = FALSE)
1 »
In addition to the sound data, we will also require some metadata for the downstream analysis, so let’s prepare a

metadata object.

Make a metadata object:

island_metadata <- data.frame(plot = c("Andre", "Mascote_Al", "Mascote_A2", "Mascote_B1", "Mascote_B2"),
first_day = c("2015-10-10", rep("20815-10-16", 4)),
lat = c(-1.58462, -1.64506, -1.6489, -1.64486, -1.65936),
lon = c(-59.87211, -59.82035, -59.83297, -59.84817, -59.83546),
folder_locs = folder_locs)

1.2. The ss_create function

A.In theory

Following index computation, we use the ss_create function to create a soundscape object.
The ss_create function is a wrapper function combining the functionality of three functions in sequence:

* ss_index_merge : Performs chronological concatenation of the CVR index files into a time-frequency-index value
data frame

* ss_binarize : Converts the raw CVR values of OSUs into a binary detection (1)/ non-detection (0) variable for
each day in the recording period

e ss_aggregate : Calculates the incidence of OSUs across all sampled days

Although each of these sub-functions can be used individually, in most cases, the ss_create function will cover the
needs of the user in a single step.

Let’s take a look at the input parameters for the ss_create function:

Function input parameters

« fileloc:
The full-length path to the folder containing the sound files for which to compute indices. In our case, for each
plot, we stored the sound files in a separate folder which we will supply to the fileloc argument.

« samplerate:
The number of times the sound was sampled each second. This is a fixed parameter determined by your
recording setup, although downsampling to a lower sampling rate is possible.

» window:
A variable of the Fast Fourier Transformation, expressed as the number of samples. The window size of choice
depends on the fundamental frequency, intensity and change of the signal of interest, and influences the
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temporal and frequency resolution of the analysis. The window size is generally a power of 2.

index:

The acoustic index of interest. Options are “BGN”, “PMN’, “CVR’, “EVN", “ENT”, “ACI", “OSC”, “SPT", “RHZ",
“RVT”, “RPS” and “RNG”. For a brief description of indices, consult the ss_index_calc documentation. Note that
the soundscape diversity metrics that can be calculated downstream have only been tested using the Acoustic
Cover (CVR) index.

date:

The first day of the recording period. Used for managing time-objects in R. Formatted as “YYYY-mm-dd.

lat:

The latitude of the site at which the sound files were collected. Coordinates should be specified in decimal
degrees as a numerical variable.

lon:

The longitude of the site at which the sound files were collected. Coordinates should be specified in decimal
degrees as a numerical variable.

method:

The algorithm used to determine the threshold. Options are “IJDefault”;'Huang”, “Huang2”, “
“IsoData’, “Li", “MaxEntropy”, “Mean’”, “MinError!”, “Minimum”, “Moments”, “Otsu’”, “Percentile’, “RenyiEntropy”,
“Shanbhag”, “Triangle”, “Yen”, and “Mode”. To specify a custom threshold, use method="Custom” in combination
with the value argument. Consult http://imagej.net/Auto_Threshold for more information on algorithm
methodologies.

value:

Optional argument used to set a custom threshold value for binarization - used in combination with
method="Custom”.

output:

Determines whether the function returns the raw total number of detections per time during the recording
period (output = “raw”), or the incidence frequency (total number of detections / number of recordings for that
time - output = “incidence_freq).

Intermodes”,

ss_create function returns an S4 soundscape object.

B. In practice

Now that we know which input parameters to provide, let’s give this a try. We will prepare the soundscape objects
for our five plots on the two islands described above. We can use the 1app1ly function to iterate over the metadata
we previously saved.

Let'srunthe ss_create function:

undscape_list <-

lapply(X = 1:nrow(island_metadata), function(x)
ss_create(fileloc = island_metadata$folder_locs[x],
samplerate = 441ee,
window = 256,
index = "CVR",
date = island_metadata$first_day[x],
lat = island_metadata$lat[x],
lon = island_metadata$lon[x],
method = "IsoData",

output = "incidence_freq"))

mes(soundscape_list) <- c("Andre", "Mascote_Al", "Mascote_A2", "Mascote_B1", "Mascote_B2")
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Doing so, we will get a list of soundscape objects for further analysis. But before we proceed with phase two of the
pipeline, let’s have a closer look at this ‘soundscape’ object in the next section!

1.3. Introducing the soundscape object

As we previously mentioned, the ss_create function requires us to provide some additional metadata information,
as well as several parameters on how the data should be processed. Using the ss_create function, we are creating a
new type of data object which stores all the relevant information, and will form the basis on which all subsequent
functions in the workflow are performed!

Let’s take a look at this newly created object for Andre island:

# Let's see what class this object is:

summary (soundscape_list[["Andre"]])

## Length Class Mode
## 1 soundscape sS4

This new data object is an ‘'S4’ object of the class soundscape.

# Let's see what sort of information this object holds

soundscape_list[["Andre"]]

1. Soundscape metadata
Sampling point metadata:

First day of recording: 2015-10-10

Latitude of sampling point: -1.58462
Longitude of sampling point: -59.87211
Time zone of sampling point: America/Manaus
Sunrise time at sampling point: ©5:43:36
Sunset time at sampling point: 17:51:47

Acoustic index metadata:

Path to raw sound files: G:/soundscapeR_case_study/case_study_data/Andre
Spectral index used: CVR

Sampling rate of the recording: 44100 Hz

Window size used in FFT: 256 samples

Frequency resolution: 172.2656 Hz

Temporal resolution: ©.005884989 ms

Data frame binarization metadata:

Used binarization algorithm: IsoData
Binarization threshold: .16

Aggregated data frame metadata:

S S EEEEEEEEEEEE TN
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Output format:

incidence_freq
172 - 22050 Hz

Data frame frequency range:
©0:00:00 - 23:55:00

Data frame time range:

2. Soundscape data

Merged data frame data:

Columns 1 to 5 and rows 1 to 5 displayed

22050
21877
21705
21533
21360

® ® ® ® ®

15:55:00
19408888
45009887
49172651
31439276
01966906

o 0O ® ®© ®

Binarized data

Columns 1 to 5 and

16:00:00
.18264127
.48069518
.50431887
.34571756
.02580914

16:05:00
©.18909356
©.49637361
©.50005203
©.31616193
9.01821209

frame data:

16:10:00
0.18763659
0.48579457
0.50993860
©.33884900
0.82435217

rows 1 to 5 displayed

15:55:00 16:00:00 16:05:00 16:10:00 16:15:80

1

ok
1
1
e

data frame:

3

® R R R

data frame data:

® Rr B R

1 to 5 and rows 1 to 5 displayed

22050 1
21877 1
21765 1
21533 1
21360 2]
Aggregated
Aggregated
Columns
00:00:00
220508 0.6
21877 15
21705 1.e
21533 1.e
21360 8.8

Aggregated data frame per time:

First list element displayed:

i

[CR

e.6 .6
1.0 1.0
1.0 1.0
1.0 1.0
©.0 e.e
00:00:00

Columns 1 to 5 and rows 1 to 5 displayed

©0:00:00 00:00:00.1 00:00:00.2 ©0:00:00.3 00:00:00.

22050
21877
217e5
21533
21360

e

1
1
.
=}

1

© B B R

[}

i
1
1
e

1

1
1
1
e

1

© B Rp R

©00:05:00 ©0:10:00 ©0:15:00 ©0:20:008

41

© B B

16:15:00
©.20761786
©.513086067
©.51930482
©.32802581
©.01842023

Number of soundscape samples per time (sampling effort):

List elements 1 to 5 displayed

$°00:00:

[T1 5

$°00:05:

[i] s

$'00:10:

e’

ee’

08’
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$°00:15:00"
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$°00:20:00°
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As we can see, this objects holds two types of information:

» Metadata: Information regarding the data collection and which parameters where used in the different steps of
preparing the soundscape object

» Soundscape information: Various intermediate data objects that are created as the ss_create functionworks its
way through the index concatenation, binarization and computation of OSU abundance steps.

To access the information stored in this object, we will use the ‘@’ symbol.

Let’s take a look at which types of data are stored in the object so far:

# Let's check what sort of data collection metadata is stored in the object

print(paste@("First day of data collection: ", soundscape_list[["Andre"]]@first_day))

## [1] "First day of data collection: 2015-10-10"

print(paste@("Latitude at data collection site: ", soundscape_list[["Andre"]]@lat))

## [1] "Latitude at data collection site: -1.58462"

print(paste@("Longitude at data collection site: ", soundscape_list[["Andre"]]@lon))

## [1] "Longitude at data collection site: -59.87211"

print(paste@("Time zone at data collection site: ", soundscape_list[["Andre"]]@tz))

## [1] "Time zone at data collection site: America/Manaus"”

print(paste@("Sunrise at time of data collection: ", soundscape_list[["Andre"]]@sunrise))

## [1] "Sunrise at time of data collection: 2015-10-10 ©5:43:36"

print(paste@("Sunset at time of data collection: ", soundscape_list[["Andre"]]@sunset))
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## [1] "Sunset at time of data collection: 2015-10-10 17:51:47"

The ss_create function has automatically calculated a set of important ecological variables, such as sunrise and

sunset times, and timezones, based on the first day of recording and geographical coordinates.

