Norges miljg- og

|_ J biovitenskapelige

N universitet

Master’s Thesis 2023 30 ECTS
Faculty of Science and Technology

Training machine learning force
fields for simulations of

a hybrid organic-inorganic
perovskite system

Helge Helg Klemetsdal
Environmental Physics and Renewable energy

Acknowledgements

This master’s thesis concludes six eventful years as a student at NMBU. The years have broad-
ened my knowledge and interests in the fields of physics, informatics, and machine learning,
and I am truly inspired to learn more within these fields moving forward.

Firstly, I want to forward a big thank you to my supervisor Kristian Berland for his help during
my work on this thesis. You are immensely creative, and the ideas and help you have given
me have made this work a great and challenging experience, from which I have learned a lot.
I also want to thank my co-supervisor Elin Dypvik Sgdahl for the great discussions, general
help, and proofreading. Also thanks to Rasmus André Tranas for creating data and providing
me with the necessary help needed in the beginning phases of the work.

I also want to thank my mother, father, and brother for their continuous support throughout
the years. This thesis would not have been possible without you. Finally, a big thanks to my
friends and fellow students at NMBU. You have made the years incredibly fun, which gave me
motivation to work, even in times of lockdown.

As, June 14, 2023
Helge Helg Klemetsdal

Abstract

Machine learning force fields (MLFF) have become gradually more popular within the field of
material science as of late. Especially within molecular dynamics (MD) simulations have MLFFs
seen prominent results, with both accuracy and efficiency comparable to traditional methods. In
this study, a MLFF software called NeurallL has been used to calculate the interatomic forces
of a hybrid organic-inorganic perovskite material (DMMgF'). Various Neuralll. architectures
were explored, and several models showing promising results were selected for flexible cell MD
simulations in the functional code JAX-MD. Finally, the accuracy of the Neuralll.-based MD
was assessed by investigating whether the simulations could reproduce the phase transition of
DMMgF in accordance with experimental data.

The interatomic force calculations provided by Neuralll. showcased the model’s high capability
to reproduce ab initio levels of accuracy. A mean absolute error of 0.020 ¢V /A was the lowest
seen in test sets that had configurations with ground truth forces calculated from density
functional theory.

From a variety of NeuralllL architectures explored, a selection was chosen for JAX-MD sim-
ulations. Stability in the volume fluctuations was achieved for a single model, with the rest
crashing or showing un-physical results. The results shed light on challenges related to training
data and overfitting when using MLFF in MD simulations.

The phase transition of DMMgF was not shown in accordance with experimental data, although
indications of structural changes concurrent with expectations were evident in some simulations.
Possible weaknesses in the methodology are discussed as reasons, with special emphasis on the
diversity of the training data.

i

Sammendrag

Maskinlaerte kraftfelter (MLFF) har blitt stadig mer populaere i materialteknologi den siste
tiden. Spesielt innenfor molekyleer dynamikk (MD) simuleringer har MLFFer sett gode resul-
tater, der metodene har hatt bade sammenlignbar ngyaktighet og effektivitet med tradisjonelle
metoder. I dette studiet har en MLFF programvare kallt NeuralllL blitt brukt til a predikere
interatomaere krefter pa et hybrid-organisk-inorganisk-perovskitt material (DMMgF'). Forskjel-
lige NeurallL, arkitekturer ble utforsket, hvor spesifikke modeller som viste antydninger til gode
resultater ble valgt for simuleringer i den funksjonale koden JAX-MD med fleksible celler. Til
slutt ble ngyaktigheten til NeurallL-baserte MD vurdert ved & undersgke om simuleringene
kunne reprodusere en faseovergang i DMMgF som stemte overens med experimentelle data.

De beregnede interatomiske kraftprediksjonene viste at NeurallL har hgy evne til & reproducere
ab initio ngyaktighet. Gjennomsnittlig absolutte feilverdier pa 0.020 eV /A ble sett i testsett
med konfigurasjoner som hadde sannhetsverdier beregnet av tetthetsfunksjonalteori.

Fra et utvalg av NeurallL-arkitekturer ble det valgt ut en rekke modeller for JAX-MD simu-
leringer. Stabilitet i volumfluktuasjonene ble oppnadd for én modell, mens de resterende kraes-
jet eller viste ufysiske resultater . Resultatene belyser utfordringer knyttet til treningsdata og
overtilpasning ved bruk av MLFF i MD-simuleringer.

Faseovergangen til DMMgF ble ikke vist i samsvar med eksperimentelle data, selv om in-
dikasjoner pa strukturelle endringer som samsvarte med forventninger var tydelige i noen simu-
leringer. Mulige svakheter i metoden ble diskutert som arsaker, med seerlig vekt pa variasjonen
i treningsdataene.

il

Contents

1 Introduction

2 Theory
2.1 Forces in atomic configurations L.
2.1.1 Density functional theory 0oL
2.1.2 Classical force fields.
2.1.3 Machine learning force fields
2.2 Molecular Dynamics
2.2.1 Simulation environments Lo
2.2.2 Equations of motion
2.2.3 The Verlet algoritm
2.3 Training data L
2.3.1 Atomic centered descriptors
2.3.2 Spherical Bessel Descriptors o000
2.3.3 Embeddings
2.4 Machine learning
2.4.1 Key concepts and terminology Lo Lo L
2.4.2 Over and underfitting Lo
24.3 Neural networkso
2.4.4 Residual neural networks for regression
2.5 Neuralllo o o
2.5.1 Weights and hyperparameters
25.2 Jaxand Flax o
2.5.3 Forces and automatic differentiabilityo
2.5.4 Jax-MD and flexible cell simulations
2.6 Phase transition of DMMgF oo
3 Method
3.1 Problem description and goals of thesis
3.2 Software
3.2.1 Sigma2 clusters
3.2.2 VASP . .
3.2.3 ASE . ..
3.2.4 VESTA . . .
3.2.5 Molerys . ..o
3.3 Training data L
3.4 Machine learning frameworko

v

3.4.1 Hyperparameters
3.4.2 NeurallLl training Lo
3.4.3 Parameter optimization and model combinations
3.4.4 Selection of models for simulation
3.4.5 Re-training of models
3.5 Jax-MD . . . L
3.6 Exploration of phase transition temperatures
4 Results
4.1 Force predictions e
4.1.1 Mean errors of predictionso
4.1.2 Parity plots
4.2 Volume fluctuations from Jax-MD
4.2.1 Imitial models
4.2.2 Simulation crashes L
4.2.3 Validation metrics for re-training
4.2.4 Re-trained models o
4.3 Exploration of phase transition temperatures
4.3.1 Simulation of high-temperature disordered-phase
5 Discussion
5.1 Force predictions using NeurallL.
5.2 NeuralllL used for Jax-MD
5.2.1 Training data and model stability
5.2.2 Overfitting
52.3 Cut-offradius
5.3 Exploration of phase transition temperatures
5.4 General improvements on the NeurallLL framework
5.4.1 Training data
54.2 Overfitting
5.4.3 Parameter choices
6 Conclusion
6.1 Conclusion
6.2 Further work

Appendix A

42
42
42
43
A7
47
47
20
o1
23
55

59
59
60
61
61
61
62
63
63
63
64

65
65
66

71

Nomenclature

DF'T Density functional theory
DM MgF Hybrid organic-inorganic-perovskite system
MAFE Mean absolute error

MD Molecular dynamics

MLFF Machine learning force field
NN Neural Network

NPT Isobaric-isothermic ensemble
NV E Microcanonical ensemble
NVT Canonical ensemble

ResNet Residual neural network
RMSE Root mean square error
SBD Spherical bessel descriptor

VJP Vector Jacobian Product

vi

Chapter 1

Introduction

Materials have been essential to human life in all stages of our history. In fact, most of human-
ity’s technological advancement can be connected to the discovery and application of newfound
materials [1], as is evident by the terms Bronze Age and Iron Age. Today, the need for new
and better materials is no less important than before. Many modern technologies, like com-
puters and phones, rely on materials with specific electronic properties. Another example is
the semiconductor materials used in solar panels, where improvements and new material com-
binations have steadily increased their efficiency over the last decades [2]. With an increase in
efficiency, the cost of solar panels has also dropped significantly [2]. Other fields, like refrigera-
tion, has huge problems with global warming potential through the use of hydrofluorocarbons
[3]. Replacing these materials with climate-friendly alternatives is vital, and barocalorics is a
front-runner in this field [4]. Regardless of advancement in research of climate-friendly mate-
rials, the world’s energy production is dominated by fossil fuels, by as much as 82.3% in 2021
[5], and hydrofluorcarbons are still used in refrigeration [3]. The resulting greenhouse emissions
come with devastating effects, as seen in the recent IPCC report [6]. Further advancements are
still needed, and effective methods for finding materials with favorable properties lie central to
achieving them.

Ensuring that a material is a good fit for an application is no simple task. As the field of
material science has seen much development in the 20th century, most materials used are al-
ready refined with regards to their field of use [1|. Finding candidate materials that are a better
fit requires a detailed study of their properties. One way to gain insight into material properties
is by simulating how the atoms of a material move in time, called molecular dynamics (MD).
MD simulations are based on a numerical scheme, updating the positions of the atoms stepwise
through an iterative algorithm. To be able to move the atoms in each step, the forces that the
atoms experience have to be calculated [7]. A usual way to do this is by the use of density
functional theory (DFT).

DFT is a quantum mechanical method for calculating the electronic structure properties of
materials. DFT calculations are approximations of the many-body Schrodinger equation. Al-
though accurate approximations can be achieved with DFT, the accuracy can come with sig-
nificant cost [8]. Due to this cost, MD simulation with accurate DF'T computed forces is often
regarded as costly compared to other MD methods [9]. Less costly alternatives are necessary,
especially should larger and longer simulations be computationally feasible.

One way to get a less costly MD simulation than with DFT computed forces is through classical-
MD. Classical-MD uses forces calculated by specifically parameterized analytical expressions,
named classical force fields. The parameters of the force fields need to be tuned based on
knowledge of the material’s chemistry for the force fields to be accurate [10]. Force calculations
from the force fields are less costly compared to that of DFT. However, developing force fields
that accurately calculate the forces for a material can be challenging due to the complexity
of describing its inter-atomic chemistry, often rendering the parametrizations inaccurate or
nontransferable to other systems [10]. A better solution is needed, that avoids the difficult
development of the classical force fields in classical-MD, and the large cost associated with
DFT-based MD.

In recent years, machine learning has become a new way to calculate interatomic forces, giv-
ing way to machine learning force fields (MLFF). MLFFs give a way to learn the statistical
relation between the material and the forces experienced by the atoms without needing much
pre-conceived knowledge about the material’s chemistry [11]. This avoids the parametrization
challenges associated with classical force fields while providing force calculations at a higher ef-
ficiency than with DFT. Given these advantages, the question is whether MLFFs reproduce the
accuracy of ab initio calculations made by DFT, and if the forces can be used to perform MD
simulations with comparable accuracy to the traditional methods. Many studies have already
explored the use of MLFFs, where kernel-based Gaussian approximation [12] [13]|[14], and deep
learning using neural networks (NN) [15][16][17] have shown promising results.

In this study, NeurallLL [16] will be used to compute the forces on the hybrid organic-inorganic
perovskite system,(CH3):NH;Mg(HCOO)s [18], hereafter referred to as DMMgF. Due to its
characteristic phase transition, DMMgF has a high barocaloric effect, making it potential ma-
terial for use within cooling applications like refrigeration [18]. Figure 1.1 shows the DMMgF
structure used in this study.

Figure 1.1: Illustration of the perovskite system, made by Kristian Berland. Mg atoms are
shown in pink, carbons in brown, nitrogen in blue, oxygen in red, and hydrogen in white.

There are three main goals of this study using Neuralll. and DMMgF.
e Compare Neuralll. computed forces with first principle force calculations made by DFT.

e Explore the possibility of performing stable MD simulations by use of Neuralll. computed

forces.

e Investigate a range of simulation temperatures for the DMMgF system using Neuralll-
based MD. The simulations will be inspected to see if NeruallL.-based MD can reproduce
the characteristic phase transition as shown in a study by Szafrariski et. al. [18|. In their
study, the authors found an experimental phase transition from the low-temperature phase
to the high-temperature phase of DMMgF occurring at temperatures between 262K and
264K. This thesis will investigate temperatures around this region.

The following chapter will provide a thorough explanation of the theory behind Neuralll. and
the data that is fed to in training. A method chapter will then be provided, explaining how
NeurallL is trained to predict forces, and how the MD-simulations are performed with trained
models. The results will be presented with a series of figures before they are discussed. Finally,
the work will be briefly concluded.

Chapter 2

Theory

This chapter provides the fundamental theory needed to understand NeuralllL and its usage in
MD simulations. Firstly, some context about the forces that NeurallL. predicts will be presented.
The principles behind molecular dynamics (MD) simulations will follow, before an explanation
of how atomic configurations from MD trajectories can be converted to numerical data for the
machine learning force field (MLFF) to train on. Then, general machine learning and neural
network (NN) theory will be introduced before NeurallL is presented in light of this theory.

2.1 Forces in atomic configurations

Performing MD simulations of materials requires the atoms of the material to be placed in
an atomic configuration. Atomic configurations have a finite collection of atoms, where the
atom’s placements and species are defined by the spatial extent of a unit cell. Given a temper-
ature above absolute zero, each atom in an atomic configuration moves and interacts with its
neighboring atoms. The interactions result in all atoms experiencing a force, determined by in-
teractions like the electrostatic forces, bonds, angles, distances between atoms, and long-range
interactions like van der Waals interactions Furthermore, these interactions define the configu-
rations interatomic potential, also thought of as the expressions that define the configuration’s
total potential energy [19]. This interatomic potential can be can generally be expressed as a
sum of all pairwise interactions [19] as in (2.1).

Uiotal = »_ Ulry). (2.1)

1<j

Here, U(r;;) is the potential energy from interactions between an atom ¢ and j. Each force
experienced by every atom in the configuration can be calculated as the partial derivative of
the interatomic potential, with regard to the individual atom positions, as expressed in (2.2).

. 8Uv‘cotad

Fy =
J aT’j

(2.2)
Here, r; is the Cartesian coordinates for an arbitrary atom j within the atomic configuration.
Computing the forces on the atoms within a configuration is dependent on a calculation of the
configuration’s interatomic potential. This potential energy field can be calculated in several
ways, and one of the most frequently used is density functional theory (DFT).

2.1.1 Density functional theory

DFT is a popular quantum-mechanical numerical method, commonly used in materials science
and chemistry to calculate the electronic structure properties of materials. DFT calculations are
based on the fact that the ground state energy of a system can be expressed as a functional of the
system’s electron density [8, p 11]. While a general functional is not known, an approximation
to the ground state energy is found by variation of the electron density until an energy minimum
is reached |8, p 11]|. As with other optimization problems, the calculation has to be stopped at
the point where the solutions are self-consistent, meaning further iterations not improving the
result significantly. How to chose this stopping criterion results in a trade-off between accuracy
and computational cost. In short, there are two main outtakes to keep in mind when using
DFT to calculate the forces on individual atoms in a configuration:

e Computing forces with DFT do not require extensive parameterization and can give
accurate results due to its rigorous treatment of materials’ electronic properties.

e DFT calculations contain a trade-off between numerical accuracy and computational cost
as a result of it being an approximate solution to the many-body Schrodinger equation.
An accurate calculation can therefore be significantly costly for complex materials.

2.1.2 Classical force fields

Computing the interatomic potential in equation (2.1) for any material without using the
numerical scheme of DFT requires equations specifically based on the interactions between
the atoms in the material. Equations developed from this knowledge are often called classical
force fields, and can routinely be used for computation of forces in an atomic configuration.
An example of a simple classical force field is the Lennard-Jones potential [20|, which can be

expressed as
A B

Ulr) =5 - - (2.3)

The potential describes the interaction between two neighboring atoms within a configuration,
separated by a distance 7, with parameters A and B. Using the Lennard-Jones potential would
require a fitting of these parameters with respect to the material in question, often based on
knowledge about interactions in the material. Since most materials contain different chemical
structures, different parametrizations are needed for the interatomic potential to accurately
describe the energy interactions within the material’s atomic environment [10]. Furthermore,
relatively simple potentials like the Lennard-Jones potential might not be accurate enough
for more complex materials structures. While many different classical force fields have been
developed, many lack specific parametrizations or are just inaccurate for certain materials [10].
An example can be seen in a NN-backed MD study of hafnia (HfO,) by Sebastian Bichelmeier
[21]. Here, Bichelmeier found that existing classical force field parametrizations for the material
were sparse, where the few that existed were inaccurate, or specifically tuned towards the
amorphous phase of the material [21]. Avoiding the work connected to re-parametrizing these
force fields accurately, Bichelmaier instead chose to use MLFFs. In this study, we chose the
same approach.

2.1.3 Machine learning force fields

The key idea of a MLFF is learning the general relationship between a data set of atomic
configurations, and the corresponding properties to predict, like the forces and energies of

the atoms. Since MLFF algorithms implicitly learn the statistical relations in the data, they
avoid the potentially difficult parametrization problem of classical force fields. Furthermore,
they have significant advantages in efficiency compared to DFT, where an accurate calculation
comes at the expense of cost. MLFFs seek to bridge the gap between inaccurate classical force
fields and costly DFT calculations of atomic forces, providing a more computationally efficient
alternative for performing MD simulations while maintaining a reasonable level of accuracy
[11].

2.2 Molecular Dynamics

How molecules and atoms move within the atomic configurations can provide important insight
into the properties of a material. The simulation of these movements with MD has become
increasingly popular in various fields of material science, following the gradual increase in
available computational resources |7, p. 96]. By definition, MD is an iterative method to
simulate the trajectories of individual atoms numerically through time. The different atomic
configurations seen in the time steps of this numerical simulation provide the basis for the
numerical data that the MLFF model needs to train on in order to predict atomic forces. This
section will explain the fundamental methods of how MD simulations are performed and uses
Statistical Mechanics: Theory and Molecular Simulation |7] by Mark Tuckerman, and Density
functional theory: A practical introduction [8] by Sholl and Steckel as references, if not else
stated.

