

Norges miljø- og biovitenskapelige universitet

Masteroppgave 2023 30 stp Fakultet for kjemi, bioteknologi og matvitenskap (KBM)

Akvatiske miljø som spredningspunkt for antibiotikaresistente bakterier til næringskjeden. Funn av multiresistens i Sandnes kommune.

Aquatic environments as a dissemination point for antibiotic-resistant bacteria into the food chain. Discovery of multridrug resistance in Sandnes municipality.

Martine Tjåland Matvitenskap og ernæring

Forord

Som et avsluttende arbeid på graden Master i Matvitenskap og ernæring ble denne 30 poengs oppgaven utført ved Norges miljø- og biovitenskapelige universitet (NMBU). Alle forsøk og analyser ble gjennomført i samarbeid med forskningsgruppen SciFood: Matkvalitet og bærekraft, ved fakultet for Kjemi, bioteknologi og matvitenskap (KBM). Oppgaven hadde oppstart i januar 2023, og avslutning juli 2023.

Perioden har både vært krevende og lærerik, men mest av alt spennende. Jeg har fått lært utrolig mye, både om praktiske laboratorieanalyser, samt teoretisk kunnskap rundt antibiotika og tilhørende resistensmekanismer. Det er flere jeg gjerne vil takke for god hjelp, støtte og motivasjon. Først vil jeg gi en stor takk til min veileder, professor Bjørn-Arne Lindstedt, for lærerike samtaler, gode tilbakemeldinger og støtte. Jeg ønsker også å rette en takk til senioringeniør Ahmed Abdelghani for god veiledning og oppfølgning tilhørende laboratoriske analyser ved laboratoriet. Videre vil jeg også takke mine to medstudenter, Mette Lea og Mari Anida Hafsås, som jeg gjennomførte forsøk og analyser sammen med. Jeg er utrolig takknemlig for gode samtaler, oppmuntrende ord og ikke minst godt selskap på laboratoriet.

Til slutt vil jeg takke mine nærmeste venner, familie, Herman og Ulla, for uvurderlig støtte og gode ord gjennom hele masterperioden.

Sandnes, 17. juli, 2023

Martine Tjåland

Abstrakt

En av nåtidens største helsetrussel globalt er kampen mot antibiotikaresistente patogene bakterier. Resistensen øker raskere enn det nye antibiotika blir produsert og introdusert innen medisinsk behandling. Antibiotikaresistens utgjør både en trussel for primær sykdomsbehandling, samt ved sekundære rutinebehandlinger slik som kirurgiske operasjoner og kreftbehandling. Dette fordi antibiotikaresistens medfører økt dødelighet, i tillegg til å være et enormt voksende økonomisk problem for det globale samfunnet. I seneste tid har også miljøets rolle i utvikling, spredning og smitte fått et viktig søkelys. Formålet med oppgaven var å undersøke vannprøver innhentet fra akvatisk ytre miljø i Rogaland fylke, med påfølgende deteksjon av resistensmekanismer, samt vurdering av spredning i næringskjeden.

Til denne oppgaven ble prøver innhentet fra 3 ulike vannkilder i Rogaland fylke. Disse vannprøvene ble filtrert og sådd ut på selektive komogene medium. Rendyrkede kolonier ble DNA ekstrahert og videre sendt til Sanger-sekvensering for analyse av 16S rDNA. For genotypisk deteksjon ble det benyttet fire ulike multipleks primermikser. Multipleks PCR-produktene ble videre kjørt på 2% agarosegelelektroforese, hvorpå prøver med båndformasjon ble ytterligere analysert ved singelpleks PCR. Tilsvarende analyser ble også utført på bakterieisolatene tilhørende *Escherichia* slekten for virulensgener. For å måle sensitivitet, ble 3 prøver valgt ut og testet på 9 ulike antibiotika for å undersøke antibiotikaresistens. For å bekrefte identifikasjon av bakterieisolatene, samt tilhørende resistens- og virulensgener, ble samme 3 prøver sendt til HGS med Illumina.

Totalt 23 rendyrkede kolonier ble benyttet i videre analyser. Sanger-sekvensering antydet at bakterieisolatene tilhørte slektene *Escherichia, Pseudomonas, Enterobacter, Novosphingobium, Sphingomonas, Chryseobacterium, Aeromonas, Stenotrophomonas* og *Caulobacter*. Ved multi- og singelpleks PCR ble det antydet tilstedeværelse av viktige ESBL-gener i prøvene identifisert å tilhøre *Escherichia* slekten. Sensitivitetstesting viste til multiresistens i prøvene antatt å være *E. coli* og *P. aeruginosa*. Helgenomsekvensering bekreftet identifikasjon til samsvar med Sanger-sekvensering, samt multiresistens. I tillegg ble det gjort funn av flere resistens- og virulensmekanismer i alle prøvene ved helgenomsekvensering.

Denne oppgaven viste til funn av multiresistente bakterier med ulike resistens- og virulensmekanismer, samt ARG, i Sandnes kommune. Ytterligere forskning på resistensmekanismer er nødvendig for å kartlegge spredning av antibiotikaresistente gener fra akvatiske miljø til næringskjeden.

Abstract

One of today's biggest global health threats is the fight against antibiotic resistant pathogenic bacteria. Resistance increases faster than new antibiotics are created and introduced as medical treatment. Therefore, antibiotic resistance poses both as a threat to primary disease treatment, as well as secondary routine treatments such as surgical operations and cancer treatment. This has led to increased mortality, in addition to being an enormously growing economic problem for the global community. In recent times, the environment's role in development, spread and infection has also received an important spotlight. The purpose of the thesis was to analyze water samples obtained from aquatic environments in Rogaland County and examine for resistance mechanisms, as well as assessment of spread into the food chain.

For this thesis, samples were obtained from three different water sources in Rogaland County. These water samples were filtered and plated on selective chromogenic medium to detect ESBL encoding genes. Purely grown colonies were extracted, after which the 16S rDNA was sent to Sanger sequencing. For genotypic detection, 4 different multiplex primer mixes were used. The multiplex PCR products were further analyzed by 2% agarose gel electrophoresis, after which samples with band formation were further analyzed by singleplex PCR. The bacterial isolates belonging to the *Escherichia* genus were also tested for virulence genes. To measure the sensitivity, 3 samples were selected and tested on 9 different antibiotics. To confirm identification of the same bacterial isolates, as well as associated resistant- and viral genes, the same 3 samples were analyzed by whole genome sequencing by Illumina.

A total of 23 pure colonies were tested by further analysis. Sanger sequencing results suggested that the bacterial isolates belonged to the genus *Escherichia, Pseudomonas, Enterobacter, Novosphingobium, Sphingomonas, Chryseobacterium, Aeromonas, Stenotrophomonas and Caulobacter.* Multi- and singleplex PCR indicated the presence og important ESBL genes in the samples identifies as belonging to the *Escherichia* genus. Sensitivity testing showed multidrug resistance in the samples believed to be *Escherichia coli* and *Pseudomonas aeruginosa.* Whole genome sequencing confirmed the identification of the sample, as well as presence og multidrug resistance. In addition, the samples were also confirmed to contain several resistance and virulence mechanisms.

This thesis showed the discovery of multidrug resistant bacteria with different resistance and virulence mechanisms, as well as ARG, in Sandnes municipality. Further research, regarding resistance mechanisms, is needed to map the spread of antibiotic-resistant bacteria from aquatic environments into the food chain.

Liste over forkortelser og ordforklaringer

APEC	Aviæn patogen Escherichia coli		
AR	Antibiotikaresistens		
ARB	Antibiotikaresistente bakterier		
ARG	Antibiotikaresistente gener		
BLAST	The basic alignment search tool		
CARD	The comprehensive antibiotic resistance database		
CGE	Center for genomic epidemiology		
CRE	Karbapenem		
DAEC	Diffus adherent Escherichia coli		
dH ₂ O	Destillert vann		
DNA	Deoksyribonukleinsyre		
EAEC	Enteroaggregativ Escherichia coli		
EB	Eluerings buffer		
ECOFF	Epidemiological cut-off value		
ecoli_VFDB	Escherichia coli virulence factor database		
EHEC	Enterohemorrhagisk Escherichia coli		
EIEC	Enteroinvasiv Escherichia coli		
EPEC	Enteropatogen Escherichia coli		
ESBL	Utvidet-spektrum betalaktamaser		
ETEC	Enterotoksisk Escherichia coli		
EUCAST	The european committee on antimicrobial susceptibility testing		
ESKAPE	\underline{E} nterococcus faecium, \underline{S} taphylococcus aureus, \underline{K} lebsiella pneumoniae,		
	<u>A</u> cinetobacter baumannii, <u>P</u> seudomonas aeruginosa og <u>E</u> nterobacter spp.		
ExPEC	Ekstraintestinal patogene Escherichia coli		
FASTA	Fil format for å lagre og representere data tilhørende sekvenser		
GAD	glutaminsyreavhengig syremotstandssystem		
HGO	Horisontal genoverføring		
HUS	Hemolytisk uremisk sykdom		
HGS	HGS		
H_2O_2	Hydrogenperoksid		
ICE	Integrative og konjugative elementer		
IPEC	Intestinale patogene Escherichia coli		
KESC	E. coli, Klebsiella, Enterobacter, Serratia og Citrobacter		
kde	Kolonidannende enheter		

MDR	Multiresistens/ multi drug resistance
MRB	Multiresistente bakterier
MH	Mueller-Hinton
MIC	Minimim inhiberende konsentrasjon/ minimum inhibitory concentration
MLST	Multilocus sequence typing
ml	Milliliter
mm	Millimeter
mRNA	Budbringer ribonukleinsyre
NCBI	National Center for Biotechnology Information
NDARO	NCBI national database of antibiotic resistant organisms
NGS	Neste generasjons sekvensering/ Next Generation Sequencing
nm	Nanometer
PAst	Verktøy for å finne serotype til Pseudomonas aeruginosa
PBP	Penicillinbindende proteiner
PCR	Polymerasekjedereaksjon
PMQR	Plasmidmediert kinolon resistensgen
PROKKA	Prokaryotic genome annotation
PubMLST	Public databases for molecular typing and microbial genome diversity
QAC	Kvartære ammoniumforbindelser
RNA	Ribonukleinsyre
SeroTypeFinder	Verktøy for å finne serotype til Escherichia Coli
STEC	Shigatoksinproduserende E. coli
TAS	Toksin-antitoksin system
μΙ	Mikroliter
μm	Mikrometer
μΜ	Mikromolar
UPEC	Uropatogene Escherichia coli
VFDB	Virulence Factor Database
WHO	World health organization/ Verdens helseorganisasjon

Innholdsfortegnelse

1.0 Innledning	1
2.0 Bakgrunn	2
2.1 Antibiotika	2
2.2 Antibiotikas virkningsmekanismer	2
2.2.1 Inhibering av celleveggsyntese	2
2.2.2 Inhibering av nukleotidsyntese	3
2.2.3 Inhibering av nukleinsyresyntese	3
2.3 Antibiotikaklasser	4
2.3.1 Amfenikol	4
2.3.2 Aminoglykosid og aminocyclitol	4
2.3.3 Betalaktamer	5
2.3.4 Kinoloner	5
2.3.5 Fosfomycin	6
2.3.6 Makrolider	6
2.3.7 Nitrofuraner	6
2.4 Antibiotikaresistens	7
2.5 Vlassificating autoristons	7
2.5 Russijisering av resistens	/ ح
2.5.1 Naturing resistens	
2.5.2 El Vel Vel resistens	·
2.7 Enzymer involvert i resistensutvikling	9
2.7.1 CTX-M	
2.8 Andre faktorer involvert i resistens	
2.8.1 Diocluer	11
2.8.3 Svrer	
2.8.4 Biofilm	
2.9.1 Escherichia coli	
2.9.2 Pseudomonas aeruginosa	
2.10 Forekomst og spredning av antibiotikaresistens i næringskjeden	
2 11 Matadisk hakarunn	11
2.11 1 Selektive kromogene agarskåler	14
2.11.2 Målinger ved spektrofotometer og fluorometer	
2.11.3 Polymerasekiedereaksion	
2.11.4 Antimikrobiell sensitivitetstesting	
2.11.5 Sekvensering	17
3.0 Materiale og metode	
3.1 Innhenting av vannprøver fra terrestrisk miljø	
3.2 Filtrering av vannprøver	
3.3 Rendyrking av bakterieisolater	
3 4 DNA obstraksion	71
3.4.1 Kvantifisering av DNA ekstraksion	
3.5 Sanger-sekvensering av 16S rDNA	
5.5.1 PUK-amplifisering	
5.5.4 Gelelektrolorese 2% agarosegel	

3.5.3 Rensing av PCR produkt	23
3.5.4 Databehandling Sanger sekvensering	2
3.5.5 Frysestock	24
3.6 Detaksion av resistante ganer	2
3.6.1 Multiplate DCD	،۲۰ ۲
3.0.1 Mulupleks r CK	۲
2.6.2 Banging an accurace lag blancigning til Sangan achumaning	2۲
3.6.5 Kensing av agarosegel og klargjøring til Sanger sekvensering	2
3.6.4 Databehandling resistensgener	2
3.7 Deteksjon av virulensgener	20
3.8 Antibiotika sensitivitetstest	
3.9 Helgenomsekvensering	
3.9.1 Preparering av prøver før innsending	
3.9.2 Databehandling av HGS resultater	3
3.10 Litteratur	
4.0 Resultat	
4.1 Fenotypisk deteksjon og identifikasjon ved sekvensering	
4.2 Kvantitativ måling ved bruk av spektrofotometer	Δ
4.5 Genotypisk deteksjon	
4.3.1 Deteksjon av 16S rDNA	
4.3.2 Multipleks og singelpleks PCR	
4.3.3 Deteksjon av virulensgener	4
4.4 Antibiotika sensitivitetstest	
4.6 Helgenomsekvensering	
4.6.1 Kvantitative målinger og agarosegelelektroforese	
4.6.2 Identifikasjon av bakterieisolatene	
4.6.3 Resistens detektert ved helgenomsekvensering	50
4.6.4 Mutasjoner	
4.6.5 Virulensgener detektert hos E. coli ved helgenomsekvensering	54
4.6.6. Toksin – antitoksin system	50
4.6.7 Sammenligning mellom bakterieisolater	5
5.0 Diskusjon	59
5.1 Identifisering av bakterieisolater	5:
5.1.1 Fenotypisk identifikasjon	
5.1.2 Sanger-sekvensering av 16S rDNA	60
5.1.4 Identifikasjonsmetoder	63
5.2 Gener som koder for antibiotikaresistens	6.
5.2.1 aph(3')-IIb	6
5.2.2 blaCTX-M-15	64
5.2.3 blaEC-13	
5.2.4 blaOXA-50	6 ¹
5.2.5 blaPDC-374	
5.2.6 catB7	
5.2.7 fosA	
5.2.8 anrS1	
5.2.6 Resistensgener i næringskjeden	
5.3 Antibiotikaresistens	6
5.3.1 Amfenikol	6
5.3.2 Aminoglykosid	
5.3.3 Aminocyclitol	65

5.3.4 Betalaktamer	
5.3.5 Fluorokinoloner	
5.3.6 Fosfomycin	
5.3.7 Makrolider	
5.3.8 Nitrofuraner	
5.3.9 Multiresistens i prøvene	71
5.4 Virulensmekanismer	72
5.4.1 Gener som koder for virulens	72
5.5 Antimikrobiell resistens mot kjemiske substanser	
5.5.1 Tungmetaller	
5.5.2 Biocider	
5.5.3 Svrer	
5.4.6 Betydningen av resistens mot kjemiske substanser	77
5.5 Akvatiske miljø som spredningspunkt for antibiotikaresistens	
5.6 Videre arbeid	
6.0 Konklusjon	80
7.0 Referanseliste	

Vedlegg	1 -	- Metodiske	prosedvrer
veulegg		metouiske	proscuyici

- Vedlegg 2 Inkuberte agarskåler
- Vedlegg 3 Rendyrkede agarskåler
- Vedlegg 4 Nukleotid BLAST
- Vedlegg 5 NanoDrop
- Vedlegg 6 Agarosegelelektroforese
- Vedlegg 7 Antibiotika sensitivitetstesting
- Vedlegg 8 Helgenomsekvensering

1.0 Innledning

Antibiotika defineres som et organisk-, syntetisk- eller semisyntetisk molekyl som ved spesifikke interaksjoner kan hindre, eller eliminere, bakterielle mål (Yazdankhah et al., 2013). Helt siden oppdagelsen på slutten av 1920-tallet, har antibiotika vært en helomvendende praksis i behandling av sykdommer (Davies & Davies, 2010). Herunder ved terapeutisk- og profylaktisk behandling, for å kurere og forebygge bakterielle infeksjonssykdommer henholdsvis (Norsk legemiddelhåndbok, 2016d). Innføring av antibiotika innen medisinsk praksis har medført at et utallig antall liv har blitt reddet (Davies & Davies, 2010). Imidlertid har ikke antimikrobielle midler, med nyoppdagede virkningsmekanismer, blitt utviklet etter år 1970. Hovedårsaken til dette skyldes den lave økonomiske avkastningen på både produksjon og salg, som følge av den kortvarige behandlingstiden til antibiotika ved infeksjonssykdommer. I tillegg vanskeligstiller den økende utviklingen og spredningen av antibiotikaresistente gener (ARG) hvilke antimikrobielle virkningsmekanismer fokuset bør rettes mot. I dagens globale samfunn øker derfor antibiotikaresistens (AR) raskere enn det nye antimikrobielle midler introduseres på markedet (Yazdankhah et al., 2013).

Effektiviteten til ethvert terapeutiske middel, fra første stund det tas i bruk, svekkes som følge av den mulige bakterielle utviklingen av både toleranse og resistens (Davies & Davies, 2010). Fenomenet antimikrobiell resistens er dog en naturlig del av bakterienes forsvarsmekanisme, og har eksistert lenge før antibiotika ble tatt i bruk (Nesse et al., 2021). Allikevel har overforbruk og feil bruk innen medisinske behandlinger medført en økende prevalens av antibiotikaresistente bakterier (ARB) (FHI, 2012). Spredningen og utviklingen av ARB ansees som en alvorlig global helsetrussel, og har blitt advart å kunne føre den moderne medisinske historie tilbake til pre-antibiotisk tid (Davies & Davies, 2010; Nesse et al., 2021).

Utover kliniske institusjoner, er det en økende forståelse for samspillet mellom mennesker, dyr og miljøets involvering i utvikling og spredning av AR. Allikevel er det lite kjent hvilken risiko utslipp av antibiotika har, eller hvilke tiltak som er best egnet for å overvåke resistensutvikling i miljøet og næringskjeden (Larsson & Flach, 2022; Munita & Arias, 2016).

Formålet med oppgaven var å undersøke vannprøver innhentet fra akvatisk ytre miljø i Rogaland fylke, med påfølgende deteksjon av resistensmekanismer, samt vurdering av spredning i næringskjeden.

2.0 Bakgrunn

2.1 Antibiotika

Gjennom tidene har søket etter nye medisinske kjemikalier, for å bekjempe infeksjonssykdommer, tatt en stor og viktig del av menneskets historie (Yazdankhah et al., 2013). Det største gjennombruddet innen den medisinske historie forekom på 1900-tallet, hvor oppdagelsen av antibiotika fant sted (Katz & Baltz, 2016). Selv om salvarsan var det første antibiotikumet introdusert på markedet i 1910, var det allikevel penicillin som for alvor igangsatte det som senere har blitt kalt antibiotikas gullalder på 1900-tallet. Antibiotikumet penicillin ble oppdaget med et uhell i 1928 av Alexander Fleming, en feil inkubert petriskål senere skulle vise seg å være redningen til millioner av liv, og bli århundrets største gjennombrudd innen forebygging og behandling av infeksjonssykdommer (Yazdankhah et al., 2013). Siden oppdagelsen og introduksjonen av penicillin, har flere typer antibiotikum blitt introdusert på markedet. Bruk av tilpassede antibiotikum har bidratt med å forenkle behandlingen av både primære infeksjonssykdommer, samt sekundær behandling ved blant annet kirurgiske operasjoner, kreft og organtransplantasjoner. Totalt sett er det er antatt at antibiotika har forlenget livsforløpet til mennesker med hele 23 år (Hutchings et al., 2019).

2.2 Antibiotikas virkningsmekanismer

Forskjellige antibiotika kan ved ulike virkningsmekanismer angripe bakterielle mål. Hvilke virkningsmekanismer som trer i kraft ved eksponering, avhenger av type antibiotika som benyttes. Generelt sett deles virkningsmekanismene inn i 5 kategorier. Disse kategoriene inkluderer inhibering av ulike synteser, herunder celleveggsyntese, nukleotidsyntese, nukleinsyresyntese og proteinsyntese. I tillegg involverer mekanismene antibakteriell innvirkning på strukturelle mål og membraner (Bhattacharjee, 2016).

2.2.1 Inhibering av celleveggsyntese

Syntesen i celleveggen har oppstart i cytoplasma og involverer enzymatiske reaksjoner hvorpå peptidoglykan, som er molekyler den bakterielle celleveggen er bygget opp av, produseres. Peptidoglykan er molekyler bestående av sukkerpolymerer som er sammenbundet av peptider i en parallell ordning via peptidbindinger og aminosyrer. Videre vil det hydrofobe produktet krysse cellemembranen, via en hydrofil transporter. I celleveggen vil siste del av reaksjonene finnes sted, hvor peptidoglykan inkorporeres i nettverket (Bhattacharjee, 2016). Celleveggen i

bakterier sørger for normal cellefunksjon, og fungerer som en beskyttelse mot ytre påvirkninger (Salton & Kim, 1996). Ved bruk av forskjellige antibiotika vil celleveggen svekkes, som følge av inhibering og forstyrrelse av fasene involverende cytosol, cellevegg og membran (Bhattacharjee, 2016).

2.2.2 Inhibering av nukleotidsyntese

I både DNA og RNA er nukleotider viktige strukturelle komponenter. Et nukleotid består av tre ulike bestanddeler. Herunder en fosfatgruppe, et sukkermolekyl, samt en nitrogenholdig base bestående av enten cytosin, guanin, adenin eller tymin (Brody, 2023). Syntese av nukleotider er derav essensielle for vekst i levende celler, i alle organismer. Det er derfor en nødvendighet at antibiotika som inhiberer nukleotidsyntese er selektive, hvor kun bakteriecellen og ikke verten rammes. Inhiberingen av nukleotidsyntesen skjer ved at et gitt antibiotikum opererer som en antimetabolitt. Ved normal syntese vil et substrat forårsake katalyse som følge av binding til det aktive setet på et gitt enzym. Ved bruk av antibiotika, vil dog antimetabolitten binde seg til det aktive setet og derav inhibere substratet (Bhattacharjee, 2016). Inhiberingen av nukleotidsyntesen vil forstyrre metabolske prosesser i cellen og derav ha en antibakteriell effekt (Brody, 2023).

2.2.3 Inhibering av nukleinsyresyntese

Nukleinsyrer er polymerer av nukleotider, og inkluderer både RNA og DNA. Nukleinsyresyntesen er derav en fortsettelse av nukleotidsyntesen, og innebærer overføring av genetisk informasjon. Antibiotika, målrettet mot nukleinsyresyntese, vil virke ved å inhibere RNA transkripsjon og DNA replikasjon, og derav forstyrre normal cellulær funksjon (Bhattacharjee, 2016).

2.2.4 Inhibering av proteinsyntese

Proteinsyntese involverer translasjon via ribosomene, rRNA, for å lage protein. Syntesen har sitt utsprang fra DNA, hvorpå protein syntetiseres via transkripsjon fra mRNA sekvenser. Antibiotika rettet mot proteinsyntesen, kan inhibere ved å utøve virkning på hvilket som helst steg i translasjonen og redusere vekst av bakterier. I tillegg kan inhiberingen av proteinsyntesen skje som en sekundæreffekt, ved bruk av antibiotikum rettet mot inhibering av RNA i nukleinsyresyntesen (Bhattacharjee, 2016).

2.2.5 Antibiotikum som påvirker strukturelle mål og membraner

Membraner tar viktig del i cellulære funksjoner, herunder skille ad organeller, diffusjonsbarrierer, samt som en transporter av næring inn og avfall ut. Bakterier klassifiseres i to grupper etter membranenes strukturelle sammensetning. Klassifiseringen skiller mellom gramnegative og grampositive, med en og to membraner henholdsvis. Membranene har en vital funksjon i bakterienes cellestruktur. Antibiotika som forstyrrer og ødelegger selv en liten del av membranen vil derfor kunne drepe mål bakteriene, som følge av den toksiske responsen som utøves ved bruk (Bhattacharjee, 2016).

2.3 Antibiotikaklasser

Antibiotika kategoriseres i ulike klasser etter virkningsmekanismer, for å tilpasse behandling og forebygging av infeksjonssykdommer. Felles for alle klassene er dog den målrettede evnen for å hindre eller eliminere bakterielle mål, henholdsvis bakteriostatiske og baktericide mekanismer (Bernatova et al., 2013). Ved behandling vil bakteriostatiske antibiotikum inhiberes bakteriene, mens baktericide antibiotika virker ved å drepe bakterielle mål (Kohanski et al., 2007; Loree & Lappin, u.å.). Det finnes flere typer klasser av antibiotika (Coates et al., 2011). Under omtales 8 forskjellige antibiotikaklasser.

2.3.1 Amfenikol

Amfenikol klassen består av bredspektrede bakteriostatiske antibiotikum, med mekanismer målrettet mot både gramnegative og grampositive bakterier. Antibiotika tilhørende amfenikol klassen inkluderer kloramfenikol, samt antibiotikumets derivater (Cheungpasitporn et al., 2020).

2.3.2 Aminoglykosid og aminocyclitol

Antibiotika i klassen aminoglykosid har en bredspektret baktericid effekt, som inhiberer proteinsyntesen i bakterier (Norsk legemiddelhåndbok, 2016a; Reygaert, 2018). Tobramycin og gentamicin er antibiotikum tilhørende klassen aminoglykosid, hvor førstnevnte ansees som mest effektiv i behandling av infeksjoner med *P. aeruginosa*. Hvilken virkning behandling ved bruk av aminoglykosider har avhenger av dosen som gis, hvor effekten øker lineært med økende konsentrasjon. Antibiotikaklassen har dog et smalt terapeutisk vindu, og er svært toksisk ved inntak i høye doser. Antibiotikum fra aminoglykosid klassen bør derav ikke anvendes hyppig ved høye doseringer, som følge av bivirkningene (Norsk legemiddelhåndbok, 2016a).

Spectinomycin er en type aminocyclitol. Spectinomycin har blitt benyttet innen behandling av gonore. Den antibakterielle effekten til spectinomycin virker ved å inhibere proteinsyntesen i bakterier. I senere tid har det om følge av hyppig bruk av spectinomycin i behandling av infeksjonssykdommer forårsaket av gonore, vist til en betraktelig økning i resistens (Yu & Zhao, 2022).

2.3.3 Betalaktamer

Betalaktam klassen inkluderer flere typer baktericide antibiotika som inhiberer cellevegg syntesen i bakterier (Kapoor et al., 2017; Reygaert, 2018). Den kjemiske strukturen til betalaktamer består av en betalaktamring, som antas å likne en del av bakterienes peptidkjede. Denne delen av peptidkjeden, kalt D-alanyl D-alanin, binder seg vanligvis til enzymene penicillinbindende proteiner (PBP). D-alanyl D-alanin vil dog inhiberes ved behandling hvor betalaktam antibiotika benyttes. Virkningsmekanismene forårsakes av betalaktamringens interaksjon med PBP, etterfulgt av inhiberings av peptidoglykan syntesen som resulterer i celledød (Kapoor et al., 2017). Flere antibiotika befinner seg i betalaktam klassen, herunder penicilliner, kefalosporiner og karbapenemer (Page, 2012).

2.3.4 Kinoloner

Kinoloner betegner en gruppe antibiotika med bredspektret effekt, og virker ved å inhibere nukleinsyresyntesen (Reygaert, 2018; Statens legemiddelverk, 2019). Inhibering antas å skyldes hemming av DNA topoisomerase IV og DNA-gyrase, som er nødvendige for replikasjon og transkripsjon (Hooper & Jacoby, 2016; National institute of diabetes and digestive and kidney disease, 2012). I Norge er fluorokinoloner den eneste undergruppen av kinoloner som finnes tilgjengelig på markedet (Statens legemiddelverk, 2019). Fluorokinoloner er en klasse baktericide antibiotikum, som benyttes i behandling av ulike infeksjoner som følge av den effektive orale biotilgjengeligheten (Baggio & Ananda-Rajah, 2021; Norsk legemiddelhåndbok, 2016b). Ciprofloksacin er et antibiotikum som tilhører klassen fluorokinoloner, som har god effekt i behandlinger rettet mot infeksjoner som følge av behandling ved bruk av fluorokinoloner har dog blitt rapportert. Herunder alvorlige bivirkninger tilhørende nervesystemet, muskler og skjelett. Bruken av fluorokinoloner bør derfor begrenses, og ved behov kun forskrives i lave doser under oppsyn (Norsk legemiddelhåndbok, 2016b; Statens legemiddelverk, 2019).

2.3.5 Fosfomycin

Den bredspektrede antibiotikaklassen fosfomycin benyttes i behandling av infeksjoner forårsaket både av gramnegative og gramnegative bakterier (Yeganeh-Sefidan et al., 2016). I begge former for grambakterier, vil fosfomycin ha en baktericid effekt, hvor det bakterielle målet elimineres ved inhibering av cellevegg syntesen (Bhattacharjee, 2016; Yeganeh-Sefidan et al., 2016). Fosfomycin antibiotika benyttes hovedsakelig i behandling av infeksjoner forårsaket i urinveiene, og finnes i to former. Henholdsvis som trometamol og kalsium (Falagas et al., 2016).

2.3.6 Makrolider

Makrolider er en klasse bredspektrede antibiotika, bestående av naturlig forekomne molekyler. Antibiotikumet vil ved bruk fungere bakteriostatisk, men ved høye doser vil det også ha en baktericid effekt (Patel & Hashmi, u.å.). Antibiotika tilhørende makrolid klassen vil utøve effekten ved å inhibere proteinsyntesen (Bhattacharjee, 2016). Molekylene tilhørende makrolid klassen består av en laktonring, hvorpå deoksydukker er tilfestet. Antibiotikumet erythromycin var der første makrolid benyttet innen medisinsk behandling. Henholdsvis både som en erstatning ved allergi og resistens mot penicillin (Patel & Hashmi, u.å.).

2.3.7 Nitrofuraner

Ulike antibiotika fra klassen nitrofuraner ble introdusert mellom årene 1940 til 1950 (Le & Rakonjac, 2021). Nitrofuraner er bredspekteret syntetiske molekyl, med antimikrobielle egenskaper som inhiberer nukleinsyresyntesen (Bhattacharjee, 2016; EFSA, 2015). Molekylet bestående av en nitrofuran-ring er, via en azomethinbinding, sammenkoblet til en sidekjede. Hvilken sidekjede som er bundet til nitrofuran-ring avhenger av hvilken type antibiotika i nitrofuran klassen som benyttes (EFSA, 2015). Nitrofurantoin er en type antibiotika i nitrofuran klassen, som er veletablert innen klinisk bruk (Huttner et al., 2015). Nitrofurantoin består av sidekjeden 1-aminohydantoin, og forskrives i henhold til terapeutisk behandling av urinveisinfeksjoner (EFSA, 2015; Howard & Furman, 2018). Selv om ikke alle mekanismene er fullstendig forstått, er det allikevel kjent at nitrofurantoin både hemmer enzymer involvert DNA og RNA syntese, samt enzymer tilhørende metabolsk syntese, hos det bakterielle målet (Huttner et al., 2015).

2.4 Antibiotikaresistens

AR eksisterte lenge før antibiotika ble introdusert til bruk for å forebygge og behandle infeksjonssykdommer. Det ble observert i isolerte miljøer, som permafrost og grotter frie for eksponering av masseproduksjon av antibiotika (Larsson & Flach, 2022). AR involverer mekanismer hos mikroorganismer hvorpå utvikling av resistens mot antimikrobielle midler forekommer. Et globalt overforbruk har resultert i en økende forekomst og spredning av ARB (Bhattacharjee, 2016). Når AR observeres mot 3 eller flere antimikrobielle midler, betegnes det som multiresistens (MDR). Et fenomen som forekommer både hos gramnegative og grampositive bakterier (Magiorakos et al., 2012). Multiresistente bakterier (MRB) har vist til en stigende prevalens i kliniske miljøer og samfunnsinstitusjoner, hvorpå infeksjoner både har resultert i store økonomiske utgifter, samt en økning i antall dødstilfeller (Munita & Arias, 2016).

2.5 Klassifisering av resistens

Hos bakterier klassifiseres AR i to grupper. Henholdsvis naturlig resistens og ervervet resistens. Naturlig resistens definerer bakteriens iboende naturlige genetiske egenskaper, mens ervervet resistens betegner bakteriens evne til å motta resistens fra andre bakterier (Bhattacharjee, 2016).

2.5.1 Naturlig resistens

Fenomenet naturlig resistens defineres av en vertikal genoverføring innen en bakterieart, hvor resistensgenene nedarves fra en generasjon til neste (VKM, 2015). Forekomsten og årsak som følge av naturlig resistens skyldes bakterienes funksjonelle og strukturelle egenskaper, og ikke som følge av eksponering for antibiotika. Naturlig resistens vil derfor være tilstede i alle celler tilhørende en bestemt bakterieart (Bhattacharjee, 2016). Mekanismer tilhørende efflukspumper og cellemembranens permeabilitet sees i størst sammenheng med naturlig resistens hos bakterier (Reygaert, 2018).

2.5.2 Ervervet resistens

Ervervet resistens kan forekomme hos bakteriearter som er mottagelige for antimikrobielle midler, hvorpå resistensmekanismene forårsakes av genetiske mutasjoner eller via horisontal genoverføring (Huddleston, 2014).

2.5.2.1 Horisontal genoverføring

Bakterier kan overføre gener horisontalt ved bruk av tre ulike mekanismer, herunder konjugasjon, transformasjon og transduksjon.

Konjugasjon baserer seg på overføring av DNA fra en donorbakterie til en mottakerbakterie (Hall et al., 2017). Konjugering er en effektiv måte for horisontal genoverføring, og er sannsynlig til stede i den gastrointestinale trakten ved antibiotikabehandling (Munita & Arias, 2016). DNAet som overføres kan bestå av små fragmenter til store kromosom, hvorpå hendelsesforløpet består av tre punkter. Henholdsvis etablering av kontakt mellom to bakterieceller, etterfulgt av pardannelse, før plasmid DNAet overføres via en konjugativ pilus. Utover plasmider, vil det også ved konjugasjon være mulig å overføre andre genetiske komponenter. Dette inkluderer transposoner, integrative og konjugative elementer (ICE), samt integroner. Hvorpå sistnevnte er vanligvis bærer av ARG (Huddleston, 2014).

Transformasjon er den formen for horisontal genoverføring hvor bakteriene kan ta opp både plasmid DNA og kromosomalt DNA fra miljøomgivelsene. Dette innebærer at en donorbakterie frigjør eget DNA som videre spres i miljøet. Kompetente mottakerbakterier vil ved enten illegitim eller homolog rekombinasjon inkorporere DNAet i eget genom, som etterfølges av DNA fra donor som uttrykkes i mottaker (Huddleston, 2014). Sett i sammenheng med resistens, er det kun et mindretall av kliniske relevante bakteriearter som ved transformasjon kan ta opp fritt DNA, hvorpå utfallet medfører resistensutvikling (Munita & Arias, 2016).

Transduksjon er en form for horisontal genoverføring hvor virusene bakterofager overfører DNA mellom bakterier. Denne formen for horisontal genoverføring klassifiseres som enten generalisert eller spesialisert. Ved generalisert transduksjon vil ethvert gen fra en bakterie kunne overføres fra en bakterie til en annen, mens ved spesialisert transduksjon kun involverer spesifikke gen. Selv om transduksjon har blitt en mer anerkjent mekanisme for overføring av resistente gener, er det fortsatt et kunnskapsgap sammenlignet med konjugasjon og transformasjon (Huddleston, 2014).

2.5.2.2 Mutasjoner

Forekomst av mutasjoner, punktmutasjoner, kan forekomme ved enten induserte eller naturlige metoder. Naturlig forekommen mutasjon forårsakes av feil som utføres av enzymet DNA polymerase ved DNA replikasjon. Som regel vil feilene som oftest korrigeres, men i noen tilfeller vil det medføre punktmutasjoner. Induserte mutasjoner er vist å forårsakes av ytre eksponeringer. Antibiotika er en slik ytre eksponering som kan indusere punktmutasjoner. Slike punktutasjoner er vist å gi infiserende bakterier et konkurransefortrinn ved å interagere med proteinaktiviteten, samt forårsake AR (Bhattacharjee, 2016). Vanligvis involveres kun et fåtall gener i utvikling av resistens via mutasjoner. Herunder gener som koder for enzymer som modifiserer antibiotika, legemiddeltransportører og tilhørende regulatorer, samt legemiddelmål (Reygaert, 2018).

2.6 Resistensmekanismer

Mekanismer tilhørende antimikrobiell resistens fordeles i 4 grupper. Herunder begrense opptak av medikamenter, bruk av efflukspumper, endring i medikamentmål, samt inaktivering av medikamenter. Bakterier vil kunne forårsake antimikrobiell resistens som følge av celleveggens oppbygning. Dette fordi celleveggen til bakterier består av lipopolysakkarider, som naturlig kan begrense medikamentopptak. Efflukspumper fungerer som en transporter, og har som oppgave å føre medikamenter ut fra cellene. Ved mutasjon av efflukspumper vil transportkanalene modifiseres, noe som er en kjent mekanisme ved AR. Ved endring i medikamentmål kan bakterier endre ulike mekanismer innad i cellen, og på denne måten forårsake AR. Mekanismer for endring av medikamentmål inkluderer endringer i peptiodoglykanstrukturen, penicillinbindene proteiner, endring i den ribosomale subenheten, samt produksjon av enzymer og genetiske mutasjoner. Den siste gruppen av AR mekanismer forårsakes av inaktivering av medikamenter. Inaktiveringen kan skje ved at det legges til en kjemisk gruppe eller degradering. Hvilken mekanisme som forekommer ved resistens, avhenger av membranstruktur og klassifisering. Grampositive bakterier vil kunne benytte seg av endring av medikamentets mål og inaktivering av medikament, mens gramnegative vil kunne benytte alle ovennevnte mekanismer ved resistens. I tillegg vil resistensmekanismene avhenge av naturlig resistens og ervervet resistens. Ved ervervet resistens kan bakterier benytte seg av efflukspumper, endring av medikamentets mål og inaktivering av medikament. Ved naturlig resistens vil bakterien på en annen side kunne utøve resistensmekanismer ved å begrense opptak av medikamenter, bruk av efflukspumper og inaktivering av medikament (Reygaert, 2018).