Let’s continue looking at the data stored in the soundscape object:

# Let's check what sort of metadata the object has stored regarding past data processing steps

print(paste8("Where are the raw sound files located:

", soundscape_list[["Andre"]]@fileloc))

## [1] "Where are the raw sound files located: G:/soundscapeR_case_study/case_study_data/Andre"

print(pasted("What acoustic index are we using:

"

## [1] "What acoustic index are we using: CVR index"

, soundscape_list[["Andre"]]@index,

index"))

print(paste@("What was the samplerate used to collect the data: ", soundscape_list[["Andre"]]@samplerate, " Hz"

« | —

## [1] "What was the samplerate used to collect the data: 44100 Hz"

print(paste8("What was the window length used during the FFT: ", soundscape_list[["Andre"]]@window,

samples™)

« I

## [1] "what was the window length used during the FFT: 256 samples"

The soundscape object has recorded where our raw data files are stored, which acoustic index we're working with,
what sampling rate was used during data collection, and what window length was used during the acoustic index

calculation.

Let’s take a look at some of the data frames we created by running the ss_create function:

head(soundscape_list[["Andre"]]@merged_df)[,1:5]

## 15:55:00
## 22050 ©.19408888
## 21877 0.45009887
## 21705 ©.49172651
## 21533 0.31439276
## 21360 0.01966906
## 21188 0.01207202

ooo o000

16:00:00 16:05:00
18264127 ©.18909356
48069518 0.49037361
50431887 ©.50005203
34571756 ©.31616193
02580914 ©.01821209

.01800395 0.01186388

16:10:00
0.18763659
0.48579457
0.50993860
©.33884900
0.082435217
0.91592257

16:15:00
©.20761786
©.51306067
©.51930482
©.32802581
0.01842023
©.01321678

As we previously mentioned, the first step performed by the ss_create function is the chronological concatenation
of the CVR-index files for a site into a time- frequency—lndex value data frame. This data frame is stored in the

R e B b R R Al SR M ST S e o A e N ' A o R B
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@mergea_ar siot, ana contains tne tume-or-recoraing as coiumn names, tne rrequency bDins as row names, ana e
CVR-index for each time-frequency pair as values. Each column contains the spectral index values of a single sound
file.

Let’s inspect this data frame a little closer:

# How many columns does the data frame contain?

paste@("The data frame contains: ", ncol(soundscape_list[["Andre"]]@merged_df), " columns")

## [1] "The data frame contains: 1440 columns"

# What are the column names?

head(colnames (soundscape_list[["Andre"]]@merged_df))

## [1] "15:55:00" "16:00:00" "16:05:00" "16:10:00" "16:15:00" "16:20:00"

tail(colnames (soundscape_list[["Andre"]]@merged_df))

## [1] "15:25:00" "15:30:00" "15:35:00" "15:40:00" "15:45:00" "15:50:80"

As we said, the number of columns equals the number of sound files collected during the acoustic survey - in this
case, 1440 sound files. The name of each column corresponds to the time of day at which the recording was collected.

Next, let’s take a look at the rows:

# How many rows does the data frame contain?

paste@("The data frame contains: ", nrow(soundscape_list[["Andre"]]@merged_df), rows"

## [1] "The data frame contains: 128 rows"

# What do these row names look like?
# The first five names

pastee("The first five rownames: ", paste@(rownames(soundscape_list[["Andre"]]@merged_df)[1:5], collapse = ",

y

## [1] "The first five rownames: 2205@, 21877, 21705, 21533, 21360"

# The last five names

paste@("The last five rownames: ", paste®(rownames(soundscape_list[["Andre"]]@merged_df)[123:128], collapse =

a N
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## [1] "The last five rownames: 1033, 861, 689, 516, 344, 172"

The data frame contains 128 rows, each corresponding to a unique frequency bin. The frequency bins range from O -
22,050 Hz, and are of approximately 172 Hz width.

Now, let’s inspect the CVR-index values:

# What is the minimum CVR-index value in our data frame?

paste@("The minimum CVR-value in our data frame is: ", min(soundscape_list[["Andre"]]@merged_df))

## [1] "The minimum CVR-value in our data frame is: ©"

# What is the maximum CVR-index value in our data frame?

paste®("The max CVR-value in our data frame is: ", max(soundscape_list[["Andre"]]@merged_df))

## [1] "The max CVR-value in our data frame is: ©.672286398168384"

As we can see, in our dataset, the CVR-index values range between 0 - 0.67. Remember, CVR-index values capture
the proportion of cells in each noise-reduced frequency bin of a sound file that exceeds a 3-dB amplitude threshold.
As such, the values can technically range between 0-1.

After the CVR-indices for a soundscape recording of a site have been chronologically concatenated, instead of using
the raw CVR-values that we computed for every OSU in each 24h sample of the soundscape, the ss_create function
determines a threshold value for each site, and converts the OSU'’s CVR-index values into a binary detection (1) /
non-detection (0) variable per 24h sample based on this threshold. This step is aimed at detecting the presence of
sound for every OSU in each 24h sample of acoustic trait space while removing low-amplitude or transient sounds,
which potentially have a non-biological origin, from the data. In this way, we hope to capture the acoustic structure of
the soundscape while removing background noise.

We can see that the soundscape objects produced by the ss_create function has some new metadata related to
this binarization step:

# Which threshold algorithm was used for binarization?

paste@("The ", soundscape_list[["Andre"]]@binarization_method, " method was used for binarization")

## [1] "The IsoData method was used for binarization"

# Which threshold was used for binarization?

paste@("The threshold used for binarization was: ", soundscape_list[["Andre"]]@threshold)

## [1] "The threshold used for binarization was: ©.16"

Additionally,a binarized_df dataframe was added to the object.
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Let’s inspect this data frame:

# What are the dimensions of the binarized dataframe?

dim(soundscape_list[["Andre"]]@binarized_df)

# [1] 128 1440
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# What are the unique values contained in this data frame?

unique(unlist(soundscape_list[["Andre"]]@binarized_df))

## [1] 1 0

As expected, the new binarized data frame contains the same number of rows and columns as the merged_df data
frame. However, whereas previously we had CVR-index values ranging between anywhere between 0-1, due to the
binarization step, the values are now strictly O or 1.

Finally, after binarization, the ss_create function calculates the relative abundance of OSUs across all 24h samples
of acoustic trait space for a site. For Andre island, we have five 24h samples (5 recording days) per plot.

To do this, the function uses an incidence-based approach. Previously, the ss_create function computed the
detection (1) / non-detection (0) of each OSU in each 24h soundscape sample. Next, per OSU, the function takes the
mean of this binary variable across all 24h soundscape samples to get the relative frequency by which each OSU was
detected. To avoid confusion between the frequency of OSU detection and the sound frequency (in Hz), we'll refer to
this OSU importance value as the ‘relative abundance’.

The soundscape object contains some information related to this step. Let's investigate the soundscape object for
Andre island to see what is new.

What are the dimensions of the new ‘aggregated_df’ data frame?

# First, let's check out the new 'aggregated_df' data frame

paste®("The aggregated_df data frame has ",
nrow(soundscape_list[["Andre"]]@aggregated_df),
" rows"

## [1] "The aggregated_df data frame has 128 rows"

paste@("The aggregated_df data frame has ",
ncol(soundscape_list[["Andre"]]@aggregated_df),
" columns™)

## [1] "The aggregated_df data frame has 288 columns"

The number of rows in the ‘aggregated_df’ data frame that was added to the soundscape object is still 128, one for each
frequency bins resulting from the Fast Fourier Transformation. However, the number of columns in the
‘aggregated_df’ data frame is 288 - that is five times less than the ‘binarized_df’ data frame! Well, since we averaged the
detection/non-detection values across five 24h samples of the acoustic trait space, this makes sense...

Now, what range of values do the OSU relative abundances take?

pasted("The relative abundance of OSUs can take the following values: ",

nactaleartlimiaualunlictlcaiinderana 1ic+lT"Andra"1l4acoracated AfIV)  rallance = " "))
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## [1] "The relative abundance of OSUs can take the following values: ©,0.2,0.4,0.6,0.8,1"

The relative abundance can take 6 values: 0, 0.2, 0.4, 0.6, 0.8 and 1. This makes sense. If an OSU was detected in O out
of 5 soundscape samples, its relative abundance is 0. If an OSU was detected in 5 out of 5 soundscape samples, its
relative abundance is 1. If it was detected somewhere in between, say 3 out of 5 samples, its relative abundance
would be 0.6.