2.2.1 Simulation environments

When simulating the movements of a microscopical system of atoms, some important assump-
tions have to be made about the simulation environment. Firstly, it’s central to keep some
thermodynamic variables of your system under control. Typically, these control variables are
the number of atoms N, and some thermodynamic variables, like the volume V| and energy
E. Which of the control variables are held fixed characterizes the ensemble, determining the
thermodynamic state of the system. Figures 2.1(a)-2.1(c) shows the microcanonical (NVE),
canonical (NVT), and isobaric-isothermic ensemble (NPT).

| — Weight

Piston

Figure 2.1: (a) Illustration of the NVE ensemble holding the number of atoms (N), volume
(V), and energy (E) constant. An isolation layer is drawn around the ensemble illustrating the
heat exchange to be zero in the ensemble. (b) Illustration of the NVT ensemble holding the
number of atoms (N), Volume (V), and temperature (T) constant. (c¢) [llustration of the NPT
ensemble holding the number of atoms (N), pressure (P), and temperature (T) constant. The
illustration depicts the pressure being held constant by a piston and weight, and letting the
volume vary.

The ensembles shown in figure 2.1 have the number of atoms(N), and either the volume (V),
energy (E), temperature (T), or pressure (P) held constant, uniquely defining the ensemble
names. Fach of the ensembles has its advantages with respect to the purpose of the simulation,
and which properties are being analyzed. Careful consideration of the ensemble is therefore an
important aspect to consider before running an MD simulation.

In addition to the ensemble, there are other central parameters that can be set for an MD
simulation. One of the more important of these is the lattice constant, defining the spacing
between the atoms in the configuration. A larger lattice constant corresponds to a larger vol-
ume in the unit cell, directly affecting the cell environment. The number of atoms used in the
simulation is also central, defined by the supercell used in the simulation [Chapter. 2.1] [8]. In
NVE and NVT simulation, the lattice constants are set, while in the NPT ensemble, they can
vary along with the volume.

2.2.2 Equations of motion

Updating the positions and velocities of atoms iteratively requires information about the forces
that act on them in a given timestep. Treating the nuclei classically, a set of differential
equations of motion can be derived from classical mechanics. Beginning with Newton’s second
law, the force on a nucleus j is

d'Uj

= mj%v (24)

Fj = mjaj

where m; and a; are the mass and acceleration of the nucleus, respectively. The acceleration
can also be expressed as the derivative of the velocity v; with respect to time, resulting in the
last part in equation (2.4). Combining equation (2.4) and the previously defined equation for

the interatomic forces in (2.2), one gets

doy 10U
dt N mj 8Tj ’

(2.5)

Here, R is the vector of all atomic positions in the atomic configuration. Writing the velocities
of the nuclei as the derivative of their position with respect to time gives

dr;

Equation (2.5) and (2.6) are the equations of motion for nuclei j in the NVE ensemble. For
the NVT and NPT ensemble, additional terms are added to these equations to ensure the
thermodynamic control variables of the system are held constant. In the NVT ensemble, this is
done through the use of thermostats, which adjusts the velocities of the atoms, thereby keeping
the temperature of the ensemble constant [8, p. 197|. Similarly, a barostat can be utilized in
the NPT ensemble, letting the volume vary keeping the average internal pressure equal to the
applied external pressure [7, p. 233]. Regardless of which ensemble is used in the simulation, the
equations of motion constitute a set of differential equations for each atom in the configuration,
which can be solved numerically.

2.2.3 The Verlet algoritm

Developing a numerical method for solving the equations of motion starts with a Taylor series
with respect to the positions, velocities, and accelerations to solve for the atomic positions at

time ¢ + At : ; »
-~ P
ri(t+ At) = ry(t) + d—tjAt + W;Aﬁ (2.7)
where At is the step size. All higher-order terms have been left out of this equation as they
will be canceled out in a later step of the derivation. Using equation (2.4) and (2.5) rewrites
(2.7) to (2.8).
At?

Expressing equation (2.8) with a negative timestep r(t — At) gives (2.9).
At?

2mj
Summing the positive and negative timestep gives (2.10).
At?
J

The velocities for any step in the simulation can then be extracted from equation (2.10) resulting
in (2.11).
At
vi(t + At) = v;(t) + ST [F(t) + Fj(t + At)] (2.11)
J
This is known as the velocity Verlet algorithm, from where the positions of the atoms can be
updated, given a set of initial conditions for the positions and velocities. The resulting list of
calculated coordinates for each timestep, usually referred to as a trajectory, describes the move-

ments of all the atoms of the configuration over the simulation time. As seen by the velocity

8

Verlet algorithm, the forces are a function of the timestep ¢, meaning it has to be computed for
each iterative step in the MD simulation.

How the forces are computed determines the category of MD simulation used, where DFT-
based MD and classical-MD are seen as traditional methods. Referring to the section on DFT
(2.1.1), DFT-based MD would need a self-consistent DFT calculation in each step of an MD
simulation to compute the forces. As a result, the DFT-based MD becomes a nested loop of
numerical calculations, and can quickly become very costly [9]. In contrast to this, classical
MD provides an almost instantaneous calculation of forces but can lack accuracy. Using MLFF
gives way to MLFF-based MD, a simulation possibly containing both the speed of classical-MD
with force calculations of comparable accuracy to DFT. Performing MLFF-based MD requires
a MLFF to be trained. The next section will explain how a MLFF can be trained on a data
set of atomic configurations using atomic-centered descriptors.

2.3 'Training data

2.3.1 Atomic centered descriptors

In general, machine learning models need to be trained on numerical data. For a MLFF this
implies that the different atomic configurations the machine should predict forces on have to
be represented by numbers. The question is how we can effectively capture all the informa-
tion in the configurations without losing relevant physical information about the system. The
traditional choice would be using the global Cartesian position of the atoms. However, using
the Cartesian would mean that the numerical descriptions would change if the configuration is
rotated or translated in space, although the underlying properties of the system would remain
unchanged.

The fact that the global Cartesian positions are sensitive to these variances makes them unsuit-
able for describing atomic configurations for an MLFF [22]. Furthermore, the representations
are required to be invariant with regard to the atomic indices. This makes the descriptors
produce similar numerical representations regardless of configurations where the structure is
similar but the atoms are ordered differently.

The descriptors are ensured to be invariant by using a set of local coordinate systems, cen-
tered around each of the atoms within a configuration. These local environments are spheres
with a defined cut-off radius, r.,, defining the size of the local environments of the atoms, and
the amount of neighboring atoms contained within the environment. Figure 2.2 illustrates an
example of a local environment.

Figure 2.2: An illustration of a local environment around an atom in a configuration. The
atom in yellow is placed at the center of the local environment, of defined size r.,. The local
environment is shown in green, the central atom in yellow, and other atoms in pink color.

The cut-off radius directly affects the number of neighboring atoms in the environments, making
it a central parameter in defining numerical representations of the system. To attain the
numerical representations of the local environments, mathematical functions that describe the
density of neighboring atoms in the environments are used. The resulting real values are called
descriptors, which serve as the input for an MLFF to train on. Among known descriptors in
the literature, the smooth overlap of atomic positions (SOAP) [23| and Zernike descriptors [24]
are commonly used, but in NeurallLL, a newer type of descriptor is chosen: The Spherical bessel
descriptors (SBD).

2.3.2 Spherical Bessel Descriptors

The section explaining SBD will follow the approach of Kocer, Mason, and Erturk [25]. As
previously mentioned, descriptors are formed by density functions from local environments
wrapped around each individual atom in the configuration. The neighboring density functions
of the atoms in the local environments are defined as in (2.12).

pi(r) = Z(S(r — 1) 5 T < Teut (2.12)

Here the density is evaluated at a distance r away from the atom ¢ at the center of the local
environment up to the defined cut-off radius r.,;. The indices j denotes the neighboring atom
found at a relative distance, r;; away from atom i. §(r — r;;) are Dirac-delta functions. The
density function is projected onto a set of orthonormal basis functions on the sphere formed by
the local environment shown in figure 2.2. The basis functions are defined as

Blmn<T) = gn—l,l(T)YEm(ea d))? (213)

containing a radial part, g,,_;;(r), shown in figure 2.3, and an angular part ¥;™(6, ¢) by spherical
harmonics. Examples of the spherical harmonics are shown in figure 2.6. The variables r, 6, and

10

¢ are spherical coordinates. The numbers n, [, and m are the principal, angular, and magnetic
quantum numbers, respectively. The quantum numbers are constrained as follows:

.Ognénmax
e (<[<n
o [<m<l

The role of the parameter np,,, on the descriptors will be discussed in detail in section 2.3.2.
The projections onto the sphere in figure 2.2 yield an expansion of the form in (2.14).

Nmaz N l
p(’f’) ~ Z Z Z CnlmYn—1, (r))/lm(eu ¢) (214)
n=0 n=0 [=0
The expansive coefficients
Cnim = Zgn—l,l(m]‘)Yzm*(@zj, ij), (2.15)

J
are calculated from the atoms’ relative spherical coordinates denoted r;j, 0;54,.. To get a com-
plete description of the SBD, one has to know the full form of the radial part of the basis
functions. Although the functions are relatively complex, the equations along with a deriva-
tion will be presented for the interested reader. See [25] and its supplementary material for
more details on the derivations. The radial basis functions are built starting from a linear
combination:

Jr(1) = an - i (rqfn) + bnt - i (rul’"+1> : (2.16)

c rc

where a,; and b,; are constants, j; is the [’th spherical Bessel function of the first kind, sig-
nified by its continuity at the origin. The function wu, is the (n+1)’th root of j;. Choosing
the constants so that the radial part is twice differentiable at the cut-off radius, along with
normalization leads to (2.17).

1
1 2 2 Upn+1 . Uin, Uln . Ul n+1
= (b2 Y [())]
() 7’2 Uiy + Uin+41]l+1(uln) Te Ji+1 (ul,n—i—l) Te ()
Executing a Gram-Schmidt orthogonalization procedure on f,;(r) for 0 < n < N, gives the

final radial basis functions g,_;. Figure 2.3 shows examples of g,_;; for distances up to a set
cut-off radius of r.,; = 3.5 A.

11

— Qor — Gu — 02y

— 031 g5t — 951

4 1.0 N
05

0.0

o 1\

\ \///)
-1.0 /

4
0.0 15 3.0
cut-off-radius[Al
1=5
0.45
0.30
\ /ﬁ‘
-0.3 \ / 0.15
\\ n’/
\/
\ -0. \\
_/ 0.6 4 0.00
0.0 0 0.0 0 0.0 0

15 3 15 3 15 3
cut-off-radiuslAl cut-off-radiusfAl cut-off-radius[Al

Figure 2.3: Example plots of radial basis functions g, — [, for values of a cut-off-radius up to

3.5 A.

The generalized power spectrum is used to extract the SBDs and is defined as in (2.18).

l
Pnt = Z C;kllmcnlmy (218)

m=—I

Inserting the expressions for the expansion coefficients c,;,,, and utilizing the spherical harmonic
addition theorem gives the final SBDs in (2.19).

20+1
Pnl = e Z g gnfl,l(?"j)gnfl,l(m)PlCOS(’yjk) (2_19)
J

The subscript i, for the central atom, is left out in this formula for simplicity. The subscript
k, and j are neighboring atoms to the central atom, P, is the 1I'th order Legendre polynomial
and 7, is the angle between the three atoms. Equation (2.19) gives the real-valued SBDs that
serve as training data for NeurallL. Figures 2.4 and 2.5, show the SBDs for a selected atom of
each type in the DMMgF' system.

12

Equation (2.15) gives a set of n, components for every atom:
Ne + 1
(na +1) (2.20)
2
This number is dependent on the number of distinct elements, n.; in the system to be considered,
and the number of Bessel functions determined by

Np =NpB * Ney

(nmax + 2)

ng = (Nmax + 1) - 5 (2.21)
For each configuration, the resulting number of descriptors is determined by
Ndescriptors — Tp * Natoms (222)
where n,oms is the number of atoms in the configuration.
200
2001 1501 125
150 125 150
> 1501 1001
< 100 . Mg
(]] 1
& 100 1001 751 " 0 — c
£ 50 H
* 501 501 o
501 501 N
251 257
ol—® ol —+& 1 ol ol
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

Descriptor value

Figure 2.4: Descriptors for different atom types r.,;, = 3.5 and n,,,. = 4 truncated to values
between -1.5 and 1.5.

2001

2001 1501 1251

150 1251 1501

> 150 1001
2 100 mm Mg
S 100/ 1001 751 1 0] c
o 50 s H
* 501 501 ©
501 501 N

251 251

0+ 0 T 0+ 0 T 0 T
-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
Descriptor value

Figure 2.5: Examples of descriptors for different atom types in DMMgF. The descriptors are
generated with parameters r.,;, = 3.5 and n,,,, = 4 truncated to values between -0.5 and 0.5

As can be seen from figure 2.4 and 2.5, the descriptor vectors are sparse, and centered around 0,
with a few outliers. These real-valued numbers serve as the numerical data NeurallLL is trained

on.

13

The n,,., parameter

The role of the parameter n,,,, is central when defining the detail of the local environments.
Figure 2.6 shows the effect an increase of n has on the spherical harmonics.

1=2, m=1 1=20, m=10

0.5

A 7 N\
% N

/’/0 ’ .‘\\\\\\\
. N

(L M T L

o iae A 0

z \SSse")

WS ey

R=27/

~ o =27 ~7
-0.5
y© oy yo oy
N2 N2

-1

Figure 2.6: Illustration of spherical harmonics with quantum numbers [=2,m=1, on the left, and
[=20, m=10, on the right. The spheres each show distinct areas of colored areas, corresponding
to a range of different real numbers. The figures show an increase in the number of colored
areas when the quantum numbers are increased.

Figure 2.6 shows how increasing the value of n and [results in a greater number of distinct
colored areas on the surface, where each area takes different real-valued numbers on the sphere.
In the event that certain atoms are bonded closely to each other, the descriptors might not
accurately represent these atoms with their distinct values if the colored areas of the spher-
ical harmonics are too large, as seen by the left plot in figure 2.6. If the value of n is too
large, however, the detail of the description might become exaggerated, having effects on the
computational cost associated with evaluating the SBDs. While it is n that defines the detail
of the spherical harmonics directly, 1,4, lets the value of n take higher values, as seen by the
constraints in section 2.3.2. The parameter n,,,, is therefore central when evaluating the SBDs.
Moreover, letting the n,,,, be large directly increases the number of descriptors as can be seen
by its quadratic relation to the amount of Bessel functions in equation (2.21). Figure 2.7 shows
this relation for a DMMgF configuration of 384 atoms:

14

Relationship between nn2x and descriptors

°

400000 L
g 300000 ®
= °
o
S
2 200000 o
g °

°
100000 .
°
2 4 6 8 10
nmaX

Figure 2.7: Plot of the relation between the n,,,, parameter and the number of descriptors for
a DMMgF configuration containing 384 atoms.

The increase of descriptors increases the amount of numbers used to describe each atom in
the local environments, having significant effects on the computational cost of the descriptors.
Consequently, setting the n,,.. alongside 7., should be seen as a trade-off between detail and
cost, and should be given thought when training Neuralll. with SBDs.

Properties of Spherical Bessel Descriptors

The way the SBDs are constructed gives them some preferable properties compared to other
descriptors in the literature. Other than the fact that the descriptors ensure rotational and
translational invariance, it also has significant effects on computational cost [25]. Compared
to the Gaussian density functions used to derive the SOAP descriptors, the superposition of
Dirac-delta functions in eq (2.12) avoids computationally costly integrals while evaluating the
descriptors [25]. In fact, the descriptors prove to be optimally complete, reducing the number
of descriptors needed to a minimum, and therefore also the amount of redundant information
in the numerical representations [25]. Furthermore, this does not come at a significant loss
in accuracy compared to the other descriptors, making the SBD both efficient and accurate
numerical representations for an MLFF to train on [25].

2.3.3 Embeddings

As the descriptors are only based on the atomic positions in the configurations, the training
data lacks any information about the chemical species in the configuration. To include this, an
embedding vector can be included in the training data. NeurallLL includes an embedding vector
of predefined length n.,,;, that is given to the model as training data alongside the descriptors.
The embedding coefficients are in this model only dependent on the chemical species of the
atom located at the center of the given local environment.

2.4 Machine learning

This chapter has previously introduced methods for how training data is computed from atomic
configurations. This section will lay the foundation of the machine learning theory needed to

15

understand how a MLFF predicts forces from this training data. The section will introduce
key machine learning concepts, before explaining NN and residual neural networks (ResNets).

2.4.1 Key concepts and terminology

Before explaining the workings of NNs, it’s necessary to understand some key concepts of ML.
One of the most important concepts is identifying which type of machine learning problem one
is working with. One of the most common branches of machine learning is supervised learning.
Supervised learning is defined as all problems where the model seeks to predict a reality based
on some labeled data [p. 3] [26]. Within supervised learning, the problems found can most often
be categorized as either regression or classification. Classification tasks relate to the process
of determining whether a set of labeled training data corresponds to a set of classes. A simple
example is whether an email should be classified as spam or not. This example is shown in
figure 2.8.

Spam

)
Input data Classification | X X X
model < XK X

No-Spam
x
< >< " XK A
Spam No-Spam I DA D D

Training

Figure 2.8: Illustration of a classification task, where a classification model is trained to deter-
mine whether an email is spam or not.