2.7 Enzymer involvert i resistensutvikling

Betalaktamaser er enzymer som finnes både i grampositive og gramnegative bakterier. I grampositive bakterie skilles enzymene ut i det ekstracellulære rommet, og i periplasmatiske

rommet i gramnegative bakterier. Betalaktamase enzymene er kodet på både ekstrakromosomale og kromosomale elementer, og den enzymatiske funksjonen fungerer ved å bryte ned betalaktamring (Alby & Miller, 2023). Som følge av den enzymatiske degraderingen har betalaktamaser blitt et problem i henhold til resistensutvikling mot betalaktam antibiotika. Dette fordi bakteriene utvikler overlevelsesmekanismer for å tilpasse miljøomgivelsene, som en respons på tilstedeværelse av betalaktam antibiotika. Resistensutviklingen skjer ved mutering av enzymer. Disse enzymene med mutasjoner kalles utvidet-spektrum betalaktamaser (ESBL). Mutasjonene kan skje ved to ulike mekanismer. Den første mekanismen forårsaker økt ekspresjon av enzymer som følge av mutasjon i betalaktamase promotoren. Den andre gjør det mulig for betalaktam antibiotikumet å binde seg til enzymet med høy affinitet sammenlignet med hemmeren, som en respons til mutasjoner på det aktive setet. Infeksjonssykdommer forårsaket av bakterier med muterte ESBL enzymer er vanskelige å behandle, som følge av et svært komplisert og vanskelig behandlingsforløp (Bhattacharjee, 2016).

2.7.1 CTX-M

ESBL enzymer grupperes inn i underklasser. CTX-M befinner seg i ESBL klasse A, og har i dag blitt det mest forekomne ESBL enzymet globalt som følge av den høye spredningsgraden (Mendonca et al., 2022; Rossolini et al., 2008). CTX-M ble oppdaget på 1980-tallet, hvor CTX-M-1 var den første gruppen (Rossolini et al., 2008). Siden den gang har omtrentlig 200 enzymer tilhørende CTX-M familien blitt oppdaget. CTX-M inndeles i fem undergrupper, henholdsvis CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 og CTX-M-25. Innhold av aminosyre substitutter, som kan variere fra en til få, skiller disse undergruppene fra hverandre (Mendonca et al., 2022).

2.8 Andre faktorer involvert i resistens

Sett i sammenheng med AR, kan kjemikalier forårsake og indusere resistens hos bakterier mot antimikrobielle midler (VKM, 2016). I tillegg til kjemiske substanser, kan også mikroorganismer øke resistens ved dannelse av mikrobielle samfunn (Prinzi & Rohde, 2023; Veterinærinstituttet, u.å.). Andre faktorer involvert i resistens inkluderer i denne oppgaven biocider, tungmetaller, syrer og biofilm.

2.8.1 Biocider

Biocider er en samlebetegnelse for desinfeksjonsmidler og antiseptika som betegner flere aktive kjemiske komponenter. Biocider benyttes til å bekjempe og motvirke uønskede mikroorganismer på både overflater og på huden. I likhet med antibiotika, er resistens mot desinfeksjonsmidler og antiseptika en bekymring (Torabi & Zahra, u.å.). Bakterier kan utvikle resistens mot biocider ved både naturlig og ervervede mekanismer (VKM, 2016). For å motvirke resistensutvikling er det derfor viktig at riktig middel tas i bruk til korrekt hensikt. Hydrogenperoksid (H₂O₂) er et allsidig biocid, og kan benyttes både som en sterilant, antiseptika og desinfeksjonsmiddel. H₂O₂ benyttes både i kliniske og ikke-kliniske settinger til å bekjempe grampositive og gramnegative bakterier. Et annet eksempel er kvartære ammoniumforbindelser (QAC), som i likhet med H₂O₂ benyttes i kliniske og ikke-kliniske sammenheng (Torabi & Zahra, u.å.). QAC utøver hovedsakelig en god effekt på grampositive bakterier, men ved eksponering vil også gramnegative bakterier rammes til en viss grad (Norsk legemiddelhåndbok, 2016c).

2.8.2 Tungmetaller

Tungmetaller omtaler naturlig forekomne elementer som inkluderer blant annet kvikksølv, arsen, kadmium, kobber og sink. I tillegg involverer det også metalloider slik som arsenikk (Tchounwou et al., 2012; VKM, 2016). Tungmetaller defineres etter tettheten som er minst fem ganger høyere enn vann, samt har en høy atomisk vekt. Som følge av tungmetallers høye toksisitet i lave doser, har noen typer blitt benyttet som antimikrobielle midler (VKM, 2016). Bakterier kan ved ulike mekanismer utvikle resistens mot tungmetaller. Resistensmekanismene baserer seg på å skille ut og redusere konsentrasjon toksiske metallioner, henholdsvis ved detoksifisering og kompleksdannelse, samt transport ut av cellene via efflukspumper (Seiler & Berendonk, 2012).

2.8.3 Syrer

Som følge vekst av patogener ved pH 6-7, har syrer med lav pH lenge vært foretrukket i bekjempelsen mot å eliminere uønskede mikroorganismer. Syrer har derfor blitt brukt både innen kliniske miljø og ikke-kliniske miljø. I tillegg benyttes også syrer for å beskytte mot matbårne patogener i næringsmidler. Et stort problem for folkehelsen er dog bakterielle mekanismene hvorpå patogener kan overleve i miljø med lav pH (Sheikh et al., 2021).

2.8.4 Biofilm

Begrepet biofilm betegner et samfunn av bakterier som tilfestes diverse overflatemateriale. Samfunnet opererer som en funksjonell og beskyttende barriere for bakteriene (Sauer et al., 2022). Biofilmens struktur, sammen kommunikasjon og samarbeid mellom bakteriene, vil kunne beskytte mot ytre stressfaktorer. Faktorer som påvirker stress inkluderer blant annet antibiotika (Veterinærinstituttet, u.å.). Sammenlignet med planktoniske bakterier, kan biofilmens struktur øke AR opptil 1000 ganger mer (Prinzi & Rohde, 2023).

2.9 Antibiotikaresistente bakterier

Som følge av den økende forekomsten av ARB publiserte WHO i 2017 en liste over patogener som særlig sees i sammenheng med MDR (Mancuso et al., 2021). Etter navn tilhørende bakterieartenes slekt, benyttes navnet ESKAPE som en fellesbetegnelse for patogene. Akronymet ESKAPE inkluderer bakteriene *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa* og *Enterobacter* spp. henholdsvis (Denissen et al., 2022; Mancuso et al., 2021). Patogenene utgjør en stor trussel for mennesker. Som følge av dette er ESKAPE merket med høyest prioritet i kampen mot resistensutvikling (Mancuso et al., 2021). Punktene under gir en innføring i to patogener tilhørende ESKPAE, herunder *E. coli* tilknyttet slekten *Enterobacter* spp., samt *P. aeruginosa*.

2.9.1 Escherichia coli

E. coli er en gramnegativ, fakultativ anaerob og ikke sporedannende bakterieart, tilhørende familien *Enterobacteriaceae. E. coli* består av et stort mangfold, og inkluderer både apatogene stammer som ikke gir sykdom, samt patogene stammer som kan gi sykdom hos mennesker. Mens apatogene stammer finnes naturlig i tarmen til varmblodige dyr, vil flertallet av patogene stammer kunne smitte via vann og næringsmidler, og forårsake sykdom via ulike mekanismer. Globalt ansees derfor patogene *E. coli* som den viktigste årsaken til sykdom forårsaket av bakteriell enteritt. Patogene stammer kan også forårsake langt mer alvorlige tilstander, hvor blant annet sykdommer som urinveisinfeksjon, meningitt og sepsis kan være utfallet. Årsaken til mangfoldet mellom *E. coli* stammer ligger i bakterieartens genom, som inneholder opp mot 5000 gener. Selv om alle *E. coli* har et nokså likt kjernegenom, bestående av omtrentlig 2000 gener, viser resterende mengder gener i genomet til variasjon mellom ulike stammer. For å skille mellom ulike stammer av *E. coli* (EHEC), Enteroaggregativ *E. coli* (EAEC),

Enterotoksisk *E. coli* (ETEC), Enteropatogen *E. coli* (EPEC), Enteroinvasiv *E. coli* (EIEC) og Diffus adherent *E. coli* (DAEC) (Granum, 2017).

2.9.2 Pseudomonas aeruginosa

P. aeruginosa tilhører familien *Pseudomonadaceae*, og er en gramnegativ bakterie som kan overleve et vidt spekter av ulike miljøforhold. *P. aeruginosa* betegnes som en opportunistisk patogen bakterie, hvor forekomst sees særlig i sammenheng med ventilator-assosiert lungebetennelse, samt nosokomiale infeksjoner. Bakterien har vist å være resistent mot flere antibiotika tilgjengelig på markedet, noe som gjør infeksjoner forårsaket av *P. aeruginosa* svært vanskelig å behandle. For friske individer utgjør *P. aeruginosa* sjeldent en utpreget risiko, men for pasienter med cystisk fibrose, samt nedsatt immunforsvar, kan infeksjon være særs alvorlig. For disse pasientgruppene forårsaker bakterien både høy sykelighet og dødelighet (Pang et al., 2019). Som følge av dette har Verdens Helseorganisasjon (WHO) oppnevnt karbapenemresistent *P. aeruginosa* i øverste prioriteringsklasse, hvor utvikling av nye antibiotika for behandling av infeksjonssykdommer ansees som kritisk (Tacconelli et al., 2018). Hovedsakelig kan resistensen som observeres mot betalaktamer, hos *P. aeruginosa*, forårsakes av ulike cellulære funksjoner. Dette inkluderer redusert permeabilitet i celleveggen, endringer i OprD yttermembranprotein, overekspresjon i efflukspumper og overproduksjon av kefalosporinase (Bonnin et al., 2018).

2.10 Forekomst og spredning av antibiotikaresistens i næringskjeden

Resistente og multiresistente patogener har i lengre tid vært isolert innen kliniske miljøer (Denissen et al., 2022). Nye ARG som isoleres i dag stammer dog ofte fra patogene bakterier som befinner seg i ytre miljø. Slike miljøer inkluderer jord, næringsmidler, diverse vannkilder og avløpsvann (Denissen et al., 2022; Larsson & Flach, 2022). I tillegg benyttes også antibiotika i stor grad innen husdyrproduksjon, både som en vekstfremmer, samt i forebygging og behandling av sykdommer (Faccone et al., 2019). Antibiotika kan entre miljøet og havne i næringskjeden via ulike ruter. Feces og urin utskilt fra både mennesker og dyr, behandlet med antibiotika, forårsaker allikevel utslippene som er av størst betydning for utvikling og spredning av resistensgener (Larsson & Flach, 2022). AR oppover i næringskjeden involverer derfor både mennesker, dyr og miljø. Det er derfor nødvendighet at tiltak for å forebygge AR, bevare virkningsmekanismene til antibiotika og vedlikeholde mattryggheten utarbeides fra et «En

helse» -perspektiv, hvor alle ledd i næringskjeden involveres (Founou et al., 2016; Mackenzie & Jeggo, 2019).

2.11 Metodisk bakgrunn

I denne oppgaven ble ulike mikrobiologiske og molekylærbiologiske analysemetoder benyttet for å undersøke tilstedeværelse av ARB i respektive vannprøver. Metodene inkluderte rendyrking, renhetsbestemmelser og kvantitative målinger, PCR, sensitivitetstesting, samt sekvensering. Metodene presenteres i punktene under.

2.11.1 Selektive kromogene agarskåler

For *in vitro* deteksjon av ESBL-produserende mikroorganismer, kan selektive kromogene Oxoid BrillianceTM ESBL agarskåler benyttes, for å identifisere bakterier tilhørende familien *Enterobacteriaceae*. Henholdsvis *E. coli, Klebsiella, Enterobacter, Serratia* og *Citrobacter* gruppen (KESC). Oxoid BrillianceTM ESBL agar inneholder en kombinasjon av cefpodoksim og antibakterielle stoffer. Disse undertrykker vekst av AmpC organismer, samt mikroorganismer som ikke produserer ESBL. Agaren inneholder i tillegg to ulike kromogen målrettet mot to enzymer. Ved fenotypisk deteksjon vil da en grønn farge observeres ved tilstedeværelse av KESC, som følge av gruppens uttrykk av galaktosidase. Ved tilstedeværelse av *E. coli* vil det observeres en blå farge, da bakterien uttrykker galaktosidase, i tillegg til glucuronidase. En rosa farge vil observeres ved tilstedeværelse av *E. coli* som er galaktosidase negative. Verken *Proteus, Morganella* eller *Providencia* uttrykker kromogenene, men som følge av den deaminerende egenskapen av tryptofan, vil tilstedeværelse av disse bakteriene gi en brunaktig farge. Agarskålene leveres ferdig støpt og klar til bruk, hvor påfølgende identifikasjon kan forekomme allerede 24 timer etter inkubering (Oxoid, 2010).

2.11.2 Målinger ved spektrofotometer og fluorometer

I denne oppgaven ble det foretatt renhetsbestemmelser av DNA ved bruk av et spektrofotometer og et fluorometer. NanoDropTM 2000/2000c Spektrofotometer (Thermo Fisher Scientific Inc., Wilmington, USA) kan benyttes i kvantitative målinger av DNA, RNA og nukleinsyrer. Ved bestemte absorpsjonsforhold gjør målingene det mulig å foreta en renhetsbestemmelse av prøvenes innhold av DNA, RNA og nukleinsyrer. Henholdsvis DNA og RNA ved A_{260/280}, samt nukleinsyrer ved A_{260/230}. Ved gitte absorpsjonsforhold vil målt ratio av prøver med DNA ved ~1,8, RNA ved ~2,0, samt mellom 2,0-2,2 for nukleinsyrer, ansees som rene. Hvis målt ratio

viser til lavere verdier, kan det gi en indikasjon på tilstedeværelse av kontaminanter, som også vil absorbere ved gitte absorpsjonsforhold (Thermo Fisher Scientific Inc., u.å.-b; Thermo Scientific, u.å.)

Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies[™]) kan også benyttes i kvantitative målinger. Henholdsvis av DNA, RNA og proteiner. Fluorometeret virker ved å identifisere fluoriserende fargestoffer som er bundet til spesifikke målmolekyl. Tilstedeværelse av kontaminanter vil derfor ikke kunne påvirke målingene, og resultatet gir en nøyaktig indikasjon på innhold av DNA, RNA og proteiner (Invitrogen Life Technologies, 2010).

2.11.3 Polymerasekjedereaksjon

PCR er en metode som baserer seg på hurtig tillagning av et flertall kopier av en spesifikk DNAsekvens. Selve analysen foregår ved å mikse sammen reagenser i en reaksjonsbuffer. Henholdsvis *Taq* polymerase, DNA primere og nukleotider. Videre vil PCR-maskin benyttes for å utføre selve PCR-reaksjonen. Maskinen sørger for at reaksjonsblandingen kjøres i sykluser, bestående av både oppvarminger og nedkjølinger. Videre består syklusene av tre trinn, henholdsvis denaturering, annealing og elongering (Fredriksen Scientific, u.å.).

I det første trinnet vil det dobbeltrådede DNAet denatureres, som følge av oppvarming av reaksjonsblandingen til 94°C. Etter denaturering vil det skje en påfølgende senking i temperatur, hvor reaksjonsblandingen nedkjøles til 46-60°C. Dette trinnet utgjør annealing, og er nødvendig for at det skal skje en baseparing mellom primerne og DNA-templatet. For at *Taq* polymerasen skal kunne forlenge primerne økes temperaturen til 72°C i det tredje og siste trinnet, kalt elongering. Temperaturen gjør det mulig for *Taq* polymerasen å syntetisere en ny DNA-tråd med målsekvensen. Hver PCR-syklus kjøres mellom 20-40 omganger, og på denne måten vil antallet kopier av DNA-sekvensen øke. Etter endt PCR-reaksjon kan resultatene fremstilles visuelt ved bruk av agarosegelelektroforese (Fredriksen Scientific, u.å.). I denne oppgaven ble PCR benyttet ved tre ulike analyser. Henholdsvis av 16S rDNA, samt ESBL- og virulensgener.

2.11.3.1 Multipleks PCR

Multipleks PCR er en metode som benyttes innen ulike forskningsfelt, samt medisin og medisinsk rettsvitenskap (Bio-Rad, u.å.). I denne oppgaven ble multipleks PCR benyttet for å detektere ESBL-gen i prøveisolatene. Metoden baserer seg på å benytte >2 primere i samme

reaksjonsbuffer, og gjør det derav mulig å amplifisere flere målsekvenser samtidig (New England Biolabs Inc., u.å.). Som følge av dette vil blant annet forekomst av feilkilder reduseres, mer informasjon gis ved bruk av mindre prøvemateriale, i tillegg til at det vil være økt nøyaktighet av normaliseringsdata. Dette gjør multipleks PCR både kostnadseffektivt og tidsbesparende (Bio-Rad, u.å.). Til sammenligning med en singel primer, vil derav bruk av multipleks PCR til deteksjon av ESBL-gener, kunne påvise flere betalaktamaser og tilhørende enzym simultant (Dallenne et al., 2010).

2.11.3.2 Agarosegelelektroforese

Agarosegelelektroforese er en effektiv metode som benyttes i bioanalyser hvor det er ønskelig å separere DNA og RNA fragmenter etter størrelsesorden (Thermo Fisher Scientific Inc., u.å.a). Henholdsvis mellom 100 basepar til 25 kilobasepar. Metoden baserer seg på bruk av elektrisitet, hvor negativt ladede fosfat-ryggraden på fragmentene vil trekkes mot den positivt ladede anoden (Lee et al., 2012). I praksis vil dette utføres ved å tilsette DNA til gelens brønner, hvorpå fragmentenes vandring gjennom agarosegelens porøse matrise kan observeres visuelt (Thermo Fisher Scientific Inc., u.å.-a). Små fragmenter vil vandre raskere gjennom gelen, mens store fragmenter vil vandre saktere. Dette som følge av masse/ ladning-ratio til DNA, som separerer molekylene etter gitt størrelse. Hastigheten på elektroforesen bestemmes ut ifra ulike faktorer. Dette inkluderer DNA molekylets størrelse og konfirmasjon, mengde og type agarose, samt mengde tilsatt etidiumbromid, i tillegg til hvilken volt og buffer som benyttes. Etter fullført elektroforese vil resultatene kunne fremstilles visuelt ved å benytte utstyr som baserer seg på bruk av UV-lys (Lee et al., 2012).

2.11.4 Antimikrobiell sensitivitetstesting

Antimikrobiell sensitivitetstesting benyttes for å detektere mulig resistens hos patogener, hvor formålet er å avgjøre om gitt medikament kan benyttes i behandling mot en bestemt infeksjon (Jorgensen & Ferraro, 2009). MIC defineres som den laveste konsentrasjonen av et gitt antibiotikum som vil hemme vekst av en bestemt mikroorganisme, og avgjør hvor effektiviteten ved behandling (Andrews, 2002; Bhattacharjee, 2016). I denne oppgaven ble e-test benyttet for å bestemme MIC. Ved e-test vil en strips, med en gradient av et bestemt antibiotikum, plasseres over en bakteriesuspensjon. Gradienten består av høy konsentrasjon av antibiotikumet i en ende, og lav konsentrasjon i den andre enden. Etter inkubering vil MIC bestemmes, som følge av den laveste avlesbare konsentrasjonen hvor cellevekst ikke forekommer (Bhattacharjee, 2016).

2.11.5 Sekvensering

Sekvensering av DNA er en metode som benyttes for å avgjøre nukleotidenes sekvenser. DNA sekvensering kan utføres enten enzymatisk eller kjemisk. I denne oppgaven ble metoden basert på enzymer, kalt Sanger sekvensering, brukt for å sekvensere DNA (Institutt for biovitenskap, 2011b) I tillegg ble helgenomsekvensering (HGS) med Illumina utført.

2.11.5.1 Sanger sekvensering

Sanger-sekvensering er en kjedetermineringsmetode som baserer seg på å amplifisere DNA. Først i amplifiseringen vil oligonukleotidprimer bindes til DNAet. Videre vil DNAet forlenges av DNA-polymerasen ved inkorporing av en blanding bestående av deoksynukleotidtrifosfatene (dNTP, dATP, dGTP, dCTP, dTTP). Prosessen oppheves ved tilsetting av kjedeterminerende dideoksynukleotidtrifosfater (ddNTP, ddATP, ddGTP, ddCTP, ddTTP) som stopper elongeringen. Sluttproduktet etter Sanger-sekvensering er DNA fragmenter med ulike lengder (Crossley et al., 2020). Til slutt vil fragmentene ved en denaturerende polyakrylamid gel danne avlesbare båndformasjoner for tolkning av resultat av det sekvenserte DNAet (Valencia et al., 2013).

2.11.5.2 Helgenomsekvensering med Illumina

Formålet med HGS er å foreta en bestemmelse av sekvensen til nukleotidene i genomet tilhørende en organisme. Metoden for HGS inkluderer derfor alt DNA (Institutt for biovitenskap, 2011c). For å kunne identifisere med en høy sikkerhetsgrad har HGS med Illumina utmerket seg. Dette har gjort Illumina til referansestandard for patogentyping og analyse av infeksjoner forårsaket av bakterielle utbrudd (Bogaerts et al., 2021). Illumina er en neste generasjons sekvensering (NGS) som sekvenserer genomet. HGS ved Illumina består av en prosess som inkluderer DNA isolasjon, berikelse av målsekvensene, NGS og til slutt analyse av bioinformatiske data (Valencia et al., 2013).

3.0 Materiale og metode

I denne oppgaven ble ulike mikrobiologiske og molekylærbiologiske metoder benyttet for å screene etter ARB i vannprøver (figur 1). Henholdsvis fra tjernet Breiavatnet, tjernet Stokkalandsvatnet og elven Storåna i Sandvedparken.

Figur 1. Flytskjema. Figuren viser en oversikt over analyser utført på vannprøvene A, B og C fra Rogaland fylke, henholdsvis fra tjernet Breiavatnet, tjernet Stokkalandsvatnet og elven Storåna i Sandvedparken.

3.1 Innhenting av vannprøver fra terrestrisk miljø

Prøvetaking av vann fra miljøet ble utført i Rogaland fylke i midten av januar måned. Henholdsvis fra tjernet Breiavatnet i Stavanger kommune, samt elven Storåna i Sandvedparken og tjernet Stokkalandsvatnet fra Sandnes kommune (figur 2). Vannkildene fra Sandnes kommune tilhørte samme hydrologiske system. Prøvetakingen ble utført ved fylle 250 ml sterile Simax laboratorieflasker (Kavalier, Sázava, Tsjekkia) under overvannsflaten. Det ble benyttet en laboratorieflaske til hvert prøvepunkt. Område for prøvetaking for hver individuell vannkilde ble valgt ut som følge av tilgjengelighet. Før videre analyse og undersøkelse for antibiotikaresistente bakterieisolater ble prøvene holdt kjølig ved 4°C.

Figur 2. Områder for prøvetaking. Figuren viser en oversikt over prøvepunktene hvor vannprøvene ble hentet fra. Prøve A viser oversikt prøvetakingspunkt i tjernet Breiavatnet, prøve B fra elven Storåna i Sandvedparken og prøve C i tjernet Stokkalandsvatnet. Alle vannprøvene ble hentet fra Rogaland fylke, henholdsvis prøve A i Stavanger kommune og prøve B og C i Sandnes kommune (Foto: ©norgeskart.no).

3.2 Filtrering av vannprøver

Vannprøvene fra Sandvedparken og Stokkalandsvatnet ble grovfiltrert. Dette ble utført ved å helle over hver individuell vannprøve over i respektive sterile 500 ml Duran® laboratorieflasker (Schott, Penang, Malaysia). Hver laboratorieflaske ble utstyrt med en steril trakt dekket med 589/1 sortbåndsfilter fra Whatman[™], som hadde en porestørrelse på 12-25 µm og en diameter på 150 mm (GE Healthcare, VWR[™] Life Sciences, Pittsburg, USA). Porestørrelsen på sortbåndsfilteret tillot passasje av bakterier, men hindret gjennomstrømning av større uønskede partikler slik som jord og sedimenter. For å sikre en homogen løsning av bakterier, ble

vannprøvene ristet godt før grovfiltrering. Vannprøven tatt fra Breiavatnet ble ikke grovfiltrert som følge av vannets visuelle renhet og fravær av større uønskede partikler.

1000 µl av grovfiltrerte prøver, samt ufiltrert prøve fra Breiavatnet, ble videre pipettert over på ferdigstøpte Oxoid Brilliance[™] CRE agarskåler, samt tilsvarende mengde på Oxoid Brilliance[™] ESBL agarskåler (Thermo Fisher Scientific Inc., New Hampshire, Storbritannia). I forkant av pipettering over på agarskåler ble også prøven fra Breiavatnet ristet for å oppnå en homogen løsning. En hockeystav ble så benyttet for å stryke ut prøvene på agarskålene, med påfølgende tørking i sterilskap.

Videre ble 200 ml fra resterende mengde vann fra ulike prøver finfiltrert. Denne typen filtrering ble utført ved bruk av Millipore[™] Microfil-vakuum-filtreringssystem MISP00002 (Merck KGaA, Darmstadt, Tyskland). Filtreringssystemet ble koblet til en vannkran via en plastslange, hvor vannprøvene ble filtrert som følge av vakuumtrykk. Det ble benyttet filter av typen EZ-Pak® membranfilter (Merck KGaA, Darmstadt, Tyskland), med en diameter på 47 mm og en 0,45 µm porestørrelse. Totalt ble 100 ml vannprøve i omgang fylt opp i målebeger og filtrert. Etter filtrering ble filtrene overført ved bruk av en steril pinsett til respektive Oxoid Brilliance[™] CRE og Oxoid Brilliance[™] ESBL agarskåler (Thermo Fisher Scientific Inc., New Hampshire, Storbritannia).

Alle agarskålene, både fra grov- og finfiltrering, ble inkubert i 24-72 timer ved 37°C etter grad av vekst.

3.3 Rendyrking av bakterieisolater

For å isolere bakteriene ble kolonier rendyrket ved å pode over på nye Oxoid Brilliance™ CRE og Oxoid Brilliance™ ESBL agarskåler (Thermo Fisher Scientific Inc., New Hampshire, Storbritannia). Hovedsakelig ble kolonier med blå, turkis, grønn og rosa farge valgt ut, med påfølgende fargeanalyse ved hjelp av produsentens protokoll (Oxoid, 2010; Oxoid, 2011). I tillegg ble noen få kolonier med brun og oransje farge også benyttet. Utvalgte kolonier ble plukket ved bruk av steril podenål og streket ut med 16-streks metoden. Per agarskål ble det streket ut 4 kolonier i egne separate soner. Agarskålene ble inkubert i 72 timer ved 37°C. Etter tre døgn ble skålene oppbevart kjølig ved 4°C, før videre analyse.

3.4 DNA ekstraksjon

DNA ekstraksjon av de rendyrkede bakterieisolatene ble utført ved bruk av DNeasy® PowerFood® Microbial Kit (QIAGEN, Hilden, Tyskland). Fremgangsmåten til DNA ekstraksjon ble fulgt i henhold til settets protokoll, med unntak av noen steg. Ekstraksjonen av DNA startet på steg nummer 3, hvor hver individuell koloni ble blandet ut i 450 µl MBL buffer. Øvrige steg, 1-2, ble ikke fulgt da det omfattet bearbeiding og preparering av næringsmidler. Videre ble alle punktene fulgt frem til steg nummer 19. Her ble 50 µl eluerings buffer (EB) tilsatt for å øke DNA konsentrasjonen i prøvene, før inkubering i romtemperatur i 2 minutt med påfølgende sentrifugering. Ved alle sentrifugeringene ble det benyttet en sentrifuge av typen 5424 (Eppendorf AG, Hamburg, Tyskland). Sentrifugen ble i forkant av DNA ekstraksjonen innstilt på g. Utover protokollen ble det i tillegg byttet hansker etter steg nummer 18 for å hindre krysskontaminering. Ekstrahert DNA ble før, og mellom, videre analyser oppbevart ved -20°C.

3.4.1 Kvantifisering av DNA ekstraksjon

For å kvantifisere ekstrahert DNA ble NanoDropTM 2000/2000c spektrofotometer, og tilhørende dataprogram med samme navn, benyttet (Thermo Fisher Scientific Inc., Wilmington, USA). I forkant av analysen ble apparatet rengjort ved bruk av destillert vann (dH₂O), etterfulgt av kalibrering med 2 µl EB buffer. I omgang ble 2 µl ekstrahert DNA pipettert over og målt etter innhold av nukleinsyrer (ng/ µl), med absorpsjonsforholdene A_{260/280} og A_{260/230}. Linsen på apparatet ble tørket av med papir mellom hver individuell måling.

3.5 Sanger-sekvensering av 16S rDNA

For å kunne identifisere 16S rDNA kodede gener ble prøvene sendt til Eurofins i Tyskland for Sanger sekvensering. Prosedyrer og analyser i forkant av Sanger-sekvensering inkluderte PCRamplifisering av ekstrahert DNA, gelelektroforese av PCR-produkt, samt rensing av DNA.

3.5.1 PCR-amplifisering

Til amplifisering av 16S rDNA ble det benyttet Q5® Hot Start High-Fidelity 2X Master Mix (New England BioLabs Inc.). Mastermiksen som ble preparert inneholdt Q5® Hot Start High-Fidelity 2X Master, AmbionTM nukleasefritt vann (Thermo Fisher Scientific Inc.), samt 10 μ M foreward primer og 10 μ M reverse primer (tabell 1). Fremgangsmåten til protokollen ble fulgt, hvor hver prøve inneholdt totalt 25 μ l. Henholdsvis 24 μ l mastermiks og 1 μ l ekstrahert DNA. Mengde per reagens i mastermiks ble fulgt etter produsentens anbefaling (tabell 2), hvor total mengde ble beregnet ved å multiplisere med antall prøver som skulle analyseres. Til kjøring av PCR ble maskinen C1000 Thermal Cycler benyttet (Bio-Rad Laboratories Inc.). Valgt program ble kjørt etter produsentens anbefalinger, hvor antall sykluser ble tilpasset til 32, samt annealing temperaturen satt til 55°C (tabell 3).

Tabell 1. Viser primerne foreward (1F) og reverse (5R), samt primersekvens og størrelse (bp) som ble benyttet i mastermiksen

Type primer	Primersekvens	Størrelse (bp)
Foreward (1F)	GAGTTTGATCCTGGCTCAG	1505
Reverse (5R)	GGTTACCTTGTTACGACTT	1505

Tabell 2. Mengde (μ l) av ulike reagenser som ble ganget med antall prøver for tillaging av mastermiks.

Reagens	Mengde mastermiks per prøve (µl)
Q5® Hot Start High-Fidelity 2X Master Mix	12,5
10 μ M foreward primer (1F)	1,25
$10 \ \mu M$ reverse primer (5R)	1,25
Nukleasefritt vann	9
Totalt	24

Tabell 3. PCR-program kjørt på 16S rDNA etter produsentens anbefaling.

Steg	Grader (°C)	Tid (minutt)	Sykluser
Aktivering	98,0	00:30	1
Denaturering	98,0	00:10	32
Annealing	55,0	00:30	32
Elongering	72,0	00:42	32
Endelig elongering	72,0	02:00	1
Nedkjøling	4,0	00	-

3.5.2 Gelelektroforese 2% agarosegel

De amplifiserte PCR-produktene ble videre kjørt på elektroforese med 2% agarosegel. Agarosegel ble tillaget ved å blande 4,2 g SeaKem® LE Agarose (Lonza, Rockland USA) i Duran® laboratorieflasker (Schott, Penang, Malaysia) sammen med 210 ml 1x Tris-acetatetylendiamintetraacetat buffer (Bio-Rad Laboratories Inc., Hercules, USA). Blandingen ble kokt i mikrobølgeovn til agarosen ble fullstendig oppløst. Videre ble løsningen kjølt ned til 55°C etter produsentens anbefaling, før tilsetting av 2 µl SYBR Safe® DNA farge (Edvotek®). Løsningen ble så blandet godt, før den ble helt over i klargjorte kar med påsatte brønner. Den ferdigstøpte gelen ble plassert i Sub-Cell® GT (Bio-Rad Laboratories Inc.). For å dekke alle brønnene med væske ble det til slutt helt over TAE.

I forkant av gelelektroforese ble hver individuell prøve klargjort ved å blande sammen 6 μ l AmbionTM nukleasefritt vann (Thermo Fisher Scientific Inc.), 3 μ l ekstrahert DNA og 2 μ l

agarose gel loading dye 6X (New England BioLabs Inc.). Dette ble utført i 96-Well Microtiter[™] Microplates (Thermo Fisher Scientific Inc.). Før tilsetting i gelens brønner ble blandingen mikset ved å pipettere opp og ned et par ganger. For å unngå luftbobler, ble kun 10 µl tilsatt i brønnene. Det ble benyttet en ladder av typen Quick-Load® 100 bp DNA ladder (New England BioLabs Inc.). Totalt én brønn med ladder per rad. Gelelektroforesen ble kjørt ved bruk av Power Pac 300 (Bio-Rad Laboratories Inc., USA) på 150 V til ønsket seperasjon av bånd var oppnådd. Omtrent 90-120 minutt. Videre ble det foretatt bildeanalyser ved bruk av Gel Doc XR+ Gel Documentation system, med tilhørende dataprogram (Bio-Rad Laboratories Inc.). Resultatene ble vurdert etter båndenes posisjon og separasjon i forhold til ladder.

3.5.3 Rensing av PCR produkt

Før prøvene ble sent til Sanger sekvensering, ble det ekstraherte DNAet renset. Dette ble utført ved bruk av NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel). Ved alle sentrifugeringene ble det benyttet en mikrosentrifuge av typen Micro Star 17 som ble innstilt på g (VWRTM, Tyskland). Rensingen ble fulgt i henhold til protokoll 5.1 PCR rensing, med unntak av noen punkter. Dette inkluderte at prøvene ikke ble fortynnet med vann for å tilpasse DNAets bindingsevne i første punkt. I tillegg ble det sentrifugert i 3 minutter for å fjerne NTI buffer ved det fjerde punktet. Videre ble det ved femte punkt foretatt en inkubering i 5 minutter etter tilsetting av 30 µl NE buffer. Mengde buffer og inkuberingstid ble valgt for å øke bindingsevnen til DNA i prøvene. NE bufferen som ble benyttet var forvarmet til 50°C. Anbefalte punkter i protokollen ble ikke gjennomført.

Det ble videre foretatt kvantitativ måling av renset DNA for å bestemme renhet av prøvene som skulle sendes til Sanger sekvensering. For fremgangsmåte ved bruk av NanoDropTM 2000/2000c spektrofotometer (Thermo Fisher Scientific, Wilmington, USA), se punkt 3.4.1. Etter renhetsbestemmelse ble prøvene preparert. For hver prøve ble det klargjort 2 safelock rør. Ett med 5 µl 1F foreward primer og et annet med 5 µl 5R reverse primer. I tillegg ble det tilsatt 5 µl respektiv prøve til hvert rør med primere. Det totale volumet i hvert rør var 10 µl. For oversikt over primere benyttet, se tabell 1. Til slutt ble hvert individuelle safelock rør merket med strekkode for identifisering ved svar på prøveresultat.

3.5.4 Databehandling Sanger sekvensering

Dataene fra Sanger-sekvensering ble behandlet i Bioedit 7.2.5 (Bioedit Ltd., Manchester, Storbritannia) for å tilpasse, samt lage konsensussekvenser bestående av foreward og reverse sekvensene. For å finne ut hvilken slekt bakteriene tilhørte, ble konsensussekvensene analysert ved bruk av verktøyet The Basic Logical Alignment Search Tool (BLAST) (National library of medicine, Rockville Pike, USA). Henholdsvis ved bruk av nukleotid BLAST (nBLAST). Resultatene ble behandlet etter konsensussekvensens statistisk signifikante likhet med andre sekvenser i standard database til National Center for Biotechnology Information (NCBI) (National library of medicine, Rockville Pike, USA).

3.5.5 Frysestock

En frysestock ble laget av de ulike bakterieisolatene. Kun prøver som gav utslag for *E. coli*, *Enterobacter*, *Stenotrophomonas* og *Pseudomonas aeruginosa* ved nBLAST ble fryst ned. Dette ble gjort ved å rendyrke prøvene på Oxoid BrillianceTM CRE og Oxoid BrillianceTM ESBL agarskåler (Thermo Fisher Scientific Inc., New Hampshire, Storbritannia) ved bruk av 16-streks metoden. Ferske isolerte kolonier ble podet over i safelockrør og blandet godt sammen med 750 µl 17% glyserol. Inntil videre analyser ble prøvene oppbevart i fryser ved -20°C.

3.6 Deteksjon av resistente gener

For å identifisere ESBL-gener i det ekstraherte DNAet ble det utført en multipleks PCR etterfulgt av singelpleks PCR. I forkant av analysene ble foreward og reverse primerne fortynnet for å få en 100 µM stockløsning. Arbeidsløsning ble videre laget både for multipleks PCR og singelpleks PCR. I arbeidsløsningene ble primere blandet med Ambion[™] nukleasefritt vann (Thermo Fisher Scientific Inc.). Mastermiksene for multipleks PCR inneholdt flere primere, mens singelpleks PCR miksene kun inneholdt én enkel primer. For stockløsning, samt arbeidsløsningene til multipleks PCR og singelpleks PCR, se vedlegg 1.