Great, we've got a soundscape object that contains a dataframe with our a unit of diversity measurement (OSUs) with
an associated importance value (the relative abundance). We now have all the ingredients to start the next part of the
workflow: exploration and diversity quantification of a single soundscape object.

The remaining functions in the soundscaper package can be divided into two types:

« Phase 2: Functions for exploring and visualizing the diversity of a single soundscape

» Phase 3: Functions for visualizing and contrasting the diversity of multiple soundscapes

Phase II: Exploring a single soundscape

The soundscaper package contains a range of functions to explore the diversity patterns of a single soundscape
object. These include functions for visualizing the overall soundscape ( ss_heatmap ), functions for quantifying
soundscape diversity metrics for a range of spectro-temporal subsets ( ss_diversity & ss_evenness ), and functions
for visualizing diversity patterns throughout the day or for different frequency bins ( ss_diversity_plot ).

We will go deeper into each of these functions in the following section.

2.1. The ss_heatmap function

The ss_heatmap function allows us to visualize the distribution and relative abundance of OSUs in the 24h acoustic
trait space. This function is a true workhorse - it is highly flexible, allowing us to subset the soundscape by specific
time or frequency coordinates, portray the soundscape in either Cartesian or polar coordinates, annotate the
soundscape with the sunset and sunrise time, and many more. Below, we'll provide an overview of ss_heatmap ’s
abilities.

Let’s take a look at the soundscape for Andre island. We will start with the ss_heatmap function in it's most basic
form and add progressively more advanced plotting arguments.

A basic heatmap

Init's most basic form, the ss_heatmap function only takes a single argument.

Mandatory input parameters

» soundscape_obj:
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a soundscape object produced by the ss_create function (or ss_index_merge, ss_binarize and ss_aggregate
functions applied in sequence).

In practice, the code looks as follows:

ss_heatmap(soundscape_obj = soundscape_list[["Andre"]])
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The heatmap shows us that, above 12,000 Hz, Andre’s soundscape is pretty empty. We can also see that most of the
sound is present at night and the daytime soundscape is much more impoverished. The, the yellow band at the top is
because the recorder was not able to record sound at this frequency - we will see how to remove this from the
heatmap at a later stage.

Even in it's most simple form, the heatmap reveals quite a lot about a soundscape. Without looking at species-specific
information or listening to sound files, we have just obtained ecologically relevant information from 24 full hours of
recording (1440 1-minute files). Now, imagine you have many sites and longer recording periods... This is where the
true value of the soundscaper workflow lies!

A polar heatmap

In addition to the base heatmap we produced above, the ss_heatmap function also allows us to plot the heatmapin a
polar coordinate system.
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Parameters to change the coordinate system

* type:
A character string. One of either “regular” or “polar”. If set to “regular”, produces a regular rectangular
heatmap. If set to “polar”, produces a heatmap in the polar coordinate system.

To understand what this argument does, let’s try type = “polar”:

ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
type = "polar")
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The type arguments let’s us choose whether to plot regular (rectangular) heatmaps, like in the previous example, or
polar heatmaps. And why would we want to do this, you may ask? Well, a rectangular heatmap distorts the
relationships between sounds in the acoustic trait space. Imagine two sounds, one that is produced at 15,000 Hz
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around 23:55h at night, and the other at 15,000 Hz at 00:05h in the morning. On our rectangular heatmap, these two
sounds would be perceived as distant in the acoustic trait space, as they would be on opposite ends. From an
ecological and functional perspective, these sounds are actually quite similar - they were produced at the same
frequency at 10 minutes apart... The polar heatmap captures this relationship more accurately.

An annotated heatmap

Next up, let's have a look at how we can add some ecologically important varibles to this plot: the time of sunrise,
sunset, and if applicable, the approximate boundary between the human-audible and ultrasonic frequency spectrum.

Parameters to add ecologically relevant variables

* annotate:
A Boolean operator. One of either TRUE or FALSE. If set to TRUE, annotates the heatmap with sunrise and
sunset times and highlights the border between the audible and ultrasonic spectrum for human hearing.

Let’s try this out for the regular and polar heatmap:

gular heatmap
regular_heatmap_annotated <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
type = "regular”,
annotate = TRUE)
# Polar heatmap
polar_heatmap_annotated <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
type = "polar",
annotate = TRUE)
# Combine
library(patchwork)

annotated_heatmaps <- regular_heatmap_annotated + polar_heatmap_annotated

annotated_heatmaps
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With the addition of one simple argument, the ss_heatmap function annotates the heatmap with the time of sunrise
and sunset (stored in the soundscape object) and the boundary between the audible and ultrasonic spectrum. The
part of the soundscape that occurs in the day is highlighted in yellow, whereas the nighttime is highlighted in blue.

Alter the axis labels

The ss_heatmap function also contains parameters to change the aesthetics of the axis labels.

Parameters to change the axis label aesthetics

« timeinterval:
A time interval for the x-axis. Options can be found in the scales::breaks_width documentation.

« freginterval:
The frequency interval for the y-axis, expressed as a numeric value.

Let’s try this out for the Andre island soundscape using a regular heatmap with a 4 hour x-axis interval and 1000
Hz y-axis interval:

ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
timeinterval = "4 hours",
freqinterval = 1860)

## Warning: Removed 542 rows containing missing values ( geom_tile()").
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Subset the soundscape in the time or frequency domain

If we are only interested the a subset of the acoustic trait space, the ss_heatmap function contains a number of
parameters to perform time-frequency subsetting.

Parameters to change subset the acoustic trait space

* mintime:
The lower time limit for the x-axis, formatted as “HH:MM:SS”. Defaults to the earliest time for which data
exists in the dataframe.

* maxtime:
The upper time limit for the x-axis, formatted as “HH:MM:SS".Defaults to the latest time for which data exists
in the dataframe.

* minfreq:
The lower frequency limit for the y-axis as a numeric value. Defaults to zero.

* maxfreq:
The lower frequency limit for the y-axis as a numeric value. Defaults to zero.

Let’s try visualizing the Andre island soundscape between 06:00h and 18:00h for frequencies between 0 - 11,000
Hz:

ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
mintime = "©6:00:00",
maxtime = "18:00:00" ,
minfreq = @ ,
maxfreq = 11008)

## Warning: Removed 27855 rows containing missing values (" geom_tile()").
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Alter the heatmap's color aesthetics

We can also alter the color aesthetics that are mapped to the OSU relative abundance values in the heatmap.

Parameters to change the color aesthetics

« palette:
A character string indicating the colormap option to use. Four options are available: “magma” (or “A”), “inferno”
(or “B”), “plasma” (or “C"), “viridis” (or “D", the default option) and “cividis” (or “E”). Consult this website for
options.

« direction:
Sets the order of colors in the scale. If 1, the default, the regular order is followed. If -1, the order of colors is
reversed.

« zero.black:
One of either TRUE or FALSE. If set to TRUE, absent OSUs with incidence zero will be colored black.

We can try to see what these do by adding them in one by one. Up first is the palette option. Let’s try them all on
Andre island’s soundscape:

# Try the palettes one by one
color_1 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],

palette = "A")

ealar 2 ¢~
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ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
palette = "B")

color_3 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
palette = "C")

color_4 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
palette = "D")

color_5 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
palette = "E")

library(patchwork)
all_colors <- color_1 + color_2 + color_3 + color_4 + color_5

all_colors

## Warning: Removed 542 rows containing missing values (' geom_tile()").
## Removed 542 rows containing missing values (' geom_tile()").
## Removed 542 rows containing missing values ( geom_tile()").
## Removed 542 rows containing missing values (" geom_tile() ).
## Removed 542 rows containing missing values ( geom_tile()").

05U RELATIVE ABUNDANCE 0SURELATIVE ABUNDANCE OSU RELATIVE ABUNDANCE
BeoloEo Mol BoBoMololos o HololololoBos@eBoBe o o Mool Mo Mo Mo Mol s llor Woe

200 200

20,000 £

Frequency (Hz)
8
s

,27,%.%.% % % 2%
5

OSU RELATIVE ABUNDANCE ‘0SU RELATIVE ABUNDANCE
HeoloBoNoBoBoeBeBoBoalo o EeNoNoBoBoBoeoEeBoBoaio o

200 1 2000

% G5, %, %%, % 7%,
2D % T DD DD

ofday

With the palette option, we can choose which of the viridis color palettes is used to visualize our soundscape.
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Great, now let’s test the direction variable for the “magma” color palette:

direction_1 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
palette = "magma",
direction = 1)

direction_2 <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],

palette = "magma",

direction = -1)

library(patchwork)
all_directions <- direction_1 + direction_2

all_directions

## Warning: Removed 542 rows containing missing values (" geom_tile()").
## Removed 542 rows containing missing values ( geom_tile()").
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The direction argument can be used to inverse the color scales of the viridis R-packages, switching which colors are
used for low and high values respectively.