In contrast to classification, regression tasks make the model predict continuous outcomes, like
the number of emails received on a single day. The example is illustrated in figure 2.9.

16

Input data Regression Real valued
model prediction

@ -
N\ ! /
__

Training

Figure 2.9: A regression task predicting the number of emails received on a specific day to be
15, based on a labeled input data set of a variable amount of received emails for n amount of
days.

Central to these problems is how the input data is labeled. In the context of the regression
example, the input data needs to be labeled according to what the machine should predict.
These labels are often called ground truths. For MLFFs, the ground truths can be the atomic
forces and total energies of an atomic configuration, which in this study is calculated by DFT.
Therefore, our ground truths themselves have an associated error, due to DFT being an ap-
proximate solution to the many-body Schrodinger equation. The regression problem thus boils
down to being able to reproduce the forces from DFT calculations, with as small an error as
possible.

Other than the type of problem, there are other central concepts in machine learning and NN
theory that are central to understanding how NNs operate:

e Neurons, inputs and activations: A neuron is a single node in a NN. Each neuron
sends out an activation, based on the inputs received by other neurons. The activation
output is determined by a set activation function.

e Layer: A layer of a NN is a column of multiple neurons working in parallel.

e Loss: The loss is the estimated error between a prediction from a model and the corre-
sponding ground truth. The loss is calculated by a loss function, which can be defined

17

by the users. A common loss function in the literature is the mean absolute error:

1
MAE = E Z |yground truth — ypredicted|- (223)

Here n is the number of samples in the training data, Ysround trutn are the ground truth
labels in the training data, and Ypredictea 15 the model prediction. For details on the
workings of the loss function, see section 2.4.3.

e Hyperparameters: Parameters of a machine learning model that can be varied are often
referred to as hyperparameters. Examples of these parameters are the number of neurons
in the layers, the activation functions, and the loss function.

2.4.2 Over and underfitting

In addition to the concepts above, an important concept is under and overfitting. A machine
learning algorithm can be trained for an arbitrarily long time, with a wide range of architectures
and parameters. The choice of model and training time has a big effect on the model’s capacity
to learn the relationship between the training data and the ground truths. If the data is trained
too little, it cannot replicate the truth it wants to predict, and the model is underfitted. Figure
2.10 shows the concept of underfitting.

>
7’

Xt N A3

Figure 2.10: Illustration of a machine learning underfitting on a nonlinear decision boundary.
The model has a high bias. Illustration adapted from figures in Raschka and Mirjalili [26, p. 76].

An underfitted model usually has a specific bias, meaning how far off a prediction is from the
ground truths in general [26, p.76]. In contrast, if the model has learned the relationship too
well, it will not be able to predict unseen data that contain differences from the training set,
and the model is overfitted. Figure 2.11 shows a model that is overfitted on the training data.

18

v

Figure 2.11: Illustration of a machine learning algorithm overfitting on a nonlinear decision
boundary. The model has high variance. Illustration adapted from figures in Raschka and
Mirjalili [26, p.76].

If a model has been trained in such a way, it usually is said to have high variance, as it has
learned all intricate details contained in the training data. The goal of training a machine
learning model is finding the correct bias-variance trade-off, giving the model optimal perfor-
mance when it should generalize or extrapolate to new unseen data [26, p.76]. Figure 2.12
illustrates how such a trade-off can look in the context of the previously presented nonlinear
decision boundary.

Xs 1 A 377
WA R
A3

A

N

~
AN
~

&3
N %

»
»

Xy

Figure 2.12: Illustration of a machine learning algorithm having a good compromise between
bias and variance on a nonlinear decision boundary. Illustration adapted from figures in Raschka
and Mirjalili [26, p.76].

2.4.3 Neural networks

The idea of creating artificial intelligence with NNs has existed for a long time, with the first
deep learning models emerging in the 1960s [27]. Although the use of NN was constrained by

19

computational resources at this time, their impact on science and society has grown over time,
reaching new levels of significance in the recent advance of natural language processing models
like ChatGPT [28]. NNs are constructed by artificial neurons connected in a set of layers,
mimicking the complex system of neuron connections in the human brain [26, p. 384].

Architecture

The general structure of a fully-connected NN is built up of a set of fully-connected layers, also
known as dense layers. The simplest form of a fully-connected NN has the following structure
[26, p. 388|:

e The input layer: A set of neurons taking in the numerical training data

e Hidden layers: A set of dense layers constituting the core of the NN. The layers usually
contain variable amounts of neurons.

e Output layer: The final layer in a NN that generates the output prediction of the model.
The layer can contain single, or multiple neurons, uniquely determined by the problem
type. These neurons are usually called output neurons.

The general structure is shown in figure (2.13) with example layer widths of 5-5-3-1, corre-
sponding to the number of neurons in each layer, respectively.

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2.13: General structure of a fully-connected NN with dense layers with layer widths of
5-5-3-1 neurons, respectively.

Forward propagation

The final prediction from an output layer of a NN comes as a result of a scheme called forward-
propagation. Forward propagation is the process by which activations are propagated from the
input layer to the output layer in the NN, through weighted connections [26, p. 391]. Looking
at figure 2.13, each neuron in each layer is connected to all the neurons in the next. The input
received by a neuron i in a given layer, from a neuron j, can be written as

Input;;, = wj; - a; (2.24)

20

where wj; is the weighting between neuron the neurons, and a; is the activation from neuron
J. Summing up all the inputs, a net input for a single neuron in a fully-connected network can
be defined as a linear combination of all the inputs received from the neurons in the previous
layer |26, p. 391]:

n
Net input; = Z Input;; + b; (2.25)
J
Here, n is the number of neurons connected to neuron ¢ from the previous layer, b; is the
associated bias for neuron i. Figure 2.14 shows the net input to an output neuron from three
arbitrary neurons in a previous layer. The calculation of its activation is illustrated by an
activation function O.

Net Input

AN
4 N

‘ a,=0 (W, a,+Wy, ay+Ws,a4)+b,

|

Activation function

Figure 2.14: Ilustration of the activation as of a single neuron, given the input from three
other neurons, 1,2 and 3, with activations a;,as and ag, respectively. The activation function is
illustrated by the letter O.

After the activations are calculated for all the neurons in a given layer, the process is repeated,
where these new activations serve as inputs for the next layer in the network. In this sense,
the signals are propagated through the network until they reach the output layer, where a final
activation will serve as a prediction from the model.

Back propagation

Similar to how the neuronal connections in the human brain adapt to the information received,
the weights in the connections between neurons and their biases need to be updated for the
NN to predict precisely. If the weights and biases are not updated, the activations propagated
through the network in the forward propagation will be non-optimal, giving an accumulation
of errors, and bad model performance. The weights and biases are updated through a scheme
called back propagation [26, p. 416-417|.

The main goal for a NN used for regression is minimizing the error, meaning the difference
between the model predictions and ground truths. Minimizing this estimate depends on up-
dating the weights and biases according to the problem at hand. In short, the updates are
done through the minimization of a loss function that determines the loss (error), between
the predictions and ground truths |26, p. 391]. One popular method of minimizing the error
is through a process called gradient descent. The gradient descent algorithm calculates the
direction in space that minimizes the loss function according to the given weight. Essentially,

21

this means that the algorithm finds the weights that give the smallest value of the loss through
a mathematical minimization approach. The process is illustrated in figure 2.15.

Loss

Minimum

v

Wo
Weight

Figure 2.15: Illustration of the minimization approach. The loss function is reduced towards a
minimum from a starting weight wo. Adapted from Raschka and Mirjalili |26, p. 38].

Training

The full process of training a NN corresponds to a set of cycles with forward propagation
of activations, and weight updates in back propagation. The weights need to be updated a
number of times before the error function can reach its minimum, where convergence in the
model training is reached. One of these cycles is called an epoch [26, p. 391], which is a central
integer that needs to be defined when training a NN. The general scheme for training NN is
visualized in figure (2.16).

22

Epochs

L

Update weights Calculate loss

Input data - ‘\\\('}llli.&. === Final prediction
o
KOO0

N

o)

=) Prediction

Figure 2.16: Illustration of the general training of a NN.

Another central idea of machine learning training is how the model performance is wvalidated.
The usual practice of validation is to hold a subset of the training data away from the training
and validate the model on this subset after each epoch [26, p. 196]. By the results of this
validation set, the hyperparameters of the model can be updated and optimized to achieve
lower validation errors. However, there might be cases where the model performs well on the
validation set but still does not generalize well to new unseen data. This comes as a consequence
of possible similarities between the data and the extracted validation set, or that the model
has generally learned which weights correspond to a good validation performance. To ensure
good generalized performance, models are usually tested on test sets after training [26, p. 196].
Test sets are withheld from the training and validation of the model, and are extracted either
from the same data set or a separate one. Test sets can also serve as a way to test model
extrapolation, by checking if the model can have a good generalized performance on data with
slightly different patterns and parameters than it was originally trained on.

Training optimization

The theory above roughly outlines the main training scheme for a NN. However, there are many
improvements that are often implemented in the training that needs to be mentioned. Among
many are the ones listed below.

e Optimizers: An optimizer is often implemented to enhance the efficiency of the weight
updates in training. Essentially, the optimizers increase the performance of the gradient
descent, making the NN find the optimal weights and biases quicker [29, Chapter. 8.3-8.5].

e Mini-batching The full set of training data is split into small batches containing a few
samples of the training set. The batches are passed in a full training epoch, meaning the
weights are updated after each mini-batch is passed. The process has been shown to have
advantages in training and data memory [29, Chapter. 8.1.4].

e Normalization is done by scaling and centering inputs (activations and biases) either

23

along batches [30], or over a whole layer [31]. The process is shown to increase speed in
training as a consequence of minimizing the variance of training inputs.

NeurallL. was originally built following the architecture of a fully-connected NN [16], however,
there have been updates to the model since this version was published [32]. Due to increased
performance, the model has now incorporated a ResNet architecture, with inspiration from the
study of Chen et al. [33]. ResNets have proven to improve the predictive performance of deeper
networks in image recognition previously [34], and the architecture has here been adapted to
suit a regression problem.

2.4.4 Residual neural networks for regression

This section uses the newest Neuralll article, along with the article introducing the ResNet
architecture by Chen et. al. [33], if not else stated. Not much different from the fully-connected
NN introduced earlier, the ResNets architecture introduces an important feature to the layer
connections in the architecture of the model; Skip connections. A skip connection lets a set
of layer activations bypass a number of dense hidden layers before it is summed with the
activations of a later layer of choice. Looking at figure 2.17, the skip connection is visualized
between the input and output layers of the block, skipping a set of two dense layers in the
process. Then it is summed with the activations from the second skipped dense layer.

Skip connection

~
/

O =

OOOOC
+

Block input Dense layers+Normalization Sum of inputs Block output layer

Figure 2.17: An illustration of an identity block. The block input is propagated through the
network before it is summed together as an input to the block output layer. Normalization acts
on the inputs to the layers, visualized with yellow borders

The number of skipped dense layers is two in figure 2.17, but can be more within the block.
Normalizations of the dense layer activations are included as yellow borders around the neurons
for easier visualization. The architecture shown in figure 2.17 is named an Identity block.
Central to the identity block is that the activations sent through the skip connection contain
the same dimensions as the block output layer, hence the name identity. In figure 2.17 the block
input corresponds to activations from a 5-neuron layer, which equals the amount in the block
output layer. Different from the identity block, figure 2.18 displays a dense block where the skip
connections map a set of activations with an input dimension not equaling the dimension of

24

the output layer. These blocks need an additional dense layer in the skip connection to adjust
for the difference in dimensions.

Dense layer+Normalization

Block input Dense layers-+Normalization Sum of inputs Block output layer

Figure 2.18: An illustration of a dense block. The block input is propagated through the
network before it is summed together as an input to the block output layer. Normalization acts
on the activations of the networks and is visualized with yellow borders. The skip-connection
layer is visualized with orange neurons.

Figure 2.18, shows how a dense block maps a 5-dimensional input down to a 3-dimensional
input layer through 3-neuron dense layers. The skip-connection needs to have a dense layer
with 3 neurons as well to account for the change in dimension.

A full ResNet architecture essentially incorporates the same structure as fully-connected NNs in
figure 2.13, just with the normal layers replaced by dense and identity blocks. Figure 2.19 shows
an example architecture, containing arbitrary widths of 5-3-3-1 within the blocks, mapping an
input of 5 dimensions down to a 1-dimensional output. These widths denote the layer widths
within the blocks as explained in figures 2.17 and 2.18.

25

5to3

3to3 3to3
3tol
=4 i Y
212|838
2 = o s)
L2 ﬁ‘ e L
+~
A = = =
= = Sl O
0 %’ 5} @)
A = =

Figure 2.19: An example of a ResNet architecture with block dimensions of 5-3-3-1, correspond-
ing to the layer widths within the blocks. The identity blocks contain layers with 3 neurons,
while the dense blocks have layer widths corresponding to the output dimension. The identity
blocks are shown in yellow, while the dense blocks are shown in blue.

Here, the final dense block will usually have an output layer containing a linear activation
function, making the final regression prediction of the model.

2.5 NeurallL

Originally developed for a use case on ionic liquids, NeurallL. is a MLFF software, containing
a robust ResNet architecture, incorporating SBD and embeddings as training data to predict
total energy and forces. Since the architecture is not specifically built for use on liquids, the
model can be used on other material states. This section will explain the architecture and
parameters of the model based on the original paper [16], and the newer published article [32].

Architecture

The architecture of NeuralllL contains the input of SBD and embeddings into a core ResNet
model, containing a set of identity and dense blocks of chosen widths, similar to the model
illustrated in figure 2.19. The core is followed by a single linear layer, constituting a prediction
of single-atom energies. This layer accounts for possible offsets in the prediction, alongside
getting the correct scale of the single-atom energies. The architecture is concluded with a "sum
over atoms", summing the single atomic energies, resulting in the prediction of the total energy
for the atomic configuration, denoted Ept predictea- This step essentially destroys the order of
the inputs to the model and enforces the physical invariances of labeling in the model. The
architecture is shown in figure 2.20.

26

Datoms X Memb

Embeddings —

natoms X np

Identity block
Identity block
Dense block

!

pot,predicted

Dense block

Descriptors —

E

Figure 2.20: An illustration of NeuralllL predicting the interatomic potential of an atomic
configuration. An input tensor consisting of embeddings and SBDs is passed to an input core
Resnet model. The first input dense block has the same dimensionality as the input tensor.
The activations from the core model are scaled and offset by a linear layer before the last sum
over atoms layer, returning the interatomic potential Epot predicted-

Each block in the architecture is similar to the blocks visualized in figures 2.17 and 2.18, where
the skip-connection skips two dense layers. However, their blocks also add the linear scaling

layers and the sum-over-atoms layer in the blocks. The figures 2.21 and 2.22 show these slightly
more complex block architectures:

Skip connection

D M
S
A M
=2

— M M —
- -
) M
o
O M
o AN

Block input Dense +Normalization Linear +Normalization Sum over atoms Block output layer

Figure 2.21: The identity block used in NeurallL.. Normalization layers covering the neuron
layers, visualized in yellow, act on the net input to the respective layers.

27

Linear+Normalization

Block input Dense+Normalization Linear+Normalization Sum over atoms Block output layer

Figure 2.22: The dense block used in NeurallL.. Normalization layers covering the neuron layers
act on the net input to the respective layers.

2.5.1 Weights and hyperparameters
Weights

The weights of NeuralllL are randomly initiated according to a truncated Gaussian distribution
using the LeCun normal initialization [35]. This normalization initializes the weights according
to a Gaussian distribution, based on the layer’s own dimensions, which has been shown to have
effective results in NN training [35]. The biases are initialized at zero.

Loss function

The loss function is dependent on the model prediction, as well as the ground truths. In the case
of NeurallLL, the ground truths are the forces and total energies of the atomic configurations
in the training data. The loss between the model prediction and ground truths in NeurallL. is
calculated by the following loss function:

1/0.2 GVA_I en ”fi,predicted - fi,referenceHQ
L :§<— ; log [cosh(020V 1

Natoms
1 E ot,predicted — E ot,reference
—(0.021 h ==L PO, .
* 2 < 8 [COS (Natoms - 0.02 eVatom™!

Here, the < . > brackets denote an average over the atomic configurations in the current
training batch. The variables Epot predicted, fi predicted ,Epot,reference, fireference are the ground truth
energies and forces, and predicted energies and forces, respectively. The constants 0.2 and
0.02 are the loss functions force and energy parameters, respectively. These parameters can be
tuned, where larger values directly affect the influence either the forces or the energy has on
the loss function, and therefore also the model training. Previous studies using NeuralllL have
excluded the energy in the loss, as it has been shown to have little effect on model performance

(2.26)

28

[16], however, this means an adjustment of the energies has to be completed at the end of the
training. Including the energies as a part of the loss neglects this step [32]. The log(cosh)
function has the property of gradient clipping, meaning it will reduce the influence of possible
outliers in training. Figure 2.23 shows the log(cosh) function for different scaled values of x.

14
12 1
= 101
X
< el
5 8
(@)
AN
[@)]
(@]
= 4]
24 X
2x
0 3x
) 5 0 2 4
X

Figure 2.23: Log cosh function for different scaled values of x.

Velo optimiser

The loss function shown in 2.26 is minimized by the VELO algorithm [36], a versatile optimizer,
which itself is a machine learning model trained on a wide variety of different optimization
problems [36]. This stands in contrast to other well-known optimizers like ADAM [37] and
RMSPROP [38] [39]. An advantage of the VELO optimizer is it not requiring the setting of a
learning rate, which is a hyperparameter that has been subject to many studies of how to use
correctly in machine learning [40]. The Velo optimizer is shown to reach higher performance
compared to the other models in the literature [36].

Normalization

NeurallLl uses Layernorm [|31] to normalize the inputs after every layer. LayerNorm normalizes
based on the mean and variance of each feature in the input.