3.6.1 Multipleks PCR

Det ble benyttet fire ulike multipleksmikser med innhold av forskjellige ESBL primere (tabell 4). ESBL 1, ESBL 2, ESBL 3 og ESBL 4 (Dallenne et al., 2010; Finton et al., 2020). I tillegg ble en multipleksmiks benyttet som en kontroll, bestående av rpoB og 16S rRNA. Fremgangsmåten til QIAGEN Multiplex PCR Kit (QIAGEN, Hilden, Tyskland) protokoll ble benyttet til å lage mastermiks, med noen unntak. Dette inkluderte justeringer i mengde reagenser mastermiksen inneholdt per prøve. Henholdsvis 12,5 µl 2X QIAGEN Multiplex PCR

Master Mix, 9 µl Ambion[™] nukleasefritt vann (Thermo Fisher Scientific Inc.), samt 1,25 µl per primer (tabell 5). Q-Solution 5X ble ikke benyttet i noen av mastermiksene i dette forsøket. Dette gav prøver bestående av totalt 24 µl mastermiks og 1 µl ekstrahert DNA. Videre ble PCR kjørt ved bruk av C1000 Thermal Cycler (Bio-Rad Laboratories Inc.). Programmet ble innstilt etter anbefaling fra produsent, med 35 sykluser og annealing temperatur satt til 60°C (tabell 6). Videre ble PCR-produktene kjørt på gelelektroforese. For fremgangsmåte, gjennomføring og tilhørende analyser av gelelektroforese, se punkt 3.5.2.

Type primer	er Primersekvenser (5'-3')		
	Multipleks 1: ESBL 1		
bla _{CTX-M} (gruppe 2)	F: CGTTAACGGCACGATGAC	404	
	R: CGATATCGTTGGTGGTTCCAT		
bla _{OXA}	F: GGCACCAGATTCAACTTTCAAG	564	
	R: GACCCCAAGTTTCCTGTAAGTG		
bla _{SHV}	F: AGCCGCTTGAGCAAATTAAAC	713	
	R: ATCCCGCAGATAAATCACCAC		
	Multipleks 2: ESBL 2		
bla _{CTX-M} (gruppe 9)	F: TCAAGCCTGCCGATCTGGT	561	
	R: TGATTCTCGCCGCTGAAG		
bla _{CTX-M} (gruppe 1)	F: TTAGGAARTGTGCCGCTGYA	688	
	R: CGATATCGTTGGTGGTRCCAT		
bla _{TEM}	F: CATTTCCGTGTCGCCCTTATTC	800	
	R: CGTTCATCCATAGTTGCCTGAC		
	Multipleks 3: ESBL 3		
bla _{NDM}	F: TGGCCCGCTCAAGGTATTTT	157	
	R: GTAGTGCTCAGTGTCGGCAT		
bla _{VIM}	F: ATAGAGCACACTCGCAGACG	564	
	R: TTATTGGTCTATTTGACCGCGT		
bla _{KPC}	F: TCCGTTACGGCAAAAATGCG	460	
	R: GCATAGTCATTTGCCGTGCC		
	Multipleks 5: ESBL 4		
bla _{CMY}	F: GCATCTCCCAGCCTAATCCC	188	
	R: TTCTCCGGGACAACTTGACG		
bla _{OXA-48}	F: GCTTGATCGCCCTCGATT	281	
	R: GATTTGCTCCGTGGCCGAAA		
bla _{IMP}	F: ACAGGGGGGAATAGAGTGGCT	393	
	R: AGCCTGTTCCCATGTACGTT		
Multipleks 4: Kontroll			
rpoB	F: CAGGTCGTCACACGGTAACAAG	512	
	R: GTGGTTCAGTTTCAGCATGTAC		
16S DNA	F: AGAGTTTGATCMTGGCTCAG	1505	
	R: GYTACCTTGTTACGACTT		

Tabell 4. Viser en oversikt over forskjellige primere tilhørende ulike multipleks for ESBL 1, ESBL 2, ESBL 3, ESBL 4 og Kontroll.

Tabell 5. Mengde (μl) av ulike reagenser som videre ble ganget med antall prøver for tillaging av mastermiks til
multipleks PCR.ReagensPer prøve (μl)
Foreward primer (1F)	1,25
Reverse primer (5R)	1,25
2X QIAGEN Multiplex PCR Master Mix	12,5
Ambion [™] nukleasefritt vann	9,0
Totalt	24

Steg	Grader (°C)	Tid (minutt)	Sykluser
Aktivering	95,0	15:00	1
Denaturering	94,0	00:30	35
Annealing	60,0	01:30	35
Elongering	72,0	01:30	35
Endelig elongering	72,0	10:00	1
Nedkjøling	4,0	∞	-

Tabell 6. PCR-program kjørt for multipleks PCR.

3.6.2 Singelpleks PCR

Q5® Hot Start High-Fidelity 2X Mastermiks (New England BioLabs Inc.) ble benyttet til å lage mastermiks for singelpleks PCR. Det ble kun benyttet enkle primere etter hvilke multipleks PCR-produkt som fikk båndformasjon på 2% agarosegel. I dette forsøket ble primerne bla_{CTX-M} (gruppe 2), bla_{CTX-M} (gruppe 9), bla_{SHV} og bla_{OXA} benyttet. Fremgangsmåten for tillaging av mastermiks ble fulgt i henhold til protokoll, med 9,0 µl tilsatt AmbionTM nukleasefritt vann (Thermo Fisher Scientific Inc.) (tabell 7). Prøvene ble videre kjørt på PCR ved bruk av samme utstyr som for multipleks PCR (Bio-Rad Laboratories Inc.). Unntaksvis ble programmet innstilt her etter anbefaling fra protokollen til Q5® Hot Start High-Fidelity 2X Mastermiks. Dette inkluderte 34 sykluser, samt en annealing temperatur ved 60°C (tabell 8). Etter endt program ble PCR-produktet kvantifisert ved bruk av NanoDrop 2000/2000c spektrofotometer (Thermo Fisher Scientific Inc., Wilmington, USA) før gelektroforese. Se henholdsvis punkt 3.4.1 for kvantifisering av renhetsbestemmelse og 3.5.2 for fremgangsmåte og gjennomføring av agarosegelelektroforese.

Tabell 7. Mengde (µ	ul) av	ulike	reagenser	som	ble	ganget	med	antall	prøver	for	tillaging	av	mastermiks	for
singelpleks PCR.														

Reagens	Per prøve (µl)
10 µM foreward primer	1,25
10 µM reverse primer	1,25
Q5® Hot Start High-Fidelity 2X Mastermiks	12,5
Ambion [™] nukleasefritt vann	9,0
Totalt	24

Tabell 8. PCR-program benyttet ved kjøring av singelpleks PCR.

Steg	Grader (°C)	Tid (minutt)	Sykluser
Aktivering	98,0	00:30	1

Denaturering	98,0	00:10	34
Annealing	60,0	00:20	34
Elongering	72,0	00:20	34
Endelig elongering	72,0	02:00	1
Nedkjøling	4,0	∞	-

3.6.3 Rensing av agarosegel og klargjøring til Sanger sekvensering

Agarosegel ble renset for å ekstrahere DNA fra båndene. Dette ble gjort ved å skjære ut båndene ved bruk av sterile skalpeller (Swann-Moston, Sheffield, England) over UV-lys. Kun båndet som ble skjært ble eksponert for UV-lys, mens båndene i påvente av beskjæring ble dekket med aluminiumsfolie for å begrense eksponering. Hvert utskjæret bånd ble i mellomtiden lagt i respektive Eppendorfrør før videre rensing.

Settet NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel) ble benyttet for å rense og ekstrahere DNA fra agarosegel båndene. Protokollen ble fulgt i henhold til punkt 5.2 DNA ekstraksjon fra agarosegeler. Noen tilpasninger i framgangsmåten ble gjort. Dette inkluderte stegene for å løse opp gel, tørke silika membran, samt eluering av DNA. For å løse opp gel ble 500 μ l NTI buffer tilsatt alle prøvene før inkubering ved 50°C i 10 minutt. For å tørke silika membranen og fjerne rester av NT3 buffer ble det gjennomført sentrifugering ved 11,000 g i 3 minutter. Videre ble det tilsatt 15 μ l buffer NE, som var forvarmet til 50°C, til kolonnen. Prøvene ble så inkubert i romtemperatur i 5 minutter før sentrifugering i 1 minutt på 11,000 g. Eluert DNA ble så pipettert gjennom kolonnen på ny før videre sentrifugert i 1 minutt på 11,000 g.

For å bestemme innhold av prøve som skulle sendes til Sanger sekvensering, ble det eluerte DNAet kvantifisert ved bruk av NanoDrop 2000/2000c spektrofotometer (Thermo Fisher Scientific Inc., Wilmington, USA). Totalt 10 µl ble sendt til Sanger sekvensering. Dette inkluderte eluert DNA som ble beregnet etter kvantifisering med NanoDrop 2000/2000c spektrofotometer, samt 5 µM bla_{CTX-M} (gruppe 9) foreward primer og Ambion[™] nukleasefritt vann (Thermo Fisher Scientific Inc.).

3.6.4 Databehandling resistensgener

Sekvensene til resistensgenene ble etter Sanger-sekvensering justert ved bruk av Bioedit 7.2.5 (Bioedit Ltd., Manchester, Storbritannia). Videre ble det foretatt nBLAST av sekvensene for å

sammenligne resistensgenene opp mot andre sekvenser i standard database til NCBI (National library of medicine, Rockville Pike, USA). For detaljert beskrivelse, se punkt 3.5.4.

3.7 Deteksjon av virulensgener

For å identifisere virulente gener ble det benyttet ulike virulens primere (tabell 9). Bakterier som fikk utslag for *E. coli* etter nBLAST av data fra Sanger-sekvensering ble analysert. I forkant av analyse ble stockløsning og arbeidsløsning (vedlegg 1) laget for å fortynne alle primerne til henholdsvis 100 μ M og 10 μ M.

Q5® Hot Start High-Fidelity 2X Master Mix ble benyttet for tillaging av mastermiks (New England BioLabs Inc.). Fremgangsmåten tilhørende protokoll ble fulgt på samme måte som for singelpleks PCR, og videre tilpasset antall prøver som skulle analyseres (tabell 10). I forkant av PCR kjøring ble primersekvensene til hver virulensprimer beregnet ved bruk av T_m kalkulator 1.15.0 (New England BioLabs Inc.) (tabell 11). Beregning ble utført for å finne anbefalt annealing temperatur til ulike virulensprimere. PCR ble derfor kjørt i to omganger på C1000 Thermal Cycler (Bio-Rad Laboratories Inc.). Henholdsvis ved bruk av en annealing temperatur på 55°C første gang, og videre 60°C andre gang (tabell 12). Det totale antallet sykluser benyttet i begge programmene var 34. Se punkt 3.5.2 for fremgangsmåte og gjennomføring av agarosegelelektroforese, samt tilhørende analyser.

Type virulensprimer	Patogen	Størrelse (bp)
aggR	EAEC	254
eae	EPEC	482
ipaH	EIEC/ Shigella	619
LTI	ETEC	322
STIb	ETEC	190
Stx1	STEC	370
Stx2	STEC	283

 Tabell 9. Viser en oversikt over ulike virulensprimerne, primersekvens og størrelse (bp), samt tilhørende patogen.

Tabell 10. Mengde (μ l) av ulike reagenser som ble ganget med antall prøver for tillaging av mastermiks tilhørende virulens.

Reagens	Mastermiks per prøve (µl)
10 µM foreward primer	1,25
10 µM reverse primer	1,25
Q5® Hot Start High-Fidelity 2X Mastermiks	12,5
Ambion [™] nukleasefritt vann	9,0
Totalt	24

Tabell 11. Tabellen viser en oversikt av de ulike virulensprimerne, sekvens, samt anbefalt temperatur (°C).

Virulensprimer	Primerpar sekvens	Anbefalt temperatur (°C)
aggR	F: GTATACACAAAAGAAGGAAGC	59
	R: ACAGAATCGTCAGCATCAGC	
eae	F: TCAATGCAGTTCCGTTATCAGTT	65
	R: GTAAAGTCCGTTACCCCAACCTG	
ipaH	F: GTTCCTTGACCGCCTTTCCGATACCGTC	72
	R: GCCGGTCAGCCACCCTCTGAGAGTAC	
LTI	F: TCTCTATGTGCATACGGAGC	64
	R: CCATACTGATTGCCGCAAT	
STIb	F: ATTTTTCTTTCTGTATTGTCTT	55
	R: CACCCGGTACAAGCAGGATT	
Stx1	F: AAATCGCCATTCGTTGACTACTTCT	67
	R: TGCCATTCTGGCAACTCGCGATGCA	
Stx2	F: CAGTCGTCACTCAVTGGTTTCATCA	70
	R: GGATATTCTCCCCACTCTGACACC	

Tabell 12. Program benyttet på prøvene for å kjøre PCR med virulensprimerne.

Steg	60 grader (°C)	55 grader (°C)	Tid (minutt)	Sykluser
Aktivering	98,0	98,0	00:30	1
Denaturering	98,0	98,0	00:10	34
Annealing	60,0	55,0	00:20	34
Elongering	72,0	72,0	00:20	34
Endelig elongering	72,0	72,0	02:00	1
Nedkjøling	4,0	4,0	00	_

3.8 Antibiotika sensitivitetstest

For å analysere grad av resistens, og måle sensitivitet mot antibiotika, ble det utført Minimum Inhibitory Concentration-testing (MIC) e-test på utvalgte bakteriekolonier. Det ble totalt testet for 9 forskjellige typer antibiotika fra ulike klasser (tabell 13). I forkant av MIC ble bakteriekoloniene rendyrket fra frysestock i to omganger på Oxoid Brilliance™ ESBL agar (Thermo Fisher Scientific Inc., New Hampshire, Storbritannia). I begge omgangene ble agarskålene inkubert ved 37°C i 24 timer. Rendyrkede bakteriekolonier ble suspendert i 9,9 ml Ringers løsning. For å får en 1 x 10⁸ kde/ ml konsentrasjon ble antall bakterier beregnet ved bruk av Bürker tellekammer med 0,100 mm dybde (Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen, Tyskland). Dette tilsvarte en 0,5 McFarland turbiditetsstandard. Etter beregning av rett konsentrasjon, ble en steril svaber benyttet for å spre suspensjonen utover Oxoid Mueller-Hinton (MH) agar (Thermo Fisher Scientific Inc., Wesel, Tyskland). For å sikre en jevn teppevekst på overflaten ble suspensjonen strøket i tre retninger, og for å unngå overvekst ble overflødig væske fjernet i forkant av svabring. MH-agarskålene ble etter svabring tørket 2 minutter i sterilskap. Videre ble det benyttet pinsett for å plassere MTSTM (Liofilchem®, Roseto degli Abruzzi, Italia) antibiotika strips, e-strips, på MH-agarskålene. MH-agarskålene ble inkubert ved 37°C i 24 timer. MIC-testing e-test ble for alle bakteriesuspensjonene utført i paralleller.

Resultatene fra MIC ble vurdert etter størrelse på hemningssoner på MH-agarskålene, med påfølgende analyse for å finne grad av resistens ved bruk av referanseverdier fra EUCAST (EUCAST, 2023).

Antibiotikum	Klasse antibiotika
Ampicillin (AM)	Penicilliner (utvidet spektrum)
Cefepime (FEP)	Kefalosporiner (fjerde generasjon)
Cefotaxime (CT)	Kefalosporiner (tredje generasjon)
Ciprofloksacin (CI)	Fluorokinoloner
Erythromycin (EM)	Markolider
Meropenem (MP)	Beta-laktam
Nitrofurantoin	Nitrofuraner
Penicillin G	Penicilliner (utvidet spektrum)
Tetrasyklin (TE)	Tetrasyklin-klassen

Tabell 13. Viser oversikt over ulike antibiotikum som ble benyttet ved sensitivitetstest, samt tilhørende klasse.

3.9 Helgenomsekvensering

Prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL ble som følge av interessante funn ved fenotypisk- og genotypisk deteksjon, samt ved Sanger-sekvensering og antibiotika sensitivitetstest valgt ut til helgenomsekvensering. 20 µl DNA fra prøvene ble sendt inn av senioringeniør Ahmed Abdelghani, i respektive safelock rør, til Novogene i Storbritannia.

3.9.1 Preparering av prøver før innsending

I forkant av innsending ble prøvene analysert for innhold av DNA etter produsentens krav, hvor protokollen ble fulgt etter punkt 1.4 mikrobiell genomsekvensering (Novogene, Cambridge, Storbritannia). Det ble ikke benyttet buffer da DNA alene utgjorde tilfredsstillende krav om mengde fra Novogene. Preparering av prøvene ble utført ved bruk av elektroforese for å detektere båndformasjon på 2% agarosegel, samt kvantifisering og renhetsbestemt ved bruk av NanoDrop[™] 2000/2000c spektrofotometer (Thermo Fisher Scientific Inc., Wilmington, USA) og Qubit® 2.0 fluorometer (Invitrogen, Life Technologies[™] Holdings Pte. Ltd., Singapore). Før måling ved bruk av Qubit® 2.0 fluorometer ble det i forkant klargjort to standardløsninger for tillaging av standardkurve tilhørende prøver med ekstrahert DNA. Dette ble utført ved tilsetting av 190 µl arbeidsløsning og 10 µl arbeidsløsning. I tillegg ble 197 µl av arbeidsløsning og 3 µl ekstrahert DNA blandet sammen. Videre ble prøvene inkubert i 2 minutter med påfølgende måling, hvor konsentrasjon ble bestemt ut ifra standardkurven. Se punkt 3.5.2 for fremgangsmåte tilhørende gelelektroforese, samt punkt 3.4.1 for måling ved bruk av NanoDrop.

3.9.2 Databehandling av HGS resultater

Plattformen Galaxy ble benyttet for å behandle Illumina rådataene sendt fra Novogene (Novogene, Cambridge, Storbritannia). Rådataene ble lastet opp i plattformen i paralleller for å assemblere korte DNA sekvenser til konsensussekvenser. Assembly ble utført ved bruk av verktøyet «shovill» for å justere, samt bedre datakvaliteten på sekvensene, før genering av konsensussekvenser. Videre ble konsensussekvensene screenet for resistensgener og virulensgener ved søk i valgte databaser ved bruk av verktøyet «Mass screening of Contigs or Antimicrobial Virulence Genes» (ABRicate). Databasene som ble valgt ut til søk inkluderte «The Comprehensive Antibiotic Resistance Database» (CARD), «NCBI National Database of Antibiotic Resistant Organisms» (NDARO) og «Virulence Factor Database» (VFDB), samt «Ecoli_VF» (EVF) spesifikt for prøvene bestående av *E. coli*. I tillegg ble databasen MyVirDB, utviklet av veileder Professor Bjørn-Arne Lindstedt, benyttet for å finne virulensgener.

For å bekrefte at bakterienes identitet og sammenligning opp mot Sanger-sekvenserings resultater, ble PubMLST benyttet. Ved bruk av PubMLST ble konsensussekvensene lastet opp som en FASTA fil før søk etter identifikasjon ble utført. Etter identifikasjon, ved bruk av PubMLST, ble verktøyet «Prokaryotic Genome Annotation» (PROKKA) i plattformen Galaxy videre benyttet. PROKKA ble benyttet for å oversette dataene tilhørende DNA sekvensene til gener og genetiske elementer. Ved bruk av PROKKA ble informasjon om respektive bakterier lagt inn, og det ble utført søk av konsensussekvensene. Etter søk ble filen «PROKKA data gbk» lastet ned. For å finne prøvenes sekvenstype, resistensgener og punktmutasjoner ble «Center for Genomic Epidemiology» (CGE) benyttet, henholdsvis ved bruk av verktøyene «Multilocus Sequence Typing» (MLST) og «ResFinder». I tillegg ble også serotype til *E. coli* prøvene funnet ved bruk av «SeroTypeFinder«», mens tilsvarende verktøy kalt «PAst» ble benyttet for å finne serotypen til *P. aeruginosa* ved bruk av CGE.

Alle analysene tilhørende databehandling av resultater fra HGS ble utført av veileder Professor Lindstedt. Dataene ble lastet ned og samlet i dataprogrammet Microsoft Excel, før videre behandling og inkorporering til denne oppgaven.

3.10 Litteratur

Litteratur ble både benyttet for beskrivelse av temaer tilhørende formål, samt for å undersøke tilsvarende funn i tidligere studier. Litteratursøk ble i denne oppgaven hovedsakelig utført i vitenskapelige databaser, henholdsvis PubMed og Google Scholar. Hovedtemaene for søkestrengene var antibiotika, antibiotikaresistens, resistensmekanismer, samt litteratur omhandlende analyser tilhørende metodedel. I tillegg ble relevant faglitteratur også benyttet. Kilder utover søk i vitenskapelige databaser og i faglitteratur ble valgt ut på bakgrunn av oppgavens formål, samt troverdig opphav.

4.0 Resultat

Resultatene fra mikrobiologiske og molekylærbiologiske analyser av vannprøvene hentet fra elven Storåna i Sandvedparken, samt tjernene Stokkalandsvatnet og Breiavatnet presenteres under. Herunder fenotypisk deteksjon og Sanger-sekvenserings resultater, kvantitative målinger, genotypisk deteksjon, antibiotika sensitivitetstest og helgenomsekvenserings resultater.

4.1 Fenotypisk deteksjon og identifikasjon ved sekvensering

Filtrerte vannprøver viste til høy grad av vekst på både Oxoid Brilliance[™] ESBL- og Oxoid Brilliance[™] CRE agarskåler. Kolonier med fargene blå, turkis, grønn, rosa, oransje og brun ble valgt ut til rendyrking. Tabellene under illustrerer fenotypiske egenskaper til bakterieisolatene, samt hvor prøvene ble innhentet fra. I tillegg oppgir tabellene også informasjon om hvilken slekt ulike bakterieisolater kunne tilhøre. Herunder ved bruk av fargeanalyse, samt nBLAST av 16S rDNA query-sekvens. I tillegg oppgir tabell 14 hvilke arter utvalgte bakterieisolater tilhørte etter analyse ved HGS. Bildene som illustreres i tabellene under representerer et utvalg av bakterieisolater med samme fenotypiske egenskaper. For fullstendig billedlig oversikt over vekst av inkuberte filtrerte prøver, samt rendyrkede kolonier, se henholdsvis vedlegg 2 og vedlegg 3. For detaljert oversikt over nBLAST søk av 16S rDNA, se vedlegg 4.

Tabell 14 viser bakterieisolatene som ble valgt ut til HGS. Totalt en prøve fra Stokkalandsvatnet, P5.SV.MB_ESBL, og to prøver fra Sandvedparken, P2.SP.MB_ESBL og P10.SP.BR_ESBL. Prøve P2.SP.MB_ESBL og P5.SV.MB_ESBL hadde en fremtredende mørkeblå farge ved vekst på selektive, kromogene ESBL agarskåler. For begge bakterieisolatene antydet både fargeanalyse etter produsentens protokoll, samt nBLAST av 16S rDNA query-sekvens, at prøvene kunne være *E. coli* (Oxoid, 2010). HGS av bakterieisolatene viste til at både P2.SP.MB_ESBL og P5.SV.MB_ESBL tilhørte arten *E. coli*. Prøve P10.SP.BR_ESBL viste til en brun farge ved vekst på ESBL agarskål. Det var ikke mulig å identifisere hvilken slekt bakterieisolatet kunne tilhøre ut ifra fargeanalyse alene, da den brune fargen ikke var oppgitt i produsentens protokoll. nBLAST av 16S rDNA query-sekvens og HGS viste begge til resultatet *P. aeruginosa*.

Tabell 14. Tabellen viser en oversikt over fenotypisk karakteristika for bakterieisolatene til prøve P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL, samt hvor vannprøvene ble innhentet fra. I tillegg vises sekvenseringsresultater, herunder nBLAST av 16S rDNA Sanger-sekvensering og HGS.

Prøve	Vannkilde	Vekst på ESBL medium	Farge på koloni	Fargeanalyse	nBLAST 16S rDNA	Helgenomsekvensering
P2.SP.MB_ESBL	Sandvedparken		Mørkeblå	E. coli.	E. coli.	E. coli
P5.SV.MB_ESBL	Stokkalandsvatnet		Mørkeblå	E. coli.	E. coli	E. coli
P10.SP.BR_ESBL	Sandvedparken		Brun	Ikke angitt i produsentens protokoll	P. aeruginosa	P. aeruginosa

Prøver hentet fra Sandvedparken og Stokkalandsvatnet som viste til like fenotypiske egenskaper vises i tabell 15. Herunder vekst av rendyrkede kolonier på selektive, kromogene agarmedium med mørkeblå farge. Fargeanalyse etter produsentens protokoll indikerte at alle prøvene fra Sandvedparken og Stokkalandsvatnet var *E. coli* (Oxoid, 2010). Tilsvarende resultat ble gitt ved nBLAST av 16S rDNA, hvor query-sekvensen til prøvene med mørkeblå farge gav utslag for sekvenslikhet med *E. coli*. I tillegg indikerte nBLAST av 16S rDNA at prøvene P1.SP.MB_ESBL og P9.SP.MB_ESBL også kunne være *E. fergusonii*.

Tabell 15. Prøver hentet fra Sandvedparken og Stokkalandsvatnet. Tabellen viser fenotypisk karakterisering av vekst på Oxoid Brilliance[™] CRE agarskåler. Kun bakterieisolater som gav utslag for slekten *Escherichia* ved nBLAST av 16S rDNA Sanger sekvenseringsresultater ble inkludert.

Prøver	Vannkilde	Representativ vekst på ESBL medium	Farge på kolonier	Fargeanalyse	nBLAST 16S rDNA
P3.SV.MB_ESBL	Stokkalandsvatnet		Mørkeblå	E. coli.	E. coli
P6.SV.MB_ESBL		10 33 0			
P11.SV.MB_ESBL		11/ 2.3			
PA.SV.MB_ESBL		in the second			
PB.SV.MB_ESBL		- Action manual			

P1.SP.MB_ESBL P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	E. coli.	E. coli E. fergusonii
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	E. coli.	E. coli

Tabell 16 viser en oversikt over kolonier som gav en turkis eller oransje farge på selektive, kromogene ESBL agarskåler. Prøve P4.SP.T_ESBL og P7.SP.T_ESBL, som ble hentet fra Sandvedparken, gav vekst av kolonier med turkis farge. Ved fargeanalyse indikerte fenotypiske egenskaper til slektene *Klebsiella* spp., *Enterobacter* spp., *Serratia* spp. og *Citrobacter* spp. (Oxoid, 2010). Fargeanalysen samsvarte med sekvenseringsresultatene, hvor nBLAST av 16S rDNA query-sekvens indikerte at begge prøver med turkis farge kunne tilhøre slekten *Enterobacter* spp. En oransje farge på rendyrkede kolonier ble observert på prøve PP.BV.O_ESBL og PQ.SP.O_ESBL. Fargeanalyse viste til at kolonier med oransje farge kunne ha tilhørighet til slektene *Proteus* spp., *Morganella* spp. eller *Providencia* spp. For samme kolonier med oransje farge, viste nBLAST av 16S rDNA query-sekvens tilhørighet til slekten *Pseudomonas* spp.

Prøve	Vannkilde	Representativ vekst på ESBL medium	Farge på kolonier	Fargeanalyse	nBLAST 16S rDNA
P4.SP.T_ESBL	Sandvedparken		Turkis	Klebsiella spp.	Enterobacter spp.
P7.SP.T_ESBL				Enterobacter spp.	
		17.		Serratia spp.	
				Citrobacter spp.	
PP RV O FSRI	Breisvatnet		Oransie	Protous spn	Psaudomonas spp
TT.DV.O_ESDE	Diciavatict		Oransje	Morganella spp	i seudomonus spp.
				norganena spp.	
PQ.SP.O_ESBL	Sandvedparken			Providencia spp.	

Tabell 16. Fenotypisk karakterisering av bakterieisolater vokst frem på selektive, kromogene ESBL agarskåler hentet fra vannkildene Sandvedparken, Stokkalandsvatnet og Breiavatnet. I tillegg viser tabellen nBLAST av 16S rDNA Sanger sekvenseringsresultater.

Prøver fra Sandvedparken og Stokkalandsvatnet som vokste frem på selektiv, kromogene CRE agarmedium vises i tabell 17. Flertallet av prøvene gav vekst av bakterieisolater med blå farge. Prøver med vekst av blå kolonier inkluderte PC.SP.B_CRE, PK.SP.B_CRE, PG.SV.B_CRE og PM.SV.B_CRE. Fargeanalyse antydet den blå fargen tilhørighet til slekten *Klebsiella* spp., *Enterobacter* spp., *Serratia* spp. eller *Citrobacter* gruppe (KESC) (Oxoid, 2011). Ved nBLAST av 16S rDNA query-sekvens viste prøve PN.SP.G_CRE, med vekst av grønnfargede kolonier, utslag for *Stenotrophomonas* spp. Den grønne fargen var ikke angitt i produsentens protokoll, og det var derfor ikke mulig å anta slekt av prøven basert på fargeanalyse. Prøvene PH.SP.R_CRE, PI.SP.R_CRE og PO.SV.R_CRE gav alle vekst av kolonier med rosa farge. Ved fargeanalyse indikerte den rosa fargen vekst av *E. coli*. Analyse av query-sekvens ved nBLAST av 16S rDNA viste til slektene *Aeromonas* spp. hos prøvene fra Sandvedparken, og *Stenotrophomonas* spp. hos prøven fra Stokkalandsvatnet.

Tabell 17. Fenotypisk karakterisering av bakterieisolater vokst frem på selektive, kromogene (CRE agarskåler hentet fra vannkildene	Sandvedparken og Stokkalandsvatnet. I
tillegg til en oversikt over nBLAST av 16S rDNA Sanger sekvenseringsresultater.		

Prøve	Vannkilde	Representativ vekst på CRE medium	Farge på kolonier	Fargeanalyse	nBLAST 16S rDNA
PC.SP.B_CRE	Sandvedparken		Blå	Klebsiella spp. Enterobacter spp. Serratia spp.	<i>Novosphingobium</i> spp. <i>Sphingomonas</i> spp.
PK.SP.B_CRE	-			Citrobacter spp.	Stenotrophomonas spp.
PG.SV.B_CRE	Stokkalandsvatnet			Klebsiella spp. Enterobacter spp.	Chryseobacterium spp.

PM.SV.B_CRE				Citrobacter spp.	Caulobacter spp.
PN.SP.G_CRE	Sandvedparken		Grønn	Ikke angitt i produsentens protokoll	Stenotrophomonas spp.
PH.SP.R_CRE	Sandvedparken	and the second sec	Rosa	E. coli	Aeromonas spp.
PI.SP.R_CRE					
PO.SV.R_CRE	Stokkalandsvatnet				Stenotrophomonas spp.

4.2 Kvantitativ måling ved bruk av spektrofotometer

Det ble foretatt kvantitative målinger med NanoDrop[™] 2000/2000c (Thermo Fisher Scientific Inc., Wilmington, USA) for å anslå konsentrasjon av nukleinsyrer i ekstrahert DNA, med absorbsjonsforholdene A_{260/280} og A_{260/230} (tabell 18). Det ble målt forskjellig mengde innhold (ng/µl) i ulike prøver med ekstrahert DNA. Prøve PO.SV.R_CRE viste til lavest innhold (ng/µl) mens prøve PK.SP.B_CRE hadde høyest innhold (ng/µl). Henholdsvis 2,5 ng/µl og 429 ng/µl. Se vedlegg 5 for fullstendig oversikt over målinger utført ved bruk av NanoDrop av ekstrahert DNA, inkludert prøver som ikke ble benyttet til videre analyser.

Prøve	Vannkilde	Farge	Konsentrasjon (ng/µl)	A _{260/280}	A _{260/230}
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	65,5	1,93	0,44
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	34,3	2,01	1,56
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	24,7	2,10	1,24
P4.SP.T_ESBL	Sandvedparken	Turkis	18,0	1,93	0,40
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	42,1	1,93	1,54
P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	37,4	2,00	1,06
P7.SP.T_ESBL	Sandvedparken	Turkis	7,7	2,55	0,69
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	23,4	2,22	1,60
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	15,4	2,33	0,87
P10.SP.BR_ESBL	Sandvedparken	Brun	69,1	1,95	1,76
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	57,1	1,95	1,35
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	7,7	2,42	0,04
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	12,9	2,22	0,28
PC.SP.B_CRE	Sandvedparken	Blå	9,8	2,24	0,34
PG.SV.B_CRE	Stokkalandsvatnet	Blå	15,2	2,04	0,19
PH.SP.R_CRE	Sandvedparken	Rosa	26,9	5,59	0,27
PI.SP.R_CRE	Sandvedparken	Rosa	110,0	2,25	0,47
PK.SP.B_CRE	Sandvedparken	Blå	429,0	1,98	1,39
PM.SV.B_CRE	Stokkalandsvatnet	Blå	7,6	-1,33	0,05
PN.SP.G_CRE	Sandvedparken	Grønn	65,2	2,66	0,38
PO.SV.R_CRE	Stokkalandsvatnet	Rosa	2,5	-0,30	0,03
PP.BV.O_ESBL	Breiavatnet	Oransje	182,1	2,11	0,93
PQ.SP.O_ESBL	Sandvedparken	Oransje	74,7	2,48	0,43

Tabell 18. Konsentrasjon (ng/µl) av nukleinsyrer i det ekstraherte DNAet målt ved bruk av NanoDropTM 2000/2000c, med absorbsjonsforholdene $A_{260/280}$ og $A_{260/230}$.

4.3 Genotypisk deteksjon

Genotypisk deteksjon ble utført ved å analysere prøvene for 16S rDNA, ESBL kodede gener og virulensgener.

4.3.1 Deteksjon av 16S rDNA

I forkant av innsending av prøver til Sanger-sekvensering ble det foretatt agarosegelelektroforese for å undersøke forekomst av båndformasjoner, som kunne antyde tilstedeværelse av 16S rDNA. Resultatene viste til båndformasjon, positivt (+) resultat, for alle ekstraherte DNA prøver (tabell 19). Prøvene hadde ulikt opphav, og ble hentet fra både Sandvedparken, Stokkalandsvatnet og Breiavatnet. Både kolonier fra vekst på selektive, kromogene ESBL- og CRE agarskåler var inkludert i analysen. Se vedlegg 5 for NanoDrop målinger av renset 16S rDNA PCR produkt, inkludert prøve PJ.SP.B_CRE som ikke ble benyttet i videre analyser.

Prøve	Vannkilde	Farge	Båndformasjon ved
			agarosegelelektroforese av 16S rDNA
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	+
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	+
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
P4.SP.T_ESBL	Sandvedparken	Turkis	+
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
P7.SP.T_ESBL	Sandvedparken	Turkis	+
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	+
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	+
P10.SP.BR_ESBL	Sandvedparken	Brun	+
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	+
PC.SP.B_CRE	Sandvedparken	Mørkeblå	+
PG.SV.B_CRE	Stokkalandsvatnet	Blå	+
PH.SP.R_CRE	Sandvedparken	Rosa	+
PI.SP.R_CRE	Sandvedparken	Rosa	+
PJ.SP.B_CRE	Sandvedparken	Blå	+
PK.SP.B_CRE	Sandvedparken	Turkis	+
PM.SV.B_CRE	Stokkalandsvatnet	Blå	+
PN.SP.G_CRE	Sandvedparken	Grønn	+
PO.SV.R_CRE	Stokkalandsvatnet	Rosa	+
PP.BV.O_ESBL	Breiavatnet	Oransje	+
PQ.SP.O_ESBL	Sandvedparken	Oransje	+

Tabell 19. Viser positivt (+) utslag for båndformasjon ved agarosegelelektroforese av 16S rDNA. Vannprøvene ble ekstrahert fra bakterieisolater med vekst på selektive, kromogene ESBL og -CRE agarskåler. Tabellen inkluderer også prøvenes opphav, herunder Sandvedparken, Stokkalandsvatnet og Breiavatnet.

4.3.2 Multipleks og singelpleks PCR

For å påvise ESBL kodede gener, ble først multipleks PCR kjørt på alle prøvene, etterfulgt av singelpleks PCR på utvalgte prøver.

4.3.2.1 Multipleks PCR

Ulike multipleks, bestående av forskjellige typer primere, ble benyttet for å påvise ESBL kodede gener i ekstrahert DNA fra bakterieisolater hentet fra Sandvedparken og Stokkalandsvatnet. Henholdsvis ESBL 1, -2, -3, og -4. I tillegg ble det benyttet en ESBL multipleks kontroll, en negativ kontroll og en positiv kontroll. Se vedlegg 6 for billedlig fremstilling av geler fra agarosegelelektroforese tilhørende multipleks PCR.

Ved analyse av agarosegel, etter elektroforese, antydet det til positiv (+) båndformasjon for primerne bla*CTX-M* (gruppe 9) og bla*CTX-M* (gruppe 1) fra multipleks 2 (tabell 20). Alle prøvene som viste til positivt resultat, var fra slekten *Escherichia*. Henholdsvis *E. coli* og *E. fergusonii*. Det ble ikke observert båndformasjon som kunne antyde tilstedeværelse av bla*TEM*. I tillegg ble det ikke observert båndformasjon for noen av primerne i multipleks 2 for prøvene P4.SP.T_ESBL, P10.SP.BR_ESBL, PK.SP.B_CRE, PN.SP.G_CRE.

Tabell 20. Tabellen viser til positiv (+) eller negativ (-) båndformasjon for ulike prøver hentet fra
Sandvedparken og Stokkalandsvatnet, testet for primerne i multipleks 2. Henholdsvis bla _{CTX-M} (gruppe 9),
bla_{CTX-M} (gruppe 1) og bla _{TEM} .

Prøve	Vannkilde	Antatt bakterieMultipleks 2: ESBL 2		SBL 2	
			bla _{CTX-M} (gr. 9)	bla _{<i>CTX-M</i>} (gr. 1)	bla _{TEM}
P1.SP.MB_ESBL	Sandvedparken	E. coli E. fergusonii	+	+	-
P2.SP.MB_ESBL	Sandvedparken	E. coli	+	+	-
P3.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
P4.SP.T_ESBL	Sandvedparken	Enterobacter spp.	-	-	-
P5.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
P6.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
P7.SP.T_ESBL	Sandvedparken	Enterobacter spp.	-	-	-
P8.SP.MB_ESBL	Sandvedparken	E. coli	+	+	-
P9.SP.MB_ESBL	Sandvedparken	E. coli, E. fergusonii	+	+	-
P10.SP.BR_ESBL	Sandvedparken	P. aeruginosa	-	-	-

P11.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
PA.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
PB.SV.MB_ESBL	Stokkalandsvatnet	E. coli	+	+	-
PK.SP.B_CRE	Sandvedparken	Stenotrophomonas spp.	-	-	-
PN.SP.G_CRE	Sandvedparken	Stenotrophomonas spp.	-	-	-
PO.SV.R_CRE	Stokkalandsvatnet	Stenotrophomonas spp.	-	-	-

For resterende multipleks primermikser, ESBL 1, -3, og -4, ble det ikke observert båndformasjon ved analyse av agarosegel (tabell 21). Multipleks primerne bla*OXA* og bla*SHV* ble dog videre testet som en ekstra kontroll for prøvene P5.SV.MB_ESBL, PA.SV.MB_ESBL og PB.SV.MB_ESBL.