Finally, let’s see what the zero.black variable does for the regular ‘viridis’ palette:

zero_black_off <-

ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],
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palette = "viridis",
zero.black = FALSE)

zero_black_on <-
ss_heatmap(soundscape_obj = soundscape_list[["Andre"]],

palette = "viridis",
zero.black = TRUE)

library(patchwork)
zero_black_all <- zero_black_off + zero_black_on

zero_black_all

## Warning: Removed 542 rows containing missing values ( geom_tile()’).

## Removed 542 rows containing missing values ( geom_tile()’).
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The zero.black argument takes all OSUs for which no sound was detected (relative abundance = 0) and sets the color
to zero to increase the contrast with OSUs for which sound was detected. Be careful using the zero.black argument
with the direction argument for some of the color palettes.

Make your heatmap interactive

The ss_heatmap function can also be used to make interactive heatmaps.

Parameters to make interactive heatmaps

« interactive:
A Boolean operator, one of either TRUE or FALSE. If set to TRUE, an interactive plot is produced using ggplotly.
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Let’s make an interactive regular annotated heatmap for Andre island’s soundscape:
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Try hovering your mouse over the interactive plot we just made. The interactive argument lets us query the relative
abundance of each OSU for a specific time of day and frequency bin. This way, we can see which sounds were more
abundant or rare. For instance, we can see that the relative abundance of the OSUs around 5,340 Hz between 00:00h
and 03:00h had a relative abundance of 1, meaning they were detected in every sample. Conversely, we can see that
the vertical banding we picked up on between 19:00-20:00h only have a relative abundance of 0.2 - they were
detected in only 1 out of 5 sampling days. This strengthens our suspicion that the vertical band may have been
created by a non-biological event, such as a rainstorm.

Save your heatmap

Finally, the ss_neatmap function contains a number of arguments for saving your plot.

Parameters to save the plot

save:

A Boolean operator - one of either TRUE or FALSE. If set to TRUE, saves the plot using ggsave using the the
‘dir’, “filename’ and ‘device’ arguments.

o dir:
Path of the directory to save plot to: path and filename are combined to create the fully qualified file name.
Defaults to the working directory. For more information consult ggsave.

filename:
The file name without the extension. For more information consult ggsave.

device:
Device to use. Can either be a device function (e.g. png()), or one of “eps”, “ps”, “tex” (pictex), “pdf”, “jpeg”, “tiff”,
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o width:
If save=TRUE, expresses the width of the saved image in milimeters. Defaults to 100 mm.

« height:
If save=TRUE, expresses the height of the saved image in milimeters. Defaults to 1700 mm.

These argumentsrely onthe ggsave functionfromthe ggplot2 package. For additional information of how to save
your soundscapeR heatmap, consult the ggsave documentation.

2.2. A note on Hill numbers

Now that we know how to visually explore the diversity of our soundscape, let’s get to quantifying how much
diversity we're actually dealing with using the various soundscape metrics available in the soundscaper package.

To calculate the soundscape metrics, we use the analytical framework of Hill numbers. In brief, Hill numbers provide
a unified statistical framework to measure biological diversity in all its facets. The framework is highly robust and
flexible, allowing us to quantify different dimensions of diversity (e.g. taxonomic, functional, phylogenetic and
soundscape diversity). Doing so, we can answer common scientific questions by measuring, estimating, partitioning,
and comparing different diversity types using a common analytical framework. Although a plethora of indices has
been proposed to measure diversity, there is a growing consensus that Hill numbers are the most appropriate
framework to separate system diversity into its various components.

Want to know more about Hill numbers? For a deep dive, visit this website and this GitHub tutorial!

For an overview of the benefits of Hill numbers over conventional diversity indices, expand the section below. If
you're familiar with Hill numbers, feel free to skip over this part.

CLICK HERE TO LEARN MORE ABOUT THE ADVANTAGES OF HILL NUMBERS

Now that we know why we use Hill numbers, let’s have a look at how we can compute our soundscape metrics.

2.3. The ss_diversity and ss_evenness functions

The ss_diversity function is used to compute the soundscape richness and diversity values. The user can modulate
the importance of common or rare OSUs on the diversity values using the g-parameter (order of diversity).

The ss_evenness function is used to compute the soundscape evenness. In Luypaert et al. (2022), we mentioned the
soundscape evenness was calculated as 2D (soundscape diversiy with q = 2)/0D (soundscape richness with q = 0),
following Jost et al. (2010). However, based on recent publications, a more proper way to calculate the soundscape
evennessis: (2D - 1) / (OD - 1). Therefore, from here on out, we will only use the latter equation for the calculation of
the soundscape evenness.

Both functions allow the soundscape metrics to be computed at a range of different scales and resolutions. For
instance, the user can specify custom time-frequency limits, calculate the soundscape metrics for various built-in
diurnal-phase presets (dawn, dusk, day, night), or track the soundscape metrics at each unique time of day.

The ennindercanes richnees and diveresitv far the whale enanindecana
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In their most basic forms, both the ss_diversity and ss_evenness functions are used to compute soundscape
metrics for the whole soundscape. For this, the ss_diversity function requires three main input parameters.

Mandatory function input parameters

» soundscape_obj:
a soundscape object produced by the ss_create function (or ss_index_merge, ss_binarize and ss_aggregate
functions applied in sequence).

qvalue:

A positive integer or decimal number (>=0), most commonly between 0-3. This parameter modulates the
sensitivity of diversity values to the relative abundance of Operational Sound Units (OSUs). A value of O
corresponds to the richness, a value of 1 is the equivalent effective number of OSUs for the Shannon index, a
value of 2 is the equivalent effective number of OSUs for the Simpson index.

output:

A character string. Indicates the format in which the soundscape diversity is expressed. Options are
“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

Let’s look at an example of what the various arguments are and change about the index computation. First, we will
use the ss_diversity function to calculate the soundscape richness (g=0) and diversity (at g=1 and g=2) for the
soundscape_obj of Andre island. We want the output as the ‘effective number of OSUs".

Let’s try out the code:

# Soundscape richness
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],

qvalue = @,
output = "raw")

## [1] 5577

# Soundscape diversity at g=1
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],

qvalue = 1,
output = "raw")

## [1] 4532.245

# Soundscape diversity at g=2

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 2,
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output = "raw"

## [1] 3931.819

As we can see, the higher the g-value, the less importance is given to rare OSUs (with a low relative abundance), and
thus the lower the soundscape diversity metric.

Next, let’s calculate the same soundscape diversity metrics, but display the output as the percentage of the trait
space that is filled with OSUs:
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# Soundscape richness

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,

output = "percentage")

## [1] 15.12858

# Soundscape diversity at g=1

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 1,
output = “"percentage")

## [1] 12.2945

# Soundscape diversity at g=2

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 2,
output = "percentage")

## [1] 10.66574

The output argument allows us to modulate how the diversity value is returned and is one of either “raw” or
“percentage”. The “raw” option displays the soundscape diversity as the effective number of OSUs in the soundscape,
whereas the “percentage” option returns the soundscape diversity as the number of detected OSUs divided by the
total number of detectable OSUs, which is conceptually similar to the soundscape saturation index described in
Burivalova et al. (2018), but calculated over a 24h period. The latter allows us to compare the soundscape diversity
between soundscapes with different dimensions (a different number of total detectable OSUs due to differences in
the sampling regimes and window length).

The soundscape evenness for the whole soundscape

In contrasttothe ss_diversity function,the ss_evenness function only has one mandatory input argument.

Mandatory function input parameters

« soundscape_obj:
a soundscape object produced by the ss_create function (or ss_index_merge, ss_binarize and ss_aggregate
functions applied in sequence).

Aswe can see, the ss_evenness functiononly requiresa soundscape object produced by the ss_create function (or
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by usingthe ss_index_merge , ss_binarize and ss_aggregate functions insequence).
We will use the ss_evenness function to calculate the soundscape evenness:

Let's try out the code:

# Soundscape evenness

ss_evenness (soundscape_obj = soundscape_list[["Andre"]1])

## [1] ©.7049532

The evenness describes the equitability of abundances. Here, since 2D represents the number of dominant OSUs in
the soundscape, this evenness ratio represents the proportion of dominant OSUs.

The soundscape metrics for temporal subsets

In addition to calculting the soundscape richness, diversity and evenness for the whole soundscape, we can also
compute the soundscape metrics for different temporal subsets of the soundscape.