Activation functions

The activation functions in the hidden layers are non-linear swish-1 activation functions given
by

T
Cl4e
where z is the net input to the neuron. The swish-1 activation function avoids the vanishing

gradient problem [41], by which the training would be greatly slowed in the back-propagation
scheme. Figure 2.24 shows the activation function:

(2.27)

s1(x)

29

1.00

0.75 /
0.50
0.25 /

0.00

Swish — 1(x

—-0.50

—-0.75

—1.00
-100 =75 -50 -25 00 25 50 75 100

X

Figure 2.24: Illustration of the swish-1 activation function.

2.5.2 Jax and Flax

NeuralIL is based on Google’s flexible machine learning framework JAX [42], with sub-packages
FLax [43] and OPTAX [44]. JAX is an efficient Python library specifically designed for high-
performance computing, especially useful for machine learning purposes [45]. JAX and its
sub-packages have been smoothly integrated into the code of NeurallLL, making it achieve some
essential properties that come with the software:

e Automatic differentiation: JAX supports forward and reverse mode automatic differ-
entiation, which is an efficient exact method for evaluation of derivatives [46].

e Vectorization: JAX implements automatic vectorization via a vector map. This makes it
easy to apply functions to a large set of values, which is usually seen in machine learning,
for example through the calculation of the loss function.

e JIT-compilation: Through the use of XLA (Accelerated Linear Algebra) [47] JAX’s
just-in-time (JIT) compilation allows for the software to run on GPUs, and cloud-based
TPU accelerators, alongside the python package Numpy’s efficient APIs.

2.5.3 Forces and automatic differentiability

An important feature of NeurallL is the ability to train on forces. As each configuration contain
3+ Natoms amount of forces, the training data is much larger than if the model only trained on
energies. Since the forces are defined as the gradient of the potential energies predicted by
the model, it’s essential to calculate these derivatives efficiently. Neuralll. does this through
automatic differentiability, via a Vector-Jacobian product(VJP) shown in (2.28).

8E ot,predicted aE ot,predicted apa
VJP; | r, —22PECCC) — PooP - . 2.28
(T’ OPa ZO‘ OPa a or; ()

Here, « is an index running over all the descriptors for all atoms in configuration i, p, are
all the descriptors for all atoms in the configuration, and FE predictea 15 the potential energy
predicted by the model. The VJP computes all the forces in the configuration by a single call
of the potential energy, and can also provide higher order derivatives like the stress tensor [32].

30

2.5.4 Jax-MD and flexible cell simulations

After a model is trained to convergence, its parameters can be loaded and used for new force
predictions. As mentioned in section 2.2, configurations are generated in MD by calculating
atoms’ positions and velocities via a force field. NeurallLL can be used to generate these forces
in each step of the velocity Verlet algorithm, replacing the more traditional methods. For Neu-
rallL., the JAX implementation with the VJP to extract forces is central to the efficiency of the
model. Due to the code’s JAX implementation, the model can also be used to run JAX-MD
[48], a software MD-subpackage built on JAX, allowing the model to run on GPUs. All MD
simulations completed with NeurallLL will hereafter be referred to as JAX-MD.

As mentioned in this section, MD simulations are determined by which ensemble is chosen to
simulate in, holding some thermodynamic properties constant in the environment. In the NPT
ensemble, it is possible to let the unit cell values fluctuate, varying the cell dimensions while the
simulation is running. A non-isotropic extension of this methodology was integrated into the
code of JAX-MD by Sebastian Bichelmaier and his team as a part of his Ph.D. work [21]|. The
premise of flexible cell simulations should provide a more favorable simulation environment for
solids, as the cell shape is crucial for predicting their properties [21].

2.6 Phase transition of DMMgF

A study by Szafranski et.al. [18] shows details about the phase transition of DMMgF. In the
article, they show how DMMgF has a characteristic phase transition occurring experimentally at
temperatures between 262K and 264K. The phase transition comes with a significant structural
order-disorder difference that can be seen in the systems dimethylamine ((CH3N); — NHy)
molecules. The low-temperature phase is shown to have significant order in the molecules,
while the high-temperature phase shows a disorder. As a consequence, an order parameter can
be defined to check which phase a configuration is in. We define this order parameters as a sum
of middle vectors pointing from the nitrogen atom to the connecting point between each methyl
molecule. Figure 2.25 shows an example of a dimethylamine molecule with its corresponding
middle vector

Figure 2.25: A middle vector for a CH3NCH3 molecule in the perovskite system, illustrated
by Kristian Berland. The connecting point between the two methyl molecules is shown by the
dashed sphere. The white, black, and blue spheres denote the hydrogen, carbon, and nitrogen
atoms, respectively.

31

The rotated arrow in figure 2.25 illustrates the re-orientation that certain dimethylamine
molecules would experience under an order-disorder phase transition. Equation (2.29) shows the
formula for the order-parameters calculated for each dimethylamine molecule within a DMMgF
configuration:

>, [IMiddle vectors||,

m

Order-parameter = (2.29)

Here, the sum is normalised by m, signifying the number of dimethylamine molecules in the
configurations. A drop in order-parameter values towards a value of 0 would indicate that the
vectors had summed to 0, illustrating a re-orientation of the molecules so that they point in
opposite directions, signifying the disordered structure.

32

Chapter 3

Method

This chapter will first introduce the general goals and problems of the thesis. Then, the
software used for the generation of data sets and general analysis of the DMMgF system will
be presented. Details about the available training data will then be presented before details on
how this data was used in the training of NeurallL. will be explained in detail. Finally, how the
JAX-MD simulations were performed will be presented.

3.1 Problem description and goals of thesis

The goals of this master’s thesis were briefly mentioned in the introduction. Since relevant
theory has now been presented, the goals of the study can be explained a bit more thoroughly.
In general, the study seeks to find out more about NerualllL’s predictive performance on DM-
MgF by predicting interatomic forces and comparing them to DFT calculations. Additionally,
we aim to evaluate whether the force predictions obtained from Neuralll. be used to simulate
stable MD. We refer to the stability of MD simulation in terms of the fluctuations in the total
volume of the configurations during the simulation time. While no specific fluctuation range
has been deemed acceptable for defining stability, fluctuations that cause non-physical atomic
movements, and possible simulation crashes are considered non-optimal. Using NeurallL, we
investigate possible combinations of training data and parameters to see how this affects the
stability of MD simulations.

The final goal of the thesis is to answer whether the Neuralll.-based MD simulations can
reproduce an experimentally determined phase transition of DMMgF from the low to high-
temperature phase. To determine this, we seek to reproduce the result shown by Szafranski
et.al. in their study of the phase transition of the DMMgF system. Figure 3.1 shows their
experimental data, where a volume drop between the two phases of the system occurs at tem-
peratures between 262K and 264K.

33

217.00+

216.751

216.50+

Phase I Phase 11

216.251

V/Z [AM3]

216.00

215.751

215.50+

215.251

125 150 175 200 225 250 275 300
Temperature
Figure 3.1: Experimental volume evolution of the DMMgF system for a temperature range of
120 to 320 K. The volume has a significant drop between temperatures of 262-264K, following

a phase transition from a ordered to disordered phase. The figure is adapted to show linear fits
to the experimental data in Figure 1 (b) from the study of Szafranski et.al. [18].

Using NeurallLlL, the goal is to explore whether a stable model can reproduce the result shown
in figure 3.1 with MD simulations in this temperature region. If such a result could be shown,
it could indicate whether NeurallL is capable of capturing the underlying physics of DMMgF
in agreement with experimental data.

3.2 Software

3.2.1 Sigma2 clusters

Training of Neuralll models and simulations of Neuralll.-based MD were completed on re-
sources provided by SIGMA2 - the National Infrastructure for High Performance Computing
and Data Storage in Norway. Python scripts used were submitted as batch jobs to available
GPU nodes on the computers through the slurm workload manager. For details regarding
sigma2, see their home page!.

3.2.2 VASP

The VIENNA AB INITIO SIMULATION PACKAGE (VASP) [49] was used to run molecular dy-
namics for the generation of data sets used in the training of NeurallL.. For more details on the
data sets, see section 3.3. Be referred to VASP’s wiki page? for details regarding calculations
of MD using the software.

Thttps:/ /www.sigma2.no/
https://www.vasp.at/

34

3.2.3 ASE

The ATOMIC SIMULATION ENVIRONMENT (ASE) [50] is a Python package with a set of tools
for working with atomic simulations. It was routinely used to extract individual atoms and key
properties from the different configurations contained in the MD trajectories. As with VASP,
details can be found in their documentation?.

3.2.4 VESTA

The software VISUALISATION FOR ELECTRONIC AND STRUCTURAL ANALYSIS (VESTA) [51]
was used to inspect and visualize configurations and individual dimethylamine molecules at-
tained from the MD trajectories. Details about the VESTA software can be found in their
documentation.*

3.2.5 Molcrys

The recently published python package MOLCRYS® was routinely used to calculate the order-
parameters introduced in section 2.6. The package is developed by the material theory and
informatics team at NMBU.

3.3 Training data

All data sets used for the training of NeurallLL were created by Rasmus André Tranas using the
VASP software. The data sets were created by running several DFT-based MD simulations
of DMMgF. In total, six simulations were completed using NVT ensembles. The first five
simulations had a temperature of 300K, using DFT-relaxed lattice constants scaled by a factor
varying between 0.98 and 1.02. The final simulation was conducted for a higher temperature
of 600K and was completed with a lattice constant scaled by a factor of 1.0. The ground truth
forces used in training were routinely provided by DFT calculations for each configuration.
The trajectories were compiled into .json files, resulting in six different data sets with either
different volumes or different temperatures. Table 3.1 shows an overview of the different data
sets used in this thesis.

Table 3.1: Different data sets used in training of NeurallL.

Data set | Lattice constants scaling factor | Temperature [K| | Configurations
1 0.98 300 2620
2 0.99 300 2472
3 1.0 300 2292
4 1.01 300 2275
5 1.02 300 2176
6 1.0 600 2275

3https://wiki.fysik.dtu.dk/ase/
4http://www.jp-minerals.org/vesta/en/
Shttps://gitlab.com/m7582/molcrys/

35

3.4 Machine learning framework

In general, creating a robust machine learning model for any given problem requires detailed
thought and exploration of which data sets and parameters to train with. Figure 3.2 shows
how a general machine learning framework is adapted to this study using NeurallL:

Problem type Regression: Predicting energies and forces

Training data Atomic configurations represented by SBD, and ground truth forces from DFT

| ! I

Training set Validation set Test set

Splitting of data

}

Training with chosen r., and n,,
Training and validation [+— |:| |:| -]~ —~
|—> KJ Epochs

Testing
Test on unseen test
configurations

Figure 3.2: An illustration of the general machine learning framework used in this study.

Figure 3.2 leaves out details about the different steps of the framework used in this study. We
will now go into detail about which combinations of data sets from 3.1 were chosen to train
different models, and which parameter combinations were chosen.

3.4.1 Hyperparameters

Some hyperparameters of NeuralllL were unchanged in this study, regardless of which training
framework was used in the analysis. Table 3.2 shows these hyperparameters:

Table 3.2: Hyperparameters remaining unchanged in the training of NeurallL

Loss function force parameter | 0.20 eV/A
Loss function energy parameter | 0.020 eV /A

Core widths 128-64-32-16-16
Mini batch size 4
Validation batch size 32

Table 3.2 shows the loss function parameters, which directly affect the influence of the atomic

36

forces and energies on the loss function shown in equation (2.26). A larger value of the force
parameter is chosen so that the forces will have a larger influence on model training. The
validation batch size is chosen so the model validates on a batch of samples from the validation
set, rather than the whole data all at once. Similarly to mini-batches explained in section 2.4.3,
this has memory advantages in training but can result in slower training.

The only hyperparameter that was changed for the training of different models was the number
of epochs. Initially, the number of epochs was set to 50 for all models, but some models were
re-trained with a different amount as explained in section 3.4.5.

3.4.2 NeurallL training

To ensure that we were working with a robust version of Neuralll. when simulating JAX-MD,
several different models were trained, validated, and tested. The analysis was performed with
the goal of finding a Neurall. model that could show stability when used in the simulation of
JAX-MD, avoiding simulation crashes and un-physical results. The different models trained
followed separate training methods; a simple training and a mized training. These two ways of
training only differ with regards to which data sets from table 3.1 are used in the training of
the NeuralllL models, and not other specifics like the model parameters.

Simple training

Figure 3.3 shows an illustration of the simple training method. All Neurall. models following
the simple training method were trained on configurations only extracted from data set 3 from
table 3.1. All configurations contained in the single data set were used in training. The data
was then split into training, validation, and test sets. 20 randomly drawn configurations were
withheld as a test set from data set 3, with the remaining data being split into an 80% training
and 20% validation split. The model was then trained and validated on the training and
validation split, with chosen values for r.,; and np., as described in section 3.4.3, alongside
the constant choices of hyperparameters shown in table 3.2. To get a larger test region for
the models, test sets containing 20 randomly drawn configurations were extracted from the
remaining data sets in table 3.1, resulting in six different test sets for the model to be tested
on. The trained model was finally tested on all six test sets.

37

l Data set 3 |

All configurations except the 20 in test set I 20 configurations
80% training 20% validation Test set for dataset 3

Test sets for datasets

[1,2,4,5,6]
Training with chosen r.,; and n_, v
C— I:I.. - —~ Test sets for all data sets
—— T Epochs

Test on all datasets

Figure 3.3: Illustration of the simple training method. All data sets are extracted from the
data sets in table 3.1. The model splits data set 3 into a training, validation, and test set. A
NeurallLL model is trained on the training set, and validated on the validation set before it is
tested on all six external test sets extracted from the data sets in table 3.1.

Mixed training

Figure 3.4 shows an illustration of the mixed training method. In contrast to the simple training,
all models following the mixed training used a subset of 400 randomly drawn configurations from
each of the data sets in table 3.1 to train a Neuralll. model. The 400 configuration subsets
totaled a set of 2400 configurations, which were split into 80% training and 20% validation
split. The model was then trained and validated on this training and validation split, with
chosen values for r.; and np., as described in section 3.4.3, alongside the constant choices of
hyperparameters shown in table 3.2. To extract test sets that were ensured to be different than
the ones used in training, the index labels of the used configurations were saved to a Python
dictionary. Under testing, 20 test configurations were randomly drawn from the data sets in
table 3.1, and ensured to be different from the ones used in training by indexing the labels in
that same dictionary.

38

Datasets 1-6

400 random configurations from each

| }

Mixed dataset Python dictionary with indexes
| for used configurations

' ¥

80% training 20% validation

| |
l

Training with chosen r.,; and n

o HHH" == T oo

max

Test on 20 unseen configurations from
datasets 1-6 by indexing Python dictionary

Figure 3.4: Illustration of the mixed model training method. All data sets are extracted from
the data sets in table 3.1. 400 random configurations from data set 1-6 into a mixed data set
containing 2400 configurations. This data set is split into training and validation sets that are
used in the training of a Neurall. model. Test sets are extracted based on indexing labels that
are saved to a Python dictionary.

3.4.3 Parameter optimization and model combinations

Ensuring that we found the most optimized Neuralll. model in the context of the two training
methods introduced in 3.4.2, we explored a range of parameter combinations for both of them.
The parameter combinations explored were the cut-off radius rq,; and the n,., parameters.
Several combinations of these parameters were explored, varying r., between values of 3.5
A and 6 A, and np,, between 4 and 6. These parameter combinations were tested for an
equal amount of models following the simple training method and the mixed training method.
This resulted in a total of 14 different Neuralll. models, with both different training data and
parameters. Table 3.3 shows these 14 models. We denote the models with names simple or
mized based on which training method in section 3.4.2 was used.

39

Table 3.3: Different models used in the parameter optimization. The parameters containing
equal colors signify equal values.

Model name Teut [A] | Dimax
Simple model 1 | 3.5 4
Simple model 2 | 5 4
Simple model 3 | 5)
Simple model 4 | 5 6
Simple model 5 | 6 4
Simple model 6 | 6)
Simple model 7 | 6 6
Mixed model 1 | 3.5 4
Mixed model 2 | 5 4
Mixed model 3 | 5)
Mixed model 4 | 5 6
Mixed model 5 | 6 4
Mixed model 6 | 6)
Mixed model 7 | 6 6

Choosing to focus on the parameters 7,,,, and n,,.., we have excluded many of the model
hyperparameters that could be explored in an extended hyperparameter optimization. Among
the ones excluded are the loss function, activation functions, and layer widths.

3.4.4 Selection of models for simulation

Simulating JAX-MD for each of the 14 models in table 3.3 would result in a quite extensive
analysis. Therefore, only four models were used. Of the four models, one model was simple,
and three were mixed. The models were selected by which had the smallest root mean square
error (RMSE) and mean absolute error (MAE) between the ground truth and predicted forces.
Small mean error values of these two error metrics over all the six test sets extracted from each
data set in 3.1 were used as a final performance criterion for selection. Small errors would mean
that the models predict forces closer to the ground truth forces calculated by DFT, which was
deemed as preferred when performing MD simulations.

Parity plots showing the predicted forces against the DFT ground truth force calculations
were also inspected to ensure the models had reasonable predictions on all test sets, with no
distinct outlier predictions.

3.4.5 Re-training of models

After observation of non-optimal volume fluctuations, the models selected for JAX-MD were
trained again with a reduced amount of epochs, determined by where the errors on the training
in the model had converged. This technique is usually referred to as Early stopping [52], from
where the learning is stopped based on the errors having converged over the validation set.
Further training beyond this point would make the generalized performance worse [52], by
increasing the chance of a model overfitting. In this work, we choose our convergence point as
the number of epochs where the model only sees a slight decrease in M AE over the validation
set. The chosen convergence points are only based on observation of the graphs, whereas more

40

optimal points may have been found by using more complex methods like specific stopping
criteria [52]. See section 4.2.3 for more details on the models that were re-trained, and the
convergence points chosen for each of them.