Prøve	Vannkilde	Antatt bakterie	Multipleks primermikse		rmikser
			ESBL 1	ESBL 3	ESBL 4
			bla _{CTX-M}	bla _{NDM}	bla _{CMY}
			(gr. 2)	bla _{VIM}	bla _{OXA-48}
			bla _{OXA}	bla _{KPC}	bla _{IMP}
			bla _{SHV}		
P1.SP.MB_ESBL	Sandvedparken	E. coli	-	-	-
		E. fergusonii			
P2.SP.MB_ESBL	Sandvedparken	E. coli	-	-	-
P3.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
P4.SP.T_ESBL	Sandvedparken	Enterobacter spp.	-	-	-
P5.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
P6.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
	<u> </u>				
P/.SP.T_ESBL	Sandvedparken	Enterobacter spp.	-	-	-
P8.SP.MB_ESBL	Sandvedparken	E. coli	-	-	-
P9.SP.MB_ESBL	Sandvedparken	E. coli,	-	-	-
		E. fergusonii			
P10.SP.BR_ESBL	Sandvedparken	P. aeruginosa	-	-	-
P11.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
PA.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
PB.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-
PK.SP.B_CRE	Sandvedparken	Stenotrophomonas spp.	-	-	-
PN.SP.G_CRE	Sandvedparken	Stenotrophomonas spp.	-	-	-
PO.SV.R_CRE	Stokkalandsvatnet	Stenotrophomonas spp.	-	-	-

Tabell 21. Viser en oversikt over multipleks primermiksene som ikke gav båndformasjon ved analyse av agarosegel etter gelelektroforese. Henholdsvis primermiksene ESBL 1, -3, og -4.

4.3.2.2 Singelpleks PCR

Prøver som antydet båndformasjon ved gelelektroforese av multipleks PCR, ble kjørt på singelpleks PCR, ved bruk av ESBL primerne bla*CTX-M* (gruppe 9) og bla*CTX-M* (gruppe 1). Alle prøvene som ble antatt å tilhøre slekten *Escherichia*, viste til båndformasjon for ESBL primeren bla*CTX-M* (gruppe 1) ved analyse av agarosegel (figur 3). For resultat tilhørende nBLAST, NanoDrop målinger, samt fullstendig oversikt over agarosegel bilder av singelpleks PCR produkt, se henholdsvis vedlegg 4, vedlegg 5 og vedlegg 6.

Figur 3. Gelelektroforese bla_{CTX-M} (**gruppe 1**). Figuren illustrerer båndformasjon på agarosegel etter kjørt elektroforese på singelpleks PCR produkt sammen med ESBL primeren bla_{CTX-M} (gruppe 1). Kun bakterieisolater med antatt tilhørighet til slekten *Escherichia* ble kjørt på singelpleks PCR med påfølgende gelelektroforese. Fra venstre P1.SP.MB_ESBL, P2.SP.MB_ESBL, P3.SV.MB_ESBL, P6.SV.MB_ESBL, P8.SP.MB_ESBL, P9.SP.MB_ESBL, P11.SV.MB_ESBL, PA.SV.MB_ESBL og PB.SV.MB_ESBL henholdsvis.

For ESBL primeren bla*cTX-M* (gruppe 9) ble det ikke observert båndformasjon ved analyse av agarosegel (tabell 22). Ved innsending av renset bånd fra agarosegel, viste nBLAST av querysekvens til utslag for bla*cTX-M* familie i prøvene P3.SV.MB_ESBL og P8.SP.MB_ESBL, samt bla*cTX-M* (gruppe 15) for resterende prøver. Henholdsvis med en identitetsprosent på \geq 97% for blacTX-M familie, og \geq 98% for bla*cTX-M* (gruppe 15). Prøve P5.SV.MB_ESBL, PA.SV.MB_ESBL og PB.SV.MB_ESBL som ble benyttet som en ekstra kontroll ved bruk av ESBL primerne bla*sHV* og bla*oXA*, viste ikke til båndformasjon ved analyse av gel.

Tabell 22. Viser resultat for singelpleks PCR ved analyse av båndformasjon på agarosegel. I tillegg til Sangersekvensering av renset bånd antatt bestående av bla_{CTX-M} (gruppe 1), samt tilhørende identitetsprosent (%). Kun prøver tilhørende slekten *Escherichia* ble analysert.

Prøve	Vannkilde	Antatt	Singelple	eks	Sanger	Identitet
		bakterie	bla _{<i>CTX-M</i>} (gr. 9)	bla _{<i>CTX-M</i>} (gr. 1)	sekvensering	(%)
eP1.SP.MB_ESBL	Sandvedparken	E. coli, E. fergusonii	-	+	bla _{CTX-M} (gruppe 15)	98,00
P2.SP.MB_ESBL	Sandvedparken	E. coli	-	+	bla _{CTX-M} (gruppe 15)	95,00
P3.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} familie	97,00
P5.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} (gruppe 15)	100,00
P6.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} (gruppe 15)	99,16
P8.SP.MB_ESBL	Sandvedparken	E. coli	-	+	bla _{CTX-M} familie	99,84
P9.SP.MB_ESBL	Sandvedparken	E. coli, E. fergusonii	-	+	bla _{CTX-M} (gruppe 15)	100,00
P11.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} (gruppe 15)	99,84
PA.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} (gruppe 15)	100,00
PB.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	+	bla _{CTX-M} (gruppe 15)	100,00

4.3.3 Deteksjon av virulensgener

Prøver, hvor bakterieisolatene ble antatt å være *E. coli* eller *E. fergusonii* ved nBLAST av 16S rDNA, ble analysert for tilstedeværelse av virulensgener. Dette ble utført ved bruk av virulensprimere for kjente virulensgener tilhørende slekten *Escherichia*. Analysen inkluderte PCR, med påfølgende agarosegelelektroforese for å visualisere resultat. Totalt 10 prøver, hentet fra både Sandvedparken og Stokkalandsvatnet, ble testet for 7 ulike virulensprimere. Det ble ikke observert båndformasjon på gel, og alle resultatene for denne analysen var negative (-) for testede bakterieisolater (tabell 23). Se vedlegg 6 for bilder av agarosegel tilhørende deteksjon av virulensgener.

Tabell 23. Viser ulike prøver, tilhørende slekten *Escherichia*, som ble testet for 7 ulike virulensprimere. Ingen av prøvene gav positivt (+) utslag i form av båndformasjon på agarosegel.

Prøve	Vannkilde	Antatt	Virulensprimer						
		bakterie	aggR	eae	ipaH	LTI	STIb	Stx1	Stx2
P1.SP.MB_ESBL	Sandvedparken	E. coli, E. fergusonii	-	-	-	-	-	-	-
P2.SP.MB_ESBL	Sandvedparken	E. coli	-	-	-	-	-	-	-
P3.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-

P5.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-
P6.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-
P8.SP.MB_ESBL	Sandvedparken	E. coli	-	-	-	-	-	-	-
P9.SP.MB_ESBL	Sandvedparken	E. coli, E.	-	-	-	-	-	-	-
		fergusonii							
P11.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-
PA.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-
PB.SV.MB_ESBL	Stokkalandsvatnet	E. coli	-	-	-	-	-	-	-

4.4 Antibiotika sensitivitetstest

For å måle sensitivitet ble det utført MIC-testing e-test av prøve P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL ved bruk av 9 ulike typer antibiotika strips. Prøvene ble utført i paralleller, hvor gjennomsnittsverdi for størrelse på inhiberingssoner til bakterieisolatene oppgis i tabellene under. Tabell 24 og tabell 25 oppgir resultat for prøvene med *E. coli*, og tabell 26 for prøven med *P. aeruginosa*. For fullstendig oversikt over MIC resultater, se vedlegg 7.

Resultatene fra MIC viste til MDR hos prøve P2.SP.MB_ESBL, med resistens mot \geq 3 ulike klasser antibiotika (tabell 24). P2.SP.MB_ESBL viste til resistens mot antibiotika klassene penicilliner, kefalosporiner, fluorokinoloner og markolider. For erythromycin og penicillin G var det ikke angitt ECOFF verdi. Prøve P2.SP.MB_ESBL ble allikevel regnet som resistent mot begge klassene antibiotika, som følge av en inhiberingssone >256.

Antibiotikum	Klasse antibiotika	P2.SP.MB_ESBL					
		MIC-testing resultat e-test	ECOFF verdi	Resultat			
Ampicillin (AM)	Penicilliner (utvidet spektrum)	>256	8	Resistent			
Cefepime (FEP)	Kefalosporiner (fjerde generasjon)	7	4	Resistent			
Cefotaxime (CT)	Kefalosporiner (tredje generasjon)	80	0,25	Resistent			
Ciprofloksacin (CI)	Fluorokinoloner	0,125	0,06	Resistent			
Erythromycin (EM)	Markolider	>256	-	Resistent			
Meropenem (MP)	Karbapenem	0,016	0,06	Ikke resistent			
Nitrofurantoin	Nitrofuraner	20	64	Ikke resistent			

Tabell 24. Gjennomsnittlig MIC-test resultat for bakterieisolatet P2.SP.MB_ESBL som gav utslag for *E. coli*. I tillegg oppgir tabellen ECOFF verdi for minimums inhiberingsgrense, samt verdi for klinisk verdi for å avgjøre grad av resistens.

Penicillin G	Penicilliner (utvidet	>256		Resistent
	spektrum)		-	
Tetrasyklin (TE)	Tetrasyklin-klassen	0,63	8	Ikke resistent

Resultatene til prøve P5.SV.MB_ESBL viste til MDR, med resistens mot \geq 3 ulike klasser antibiotika (tabell 25). P5.SV.MB_ESBL gav utslag for resistens mot penicilliner, kefalosporiner og fluorokinoloner. For penicillin G var ikke ECOFF verdi beskrevet, men angitt som resistent som følge av et MIC-resultat >256.

Tabell 25. Gjennomsnittlig MIC-test resultat for bakterieisolatet P5.SV.MB_ESBL som gav utslag for *E. coli*. I tillegg oppgir tabellen ECOFF verdi for minimums inhiberingsgrense, samt verdi for klinisk verdi for å avgjøre grad av resistens.

Antibiotikum	Klasse antibiotika]	P5.SV.MB_ESBL				
		MIC-testing resultat e-test	ECOFF verdi	Resultat			
Ampicillin (AM)	Penicilliner (utvidet spektrum)	>256	8	Resistent			
Cefepime (FEP)	Kefalosporiner (fjerde generasjon)	7	4	Resistent			
Cefotaxime (CT)	Kefalosporiner (tredje generasjon)	144	0,25	Resistent			
Ciprofloksacin (CI)	Fluorokinoloner	0,25	0,06	Resistent			
Erythromycin (EM)	Markolider	96	-	Ikke resistent			
Meropenem (MP)	Karbapenem	0,016	0,06	Ikke resistent			
Nitrofurantoin	Nitrofuraner	16	64	Ikke resistent			
Penicillin G	Penicilliner (utvidet spektrum)	>256	-	Resistent			
Tetrasyklin (TE)	Tetrasyklin-klassen	0,75	8	Ikke resistent			

Figur 4 illustrerer ulik grad av inhiberingssoner på Mueller-Hinton agarskål for prøve P2.SP.MB_ESBL. På skålen med antibiotika strips nummer 1 ble det ikke observert inhiberingssone, og ble derfor angitt som resistent. Rundt strips nummer 2 ble det observert en liten inhiberingssone, og ble videre etter oppgitt ECOFF verdi kategorisert som resistent. På skålen med strips nummer 3 ble det observert en stor inhiberingssone. Sett opp mot ECOFF verdi var det ingen resistens for prøven testet på antibiotika strips nummer 3. Illustrerte antibiotika strips testet på prøve P2.SP.MB_ESBL var penicillin G, cefepime og meropenem. Henholdsvis strips 1, 2 og 3.

Figur 4. Inhiberingssoner rundt 3 ulike antibiotika strips på skål inkubert med prøve P2.SP.MB_ESBL. Figuren viser ulik grad av resistens for prøve P2.SP.MB_ESBL, *E. coli*, ved bruk av ulike antibiotika strips. Strips 1 viser til total resistens, hvor inhiberingssone var fraværende. Strips 2 hadde en liten inhiberingssone, men var resistent etter oppgitt ECOFF verdi. Det samme gjaldt ikke for strips 3 med en stor inhiberings sone. Antibiotika på strips 1, 2 og 3 var henholdsvis penicillin G, cefepime og meropenem.

MIC resultat for prøve P10.SP.BR_ESBL, *P. aeruginosa*, oppgis i tabell 26. Prøve P10.SP.BR_ESBL viste til resistens mot kefalosporiner og nitrofuraner. For Penicilliner var det ikke oppgitt ECOFF verdi for verken ampicillin eller penicillin G. Inhiberingssonene til begge typene antibiotika overskredet >256, og ble derfor angitt som resistente. Det samme gjaldt for nitrofurantoin, fra nitrofuraner klassen, hvor inhiberingssoner var >512. Det var heller ikke angitt ECOFF verdi for erythromycin, og denne angis derfor som ikke resistent som følge av en inhiberingssone <256.

Tabell 26. Gjennomsnittlig MIC-test resultat for bakterieisolatet P10.SP.BR_ESBL som gav utslag for *P. aeruginosa*. I tillegg oppgir tabellen ECOFF verdi for minimums inhiberingsgrense for å avgjøre grad av resistens.

Antibiotikum	Klasse antibiotika	P10.SP.BR_ESBL				
		MIC-testing resultat e-test	ECOFF verdi	Resultat		

Ampicillin (AM)	Penicilliner (utvidet spektrum)	>256	-	Resistent
Cefepime (FEP)	Kefalosporiner (fjerde generasjon)	3,5	8	Ikke resistent
Cefotaxime (CT)	Kefalosporiner (tredje generasjon)	64	64	Resistent
Ciprofloksacin (CI)	Fluorokinoloner	0,125	0,5	Ikke resistent
Erythromycin (EM)	Markolider	24	-	Ikke resistent
Meropenem (MP)	Karbapenem	0,32	2	Ikke resistent
Nitrofurantoin	Nitrofuraner	>512	-	Resistent
Penicillin G	Penicilliner (utvidet spektrum)	>256	-	Resistent
Tetrasyklin (TE)	Tetrasyklin-klassen	4	64	Ikke resistent

4.6 Helgenomsekvensering

I forkant av innsending av prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL til Novogene for HGS, ble bakterieisolatene analysert ved bruk av fluorometer, spektrofotometer og agarosegelelektroforese. Videre ble det foretatt dataanalyse av prøveresultatene ved bruk av MLST, NDARO, CARD ResFinder, PROKKA, MyVirDB og VFDB. For fullstendig oversikt over resultater fra CARD, NCBI, ResFinder, MyVirDB og VFDB se vedlegg 8.

4.6.1 Kvantitative målinger og agarosegelelektroforese

Målt konsentrasjon (ng/µl) ved bruk av NanoDrop 2000/2000c spektrofotometer (Thermo Fisher Scientific Inc., Wilmington, USA) og Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies[™] Holdings Pte. Ltd., Singapore) vises i tabell 27. For prøve P10.SP.BR_ESBL viste konsentrasjonene (ng/µl) til størst forskjell mellom målingene, henholdsvis 69,1 ng/µl ved bruk av spektrofotometer og 43,5 ng/µl ved bruk av fluorometer. Alle bakterieisolatene gav båndformasjon på 2% agarosegel ved elektroforese.

Tabell 27. Viser en oversikt over konsentrasjon $(ng/\mu l)$ målt av ekstrahert DNA ved bruk av NanoDrop 2000/2000c spektrofotometer og Qubit® 2.0 Fluorometer, av prøvene som ble sendt inn til Novogene for helgenomsekvensering.

Prøve	Vannkilde	Konsentrasjon (ng/µl)			
		NanoDrop	Qubit		
P2.SP.MB_ESBL	Sandvedparken	34,3	31,0		
P5.SV.MB_ESBL	Stokkalandsvatnet	42,1	28,0		

P10.SP.BR_ESBL	Sandvedparken	69,1	43,5
----------------	---------------	------	------

4.6.2 Identifikasjon av bakterieisolatene

Ved bruk av PubMLST viste identifikasjon av bakterieisolatene til *E. coli* for prøvene P2.SP.MB_ESBL og P5.SV.MB_ESBL (tabell 28). Prøvene med *E. coli* viste til identiske resultat, med henholdsvis serotype O8:H2, sekvenstype ST3580 og fylogruppe B1. Prøve P10.SP.BR_ESBL ble identifisert som *P. aeruginosa*, med serotype 011 og sekvenstype ST1985.

Tabell 28. Resultater for identifikasjon av helgenomsekvenserte bakterieisolater ved bruk av PubMLST.

Bakterieisolat	Identifikasjon	Identifikasjon (%)	Serotype	Sekvenstype	Fylogruppe
P2.SP.MB_ESBL	Escherichia coli	100	O8:H12	ST3580	B1
P5.SV.MB_ESBL	Escherichia coli	100	O8:H12	ST3580	B1
P10.SP.BR_ESBL	Pseudomonas	100	011	ST195	
	aeruginosa				-

4.6.3 Resistens detektert ved helgenomsekvensering

Ved bruk av databasene NDARO og CARD ble det detektert betalaktamase resistensgener i alle prøvene med en coverage på 100 % (tabell 29). P2.SP.MB_ESBL og P5.SV.MB_ESBL viste begge til resistensgenene blaCTX-M-15 og blaEC-13 med resistens mot kefalosporiner, samt qnrS1 med resistens mot fluorokinoloner. Resistensgenene aph(3')-IIb, blaOXA-50, blaPDC-374, catB7 og fosA ble funnet i prøve P10.SP.BR_ESBL. Kun resistensgenene blaCTX-M-15 og qnrS1,som ble funnet i prøvene P2.SP.MB_ESBL og P5.SV.MB_ESBL, gav en identitetsprosent på 100 (%).

Tabell 29. Resultater for betalaktamase resistensgener for *E. coli* prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og *P. aeruginosa* prøven P10.SP.BR_ESBL ved databasene NDARO og CARD.

Prøve	Resistensgen	Prosent identitet (%)	Coverage (%)	Resistens mot	Beskrivelse
P10.SP.BR_ESBL	aph(3´)-IIb	98,02	100,00	Kanamycin	Aminoglykosid O- fosfotransferase
P2.SP.MB_ESBL P5.SV.MB_ESBL	blaCTX-M-15	100,00	100,00	Kefalosporiner	Klasse A utvidede-

					spektrum betalaktamase
P2.SP.MB_ESBL P5.SV.MB_ESBL	blaEC-13	99,56	100,00	Kefalosporiner	Klasse C utvidede- spektrum betalaktamase
P10.SP.BR_ESBL	blaOXA-50	98,86	100,00	Betalaktamer	Oksacillin- hydrolyserende klasse D betalaktamase
P10.SP.BR_ESBL	blaPDC-374	98,94	100,00	Kefalosporiner	Klasse C betalaktamase
P10.SP.BR_ESBL	catB7	97,65	100,00	Kloramfenikol	Type B kloramfenikol O- acetyltransferase
P10.SP.BR_ESBL	fosA	98,28	100,00	Fosfomycin	Fosfomycin resistent glutationtransfer ase
P2.SP.MB_ESBL P5.SV.MB_ESBL	qnrS1	100,00	100,00	Fluorokinoloner	Fluorokinolon resistant pentapeptide repeat protein

Ved bruk av verktøyet ResFinder i CGE ble resistens mot ulike antibiotikum detektert (tabell 30). *E. coli* prøvene, P2.SP.MB_ESBL og P5.SV.MB_ESBL, viste til resistens mot 9 antimikrobielle stoff fra klassen betalaktamer, samt en fra fluorokinoloner klassen og én fra peroksid klassen. I tillegg viste prøve P5.SV.MB_ESBL resistens mot spectinomycin fra klassen aminocyclitol. For prøve P10.SP.BR_ESBL ble det detektert resistens mot 4 antimikrobielle stoff fra klassen betalaktamer, samt én fra klassen amfenikol, én fra klassen fosfomycin og én fra klassen aminoglykosid.

Tabell 30. Dete	eksjon av resi	stens for ulike antir	nikrobielt stoff ved b	ruk av verktøyet Re	sFinder hos CGE av
bakterieisolater	ne P2.SP.MB_	ESBL, P5.SV.MB	_ESBL og P10.SP.BI	R_ESBL.	

Antimikrobielt	Klasse	Prøver med resistens			
stoff		P2.SP.MB_ESBL	P5.SV.MB_ESBL	P10.SP.BR_ESBL	
Amoxicillin	Betalaktam	Resistent	Resistent	Resistent	
Ampicillin*	Betalaktam	Resistent	Resistent	Resistent	
Aztreonam	Betalaktam	Resistent	Resistent	Ikke resistent	
Cefepime*	Betalaktam	Resistent	Resistent	Resistent	

Cefotaxime*	Betalaktam	Resistent	Resistent	Ikke resistent
Ceftazidime	Betalaktam	Resistent	Resistent	Resistent
Ceftriaxone	Betalaktam	Resistent	Resistent	Ikke resistent
Kloramfenikol	Amfenikol	Ikke resistent	Ikke resistent	Resistent
Ciprofloksacin*	Fluorokinoloner	Resistent	Resistent	Ikke resistent
Erythromycin*	Makrolid	Ikke resistent	Ikke resistent	Ikke resistent
Fosfomycin	Fosfomycin	Ikke resistent	Ikke resistent	Resistent
Hydrogenperoksid	Peroksid	Resistent	Resistent	Ikke resistent
Meropenem*	Betalaktam	Ikke resistent	Ikke resistent	Ikke resistent
Nitrofurantoin*/**	Nitrofuraner	-	-	-
Penicillin*	Betalaktam	Ikke resistent	Ikke resistent	Ikke resistent
Piperacillin	Betalaktam	Resistent	Resistent	Ikke resistent
Spectinomycin	Aminocyclitol	Ikke resistent	Resistent	Ikke resistent
Tetrasyklin *	Tetrasyklin	Ikke resistent	Ikke resistent	Ikke resistent
Ticarcillin	Betalaktam	Resistent	Resistent	Ikke resistent
Ukjent aminoglykosid	Aminoglykosid	Ikke resistent	Ikke resistent	Resistent

* Antibiotikum også analysert ved MIC-test

** Ikke screenet for i verktøyet ResFinder

Ved annotering i Galaxy med PROKKA ble proteiner involvert i metallresistens detektert for bakterieisolatene tilhørende *E*. coli og *P. aeruginosa*. Prøve P5.SV.MB_ESBL gav utslag for flest antall gener som kodet for metallresistens (tabell 31). Prøve P2.SP.MB_ESBL viste til gener involvert i resistens mot metallene tellur og sink. Videre viste begge prøvene P5.SV.MB_ESBL og P10.SP.BR_ESBL til utslag for gener involvert i resistens mot arsenikk, kobber, samt kobolt-sink-kadmium protein.

Prover med gen som koder for metallresistens	Kommontor
søk i Galaxy med verktøyet PROKKA.	
Tabell 31. Gener involvert i resistens mot ulike metaller hos prøven	ne P2.SP.MB_ESBL, P5.SV.MB_ESBL, ved

T føver med gen som koder for metamesistens		Kommentar	
P2.SP.MB_ESBL	P5.SV.MB_ESBL	P10.SP.BR_ESBL	
-	ybbM	-	Antatt metall resistent protein
_	arsR2	arsR2	Arsenikk resistent transkripsjons
_			regulator
-	-	acr3	Arsenikk resistent protein
	copA	copA	Kobber resistent protein
-		copB	
	czcB	czcA	Kobolt-sink-kadmium resistent protein
-	czcC	czcB	
		czcC	
		merR1	Kvikksølv resistent operon
-	-		regulatorisk protein
zraP	-	-	Sink resistens assosiert protein

tehA	_	-	Tellur resistent protein
	bhsA		Ytre membranprotein involvert i
-		-	kobberpermeabilitet, stressmotstand
			og biofilmdannelse

Tabell 32 viser en oversikt over gener som kodet for MDR som gav utslag for annotering ved bruk av PROKKA. Av prøvene identifisert som *E. coli*, gav prøve P2.SP.MB_ESBL utslag for flest gener som kodet for MDR. Prøve P10.SP.BR_ESBL gav totalt sett utslag for flest antall multiresistente protein.

Tabell 32. Tabellen viser en oversikt over MDR detektert i prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL ved annotering med PROKKA.

Type resistens	Prøver som koder for multiresistente gen					
	P2.SP.MB_ESBL	P5.SV.MB_ESBL	P10.SP.BR_ESBL			
Multiresistente gen	bhs; emr; emr; mar;	bmr3; mdt; stp	bmr; mar; mdt; mex;			
	mdl; mdt; yhel		stp			

Det ble også søkt etter gener som koder for resistens for kjemiske substanser og efflukspumper ved annotering med PROKKA og søk i CARD. Kjemiske substanser inkluderte resistens mot biocider og syrer. Biocidet hydrogenperoksid gav utslag for resistens hos alle prøvene, P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL (tabell 33). Kun prøve P5.SV.MB_ESBL gav utslag for gen som kodet for resistens mot syre. Kvartærnære ammoniumforbindelser ble funnet ved søk i CARD, og gav utslag i prøve P2.SP.MB_ESBL.

Tabell 33. Gener involvert i resistens mot biocider og syrer hos prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL.

Spesifikk resistens	Prøver med gen som koder for resistens			
	P2.SP.MB_ESBL	P5.SV.MB_ESBL	P10.SP.BR_ESBL	
Resistens mot hydrogenperoksid	iprA	ohrB	ohrB	
(desinfeksjonsmidler)	yaaA		ohrR	
			yaaA	
Resistens mot kvaternære	sugE			
ammoniumforbindelser		-	-	
(desinfeksjonsmidler)				
Resistens mot Syre		hdeD		
	-	ydeP	-	

4.6.4 Mutasjoner

Ved søk i CGE ved bruk av verktøyet ResFinder ble det detektert punktmutasjoner for prøvene identifisert som *E. coli*, P2.SP.MB_ESBL og P5.SV.MB_ESBL. Begge prøvene viste til punktmutasjoner for gyrB og parC, hvorpå P5.SV.MB_ESBL i tillegg viste til 16S_rrsB;;lhez:g.1064_1064 delesjon (tabell 34).

Tabell 34.	Mutasjoner funnet hos gyrB, parC og aminocyclitol hos E.	. coli prøvene	P2.SP.MB_	ESBL og
P5.SV.MB	_ESBL ved bruk av ResFinder i databasen NCBI.			

	gyrB	ра	urC	Aminocyclitol
Prøve	P2.SP.MB_ESBL P5.SV.MB_ESBL	P2.SP.MB_ESBL P5.SV.MB_ESBL	P5.SV.MB_ESBL	P5.SV.MB_ESBL
Mutasjon	gyrB:p.V201I	parC:p.R681H	parC:p.E62K	16S_rrsB;;16S_rrsB;; gqbs;;16S_rrsB;;ntbq ;;16S_rrsB;;bqca;;16 S_rrsB;;nbqd;;16S_rr sB;;whlo;;16S_rrsB;; ulwg;;16S_rrsB;;rddt ;;16S_rrsB;;cut1;;16S _rrsB;;uacq;;16S_rrs B;;upbu;;16S_rrsB;;1 hez:g.1064_1064del
Nukleotid endring	$gtt \rightarrow att$	$cgt \rightarrow cat$	gaa → aaa	$del \rightarrow a$
Aminosyre endring	$v \rightarrow i$	$r \rightarrow h$	$e \rightarrow k$	-
Fenotype	Ukjent	Ukjent	Ukjent	Spectinomycin
PMID	-	-	-	8127669

4.6.5 Virulensgener detektert hos E. coli ved helgenomsekvensering

Ved søk i databasen MyVirDB gav gen som koder for resistens utslag i prøvene identifisert som *E. coli*, P2.SP.MB_ESBL og P5.SV.MB_ESBL. Virulensgenene som ble detektert var APEC O1, cfaB, ehaB, ehaC/yfaL, ehaD, fdeC, fmlA, lpfA og ychO, med en nukleotidmatch >91,02. (tabell 35).

Gen	Kommentar fra MyVirDB	Nukleotidmatch (%)
APEC O1	APEC O1 konservert protein fra CP000468	99,95
cfaB	Hoved underenheten av koloniseringsfaktor antigen I (CFA/I) fra ETEC	100,00
ehaB	Assosiert med dannelse og vedlikehold av biofilm og andre virulens mekanismer og tilhørende kommersaler	99,36
ehaC/ yfaL	AIDA-familie autotransporter adhesin	95,82
ehaD	Promoterer celle aggregasjon, dannelse av biofilm og adherens til ECM protein	99,20
fdeC	Faktor adherent <i>E. coli</i> . Kan mediere <i>E. coli</i> adhesin til celler i pattedyr og ekstracellulær matriks	96,85
fmlA	Fimbriae til uropatogene <i>E. coli</i> som uttrykkes ved lav temperatur	98,05
lpfA	Lange polare fimbriae	99,83
sitA	Representerer mangan- og jern transportere i E. coli	91,02
sitB		98,30
sitC		99,30
sitD		100,00
ychO	Autotransport adhesin. Spiller en rolle i patogenisiteten til APEC stamme SEPT362. Genet er til stede i lunger og ryggmarg ved in vivo infeksjon ved stammen SEPT362.	99,50

Tabell 35. Virulensgener for prøve P2.SP.MB_ESBL og prøve P5.SV.MB_ESBL ved søk i databasen MyVirDB.

Søk etter virulensgener ble også utført i databasene VFDB og Ecoli_VF for prøvene P2.SP.MB_ESBL og prøve P5.SV.MB_ESBL. Ved søk i databasene ble virulensgen tilhørende type III sekresjonssystem effektor, med identitet >93,11%, detektert for begge prøvene (tabell 36). For prøve P2.SP.MB_ESBL ble det i tillegg detektert et adhesin kalt fdeC, med en identitet på 92,37%.

Prøver med virulensgen	Gen	Kommentar fra VFDB og Ecoli_VF	Identitet (%)	Coverage (%)
P2.SP.MB_ESBL	espL1	Type III sekresjonssystem effektor	95,26	98,42
P5.SV.MB_ESBL	espR1		94,22	88,81
	espX1		94,66	99,93
	espX4		93,11	99,94
	espX5		95,67	100,00
P2.SP.MB_ESBL	fdeC	Adhesin	92,37	99,76

Tabell 36. Virulensgener for prøve P2.SP.MB_ESBL og prøve P5.SV.MB_ESBL ved søk i databasen VFDB og Ecoli_VF.

4.6.6. Toksin – antitoksin system

For alle prøvene, P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL, ble det utført annotering ved bruk av verktøyet PROKKA for å screene for toksin – antitoksin system (TAS) (tabell 37). P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL gav TAS, hvorpå symE og vgrG1 ble detektert i alle prøvene. Det ble detektert flest TAS i P2.SP.MB_ESBL.

Tabell 37. Toksiner i prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL etter annotering ved bruk av PROKKA.

Prøver	Toksin – antitoksin system
P2.SP.MB_ESBL	cbeA; cbtA; chpS; dinJ; ghoS; ghoT; hicB; higA; higB; hipA; hipB; hokC; hokE; ldrA; ldrD; mazE; mazF; ortT; parD1; parE1; prlF; ratA; symE; tabA; tisB; vapB; yafQ; yefM; yfjZ; yhaV; ykfI; yoeB; vgrG1
P5.SV.MB_ESBL	chpB; cptA; cptB; higA; hipB; mazE; mazF; relB; relE apxIB; ccdB; fitB; grG1; higB; hipA; hokC; hokD; ltxB; ratA; pspC; symE; tatA; vgrG1; yafQ; yenB
P10.SP.BR_ESBL	paeE1; ratA; apxIB; fitB; toxR; symE; vgrG1

4.6.7 Sammenligning mellom bakterieisolater

Prøvene tilhørende funn fra denne oppgaven, samt i masteroppgavene til Mari Anida Hafsås og Mette Lea, vises i tabell 38. Alle prøvene viste til laboratoriebekreftet resistens mot tredje generasjon kefalosporiner ved MIC-testing e-test, samt ingen påvist resistens mot karbapenemer. Kun prøvene P10.SP.BR_ESBL, P12(E)Nid_Kleb, P1(E)Nid_E.coli og MJØSA10.Pseu-E viste til resistens konferert med helgenomsekvensering. Alle 9 prøvene var multiresistente, med resistens mot \geq 3 klasser antibiotika.

Tabell 38. Ulike bakterieisolater, hentet fra ulike vannkilder, ble sammenlignet opp mot resistens til forskjellige antibiotikum. Dette inkluderte både fra MIC-test (grønn farge), HGS (gul farge), samt prøvene som ikke viste til resistens (rød farge).

Antibiotikum	Funn gjort i denne oppgaven			Μ	ari Anida Hafs	ås	Mette Lea		
	Vannprøver fra Rogaland fylke			Vannprøver fra Trøndelag fylke			Vannprøver fra Viken fylke og Innlandet fylke		
	P2.SP.MB_ESBL	P5.SV.MB_ESBL	P10.SP.BR_ESBL	P12(E)Nid_Kleb	P16(E)Jons_Serr	P1(E)Nid_E.coli	MJØSA10.Pseu-E	FOSS2-Serr-E	FOSS9-E.coli-E
	E. coli	E. coli	P. aeruginosa	K. pneumoniae	S. fonticola	E. coli	P. aeruginosa	Serratia spp.	E. coli
Aminoglykosider									
Karbapenemer									
Kefalosporiner									
(3dje gen.)									
Fluorokinoloner									
Fosfomycin									
Penicilliner									
Fenikoler									
Sulfonamider									
Nitrofuran									
Tetrasyklin									
Tigersyklin									
Trimetoprim									
Makrolider									
Multiresistens*	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja
	Laboratoriebekreftet ved MIC- testing e-test								
	Resistens konferert ved HGS								
	Ikke resistent								
* D '	1								

* Resistens mot \geq 3 klasser antibiotika

Tabell 39 viser sammenligning mellom *E. coli* prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL fra denne oppgaven, samt FOSS9-E.coli-E og P1(E)Nid_E.coli fra masteroppgavene til Mette Lea og Mari Anida Hafsås henholdsvis. Prøve FOSS9-E.coli-E ble hentet fra Fossbekken i Nordre Follo kommune og prøve P1(E)Nid_E.coli ble hentet fra Nidelva i Trondheim kommune. Kun prøve FOSS9-E.coli-E og P1(E)Nid_E.coli gav utslag for gener påvist ved helgenomsekvensering, henholdsvis chuA for begge prøvene, i tillegg til fyuA og yfcV hos FOSS9-E.coli-E. Ingen av bakterieisolatene gav utslag på genet vat var den eneste som gav utslag for uropatogene *E. coli* (UPEC) og APEC. Prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P1(E)Nid_E.coli gav alle utslag for Ekstraintestinal patogene *Escherichia coli* (ExPEC) virulensfaktoren APEC01_2080. For Intestinale patogene *Escherichia coli* (IPEC) viste prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL til identiske virulensfaktorer.

Tabell 39. Prøvene med bakterieisolater tilhørende *E. coli* ble undersøkt og sammenlignet for genene chuA, fyuA, yfcV og vat, hvorpå grønn farge indikerte gen påvist ved HGS og rød farge indikerte ikke påvist gen ved HGS . I tillegg ble det sammenlignet UPEC og APEC, samt ExPEC og IPEC virulensfaktor.

Isolat (E. coli)	Gener				UPEC/ APEC		ExPEC virulensfaktor	IPEC virulensfaktor	
	chuA	fyuA	yfcV	vat					
P2.SP.MB_ESBL					Nei	Nei	APECO1_2080	cfaB; ehaC; ehaG; lpfA	
P5.SV.MB_ESBL					Nei	Nei	APECO1_2080	cfaB; ehaC; ehaG; lpfA	
P1(E)Nid_E.coli					Nei	Nei	APECO1_2080; autAR; etrA; fbpB; pic	capU; ehaC; eilA; espY3; ipaH	
FOSS9-E.coli-E					Ja	Ja	aec35-37; afaE1; autAR; upaB; upaC; c4485; c4759; draP; irp1; irp2; aerobactin; iutA; kpsMII; malX; pap-pili; sat; tagBC; usp	draP; nfaB	
	Gen påvist ved HGS								
	Gen ikke påvist ved HGS								

5.0 Diskusjon

5.1 Identifisering av bakterieisolater

For å identifisere hvilke bakterier som var til stede i prøvene, ble det foretatt fenotypisk deteksjon, Sanger-sekvensering av 16S rDNA og til slutt HGS av utvalgte prøver.

5.1.1 Fenotypisk identifikasjon

I denne oppgaven ble agarskåler fra Oxoid Brilliance™ benyttet for å screene for ESBL og CRE resistente bakterieisolater i vannprøvene fra Rogaland fylke. Bruk av ESBL- og CRE agarskåler er en god metode for fenotypisk deteksjon av ARB, som følge av metodens brukervennlighet, tidseffektivitet, i tillegg til at den er kostnadsbesparende (Oxoid, 2010; Oxoid, 2011). Rendyrking av bakterieisolater gir også videre muligheter til å utføre påfølgende analyser for å undersøke innhold av AR og ARG. Metoden for isolering av bakterier og fenotypisk deteksjon legger derfor et grunnlag for å finne ut hvordan ARB utvikles og spres, samt anta sykdomsfremkalling i dyr og mennesker (Nesse et al., 2021).

Rendyrking av prøver på ESBL- og CRE agarskåler ga god vekst av bakterieisolater, hvor den visuelle fremstillingen viste til flere forskjellige farger. Basert på fargeanalyse av bakterieisolatene på ESBL- og CRE agarskåler var det mulig å foreta en antagelse av hvilke bakterier som var til stede på agarskålene, og derav hvilke prøver som kunne inneha resistensmekanismer. For vekst på både ESBL- og CRE agarskåler viste fargeanalysen til antatt tilstedeværelse av *E. coli* og KESC-gruppen. I tillegg ble det også antatt tilstedeværelse av *Proteus* spp., *Morganella* spp. og *Providencia* spp. av isolater rendyrket på ESBL agar (Oxoid, 2010; Oxoid, 2011).