Parameters for temporal soundscape subsetting

« subset:
The diurnal phase for which the soundscape diversity is computed. Options are ‘total’, day’, ‘night’, dawn’, ‘dusk’
and ‘tod’ (time of day - for each unique time in the day).

mintime:

A positive integer or decimal number (>=0), most commonly between 0-3. This parameter modulates the
sensitivity of diversity values to the relative abundance of Operational Sound Units (OSUs). A value of O
corresponds to the richness, a value of 1 is the equivalent effective number of OSUs for the Shannon index, a
value of 2 is the equivalent effective number of OSUs for the Simpson index.

maxtime:

A character string. Indicates the format in which the soundscape diversity is expressed. Options are
“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

dawnstart:

A character string. Indicates the format in which the soundscape diversity is expressed. Options are
“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

dawnend:

A character string. Indicates the format in which the soundscape diversity is expressed. Options are
“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

« duskstart:
A character string. Indicates the format in which the soundscape diversity is expressed. Options are
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“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

« duskend:
A character string. Indicates the format in which the soundscape diversity is expressed. Options are
“percentage” (the fraction between the observed soundscape diversity and the maximum possible soundscape
diversity), or “raw” (the number of acoustically active OSUs in the soundscape). Defaults to “percentage”.

Let’s calculate the soundscape richness, but for different temporal subsets by using the subset argument:

# Soundscape richness
# subset = 'day'
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,

output = "percentage",
subset = "day")

## [1] 9.364298

# subset = 'night’
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,

output = "percentage",
subset = "night")

## [1] 21.e5524

# subset = 'dawn'
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
gvalue = 9,

output = "percentage”,
subset = "dawn")

## [1] 22.43924

# subset = 'dusk’
ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = o,

output = "percentage",
subset = "dusk")

## [1] 8.767361
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The subset argument uses the metadata contained inthe soundscape object (the sunrise and sunset times) to subset
the soundscapes by different diurnal phases, including day’, ‘night’, dawn’ and ‘dusk’. We can see that the soundscape
richness at Andre island was the highest at night and dawn, but the lowest during the day and around dusk.

Let’s try this for the soundscape evenness:

# Soundscape evenness
# subset = ‘'day’

ss_evenness(soundscape_obj = soundscape_list[["Andre"]],
subset = "day")

## [1] 0.6612279

# subset = 'night’

ss_evenness(soundscape_obj = soundscape_list[["Andre"]],
subset = "night")

## [1] ©.7251704

# subset = 'dawn'

ss_evenness(soundscape_obj = soundscape_list[["Andre"]],
subset = "dawn")

## [1] 0.7056203

# subset = 'dusk'

ss_evenness(soundscape_obj = soundscape_list[["Andre"]],
subset = "dusk")

## [1] ©.6265451

We can see that the soundscape evenness metric is less variable than the soundscape richness, but still showed
differences between the different diurnal phases. For instance, we find that the soundscape had a lower evenness
during the day compared to the night time. This suggests there was a higher proportion of dominant OSUs during the
night.

By default, the dawn period is calculated as the time of sunrise + 1.5h, and the dusk period is calculated as the time of
sunset - 1.5h. We can use the ‘dawnstart’, dawnend’, ‘duskstart’ and ‘duskend’ arguments to alter the duration of the
dawn and dusk period.

Let’s try this for the soundscape richness using a dawn and dusk period that starts 1 hour before sunrise/sunset,
and ends one hours after:

# Chninderana nichnace
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ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
subset = "dawn",
dawnstart = 36@e,
dawnend = 3608)

## [1] 28.1901

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,
subset = "dusk",
duskstart = 3600,
duskend = 3600)

## [1] 11.6862

As you can see, by changing the time of dawn and dusk, we get slightly different soundscape richness values. It is
important to consider what period of dawn/dusk is ecologically meaningful for your study system.

Finally, we can also use the subset argument to calculate the soundscape metrics for each unique time of day for
which we collected sound files. Let’s do this for the soundscape richness:

# Soundscape richness

head(ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
output = "percentage",
subset = "tod"), n = 24)

soundscape_div time_of_day
22.65625 00:00:00
17.18750 ©0:05:00
19.53125 00:10:00
20.31250 ©00:15:00
17.1875@ 00:20:00
21.09375 ©00:25:00
21.09375 ©0:30:00
20.31250 00:35:00
22.65625 00:40:00
21.875ee ©0:45:00
19.53125 ©0:50:00
20.31250 00:55:00
21.09375 ©1:00:00
21.09375 01:05:00
25.00000 01:10:00
22.65625 01:15:00
17.1875@ 01:20:00
21.09375 01:25:00
21.09375 01:30:00
21.09375 01:35:00
21.09375 01:40:00
21.09375 01:45:00
22.65625 ©1:50:00
22.65625 ©1:55:00
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We get 288 soundscape richness values (24 values shown here), one for each unique time at which we collected
sound during our recording period. This can reveal patterns in the soundscape richness throughout the day.

Aside from the subset argument, we can also perform temporal subsetting of the soundscape using custom time
limits by using the mintime and maxtime arguments. Let’s try this out by calculating the soundscape richness
between 11:00 and 13:00:

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
gvalue = @,
output = "percentage",
mintime = "11:00:00",
maxtime = "13:00:00")

## [1] 6.9375

The soundscape metrics for frequency subsets

We can also calculate the soundscape richness, diversity and evenness for user-specified frequency subsets.

Parameters for frequency soundscape subsetting

* minfreq:
A numeric value indicating the lower frequency limit for which to compute the soundscape diversity. If set to
default, uses the lowest available frequency in the dataframe.

* maxfreq:
A numeric value indicating the upper frequency limit for which to compute the soundscape diversity. If set to
default, uses the highest available frequency in the dataframe.

« freqseq:
A logical operator (TRUE/FALSE). If set to FALSE, will compute the diversity for the entire frequency range of
the soundscape. If set to TRUE, will compute the diversity per frequency-bin of user-defined width (number of
bins determined by nbins argument).

* nbins:
A numeric argument. If fregseq is set to TRUE, determines the number of the frequency-bins by which to
divide the frequency range to compute the soundscape diversity.

Let’s try subsetting the soundscape between 0 - 10,000 Hz and 10,000 - 20,000 Hz, and calculating the soundscape
richness:

# Soundscape richness
# 0 - 10,000 Hz

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,
output = "percentage",
minfreq = 0,
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maxfreq = 16000)

## [1] 22.62931

# 10,000 - 20,000 Hz

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
output = "percentage",
minfreq = 10000,
maxfreq = 20000)

## [1] 3.861351
We can see that the soundscape richness is much higher below 10,000 Hz, suggesting there is more vocal activity
there.

Finally, we can also divide the frequency spectrum into a user-specified number of bins, and calculate the soundscape
metrics for each frequency bin.

Let’s try this for the soundscape richness, dividing the frequency spectrum into 20 bins:

ss_diversity(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,

output = "percentage",

fregseq = TRUE,

nbins = 20)
## soundscape_div freq_interval
## 1 5.0347222 © - 1033 Hz
## 2 8.6805556 1033 - 2067 Hz
## 3 36.4583333 2067 - 3273 Hz
## 4 21.9907407 3273 - 4306 Hz
## 5 32.5396825 4306 - 5512 Hz
## 6 31.7708333 5512 - 6546 Hz
## 7 12.9629630 6546 - 7579 Hz
## 8 16.7658730 7579 - 8785 Hz
## 9 36.4583333 8785 - 9819 Hz
## 10 6.1921296 9819 - 10852 Hz
## 11 20.1967593 11025 - 12058 Hz
## 12 6.6550926 12058 - 13092 Hz
## 13 2.3809524 13092 - 14298 Hz
## 14 ©.6944444 14298 - 15331 Hz
## 15 ©.4960317 15331 - 16537 Hz
## 16 ©.0000000 16537 - 17571 Hz
## 17 ©.0000000 17571 - 18604 Hz
## 18 ©.0000000 18604 - 19810 Hz
## 19 ©.0000000 19810 - 20844 Hz
## 20 50.0000000 20844 - 21877 Hz

We can see that, above 12,000 Hz, the soundscape richness values drop steeply. Indeed, this is confirmed by the
visual exploration of our heatmap we produced earlier, where we saw practically no sound above this frequency cut-
off.

Clearlvthe << divercitv and << svennscc fiinctinne are hishlv flexihle allowinge the 1iser tn tease anart when and
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where sound is present for a soundscape of interest. Yet, although this is certainly useful, it can be hard to get a grasp
of the patterns at hand with so many subsetting options. This is where the ss_diversity_plot functioncomesin,
producing a range of different visualization options that allow for an easier assessment of temporal and frequency
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patterns in the soundscape metrics.

2.3. The ss_diversity_plot function

The ss_diversity_plot function produces plots showing the variation in soundscape richness and diversity metrics
by time-of-day and frequency subsets. Like the ss_diversity function,the ss_diversity_plot function takes three
basic arguments: ‘soundscape_obj’, ‘qvalue’ and ‘output’ (see above).