3.5 Jax-MD

All JAX-MD simulations were performed in an NPT ensemble with flexible cells, following the
implementation of Sebastian Bichelmaier [21]. The pressure in the simulations was fixed at
1 bar, with a constant temperature defined by a set value. All simulations were completed
with 150 thousand timesteps of 0.25 fs, totaling a time of 37.5 ps for every simulation. The
simulations were conducted with a barostat constant, and coupling constant of 7, = 1500 fs and
7. = 500 fs, respectively. The constants were set with recommendations from Bichelmaier. See
[21] for a detailed explanation of these parameters in the context of flexible cell simulations.
The initial structure of the JAX-MD was loaded from a VASP CONTCAR file used in the
generation of dataset 3. The CONTCAR file defined a supercell containing 384 atoms in the
low-temperature phase of the DMMgF system. The configurations resulting from JAX-MD
simulations were written to ASE trajectory files for every 25th simulation step.

3.6 Exploration of phase transition temperatures

The temperature region explored for the DMMgF system ranged from 250K to 335K, with inter-
vals of 5K between each simulated temperature. An extra simulation at 262.5K was completed

to attain more detail close to the experimental phase transition temperature laying between
262K and 264K.

The first 400 written configurations (10 thousand MD steps) were excluded from the mean
volume calculations of the resulting MD trajectories. This was done to account for possible
thermalization in the cell. The mean volumes were plotted per formula unit, against the dif-
ferent temperatures simulated, where a drop in agreement with figure 3.1 would be expected
had the phase transition occurred. The order-parameters defined by equation (2.29) were also
inspected for certain trajectories to see if the phase transition had occurred.

41

Chapter 4

Results

This chapter will provide the results of the study, divided into four sections. Firstly, the force
predictions of the model will be presented by tables and parity plots. Secondly, the results
from JAX-MD simulations will be presented for selected models. Thirdly, a section presenting
the result of the exploration of the temperatures close to the experimental phase transitions
of DMMgF will be shown. Finally, results from an additional simulation started from the
high-temperature of DMMgF will be shown.

4.1 Force predictions

This section will provide the results of the force predictions made by the 14 different NeurallLL
models presented in 3.3. Only a select amount of parity plots will be shown, see appendix A
for all plots.

4.1.1 Mean errors of predictions

Table 4.1 shows the mean predictions of all 14 models on all the respective test sets extracted
from the data sets in table 3.1.

42

Table 4.1: Table of force prediction mean errors for all model combinations.

Model r_cut [A] n_max RMSE [eV/A] MAE [eV/A]
Simple model 1 3.5 4 0.1298 0.0964
Simple model 2 5 4 0.1541 0.1143
Simple model 3 5 5 1.2237 0.2468
Simple model 4 5 6 0.1706 0.1220
Simple model 5 6 4 0.1754 0.1305
Simple model 6 6 5) 0.2032 0.1420
Simple model 7 6 6 0.1840 0.1389
Mixed model 1 3.5 4 0.0693 0.0516
Mixed model 2 5 4 0.0583 0.0445
Mixed model 3 5 5 0.0597 0.0455
Mixed model 4 5 6 0.0532 0.0406
Mixed model 5 6 4 0.0795 0.0609
Mixed model 6 6 5 0.1158 0.0859
Mixed model 7 6 6 0.0589 0.0450

Table 4.1 four distinct colored rows depict the best simple model, and the three best-mixed
models in order, colored in green, blue, yellow, and orange, respectively. Overall the mean
errors shown in the table are generally lower for all the mixed models compared to the simple
models. This comes as no surprise, given that the NeurallL models following the mixed training
were trained on configurations from all the data sets, compared to the simple models only being
trained on data set 3. Since the mixed models have seen a number of configurations from the
same sets they are tested on in training, the models can be said to interpolate well. In contrast,
the simple models have generally worse performance, with significantly higher error values. The
parity plots give an insight into why the mean errors are generally high for the simple models.

4.1.2 Parity plots

Figure 4.1 show parity plots of the force predictions done by simple model 1, colored in green
in 4.1.

43

Data set 1 Data set 2
10.0 4 10.0 4
75 75
g 5.0 g 5.0
> >
)) () ,
2 o5 = 254 “E
g ¢ g
2 2
5 0o 5 0o
B B
£ 259 ¢ RMSE= 0.1784 ¢V/A £ 251 . RMSE=0.1588 eV/A
'g MAE=0.1319 eV/A 3 o MAE=0.1222 eV/A
2 5o 2 50
& &
7.5 7.5
100 100
100 -75 -0 -25 00 25 50 15 100 100 -15 -0 -5 00 25 50 15 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
(a) (b)
Data set 3 Data set 4
10.0 4 10.0 4
7.51 754
< 501 < 501
> >
) [} .,
= a5 = a5 ¥
8 3
2 2
5 00 5 00
B 3
5 RMSE=0.0259 eV/A 3 257 o RMSE=0.1527 eV/A
3 MAE=0.0200 eV/A 3 MAE=0.1162 eV/A
= —5.0- = —5.0-
& &
754 754
100 100
*]'U.U *7{5 *5‘.[) *2‘.5 (]i() 2?5 5?0 7?5 l(;.() *]'().() *7‘.5 *5‘.() *2‘.5 (]T(] 2j5 5?0 7?5 l(;.(]
Ground truth forces [eV/A] Ground truth forces [eV/A]
(c) (d)
Data set 5 Data set 6
1004 100
7.54 754
< 501 < 501
> >
Q)
— 254 — 254
3 3
2 2
5 00 5 00
3 B
o 251 ¥ RMSE=0.1573 eV/A B 251 RMSE=0.1053 eV/A
3 : MAE=0.1189 eV/A 3 MAE-=0.0690 eV/A
£ 01 £ 01
754 754
=10.0 1 =10.0 1
*]'0.0 *7‘.5 *5‘.0 *2‘.5 010 275 5?0 715 10',0 *]'040 *7‘.5 *5‘.0 *2‘.5 OTO 215 5?0 715 l(;.(]
Ground truth forces [eV/A] Ground truth forces [eV/A]
() ()

Figure 4.1: Parity plots of predicted forces for simple model number 1 against ground truth
forces from DFT. The title of the plots denotes which test set is predicted on i.e: (a): Predicted
forces on a test set of 20 configurations extracted from data set 1. The predicted forces are

plotted as scatter points in green, where a prediction having zero error would lay on the orange
line.

44

The parity plots in figure 4.1 shows all six of simple model 1’s predictions on all test sets ex-
tracted from the data sets in table 3.1. As can be seen from plot (c¢), the model interpolates
well as the prediction errors associated with the test set from data set 3 is remarkably low with
a value of MAE = 0.020 ¢V /A. However, as the model was only trained on configurations from
data set 3, it extrapolates badly, as seen from the other plots in figure 4.1 containing higher
error values.

Figure 4.2 shows the force predictions on each test set by mixed model 4, which had the smallest
mean errors, colored in blue in table 4.1.

45

Data set 1 Data set 2
10.0 100
7.5 7.54
< 5.0 g 5.0
; > ~
L 254 & A
g 001 & oo
3 y 3
g RMSE= 0.0552 eV/A g 257 # RMSE= 0.0484 eV/A
B MAE=0.0418 eV/A 3 MAE=0.0369 eV/A
& 5.0 & 50
-751 754
~10.01 1001
~100 75 50 -25 00 25 50 75 100 S100 75 50 25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
(a) (b)
Data set 3 Data set 4
10.0 4 10.0 4
754 754
< 50 < 50
>) >
[*] 7 o
‘;‘ 254 4 ‘: 254
[} L
8 0.04 8 0.0
e " g o
B B
5 % RMSE= 0.0535 eV/A B 2% RMSE= 0.0446 ¢V/A
'g MAE= 0.0408 eV/A 3 MAE=0.0343 eV/A
L 50 L 509
-75 ~7.5 4
10.0 4 10.0 4
*IE).U *7‘.5 *5‘.0 *2‘.5 OTU 2?5 5?0 7‘5 10'.0 *ll] 0 *7‘.5 *5‘.0 *2‘.5 UVU 2?5 STU 7?5](;.0
Ground truth forces [eV/A] Ground truth forces [eV/A]
(c) (d)
Data set 5 Data set 6
10.0 1004
7.51 754
< 5.0 »g 5.0 y
> > A
L s 4 C
g g
S 007 £ oo
E E «
g) RMSE= 0.0449 eV/A 5 2] RMSE= 0.0724 eV/A
2 - MAE= 0.0343 eV/A g e MAE-= 0.0557 eV/A
& —5.04 = =50
ay
-15 754
-10.01 1001
-100 75 50 25 00 25 50 75 100 S100 75 50 25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
(e) (f)

Figure 4.2: Parity plots of predicted forces for mixed model 4 against ground truth forces from
DFT. The title of the plots denotes which test set is predicted on, i.e: (a): Predicted forces on
a test set of 20 configurations extracted from data set 1. The predicted forces are plotted as
scatter points in green, where a prediction having zero error would lay on the orange line.

The parity plots show an overall accurate performance for mixed model 4 over all the test
sets, with a slightly higher error for the high-temperature data set in parity plot (f). The over
all better performance is a direct result of including configurations from all six data sets in

46

training, as explained in section 3.4.2. However, the parity plots give no indication of model
extrapolation, as the test sets do not cover areas that the model has not seen in training. Still,
the model shows remarkably good interpolation performance with error values as low as MAE

— 0.0343 eV /A, as seen in plot (d) and (e).

4.2 Volume fluctuations from Jax-MD

4.2.1 Initial models

The four models highlighted with colored rows in table 4.1 were selected to simulate JAX-MD
based on the performance criteria of lowest errors. Since, the three mixed models showed much
lower errors in the force predictions, three of these models were selected, as opposed to the one
simple model. Figure 4.3 shows the JAX-MD volume fluctuations plotted per formula unit for
these four models for the first 40 thousand of 150 thousand simulation steps.

150
—— Simple model 1
125 1 —— Mixed model 1
100- —— Mixed model 4
Mixed model 7
75

0 5000 10000 15000 20000 25000 30000 35000 40000
Step

Figure 4.3: Volume fluctuations of the four selected models plotted for the first 40 thousand
JAX-MD steps. All models show non-physical volume fluctuations, resulting in simulation
crashes.

All four trajectories show non-physical fluctuations, either with a gradual decrease or increase
of volume until the eventual simulation crash.

4.2.2 Simulation crashes

Visualizing the atomic configurations gives an insight into what happens at the atomic level
when the volumes either increase or decrease towards un-physical values in figure 4.3. Figure
4.4 shows the initial atomic configuration, and the last configuration attained simple model 1’s
trajectory in figure 4.3.

47

Figure 4.4: (a) Initial configuration in the simulation. (b) Last configuration after 100 thousand
MD steps using simple 1. The atoms move away from each other in an un-physical manner.
Mg atoms are colored orange, nitrogen blue, carbon brown, and hydrogen white.

Figure 4.4 shows how the atoms move away from each other in the configuration, breaking the
atomic structure and causing the simulation to crash. The explosion can be concretely shown
by summing all the pairwise distances between each of the carbon atoms in every configuration
along the trajectory. Figure 4.5 shows the evolution of this sum along the trajectory, up to 100
thousand MD steps at which the simulation was terminated.

185001

18000 -

17500

17000

165001

Pairwise carbon distances [A]

16000 -

15500 -

0 20000 40000 60000 80000 100000
Step

Figure 4.5: Sum of pairwise distances between the 80 carbon atoms in each configuration along
the JAX-MD trajectory using simple model 1. The sum increases over the simulation time.

As can be seen, by the sum, the distance increases steadily for the whole simulation time,

48

coinciding with the explosion shown in figure 4.4.

In the case of simple model 1, the explosion can be seen with a correspondingly high increase
in the volume over the trajectory as shown by the red line in figure 4.3. In other simulations,
the opposite behavior can be observed, as exemplified by the simulation of mixed model 7. In
this simulation, the volume decreases rapidly before the simulation eventually crashes, shown
by the yellow graph in figure 4.3. Figure 4.6 shows the first and last configuration attained in
the trajectory of mixed model 7 in figure 4.3.

Figure 4.6: (a) Initial configuration in the simulation. (b) Last snapshot of configuration before
simulation crash. The atoms have moved closer to each other than in the initial configuration.
Mg atoms are colored orange, nitrogen blue, carbon brown, and hydrogen white.

In the snapshots, it is clear that the atoms’ movements cause the cell to implode, corresponding
with the decrease in volume.

Similar to figure 4.5, the sum of pairwise carbon distances in mixed model 7’s trajectory is
shown in figure 4.7.

49

1stances

13500

13000 -

‘= 12500

Pairwise carbon d

12000 -

0 1000 2000 3000 4000 5000 6000 7000
Step

Figure 4.7: Sum of pairwise distances between the 80 carbon atoms in each configuration along
the JAX-MD trajectory using mixed model 7. The sum decreases over the simulation time.

The pairwise distances decrease in agreement with the implosions we see in the snapshots of
figure 4.6. As a consequence of the crashing, we hypothesized the models to be overfit on the
training data. The models were thus re-trained according to an early stopping method, as
explained in section 3.4.5.

4.2.3 Validation metrics for re-training

The four models initially used for JAX-MD simulations were trained again, with a smaller
amount of epochs to avoid the potential overfit, as explained in section 3.4.5. Figure 4.8 shows
the MAE values of all the initial models over the validation set. Here, the number of epochs
for the initially trained models is shown by red vertical lines, whereas the convergence points
chosen as the number of epochs to re-train the models with are shown by green verticle lines.

50

0.7 0.225
0.6 0.200
. . Convergence point | Initial
05 Convergence point Im'tu?l 0.175 training
fg training g
> 0.4 > 0.150
2, 2,
2 <0.125
S 0.3 sY
0.2 0.100
0.1 0.075
0.0 . 0.050 T
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) (b)
0.18
0.25
0.16 . . Convergence point | Initial
Convergence point | Initial training
0.14 training 0.20
< <
2,012 3
53] = 0.15
< <
s 0.10 S
0.08 0.10
0.06
0.04 N 0.05 g
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

(c) (d)

Figure 4.8: Validation metrics of the four initially selected models that simulated JAX-MD.
Vertical lines are drawn in red and green denoting the number of epochs for the initial model

training, and the convergence points chosen as amount of epochs for re-training. (a) Simple
model 1. (b) Mixed model 1. (c¢) Mixed model 4. (d) Mixed model 7.

Plots (b)-(d) in figure 4.8 shows that model convergence in training is approximately reached
for the mixed models at 40 epochs, where only small decreases of the MAFE can be seen for the
next 10 epochs. For the simple model in plot (a), an approximate convergence point is reached
at 30 epochs. These convergence points where chosen as the number of epochs to train the
models again, and perform new JAX-MD simulations.

4.2.4 Re-trained models

Figure 4.9 shows the JAX-MD volume fluctuations for the four re-trained models:

51

275 A

250 1

225 1

<X

V/Z [A3]

150 4
—— Simple model 1
125 1 —— Mixed model 1
100] —— Mixed model 4
Mixed model 7
75

0 20000 40000 60000 80000 100000 120000 140000
Step

Figure 4.9: Volume fluctuations of the four selected models. Mixed model 1 shows stability in
the simulations, while the other models show non-stability, resulting in simulation crashes.

The plot shows how the re-trained mixed model 1 gives stable volume fluctuations over the
simulation time, while the other models result in simulation crashes. Of the three models
showing crashing in the simulations, mixed model 7 and 4 do so at earlier times than simple
model 1, although these models have smaller errors in the force predictions. Table 4.2 shows
the mean error values of the re-trained models.

Table 4.2: Table of mean errors of force predictions over all data sets for the four re-trained
models.

Model r _cut[A] n_max RMSE[eV/A] MAE[eV/A]
Simple model 1 3.5 4 0.1381 0.1028
Mixed model 1~ 3.5 4 0.0819 0.0604
Mixed model 4 5 6 0.0689 0.0486
Mixed model 7 6 6 0.0645 0.0502

The re-trained models have worse performance over the six test sets, as shown by the larger
error values compared to the errors of the initial 50 epoch models shown in table 4.3.

92

Table 4.3: Table of mean errors of force predictions over all data sets for the four models that
were later re-trained.

Model r_cutfA] n_max RMSE[eV/A] MAE[eV/A]
Simple model 1 3.5 4 0.1298 0.0964
Mixed model 1 3.5 4 0.0693 0.0516
Mixed model 4 5 6 0.0532 0.0406
Mixed model 7 6 6 0.0589 0.0450

4.3 Exploration of phase transition temperatures

As explained in section 3.6, temperatures between 250K and 335K were simulated to look for
the phase transition of DMMgF. All simulations were performed with re-trained mixed model
1, which showed stability in figure 4.9. Figure 4.10 shows the mean volume calculations for all
the temperatures simulated in the region.

260 280 300 320
Temperature [K]

Figure 4.10: Plot of mean volumes vs temperatures for different JAX-MD trajectories. The
mean volumes are shown in blue with corresponding standard deviations in red.

Figure 4.10 shows no large drop in volume over the experimental phase transition temperatures
at 262-264K. Rather, a gradual increase in the mean volumes can be seen for increasing tem-
peratures. An outlier point can be seen at 325K, with significantly larger mean volumes than
the other simulated temperatures.

Figure 4.11 shows the order parameters calculated for the outlier trajectory at 325K.

33

0.725

0.700

o
N
Q
G

o
o
e}
G

|Sum of C-N-C vectors|

o
°N
S
S

0.575

0.550

0 20000 40000 60000 80000 100000 120000 140000
Steps

Figure 4.11: Plot of order parameters for a JAX-MD simulation at 325K. The value of the
order parameters fluctuates between the different simulation intervals, before returning to the
orderer value of 0.66.