For bakterieisolater med farge uten beskrivelse i produsentens protokoll, var det ikke mulig å anta tilhørende bakteriestamme. Dette gjaldt for prøve P10.SP.BR_ESBL med brun farge på ESBL agar, og PN.SP.G_CRE med grønn farge på CRE agar. Ut ifra fargeanalyse ble det derfor ikke foretatt en antatt fenotypisk identifikasjon. Bakterieisolatene som ikke ble identifisert viste allikevel til vekst på respektive agarmedium, og derav antatt tilstedeværelse av ESBL- og CRE produserende bakterier (Oxoid, 2010; Oxoid, 2011). Tidligere har det blitt rapportert at viktige bakterier, med andre farger enn hva som er beskrevet i protokoll, også kan vokse på CRE agar (Bracco et al., 2013). Noe som også kan antas å gjelde for vekst på ESBL agar. ESBL-produserende bakterier viser til en økende forekomst og spredning globalt, og utgjør derav en

stor trussel for behandling av diverse infeksjonssykdommer (Teklu et al., 2019). Selektive agarmedium, for fenotypisk deteksjon av ESBL-produserende bakterier, er derfor et godt verktøy for å kartlegge og detektere antatt ARB. Både fra både kliniske- og ytre miljø (Oxoid, 2010). Tidligere har det blitt konkludert med at ESBL agar utmerker seg særlig innen klinisk sammenheng, hvor tilstedeværelse av ESBL produserende bakterieisolater raskt kan bekreftes eller avslås (Huang et al., 2010). Rendyrkede bakterieisolater, uten tilhørende fargebeskrivelse, ble derfor benyttet i videre analyser i denne oppgaven. Henholdsvis ved Sanger-sekvensering av rendyrkede kolonier fra både ESBL- og CRE agarskåler, samt ytterligere analyser for isolatene vokst frem på ESBL agar.

5.1.2 Sanger-sekvensering av 16S rDNA

I forkant av innsending av prøver for analyse av 16S rDNA til Sanger-sekvensering ble DNA isolatene ekstrahert, videre analysert ved bruk NanoDrop spektrofotometer og kjørt på 2% agarosegelelektroforese. For målingene som ble foretatt ved bruk av NanoDrop spektrofotometer ble målt forskjellige konsentrasjoner (ng/µl) i ulike prøver med ekstrahert DNA. Ved måling av NanoDrop spektrofotometer anses en prøve som ren ved ~1,8 til ~2,0 av A260/280, og 2,0 til 2,2 ved A260/230. Resultatene viste til at kun 10 av prøvene hadde verdier innenfor referanseområdet for A260/280. Resterende 13 prøver viste til verdier som under- eller overskred ~1,8 til ~2,0 med >10%. For A_{260/230} var alle målte verdier av prøvene <2,0, og lavere en ønsket referanseverdier (Thermo Scientific, u.å.). Kvantitative målinger av DNA er en metode hvor helt nøyaktig målte resultater kan være vanskelig å få til som følge av feilkilder som kan oppstå (García Alegría et al., 2023). Feilkildene ved bruk av NanoDrop spektrofotometer i denne oppgaven kan derfor skyldes selve måleprosessen eller utstyret, hvor lave målte verdier kan ha blitt forårsaket av kontaminanter til stede i prøvene som har absorbert ved 230 (nm) (García Alegría et al., 2023; Thermo Scientific, u.å.). I motsetning til resultatene fra kvantitative målinger viste resultatene fra 2% agarosegelelektroforese båndformasjon for alle DNA prøvene, og derav ønsket resultat. Gelelektroforese baserer seg på å separasjon DNAet inn i fragmenter før antall basepar i prøvene kan leses av og observeres visuelt som bånd på gel (Lee et al., 2012). Til tross ulikheter, med hensyn til resultatforventninger for både NanoDrop spektrofotometer og 2% agarosegelelektroforese, ble alle prøvene sendt inn til Sanger sekvensering.

Sanger-sekvensering ble i denne oppgaven utført for å analysere 16S rDNA query-sekvens til bakterieisolatene, og derav identifikasjon av tilhørende bakteriestamme. Sekvensering av 16S

rDNA baserer seg på å identifisere slekt og art til ukjente bakterieisolater. Metoden for sekvensering anses som velegnet for identifikasjon, da Sanger-sekvensering møter krav med hensyn til størrelsesorden for innhenting av genetisk informasjon. I tillegg har også metoden forblitt upåvirket av evolusjon (Janda & Abbott, 2007). Sanger-sekvensering har derfor gjort det mulig å analysere årsak og opprinnelse til infeksjoners sykdommer, og ut ifra dette kunne tilpasset behandlingen i henhold til type og mengde av et gitt antibiotikum (Woo et al., 2008).

For bakterieisolater som ble antatt å være *E. coli* ved fargeanalyse på kromogen selektivt ESBL agar, viste til tilsvarende resultat ved sekvensering av 16S rDNA. *E. coli* er den bakterier som er antatt mest studert i verden, og er i tillegg en kjent miljøbakterie (Ishii & Sadowsky, 2008; Ruiz & Silhavy, 2022). Det ble derfor på forhånd av analysene antatt at flere av sekvenseringsresultatene ved 16S rDNA ville vise til *E. coli*. Et unntak var dog for prøvene P1.SP.MB_ESBL og P9.SP.MB_ESBL hvor identifikasjon i tillegg til *E. coli* viste til *E. fergusonii*. Både *E. coli* og *E. fergusonii* tilhører genus Escherichia, og innen slekten utgjør artene med høyest genetisk likhet. Identifikasjon av 16S rDNA er derfor ikke en egnet metode i seg selv for å skille mellom *E. coli* og *E. fergusonii*, som følge av en DNA-DNA hybridiseringen på omtrent 64% (Dahal et al., 2023).

For prøve P10.SP.BR_ESBL, som det ikke var mulig å anta tilhørighet basert på fargeanalyse, viste til *P. aeruginosa* ved sekvensering av 16S rDNA. *P. aeruginosa* er en opportunistisk patogen som har blitt isolert fra både kliniske og ytre miljø (Crone et al., 2020; Diggle & Whiteley, 2020; Maharjan, 2022). I motsetning til arter tilhørende slekten Escherichia, har tidligere studier vist til at sekvensering av 16S rDNA er en god metode for å identifisere *P. aeruginosa* med god sikkerhet (Chen et al., 2014).

5.1.3 Identifikasjon ved helgenomsekvensering

Prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL ble sendt inn til HGS med Illumina som følge av interessante funn gjort ved forutgående analyser, inkludert fenotypisk deteksjon og Sanger-sekvensering. For å identifisere prøvene etter HGS, ble PubMLST benyttet. PubMLST innehar sekvensdata med tilhørende informasjon om fenotype og opprinnelse for mikroorganismer. Ved bruk av denne metoden er det derfor mulig å foreta en identifikasjon basert på data tilhørende genomsekvensene til prøvene (Jolley et al., 2018).
Prøvene P2.SP.MB_ESBL og P5.SV.MB_ESBL ble begge identifisert som *E. coli*, og viste i tillegg til identiske resultat for serotype, sekvenstype og fylogruppe. Prøve P10.SP.BR_ESBL ble i likhet med resultat fra Sanger-sekvensering, identifisert som *P. aeruginosa*.

Serotyping av er nødvendig for å klassifisere og identifisering av bakterier, særlig med hensyn til smittesporing av patogene arter. Serotyping kombinerer to antigener kalt O og H, og innen identifisering er denne metoden angitt som en gullstandard. O beskriver lipopolysakkarid antigen, mens H beskrives som flagellært antigen (Joensen et al., 2015). I denne oppgaven ble serotyping utført, hvor resultatet viste til O8:H12 for begge prøvene med *E. coli*, og O11 for prøven med *P. aeruginosa*. Tidligere har O8:H12 blitt beskrevet i en studie som undersøkte *E. coli* assosiert med diaré. O8:H12 ble i denne studien funnet i en ETEC stamme isolert fra kyr (Shabana, 2014). *P. aeruginosa* med serotype O11 har tidligere blitt rapportert å forårsake enkeltstamme sykehusutbrudd, hvor pasientene ble infisert som følge av kryssinfeksjoner til respirasjonssystemet (Farmer et al., 1982). Tilsvarende funn av serotypen ble gjort av Pottier og medarbeiderne, hvor O11 ble isolert fra pasienter innlagt på sykehus (Pottier et al., 2023)

I motsetning til serotype, baserer sekvenstyping seg på identifisering ved å analysere genetiske sekvenser til en bestemt bakterie, med påfølgende sammenligning med andre arter (Maiden et al., 2013). Sekvenstype ST3580 har tidligere blitt påvist i karbapenem-produserende *E. coli* isolert fra sykehusmiljø i Vietnam. Det kan derfor antas ut ifra resultatene gjort ved HGS identifikasjon at *E. coli* prøvene, fra Sandvedparken og Stokkalandsvatnet, var samme bakterie. I tillegg kan det basert på tidligere studier, som viste til involvering av ST3580, antas at *E. coli* av denne sekvenstypen kan ha være involvert i infeksjoner hos mennesker (Linh et al., 2021). ST3580 har også tidligere blitt rapportert i ESBL produserende *E. coli* isolert fra endetarmen til mennesker fra Sveits, etter reise til Zanzibar. Moser og medarbeiderne viste også til at ST3580 tidligere også hadde blitt isolert fra både dyr og mennesker i Zanzibar (Moser et al., 2021).

Ut ifra resultatene fra identifikasjon kan det antydes at begge prøvene identifisert som *E. coli* kan være involvert infeksjoner hos mennesker som følge av tidligere funn av sekvenstypen, blant annet i sykehusmiljø. I tillegg antyder resultat for begge prøvene med *E. coli* til samme bakterie som følge av lik identitet. *P. aeruginosa* sees særlig i sammenheng i kliniske miljø, og er en viktig årsak til utbrudd på sykehus (Pottier et al., 2023).

5.1.4 Identifikasjonsmetoder

I denne oppgaven ble identifikasjon utført ved fenotypisk deteksjon, Sanger-sekvensering av 16S rDNA og HGS. For å undersøke forekomst av AR, ARB, ARG, samt tilhørende resistensmekanismer, er identifisering av bakterier et nyttig verktøy. I tillegg kan en identifisering også bidra med å screene for sykdomsfremkallende bakterier (Nesse et al., 2021). Metoden for fenotypisk deteksjon gir en god indikasjon på hvilke bakterieisolater som kan være til stede. Resultatene i denne oppgaven har allikevel vist at det finnes begrensninger for metoden, da det ikke er mulig å foreta en antatt identifisere av isolater med farge utover produsentens beskrivelse (Oxoid, 2010; Oxoid, 2011). Til tross for begrensningene, har tidligere studier allikevel rapportert at metoden er god for identifikasjon av ESBL produserende isolater i en klinisk sammenheng (Huang et al., 2017). Allikevel kan det antas ut ifra resultatene fra denne oppgaven at fenotypisk deteksjon, med påfølgende Sanger-sekvensering og HGS, er gode metoder for å undersøke og identifisere tilstedeværelse av AR i akvatiske miljøprøver.

Videre i oppgaven omhandler diskusjonen prøvene som ble identifisert ved HGS. Herunder prøve P2.SP.MB_ESBL og P10.SP.BR_ESBL hentet fra elven Storåna i Sandvedparken, samt P5.SV.MB_ESBL fra tjernet Stokkalandsvatnet.

5.2 Gener som koder for antibiotikaresistens

ARG blir stadig et økende og anerkjent problem i akvatiske miljø. Bakterier kan erverve ARG ved horisontal genoverføring og mutasjoner, eller forekomme som naturlig resistens (Sharma et al., 2016). Ved sekvensering ble viktige resistensgen detektert i denne oppgaven, herunder blaCTX-M, blaEC-13 og qnrS1 i *E. coli* prøvene, samt aph(3[^])-IIb, blaOXA-50, blaPDC-374, catB7 og fosA i prøven med *P. aeruginosa*.

5.2.1 aph(3')-IIb

I denne oppgaven ble det gjort funn av genet aph(3´)-IIb i prøven identifisert som *P*. *aeruginosa*. Genet aph(3´)-IIb koder for enzymet aminoglykosid 3´-fosfotransferase, og er involvert i resistens mot aminoglykosider, slik som antibiotikumet kanamycin. Genet ble først oppdaget i *P. aeruginosa* år 1997 (Hainrichson et al., 2007). I ettertid har det også blitt gjort funn av aph(3´)-IIb i MDR *P. aeruginosa* (Subedi et al., 2018). Sammen med genet hpaA danner aph(3´)-IIb et operon som induseres av 4-hydroksyfenylactat, i motsetning til andre enzymer som modifiserer aminoglykosid (Hainrichson et al., 2007). Funn av aph(3´)-IIb er derfor ikke overraskende, men en bekymring som følge av en rapportert tilstedeværelse i bakterier med MDR.

5.2.2 blaCTX-M-15

Utvikling og spredning av gener tilhørende CTX-M har vist til en global utbredelse (Bielaszewska et al., 2020). Forekomsten av CTX-M protein skyldes både en økning i mutasjoner som følge av det selektive presset fra ulike antibiotikum, samt HGO av ARG (Liu et al., 2015). Studier beskriver allikevel HGO som den mest anerkjente og forståtte metoden for spredning av både CTX-M, samt andre gener tilhørende ESBL (Bielaszewska et al., 2020). Spredningen og utviklingen av CTX-M gener illustrerer derfor godt hvor vellykket evolusjonen av AR blant bakterier har vært, og fortsatt er i det globale samfunnet (Liu et al., 2015).

Gener tilhørende CTX-M sees ofte i sammenheng med høyrisikokloner, særlig *E. coli* og *K. pneumoniae* (Bielaszewska et al., 2020). I denne oppgaven ble det gjort funn av blaCTX-M-15 både ved ESBL deteksjon og Sanger-sekvensering, samt HGS, av prøvene identifisert som *E. coli*. Genet blaCTX-M-15, sammen med blaCTX-M-14, utgjør genene tilhørende CTX-M som er mest utbredt globalt. Tidligere har gener tilhørende CTX-M blitt detektert både i mennesker, dyr og miljø (Liu et al., 2015). En tidligere studie viste til funn av blaCTX-M-15 i *E. coli*, isolert fra pasienter med påvist hemolytisk uremisk sykdom (HUS). En annen studie viste til funn av genene i Funnene av *E. coli* med bla-CTX-M-15 gener er derfor ikke overraskende, som følge av tidligere funn av resistensgenet i arter tilhørende Enterobacteriaceae (Bielaszewska et al., 2020). Allikevel understrekes det at funnene antas å være alvorlige, både sett ut ifra et helseperspektiv, så vel som et miljøperspektiv

5.2.3 blaEC-13

Genet blaEC tilhører klasse C betalaktamaser (NCBI, 2020). blaEC detekteres ofte i bakterier som er følsomme for betalaktam antibiotika. Hyppig funn gjelder også i bakterier som er bærere av gener som er versjoner av blaEC, blant annet blaEC-13 som ble funnet denne oppgaven hos begge prøvene med *E. coli* (Thomson et al., 2022). Tidligere studier har også vist til funn av blaEC, blant annet i kylling (Thomson et al., 2022). Det har også tidligere blitt rapportert funn av blaEC-13. Berinson og medarbeiderne fant i sin studie blaEC-13 genet i et *E. coli* isolat (Berinson et al., 2023). Funn av blaEC-13 er som følger av dette ikke et oppsiktsvekkende i denne oppgaven.

5.2.4 blaOXA-50

blaOXA er et gen tilhørende klasse D, og blant betalaktamasene som først ble oppdaget. Tidligere var det kjent at resistens forårsaket av blaOXA var rettet mot kefalosporiner og penicilliner, og alltid mediert av plasmider. I senere tid har det også blitt anerkjent at blaOXA også forårsaker resistens mot karbapenem antibiotika i flere typer bakterier. Selv om det var i *Acinetobacter baumannii* AR med blaOXA det ble først oppdaget, har også OXA blitt funnet i andre arter i senere tid. Blant annet har OXA vært en stor bidragsyter til resistensutvikling mot karbapenemer i *Enterobacteriaceae* (Evans & Amyes, 2014). I denne oppgaven ble det gjort funn av blaOXA-50 i prøven med *P. aeruginosa.* blaOXA-50 er et hydrolyserende oxacillinase gen. En tidligere studie har ved dataanalyse vist til at genet uttrykkes og er lokalisert i genomet til *P. aeruginosa*, og antas å forekomme naturlig i denne bakteriearten som følge av observert, og forventet, innhold av guanin og cytosin (Girlich et al., 2004). Funn av blaOXA-50 var derfor ikke uventet.

5.2.5 blaPDC-374

Genet blaPDC er en variant av enzymet AmpC, som koder for betalaktam klasse C (Cho et al., 2015). Mutasjoner av AmpC kan forårsake høy ekspresjon av enzymene, og videre medføre resistens mot kefalosporiner tilhørende antibiotikaklassen penicilliner (Jacoby, 2009). Kefalosporiner rangeres av WHO som en viktig antibiotika i behandling av infeksjonssykdommer. Allikevel viser det blant både dyr og mennesker til en økt forekomst av bakterier som produserer AmpC- og ESBL enzymer (Veterinærinstituttet, 2021). I denne oppgaven ble genet blaPDC-374 funnet i prøven med *P. aeruginosa* fra Sandvedparken. Tidligere studier viser til funn av både AmpC, blaPDC og blaPDC-374 i *P. aeruginosa*. Funn av genet var derfor ikke overraskende.

5.2.6 catB7

Genet cat koder for kloramfenikol acyltransferase (CAT). Acetylering ved CAT kan inaktivere blant annet kloramfenikol, og er den mest forekomne mekanismen for bakteriell resistens mot antibiotikumet. Tidligere studier har rapportert funn av CAT i både gramnegative og grampositive bakterier. (Huang et al., 2017). Enzymene inndeles i to hovedgrupper, herunder CATA og CATB. I denne oppgaven ble det gjort funn av catB7 i prøven identifisert som *P. aeruginosa*. Genet catB7 tilhører gruppen CATB, og ble først beskrevet av White og medarbeiderne i år 1999. I studien hvor genet først ble beskrevet, viste catB7 til en lavere

forekomst av resistens, sammenlignet med andre gener i samme gruppe ved like ekspresjons nivå (White et al., 1999). I senere tid har studier fra hele verden rapportert forekomst av genet catB7 i *P. aeruginosa* (Torres et al., 2022). Funnene gjort i denne oppgaven var derfor ikke overraskende, men viser grunn til bekymring som følge av den økende forekomsten av genet.

5.2.7 fosA

FosA er metalloenzymer som ved modifisering av strukturen til fosfomycin kan forårsake inaktivering, og derav resistens, mot antibiotikumet. Modifiseringen som kan forårsaker resistens forekommer når glutation legges til epoksidringen, og fosfomycin inaktiveres (Zheng et al., 2022). I denne oppgaven ble det gjort funn av genet fosA i prøven identifisert som *P. aeruginosa*. Genet fosA koder for FosA (Laborda et al., 2022). Tidligere studier rapporterer at resistens som observeres i *P. aeruginosa* mot fosfomycin, skyldes modifisering via FosA (De Groote et al., 2011). Tidligere har funn av fos A både blitt rapportert fra både kliniske studier, samt studier utført *in vitro* (Falagas et al., 2019). Forekomst av fosA resistensgen ses dog ofte i sammenheng med gramnegative bakterier, slik som *P. aeruginosa* (Zheng et al., 2022). Funn i denne oppgaven er derav ikke overraskende.

5.2.8 qnrS1

qnrS1 er et plasmidmediert kinolon resistensgen (PMQR). I bakterier kan PMQR spille en viktig rolle for resistensutvikling, som følge av evnen til å øke den bakterielle resistensen mot kinoloner og fluorokinoloner antibiotika. I denne oppgaven ble det gjort funn av qnrS1 i begge *E. coli* prøvene. Tidligere studier rapporterer til liknende funn av qnrS1 i *E. coli* hentet fra akvatiske miljø (Tomova et al., 2018). I tillegg viser tidligere funn av *E. coli* med resistensgenet i dyr, landbruksdyr og mat (Belotindos et al., 2022; Jakobsen et al., 2012; Juraschek et al., 2021). *E. coli* er en allsidig bakterie, og har blitt detektert i ulike miljø (Granum, 2017). Basert på tidligere funn av bakterien med qnrS1 i ulike miljø i næringskjeden, er derav funnene gjort i denne oppgaven ikke oppsiktsvekkende.

5.2.6 Resistensgener i næringskjeden

AR involverer flere ledd, hvor utvikling og spredning av ARG kan forekomme mellom både miljø, mennesker og dyr (Larsson & Flach, 2022). ARG utgjør derfor en trussel mot næringskjeden. Antibiotika entrer ytre miljø via human og animalsk forurensning (Sharma et al., 2016). For behandling og forebygging av infeksjonssykdommer hos mennesker har

antibiotika reddet flere liv (Davies & Davies, 2010). Sett fra en annen synsvinkel har overforbruk og feil bruk av antibiotika medført til en økning i utvikling og spredning av ARB (FHI, 2012). Innen landbruk har bruk av antibiotika også vært helt avgjørende for å kontrollere forekomst av patogene bakterier. Allikevel har antibiotika innen landbruk også blitt utsatt for overforbruk og feil bruk. Antibiotika innen husdyrproduksjon har utover behandling, også blitt benyttet for både for å fremme vekst, samt forebygge infeksjonssykdommer hos produksjonsdyr. Bruk av antibiotika innen landbruk har derfor også bidratt med problemstillingen vedrørende utvikling og spredning av antibiotikaresistens (Faccone et al., 2019). Kontaminering med antibiotika til ytre miljø vekker derfor bekymring som følge av utvikling og spredning av AR fra miljøet til næringskjeden (Sharma et al., 2016).

5.3 Antibiotikaresistens

I denne oppgaven ble prøvene *E. coli* prøven P2.SP.MB_ESBL og P5.SV.MB_ESBL, samt *P. aeruginosa* prøven P10.SP.BR_ESBL screenet for AR. Ved både sensitivitetstesting med MIC e-test, samt HGS, ble det detektert MDR i alle prøvene. AR betegnes av bakterienes mekanismer for å motvirke antibiotika, og når en bakterie har evnen til å unngå disse virkningsmekanismene for 3 eller flere klasser antibiotika defineres det som MDR (Habboush & Guzman, 2023; Magiorakos et al., 2012). I tillegg ble det også gjort funn av viktige gener som koder for MDR for prøvene identifisert som *E. coli*.

5.3.1 Amfenikol

Resistens mot kloramfenikol skyldes inaktivering av antibiotikumet, og forårsakes hovedsakelig av acyltransferase enzymer. Forekomst av resistens mot kloramfenikol har vist til en betraktelig økning siste 30 årene. Økningen viser å forårsakes av bakterielle mutasjoner, samt utvikling og spredning av resistensgener. I tillegg har det blitt et større fokus på undersøkelse av miljøet for AR, som inneholder andre gener sammenlignet med tidligere funn i mennesker og dyr (Roberts & Schwarz, 2017). I denne oppgaven ble det detektert resistens mot kloramfenikol i *P. aeruginosa* prøven. *P. aeruginosa* er naturlig resistent mot kloramfenikol. Den naturlige resistensen som observeres skyldes operonet kalt mexAB-oprM som er tilstede i *P. aeruginosa* (Morita et al., 2014). Funn av resistens mot kloramfenikol i *P. aeruginosa* (Morita et al., 2014).

5.3.2 Aminoglykosid

I denne oppgaven ble det gjort funn av resistens i prøven med *P. aeruginosa* mot et ukjent aminoglykosid. Aminoglykosider er en viktig behandlingsstrategi for personer med infeksjonssykdommer forårsaket av *P. aeruginosa*. Behandling med aminoglykosider er særlig viktig for cystisk fibrose pasienter, med påvist lungesykdom forårsaket av *P. aeruginosa*. *P. aeruginosa* med resistensmekanismer mot aminoglykosider har en global forekomst, hvor tidligere funn viser til funn av resistente isolater fra sykehusmiljø (Poole, 2005). I Skandinavia er dog resistens mot aminoglykosider, sett bort fra hos enterokokker, sjeldent (Norsk legemiddelhåndbok, 2016a). Funn av genet aph(3')-IIb, som koder for resistens mot aminoglykosider, samsvarer derfor godt med resultatet fra HGS (Hainrichson et al., 2007). På den ene siden er funn av *P. aeruginosa* med resistens mot aminoglykosider forventet i henhold til tidligere påviste kliniske isolater. Allikevel antas funnet å være bekymringsverdige som følge av resistens, det truer behandling av alvorlige infeksjoner.

5.3.3 Aminocyclitol

Funn av resistens mot spectinomycin, tilhørende klassen aminocyclitol, ble gjort i prøven identifisert som *E. coli* fra Sandvedparken. Resistens mot spectinomycin kan forårsakes av mekanismer som involverer efflukspumper, endring av legemiddelmål eller ved mutasjoner (Kanchugal & Selmer, 2020). For resistens forårsaket av mutasjoner, kan det forekomme en endring, delesjon, i gener tilhørende ribosomal 16S rRNA. En slik delesjon ble funnet i *E. coli* prøven fra Sandvedparken, herunder 16S_rrsB;;lhez:g.1064_1064, og gir resistens mot aminocyclitol spectinomycin (Institutt for biovitenskap, 2011a; Kanchugal & Selmer, 2020).

5.3.4 Betalaktamer

Innen behandling av infeksjonssykdommer, er betalaktamer den klassen antibiotika som er mest utbredt. Siden oppdagelsen har senere underklasser av blant annet kefalosporiner, karbapenemer og penicillin derivater blitt utviklet. I dag blir nye antibiotika tilhørende betalaktamasen enten utviklet for å utvide spektrumet, eller for å bekjempe resistensmekanismer (Bush & Bradford, 2016). I denne oppgaven ble det detektert resistens mot underklasser betalaktam antibiotika ved MIC, og senere også konferert resistens mot ulike betalaktamer ved HGS. Bakteriell resistens mot betalaktam antibiotika forårsakes av inaktivering, som følge av hydrolyse av betalaktam-ring av betalaktamase enzymer (Bush & Bradford, 2016). Bruk av betalaktam antibiotika har særlig blitt truet som følge av produksjon av betalaktamaser som har medførts resistens (Worthington & Melander, 2013). Funnene i denne oppgaven samsvarer godt med tidligere funn, da resistens i gramnegative bakterier mot betalaktam antibiotika er økende (Bush & Bradford, 2016).

5.3.5 Fluorokinoloner

Ulike resistensmekanismer mot fluorokinoloner kan eksistere på en og samme tid i en bakterie. Resistensmekanismene mot fluorokinoloner inkluderer overekspresjon av efflukspumper, endring i legemiddelmål og mutasjoner i topoisomerase IV og DNA-gyrase (Munita & Arias, 2016). I denne oppgaven ble det detektert resistens mot antibiotikumet ciprofloksacin tilhørende fluorokinoloner klassen i begge prøvene med *E. coli* (EUCAST, 2023). Resistens mot ciprofloksacin ble i tillegg konferert ved HGS i begge i *E. coli* prøvene. Både i Norge, og i resten av verden, har resistens mot fluorokinoloner vist til en betraktelig økning i *E. coli*, samt i andre bakteriearter tilhørende familien Enterobacteriaceae (Norsk legemiddelhåndbok, 2016b). Tidligere studier utført har vist høy forekomst av resistens mot ciprofloksacin i *E. coli*, og samsvarer derav godt med funnene gjort i denne oppgaven (Fasugba et al., 2015; Jadoon et al., 2015). I denne oppgaven ble det i tillegg påvist mutasjoner i gyrB og parC. Sammen med gyrA, er det vist at gyrB og parC DNA topoisomeraseprotein, øker resistens mot fluorokinoloner (Chien et al., 2016; Tchesnokova et al., 2019). Mutasjonene stemmer derfor godt overens med resistensen som ble observert for fluorokinoloner i denne oppgaven.

5.3.6 Fosfomycin

Den antibakterielle effekten til fosfomycin virker både ved infeksjoner av gramnegative- og grampositive bakterier, hvor virkningsmekanismene baserer seg på inhiberings av celleveggsyntese (Castaneda-Garcia et al., 2013). Det er vist at fosfomycin kan utgjøre et godt alternativ for behandling av infeksjoner forårsaket av bakterier som produserer ESBL, så langt kryssresistens ikke forekommer (Norsk legemiddelhåndbok, 2017). Allikevel viser forekomsten av resistens mot fosfomycin til en økende trend, hvor tidligere studier har rapportert om en økning av ARG innen familien tilhørende Enterobacteriaceae (Zurfluh et al., 2020). I denne oppgaven ble det gjort funn av resistens mot fosfomycin i prøven med P. aeruginosa. Funn av resistens samsvarer i tillegg godt med funn av genet fosA, som er involvert i bakteriell resistens mot fosfomycin (Laborda et al., 2022). Antibakterielle virkningsmekanismer tilhørende fosfomycin benyttes i behandling kan av infeksjonssykdommer forårsaket av blant annet P. aeruginosa. Resistens mot fosfomycin kan skyldes mutasjoner og forårsake endret legemiddelopptak i celler (Castaneda-Garcia et al.,

2013). Det finnes dog ikke kliniske brytningspunkt for fosfomycin i *P. aeruginosa*, i motsetning til arter tilhørende familien Enterobacteriaceae (Zheng et al., 2022). Tidligere studier rapporterer allikevel følsomhet for fosfomycin i *P. aeruginosa*, noe som kan antas å skyldes ervervede og naturlige resistensmekanismer (Castaneda-Garcia et al., 2013; Zheng et al., 2022). En tidligere studie viste til at MIC verdiene for *P. aeruginosa* er høyere enn verdiene som brytningspunktene i dag baserer seg på fra Escherichiae. Hvorvidt prøven med *P. aeruginosa* er resistens mot fosfomycin kan derav ikke fastslås. Ytterligere studier bør undersøke nøyaktige brytningspunkt for behandling med denne type antibiotika (Zheng et al., 2022)

5.3.7 Makrolider

Antibiotika tilhørende makrolid klassen utøver virkningsmekanismer målrettet mot ribosomer, ved å inhibere den bakterielle proteinsyntesen (Vazquez-Laslop & Mankin, 2018). Resistens mot makrolid antibiotika kan forekomme via ulike mekanismer, herunder endring av målproteiner, enzymatisk inaktivering eller via efflukspumper (Fyfe et al., 2016). I denne oppgaven ble det testet for resistens ved MIC e-test for makrolid antibiotikumet erythromycin. For erythromycin eksisterer det ikke en ECOFF verdi (EUCAST, 2023). I denne oppgaven ble allikevel *E. coli* prøven hentet fra Sandvedparken antatt og regnet som resistent mot erythromycin, som følge av at MIC verdien overskred referanseverdien på e-strip. Tidligere har det blitt observert resistens i *E. coli* mot høye doser av erythromycin (Arthur & Courvalin, 1986).

5.3.8 Nitrofuraner

Virkningsmekanismene til nitrofuraner baserer seg på inhibering av nukleinsyresyntesen, hvorpå resistens mot antibiotikumet nitrofurantoin kan forekomme som følge av medikamentet inaktiveres eller bindingsevnen reduseres (EFSA, 2015; Huttner et al., 2015). Ved antimikrobiell sensitivitetstesting, MIC, ble det i denne oppgaven gjort funn av resistens mot antibiotikumet nitrofurantoin tilhørende nitrofuran klassen. For nitrofurantoin var det heller ikke oppgitt ECOFF verdi (EUCAST, 2023). På grunn av MIC verdier som overskred grenseverdi på e-strip, ble derav *P. aeruginosa* antatt å være resistent mot nitrofurantoin. En tidligere studie konkluderte med at ved bruk nitrofurantoin har dårlig antimikrobiell effekt på *P. aeruginosa*, noe som styrker funnene konkludert med i denne oppgaven (Waykar et al., 2022).

5.3.9 Multiresistens i prøvene

Etter analyse av resultater fra MIC, ble begge *E. coli* prøvene, samt *P. aeruginosa* prøven fra Sandnes kommune klassifisert som MDR, som følge av resistens mot \geq 3 klasser antibiotika (Magiorakos et al., 2012). Multiresistens utgjør en stor trussel for folkehelsen, da resistensen svekker både forebygging og behandling av infeksjonssykdommer (Catalano et al., 2022).

Ved MIC-testing e-test viste *E. coli* prøvene resistens mot antibiotika tilhørende penicilliner, kefalosporiner og fluorokinoloner. I tillegg var *E. coli* prøven hentet fra Sandvedparken resistent mot makrolider. Prøven med *P. aeruginosa* viste resistens mot antibiotikum tilhørende klassene penicilliner, kefalosporiner og nitrofurantoin. For makrolidet erythromycin og penicillin og penicillin G og ampicillin var det ikke oppgitt ECOFF verdi for *E. coli*. Verdi for ampicillin og penicillin, samt nitrofuraner, var heller ikke oppgitt for *P. aeruginosa* (EUCAST, 2023). Prøvene ble i denne oppgaven allikevel regnet som resistente mot respektive klasser, som følge av uobservert hemningssone som oversteg øvre referanseverdi på e-strip. Resultatene fra HGS og ResFinder viste til liknende funn. Det var allikevel forskjeller mellom noen klasser, hvor blant annet ingen av prøvene viste resistens mot penicillin i ResFinder. Det ble heller ikke påvist resistens mot makrolidet erythromycin i *E. coli* prøven hentet fra Sandvedparken, eller resistens mot cefotaxime tilhørende kefalosporiner i *P. aeruginosa*. Uobservert resistens kan ved HGS kan antyde at databasen ResFinder ikke er oppdatert.

Til tross for ulikheter mellom resultat fra MIC og HGS, ble allikevel prøvene klassifisert som MDR ved begge analysene. I tillegg ble det også gjort funn av gener som koder for MDR ved annotering i PROKKA, og bidrar derfor med å styrke antagelsen om multiresistente mekanismer til stede i prøvene.

Tidligere har det blitt rapportert funn av bakterieisolater med MDR i både mennesker, dyr og miljø i andre land (Delgado-Gardea et al., 2016; Ogbolu et al., 2011). Fra både denne oppgaven, samt masteroppgavene til Mari Anida Hafsås og Mette Lea, ble det også funnet MDR i alle prøvene. Resultatene kan derfor antyde at MDR er utbredt i akvatiske miljø i Norge, som følge av funn i fylkene Rogaland, Trøndelag, Viken og Innlandet. På bakgrunn av miljøets rolle i utvikling og spredning av ARG, samt den høye mortaliteten og morbiditeten MDR bakterier forårsaker innen kliniske miljø, gir funnene årsak til bekymring (Alekshun & Levy, 2007; Larsson & Flach, 2022).

5.4 Virulensmekanismer

Evnen organismer har til å forårsake sykdom i vert defineres som virulens (Sharma et al., 2017). Bakterier er blant organismene som ved ulike typer virulensfaktorer kan forårsake sykdom (Bhattacharjee, 2016). Toksiner inngår under mekanismene tilhørende virulens, og defineres som stoffer som kan produseres av bakterier og ha en utøvende toksisk effekt med påfølgende celledød hos vert (Vorland, 2001). I denne oppgaven ble gjort funn av gener som kodet for virulens og toksiner-antitoksin system i begge prøvene identifisert som *E. coli*.

5.4.1 Gener som koder for virulens

For å detektere virulensgener ble prøvene screenet for diarégivende *E. coli* ved PCR med påfølgende Sanger-sekvensering. I tillegg ble prøvene HGS med videre søk i databasene MyVirDB og VFDB for virulensgener. Resultatene fra Sanger sekvensering viste til negative funn i alle prøvene for alle virulensprimerne som ble testet. Allikevel ble det gjort funn av virulensgener ved søk i databasene MyVirDB og VFDB. Funnene fra HGS viser ikke til resultater som samsvarer med virulensprimerne som det ble screenet for ved PCR og Sanger-sekvensering. Det kan derfor antas at samme gener som koder for virulens som videre beskrives under også ville ha blitt detektert ved PCR og Sanger-sekvensering ved screening.

Innen industriproduksjon av fjærkre forårsaker aviær patogene *E. coli* (APEC) ulike sykdommer (Nakazato et al., 2009). APEC defineres som en zoonotisk patogen. I denne oppgaven ble det gjort funn av APEC O1 i begge prøvene med *E. coli* fra Sandvedparken og Stokkalandsvatnet. APEC med serotype O1 regnes, sammen med O2 og O78, som mest forekomne serotypen som forårsaker *E. coli* infeksjoner i fugler. Funn i fjærkre gjør APEC til en antatt matbåren patogen. Tidligere studier har antatt mulig involvering av smitte med APEC over i næringsmidler som følge av virulensmekanismene (Kathayat et al., 2021). I tillegg har også APEC tidligere blitt funnet i et flertall av prøver med *E. coli* isolert fra akvatiske miljø i Japan (Hayashi et al., 2019).

Genet ychO koder for adhesinet YchO. Tidligere har det blitt rapportert funn av ychO i både patogene og apatogene *E. coli* stammer. Pilatti og medarbeiderne fant tilstedeværelse i patogene *E. coli*. Henholdsvis ychO uttrykt i APEC stammen kalt SEPT362. Genet ychO spiller en viktig rolle i for koloniseringen i infeksjonssykdommer forårsaket av SEPT362, herunder i ryggmarg og lunger til infiserte kyllinger (Pilatti et al., 2016).

Genet cfaB spiller en viktig rolle i virulensmekanismene til ETECs adhesjon til tarmveggen. For at adhesjon av ETEC til tarmveggen skal forekomme, er koloniseringen avhengig av koloniseringsfaktorer. CFA/I er den mest forekomne koloniseringsfaktoren. Genet cfaB er tilsluttet og utgjør hoved-underenheten til CFA/I. Tilstedeværelse av cfaB er derfor nødvendig for at koloniseringsfaktoren i det hele tatt skal uttrykkes. En tidligere studie konkluderte med at cfaB koder for CfaB som er et karbohydratkodende protein. CfaB samhandler med ulike sekvenser bestående av karbohydrater. Den den humane tynntarmen finnes samme karbohydratsekvenser i store mengder (Jansson et al., 2006). Begge *E. coli* prøvene i denne oppgaven viste til funn av cfaB.

I denne oppgaven ble det gjort funn av gener tilhørende eha familien, herunder ehaB, ehaC og ehaD. Genene koder for proteinene EhaB, EhaC og EhaD. Tidligere studier har identifisert Eha proteinene i en stamme av EHEC, og konkludert tilhørighet til familien bestående av autotransportere. EhaB proteinet befinner seg på overflaten i celler. Ved overekspresjon i *E. coli*, har EhaB vist å kunne fremme adhesjon til ekstracellulære matriks, samt ha en rolle i dannelse av biofilm (Wells et al., 2009). En annen studie har vist at deteksjon av EHEC med gener som koder for autotransporter familien (Easton et al., 2011).