Additionally, the ss_diversity_plot function can be used to create four types of plots by specifying the graphtype
argument.

Parameters for smoothing the temporal diversity patterns

* graphtype:
The type of plot which is produced. There are four options.

o graphtype = “total”:
An area chart showing the soundscape diversity by time-of-day for the entire frequency range.

o graphtype = “frequency”:
A stacked area chart showing the relative contribution of frequency bins with user-defined width to the
total soundscape diversity by time-of-day.

o graphtype = “normfreq”:
A percentage stacked area chart showing the normalized relative contribution of frequency bins with user-
defined width to the soundscape diversity by time-of-day.

o graphtype = “linefreq”:
Aline chart showing the relative contribution of frequency bins with user-defined width to the soundscape
diversity by time-of-day.

Let’s have a look at these plotting options one by one.
2.31. The ss_diversity plot function with graphtype = “total”

Let's start by producing a plot showing the temporal patterns in the soundscape richness using the graphtype =
“total” option:
# Temporal patterns in the soundscape richness
ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,
graphtype = "total",

output = “"percentage",
smooth = FALSE)

## Warning: Removed 1 rows containing missing values (" geom_text()’).
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This type of plot shows the variation in the soundscape richness throughout a 24-hour period, similar to using the

ss_diversity functionwith subset = “tod” (like we did before). As you can see, there is a general trend showing a
higher soundscape richness during the night, and a lower soundscape richness during the day. Moreover, there is a
clear peak in the soundscape richness around dawn. Still, there is a lot of short-term variability that seems to obscure
this pattern. Note that, in the command we used here, we specified an additional argument: smooth = FALSE.

Parameters for smoothing the temporal diversity patterns

« smooth:

One of either TRUE or FALSE. If set to TRUE, applies a moving average filter for smoothing the diversity by
time-of-day.

* movavg:
If smooth=TRUE, determines the width of the moving average filter. Consult movavg for more information.

We can use the smooth and movavg arguments to apply a smoothing function to the data. This will smoothen out
short-term variability and make longer-term patterns more clear.

Let’s give this a shot. We will turn on the smoothing function using the smooth argument and specify how much
smoothing will occur using three different movavg values:

# movavg = 6

plot_1 <- ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
graphtype = "total",
output = "percentage",
smooth = TRUE,
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movavg = 6,

timeinterval = "4 hours") +

ggplot2: :scale_y_continuous(limits = c(8, 50),
expand = c(0,0))

## Scale for y is already present.

## Adding another scale for y, which

# movavg = 12

plot_2 <- ss_diversity_plot(soundscape_obj =

ggplot2::scale_y_continuous(limits

qvalue = 8,

graphtype = "total",
output = "percentage",
smooth = TRUE,

movavg = 12,

timeinterval = "4 hours")+

will replace the existing scale.

soundscape_list[["Andre"]],

= c(e, 59),

expand = c(e,0))

## Scale for y is already present.

## Adding another scale for y, which

# movavg = 24

plot_3 <- ss_diversity_plot(soundscape_obj =

qvalue = @,

graphtype = "total",
output = "percentage",
smooth = TRUE,

movavg = 24,

timeinterval = "4 hours")+

will replace the existing scale.

soundscape_list[["Andre"]],

ggplot2::scale_y_continuous(limits = c(e, 50),
expand = c(8,0))

## Scale for y is already present.

## Adding another scale for y, which

# Combine plots

library(patchwork)

plot_total <- plot_1 + plot_2 + plot_3

plot_total

will replace the existing scale.

## Warning: Removed 3 rows containing non-finite values (" stat_align()’).
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## Warning: Removed 1 rows containing missing values ( geom_text()’).
## Removed 1 rows containing missing values (" geom_text()" ).
## Removed 1 rows containing missing values (" geom_text()" ).

‘Soundscape richness (%)
‘Soundscape richness (%)

Time of day (n)

Note: As you can see, we added an additional timeinterval argument to format the x-axis to our liking. For a
description on how to use this argument, please consult the ss_heatmap section above.

We can see that, as indicated before, the soundscape richness is high throughout the night and dawn period, and then
drops steeply during the day. We can observe a slight peak just around mid-day. Finally, the soundscape richness
starts increasing again after sunset (remember: you can see at what time sunset occurs for your soundscape by
accessing the metadata contained in the soundscape object using soundscape_name@sunset).

Like before, usingthe ss_diversity_plot function, we can also subset the frequencies that are used to calculate the
soundscape richness using the minfreq and maxfreq arguments (see before).

Let’s have a look at the temporal patterns in the soundscape richness for three different parts of the frequency
spectrum (below 2,000 Hz, between 2,000-8,000 Hz and above 8,000 Hz)

# Below 2,000 Hz

plot_1 <- ss_diversity_plot( dscape_obj = soundscape_list[["Andre"]],
qvalue = @,

graphtype = "total",

output = "percentage",

smooth = TRUE,

movavg = 24,

maxfreq = 2008,

timeinterval = "4 hours")+

ggplot2::scale_y_continuous(limits = c(@, 55),
expand = c(8,0))

## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

# Between 2,000 - 8,000 Hz

plot_2 <- ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 9,
graphtype = "total",
output = “percentage",
smooth = TRUE,
movavg = 24,
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minfreq = 2000,
maxfreq = 8600,
timeinterval = "4 hours")+

ggplot2: :scale_y_continuous(limits = c(®@, 55),
expand = c(9,9))

## Scale for y is already present.

## Adding another scale for y, which will replace the existing scale.

# Above 8,000 Hz

plot_3 <- ss_diversity plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
graphtype = "total",
output = "percentage",
smooth = TRUE,
movavg =24,
minfreq = 8008,

timeinterval = "4 hours")+

ggplot2: :scale_y_continuous(limits = c(®, 55),
expand = c(0,0))

## Scale for y is already present.

## Adding another scale for y, which will replace the existing scale.

# Combine the plots
plot_total <- plot_1 + plot_2 + plot_3

plot_total

## Warning: Removed 1 rows containing missing values (" geom_text()").
## Removed 1 rows containing missing values (" geom_text()").
## Removed 1 rows containing missing values (" geom_text() ).
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Note that, even though our different frequency subsets have a different number of detectable OSUs (different width
of frequency bins), we can directly compare the soundscape richness values by using output = “percentage”. We can
see quite different temporal patterns emerge for the three parts of the frequency spectrum. Below 2,000 Hz, we find
aclear peak around dawn, and several moment where sound is completely absent. The other two frequency bins
under consideration (2,000-8,000 Hz and > 8,000 Hz) show the general pattern we observed earlier, with a higher
soundscape richness in the night, a peak at dawn, and a lower richness in the day. Still, we can see that, overall, more
sound is present between 2,000-8,000 Hz (max soundscape richness = > 50%) compared to the frequency range
above 8,000 Hz (max soundscape richness = < 30%).

Clearly, this function is very useful for providing a visual representation of the variation in our soundscape metrics
throughout the 24h period in which species can vocalize. Let’s have a look at the next graphtype option.

2.3.2. The ss_diversity_plot function with graphtype = “frequency”

Let’s have a look at what the graphtype = “frequency” option does:

ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = o,
graphtype = “frequency",
output = "percentage",
smooth = TRUE,
movavg = 24,
maxfreq = 20000)

0-1894 Hz 3962 -5857 Hz 7924 -9991Hz 11886 - 13953 Hz 15848 - 17915 Hz

1895 - 3962 Hz 5857 - 7924 Hz 9991 - 11886 Hz 13953 - 15848 Hz 17915 - 19982 Hz

40
I .

Soundscape richness (%)

0
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ooooooooooooooooooooooooooooooooooaooooooooooooo
Time of day (h)

The graphtype = “frequency” option shows the variation in the soundscape richness throughout the day for a user-
specified number of frequency bins. The function requires the same freqseq and nbins arguments we saw for the

ss_diversity function (see earlier). For instance, here we can see that, around dawn, a wider variety of frequencies
is present in the soundscape than during the other periods.
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Let's try this again, but use fewer frequency bins for better comparisons:

ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 8,
graphtype = "frequency",
output = "percentage",
smooth = TRUE,
movavg = 24,
maxfreq = 20000,
nbins = 5)

0-3962Hz 7924 - 11886 Hz 15848 - 19982 Hz

3962 - 7924 Hz 11886 - 15848 Hz
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We can see patterns we established before: low frequencies peak around dawn. Additionally, frequencies between
approx. 8,000-12,000 Hz are more common at night and almost absent during the day.