Figure 4.11 shows small drops in the order parameters during the simulation, before it moves
back to the starting values centered around 0.66. The small drops in the parameters indicate
some re-orientation towards a more disordered structure. However, the re-orientations are as-
sociated with a volume increase, rather than the expected decrease had a full phase transition
occurred in the cell. Furthermore, the drop in order parameter value is not significantly large,
only changing from approximately 0.66 to 0.625 in the plot. Possibly, only a few molecules
in the cell have experienced some structural changes, before they quickly rotate back to an
ordered structure.

In contrast to this, the order-parameters of the configurations attained from trajectories at
simulation temperatures close to the experimental phase transition range of 262-264K show
no changes toward a disorder. Figure 4.12 shows the order parameters of the MD-trajectory
simulated at 265K.

o4

0.72

S
2
S

o
N
&

|Sum of C-N-C vectors|
° o
23

o
o
e}

0.60

0 20000 40000 60000 80000 100000 120000 140000
Steps

Figure 4.12: Plot of order parameters for a JAX-MD simulation at 265K. The value of the order
parameters is centered around a value of 0.66, with small deviations.

The figure clearly shows stability in the order-parameters, with small fluctuations around a value
of 0.66, indicating that no structural changes in the dimethylamine molecules gave occurred
during the simulation time.

4.3.1 Simulation of high-temperature disordered-phase

Up til now, all simulations were initialized from an ordered arrangement of DMMgF'| but what
happens if we initialize it from the disordered phase? To explore this, we initialized a simulation
with a 144-atom supercell arranged in the disordered phase of the material. Similar to earlier,
the simulation was performed with the stable re-trained mixed model 1. Figure 4.13 shows the
volume fluctuations of this simulation.

95

0 20000 40000 60000 80000 100000 120000 140000
Step

Figure 4.13: Volume fluctuation plotted against simulation step for the simulation performed
with a disordered starting simulation structure at 250K. The volume increases over the simu-

lation time frame, but stays reasonably stable.

Not only is the volume evolution stable, but it increases significantly over the simulation time.
While this result is peculiar, it might indicate that the disordered structure might be associated
with an increase in volume, rather than a decrease when using the flexible cell NPT simulations.
This also coincides with the outlier simulation of 325K seeing disordered structural changes in
figure 4.11, and a corresponding volume increase in figure 4.10. Figure 4.14 shows the evolution
of the order parameters calculated from the trajectory of the simulation started in the disordered
phase of DMMgF.

96

0.4

o
[

|Sum of C-N-C vectors|

o

0.0

0 20000 40000 60000 80000 100000 120000 140000
Steps

Figure 4.14: Plot of order-parameters for a JAX-MD simulation started in the high-temperature
disordered phase of DMMgF. The value of the order-parameter drops over the simulation time.

The order-parameters drop from values of approximately 0.26 to 0.05, indicating that the
structure has become even more disordered than the starting simulation structure was. When
inspecting the six dimethylamine molecules contained in the configurations, it’s clear that some
order was still present in the starting simulation structure. Figure 4.15 shows the dimethylamine
molecules and their respective middle vectors in the starting simulation structure:

Figure 4.15: The six Dimethylamine molecules in the initial configuration of the DMMgF
supercell containing 144 atoms. All hydrogen atoms are emitted for visualization purposes.
The middle vector of molecule 6 points into the paper plane, shown by a circle with a cross
inside.

As can be seen, pair-wise middle vectors for molecules 2 and 3, and 4 and 5 approximately sum
to 0. However, molecules 1 and 6 have vectors that do not sum to 0, meaning a certain order
is still present in the configuration. Figure 4.16 shows the last configuration attained in the
trajectory, where the order parameters in figure 4.14 has dropped to values close to 0.

o7

5

1,

ot
o -

1
g
0
J‘X

6
%

é

Figure 4.16: The six dimethylamine molecules extracted from the last configuration from the
simulation using a disordered starting configuration. All hydrogen atoms are emitted for visu-
alization purposes. Molecule labels 1 to 6 do not denote the same molecules as in figure 4.15,
and are only for visualization purposes.

Here, the molecules have re-oriented themselves so that each middle vector approximately sums
to values around 0, which coincides with the order parameters in the last simulations steps as
shown in figure 4.14. Specifically, molecules 1 and 2, 3 and 4, and molecules 5 and 6 have
vectors that point in opposite directions in space, summing their middle vectors to values
close to 0. The re-orientation illustrates how NeuralllL used for MD can result in reasonably
logical structural changes in DMMgF when the simulation is initialized in the high-temperature
disordered phase.

a8

Chapter 5

Discussion

This chapter will discuss the results, starting with the force predictions made by NeurallL, and
the different JAX-MD simulations completed. For the force predictions, most of the focus will
be on the results, while for JAX-MD the methods will also be discussed. Then, the discussion
will be brought over to the results achieved as part of the search for the phase transition.
Finally, general improvements in the framework of NeruallL-based MD will be discussed.

5.1 Force predictions using NeurallLL

The force predictions made by Neuralll. show that the model generally has a robust predictive
performance on the DMMgF system. MAE values as low as 0.020 ev/A was shown in plot (c)
in figure 3, which is lower than the mean absolute difference of 0.59 €V /A in that same test
set. The errors can be pushed remarkably small, meaning the predictions come close to the
ground truth forces calculated by DFT. While the predictive performance is strong, this can
come with some caveats when the model wants to extrapolate to unseen test regions. In this
thesis, models following the mixed training method were trained on six data sets, where all
test sets were extracted from the same sets as the training sets, see section 3.4.2. This way,
all the testing done with a trained mixed model only gave an indication of the model’s strong
interpolative performance, and not how well it will extrapolate to a region of configurations
not seen in training. Figure 5.1 shows an illustration of the extrapolation problem, with data
sets and an arbitrary extrapolation region of configurations in configuration space.

99

Extrapolation region

Data sets 1-6

Figure 5.1: A two-dimensional illustration of the configuration space of an MD simulation.
Scatter points denote distinct configurations for the DMMgF system that can be attained in an
arbitrary MD simulation. The six data sets used in the mixed training method in this thesis are
illustrated as circles of scatter points, where all configurations within the circle are contained
in the respective data sets. An extrapolation region outside the data sets is shown in orange.

Since the test sets extracted all come from the same regions as the data sets shown in figure
5.1, no indication of the model’s performance in such an arbitrary extrapolation region for the
DMMgF system can be made from just the force predictions alone. This fact is even more
evident when looking at the different results attained from the JAX-MD simulations.

5.2 NeuralllL used for Jax-MD

A series of Neuralll models have been used to run flexible cell NPT JAX-MD simulations.
Inspecting the results, it’s clear that the selected models having the smallest mean errors
resulted in completely non-physical results when used to simulate JAX-MD. In fact, only one
model showed stable behavior, after a re-training procedure with early stopping was completed,
as shown by 4.9. The cause of these crashes is likely that the flexible functional forms of an
MLFF can make them uncertain when used in MD simulations. For NeurallL., this is no
exception, as subtle errors in the force predictions can become destructive as they accumulate
along a calculated MD-trajectory [32]. Simulations can be kept stable if these errors are kept
sufficiently small, which is not achieved easily without a robust way to train the NeurallL
models. Several weaknesses in the methodology can be pointed out as reasons for the lack of
stability seen in our JAX-MD simulations. Among these are the data sets used in the training
of the models.

60

5.2.1 Training data and model stability

Firstly, it’s likely that the training data is quite sparse with regard to simulating JAX-MD
for DMMgF. Of the six data sets shown in table 3.1, only one high-temperature data set of
600K was included to account for high-temperature configurations with atoms having small
interatomic distances. The other five data sets are only varied in terms of volume by varying
the scaling of the DFT-relaxed lattice constants over a small range. Likely, these data sets
are not representative of the configuration space illustrated in figure 5.1, causing the model to
have high errors in regions not represented by the training data. As discussed in section 5.1,
the models in this thesis do not give any indication of extrapolation beyond the training data
sets. In the case of simulation in JAX-MD this becomes a problem, as the force predictions
we have attained do not give any indication if the models will show stability in the simulations
or not. In fact, comparing the error values of the initial and re-trained models in tables 4.3
and 4.2, its clear that mixed model 1 achieved stability when having higher mean errors over
the test sets. In other words, it’s challenging to assert whether a model will show stability in
JAX-MD before any simulation is performed. The selected models we chose from the mixed
training to simulate JAX-MD in this study likely suffered from this fact, where the low errors
in testing did not correspond to low errors being retained throughout the configurations of the
MD simulations, causing eventual crashes.

5.2.2 Overfitting

Another likely reason for the crashing seen in both 4.9 is a possible overfit of the models on the
training data. For the model following the simple training method, an overfit was highly likely
given that all atomic configurations trained on are extracted from the same data set. Due to
this reason, the simple model crashes in both the JAX-MD simulations in figure 4.9, and after
re-training in figure 4.9. For the mixed models, an overfit was also likely as seen from mixed
model 1 becoming stable after the re-training, shown by figure 4.9.

Reasons for the overfitting have to be seen in both the context of the full training method-
ology and NeruallLl’s strong ability to learn from the features contained in the training data.
While the model has an incredible amount of potential for interpolation, this also means that
the model is more likely to overfit when training architecture is pushed in terms of epochs,
layer widths, and mini-batches. Extra care has to be taken when choosing these model param-
eters in combination with the training data. In our case, we might have included too many
configurations in training with little diversity, leading to a high chance of collinearity within
the features of the training data, while also combining this with the choice of too many epochs,
wide network layers, and small mini-batch sizes. This likely made the models overshoot the
bias-variance trade-off, making their extrapolative performance bad. Although an early stop-
ping made us achieve a stable model in the end, earlier incorporation of the technique should
have been made to reduce the chance of the initial models being overfitted.

5.2.3 Cut-off radius

In addition to the effects of the training data and possible overfitting on them, the cut-off
radius 7., can also have a direct effect on Neuralll’s performance in JAX-MD. As shown by
both the initial JAX-MD simulations in figure 4.3, and after model re-training in figure 4.9, the
models containing higher r.,; values cause simulation crashes, which occurs gradually faster for
increasing values of the cut-off. Possible reasons might be that the inclusion of more neighbors

61

might raise the chance of noisy features being included in the SBDs. Exactly what these noisy
features are in the context is hard to determine and may, unfortunately, be a consequence of
the loss of the underlying physics when using the general regression functional of MLFFs.

5.3 Exploration of phase transition temperatures

Although earlier studies like the study by Peitao Liu et al. of zirconia [53], have been able to
show the phase transition of a solid using MLFF-based MD, this study does not provide a clear
observation of the phase transition of DMMgF. While no clear phase transition was shown, the
mean volume proves to steadily rise over the temperature regime explored, which is expected
to happen following the general curves of figure 3.1. The outlier point at 325K shows that
the model at some temperatures rotates certain molecules slightly, indicating that the model
can possibly predict structural changes in the system. Furthermore, the additional simulation
which was conducted from an initial simulation structure in the high-temperature phase clearly
showed that Neuralll.-based MD could predict reasonable re-orientations of the dimethylamine
molecules in agreement with what was expected in the high-temperature disordered phase.

Likely, the full phase transition couldn’t be reproduced due to simplifications made with re-
gard to the training methodology. While weaknesses in the training methodology already have
been discussed, some more comments about the training data should be made in the context
of DMMgF’s phases. Inspecting the order-parameters of the six data sets used in training of
the mixed models, it’s clear that most configurations are in the low-temperature phase of the
DMDMgF system. Again, this makes it unclear if the model is able to extrapolate toward a new
region in configuration space not included in the training data, in this case being the other
phase we wanted it to transition to.

Among other reasons for the phase transition not showing might be the number of atoms
contained in the supercell of the simulation. As seen in a study by Wu et.al. of hafnia [54],
the amount of atoms in the supercell directly affects the probability distribution of atomic dis-
placements in the cell for a given temperature range. Exploring variations of larger supercells,
longer simulation times, and larger temperature regions could make the probability of observing
a phase transition higher due to nucleation growth.

Finally, the methodology using flexible cell simulation is relatively new and might induce un-
known factors into the simulation compared to methods with different ensembles. This is
evidenced further by the volume increase for the simulation starting in the disordered high-
temperature phase, while a decrease coinciding with figure 3.1 was expected for the structural
changes observed. It’s therefore quite possible that searching for the phase transition with an
NPT ensemble without flexible cells could possibly show the phase transition clearly.

62

5.4 General improvements on the NeurallLL framework

As shown by the results in this master’s thesis, it’s highly likely that an initially trained Neu-
ralll. model might show results of non-physical results when used for MD simulations. For any
future studies using NeurallLl to simulate MD, there are suggestions for improvements on the
general framework used in this study.

5.4.1 Training data

Firstly, significant thought should be given to the training data included in the Neuralll. models
used for simulations. Since the model’s interpolative capacity is so strong, diverse training data
is needed to ensure that the model can extrapolate considerably well in MD simulations. While
it can be easy to state that good data sets are needed for a model to be robust, exactly what
data sets are necessary for a model to achieve the desired performance in MD can be challeng-
ing to assert for any given problem. Thankfully, efforts to tackle this have been explored in
the literature recently. The newest NeurallL: article [32] has come up with a framework, where
high-information configurations are selected and reintroduced into NeurallL'’s training based on
uncertainty estimations. The method uses deep ensembles [55] of NeurallLL models trained on a
small number of configurations to perform several NeurallL-based MD simulations. Several of
the resulting trajectories that contain configurations with high values of the uncertainty estima-
tors have those configurations selected and re-introduced into model training [32]. The models
that were re-trained with high-error configurations show stability in new MD simulations per-
formed, where simulation crashes and un-physical results were previously observed [32|. Such
a framework focuses on the gradual introduction of highly valuable training configurations to
an initially trained model, achieving robust performance and efficient training. Furthermore,
the chance of overfitting may also be reduced by restricting the number of configurations, while
also increasing their diversity within the material’s configurational space. While this framework
may ensure stability in the models, the inclusion of specific data sets might also be a good idea
in certain problems where complex material behavior is the wanted result. For example, the
inclusion of disordered structures in an already stable Neuralll. model may have given it an
advantage with regard to predicting the phase transition of DMMgF in our study.

5.4.2 Overfitting

Along with better frameworks for including representative and diverse training data, real care
has to be made with regard to model overfitting. While the deep ensemble methodology might
reduce the chance of potential overfitting, techniques like early stopping might also be used in
parallel to minimize potential overfitting possibilities. Furthermore, the introduction of L1 or
L2 regularization and dropout layers [26, p.536] in the ResNet architecture of Neuralll. may
also be considered for the same reasons.

Additionally, feature selection techniques might be explored to ensure only the necessary fea-
tures attained from the SBDs are included. While the SBDs are optimally complete, in cases
where training configurations may be significantly similar, feature selection tools might be use-
ful in data pre-processing before training the Neuralll models. Moreover, feature selection
might also be a valid approach for models trained with higher values of the cut-off radius, given

63

that noisy features may become apparent.

5.4.3 Parameter choices

Based on our study, initial parameter choices of r.,; = 3.5 A and Nmae = 4 might be reason-
able choices when NeurallL. is used for MD simulations of DMMgF. While models with other
parameters achieved higher predictive performance, our only stable model was achieved with
these parameters, validating these parameter choices for further use of Neuralll.-based MD on
DMMgF. However, values of 7 = 5 A has seen stable performance for other materials, for ex-
ample in the studies of hafnia by Bichelmaier [21], suggesting that higher values of the cut-off
radius should not be ruled out without further exploration.

64

Chapter 6

Conclusion

6.1 Conclusion

In this master’s thesis, a machine learning force field called Neuralll. has been used to predict
atomic forces of a hybrid organic-inorganic perovskite system (DMMgF'). The model predictions
have been used to access its applicability in molecular dynamics simulations for the material,
where a flexible cell environment of JAX-MD was used. A model showing stability in JAX-MD
simulations was selected for an extended analysis, where it was assessed if NeurallL.-based MD
simulations could reproduce the phase transition of DMMgF in accordance with experimental
data.

NeurallLl’s force predictions show how the model is capable of reproducing atomic forces for the
system comparable to ab initio calculations made by DFT. Force predictions with MAE as low
as 0.020 eV/ A were seen in testing, emphasizing how the model is highly-capable of predicting
the interatomic forces accurately for solids.

Results from the MD simulations show that NeuralllL has the capability to perform stable
MD simulations comparable with traditional methods. Despite achieving stable simulations,
the work also illustrated the challenges associated with MLFF-based MD simulations, where
many simulations crashed due to the accumulation of predictive errors. Improving the frame-
work to avoid such crashes in future simulations is heavily dependent on the inclusion of more
representative data sets, and reducing the chances of NeuralllL overfitting on them.

The phase transition of DMMgF was not shown in accordance with experimental data. Al-
though a definitive phase transition was not observed, certain simulations showed positive
indications of molecular rotations concurrent with what was expected in the high-temperature
phase of the system. Further work could explore if these indications are just random simula-
tion artifacts, or if alternative simulation techniques and more robust training methodologies
potentially could capture the phase transition accurately.

65

6.2 Further work

There are many suggestions for further work that can be made based on this study. Perhaps
most important are the inclusions of more representative data sets for the model to train on.
More varied data sets would likely reduce the chance of the model overfitting, and make it
extrapolate better to the unseen configurations that are seen in MD simulations.

Ways to include such training data sets without performing expensive DFT-based MD calcu-
lations have already been explored in the literature. A study by Carrete et.al. [32], shows how
configurations with high uncertainties can be included in the training through deep-ensemble
methods, allowing the model to improve its stability in MD simulations. This kind of active
learning approach could serve as an efficient method to ensure the stability of Neurall. models
used for MD simulations and should therefore be explored in future studies.