I denne oppgaven ble genet fdeC i begge prøvene identifisert som *E. coli*. fdeC genet koder for adhesinet FdeC (Ali et al., 2020). FdeC kan mediere adhesjon av *E. coli* til ekstracellulær matriks og celler i pattedyr (Ali et al., 2020; Nesta et al., 2012). En tidligere studie viste til funn av fdeC i alle 9 isolatene av patogene *E. coli* som ble testet, herunder (Ali et al., 2020). En annen studie ble utført på blære til mus. Resultat av studier på mus viste til at FdeC kan ha en antatt rolle infeksjoner i blære som følge av kolonisering og adhesjon av UPEC (Nesta et al., 2012). I tillegg gjorde også Easton og medarbeiderne til at FdeC spiller en rolle i adhesjon av EHEC, hvor funn rapporterte adhesjon og kolonisering i endetarmen til kyr (Easton et al., 2014) Tidligere studier kan derav tyde på funn av fdeC i denne oppgaven ikke er overraskende, men alvorlig som følge av den antatte rollen genet spiller i kolonisering og adhesjon av patogene *E. coli* til vev i pattedyr.

På bakterier er fimbriae korte hårformede utvekster som kan adherere til overflater og utgjør en viktig virulensfaktor (Jonson et al., 2004). I denne oppgaven ble det gjort funn av to gener som

koder for fimbriae i bakterier, herunder fmlA og lpfA. fmlA koder for fimbriae i UPEC, hvor genet er den subenheten som i størst grad er assosiert med virulens i F9 pilus (Connolly et al., 2021). Gener tilhørende lpf familien er vist å kunne adherere til epitelceller. En tidligere studie viste til at genet lpfA var assosiert med diarésykdom hos barn forårsaket av EPEC (Afset et al., 2006). I motsetning, fant en annen studie at gener tilhørende lpfA ikke var involvert i EPEC adherens (Tatsuno et al., 2006).

I denne oppgaven ble det funnet både sitA, sitB, sitC og sitD i begge prøvene med *E. coli*. Genene koder for sitABCD som fungerer som transporter for jern og mangan i *E. coli* stammer. Gener som koder for sitABCD er assosiert med ekstraintestinale infeksjonssykdommer forårsaket av *E. coli*. Tidligere har det både gjort funn hvor gener som koder for sitABCD både er assosiert med urinveisinfeksjoner i mennesker, samt infeksjoner i fjærkre (Sabri et al., 2006). Ut ifra tidligere funn kan det derfor antas at gener som koder for sitABCD er utbredt i patogener i næringskjeden, og derfor ikke et overraskende funn.

I begge prøvene identifisert som *E. coli* ble det gjort funn av esp gen. Herunder, espL1, espR1, espX1, espX2, espX4 og espX5. Genene tilhørende esp koder for type III sekresjonssystem effektor (T3SS). Virulensmekanismen T3SS gjør det mulig å injisere effektorproteiner direkte, for patogene gramnegative bakterier, i vertscellens cytoplasma (Coburn et al., 2007). Tidligere studier har vist til funn, tilsvarende deteksjon i *E. coli* gjort i denne oppgaven. Hua og medarbeiderne fant espX i isolater fra shigatoksinproduserende *E. coli* (STEC) assosiert med hemolytisk uremisk sykdom (HUS) (Hua et al., 2021). I motsetning til espX, rapporterer andre tidligere studier involvering espL og espR som virulensmekanismer i ESX-sekresjonssystem, i stammer tilhørende *Mycobacterium* spp. (Blasco et al., 2012; Stoop et al., 2011).

5.4.2 Toksiner

Toksiner kan produseres av patogener bakterier og har evnen til å utøve virulente mekanismer på vertsceller, og på denne måten forårsake bakterielle infeksjoner (do Vale et al., 2016; Henkel et al., 2010). I denne oppgaven ble det gjort funn av gener som koder for toksin – antitoksin systemer i prøvene identifisert som *E. coli* og *P. aeruginosa*.

I motsetning til toksiner, som betegnes av selve stoffet som kan produseres av bakterier og andre mikroorganismer og påføre skadelige effekter på vert, er TAS gener som befinner seg i det bakterielle genomet og koder for to moduler kalt toksin og antitoksin (Henkel et al., 2010; Jurenas et al., 2022). I det genetiske systemet vil toksinene forårsake inhibering av cellulære prosesser, mens antitoksinet vil motvirke hemming og fungerer som en antagonist (Jurenas et al., 2022). Til sammenligning med ARG kan TAS gener overføres via HGO (Song & Wood, 2020). Sett fra en annen synsvinkel, har også TAS flere fellesnevnere i henhold til virkningsmekanismene sammenlignet med antibiotika. TAS kan virke både ved å inhibere syntese i cellevegg, DNA replikasjon og transkripsjon (Yang & Walsh, 2017).

Tidligere studier har antatt at toksiner spiller en viktig rolle i cellulær overlevelse som følge av eksponering til antibiotika. Mekanismene som har blitt hypotetisert er toksiners evne til å bytte til en inaktiv tilstand og derav være motstandsdyktige mot stress forårsaket av antibiotika (Page & Peti, 2016). Sett i sammenheng med utvikling og spredning av ARB, er det derfor nødvendig å forstå evolusjonen til bakterielle toksiner som følge av virkningsmekanismene, for å kunne bekjempe AR (Yang & Walsh, 2017)

5.4.3 Biofilm

Det lukkede samfunnet av mikroorganismer i biofilmer er et problem, særlig sett i sammenheng med resistens mot antimikrobielle midler. Biofilmer gir patogene bakterier et fortrinn ved infeksjonssykdommer som følge av biofilmens struktur, bestående av DNA, proteiner og polysakkarider. Ved infeksjonssykdommer vil derfor patogener både kunne søke beskyttelse mot vertens immunsystem og virkningsmekanismene til antibiotika. I tillegg har strukturen til biofilmer vist å gi enda et konkurransefortrinn, som følge av strukturens tilretteleggelse for HGO som bidrar med en forenklet økning i spredning av ARG mellom bakterier. Sett ut ifra både antibiotikas virkningsmekanismer, behøves det derfor høye doser for å i det hele tatt gi en effekt. Sett fra en annen synsvinkel kan høye doser av antibiotika antas å ikke gi en ønsket effekt som følge av utvikling og spredning av ARG øker i biofilm (Reygaert, 2018). I tillegg er det også blitt rapportert fra tidligere studier at biofilmer som utsettes for stress som følge av eksponering av antibiotika bidrar med økt biofilmdannelse (Bhattacharjee, 2016). I denne oppgaven ble det gjort funn av gener som koder for virulens, tilhørende familien eha, som ofte sees i sammenheng med biofilmdannelse. Som følge av mekanismene som gir bakterier i biofilm et økt konkurransefortrinn for overlevelse, er det derfor kritisk at et søkelys rettes mot forebygging utvikling og spredning av ARG i biofilmer, særlig i infeksjonssykdommer forårsaket av patogener (Prinzi & Rohde, 2023).

5.5 Antimikrobiell resistens mot kjemiske substanser

Et eget klassifiseringssystem for resistens mot kjemiske substanser har blitt etablert, som følge av evnen kjemikalier har til å forårsake og indusere resistens hos bakterier mot antimikrobielle midler. Systemet inndeles i 3 kategorier etter hvilken grad kjemiske substanser er forbundet med resistens, herunder «svært sannsynlig», «sannsynlig», «usannsynlig» og «svært usannsynlig» (VKM, 2016). I denne oppgaven ble det gjort funn av gener som koder for resistens mot metaller og biocider. I tillegg ble det gjort funn av gener som kodet for resistens mot syrer i *E. coli* prøven hentet fra Stokkalandsvatnet, og gen som kodet for resistens mot QAC i *E. coli* prøven fra Sandvedparken.

5.5.1 Tungmetaller

Funn av gener som koder for metallresistens ble gjort i begge prøvene med *E. coli*, samt *P. aeruginosa* prøven. Blant metallene som det ble kodet resistens for, var det flere tungmetaller. Tungmetallene inkluderte blant annet kadmium, kobber og sink. Hos bakterier klassifiseres tungmetallene kadmium, kobber og sink i kategorien «svært sannsynlig» for involvering i antimikrobiell-, ko- og kryssristens. Det ble også gjort funn av gen som koder for resistens mot tungmetallet kvikksølv i prøven med *P. aeruginosa*. Kvikksølv som et tungmetall sees også i sammenheng med resistens, men er ikke like forekommen som ovennevnte kadmium, kobber og sink. Kvikksølv klassifiseres derfor i gruppen «sannsynlig» for involvering i resistens (VKM, 2016). På den ene siden kan tungmetallenes involvering i resistensutvikling skyldes samseleksjon som oppstår for bakteriestammer som er antibiotikaresistente. På fra en annen side viser nyere forskning til at det ikke er eksponering for metaller over tid som forårsaker metallresistens, men selve bruken og eksponeringen for antibiotika (Larsson & Flach, 2022).

5.5.2 Biocider

I likhet med tungmetaller, ble det også gjort funn av gener som koder for resistens mot biocider. Biocider har på den ene siden, både industrielt og klinisk, spilt en viktig rolle for å kontrollere vekst av mikroorganismer og forebygge infeksjonssykdommer. Diskusjonen rundt bruk av biocider innen industri- og helsesektor på en annen side økt betraktelig innad det vitenskapelige miljø, som følge av resistensutvikling og ineffektiv bakterisidal effekt (Jones & Joshi, 2021). Allikevel påpekes viktigheten av opprettholdelsen av biocider i bekjempelse av ARB, for å forebygge utbredelsen av uønskede infeksjonssykdommer i samfunnet (Jones & Joshi, 2021). Prøve P2.SP.MB_ESBL fra Sandvedparken, som ble identifisert til å være *E. coli*, var den eneste av prøvene som hadde gen som kodet for resistens mot QAC. Klassifisering av resistens plasserer QAC i gruppen «sannsynlig» (VKM, 2016). Tidligere studier har også gjort liknende funn av gen som koder for resistens i *E. coli* mot QAC. En studie viste til at sugE genet, hvis uttrykket, kan drive bakteriell resistens mot spesifikke legemidler, men er svært spesifikke hvor den tilhørende proteingruppen, SMR-familien, kun transporterer et smalt spekter av QAC (Chung & Saier, 2002). Til tross for det smale spekteret som kan transporteres, har QAC vist å fungere bra for å forebygge infeksjoner forårsaket av patogener tilhørende ESKAPE. Den biocide effekten vil observeres uavhengig av ESKAPE art, som følge av den utøvende virkningen QAC vil ha på den bakterielle cellemembranen (Chung & Saier, 2002; Jones & Joshi, 2021).

I prøvene med både *E. coli*, samt *P. aeruginosa* ble det gjort funn av gener som kodet for resistens mot hydrogenperoksid. I tillegg ble det også detektert resistens mot biocidet i begge *E. coli* prøvene ved søk i ResFinder. Hydrogenperoksid blir ofte sett i sammenheng med bruk i matvareindustrien, samt kliniske miljø, som følge av den ikke-toksiske effekten som følge av nedbrytningen til hydrogen og vann (Jones & Joshi, 2021). Data for resistens mot hydrogenperoksid er manglende, og det er derav ikke angitt klassifisering basert på prevalens av resistens (VKM, 2016).

5.5.3 Syrer

Både uorganiske- og organiske syrer er kjemiske forbindelser, hvor resistensutvikling kategoriseres som «usannsynlig» (VKM, 2016). I denne oppgaven ble det dog gjort funn av genene hdeD og ydeP som koder for resistens mot syrer i *E. coli* prøven fra Stokkalandsvatnet. Tidligere studier har vist at ved hjelp av glutaminsyreavhengig syremotstandssystem (GAD), kan allikevel *E. coli* overleve sure stressforhold. Genet hdeD er vist å ha en tilhørighet til GAD (Yamanaka et al., 2022). Genet ydeP har også fra tidligere studier vist å ha en involvering i resistens mot syre ved overekspresjon (Johnson et al., 2014).

5.4.6 Betydningen av resistens mot kjemiske substanser

Det ble gjort funn av gener som koder for resistens mot biocider og metaller i forskjellig grad hos alle bakteriene, samt syre for *E. coli* fra Stokkalandsvatnet. Selv om resistens mot ulike substanser i gruppene «svært sannsynlig», «sannsynlig», «usannsynlig» og «svært usannsynlig», viser klassifisering av substanser innen ulike kategorier til stor usikkerhet. Dette som følge av den kontinuerlige utviklingen av gener, som medfører at bakterier i stor grad har evne til å tilpasse seg til endrede omgivelser. Det kan derfor antas at resistens mot hydrogenperoksid som ble observert i denne oppgaven, både i bakteriene *E. coli* og *P. aeruginosa*, skyldes en slik bakteriell evolusjon. På den ene siden har konsentrasjon av kjemiske substanser mye å si for forekomst av resistens (VKM, 2016). Allikevel rapporteres det at konsentrasjon som kreves av både metaller og biocider for samseleksjon og seleksjon er svært lite studert (Larsson & Flach, 2022).

5.5 Akvatiske miljø som spredningspunkt for antibiotikaresistens

I denne oppgaven ble det gjort funn av multiresistente bakterieprøver innhentet fra Sandnes kommune, henholdsvis fra Sandvedparken og Stokkalandsvatnet. Elven Storåna i Sandvedparken og tjernet Stokkalandsvatnet tilhører samme hydrologiske system, Storånavassdraget. Det befinner seg et rikt fugleliv rundt vannkildene, hvor 100 arter er beskrevet i området rundt Stokkalandsvatnet (Miljødirektoratet, 2023). ARB har tidligere blitt påvist i flere ulike fuglearter. Fugler kan operere som et reservoar for ARB, og det har derfor blitt antatt at fugler spiller en rolle i spredning av AR. Tidligere studier har vist til at ARB kan spres med trekkfugler. Det kan derfor antas at ruten for spredning via fugler involverer ARB fra ulike land (Bonnedahl & Jarhult, 2014).

I områdene rundt vannkildene er det også tilrettelagte friluftsområder, hvor flere mennesker ferdes (Miljødirektoratet, 2023). Utvikling og spredning av ARG skjer raskt, hvorpå forekomsten økes som følge av menneskelig innvirkning og aktivitet i det ytre miljøet (Finley et al., 2013). Det kan derfor antas at stor menneskelig trafikk i områdene rundt vannkildene bidrar med utvikling og spredning av ARG.

I tillegg er det også kjent at både ARB og ARG i landbruk utgjør et viktig reservoar for spredning til omkringliggende miljø. Bai og medarbeiderne undersøkte hvorvidt ARB og ARG kan spres via vind fra reservoaret i landbruket, hvor det ble antatt at ARG kunne spres 10 kilometer med vinden (Bai et al., 2022).

Tidligere har det blitt gjort funn av både ARB og ARG med tilstedeværelse blant annet i innsjøer, elver og overflatevann (Sharma et al., 2016). På den ene siden er det vanskelig å forutse evolusjonære hendelser som kan medfører til utvikling og spredning av nye resistensmekanismer (Larsson & Flach, 2022). Tidligere studier har rapportert at enkelte kliniske ARB har hatt sin opprinnelse fra miljøet som følge av spredning av ARG til patogener (Wright, 2010). Det er derfor en nødvendighet at konsekvensene for miljøets involvering i utvikling og spredning av ARB for at resistenskrisen skal kunne håndteres. Kartlegging av faktorer og begrensninger forårsaker utvikling av ARB, samt ruter for spredning av ARG, anses derfor som en nødvendighet å etablere (Larsson & Flach, 2022).

5.6 Videre arbeid

Denne oppgaven viste til funn av multiresistente bakterier fra akvatiske miljø i Sandnes kommune, med ulike resistensmekanismer. Funnene understreker viktigheten av videre analyser av ARG i vannkilder, særlig for resistensmekanismene som ble antatt å kunne påvirke helse innad i næringskjeden. Videre arbeid bør derfor i all hovedsak rettes mot ytterligere identifisering og screening av isolater fra akvatiske miljø. Det bør undersøkes hvordan ARB havnet i vannkildene, samt antatte kilder for kontaminering slik som fuglelivet og særligtrekkfugler. I tillegg bør ytterligere analyser foretas av allerede testede vannkilder, samt omkringliggende akvatiske miljø, hvor spredning av ARG via HGO undersøkes.

6.0 Konklusjon

Formålet med oppgaven var å undersøke vannprøver innhentet fra akvatisk ytre miljø i Rogaland fylke, med påfølgende deteksjon av resistensmekanismer, samt vurdering av spredning til næringskjeden. Ved fenotypiske og genotypiske analyser ble det gjort funn av MDR bakterier, henholdsvis *E. coli* og *P. aeruginosa* fra elven Storåna i Sandvedparken, samt *E. coli* fra tjernet Stokkalandsvatnet. Det ble også gjort funn av flere resistens- og virulensmekanismer, samt ARG. I tillegg ble genet som koder for ESBL, blacTX-M-15, detektert i prøvene identifisert som *E. coli*. Ut ifra funnene i oppgaven kan det antas at miljøet spiller en viktig rolle i utvikling og spredning av ARG til både mennesker og dyr. Videre forskning er dog nødvendig for å kartlegge mekanismene og betydningen bak spredning av ARG fra akvatiske miljø til næringskjeden.

7.0 Referanseliste

Afset, J. E., Bruant, G., Brousseau, R., Harel, J. e., Anderssen, E., Bevanger, L. & Bergh, K. r. (2006). Identification of Virulence Genes Linked with Diarrhea Due to Atypical Enteropathogenic

Escherichia coli

- by DNA Microarray Analysis and PCR. *Journal of Clinical Microbiology*, 44 (10): 3703-3711. doi: 10.1128/jcm.00429-06.
- Alby, K. & Miller, M. B. (2023). 290 Mechanisms and detection of antimicrobial resistance. *Principles and practice of pediatric infectious diseases*: 1506 - 1516. doi: <u>https://doi.org/10.1016/B978-0-323-75608-2.00290-1</u>.
- Alekshun, M. N. & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. *Cell*, 128 (6): 1037-50. doi: 10.1016/j.cell.2007.03.004.
- Ali, A., Kolenda, R., Khan, M. M., Weinreich, J., Li, G., Wieler, L. H., Tedin, K., Roggenbuck, D. & Schierack, P. (2020). Novel Avian Pathogenic Escherichia coli Genes Responsible for Adhesion to Chicken and Human Cell Lines. *Appl Environ Microbiol*, 86 (20). doi: 10.1128/AEM.01068-20.
- Andrews, J. M. (2002). Determination of minimum inhibitory concentrations. *Journal of Antimicrobial Chemotherapy*, 49 (6): 1049-1049. doi: 10.1093/jac/dkf083.
- Arthur, M. & Courvalin, P. (1986). Contribution of two different mechanisms to erythromycin resistance in Escherichia coli. *Antimicrob Agents Chemother*, 30 (5): 694-700. doi: 10.1128/AAC.30.5.694.
- Baggio, D. & Ananda-Rajah, M. R. (2021). Fluoroquinolone antibiotics and adverse events. *Aust Prescr*, 44 (5): 161-164. doi: 10.18773/austprescr.2021.035.
- Bai, H., He, L. Y., Wu, D. L., Gao, F. Z., Zhang, M., Zou, H. Y., Yao, M. S. & Ying, G. G. (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. *Environ Int*, 158: 106927. doi: 10.1016/j.envint.2021.106927.
- Belotindos, L. P., Tsunoda, R., Villanueva, M. A., Nakajima, C., Mingala, C. N. & Suzuki, Y. (2022). Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. *J Glob Antimicrob Resist*, 30: 38-46. doi: 10.1016/j.jgar.2022.04.012.
- Berinson, B., Degel-Brossmann, N., Olearo, F., Roggenkamp, H. G., Both, A., Aepfelbacher, M., Christner, M. & Rohde, H. (2023). Evaluation of a rapid combination disc test (RCDT) for direct phenotypic detection of extended-spectrum beta-lactamase production in E. coli from positive blood culture bottles. *J Antimicrob Chemother*, 78 (4): 1028-1033. doi: 10.1093/jac/dkad041.
- Bernatova, S., Samek, O., Pilat, Z., Sery, M., Jezek, J., Jakl, P., Siler, M., Krzyzanek, V., Zemanek, P., Hola, V., et al. (2013). Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. *Molecules*, 18 (11): 13188-99. doi: 10.3390/molecules181113188.

- Bhattacharjee, M. K. (2016). *Chemistry of antibiotics and related drugs*. 2 utg. Sveits: Springer international publishing doi: <u>https://doi.org/10.1007/978-3-031-07582-7</u> (lest 15. april 2023).
- Bielaszewska, M., Daniel, O., Karch, H. & Mellmann, A. (2020). Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J Antimicrob Chemother, 75 (9): 2442-2451. doi: 10.1093/jac/dkaa214.
- Bio-Rad. (u.å.). *Multiplex PCR*. Tilgjengelig fra: <u>https://www.bio-</u> rad.com/featured/en/multiplex-pcr.html (lest 05. mars 2023).
- Blasco, B., Chen, J. M., Hartkoorn, R., Sala, C., Uplekar, S., Rougemont, J., Pojer, F. & Cole, S. T. (2012). Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoidassociated protein. *PLoS Pathog*, 8 (3): e1002621. doi: 10.1371/journal.ppat.1002621.
- Bogaerts, B., Winand, R., Van Braekel, J., Hoffman, S., Roosens, N. H. C., De Keersmaecker, S. C. J., Marchal, K. & Vanneste, K. (2021). Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for timecritical situations. *Microb Genom*, 7 (11). doi: 10.1099/mgen.0.000699.
- Bonnedahl, J. & Jarhult, J. D. (2014). Antibiotic resistance in wild birds. *Ups J Med Sci*, 119 (2): 113-6. doi: 10.3109/03009734.2014.905663.
- Bonnin, R. A., Bogaerts, P., Girlich, D., Huang, T. D., Dortet, L., Glupczynski, Y. & Naas, T. (2018). Molecular Characterization of OXA-198 Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates. *Antimicrob Agents Chemother*, 62 (6). doi: 10.1128/AAC.02496-17.
- Bracco, S., Migliavacca, R., Pini, B., Corbo, N., Nucleo, E., Brigante, G., Piazza, A.,
 Micheletti, P. & Luzzaro, F. (2013). Evaluation of brilliance CRE agar for detection of carbapenem-resistant gram-negative bacteria. *New Microbiol*, 36(2): 181-186.
 Tilgjengelig fra: <u>https://pubmed.ncbi.nlm.nih.gov/23686124/</u> (lest 10. april 2023).
- Brody, L. (2023). *Nucleotide*: National Human Genome Research Institute. Tilgjengelig fra: <u>https://www.genome.gov/genetics-glossary/Nucleotide</u> (lest 02. juni 2023).
- Bush, K. & Bradford, P. A. (2016). beta-Lactams and beta-Lactamase Inhibitors: An Overview. *Cold Spring Harb Perspect Med*, 6 (8). doi: 10.1101/cshperspect.a025247.
- Castaneda-Garcia, A., Blazquez, J. & Rodriguez-Rojas, A. (2013). Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. *Antibiotics* (*Basel*), 2 (2): 217-36. doi: 10.3390/antibiotics2020217.
- Catalano, A., Iacopetta, D., Ceramella, J., Scumaci, D., Giuzio, F., Saturnino, C., Aquaro, S., Rosano, C. & Sinicropi, M. S. (2022). Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. *Molecules*, 27 (3). doi: 10.3390/molecules27030616.
- Chen, L., Cai, Y., Zhou, G., Shi, X., Su, J., Chen, G. & Lin, K. (2014). Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens. *PLoS One*, 9 (2): e88886. doi: 10.1371/journal.pone.0088886.
- Cheungpasitporn, W., Du, Z., Wang, M., Cui, G., Zu, X., Zhao, Z. & Xue, Y. (2020). The prevalence of amphenicol resistance in Escherichia coli isolated from pigs in mainland China from 2000 to 2018: A systematic review and meta-analysis. *Plos One*, 15 (2). doi: 10.1371/journal.pone.0228388.

- Chien, J. Y., Chiu, W. Y., Chien, S. T., Chiang, C. J., Yu, C. J. & Hsueh, P. R. (2016).
 Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant
 Mycobacterium tuberculosis Isolates. *Antimicrob Agents Chemother*, 60 (4): 2090-6.
 doi: 10.1128/AAC.01049-15.
- Cho, H. H., Kwon, G. C., Kim, S. & Koo, S. H. (2015). Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-beta-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea. *J Microbiol Biotechnol*, 25 (7): 1154-62. doi: 10.4014/jmb.1503.03065.
- Chung, Y. J. & Saier, M. H., Jr. (2002). Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol, 184 (9): 2543-5. doi: 10.1128/JB.184.9.2543-2545.2002.
- Coates, A. R., Halls, G. & Hu, Y. (2011). Novel classes of antibiotics or more of the same? *Br J Pharmacol*, 163 (1): 184-94. doi: 10.1111/j.1476-5381.2011.01250.x.
- Coburn, B., Sekirov, I. & Finlay, B. B. (2007). Type III secretion systems and disease. *Clin Microbiol Rev*, 20 (4): 535-49. doi: 10.1128/CMR.00013-07.
- Connolly, J. P. R., Turner, N. C. A., Hallam, J. C., Rimbi, P. T., Flett, T., McCormack, M. J., Roe, A. J. & O'Boyle, N. (2021). d-Serine induces distinct transcriptomes in diverse Escherichia coli pathotypes. *Microbiology (Reading)*, 167 (10). doi: 10.1099/mic.0.001093.
- Crone, S., Vives-Florez, M., Kvich, L., Saunders, A. M., Malone, M., Nicolaisen, M. H., Martinez-Garcia, E., Rojas-Acosta, C., Catalina Gomez-Puerto, M., Calum, H., et al. (2020). The environmental occurrence of Pseudomonas aeruginosa. *APMIS*, 128 (3): 220-231. doi: 10.1111/apm.13010.
- Crossley, B. M., Bai, J., Glaser, A., Maes, R., Porter, E., Killian, M. L., Clement, T. & Toohey-Kurth, K. (2020). Guidelines for Sanger sequencing and molecular assay monitoring. *J Vet Diagn Invest*, 32 (6): 767-775. doi: 10.1177/1040638720905833.
- Dahal, R. H., Choi, Y. J., Kim, S. & Kim, J. (2023). Differentiation of Escherichia fergusonii and Escherichia coli Isolated from Patients with Inflammatory Bowel
 Disease/Ischemic Colitis and Their Antimicrobial Susceptibility Patterns. *Antibiotics* (*Basel*), 12 (1). doi: 10.3390/antibiotics12010154.
- Dallenne, C., Da Costa, A., Decre, D., Favier, C. & Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. *J Antimicrob Chemother*, 65 (3): 490-5. doi: 10.1093/jac/dkp498.
- Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance. *Microbiol Mol Biol Rev*, 74 (3): 417-33. doi: 10.1128/MMBR.00016-10.
- De Groote, V. N., Fauvart, M., Kint, C. I., Verstraeten, N., Jans, A., Cornelis, P. & Michiels, J. (2011). Pseudomonas aeruginosa fosfomycin resistance mechanisms affect noninherited fluoroquinolone tolerance. *J Med Microbiol*, 60 (Pt 3): 329-336. doi: 10.1099/jmm.0.019703-0.
- Delgado-Gardea, M. C., Tamez-Guerra, P., Gomez-Flores, R., Zavala-Diaz de la Serna, F. J., Eroza-de la Vega, G., Nevarez-Moorillon, G. V., Perez-Recoder, M. C., Sanchez-Ramirez, B., Gonzalez-Horta Mdel, C. & Infante-Ramirez, R. (2016). Multidrug-

Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico. *Int J Environ Res Public Health*, 13 (6). doi: 10.3390/ijerph13060597.

- Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S. & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. *Int J Hyg Environ Health*, 244: 114006. doi: 10.1016/j.ijheh.2022.114006.
- Diggle, S. P. & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. *Microbiology (Reading)*, 166 (1): 30-33. doi: 10.1099/mic.0.000860.
- do Vale, A., Cabanes, D. & Sousa, S. (2016). Bacterial Toxins as Pathogen Weapons Against Phagocytes. *Front Microbiol*, 7: 42. doi: 10.3389/fmicb.2016.00042.
- Easton, D. M., Totsika, M., Allsopp, L. P., Phan, M. D., Idris, A., Wurpel, D. J., Sherlock, O., Zhang, B., Venturini, C., Beatson, S. A., et al. (2011). Characterization of EhaJ, a New Autotransporter Protein from Enterohemorrhagic and Enteropathogenic Escherichia coli. *Front Microbiol*, 2: 120. doi: 10.3389/fmicb.2011.00120.
- Easton, D. M., Allsopp, L. P., Phan, M. D., Moriel, D. G., Goh, G. K., Beatson, S. A., Mahony, T. J., Cobbold, R. N. & Schembri, M. A. (2014). The Intimin-Like Protein FdeC Is Regulated by H-NS and Temperature in Enterohemorrhagic Escherichia coli. *Appl Environ Microbiol*, 80 (23): 7337-47. doi: 10.1128/AEM.02114-14.
- EFSA. (2015). Scientific opinion on nitrofurans and their metabolites in food. *EFSA Journal*, 13 (6). doi: 10.2903/j.efsa.2015.4140 (lest 03. mai 2023).
- EUCAST. (2023). Antimicrobial wild type distributions of microorganisms. Tilgjengelig fra: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5 D=-1&search%5Bspecies%5D=-1&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50 (lest 23. mai 2023).
- Evans, B. A. & Amyes, S. G. (2014). OXA beta-lactamases. *Clin Microbiol Rev*, 27 (2): 241-63. doi: 10.1128/CMR.00117-13.
- Faccone, D., Moredo, F. A., Giacoboni, G. I., Albornoz, E., Alarcon, L., Nievas, V. F. & Corso, A. (2019). Multidrug-resistant Escherichia coli harbouring mcr-1 and bla(CTX-M) genes isolated from swine in Argentina. *J Glob Antimicrob Resist*, 18: 160-162. doi: 10.1016/j.jgar.2019.03.011.
- Falagas, M. E., Vouloumanou, E. K., Samonis, G. & Vardakas, K. Z. (2016). Fosfomycin. *Clin Microbiol Rev*, 29 (2): 321-47. doi: 10.1128/CMR.00068-15.
- Falagas, M. E., Athanasaki, F., Voulgaris, G. L., Triarides, N. A. & Vardakas, K. Z. (2019). Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. *Int J Antimicrob Agents*, 53 (1): 22-28. doi: 10.1016/j.ijantimicag.2018.09.013.
- Farmer, J. J., 3rd, Weinstein, R. A., Zierdt, C. H. & Brokopp, C. D. (1982). Hospital outbreaks caused by Pseudomonas aeruginosa: importance of serogroup O11. *J Clin Microbiol*, 16 (2): 266-70. doi: 10.1128/jcm.16.2.266-270.1982.
- Fasugba, O., Gardner, A., Mitchell, B. G. & Mnatzaganian, G. (2015). Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. *BMC Infect Dis*, 15: 545. doi: 10.1186/s12879-015-1282-4.

- FHI. (2012). Om antibiotikaresistens: Folkehelseinstituttet. Tilgjengelig fra: <u>https://www.legemiddelhandboka.no/L1.1/Om_bruk_av_antimikrobielle_midler</u> (lest 16. april 2023).
- Finley, R. L., Collignon, P., Larsson, D. G., McEwen, S. A., Li, X. Z., Gaze, W. H., Reid-Smith, R., Timinouni, M., Graham, D. W. & Topp, E. (2013). The scourge of antibiotic resistance: the important role of the environment. *Clin Infect Dis*, 57 (5): 704-10. doi: 10.1093/cid/cit355.
- Finton, M. D., Meisal, R., Porcellato, D., Brandal, L. T. & Lindstedt, B. A. (2020). Whole Genome Sequencing and Characterization of Multidrug-Resistant (MDR) Bacterial Strains Isolated From a Norwegian University Campus Pond. *Front Microbiol*, 11: 1273. doi: 10.3389/fmicb.2020.01273.
- Founou, L. L., Founou, R. C. & Essack, S. Y. (2016). Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. *Front Microbiol*, 7: 1881. Tilgjengelig fra: <u>https://www.ncbi.nlm.nih.gov/pubmed/27933044</u>. doi: 10.3389/fmicb.2016.01881 (lest 10. juni 2023).
- Fredriksen Scientific. (u.å.). *Introduksjonsguide til PCR*. Tilgjengelig fra: <u>https://no.frederiksen.eu/Files/Files/Filer-til-Service/Introduksjon-til-PCR-NO.pdf</u> (lest 10. mars 2023).
- Fyfe, C., Grossman, T. H., Kerstein, K. & Sutcliffe, J. (2016). Resistance to Macrolide Antibiotics in Public Health Pathogens. *Cold Spring Harbor Perspectives in Medicine*, 6 (10). doi: 10.1101/cshperspect.a025395.
- GarcÍa AlegrÍa, A. M., Anduro-Corona, I., Perez-Martinez, C. J., Quizan-Plata, T., Armenta-Villegas, L., Rascon-Duran, M. L. & Astiazaran-Garcia, H. (2023). DNA quantification via nanodrop spectrophotometer: estimation of method uncertainty using DNA from standard reference materials, sprague dawley rats, and humans. *Journal of Chemical Metrology* (2): 1-17. doi: 10.25135/jcm.83.2301.2676.
- Girlich, D., Naas, T. & Nordmann, P. (2004). Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. *Antimicrob Agents Chemother*, 48 (6): 2043-8. doi: 10.1128/AAC.48.6.2043-2048.2004.
- Granum, P. E. (red.). (2017). *Matforgiftning smitte gjennom mat og vann*. 4 utg. Oslo: Cappelen Damm Høyskoleforlaget.
- Habboush, Y. & Guzman, N. (red.). (2023). *Antibiotic resistance*. Treasure Island (FL): StatPearls Publishing.
- Hainrichson, M., Yaniv, O., Cherniavsky, M., Nudelman, I., Shallom-Shezifi, D., Yaron, S. & Baasov, T. (2007). Overexpression and initial characterization of the chromosomal aminoglycoside 3'-O-phosphotransferase APH(3')-IIb from Pseudomonas aeruginosa. *Antimicrob Agents Chemother*, 51 (2): 774-6. doi: 10.1128/AAC.01034-06.
- Hall, J. P. J., Brockhurst, M. A. & Harrison, E. (2017). Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. *Philos Trans R Soc Lond B Biol Sci*, 372 (1735). doi: 10.1098/rstb.2016.0424.
- Hayashi, W., Tanaka, H., Taniguchi, Y., Iimura, M., Soga, E., Kubo, R., Matsuo, N.,Kawamura, K., Arakawa, Y., Nagano, Y., et al. (2019). Acquisition of mcr-1 andCocarriage of Virulence Genes in Avian Pathogenic Escherichia coli Isolates from

Municipal Wastewater Influents in Japan. *Appl Environ Microbiol*, 85 (22). doi: 10.1128/AEM.01661-19.

- Henkel, J. S., Baldwin, M. R. & Barbieri, J. T. (2010). Toxins from bacteria. *EXS*, 100: 1-29. doi: 10.1007/978-3-7643-8338-1_1.
- Hooper, D. C. & Jacoby, G. A. (2016). Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. *Cold Spring Harb Perspect Med*, 6 (9). doi: 10.1101/cshperspect.a025320.
- Howard, B. & Furman, B. (2018). Nitrofurantoin. *Elsevier*. doi: <u>https://doi.org/10.1016/B978-0-12-801238-3.98024-3</u>.
- Hua, Y., Chromek, M., Frykman, A., Jernberg, C., Georgieva, V., Hansson, S., Zhang, J., Marits, A. K., Wan, C., Matussek, A., et al. (2021). Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. *Virulence*, 12 (1): 1296-1305. doi: 10.1080/21505594.2021.1922010.
- Huang, L., Yuan, H., Liu, M. F., Zhao, X. X., Wang, M. S., Jia, R. Y., Chen, S., Sun, K. F., Yang, Q., Wu, Y., et al. (2017). Type B Chloramphenicol Acetyltransferases Are Responsible for Chloramphenicol Resistance in Riemerella anatipestifer, China. *Front Microbiol*, 8: 297. doi: 10.3389/fmicb.2017.00297.
- Huang, T. D., Bogaerts, P., Berhin, C., Guisset, A. & Glupczynski, Y. (2010). Evaluation of Brilliance ESBL agar, a novel chromogenic medium for detection of extendedspectrum-beta- lactamase-producing Enterobacteriaceae. *J Clin Microbiol*, 48 (6): 2091-6. doi: 10.1128/JCM.02342-09.
- Huddleston, J. R. (2014). Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. *Infect Drug Resist*, 7: 167-76. doi: 10.2147/IDR.S48820.
- Hutchings, M. I., Truman, A. W. & Wilkinson, B. (2019). Antibiotics: past, present and future. *Curr Opin Microbiol*, 51: 72-80. doi: 10.1016/j.mib.2019.10.008.
- Huttner, A., Verhaegh, E. M., Harbarth, S., Muller, A. E., Theuretzbacher, U. & Mouton, J.
 W. (2015). Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. *J Antimicrob Chemother*, 70 (9): 2456-64. doi: 10.1093/jac/dkv147.
- Institutt for biovitenskap. (2011a). *Delesjon*. Det matematisk-naturvitenskapelige fakultet: Universistetet i Oslo. Tilgjengelig fra: <u>https://www.mn.uio.no/ibv/tjenester/kunnskap/plantefys/leksikon/d/delesjon.html</u> (lest 10. juli 2023).
- Institutt for biovitenskap. (2011b). *DNA sekvensering*: Universistetet i Oslo. Tilgjengelig fra: <u>https://www.mn.uio.no/ibv/tjenester/kunnskap/plantefys/leksikon/d/dnasekv.html</u>.
- Institutt for biovitenskap. (2011c). *Sekvensering*: Universitetet i Oslo. Tilgjengelig fra: <u>https://www.mn.uio.no/ibv/tjenester/kunnskap/plantefys/leksikon/s/sekvensering.html</u> (lest 26. april 2023).
- Invitrogen Life Technologies. (2010). Qubit 2.0 fluorometer.
- Ishii, S. & Sadowsky, M. J. (2008). Escherichia coli in the Environment: Implications for Water Quality and Human Health. *Microbes Environ*, 23 (2): 101-8. doi: 10.1264/jsme2.23.101.
- Jacoby, G. A. (2009). AmpC beta-lactamases. *Clin Microbiol Rev*, 22 (1): 161-82, Table of Contents. doi: 10.1128/CMR.00036-08.