Next up, let's have a look at the graphtype = “normfreq” option.
2.3.3.The ss_diversity_plot function with graphtype = “normfreq”

Let’s have a look at what the graphtype = “normfreq” option does:

ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = @,
graphtype = "normfreq"”,
output = "percentage",
smooth = TRUE,
movavg = 24,
maxfreq = 20060)

0-1894 Hz 3962 - 5857 Hz 7924 - 9991 Hz 11886 - 13953 Hz 15848 - 17915 Hz
1895 - 3962 Hz 5857 - 7924 Hz 9991 - 11886 Hz 13953 - 15848 Hz 17915 - 19982 Hz
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By setting the graphtype = “normfreq” option, we are producing a plot similar to the graphtype = “frequency” option.
However, instead of showing the absolute contribution of frequency bins to the total soundscape richness value,
here, we are showing the normalized contribution. This way, we can better see how the amount of active OSUs in
each frequency bin changes throughout the day.

Finally, let’s have a look at our final option: graphtype = “linefreq”.

2.3.3.The ss_diversity_plot function with graphtype = “linefreq”

Let’s have a look at what the graphtype = “linefreq” option does:

ss_diversity_plot(soundscape_obj = soundscape_list[["Andre"]],
qvalue = 8,
graphtype = "linefreq",
output = "percentage",
smooth = TRUE,
movavg = 24,
maxfreq = 2000,
nbins = 5)
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The graphtype = “linefreq” option produces a graph similar to the graphtype = “total” option, but allows the user to
specify the number of bins in which to divide the frequency spectrum. Here, in one glance, we can explore the
temporal patterns in the soundscape richness for different frequency bands.

Phase III: Comparing multiple soundscapes

In addition to containing functions to assess the diversity patterns of a single soundscape, the soundscaper package
also contains a range of functions to explore and contrast the diversity patterns between multiple soundscapes.
These include functions for visualizing the differences in OSU presence and relative abundance between two
soundscapes ( ss_compare ), functions that perform dimensionality reduction to plot the Bray-Curtis dissimilarity
between soundscapes in a two-dimensional space ( ss_pcoa ), functions for decomposing the soundscape diversity of
astudy area into its alpha, beta and gamma components ( ss_divpart ), and functions to compute the pairwise
diversity and dissimilarity values between the soundscapes in the system ( ss_pairdis ).

We will go deeper into each of these functions in the following section.
3.1. The ss_compare function

The ss_compare function works in avery similar way to the ss_heatmap function and requires many of the same
arguments. However, instead of portraying the presence and relative abundance of OSUs for a single soundscape, the

ss_compare function is used to contrast OSUs between two soundscapes. To do so, the function creates a differential
heatmap that visually illustrates the differences between two soundscapes.
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Like the ss_heatmap function, ss_compare offers the option to subset the soundscape by specitic time or frequency
coordinates, portray the soundscape in either Cartesian or polar coordinates, and more.

Let’s have a look at the mandatory input argument.

Mandatory input parameters

» soundscape_obj_A:
A soundscape object produced by the ss_create function (or ss_index_merge, ss_binarize, and ss_aggregate in
sequence). This will be the first soundscape for comparison.

» soundscape_obj_B:
A soundscape object produced by the ss_create function (or ss_index_merge, ss_binarize, and ss_aggregate in
sequence). This will be the second soundscape for comparison.

The remaining arguments are the same as ss_heatmap , except for the annotate argument, which cannot be specified.
This is because, when contrasting two different soundscapes, the sunrise and sunset times may differ.

Let’s have a look at how this works by comparing the soundscape of ‘Andre’ and ‘Mascote_A1":

soundscapeR: :ss_compare(soundscape_obj_A = soundscape_list[["Andre"]],
soundscape_obj_B = soundscape_list[["Mascote_A1"]],
maxfreq = 20000)

OSU RELATIVE ABUNDANCE OSU RELATIVE ABUNDANCE

BeloBoRoRoBoeBosBeorBolis L el | B3 R 3 ES) BN B P RN

Eom

DIFFERENCE IN OSU COMPOSITION

Fraquency (Hz)

%

Time (hour of day) hour of Tima (hour of day)

Based on the differential heatmap produced by ss_compare , we can see that the OSU composition between Andre
island and Mascote_A1 differs quite a bit. For instance, we can see that Mascote_A1 contains more sounds between
12,000-14,000 Hz at night time (redder values indicate OSUs were more common in soundscape_obj_B, or
Mascote_A1). Additionally, Mascote_A1 clearly contains more sound in the daytime, showing three distinct bands at
approx. 2,000 Hz, 6,000 Hz, and 8,000-10,000 Hz. Conversely, we can see that Andre island contains sound in places
where little sound sound is present for Mascote_A1 (bluer values indicate OSUs were more common in
soundscape_obj_A, or Andre island). For instance, the vertical peak around dawn is distinct in Andre, but not as clear is
Mascote Al. Moreover, Andre contains some sounds between 3,000-4,000 Hz and 5,000-6,000 Hz at nighttime,
which are not present for Mascote_A1.

Clearly, these differential heatmaps are a useful tool to quickly compare the OSU composition between two
soundscapes.

3.2. The ss_pcoa function
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If we want to go beyond heatmaps, and assess how similar or different multiple soundscapes actually are from one
another, we can use the ss_pcoa function. The ss_pcoa function can be used to create principle coordinate plots,

using a dimensionality reduction approach on the OSU incidence data of multiple soundscapes to plot the distances
between these soundscapes in a two-dimensional space. To do this, the function calculates the Bray-Curtis

dissimilarities between the soundscapes.

Let’s have a look at the mandatory arguments:

Mandatory input parameters

« soundscape_list:
A list of soundscape objects. Each object in the list should be produced using the function (or ss_index_merge,

ss_binarize, and ss_aggregate in sequence).

Init's most basic form, the ss_pcoa function takes a single argument: a list of soundscape object to compare.

Let’s have a look at what this looks like:

ss_pcoa(soundscape_list = soundscape_list)
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PCo 1 (52.9%)

Great, this already reveals a lot! Based on this principle coordinate plot, we can see that the first PCo explains 52.9%
of the variation between the soundscapes, and separates the plots on Mascote island from the plots on Andre island -
clearly these is a difference in the soundscapes between these two islands. We can also see that a second PCo
explains 22.4% of the variation and separates out plot Mascote_A2 from the other plots on Mascote island.

Now, let’s have a look at the other plotting parameters:

Optional input parameters
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» grouping:
A numeric or character vector indicating potential grouping of the elements in the ‘soundscape_list’ object.
Make sure that the grouping vector has the same length as the ‘soundscape_list’ argument.

» screeplot:
A boolean operator indicating whether the function should produce a screeplot in addition to the PCoA plot.

Options are: TRUE and FALSE.

Let’s start of by taking a look at the grouping argument:

ss_pcoa(soundscape_list = soundscape_list,
grouping = c("Aline", rep("Mascote", 4)))
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The grouping argument is used to indicate which soundscapes in the soundscape_list argument belong together, and
colors them accordingly. This is already a little clearer than the previous plot.

Next, let’s take a look at the screeplot argument:

ss_pcoa(soundscape_list = soundscape_list,
grouping = c("Aline", rep("Mascote", 4)),
screeplot = TRUE)
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When we indicate screeplot = TRUE, the ss_pcoa function produces a second plot showing the cumulative

percentage of the total variation that is explained as additional PCo’s are added. We can see that, at 4 PCo's, all the
variation between soundscapes is captured.

3.3. The ss_divpart function

In addition to quantifying the soundscape richness, diversity, and evenness components, the workflow proposed in
this manuscript can be used to decompose the regional metacommunity diversity (y-diversity) into its local
diversities (a-diversity) and a community turnover component (B-diversity).

To do this, we use the following multiplicative framework provided by Hill numbers:

(1) 9D, = 9D, x Dy

1 S N 1-q
(2) qDa—N ZZ(W]pU)q
i=1 j=1
1
s [N IN{-q
@3) D, = Z Z(W/‘pij)
i=1 \j=1
U = Dy
4) Dg = q_Da

Here, N refers to the total number of sub-systems (soundscapes), j refers to each individual sub-system, and wj
represents the relative weight given to each sub-system in the system. If all soundscapes are weighted equally, wj
equals 1/N. The alpha diversity is the Hill number of the averaged basic sums of the soundscapes (Eqn. 2). The gamma
diversity is computed by taking the average of the relative abundance of each OSU across the soundscapes in the
system and calculating the Hill number of the pooled system (Eqn. 3). The beta diversity captures the degree of
heterogeneity in the OSU composition across sites (Eqn. 4). It ranges from 1 to N and quantifies the relationship
between the regional and local diversity, that is, how many times more diverse is the whole system in the effective
number of OSUs compared to the sub-systems on average. The beta diversity can also be seen as the effective
number of completely distinct soundscapes in the system.