Additionally, regularization and feature selection methods could be introduced into NeurallL
as methods to reduce the chances of overfitting.

Finally, there are other improvements that could be made for the analysis to possibly show
the phase transition more accurately. NPT ensembles without the flexible cell implementation
could be used to see if the reason for the phase transition not showing was due to the novelty
of the ensemble methods used. Longer simulations and larger supercells could also be explored,
as they possibly make an observation of the phase transition more likely due to nucleation
growth.

66

Bibliography

1]
2l

3]

4]
5]
(6]

7]

8]

9]

[10]

[11]

[12]

Peter J Wellmann. The search for new materials and the role of novel processing routes.
2021. URL: https://link.springer.com/article/10.1007 /s43939-021-00014-y.

Fraunhofer Institute for Solar Energy Systems ISE. Photovoltaics Report. Tech. Rep.
Fraunhofer ISE, 2023. URL: https://www.ise.fraunhofer.de /en / publications / studies /
photovoltaics-report.html.

Guus J. M. Velders, A. R. Ravishankara, Melanie K. Miller, Mario J. Molina, Joseph
Alcamo, John S. Daniel, et al. “Preserving Montreal Protocol Climate Benefits by Limiting
HFCs”. In: Science 335.6071 (2012), pp. 922-923. DOI: 10.1126/science.1216414. eprint:
https://www.science.org/doi/pdf/10.1126/science.1216414. URL: https://www.science.org/
doi/abs/10.1126/science.1216414.

David Boldrin. “Fantastic barocalorics and where to find them”. In: Applied Physics Let-
ters 118 (Apr. 2021), p. 170502. poI: 10.1063/5.0046416.

Hannah Ritchie, Max Roser, and Pablo Rosado. “Energy”. In: Our World in Data (2022).
URL: https://ourworldindata.org/energy.

H.-O. Portner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegria,
et al., eds. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution
of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press,
2022, p. 3056. DOI: 10.1017/9781009325844.

Mark Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. 1st. New
York, NY: Oxford University Press, 2010.

“Accuracy and Methods beyond “Standard” Calculations”. In: Density Functional Theory.
John Wiley Sons, Ltd, 2009. Chap. 10, pp. 209-233. ISBN: 9780470447710. DOI: https:
//doi.org/10.1002/9780470447710.ch10.

Radu Iftimie, Peter Minary, and Mark E. Tuckerman. “Ab initio molecular dynamics: Con-
cepts, recent developments, and future trends”. In: Proceedings of the National Academy
of Sciences 102.19 (2005), pp. 6654-6659. DOI: 10.1073/pnas.0500193102.

Thomas Kiihne. “Second generation Car—Parrinello molecular dynamics”. In: Wiley in-
terdisciplinary reviews: Computational Molecular Science. 4 (July 2014), p. 391. DOL:
10.1002/wcms.1176.

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky,
Kristof T. Schiitt, et al. “Machine Learning Force Fields”. In: Chemical Reviews 121.16
(2021). PMID: 33705118, pp. 10142-10186. pO1: 10.1021/acs.chemrev.0c01111.

Albert P. Barté k, Mike C. Payne, Risi Kondor, and Gabor Csanyi. “Gaussian Approx-
imation Potentials: The Accuracy of Quantum Mechanics, without the Electrons”. In:
Physical Review Letters 104.13 (Apr. 2010). DoOI: 10.1103/physrevlett.104.136403.

67

https://link.springer.com/article/10.1007/s43939-021-00014-y
https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html
https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html
https://doi.org/10.1126/science.1216414
https://www.science.org/doi/pdf/10.1126/science.1216414
https://www.science.org/doi/abs/10.1126/science.1216414
https://www.science.org/doi/abs/10.1126/science.1216414
https://doi.org/10.1063/5.0046416
https://ourworldindata.org/energy
https://doi.org/10.1017/9781009325844
https://doi.org/https://doi.org/10.1002/9780470447710.ch10
https://doi.org/https://doi.org/10.1002/9780470447710.ch10
https://doi.org/10.1073/pnas.0500193102
https://doi.org/10.1002/wcms.1176
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1103/physrevlett.104.136403

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

22]

23]

[24]

[25]

[26]

27]

Aldo Glielmo, Claudio Zeni, and Alessandro De Vita. “Efficient nonparametric n-body
force fields from machine learning”. In: Physical Review B 97.18 (May 2018). po1: 10.
1103/physrevb.97.184307.

Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, and Boris Kozinsky.
“Bayesian force fields from active learning for simulation of inter-dimensional transfor-
mation of stanene”. In: npj Computational Materials 7 (Mar. 2021), p. 40. bor: 10.1038/
s41524-021-00510-y.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan Ee. “Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics”. In:
Physical Review Letters 120 (July 2017). DOI: 10.1103/PhysRevLett.120.143001.

Hadridn Montes-Campos, Jests Carrete, Sebastian Bichelmaier, Luis M. Varela, and
Georg K. H. Madsen. “A Differentiable Neural-Network Force Field for Ionic Liquids”.
In: Journal of Chemical Information and Modeling 62.1 (2022). PMID: 34941253, pp. 88—
101. por: 10.1021/acs.jcim.1c01380.

Kwang-Hwi Cho, Kyoung Tai No, and Harold A. Scheraga. “A polarizable force field for
water using an artificial neural network”. In: Journal of Molecular Structure 641.1 (2002),
pp. 77-91. 1SSN: 0022-2860. DOI: https://doi.org/10.1016/5S0022-2860(02)00299-5.

Marek Szafranski, Wen-Juan Wei, Zhe-Ming Wang, Wei Li, and Andrzej Katrusiak. “Re-
search Update: Tricritical point and large caloric effect in a hybrid organic-inorganic
perovskite”. In: APL Materials 6.10 (2018), p. 100701. po1: 10.1063/1.5049116.

Ralf Schneider, Amit Raj Sharma, and Abha Rai. “Introduction to Molecular Dynamics”.
In: Computational Many-Particle Physics. Ed. by H. Fehske, R. Schneider, and A. Weife.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3—40. 1SBN: 978-3-540-74686-7.
DOI: 10.1007/978-3-540-74686-7 1. URL: https://doi.org/10.1007/978-3-540-74686-7 1.
JE Lennard-Jones. “On the Determination of Molecular Fields. II. From the Equation
of State of a Gas”. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character 106.738 (1924), pp. 463-477.
Sebastian Bichelmaier. “Ab-initio modelling of material properties using elements of ar-
tificial intelligence”. Dissertation. repositUm: Technische Universitdt Wien, 2023. DOI:
10.34726/hss.2023.90200.

Lauri Himanen, Marc O.J. Jiger, Eiaki V. Morooka, Filippo Federici Canova, Yashasvi S.
Ranawat, David Z. Gao, et al. “DScribe: Library of descriptors for machine learning in
materials science”. In: Computer Physics Communications 247 (2020), p. 106949. 1SSN:
0010-4655. DOI: https://doi.org/10.1016/j.cpc.2019.106949.

Albert P. Bartok, Risi Kondor, and Gabor Csanyi. “On representing chemical environ-
ments”. In: Phys. Rev. B 87 (18 May 2013), p. 184115. DOI: 10.1103/PhysRevB.87.184115.
Marcin Novotni and Reinhard Klein. “3D Zernike Descriptors for Content Based Shape
Retrieval”. In: Proceedings of the Fighth ACM Symposium on Solid Modeling and Appli-
cations. SM ’03. Seattle, Washington, USA: Association for Computing Machinery, 2003,
pp. 216-225. 1SBN: 1581137060. DOI: 10.1145/781606.781639.

Emir Kocer, Jeremy K. Mason, and Hakan Erturk. “Continuous and optimally complete
description of chemical environments using Spherical Bessel descriptors”. In: AIP Ad-
vances 10.1 (2020). po1: 10.1063/1.5111045.

Sebastian Raschka and Vahid Mirjalili. Python Machine Learning, 3rd Ed. Birmingham,
UK: Packt Publishing, 2019, p. 748. ISBN: 978-1789955750.

Aleksei Grigorevich Ivakhnenko and Valentin Grigorevich Lapa. “CYBERNETIC PRE-
DICTING DEVICES”. In: 1966.

68

https://doi.org/10.1103/physrevb.97.184307
https://doi.org/10.1103/physrevb.97.184307
https://doi.org/10.1038/s41524-021-00510-y
https://doi.org/10.1038/s41524-021-00510-y
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/https://doi.org/10.1016/S0022-2860(02)00299-5
https://doi.org/10.1063/1.5049116
https://doi.org/10.1007/978-3-540-74686-7_1
https://doi.org/10.1007/978-3-540-74686-7_1
https://doi.org/10.34726/hss.2023.90200
https://doi.org/https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1145/781606.781639
https://doi.org/10.1063/1.5111045

28]

29]
[30]
[31]

[32]

33

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]
[45]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL].

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
URL: http://www.deeplearningbook.org.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016.
arXiv: 1607.06450 [stat.ML].

Jestus Carrete, Hadrian Montes-Campos, Ralf Wanzenbock, Esther Heid, and Georg K. H.
Madsen. “Deep ensembles vs committees for uncertainty estimation in neural-network
force fields: Comparison and application to active learning”. In: The Journal of Chemical
Physics 158.20 (May 2023). 1SSN: 0021-9606. DOI: 10.1063/5.014690.

Dongwei Chen, Fei Hu, Guokui Nian, and Tiantian Yang. “Deep Residual Learning for
Nonlinear Regression”. In: Entropy 22.2 (2020). 1SSN: 1099-4300. DOI: 10.3390/e22020193.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016. bor: 10.1109/CVPR.2016.90.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miiller. “Efficient
BackProp”. In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire
Montavon, Genevieve B. Orr, and Klaus-Robert Miiller. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 9-48. 1SBN: 978-3-642-35289-8. DOI: 10.1007 /978-3-642-
35289-8 3.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James
Bradbury, et al. VeLO: Training Versatile Learned Optimizers by Scaling Up. 2022. arXiv:
2211.09760 [cs.LG].

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv: 1412.6980 [cs.LG].

Geoffrey E. Hinton. Neural Networks for Machine Learning: Lecture 6a, Overview of mini-
batch gradient descent. Retrieved from https://www.youtube.com/watch?v=03sxAc4hxZU.
2012.

Alex Graves. Generating Sequences With Recurrent Neural Networks. 2014. arXiv: 1308.
0850 [cs.NE].

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 —
learning rate, batch size, momentum, and weight decay. 2018. arXiv: 1803.09820 [cs.LG].
Y. Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE transactions on neural networks / a publication of
the IEEE Neural Networks Council 5 (Feb. 1994), pp. 157-66. bol: 10.1109/72.279181.
James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, et al. JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. 2018. URL: http://github.com/google/jax.

Flax: A neural network library and ecosystem for JAX designed for flexibility. URL: https:
//github.com/google/flax.

Igor Babuschkin et al. 2020. URL: https://github.com/deepmind.

Matteo Hessel David Budden. “Using JAX to accelerate our research”. In: (2020). URL:
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research.

69

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://www.deeplearningbook.org
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://doi.org/10.1063/5.014690
https://doi.org/10.3390/e22020193
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://arxiv.org/abs/2211.09760
https://arxiv.org/abs/1412.6980
https://www.youtube.com/watch?v=O3sxAc4hxZU
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1803.09820
https://doi.org/10.1109/72.279181
http://github.com/google/jax
https://github.com/google/flax
https://github.com/google/flax
https://github.com/deepmind
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

[46]

147]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey
Mark Siskind. Automatic differentiation in machine learning: a survey. 2018. arXiv: 1502,
05767 [cs.SC].

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org. 2015.

Samuel S. Schoenholz and Ekin D. Cubuk. JAX, M.D.: A Framework for Differentiable
Physics. 2020. arXiv: 1912.04232 [physics.comp-ph].

G. Kresse and J. Hafner. “Ab initio molecular dynamics for liquid metals”. In: Phys. Rev.
B 47 (1 Jan. 1993), pp. 558-561. DOI: 10.1103/PhysRevB.47.558.

Ask Hjorth Larsen, Jens Jorgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune
Christensen, and Marcin Dutak et al. “The atomic simulation environment—a Python
library for working with atoms”. In: Journal of Physics: Condensed Matter 29.27 (2017).
Url: http://stacks.iop.org/0953-8984/29/i=27 /a=273002, p. 273002.

K. Momma and F. Izumi. “VESTA 3 for three-dimensional visualization of crystal, volu-
metric and morphology data”. In: J. Appl. Crystallogr. 44 (2011). Url: http://stacks.iop.
org/0953-8984 /29 /i=27 /a=273002, pp. 1272-1276.

Lutz Prechelt. “Early Stopping — But When?” In: Neural Networks: Tricks of the Trade:
Second Edition. Ed. by Grégoire Montavon, Geneviéve B. Orr, and Klaus-Robert Miiller.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 53-67. 1ISBN: 978-3-642-35289-8.
DOI: 10.1007/978-3-642-35289-8 5. URL: https://doi.org/10.1007/978-3-642-35289-8 5.
Peitao Liu, Carla Verdi, Ferenc Karsai, and Georg Kresse. “Phase transitions of zirconia:
Machine-learned force fields beyond density functional theory”. In: Phys. Rev. B 105 (6
Feb. 2022), p. L060102. DoI1: 10.1103/PhysRevB.105.L060102.

Jing Wu, Yuzhi Zhang, Linfeng Zhang, and Shi Liu. “Deep learning of accurate force
field of ferroelectric HfOy”. In: Phys. Rev. B 103 (2 Jan. 2021), p. 024108. por: 10.1103/
PhysRevB.103.024108.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scal-
able Predictive Uncertainty Estimation using Deep Ensembles. 2017. arXiv: 1612.01474
[stat.ML].

70

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1912.04232
https://doi.org/10.1103/PhysRevB.47.558
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1103/PhysRevB.105.L060102
https://doi.org/10.1103/PhysRevB.103.024108
https://doi.org/10.1103/PhysRevB.103.024108
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474

Appendix A

Appendix A lists all parity plots of all predictions over all six test sets from table 3.1 made
by all initial and re-trained models. Each page has predictions made by one model, where the
figure title names the respective model. All parity plots are denoted with titles signifying which
data set of table 3.1 the test sets are extracted from.

71

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 1

Data set 1
10.0
75
5.0
2.5
0.0
-2.5
RMSE= 0.1784 eV/A
- MAE=0.1319 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.0259 eV/A
~5.0 MAE= 0.0200 eV/A
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
-25
RMSE=0.1573 eV/A
50 MAE= 0.1189 eV/A
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

72

Data set 2

10.0
7.54
< 501
5 ;
= 254
P
o
2
& 0.0
B
5 2.5
5 RMSE= 0.1588 eV/A
g 50 MAE=0.1222 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 254
7
o
2
& 007
B
5 25 p
5 - RMSE= 0.1527 eV/A
2 50 MAE=0.1162 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
k] 0.0
B
2 251
3 W2 RMSE=0.1053 eV/A
2 501 MAE= 0.0690 eV/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 2

Data set 1
10.0
75
5.0
2.5
0.0
-2.5
RMSE= 0.1930 eV/A
- MAE= 0.1460 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
25 d
0.0
-25
RMSE= 0.0276 eV/A
~5.0 MAE=0.0217 eV/A
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
25 e
X RMSE= 0.1954 eV/A
50 MAE= 0.1462 eV/A
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

73

Data set 2

10.0
7.54
< 501
2
= 254
-
8
2
& 0.0
B
5 2.5
5 RMSE= 0.1760 eV/A
g 50 MAE=0.1335 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 259 3
7
8
2
& 007
B
2 251
5 RMSE= 0.1691 eV/A
2 50 MAE=0.1286 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
S 0.0
B
2 251
5 RMSE= 0.1636 eV/A
2 501 MAE=0.1099 ¢V/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 3

Data set 1

Data set 2

10.0 10.0
75 7.54
5.0 < 501
%
2.5 = 2.5
8
o
0.0 g 009
B
2.5 . 5 2.5
{RMSE=3.7134 eV/A 5 RMSE= 0.7888 eV/A
- “ MAE= 0.6600 eV/A 2 5o MAE=0.2130 eV/A
5.0 & 5.0
-7.5 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 754
5.0 < 507
- %
2.5 = 254
8
2
0.0 & 007
B
-25 2 251 s
RMSE= 0.0314 eV/A 5 RMSE=0.1723 eV/A
- MAE= 0.0248 eV/A 2 50 MAE=0.1317 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.0
7.5 7.54
5.0 < 507
%
2.5 = 254
8
2
0.0 S 0.0
B
-25 2 251
RMSE=0.2071 eV/A 5 RMSE= 3.0547 ¢V/A
_ MAE= 0.1541 eV/A 2 5o MAE= 0.4006 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

74

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 4

Data set 1
10.0
75
5.0
25 i
0.0
-2.5
RMSE= 0.2535 eV/A
- MAE=0.1799 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
2.5 d
0.0
-25
RMSE= 0.0265 eV/A
- MAE= 0.0209 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.2275 eV/A
_ MAE=0.1751 eV/A
5.0
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

75

Data set 2
10.0
7.54
< 501
%
= 254
P
o
2
& 0.0
B
5 2.5 S
5 S RMSE= 0.1999 eV/A
g 50 MAE= 0.1457 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 254
P
o
2
& 007
B
2 251
5 RMSE= 0.1823 eV/A
2 50 MAE= 0.1407 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
k] 0.0
B
2 251 Pl
5 i RMSE=0.1978 ¢V/A
2 501 N MAE= 0.1347 eV/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 5