- Jadoon, R. J., Jalal-ud-Din, M. & Khan, S. A. (2015). E. coli Resistance to Ciprofloxacin and Common Associated Factors. *J Coll Physicians Surg Pak* (25(11)): 824-827.
- Jakobsen, L., Cattoir, V., Jensen, K. S., Hammerum, A. M., Nordmann, P. & Frimodt-Moller, N. (2012). Impact of low-level fluoroquinolone resistance genes qnrA1, qnrB19 and qnrS1 on ciprofloxacin treatment of isogenic Escherichia coli strains in a murine urinary tract infection model. *J Antimicrob Chemother*, 67 (10): 2438-44. doi: 10.1093/jac/dks224.
- Janda, J. M. & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. *J Clin Microbiol*, 45 (9): 2761-4. doi: 10.1128/JCM.01228-07.
- Jansson, L., Tobias, J., Lebens, M., Svennerholm, A. M. & Teneberg, S. (2006). The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. *Infect Immun*, 74 (6): 3488-97. doi: 10.1128/IAI.02006-05.
- Joensen, K. G., Tetzschner, A. M., Iguchi, A., Aarestrup, F. M. & Scheutz, F. (2015). Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. *J Clin Microbiol*, 53 (8): 2410-26. doi: 10.1128/JCM.00008-15.
- Johnson, M. D., Bell, J., Clarke, K., Chandler, R., Pathak, P., Xia, Y., Marshall, R. L., Weinstock, G. M., Loman, N. J., Winn, P. J., et al. (2014). Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. *Mol Microbiol*, 93 (5): 911-27. doi: 10.1111/mmi.12704.
- Jolley, K. A., Bray, J. E. & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res*, 3: 124. doi: 10.12688/wellcomeopenres.14826.1.
- Jones, I. A. & Joshi, L. T. (2021). Biocide Use in the Antimicrobial Era: A Review. *Molecules*, 26 (8). doi: 10.3390/molecules26082276.
- Jonson, A. B., Normark, S. & Rhen, M. (2004). Fimbriae, pili, flagella and bacterial virulence. *Concepts in bacterial virulence*, 12: 67-89.
- Jorgensen, J. H. & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. *Clin Infect Dis*, 49 (11): 1749-55. doi: 10.1086/647952.
- Juraschek, K., Kasbohrer, A., Malorny, B., Schwarz, S., Meemken, D. & Hammerl, J. A. (2021). Dissection of Highly Prevalent qnrS1-Carrying IncX Plasmid Types in Commensal Escherichia coli from German Food and Livestock. *Antibiotics (Basel)*, 10 (10). doi: 10.3390/antibiotics10101236.
- Jurenas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. (2022). Biology and evolution of bacterial toxin-antitoxin systems. *Nat Rev Microbiol*, 20 (6): 335-350. doi: 10.1038/s41579-021-00661-1.
- Kanchugal, P. S. & Selmer, M. (2020). Structural Recognition of Spectinomycin by Resistance Enzyme ANT(9) from Enterococcus faecalis. *Antimicrob Agents Chemother*, 64 (6). doi: 10.1128/AAC.00371-20.

- Kapoor, G., Saigal, S. & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. *J Anaesthesiol Clin Pharmacol*, 33 (3): 300-305. doi: 10.4103/joacp.JOACP_349_15.
- Kathayat, D., Lokesh, D., Ranjit, S. & Rajashekara, G. (2021). Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. *Pathogens*, 10 (4). doi: 10.3390/pathogens10040467.
- Katz, L. & Baltz, R. H. (2016). Natural product discovery: past, present, and future. *J Ind Microbiol Biotechnol*, 43 (2-3): 155-76. doi: 10.1007/s10295-015-1723-5.
- Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. (2007). A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. *Cell*, 130 (5): 797-810. doi: 10.1016/j.cell.2007.06.049.
- Laborda, P., Martinez, J. L. & Hernando-Amado, S. (2022). Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. *Microb Biotechnol*, 15 (2): 613-629. doi: 10.1111/1751-7915.13817.
- Larsson, D. G. J. & Flach, C. F. (2022). Antibiotic resistance in the environment. *Nat Rev Microbiol*, 20 (5): 257-269. doi: 10.1038/s41579-021-00649-x.
- Le, V. V. H. & Rakonjac, J. (2021). Nitrofurans: Revival of an "old" drug class in the fight against antibiotic resistance. *PLoS Pathog*, 17 (7): e1009663. doi: 10.1371/journal.ppat.1009663.
- Lee, P. Y., Costumbrado, J., Hsu, C. Y. & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. *J Vis Exp* (62). doi: 10.3791/3923.
- Linh, T. D., Thu, N. H., Shibayama, K., Suzuki, M., Yoshida, L., Thai, P. D., Anh, D. D., Duong, T. N., Trinh, H. S., Thom, V. P., et al. (2021). Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam. *J Glob Antimicrob Resist*, 27: 200-211. doi: 10.1016/j.jgar.2021.09.007.
- Liu, L., He, D., Lv, L., Liu, W., Chen, X., Zeng, Z., Partridge, S. R. & Liu, J. H. (2015). blaCTX-M-1/9/1 Hybrid Genes May Have Been Generated from blaCTX-M-15 on an IncI2 Plasmid. *Antimicrob Agents Chemother*, 59 (8): 4464-70. doi: 10.1128/AAC.00501-15.
- Loree, J. & Lappin, S. L. (u.å.). Bacteriostatic antibiotics.
- Mackenzie, J. S. & Jeggo, M. (2019). The One Health Approach-Why Is It So Important? *Trop Med Infect Dis*, 4 (2). doi: 10.3390/tropicalmed4020088.
- Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., et al. (2012).
 Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect*, 18 (3): 268-81. doi: 10.1111/j.1469-0691.2011.03570.x.
- Maharjan, N. (2022). Pseudomonas aeruginosa Isolates among Clinical Samples showing Growth in a Tertiary Care Centre: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc, 60 (252): 676-680. doi: 10.31729/jnma.6517.
- Maiden, M. C., Jansen van Rensburg, M. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A.
 & McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics. *Nat Rev Microbiol*, 11 (10): 728-36. doi: 10.1038/nrmicro3093.

Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. *Pathogens*, 10 (10). doi: 10.3390/pathogens10101310.

- Mendonca, J., Guedes, C., Silva, C., Sa, S., Oliveira, M., Accioly, G., Baylina, P., Barata, P., Pereira, C. & Fernandes, R. (2022). New CTX-M Group Conferring beta-Lactam Resistance: A Compendium of Phylogenetic Insights from Biochemical, Molecular, and Structural Biology. *Biology (Basel)*, 11 (2). doi: 10.3390/biology11020256.
- Miljødirektoratet. (2023). *Stokkalandsvatnet dyrefredningsområde* Tilgjengelig fra: <u>https://faktaark.naturbase.no/?id=VV00000756</u> (lest 09. juli 2023).
- Morita, Y., Tomida, J. & Kawamura, Y. (2014). Responses of Pseudomonas aeruginosa to antimicrobials. *Front Microbiol*, 4: 422. doi: 10.3389/fmicb.2013.00422.
- Moser, A. I., Kuenzli, E., Budel, T., Campos-Madueno, E. I., Bernasconi, O. J., DeCrom-Beer, S., Jakopp, B., Mohammed, A. H., Hassan, N. K., Fehr, J., et al. (2021). Travellers returning from the island of Zanzibar colonized with MDR Escherichia coli strains: assessing the impact of local people and other sources. *J Antimicrob Chemother*, 76 (2): 330-337. doi: 10.1093/jac/dkaa457.
- Munita, J. M. & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. *Microbiol Spectr*, 4 (2). doi: 10.1128/microbiolspec.VMBF-0016-2015.
- Nakazato, G., Campos, T. A. d., Stehling, E. G., Brocchi, M. & Silveira, W. D. d. (2009). Virulence factors of avian pathogenic Escherichia coli (APEC). *Pesquisa Veterinária Brasileira*, 29 (7): 479-486. doi: 10.1590/s0100-736x2009000700001.
- National institute of diabetes and digestive and kidney disease. (2012). *LiverTox: clinical and research information on drug-induced liver injury*. Bethesda (MD): NCBI National Center for Biotechnology Information Tilgjengelig fra: https://www.ncbi.nlm.nih.gov/books/NBK547840/ (lest 03. juli 2023).
- NCBI. (2020). *BlaEC BlaEC family class C beta-lactamase [Shigella flexneri 2a]*. National Library of Medicine: National Center for Biotechnology Information Tilgjengelig fra: <u>https://www.ncbi.nlm.nih.gov/gene/48107668</u> (lest 04. juli 2023).
- Nesse, L. L., Forfang, K., Stenrød, M., Slettemeås, J. S., Tessema, G. T., Hagen, S., Norström, M., Elameen, A., Johannessen, G., Sunde, M., et al. (2021). *Antimikrobiell reisistens i terrestrisk miljø* VI rapport.
- Nesta, B., Spraggon, G., Alteri, C., Moriel, D. G., Rosini, R., Veggi, D., Smith, S., Bertoldi, I., Pastorello, I., Ferlenghi, I., et al. (2012). FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. *mBio*, 3 (2). doi: 10.1128/mBio.00010-12.
- New England Biolabs Inc. (u.å.). *Multiplex PCR*. Tilgjengelig fra: <u>https://international.neb.com/applications/dna-amplification-pcr-and-qpcr/specialty-pcr/multiplex-pcr</u> (lest 05. mars 2023).
- Norsk legemiddelhåndbok. (2016a). *Aminoglykosider*. Tilgjengelig fra: <u>https://www.legemiddelhandboka.no/L1.2.9/Aminoglykosider</u> (lest 31. mai 2023).
- Norsk legemiddelhåndbok. (2016b). *Fluorokinoloner*. Tilgjengelig fra: <u>https://www.legemiddelhandboka.no/L1.2.13.1/Antimikrobielle_midler</u> (lest 31. mai 2023).

- Norsk legemiddelhåndbok. (2016c). *Kvartære ammoniumforbindelser*. Tilgjengelig fra: <u>https://www.legemiddelhandboka.no/L1.9.2.6/Kvart%C3%A6re_ammoniumforbindel</u> <u>ser</u> (lest 03. juni 2023).
- Norsk legemiddelhåndbok. (2016d). *Om bruk av antimikrobielle midler* Tilgjengelig fra: <u>https://www.legemiddelhandboka.no/L1.1/Om_bruk_av_antimikrobielle_midler</u> (lest 16. april 2023).
- Norsk legemiddelhåndbok. (2017). *Fosfomycin*. Tilgjengelig fra: https://www.legemiddelhandboka.no/L1.2.15.3/Fosfomycin (lest 10. april 2023).
- Ogbolu, D. O., Daini, O. A., Ogunledun, A., Alli, A. O. & Webber, M. A. (2011). High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. *Int J Antimicrob Agents*, 37 (1): 62-6. doi: 10.1016/j.ijantimicag.2010.08.019.
- Oxoid. (2010). *Brilliance ESBL*. Tilgjengelig fra: <u>http://www.oxoid.com/pdf/oxoid-Brilliance-ESBL.pdf</u>.
- Oxoid. (2011). Brilliance CRE.
- Page, M. G. P. (2012). Beta-lactam antibiotics. *Antibiotic discovery and development*: 79-117. doi: <u>https://doi.org/10.1007/978-1-4614-1400-1_3</u>.
- Page, R. & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. *Nat Chem Biol*, 12 (4): 208-14. doi: 10.1038/nchembio.2044.
- Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. *Biotechnol Adv*, 37 (1): 177-192. doi: 10.1016/j.biotechadv.2018.11.013.
- Patel, P. H. & Hashmi, M. F. (u.å.). *Macrolides*. Treasure Island, Florda: StatPearls Publishing. Tilgjengelig fra: <u>https://www.ncbi.nlm.nih.gov/books/NBK551495/</u> (lest 15. april 2023).
- Pilatti, L., Boldrin de Paiva, J., Rojas, T. C., Leite, J. L., Conceicao, R. A., Nakazato, G. & Dias da Silveira, W. (2016). The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain. *BMC Microbiol*, 16: 35. doi: 10.1186/s12866-016-0654-2.
- Poole, K. (2005). Aminoglycoside resistance in Pseudomonas aeruginosa. *Antimicrob Agents Chemother*, 49 (2): 479-87. doi: 10.1128/AAC.49.2.479-487.2005.
- Pottier, M., Gravey, F., Castagnet, S., Auzou, M., Langlois, B., Guerin, F., Giard, J. C., Leon, A. & Le Hello, S. (2023). A 10-year microbiological study of Pseudomonas aeruginosa strains revealed the circulation of populations resistant to both carbapenems and quaternary ammonium compounds. *Sci Rep*, 13 (1): 2639. doi: 10.1038/s41598-023-29590-0.
- Prinzi, A. & Rohde, R. E. (2023). The role of bacterial biofilms in antimicrobial resistance.
- Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. *AIMS Microbiol*, 4 (3): 482-501. doi: 10.3934/microbiol.2018.3.482.
- Roberts, M. C. & Schwarz, S. (2017). Tetracycline and chloramphenicol resistance mechanisms. *Antimicrobial drug resistance*. doi: <u>https://doi.org/10.1007/978-3-319-46718-4_15</u>.
- Rossolini, G. M., D'Andrea, M. M. & Mugnaioli, C. (2008). The spread of CTX-M-type extended-spectrum beta-lactamases. *Clin Microbiol Infect*, 14 Suppl 1: 33-41. doi: 10.1111/j.1469-0691.2007.01867.x.

- Ruiz, N. & Silhavy, T. J. (2022). How Escherichia coli Became the Flagship Bacterium of Molecular Biology. *J Bacteriol*, 204 (9): e0023022. doi: 10.1128/jb.00230-22.
- Sabri, M., Leveille, S. & Dozois, C. M. (2006). A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. *Microbiology (Reading)*, 152 (Pt 3): 745-758. doi: 10.1099/mic.0.28682-0.
- Salton, M. R. J. & Kim, K. S. (1996). Medical Microbiology.
- Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmolle, M., Stewart, P. S. & Bjarnsholt, T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. *Nat Rev Microbiol*, 20 (10): 608-620. doi: 10.1038/s41579-022-00767-0.
- Seiler, C. & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. *Front Microbiol*, 3: 399. doi: 10.3389/fmicb.2012.00399.
- Shabana, I. I. (2014). <I>Escherichia Coli</I> Pathotypes Associated with Diarrhea in Human and Domestic Animals. *American Journal of Animal and Veterinary Sciences*, 9 (3): 155-161. doi: 10.3844/ajavsp.2014.155.161.
- Sharma, A. K., Dhasmana, N., Dubey, N., Kumar, N., Gangwal, A., Gupta, M. & Singh, Y. (2017). Bacterial Virulence Factors: Secreted for Survival. *Indian J Microbiol*, 57 (1): 1-10. doi: 10.1007/s12088-016-0625-1.
- Sharma, V. K., Johnson, N., Cizmas, L., McDonald, T. J. & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. *Chemosphere*, 150: 702-714. doi: 10.1016/j.chemosphere.2015.12.084.
- Sheikh, S. W., Ali, A., Ahsan, A., Shakoor, S., Shang, F. & Xue, T. (2021). Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. *Antibiotics (Basel)*, 10 (5). doi: 10.3390/antibiotics10050522.
- Song, S. & Wood, T. K. (2020). A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition. *Front Microbiol*, 11: 1895. doi: 10.3389/fmicb.2020.01895.
- Statens legemiddelverk. (2019). *Kinoloner skal kun brukes ved alvorlige infeksjoner* Tilgjengelig fra: <u>https://legemiddelverket.no/nyheter/kinoloner-risiko-for-</u> <u>invalidiserende-og-langvarige-bivirkninger</u> (lest 31. mai 2023).
- Stoop, E. J., Schipper, T., Rosendahl Huber, S. K., Nezhinsky, A. E., Verbeek, F. J., Gurcha, S. S., Besra, G. S., Vandenbroucke-Grauls, C. M., Bitter, W. & van der Sar, A. M. (2011). Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. *Dis Model Mech*, 4 (4): 526-36. doi: 10.1242/dmm.006676.
- Subedi, D., Vijay, A. K., Kohli, G. S., Rice, S. A. & Willcox, M. (2018). Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. *Sci Rep*, 8 (1): 15668. doi: 10.1038/s41598-018-34020-7.
- Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria

and tuberculosis. *Lancet Infect Dis*, 18 (3): 318-327. doi: 10.1016/S1473-3099(17)30753-3.

- Tatsuno, I., Mundy, R., Frankel, G., Chong, Y., Phillips, A. D., Torres, A. G. & Kaper, J. B. (2006). The lpf gene cluster for long polar fimbriae is not involved in adherence of enteropathogenic Escherichia coli or virulence of Citrobacter rodentium. *Infect Immun*, 74 (1): 265-72. doi: 10.1128/IAI.74.1.265-272.2006.
- Tchesnokova, V., Radey, M., Chattopadhyay, S., Larson, L., Weaver, J. L., Kisiela, D. & Sokurenko, E. V. (2019). Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombinations in 11 gene loci. *Proc Natl Acad Sci U S A*, 116 (29): 14740-14748. doi: 10.1073/pnas.1903002116.
- Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. (2012). Heavy metal toxicity and the environment. *Exp Suppl*, 101: 133-64. doi: 10.1007/978-3-7643-8340-4_6.
- Teklu, D. S., Negeri, A. A., Legese, M. H., Bedada, T. L., Woldemariam, H. K. & Tullu, K. D. (2019). Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. *Antimicrob Resist Infect Control*, 8: 39. doi: 10.1186/s13756-019-0488-4.
- Thermo Fisher Scientific Inc. (u.å.-a). *Agarose gel electrophoresis*. Tilgjengelig fra: <u>https://www.thermofisher.com/no/en/home/life-science/dna-rna-purification-analysis/nucleic-acid-gel-electrophoresis/dna-electrophoresis/agarose-gel-electrophoresis.html (lest 11. april 2023).</u>
- Thermo Fisher Scientific Inc. (u.å.-b). *Fast, accurate, sensitive, and specific quantification of DNA, RNA and protein.* Tilgjengelig fra: <u>https://www.thermofisher.com/no/en/home/industrial/spectroscopy-elemental-isotope-</u> analysis/molecular-spectroscopy/fluorometers/qubit.html (lest 18. april 2023).
- Thermo Scientific. (u.å.). *T042-TECHNICAL BULLETIN NanoDrop Spectrophotometers* 260/280 and 260/230 Ratios. 302-479-7707. USA: Thermo Scientific.
- Thomson, N. M., Gilroy, R., Getino, M., Foster-Nyarko, E., van Vliet, A. H. M., La Ragione, R. M. & Pallen, M. J. (2022). Remarkable genomic diversity among Escherichia isolates recovered from healthy chickens. *PeerJ*, 10: e12935. doi: 10.7717/peerj.12935.
- Tomova, A., Ivanova, L., Buschmann, A. H., Godfrey, H. P. & Cabello, F. C. (2018).
 Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in
 Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an
 Aquacultural Area. *Microb Ecol*, 75 (1): 104-112. doi: 10.1007/s00248-017-1016-9.
- Torabi, S. & Zahra, F. (u.å.). *Disinfectants*. Florida: StatPearls Publishing. Tilgjengelig fra: <u>https://www.ncbi.nlm.nih.gov/books/NBK574540/</u> (lest 03. juni 2023).
- Torres, R. T., Cunha, M. V., Ferreira, H., Fonseca, C. & Palmeira, J. D. (2022). A high-risk carbapenem-resistant Pseudomonas aeruginosa clone detected in red deer (Cervus elaphus) from Portugal. *Sci Total Environ*, 829: 154699. doi: 10.1016/j.scitotenv.2022.154699.
- Valencia, C. A., Pervaiz, M. A., Husami, A., Qian, Y. & Zhang, K. (2013). *Next generation* sequencing technologies in medical genetics. New York: Springer
- Vazquez-Laslop, N. & Mankin, A. S. (2018). How Macrolide Antibiotics Work. *Trends Biochem Sci*, 43 (9): 668-684. doi: 10.1016/j.tibs.2018.06.011.

- Veterinærinstituttet. (2021). *Resistens mot bredspektrede cefalosporiner*: Veterinærinstituttet. Tilgjengelig fra: <u>https://www.vetinst.no/sykdom-og-agens/cefalosporinresistens-esbl-ampc</u> (lest 04. juli 2023).
- Veterinærinstituttet. (u.å.). *Biofilm*. Tilgjengelig fra: <u>https://www.vetinst.no/fagomrader/biofilm</u> (lest 02. juli 2023).
- VKM. (2015). Assessment of antimicrobial resistance in the food chains in Norway. Scientific opinion of the panel on microbiological hazards of the Norwegian scientific committee for food safety, 978-82-8259-184-3.
- VKM. (2016). Antimicrobial resistance due to the use of biocides and heavy metals: a literature review. Scientific opinion on the panel on microbial ecology of the norwegian scientific committee for food safety 978-82-8259-253-6. Oslo, Norway.
- Vorland, L. H. (2001). Hva gjør bakterier patogene? Tidsskriftet: Den norske legeforening Tilgjengelig fra: <u>https://tidsskriftet.no/2001/10/tema-infeksjoner/hva-gjor-bakterier-patogene</u> (lest 08. juli 2023).
- Waykar, B., Naphade, B. & Chavan, R. (2022). In-vitro antibacterial activity of Fosfomycin and Nitrofurantoin against Pseudomonas aeruginosa and Acinetobacter baumannii against clinical isolates collected from Indian tertiary care hospitals. *Journal of Drug Delivery and Therapeutics*, 12 (3-S): 26-32. doi: 10.22270/jddt.v12i3-S.5356.
- Wells, T. J., McNeilly, T. N., Totsika, M., Mahajan, A., Gally, D. L. & Schembri, M. A. (2009). The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. *Environ Microbiol*, 11 (7): 1803-14. doi: 10.1111/j.1462-2920.2009.01905.x.
- White, P. A., Stokes, H. W., Bunny, K. L. & Hall, R. M. (1999). Characterisation of a chloramphenicol acetyltransferase determinant found in the chromosome of Pseudomonas aeruginosa. *FEMS Microbiol Lett*, 175 (1): 27-35. doi: 10.1111/j.1574-6968.1999.tb13598.x.
- Woo, P. C., Lau, S. K., Teng, J. L., Tse, H. & Yuen, K. Y. (2008). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. *Clin Microbiol Infect*, 14 (10): 908-34. doi: 10.1111/j.1469-0691.2008.02070.x.
- Worthington, R. J. & Melander, C. (2013). Overcoming resistance to beta-lactam antibiotics. *J Org Chem*, 78 (9): 4207-13. doi: 10.1021/jo400236f.
- Wright, G. D. (2010). Antibiotic resistance in the environment: a link to the clinic? *Curr Opin Microbiol*, 13 (5): 589-94. doi: 10.1016/j.mib.2010.08.005.
- Yamanaka, Y., Aizawa, S. I. & Yamamoto, K. (2022). The hdeD Gene Represses the Expression of Flagellum Biosynthesis via LrhA in Escherichia coli K-12. *J Bacteriol*, 204 (1): e0042021. doi: 10.1128/JB.00420-21.
- Yang, Q. E. & Walsh, T. R. (2017). Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. *FEMS Microbiol Rev*, 41 (3): 343-353. doi: 10.1093/femsre/fux006.
- Yazdankhah, S., Lassen, J., Midtvedt, T. & Solberg, C. O. (2013). [The history of antibiotics]. *Tidsskr Nor Laegeforen*, 133 (23-24): 2502-7. doi: 10.4045/tidsskr.13.0145.
- Yeganeh-Sefidan, F., Ghotaslou, R., Akhi, M. T., Sadeghi, M. R., Mohammadzadeh-Asl, Y.& H., B. B. (2016). Fosfomycin, interesting alternative drug for treatment of urinary

tract infections created by multiple drug resistant and extended spectrum β -lactamase producing strains. 8(2):125-31.

- Yu, M. & Zhao, Y. (2022). Spectinomycin resistance in Lysobacter enzymogenes is due to its rRNA target but also relies on cell-wall recycling and purine biosynthesis. *Front Microbiol*, 13: 988110. doi: 10.3389/fmicb.2022.988110.
- Zheng, D., Bergen, P. J., Landersdorfer, C. B. & Hirsch, E. B. (2022). Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. *Antimicrob Agents Chemother*, 66 (2): e0144621. doi: 10.1128/AAC.01446-21.
- Zurfluh, K., Treier, A., Schmitt, K. & Stephan, R. (2020). Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. *Microbiologyopen*, 9 (12): e1135. doi: 10.1002/mbo3.1135.

Vedlegg 1 – Metodiske prosedyrer

Stockløsning primere multipleks PCR og singelpleks PCR

Tabell 1. Pr	imerkonsentrasjonen (nr	nol) ble fortynnet	ved bruk av	dH ₂ O til en	100 µM 1	løsning (µl)	. Dette ble
utført for all	e primerne som ble beny	ttet til multipleks	- og singelpl	eks PCR.			

Type primer	Primerkonsentrasjon (nmol)	100 μM løsning (μl)
bla _{OXA} F	53,3	533
bla _{OXA} R	85,8	858
bla _{CTX-M} (gruppe 9) F	39,9	399
bla _{CTX-M} (gruppe 9) R	38,8	388
bla _{TEM} F	40,7	407
bla _{TEM} R	34,2	342
bla _{CTX-M} (gruppe 1) F	38,2	382
bla _{CTX-M} (gruppe 1) R	41,3	413
bla _{SHV} F	30,8	308
bla _{SHV} R	33,5	335
bla _{OXA} F	38,8	388
bla _{OXA} R	36,0	360
bla _{CTX-M} (gruppe 2) F	33,9	339
bla _{CTX-M} (gruppe 2) R	41,7	417
bla _{IMP} F	34,0	340
bla _{IMP} R	40,0	400
bla _{OXA-48} F	30,9	309
bla _{OXA-48} R	34,3	343
bla _{KPC} F	32,0	320
bla _{KPC} R	31,7	317
blavim F	35,6	356
blavim R	31,7	317
bla _{CMY} F	33,2	332
bla _{CMY} R	36,0	360
bla _{NDM} F	39,1	391
bla _{NDM} R	36,5	365
rpoB F	37,2	372
rpoB R	28,4	284
16S F	41,1	411
16S R	40,7	407

Arbeidsløsning for multipleks PCR

Tabell 2. Tabellen viser arbeidsløsning for ulike multipleks. Henholdsvis ESBL 1, ESBL 2, ESBL 3, ESBL 4 og Kontroll. Hver multipleks løsning bestod av 200 (μ l), henholdsvis 4 μ l av hver primer, hvor resterende mengde ble dekket av nukleasefritt vann.

Multipleks 1: (ESBL 1)				
Medium	Mengde (µl)			
bla _{CTX-M} F (gruppe 2)	4			
bla _{CTX-M} R (gruppe 2)	4			
bla _{OXA} F	4			
bla _{OXA} F	4			
bla _{SHV} F	4			
bla _{SHV} R	4			
Ambion [™] nukleasefritt vann	176			
SUM	200			
Multipleks 2: (ESBL 2)				
Medium	Mengde (µl)			
bla _{CTX-M} F (gruppe 9)	4			
bla _{CTX-M} R (gruppe 9)	4			
bla _{CTX-M} F (gruppe 1)	4			
bla _{CTX-M} R (gruppe 1)	4			
bla _{TEM} F	4			
bla _{TEM} R	4			
Ambion [™] nukleasefritt vann	176			
SUM	200			
Multiple	as 3: (ESBL 3)			
Medium	Mengde (µl)			
bla _{NDM} F	4			
bla _{NDM} R	4			
bla _{VIM} F	4			
bla _{VIM} R	4			
bla _{KPC} F	4			
bla _{kpc} R	4			
Ambion [™] nukleasefritt vann	176			
SUM	200			
Multiple	as 5: (ESBL 4)			
Medium	Mengde (µl)			
bla _{CMY} F	4			
bla _{CMY} R	4			
bla _{OXA-48} F	4			
bla _{OXA-48} R	4			
bla _{IMP} F	4			
bla _{IMP} R	4			
Ambion [™] nukleasefritt vann	176			
SUM 200				
Multipleks 4: Kontroll				
Medium	Mengde (µl)			

SUM	200
Ambion [™] nukleasefritt vann	186,8
16S R	4
16S F	4
rpoB R	4
rpoB F	4

Arbeidsløsning for singelpleks PCR

Tabell 3. Primerne benyttet i analyse for singelpleks PCR ble fortynnet til en 10 μ M løsning, bestående av 10 (μ l) per primer og 90 (μ l) av nukleasefritt vann.

Arbeidsløsning singelpleks PCR				
Type primer	Mengde primer (µl)	Ambion™ nukleasefritt vann (µl)	10 μM løsning (μl)	
bla _{CTX-M} (gruppe 1) F	10	90	100	
bla _{CTX-M} (gruppe 1) R	10	90	100	
bla _{CTX-M} (gruppe 9) F	10	90	100	
bla _{CTX-M} (gruppe 9) R	10	90	100	
bla _{OXA} F	10	90	100	
bla _{OXA} R	10	90	100	
bla _{SHV} F	10	90	100	
bla _{SHV} R	10	90	100	

Stockløsning for virulensprimere

Tabell 4. Primere benyttet ved til PCR for å undersøke tilstedeværelse av virulens vises i tabellen under. I forkant av kjøring på PCR ble hver individuelle primer fortynnet til en 100 μ M løsning (μ l) ved bruk av nukleasefritt vann.

Type primer	Primer (nmol)	100 μM løsning (μl)
aggR F	25,7	257
aggR R	26,5	265
eaeA F	18,0	180
eaeA R	25,0	250
ipaH F	31,8	318
ipaH R	21,5	215
LTI F	22,0	220
LTI R	25,6	256
STIb F	33,3	333
STIb R	22,4	224
Stx1 F	30,1	301
Stx1 R	32,8	328
Stx2 F	20,6	206
--------	------	-----
Stx2 R	26,9	269

Arbeidsløsning for virulensprimere

Tabell 5. Viser oversikt over fortynning av primere for å få en 10 μ M arbeidsløsning (μ l).

Arbeidsløsning virulensprimere						
Type primer	Mengde primer (µl)	Ambion [™] nukleasefritt	10 µM løsning (µl)			
		vann (µl)				
aggR F	10	90	100			
aggR R	10	90	100			
eaeA F	10	90	100			
eaeA R	10	90	100			
ipaH F	10	90	100			
ipaH R	10	90	100			
LTI F	10	90	100			
LTI R	10	90	100			
STIb F	10	90	100			
STIb R	10	90	100			
Stx1 F	10	90	100			
Stx1 R	10	90	100			
Stx2 F	10	90	100			
Stx2 R	10	90	100			

Vedlegg 2 – Inkuberte agarskåler

Inkuberte agarskåler med filtrerte vannprøver – med filter

Tabell 6. Tabellen viser en oversikt over filtrerte prøver som ble inkubert på Oxoid Brilliance[™] ESBL- og Oxoid Brilliance[™] CRE agarskåler med filter. I tillegg til en beskrivelse av hvilke rendyrkede bakterieisolater som ble podet over fra hvilken type petriskål.

Vannkilde	Agar	Prøver hentet fra skål	Skål
Stokkalandsvatnet	CRE	PG.SV.B_CRE	
		PL.SV.G_CRE	A State Parts
		PM.SV.B_CRE	
			0.00

Stokkalandsvatnet	ESBL	P3.SV.MB_ESBL P5.SV.MB_ESBL P6.SV.MB_ESBL P11.SV.MB_ESBL PA.SV.MB_ESBL PB.SV.MB_ESBL	
Sandvedparken	CRE	PH.SP.R_CRE PI.SP.R_CRE PK.SP.B_CRE PJ.SP.B_CRE	
Sandvedparken	ESBL	P1.SP.MB_ESBL P2.SP.MB_ESBL P4.SP.T_ESBL P7.SP.T_ESBL P8.SP.MB_ESBL P9.SP.MB_ESBL P10.SP.BR_ESBL PQ.SP.O_ESBL	
Breiavatnet	CRE	PD.BV.B_CRE PE.BV.B_CRE PF.BV.B_CRE	
Breiavatnet	ESBL	PP.BV.O_ESBL	

Inkuberte agarskåler med filtrerte vannprøver – uten filter

Tabell 7. Tabellen viser en oversikt over filtrerte prøver som ble inkubert på Oxoid Brilliance[™] ESBL- og Oxoid Brilliance[™] CRE agarskåler uten filter. I tillegg til en beskrivelse av hvilke rendyrkede bakterieisolater som ble podet over fra hvilken type petriskål.

Prøvepunkt	Agar	Prøver hentet fra skål	Skål
Stokkalandsvatnet	CRE	PO.SV.R_CRE	-
Stokkalandsvatnet	ESBL	Ikke vekst ved rendyrking	-
Sandvedparken	CRE	PC.SP.B_CRE PN.SP.G_CRE	
Sandvedparken	ESBL	Ikke vekst ved rendyrking	j.
Breiavatnet	CRE	-	Ingen vekst
Breiavatnet	ESBL	Ikke vekst ved rendyrking	

Vedlegg 3 – Rendyrkede agarskåler

Rendyrking av kolonier på ESBL agarskåler

Tabell 8. Billedlig fremstilling av rendyrkede kolonier på Oxoid Brilliance[™] ESBL agarskåler, inkludert vannkilde og fenotypiske egenskaper hos hver individuelle bakterieisolat.

Prøve	Vannkilde	Agar	Vekst på agarskål	Farge på koloni
P1.SP.MB_ESBL	Sandvedparken	ESBL		Mørkeblå
P2.SP.MB_ESBL	Sandvedparken	ESBL		Mørkeblå
P3.SV.MB_ESBL	Stokkalandsvatnet	ESBL		Mørkeblå
P4.SP.T_ESBL	Sandvedparken	ESBL		Turkis

P5.SV.MB_ESBL	Stokkelands- vannet	ESBL	Mørkeblå
P6.SV.MB_ESBL	Stokkalandsvatnet	ESBL	Mørkeblå
P7.SP.T_ESBL	Sandvedparken	ESBL	Turkis
P8.SP.MB_ESBL	Sandvedparken	ESBL	Mørkeblå
P9.SP.MB_ESBL	Sandvedparken	ESBL	Mørkeblå

P10.SP.BR_ESBL	Sandvedparken	ESBL		Brun
P11.SV.MB_ESBL	Stokkalandsvatnet	ESBL	CE:	Mørkeblå
PA.SV.MB_ESBL	Stokkalandsvatnet	ESBL	No the second	Mørkeblå
PB.SV.MB_ESBL	Stokkalandsvatnet	ESBL		Mørkeblå
PJ.SP.B_ESBL	Sandvedparken	ESBL	-	Mørkeblå
PP.BV.O_ESBL	Breiavatnet	ESBL		Oransje

PQ.SP.O_ESBL	Sandvedparken	ESBL		Oransje
--------------	---------------	------	--	---------

Rendyrking av kolonier på CRE agarskåler

Tabell 9. Bakterieisolater som ikke gav utslag på båndformasjon ved elektroforese av 16S rDNA vises i	tabellen
under. I tillegg til en beskrivelse av hvor prøvene ble hentet fra, samt farge på rendyrkede bakterieisolate	er.

Prøve	Vannkilde	Agar	Vekst på agarskål	Farge på
				koloni
PC.SP.B_CRE	Sandvedparken	CRE		Blå
PD.BV.B_CRE	Breiavatnet	CRE		Blå
PE.BV.B_CRE	Breiavatnet	CRE		Blå

PF.BV.B_CRE	Breiavatnet	CRE		Blå
PG.SV.B_CRE	Stokkalandsvatnet	CRE		Blå
PH.SP.R_CRE	Sandvedparken	CRE		Rosa
PI.SP.R_CRE	Sandvedparken	CRE	-	Rosa
PJ.SP.B_CRE	Sandvedparken	CRE	-	Blå
PK.SP.B_CRE	Sandvedparken	CRE		Blå
PL.SV.G_CRE	Stokkalandsvatnet	CRE	A CONTRACT OF STATE	Grønn

PM.SV.B_CRE	Stokkalandsvatnet	CRE		Blå
PN.SP.G_CRE	Sandvedparken	CRE		Grønn
PO.SV.R_CRE	Stokkalandsvatnet	CRE	-	Rosa

Vedlegg 4 – Nukleotid BLAST

nBLAST av 16S rDNA

Prøve	Vannkilde	Farge	nBLAST 16S rDNA	Query cover (%)	E-verdi	Total score	Identitets- prosent (%)	Accession Top ≤ 4 treff
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	Escherichia coli	100,00	0,0	2414	99,77	OP756030.1
			Escherichia					OP756025.1
			fergusonii					OP755949.1
								ON202902.1
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	Escherichia coli	100,00	0,0	2447	99,92	MN133939.1
								CP027766.1
								CP027552.1
								OP756003.1
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2505	99,78	OP755949.1
								ON202902.1
P4.SP.T_ESBL	Sandvedparken	Turkis	Enterobacter spp.	100,00	0,0	2435	99,70	MK105808.1
								MG021473.1
								KU170086.1
								OP316893.1
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2375	99,47	OP762832.1
								OP756040.1
								OP756036.1
								OP756034.1
P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2422	99,85	MN133939.1
								CP027766.1

Tabell 10. Tabellen viser en oversikt over 16S rDNA nBLAST av Sanger sekvenseringsresultater for ulike prøver.