Now that we know the theory, let’s take a look at how we can do this in practice. In its most basic form, the
ss_divpart function takes the following arguments:

Function input parameters

« soundscape_list:
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Alist of soundscape objects of equal dimensions, each soundscape object being produced by ss_create (or
ss_index_merge, ss_binarize and ss_aggregate in sequence)

» qvalue:
A positive integer or decimal number (>=0), most commonly between 0-3. This parameter modulates the
sensitivity of diversity values to the relative abundance of Operational Sound Units (OSUs). A value of O
corresponds to the richness, a value of 1 is the equivalent number of effective OSUs for the Shannon index, a
value of 2 is the equivalent number of effective OSUs for the Simpson index.

Now, we can use our island system to see how the overall system soundscape diversity (gamma) differs from the local
soundscape diversity (alpha), and what the soundscape turnover (beta diversity) looks like.

Let’s try the code to decompose the soundscape richness into its various components:

ss_divpart(soundscape_list = soundscape_list,
qvalue = @)

## # A tibble: 1 x 7

##  levels q alpha_l1 gamma N1 N2 beta_l1
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1 2 2] 314 57.2 5 1 1.82

We can see that the system's alpha soundscape richness is 31.4%, the average richness of the local soundscape.
However, overall, the consolidated soundscape richness of the system (gamma richness) is 57.2% - almost twice as
high. A lower alpha richness at each location, but higher gamma richness when taking all locations together, suggests
there might be some OSU turnover going on between our soundscapes - they are not identical. Indeed, this is
confirmed by the soundscape turnover (beta), which is 1.82. In theory, this value can range from 1 (all soundscapes
completely identical) to 5 (all soundscapes completely distinct). Our value here suggests that there is low to
moderate turnover in the OSU composition between the soundscapes in our system.

But not all soundscapes in our study system are equal - some are more similar to others. For example, we have four
soundscapes from Mascote island, but only one soundscape from Aline island. We can incorporate this ‘grouping’ or
‘hierarchical structure’ into our our diversity partitioning calculations.

Let’s have a look at the next argument of the ss_divpart function:

Function input parameters

o hier_table:
A matrix indicating the relationship between the soundscapes in the soundscape_list. The first column lists the
names of all the soundscapes in the soundscape_list, other columns can be used to group soundscapes into
higher hierarchical levels. If no hierarchy table is supplied, the function defaults to a 2-level diversity
partitioning.

As we can see, we can supply the ss_divpart function with a table indicating the hierarchy between samples.

Let's give thisa try:
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hierarchy_table <- as.matrix(
data.frame(Sample = c("Andre", "Mascote_Al", "Mascote_A2", "Mascote_B1", "Mascote_B2"),
grouping_1 = c("Andre", "Mascote", "Mascote", "Mascote", "Mascote")))

ss_divpart(soundscape_list = soundscape_list,

qvalue = 8,
hier_table = hierarchy_table)

## # A tibble: 1 x 10

##  levels q alpha_l1 alpha_l2 gamma N1 N2 N3 beta_l1 beta_l12
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 3 2] 31.4 3557 572 5 2 1 1.13 1.61

As you can see, by defining the hierarchical relationships between the plots on our islands, the output has changed a
little. We now obtain two alpha richness values, one calculated at the sample (or plot) level, and one calculated at the
level of the grouping we specified (islands).

We also get two soundscape turnover values (beta), one for each grouping level:

1.B1 = y-islands (35.5%) / a-plots (31.4%) = 1.13
2.2 =y-total (57.2%) / a-islands (35.5%) = 1.61

By using the hier_table argument, we can further decompose the soundscape metrics based on the hierarchical
relationship between samples (plots).

Yet, because beta diversity ranges between 1-N, it is not independent of the number of soundscapes in the system,
and can thus not be used as a measure of similarity directly. Instead, to compare the relative compositional difference
between soundscapes across multiple systems with a different number of soundscapes, some simple transformations
can be performed on the beta diversity to remove the dependence on the number of soundscapes. To do this, we will
use the next function.

Note: We can also partition the soundscape metrics using subsets of the soundscapes using the minfreq, maxfreq,
mintime and maxtime arguments we've seen before.

3.4. The ss_pairdis function

The framework of Hill numbers also allows us to define several measures of similarity between soundscapes in the
wider system. Let’s take a look at how these are calculated:

[(ﬁ)(qﬂ)_ (_Ilv)(lrl)]
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Equations (5) and (6) are measures of overlap between soundscapes. The local or Sgrensen-type overlap (CgN)
quantifies the effective average proportion of a soundscape’s OSUs which are shared across all soundscapes. It
captures the overlap between soundscapes from the sub-system's perspective. For N soundscapes each having S
equally common OSUs and sharing A OSUs between them, this function reduces to CqN=A/S. The regional or
Jaccard-type overlap(UgN) quantifies the effective proportion of shared OSUs in a pooled assemblage of
soundscapes, and thus captures the overlap between soundscapes from a regional perspective. Assume N
soundscapes in a region with S unique and equally abundant OSUs. Here, R OSUs are shared between all
soundscapes and the remaining OSUs (S-R) are distributed evenly among N soundscapes. In this scenario, Eqn. 8
reduces to UgN = R/S.

(10) SQN =

Equations (7) and (8) are measures of turnover in OSUs between soundscapes. The local or Sgrensen-type turnover
complement (VgN) quantifies the normalised OSU turnover rate with respect to the average soundscape. It measures
the proportion of a typical soundscape which changes as one goes from one soundscape to the next. The regional or
Jaccard-type turnover complement (SgN) quantifies the proportion of the regional soundscape diversity contained
in the average assemblage and is a measure of regional homogeneity.

For all of the aforementioned similarity indices, the ss_pairdis function transforms the values into metrics of
dissimilarity by taking their one-complement (e.g. 1 - XqN). Unlike the beta soundscape turnover, these dissimilarity
indices range from 0-1, where O means the soundscapes are completely identical, and 1 indicates the soundscapes
are completely unique.

If you want to learn more about the computation of similarity metrics using the framework of Hill numbers, have a
look at the hilldiv GitHub tutorial here and this paper.

Tousethe ss_pairdis function, we need to supply the same parameters as the ss_divpart function:
soundscape_list, qvalue and hier_table (optional).

Let’s have a look:

ss_pairdis(soundscape_list = soundscape_list,

qvalue = @)

## $L1_beta
## Andre Mascote_Al Mascote_A2 Mascote_Bl Mascote_B2
## Andre NA NA NA NA NA
## Mascote_Al 1.608346 NA NA NA NA
## Mascote_A2 1.606310 1.409356 NA NA NA
## Mascote_Bl 1.614435 1.312740 1.374302 NA NA
## Mascote_B2 1.623355 1.264852 1.367437 1.274029 NA
##
## $L1_CqN

Andre Mascote_Al Mascote_A2 Mascote_Bl Mascote_B2
## Andre NA NA NA NA NA
## Mascote_Al 0.6083460 NA NA NA NA
## Mascote_A2 0.6063103 ©.4093560 NA NA NA
## Mascote_Bl ©.6144346 ©.3127399 0.3743021 NA NA
## Mascote_B2 ©.6233550 ©.2648524 0©.3674368 0©.2740286 NA
#i#
## $L1_UgN

## Andre Mascote_Al Mascote_A2 Mascote_Bl Mascote_B2
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## Anare NA NA NA NA NA
## Mascote_Al 0.7564865 NA NA NA NA
## Mascote_A2 ©.7549166 ©.5809122 NA NA NA
## Mascote_Bl ©.7611762 ©.4764689 ©.5447159 NA NA
## Mascote_B2 ©.7679836 ©.4187878 ©.5374095 ©.4301766 NA
##

## $L1_VgN

## Andre Mascote_Al Mascote_A2 Mascote_Bl Mascote_B2
## Andre NA NA NA NA NA
## Mascote_Al ©.6083460 NA NA NA NA
## Mascote_A2 0.6063103 ©.4093560 NA NA NA
## Mascote_Bl ©.6144346 ©.3127399 ©.3743021 NA NA
## Mascote_B2 ©.6233550 ©.2648524 0.3674368 ©.2740286 NA
##

## $L1_SqN

## Andre Mascote_Al Mascote_A2 Mascote_B1l Mascote_B2
## Andre NA NA NA NA NA
## Mascote_Al ©.7564865 NA NA NA NA
## Mascote_A2 ©.7549106 ©.5809122 NA NA NA
## Mascote_Bl ©.7611762 ©.4764689 ©.5447159 NA NA
## Mascote_B2 ©.7679836 ©.4187878 ©.5374095 ©.4301766 NA

Indeed, based on this output, we can see that the pairwise dissimilarity between the plots in our case study is
greatest between the soundscape of Andre island and all other plots. Furthermore, within Mascote island, we can see
that plot Mascote_A2 is most dissimilar from the other plots on the island - a pattern which we previously observed
usedthe ss_pcoa function.

Vignette by Thomas Luypaert

thomas.luypaert@nmbu.no / thomas.luypaert@outlook.com
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