Data set 1
10.0
75
5.0
25
0.0
-2.5
RMSE= 0.2147 eV/A
- MAE= 0.1639 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
25
0.0
-25 7
RMSE= 0.0397 eV/A
- MAE=0.0311 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.2259 eV/A
_ MAE= 0.1720 eV/A
5.0
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

76

Data set 2
10.0
7.54
< 501
3
= 254 ¥
-
o
2
& 0.0
B
5 2.5
5 RMSE=0.1871 eV/A
g 50 MAE= 0.1433 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 254
P
o
2
& 007
B
5 25 :
5 ; RMSE= 0.1832 eV/A
2 50 MAE=0.1382 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
k] 0.0
B
2 2.5 :
2 Fa RMSE=0.2017 ¢V/A
2 501 : MAE=0.1344 eV/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 6

Data set 1

10.0
75
5.0)
25
0.0
-2.5
; RMSE=0.2260 eV/A
- ’ MAE= 0.1673 eV/A
5.0
-7.5
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
75
5.0
25 -
0.0
-25 p
S RMSE= 0.0398 eV/A
- ’ MAE=0.0313 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.2476 eV/A
50 MAE= 0.1875 eV/A
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

77

Data set 2

10.0
7.54
< 501
%
= 254
P
o
2
& 0.0
B
5 2.5
5 RMSE= 0.1941 eV/A
g 50 MAE= 0.1456 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 254
P
o
2
& 007
B
2 251
5 RMSE= 0.3128 eV/A
2 50 MAE=0.1757 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
k] 0.0
B
2 251
5 RMSE=0.1989 ¢V/A
2 501 MAE= 0.1445 eV/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Simple model 7

Data set 1
10.0
75
5.0
25
0.0
-2.5
RMSE= 0.2269 eV/A
- MAE=0.1723 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
2.5
0.0
-25 P
g RMSE= 0.0338 eV/A
- MAE= 0.0266 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.2442 eV/A
_ MAE= 0.1857 eV/A
5.0
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

78

Data set 2
10.0
7.54
< 501
%
= 254
-
o
2
& 0.0
B
5 2.5
5 RMSE= 0.2026 eV/A
g 50 MAE=0.1541 eV/A
& 5.
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
< 507
%
= 254
P
o
2
& 007
B
2 251
5 RMSE= 0.1935 eV/A
2 50 MAE=0.1431 eV/A
& -5
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.0
7.54
< 507
%
= 254
8
2
k] 0.0
B
2 251
5 RMSE= 0.2026 ¢V/A
2 501 MAE=0.1512 eV/A
& -
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

4
=3

Pl
n

-10.0

10.0

7.5

I
n

o
o

!
N
n

|
o
=

|
el
n

-10.0

10.0

7.5

5.0

2.5

0.0

-5.0

=75

—-10.0

4
=3

1
n

o
o

!
N}
n

|
o
=

4
o

Mixed model 1

Data set 1

RMSE= 0.0576 eV/A
MAE= 0.0421 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 3

RMSE= 0.0954 eV/A
MAE=0.0719 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5 10.0

Data set 5

RMSE= 0.0546 eV/A
MAE= 0.0397 eV/A

~100

=15

=0 -25 00 25 50 15

Ground truth forces [eV/A]

Predicted forces [eV/A]

79

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2

10.0

~
n

o
o

1N
n

4
o

{
N
193

|
o
o

|
=
n

—-10.01

RMSE= 0.0608 eV/A
MAE=0.0451 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 4

10.0

10.0

7.5

5.0

2.5

0.0

—2.5

=5.01

—7.5

—10.04

RMSE= 0.0595 eV/A
MAE= 0.0441 eV/A

-10.0

=15

=50 25 0.0 25 5.0
Ground truth forces [eV/A]

7.5

Data set 6

10.0

10.0

7.5

2.5

0.0

2.5

—5.0

7.5

—10.04

s RMSE=0.0880 ¢V/A
MAE= 0.0665 eV/A

~100

75

S0 25 00 25 50 75

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 2

Data set 1 Data set 2
10.0 10.0
75 7.54
5.0 < 501
2
- —_ 4 s
25 o Z 2.5
o
0.0 g 009
B
25 A 5 2.5 >
RMSE= 0.0570 eV/A 5 RMSE= 0.0526 eV/A
- MAE= 0.0427 eV/A 2 5o MAE= 0.0404 eV/A
5.0 & 5.0
-75 -7.54
10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 754
5.0 < 507
2.5 o = 2.5
8
o
0.0 g 009
B
-25 r 2 s P
RMSE= 0.0613 eV/A 5 ’ RMSE= 0.0508 eV/A
- MAE=0.0470 eV/A 2 50 MAE= 0.0388 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.01
7.5 7.5
5.0 < 507
3
2.5 - = 2.5
8
2
0.0 & 0.0
B
-25 2 251 ;
RMSE= 0.0502 eV/A 5 e RMSE= 0.0777 ¢V/A
_ MAE= 0.0386 eV/A 2 5o g MAE= 0.0598 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

80

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 3

Data set 1 Data set 2
10.0 10.0
75 7.54
5.0 < 501
- 3 ,
2.5 — 251 d
8
o
0.0 g 009
B
2.5 e 5 2.5 A
» RMSE=0.0573 eV/A -1 RMSE= 0.0544 eV/A
- ” MAE= 0.0441 eV/A 2 5o MAE=0.0410 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 7.54
5.0 < 507
=
2.5 4 = 251
8
o
0.0 g 009
B
-25 2 251 o
RMSE= 0.0614 eV/A 5 - RMSE= 0.0538 eV/A
- MAE= 0.0466 eV/A 2 50 MAE=0.0411 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.01
7.5 7.5
5.0 < 507
- =
2.5 i = 2.5
8
2
0.0 & 0.0
B
-25 2 251
RMSE=0.0512 eV/A 5 v RMSE=0.0798 ¢V/A
_ MAE= 0.0388 eV/A 2 5o MAE=0.0614 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

81

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 4

Data set 1 Data set 2
10.0 10.0
75 7.54
5.0 < 501
>
2.5 L Z‘ 2.54 i
o
0.0 g 009
B
2.5 ¢ 5 2.5 v
RMSE= 0.0552 eV/A 5 g RMSE-= 0.0484 eV/A
- MAE= 0.0418 eV/A 2 5o MAE= 0.0369 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 7.54
5.0 < 507
- % -
2.5 r = 2.5
8
o
0.0 g 009
B
-25 P 2 251
RMSE= 0.0535 eV/A 3 g RMSE= 0.0446 eV/A
- MAE= 0.0408 eV/A 2 50 MAE= 0.0343 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.01
7.5 7.5
5.0 < 507
e = e
2.5 g = 2.5
8
2
0.0 & 0.0
B
-25 p 2 251
yd RMSE=0.0449 eV/A 5 RMSE=0.0724 ¢V/A
_ MAE= 0.0343 eV/A 2 5o MAE= 0.0557 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

82

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 5

Data set 1
10.0
75
5.0
25 7
0.0
-2.5
RMSE= 0.0798 eV/A
~5.0 MAE=0.0612 eV/A
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
25 2
0.0
-25 »
RMSE= 0.0766 eV/A
- MAE= 0.0589 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
25
0.0
-25
RMSE= 0.0680 eV/A
_ MAE= 0.0520 eV/A
5.0
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

83

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2

10.0

~
n

o
o

1N
n

4
o

{
N
193

|
o
o

|
=
n

—-10.01

RMSE= 0.0742 eV/A
MAE= 0.0567 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 4

10.0

10.0

7.5

5.0

2.5

0.0

—2.5

=5.01

—7.5

—10.04

RMSE= 0.0724 eV/A
MAE= 0.0554 eV/A

-10.0

=15

=50 25 0.0 25 5.0
Ground truth forces [eV/A]

7.5

Data set 6

10.0

10.0

7.5

2.5

0.0

2.5

—5.0

7.5

—10.04

s

RMSE= 0.1063 eV/A
MAE= 0.0814 eV/A

~100

75

S0 25 00 25 50 75

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 6

Data set 1 Data set 2
10.0 10.0
75 7.54
5.0 < 501
& 3
2.5 = 254 P
8
o
0.0 g 009
B
2.5 K 5 2.5
RMSE= 0.1355 eV/A 3 RMSE= 0.1035 eV/A
- MAE= 0.0893 eV/A 2 5o MAE=0.0781 eV/A
5.0 & 5.0
-75 -7.54
10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 7.54
5.0 < 507
%
2.5 & = 2.5
8
o
0.0 é 0.0
B
-2.5 y 5 —2.51 P
RMSE= 0.1046 eV/A 5 ” RMSE=0.1072 eV/A
- MAE= 0.0808 eV/A 2 50 MAE= 0.0818 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.01
7.5 7.5
5.0 < 507
%
2.5 i = 2.5
8
2
0.0 & 0.0
B
-25 2 251
RMSE=0.1049 eV/A 5 RMSE=0.1394 ¢V/A
_ MAE=0.0791 eV/A 2 5o MAE= 0.1062 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

84

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Mixed model 7

Data set 1 Data set 2
10.0 10.0
75 7.54
5.0 < 501
o > 4
25 2 s ~~
8
o
0.0 g 009
~ B
25 7 5 251)
p RMSE= 0.0570 eV/A 5 o RMSE= 0.0532 eV/A
- ‘ MAE= 0.0436 eV/A 2 5o MAE= 0.0408 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 3 Data set 4
10.0 10.0
7.5 7.54
5.0 < 507
; %
2.5 d = 251
8
o
0.0 g 009
B
-25 2 251 p
RMSE= 0.0552 eV/A 3 - RMSE= 0.0527 eV/A
- MAE= 0.0425 eV/A 2 50 MAE= 0.0406 eV/A
5.0 & 5.0
-75 -7.54
-10.0 -10.04
-100 -7.5 -50 -25 00 25 50 75 100 100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A] Ground truth forces [eV/A]
Data set 5 Data set 6
10.0 10.01
7.5 7.5
5.0 < 507
; N
25 - 2 s 4
8
2
0.0 & 0.0
B
-25 . 2 251
A RMSE=0.0533 eV/A 5 RMSE=0.0819 ¢V/A
_ MAE= 0.0409 eV/A 2 5o MAE=0.0617 eV/A
5.0 & 5.0
-7.5 ~7.54
-10.0 -10.04
100 75 -50 -25 00 25 50 75 100 100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

85

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Re-trained simple model 1

Data set 5
10.0
75
5.0
25
0.0
-2.5
RMSE= 0.1750 eV/A
- MAE= 0.1306 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 3
10.0
7.5
5.0
2.5
0.0
-25
RMSE= 0.0305 eV/A
- MAE=0.0234 eV/A
5.0
-75
-10.0
-100 -7.5 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 5
10.0
7.5
5.0
25 f
0.0
-25
RMSE= 0.1601 eV/A
_ MAE= 0.1209 eV/A
5.0
-7.5
-10.0
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

86

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2
10.0
7.54
5.0
2.5
0.0
-2.51
RMSE= 0.1649 eV/A
504 MAE=0.1228 eV/A
5.0
-7.54
-10.04
-100 -75 50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 4
10.0
7.54
5.0
259 4
0.0
254
RMSE=0.1534 eV/A
~5.04 MAE=0.1177 eV/A
751
-10.04
100 -75 -50 -25 00 25 50 75 100
Ground truth forces [eV/A]
Data set 6
10.01
7.5
5.0
251 g
0.0+
254 4
* RMSE= 0.1079 eV/A
_so4 MAE= 0.0708 eV/A
5.0
~7.54
-10.04
100 75 -50 -25 00 25 50 75 100

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

10.0

7.5

10.0

7.5

2.5

0.0

!
N
n

|
o
=

|
el
n

-10.0

10.0

7.5

5.0

2.5

0.0

-5.0

=75

—-10.0

5.0

2.5

0.0

2.5

5.0

5.0

Re-trained mixed model 1

Data set 1

RMSE= 0.0725 eV/A
MAE= 0.0531 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 3

RMSE= 0.1017 eV/A
MAE=0.0767 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5 10.0

Data set 5

RMSE=0.0739 eV/A
MAE= 0.0513 eV/A

~100

=15

=0 -25 00 25 50 15

Ground truth forces [eV/A]

Predicted forces [eV/A]

87

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2

10.0

~
n

o
o

1N
n

4
o

{
N
193

|
o
o

|
=
n

—-10.01

RMSE= 0.0702 eV/A
MAE=0.0518 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 4

10.0

10.0

7.5

5.0

2.5

0.0

—2.5

=5.01

—7.5

—10.04

o RMSE= 0.0685 eV/A
MAE= 0.0509 eV/A

-10.0

=15

=50 25 0.0 25 5.0
Ground truth forces [eV/A]

7.5

Data set 6

10.0

10.0

7.5

2.5

0.0

2.5

—5.0

7.5

—10.04

RMSE= 0.1044 eV/A
MAE= 0.0783 eV/A

~100

75

S0 25 00 25 50 75

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Re-trained mixed model 4

Data set 1

10.0

7.5

5.0

2.5

0.0

2.5

RMSE=0.1019 eV/A

5.0 MAE=0.0552 eV/A

-100 -75 -50 25 0.0 2.5 5.0

Ground truth forces [eV/A]

7.5

Data set 3

10.0

7.5

5.0

2.5

0.0

!
N
n

RMSE= 0.0715 eV/A
MAE=0.0539 eV/A

|
o
=

|
el
n

-10.0

-100 -75 -50 25 0.0 25 5.0

Ground truth forces [eV/A]

7.5 10.0

Data set 5

10.0
7.5
5.0
2.5

0.0

RMSE= 0.0552 eV/A
MAE= 0.0422 eV/A

-5.0

=75

—-10.0

100 75 -50 -25 00 25 50 15

Ground truth forces [eV/A]

Predicted forces [eV/A]

88

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2

10.0

~
n

o
o

1N
n

4
o

{
N
193

|
o
o

|
=
n

—-10.01

RMSE= 0.0567 eV/A
MAE= 0.0424 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 4

10.0

10.0

7.5

5.0

2.5

0.0

—2.5

=5.01

—7.5

—10.04

RMSE=0.0571 eV/A
MAE= 0.0432 eV/A

-10.0

=15

=50 25 0.0 25 5.0
Ground truth forces [eV/A]

7.5

Data set 6

10.0

10.0

7.5

2.5

0.0

2.5

—5.0

7.5

—10.04

” RMSE=0.0851 ¢V/A
MAE= 0.0653 eV/A

~100

75

S0 25 00 25 50 75

Ground truth forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

Predicted forces [eV/A]

10.0

7.5

10.0

7.5

2.5

0.0

!
N
n

|
o
=

|
el
n

-10.0

10.0

7.5

5.0

2.5

0.0

-5.0

=75

—-10.0

5.0

2.5

0.0

2.5

5.0

5.0

Re-trained mixed model 7

Data set 1

RMSE= 0.0677 eV/A
MAE=0.0519 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5

Data set 3

RMSE= 0.0602 eV/A
MAE= 0.0468 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5 10.0

Data set 5

RMSE= 0.0594 eV/A
MAE= 0.0458 eV/A

~100

=15

=0 -25 00 25 50 15

Ground truth forces [eV/A]

Predicted forces [eV/A]

89

Predicted forces [eV/A]

Predicted forces [eV/A]

Data set 2

10.0

~
n

o
o

1N
n

4
o

!
N
193

|
o
o

|
=
n

—-10.01

RMSE= 0.0574 eV/A
MAE= 0.0443 eV/A

-10.0

=15

=50 25 0.0 2.5 5.0
Ground truth forces [eV/A]

7.5 10.0

Data set 4

10.0

7.5

5.0

2.5

0.0

—2.5

=5.01

—7.5

—10.04

RMSE= 0.0603 eV/A
MAE= 0.0468 eV/A

-10.0

=15

=50 25 0.0 25 5.0
Ground truth forces [eV/A]

7.5 10.0

Data set 6

10.0

7.5

2.5

0.0

2.5

—5.0

7.5

—10.04

o RMSE= 0.0847 eV/A
MAE= 0.0654 eV/A

~100

75

S0 25 00 25 50 75

Ground truth forces [eV/A]

This page is intentionally left blank.

90

- Norges miljg- og biovitenskapelige universitet Postboks 5003
r J Noregs miljg- og biovitskapelege universitet NO-1432 As
N Norwegian University of Life Sciences Norway

	Introduction
	Theory
	Forces in atomic configurations
	Density functional theory
	Classical force fields
	Machine learning force fields

	Molecular Dynamics
	Simulation environments
	Equations of motion
	The Verlet algoritm

	Training data
	Atomic centered descriptors
	Spherical Bessel Descriptors
	Embeddings

	Machine learning
	Key concepts and terminology
	Over and underfitting
	Neural networks
	Residual neural networks for regression

	NeuralIL
	Weights and hyperparameters
	Jax and Flax
	Forces and automatic differentiability
	Jax-MD and flexible cell simulations

	Phase transition of DMMgF

	Method
	Problem description and goals of thesis
	Software
	Sigma2 clusters
	VASP
	ASE
	VESTA
	Molcrys

	Training data
	Machine learning framework
	Hyperparameters
	NeuralIL training
	Parameter optimization and model combinations
	Selection of models for simulation
	Re-training of models

	Jax-MD
	Exploration of phase transition temperatures

	Results
	Force predictions
	Mean errors of predictions
	Parity plots

	Volume fluctuations from Jax-MD
	Initial models
	Simulation crashes
	Validation metrics for re-training
	Re-trained models

	Exploration of phase transition temperatures
	Simulation of high-temperature disordered-phase

	Discussion
	Force predictions using NeuralIL
	NeuralIL used for Jax-MD
	Training data and model stability
	Overfitting
	Cut-off radius

	Exploration of phase transition temperatures
	General improvements on the NeuralIL framework
	Training data
	Overfitting
	Parameter choices

	Conclusion
	Conclusion
	Further work

	Appendix A