								CP027552.1
								OP756037.1
P7.SP.T_ESBL	Sandvedparken	Turkis	Enterobacter spp.	100,00	0,0	2512	100,00	KY287933.1
								MF289157.1
								OP941830.1
								OK326434.1
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	Escherichia coli	100,00	0,0	2514	99,28	OP762799.1
								OP762798.1
								OP762797.1
								OP762776.1
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	Escherichia coli	100,00	0,0	2518	99,64	OP756025.1
			Escherichia					OP755949.1
			fergusonii					ON202902.1
								OP756030.1
P10.SP.BR_ESBL	Sandvedparken	Brun	Pseudomonas aeruginosa	100,00	0,0	2521	99,93	MZ723729.1
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2532	99,93	OP756025.1
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2484	98,99	CP118601.1
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	Escherichia coli	100,00	0,0	2401	99,40	MN133939.1
								OP756003.1
								ON597614.1
PC.SP.B_CRE	Sandvedparken	Blå	Novosphingobium	100,00	0,0	2405	99,85	LT899961.1
			spp.					NR_113591.1
			Sphingomonas spp.					JX994135.1
								JX219397.1

PG.SV.B_CRE	Stokkalandsvatnet	Blå	Chryseobacterium	100,00	0,0	2468	100,00	MK116543.1
			spp.					KX579964.1
								KX228235.1
								KX350224.1
PH.SP.R_CRE	Sandvedparken	Rosa	Aeromonas spp.	100,00	0,0	2525	100,00	MT576565.1
								MN900852.1
								MN865807.1
PI.SP.R_CRE	Sandvedparken	Rosa	Aeromonas spp.	100,00	0,0	2532	100,00	MT576565.1
								MN900852.1
								MN865807.1
								LR643660.1
PJ.SP.B_CRE	Sandvedparken	Blå	-	-	0,0		-	-
PK.SP.B_CRE	Sandvedparken	Turkis	Stenotrophomonas	100,00	0,0	2536	100,00	KY643717.1
			spp.					LN890035.1
								OM164424.1
								ON845301.1
PM.SV.B_CRE	Stokkalandsvatnet	Blå	Caulobacter spp.	100,00	0,0	2425	99,85	OP986543.1
								OP986522.1
								MZ490613.1
PN.SP.G_CRE	Sandvedparken	Grønn	Stenotrophomonas	100,00	0,0	2555	100,00	MH814356.1
			spp.					MH813997.1
								ON738637.1
								MZ067780.1
PO.SV.R_CRE	Stokkalandsvatnet	Rosa	Stenotrophomonas	100,00	0,0	2529	100,00	MH814356.1
			spp.					MH813997.1
								ON738637.1

								MZ067780.1
PP.BV.O_ESBL	Breiavatnet	Oransje	Pseudomonas spp.	100,00	0,0	2536	99,86	MK235212.1
								KF475826.1
								MW476570.1
								AM913915.1
PQ.SP.O_ESBL	Sandvedparken	Oransje	Pseudomonas spp.	100,00	0,0	2519	99,71	MT505104.1
								MT267792.1
								MH669312.1
								MH127759.1

nBLAST og tilhørende informasjon av singelpleks PCR produkt

Prøve	Vannkilde	Farge	Antatt ESBL primer	nBLAST 16S rDNA	nBLAST ESBL-gen	Query cover (%)	Prosent identitet (%)	Accession
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	bla _{CTX-M} (gr. 1)	E. coli, E. fergusonii	bla <i>ctx-M</i> (gr. 15)	99,00	98,00	LT628520.1
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{<i>CTX-M</i>} (gr. 15)	99,80	95,00	LC636055.1
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	bla _{CTX-M} (gr. 1)	E. coli	bla _{CTX-M} familie	100,00	100,00	OQ096344.1
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{CTX-M} (gr. 15)	100,00	100,00	LC636055.1
P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{<i>CTX-M</i>} (gr. 15)	100,00	99,16	LC636055.1
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{CTX-M} familie	99,00	99,84	ON707460.1
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	bla _{CTX-M} (gr. 1)	E. coli E. fergusonii	bla _{CTX-M} (gr. 15)	99,00	100,00	LT628520.1
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{CTX-M} (gr. 15)	99,00	99,54	NG_048966.1
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{<i>CTX-M</i>} (gr. 15)	99,00	100,00	LT628520.1
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	$bla_{CTX-M}(gr. 1)$	E. coli	bla _{CTX-M} (gr. 15)	99,00	100,00	LT628520.1

Tabell 15. Tabellen viser oversikt over nBLAST av Sanger sekvenseringsresultater av singelpleks PCR produkt, hvor innsendt prøve inneholdt primeren bla_{CTX-M} (gr. 1).

Vedlegg 5 – NanoDrop

NanoDrop av ekstrahert DNA

Prøve	Vannkilde	Farge	Agar	Konsentrasjon (ng/µl)	A260/280	A260/230
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	65,5	1,93	0,44
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	34,3	2,01	1,56
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	24,7	2,10	1,24
P4.SP.T_ESBL	Sandvedparken	Turkis	ESBL	18,0	1,93	0,40
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	42,1	1,93	1,54
P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	37,4	2,00	1,06
P7.SP.T_ESBL	Sandvedparken	Turkis	ESBL	7,7	2,55	0,69
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	23,4	2,22	1,60
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	15,4	2,33	0,87
P10.SP.BR_ESBL	Sandvedparken	Brun	ESBL	69,1	1,95	1,76
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	57,1	1,95	1,35
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	7,7	2,42	0,04
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	12,9	2,22	0,28
PC.SP.B_CRE	Sandvedparken	Blå	CRE	9,8	2,24	0,34
PD.BV.B_CRE	Breiavatnet	Blå	CRE	11,2	2,14	0,67
PE.BV.B_CRE	Breiavatnet	Blå	CRE	3,9	3,70	0,12
PF.BV.B_CRE	Breiavatnet	Blå	CRE	8,1	2,51	0,29

Tabell 11. Viser oversikt over konsentrasjon (ng/µl) av ekstrahert DNA målt ved NanoDrop 2000/2000c, ved absorbsjonsforholdene A₂₆₀/280 og A260/230.

PG.SV.B_CRE	Stokkalandsvatnet	Blå	CRE	15,2	2,04	0,19
PH.SP.R_CRE	Sandvedparken	Rosa	CRE	26,9	5,59	0,27
PI.SP.R_CRE	Sandvedparken	Rosa	CRE	110	2,25	0,47
PJ.SP.B_CRE	Sandvedparken	Blå	CRE	22,6	9,64	0,25
PK.SP.B_CRE	Sandvedparken	Blå	CRE	429,0	1,98	1,39
PL.SV.G_CRE	Stokkalandsvatnet	Grønn	CRE	53,0	2,96	0,58
PM.SV.B_CRE	Stokkalandsvatnet	Blå	CRE	7,6	-1,33	0,05
PN.SP.G_CRE	Sandvedparken	Grønn	CRE	65,2	2,66	0,38
PO.SV.R_CRE	Stokkalandsvatnet	Rosa	CRE	2,5	-0,30	0,03
PP.BV.O_ESBL	Breiavatnet	Oransje	ESBL	182,1	2,11	0,93
PQ.SP.O_ESBL	Sandvedparken	Oransje	ESBL	74,7	2,48	0,43

NanoDrop av renset 16S rDNA PCR produkt

Prøve Vannkilde Konsentrasjon Farge Agar A260/280 A260/230 (ng/µl) P1.SP.MB ESBL Sandvedparken Mørkeblå **ESBL** 57,3 2,08 1,24 Sandvedparken Mørkeblå **ESBL** 50,8 2,14 1,56 P2.SP.MB_ESBL 0,92 P3.SV.MB_ESBL Stokkalandsvatnet Mørkeblå ESBL 64,6 2,08 P4.SP.T ESBL Sandvedparken Turkis **ESBL** 68,4 2,11 0,57 P5.SV.MB_ESBL Stokkalandsvatnet Mørkeblå **ESBL** 71,3 2,06 1,18 P6.SV.MB_ESBL Stokkalandsvatnet **ESBL** 70.8 2,07 0,49 Mørkeblå Turkis **ESBL** 2,02 P7.SP.T_ESBL Sandvedparken 83,0 1,23 **ESBL** 83,9 2,04 0,98 P8.SP.MB_ESBL Sandvedparken Mørkeblå P9.SP.MB_ESBL Sandvedparken Mørkeblå **ESBL** 52,5 2,09 0,58 **ESBL** 2,09 P10.SP.BR_ESBL Sandvedparken Brun 54,2 1,22 P11.SV.MB ESBL Stokkalandsvatnet Mørkeblå **ESBL** 57,0 2,10 1,07

Tabell 12. Viser oversikt over konsentrasjon (ng/µl) av renset 16s rDNA PCR produkt målt ved NanoDrop 2000/2000c, ved absorbsjonsforholdene A260/280 og A260/230.

PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	54,9	2,10	0,55
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	53,8	2,10	0,55
PC.SP.B_CRE	Sandvedparken	Blå	CRE	58,8	2,11	1,17
PD.BV.B_CRE	Breiavatnet	Blå	CRE	59,3	2,17	0,31
PE.BV.B_CRE	Breiavatnet	Blå	CRE	46,4	1,99	0,47
PF.BV.B_CRE	Breiavatnet	Blå	CRE	61,2	2,09	0,74
PG.SV.B_CRE	Stokkalandsvatnet	Blå	CRE	52,4	2,10	0,97
PH.SP.R_CRE	Sandvedparken	Rosa	CRE	56,7	2,15	0,55
PI.SP.R_CRE	Sandvedparken	Rosa	CRE	51,1	2,12	0,25
PJ.SP.B_CRE	Sandvedparken	Blå	CRE	57,6	2,12	1,42
PK.SP.B_CRE	Sandvedparken	Blå	CRE	49,6	2,19	0,85
PL.SV.G_CRE	Stokkalandsvatnet	Grønn	CRE	56,3	2,12	0,83
PM.SV.B_CRE	Stokkalandsvatnet	Blå	CRE	59,8	2,11	1,03
PN.SP.G_CRE	Sandvedparken	Grønn	CRE	57,3	2,08	1,24
PO.SV.R_CRE	Stokkalandsvatnet	Rosa	CRE	50,8	2,14	1,56
PP.BV.O_ESBL	Breiavatnet	Oransje	ESBL	64,6	2,08	0,92
PQ.SP.O_ESBL	Sandvedparken	Oransje	ESBL	68,4	2,11	0,57

NanoDrop av singelpleks PCR produkt

Tabell 14. Viser målinger ved NanoDrop 2000/2000c av singelpleks PCR produkt ved absorbsjonsforholdene A₂₆₀/280 og A260/230.

Prøve	Vannkilde	Farge	Agar	Konsentrasjon (ng/µl))	$A_{260/280}$	$A_{260/230}$
P1.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	487,8	1,91	0,72
P2.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	453,7	1,93	0,71
P3.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	488,1	1,89	0,74
P5.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	462,9	1,91	0,72

P6.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	429,7	1,94	0,71
P8.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	449,0	1,93	0,71
P9.SP.MB_ESBL	Sandvedparken	Mørkeblå	ESBL	470,9	1,90	0,73
P11.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	468,4	1,90	0,73
PA.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	398,5	1,94	0,68
PB.SV.MB_ESBL	Stokkalandsvatnet	Mørkeblå	ESBL	461,8	1,9	0,71

Vedlegg 6 – Agarosegelelektroforese

Forklaring til navn på gel

Tabell 13. Viser en oversikt over navn oppgitt på bilder av agarosegeler for multipleks PCR, singelpleks PCR og PCR for å undersøke tilstedeværelse av virulens, samt navn på tilhørende prøve.

Navn på prøve	Navn oppgitt på bilder av agarosegel
P1.SP.MB_ESBL	1
P2.SP.MB_ESBL	2
P3.SV.MB_ESBL	3
P4.SP.T_ESBL	4
P5.SV.MB_ESBL	5
P6.SV.MB_ESBL	6
P7.SP.T_ESBL	7
P8.SP.MB_ESBL	8
P9.SP.MB_ESBL	9
P10.SP.BR_ESBL	10
P11.SV.MB_ESBL	11
PA.SV.MB_ESBL	a
PB.SV.MB_ESBL	b
PK.SP.B_CRE	k
PN.SP.G_CRE	n
PO.SV.R_CRE	0

Gelelektroforese av multipleks PCR produkt

Figur 1. Multipleks PCR produkt elektroforese – gel 1.1. Figuren illustrerer agarosegel for alle prøvene kjørt med primermiksen ESBL 1, samt båndformasjon på noen få prøver kjørt med primermiks ESBL 2.

Figur 2. Multipleks PCR produkt elektroforese – gel 1.2. Viser båndformasjon for resterende prøver på primermiks ESBL 2, samt prøver kjørt med primermiksen ESBL 3 på agarosegel.

Figur 3. Multipleks PCR produkt elektroforese – gel 1.3. Figuren viser bilde av agarosegel av prøver kjørt med primermiksene ESBL 3 og ESBL 4.

Figur 4. Multipleks PCR produkt elektroforese – gel 1.4. Bilde av agarosegel viser resterende prøver kjørt med primermiksen ESBL4, samt prøvene kjørt med kontroll primermiksen.

Figur 5. Multipleks PCR produkt elektroforese – gel 1.5. Bildet illustrerer ulike prøver kjørt på agarosegelelektroforese. Inkludert resterende prøver kjørt med kontroll primermiks, samt negativ kontroll av primermiksene. I tillegg til en uavhengig positiv kontroll kjørt med hver av primermiksene.

Figur 6. Multipleks PCR produkt elektroforese – gel 1.1. Prøvene kjørt med bla_{CTX-M} (gruppe 1), og noen prøver kjørt med bla_{CTX-M} (gruppe 1) ved singelpleks PCR, illustreres på agarosegel. Kun førstnevnte ESBL primer gav positivt utslag ved båndformasjon.

Figur 7. Multipleks PCR produkt elektroforese – gel 1.2. Viser resterende prøver fra singelpleks PCR som ble testet for bla_{CTX-M} (gruppe 9) ved agarosegelelektroforese. I tillegg til 3 prøver som ble testet for bla_{SHV} bla_{OXA} som en ekstra kontroll.

Gelelektroforese av virulensprimer PCR produkt

Figur 8. Virulensprimer PCR produkt elektroforese – gel 1.1. Figuren illustrerer resultat av agarosegelelektroforese, hvor prøvene tilhørende slekten *Escherichia* ble testet for ulike virulensgen. Dette ble utført ved bruk av forskjellige virulensprimere. Figur 8 viser virulensprimerne ipaH og Stx1.

Figur 9. Virulensprimer PCR produkt elektroforese – gel 1.2. Billedlig fremstilling av agarosegel, hvor prøvene tilhørende slekten *Escherichia* ble testet for ulike virulensgen. Dette ble utført ved bruk av forskjellige virulensprimere. Figur 9 viser virulensprimerne Stx1, eae og Stx2.

Figur 10. Virulensprimer PCR produkt elektroforese – gel 1.3. Figuren viser bilde av agarosegel, hvor prøvene tilhørende slekten *Escherichia* ble testet for ulike virulensgen. Dette ble utført ved bruk av forskjellige virulensprimere. Figur 10 viser virulensprimerne Stx2, aggR og LTI.

Figur 11. Virulensprimer PCR produkt elektroforese – gel 1.4. Viser agarosegel, hvor prøvene tilhørende slekten *Escherichia* ble testet for ulike virulensgen. Dette ble utført ved bruk av forskjellige virulensprimere. Figur 11 viser virulensprimerne LTI og STIb, samt en negativ kontroll bestående av Stx1.

Vedlegg 7 – Antibiotika sensitivitetstest

MIC-testing e-test resultater av prøve P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL

Tabell 16. Tabellen oppgir resultatene for prøvene *P2.SP.MB_ESBL*, *P5.SV.MB_ESBL og P10.SP.BR_ESBL*, analysert ved MIC-test. Herunder MIC-verdi for parallellene, samt gjennomsnittsverdi. I tillegg oppgir tabellen ECOFF verdi og en billedlig fremstilling av inhiberingssoner på Mueller-Hinton agarskåler inkubert med 7 ulike antibiotika strips.

	P2.SP.MB_ESBL		P5.SV.M	IB_ESBL	P10.SP.BR_ESBL		
	Parallell 1	Parallell 2	Parallell 1	Parallell 2	Parallell 1	Parallell 2	
Ampicillin	178	R		LA	140	10	
(AM)	AMP 	AMP -256 - -192 - -128 - -96 - -96 - -64 - -48 - -32 - -24 - -16 - -12 - -24 - -24 - -24 - -24 - -24 - -24 - -24 - -24 - -25 - -	AMP - 256 - - 1922 - - 1928 - - 1966 - - 648 - - 32 -		AMP 256 - 192 - 128 - 96 - 64 - 48 - 32 - 16 - 16 - 12 - 8 - 6 -	AMP 	
MIC-verdi	>256	>256	>256	>256	>256	>256	
Gjennomsnitt	>256		>256			>256	
ECOFF		8		8	-		

Cefepime (FEP)	FEP - 32 - 24 - 16 - 12 - 8 - 6 		FEP 	FEP 	FEP 322	FEP - 32 - - 24 - - 16 - - 12 - - 8 - - 6 - - 4 -
MIC-verdi	6	8	6	8	3	4
Gjennomsnitt		7		7		3,5
ECOFF		4		4		8
Cefotaxime (CT)	CTX 	CTX 	CTX 256 – 192 – 128 –	CTX -256 	CTX - 256	CTX - 256 - 1922 - 266 - 266 - 266 - 264 - 224 - 122 -
MIC-verdi	64	96	192	96	64	64
Gjennomsnitt		80		144		64
ECOFF		0,25		0,25		64

Ciprofloksaci n (CI)	E 	E 		CIP 124		
MIC-verdi	<mark>>256</mark>	<mark>>256</mark>	0,25	0,25	0,125	0,125
Gjennomsnitt		<mark>>256</mark>		0,25		0,125
ECOFF		0,06				0,5
Erythromycin (EM)	E -256 - -192 - -128 - -96 - -64 - -48 - -32 - -24 -	E 	E -256 - -192 - -128 - -96 - -64 -	E -256 - -192 - -128 - -128 - -96 - -14 -48 - -22	E -256 -192 -128 -128 -128 -128 -128 -148 -64 -64 -64 -64 -64 -64 -64 -64	E -256 - -192 - -128 - -96 - -64 - -64 - -32 - -24 -
MIC-verdi	>256	>256	96	96	24	24
Gjennomsnitt		>256		96		24
ECOFF	-		-		-	

Meropenem (MP)	M H H H H H H H H H H H H H H H H H H H				MR 111111111111	NBP 1
			- 864 - 972 - 972 - 973 - 976 - 977 - 9777 - 977 - 977 - 977 - 977 - 977 - 977 - 977 - 977 - 977 - 97			- 33 - 35 - 19 - 125 -
MIC-verdi	0,016	0,016	0,016	0,016	0,38	0,25
Gjennomsnitt		0,016		0,016		0,32
ECOFF		0,06		0,06		2
Nitrofurantoin	F	F - 5122 - 1934 - 1932 - 1	F 512 1384 1385 1385 1385 1385 1385 1385 1385 1385	F 512 - 	F 512 1256 1922 1928 1928 1928 1956 1956 1956 1956 1956 1956 1956 1956	F - 512 - 384 - 256 - 192 - 128 - 44 - 32 - 24 - 15 - 15
MIC-verdi	16	24	16	16	>512	>512
Gjennomsnitt		20		16		>512
ECOFF		64		64	-	

Penicillin G	P -256 -192 -192 -128 -96 -64 -48 -32 -24 -16 -12 -24 -16 -12	P 5552 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P -256 -192 -128 -96 -64 -48	P -256 - -192 - -128 - -96 - -64 - -48 - -32 - -24 -	P -256 - -192 - -192 - -128 - -128 - -148 - -14	P -256 - -192 - -192 - -128 - -966 - -64 - -48 - -24 - -16 - -12 - -16 - -12 - -16 - -12 - -16 - -16 - -16 - -16 - -16 - -16 - -16 - -16 - -17 - -
MIC-verdi	>256	>256	>256	>256	>256	>256
Gjennomsnitt		>256		>256		>256
ECOFF	-		-		-	
Tetrasyklin (TE)	TE 1000 TE 100					TE 15/2017 A 4 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1
MIC-verdi	0,75	0,50	0,75	0,75	4	4
Gjennomsnitt		0,63		0,75		4
ECOFF		8		8		64

Vedlegg 8 – Helgenomsekvensering

Resultater ved søk i databasen CARD for prøvene identifisert som E. coli, P2.SP.MB_ESBL og P5.SV.MB_ESBL

			P2.SP.MD_ESDL 0g P3.SV.MD_ESDL						
Gene	Identity (%)	Resistance	Coverage (%)	Product	Accession				
acrB	99,08	cephalosporin;fluoro quinolone;glycylcycl ine;penam;phenicol;r ifamycin;Tetrasyklin; triclosan	100,00	Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.	U00096.3:484403- 481253				
acrD	98,81	aminoglycoside	100,00	AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole and is regulated by baeRS and cpxAR.	AP009048.1:258625 0-2589364				
acrE	98,96	cephalosporin;cepha mycin;fluoroquinolo ne;penam	100,00	AcrE is a membrane fusion protein similar to AcrA.	U00096:3413863- 3415021				
acrF	99,03	cephalosporin;cepha mycin;fluoroquinolo ne;penam	100,00	AcrF is a inner membrane transporter similar to AcrB.	U00096:3415032- 3418137				
acrS	98,64	cephalosporin;cepha mycin;fluoroquinolo ne;glycylcycline;pen am;phenicol;rifamyci n;Tetrasyklin;triclosa n	100,00	AcrS is a repressor of the AcrAB efflux complex and is associated with the expression of AcrEF. AcrS is believed to regulate a switch between AcrAB and AcrEF efflux.	U00096:3413465- 3412802				
bacA	98,66	peptide	99,76	The bacA gene product (BacA) recycles undecaprenyl pyrophosphate during cell wall biosynthesis which confers resistance to bacitracin.	U00096.3:3204131- 3203309				

 Tabell 17. Resistensgener funnet ved HGS i prøve P2.SP.MB_ESBL og P5.SV.MB_ESBL, ved bruk av databasen CARD.

 P2 SP MP_ESPL og P5 SV MP_ESPL

baeR	99,45	aminocoumarin;amin oglycoside	100,00	BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.	AP009048.1:216641 2-2167135
baeS	98,72	aminocoumarin;amin oglycoside	100,00	BaeS is a sensor kinase in the BaeSR regulatory system. While it phosphorylates BaeR to increase its activity BaeS is not necessary for overexpressed BaeR to confer resistance.	AP009048:2165012- 2166416
cpxA	98,54	aminocoumarin;amin oglycoside	100,00	CpxA is a membrane-localized sensor kinase that is activated by envelope stress. It starts a kinase cascade that activates CpxR which promotes efflux complex expression.	BA000007.3:490506 2-4903688
CRP	99,21	fluoroquinolone;mac rolide;penam	100,00	CRP is a global regulator that represses MdtEF multidrug efflux pump expression.	AP009048.1:415429 6-4153663
CTX-M-15	100,00	cephalosporin	100,00	CTX-M-15 is a Betalaktamase found in the Enterobacteriaceae family. Class A extended-spectrum Betalaktamase CTX-M-15	AY044436:1435- 2311
emrA	98,21	fluoroquinolone	100,00	EmrA is a membrane fusion protein providing an efflux pathway with EmrB and TolC between the inner and outer membranes of E. coli a Gram-negative bacterium.	AP009048:2810082- 2811255
emrB	98,51	fluoroquinolone	100,00	emrB is a translocase in the emrB -TolC efflux protein in E. coli. It recognizes substrates including carbonyl cyanide m-chlorophenylhydrazone (CCCP) nalidixic acid and thioloactomycin.	U00096:2812615- 2814154
emrK	98,67	Tetrasyklin	100,00	emrK is a membrane fusion protein that is a homolog of EmrA. Together with the inner membrane transporter EmrY and the outer membrane channel TolC it mediates multidrug efflux.	D78168:536-1592
emrR	100,00	fluoroquinolone	100,00	EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.	U00096.3:2810769- 2811300
emrY	98,83	Tetrasyklin	100,00	emrY is a multidrug transport that moves substrates across the inner membrane of the Gram-negative E. coli. It is a homolog of emrB.	D78168:1591-3130
eptA	99,15	peptide	100,00	PmrC mediates the modification of Lipid A by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and	AP009048:4340268- 4338624

				phosphoethanolamine resulting in a less negative cell membrane and decreased binding of polymyxin B.	
Escherichia _coli_acrA	99,83	cephalosporin;fluoro quinolone;glycylcycl ine;penam;phenicol;r ifamycin;Tetrasyklin; triclosan	100,00	AcrA is a subunit of the AcrAB-TolC multidrug efflux system that in E. coli.	U00096.3:485619- 484425
Escherichia _coli_amp C	97,18	cephalosporin;penam	100,00	A class C ampC Betalaktamase (Kefalosporinase) enzyme described in Escherichia coli shown clinically to confer resistance to penicillin-like and Kefalosporin-class antibiotics.	U00096.3:4378944- 4377810
Escherichia _coli_amp C1_Betalak tamase	98,24	cephalosporin;penam	100,00	An ampC-like Betalaktamase identified from Escherichia coli.	FN649414.1:276505 0-2766355
Escherichia _coli_amp H	98,70	cephalosporin;penam	100,00	AmpH is a class C ampC-like Betalaktamase and penicillin-binding protein identified in Escherichia coli.	AP012030.1:396711 -395553
Escherichia _coli_emrE	92,19	macrolide	100,00	Member of the small MDR (multidrug resistance) family of transporters; in Escherichia coli this protein provides resistance against a number of positively charged compounds including ethidium bromide and erythromycin; proton-dependent secondary transporter which exchanges protons for compound translocation	Z11877.1:485-818
Escherichia _coli_mdf A	97,57	benzalkonium_chlori de;rhodamine;Tetras yklin	100,00	Multidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.	JQ394987:0-1233
evgA	99,02	fluoroquinolone;mac rolide;penam;Tetrasy klin	100,00	EvgA when phosphorylated is a positive regulator for efflux protein complexes emrKY and mdtEF. While usually phosphorylated in a EvgS dependent manner it can be phosphorylated in the absence of EvgS when overexpressed.	BA000007.3:321202 5-3212640
evgS	99,50	fluoroquinolone;mac rolide;penam;Tetrasy klin	100,00	EvgS is a sensor protein that phosphorylates the regulatory protein EvgA. evgS corresponds to 1 locus in	U00096:2484373- 2487967

				Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.	
gadW	94,38	fluoroquinolone;mac rolide;penam	100,00	GadW is an AraC-family regulator that promotes mdtEF expression to confer multidrug resistance. GadW inhibits GadX-dependent activation. GadW clearly represses gadX and in situations where GadX is missing activates gadA and gadBC.	CP015085.1:255244 0-2551711
gadX	97,82	fluoroquinolone;mac rolide;penam	100,00	GadX is an AraC-family regulator that promotes mdtEF expression to confer multidrug resistance.	AP009048.1:397460 4-3975429
H-NS	99,28	cephalosporin;cepha mycin;fluoroquinolo ne;macrolide;penam; Tetrasyklin	100,00	H-NS is a histone-like protein involved in global gene regulation in Gram-negative bacteria. It is a repressor of the membrane fusion protein genes acrE mdtE and emrK as well as nearby genes of many RND-type multidrug exporters.	BA000007.3:173810 4-1737690
kdpE	97,18	aminoglycoside	99,26	kdpE is a transcriptional activator that is part of the two- component system KdpD/KdpE that is studied for its regulatory role in potassium transport and has been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria. kdpE regulates a range of virulence loci through direct promoter binding.	U00096.3:721733- 721055
marA	99,48	carbapenem;cephalos porin;cephamycin;flu oroquinolone;glycylc ycline;monobactam;p enam;penem;phenico l;rifamycin;Tetrasykl in;triclosan	100,00	In the presence of antibiotic stress E. coli overexpresses the global activator protein MarA which besides inducing MDR efflux pump AcrAB also down- regulates synthesis of the porin OmpF.	AP009048.1:162128 7-1621671
mdtA	98,16	aminocoumarin	100,00	MdtA is the membrane fusion protein of the multidrug efflux complex mdtABC.	U00096:2154015- 2155263
mdtB	97,95	aminocoumarin	100,00	MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.	U00096:2155262- 2158385
mdtC	98,08	aminocoumarin	100,00	MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter.	U00096:2158385- 2161463

				MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.	
mdtE	99,74	fluoroquinolone;mac rolide;penam	100,00	MdtE is the membrane fusion protein of the MdtEF multidrug efflux complex. It shares 70% sequence similarity with AcrA.	AP009048.1:398118 3-3980025
mdtF	98,56	fluoroquinolone;mac rolide;penam	100,00	MdtF is the multidrug inner membrane transporter for the MdtEF-TolC efflux complex.	U00096:3660413- 3663527
mdtG	99,19	fosfomycin	100,00	The MdtG protein also named YceE appears to be a member of the major facilitator superfamily of transporters and it has been reported when overexpressed to increase fosfomycin and deoxycholate resistances. mdtG is a member of the marA-soxS-rob regulon.	CP000800.1:119295 4-1191727
mdtH	98,76	fluoroquinolone	100,00	Multidrug resistance protein MdtH	U00096:1125326- 1124117
mdtN	97,97	acridine_dye;nucleos ide	100,00	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride.	AP009048.1:430758 8-4306556
mdtO	98,78	acridine_dye;nucleos ide	100,00	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride	AP009048.1:430655 7-4304505
mdtP	98,23	acridine_dye;nucleos ide	100,00	Multidrug resistance efflux pump. Could be involved in resistance to puromycin acriflavine and tetraphenylarsonium chloride	AP009048.1:430450 9-4303042
mphB	98,32	macrolide	100,00	The mphB gene encodes for MPH(2')-II. This enzymes phosphorylates 14-membered and 16-membered Makrolids. It phosphorylates Makrolids in GTP- dependent manner at 2'-OH hydroxyl of desosamine sugar of Makrolids.	AE005174.2:339737 0-3397847
msbA	99,03	nitroimidazole	100,00	MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that	U00096.3:966620- 968369

				contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A a major component of the bacterial outer cell membrane and is the only bacterial ABC transporter that is essential for cell viability.	
pmrF	99,38	peptide	100,00	PmrF is required for the synthesis and transfer of 4- amino-4-deoxy-L-arabinose (Ara4N) to Lipid A which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial Peptids and antibiotics such as polymyxin. pmrF corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.	U00096:2367070- 2368039
qnrS1	100,00	fluoroquinolone	100,00	QnrS1 is a plasmid-mediated Fluorokinoloner resistance protein found in Shigella flexneri. Fluorokinoloner resistance pentaPeptid repeat protein QnrS1	DQ485529.1:0-657
tolC	98,39	aminocoumarin;amin oglycoside;carbapene m;cephalosporin;cep hamycin;fluoroquino lone;glycylcycline;m acrolide;penam;pene m;peptide;phenicol;ri famycin;Tetrasyklin;t riclosan	100,00	TolC is a protein subunit of many multidrug efflux complexes in Gram negative bacteria. It is an outer membrane efflux protein and is constitutively open. Regulation of efflux activity is often at its periplasmic entrance by other components of the efflux complex.	FJ768952:0-1488
ugd	95,89	peptide	100,00	PmrE is required for the synthesis and transfer of 4- amino-4-deoxy-L-arabinose (Ara4N) to Lipid A which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial Peptids and antibiotics such as polymyxin	U00096:2099613- 2098446
yojI	98,24	peptide	100,00	YojI mediates resistance to the Peptid antibiotic microcin J25 when it is expressed from a multicopy vector. YojI is capable of pumping out microcin molecules. The outer	U00096.3:2308615- 2306971
	membrane protein TolC in addition to YojI is required for				
--	--	--			
	export of microcin J25 out of the cell. Microcin J25 is thus				
	the first known substrate for YojI.				

Resultater ved søk i databasen CARD for prøven identifisert som P. aeruginosa, P10.SP.BR_ESBL

P10.SP.BR_ESBL						
Gene	Identity (%)	Resistance	Product	Accession		
APH(3')-IIb	97,03	Aminoglycoside	APH(3')-IIb is a chromosomal-encoded aminoglycoside phosphotransferase in P. aeruginosa	X90856:387-1194		
ArmR	98,15	aminocoumarin;carbapenem;K efalosporin;cephamycin;diami nopyrimidine;Fluorokinoloner; Makrolid;monobactam;penam; penem;Peptid;phenicol;sulfona mide;Tetrasyklin	ArMDRa 53-amino-acid antirepressor allosterically inhibits MexR dimer-DNA binding by occupying a hydrophobic binding cavity within the center of the MexR dimer. ArMDRup-regulation and MexR-ArMDRcomplex formation have previously been shown to upregulate MexAB-OprM.	AE004091.2:4165880- 4165718		
arnA	99,14	Peptid	arnA modifies lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial Peptids and antibiotics such as polymyxin. arnA is found in E. coli and P. aeruginosa.	AE004091.2:3982020- 3984009		
basS	99,09	Peptid	Histidine protein kinase sensor Lipid A modification gene; part of a two-component system involved in polymyxin resistance that senses high extracellular Fe(2+)	JQ340365:0-1434		
bcr-1	99,09	bicyclomycin	Transmembrane protein which expels bicyclomycin from the cell leading to bicyclomycin resistance. Identified in Pseudomonas aeruginosa strains responsible for outbreaks in Brazil often appearing with blaSPM-1 another bicyclomycin resistance gene	CP012901.1:5980365- 5979156		

 Tabell 18. Resistensgener funnet ved HGS i P10.SP.BR_ESBL ved bruk av databasen CARD.

fosA	98,28	fosfomycin	An enzyme that confers resistance to fosfomycin in Serratia marcescens by breaking the epoxide ring of the molecule. It depends on the cofactors Manganese (II) and Potassium and uses Glutathione (GSH) as the nucleophilic molecule. In Pseudomonas aeruginosa FosA catalyzes the conjugation of glutathione to carbon-1 of fosfomycin rendering it ineffective as an antibacterial drug.	AE004091.2:1221690- 1222098
MexA	98,44	aminocoumarin;carbapenem;K efalosporin;cephamycin;diami nopyrimidine;Fluorokinoloner; Makrolid;monobactam;penam; penem;Peptid;phenicol;sulfona mide;Tetrasyklin	MexA is the membrane fusion protein of the MexAB-OprM multidrug efflux complex.	AE004091.2:472023- 473175
MexB	96,12	aminocoumarin;carbapenem;K efalosporin;cephamycin;diami nopyrimidine;Fluorokinoloner; Makrolid;monobactam;penam; penem;Peptid;phenicol;sulfona mide;Tetrasyklin	MexB is the inner membrane multidrug exporter of the efflux complex MexAB-OprM.	L11616:1569-4710
MexC	98,28	aminocoumarin;aminoglycosid e;Kefalosporin;diaminopyrimi dine;Fluorokinoloner;Makrolid ;penam;phenicol;Tetrasyklin	MexC is the membrane fusion protein of the MexCD-OprJ multidrug efflux complex.	U57969:294-1458
MexD	97,57	aminocoumarin;aminoglycosid e;Kefalosporin;diaminopyrimi dine;Fluorokinoloner;Makrolid ;penam;phenicol;Tetrasyklin	MexD is the multidrug inner membrane transporter of the MexCD-OprJ complex.	U57969:1485-4617
MexE	98,72	diaminopyrimidine;Fluorokino loner;phenicol	MexE is the membrane fusion protein of the MexEF-OprN multidrug efflux complex.	AE004091.2:2808742- 2809987
MexF	99,15	diaminopyrimidine;Fluorokino loner;phenicol	MexF is the multidrug inner membrane transporter of the MexEF-OprN complex. mexF corresponds to 2 loci in Pseudomonas aeruginosa PAO1 (gene name: mexF/mexB) and	AE004091.2:2810008- 2813197

			4 loci in Pseudomonas aeruginosa LESB58 (gene name:	
mexG	98.43	acridine dve:Eluorokinoloner	mexD/mexB). MexG is a membrane protein required for MexGHLOpmD	AF004091 2·4705955-
lilexO	J0, 1 5	Tetrasvklin	efflux activity.	4706402
mexH	99,19	acridine_dye;Fluorokinoloner; Tetrasyklin	MexH is the membrane fusion protein of the efflux complex MexGHI-OpmD.	AE004091.2:4706409- 4707522
mexI	99,35	acridine_dye;Fluorokinoloner; Tetrasyklin	MexI is the inner membrane transporter of the efflux complex MexGHI-OpmD.	AE004091.2:4707534- 4710624
mexJ	99,09	Makrolid;Tetrasyklin ;triclosan	mexJ is the membrane fusion protein of the MexJK multidrug efflux protein.	AE004091.2:4120373- 4119269
mexK	97,95	Makrolid;Tetrasyklin ;triclosan	mexK is the inner membrane resistance-nodulation-cell division (RND) transporter in the MexJK multidrug efflux protein.	AE004091.2:4119265- 4116187
mexL	98,12	Makrolid;Tetrasyklin ;triclosan	MexL is a specific repressor of mexJK transcription and autoregulates its own expression.	AE004091.2:4120468- 4121107
mexM	98,70	phenicol	mexM is the membrane fusion protein of the MexMN-OprM multidrug efflux complex.	AB219523.1:21-1179
mexN	97,88	phenicol	MexN is the inner membrane transporter of the MexMN-OprM multidrug efflux complex.	AB219523.1:1175- 4286
mexP	98,88	acridine_dye;carbapenem;diam inopyrimidine;Makrolid;pheni col;Tetrasyklin	MexP is the membrane fusion protein of the MexPQ-OpmE multidrug efflux complex	AB219524.1:22-1180
mexQ	99,05	acridine_dye;carbapenem;diam inopyrimidine;Makrolid;pheni col;Tetrasyklin	MexQ is the inner membrane transporter of the multidrug efflux pump MexPQ-OpmE.	AB219524.1:1176- 4338
mexV	98,76	acridine_dye;Fluorokinoloner; Makrolid;phenicol;Tetrasyklin	MexV is the membrane fusion protein of the MexVW-OprM multidrug efflux complex.	AE004091.2:4903465- 4904596
mexW	99,28	acridine_dye;Fluorokinoloner; Makrolid;phenicol;Tetrasyklin	MexW is the RND-type membrane protein of the efflux complex MexVW-OprM.	NC_002516.2:490464 6-4907703
mexX	97,54	acridine_dye;aminoglycoside;c arbapenem;Kefalosporin;cepha mycin;Fluorokinoloner;Makrol id;penam;phenicol;Tetrasyklin	MexX is the membrane fusion protein of the MexXY-OprM multidrug efflux complex.	AB015853:145-1315
mexY	98,06	acridine_dye;aminoglycoside;c arbapenem;Kefalosporin;cepha	MexY is the RND-type membrane protein of the efflux complex MexXY-OprM.	AB015853:1330-4471

		mycin;Fluorokinoloner;Makrol id;penam;phenicol;Tetrasyklin		
MuxA	98,75	aminocoumarin;Makrolid;mon obactam;Tetrasyklin	MuxA is a membrane fusion protein component of the efflux pump system MuxABC-OpmB in Pseudomonas aeruginosa.	AE004091.2:2855291- 2854010
MuxB	98,98	aminocoumarin;Makrolid;mon obactam;Tetrasyklin	MuxB is one of the two necessary RND components in the Pseudomonas aeruginosa efflux pump system MuxABC- OpmB.	AE004091.2:2854014- 2850882
MuxC	99,26	aminocoumarin;Makrolid;mon obactam;Tetrasyklin	MuxC is one of the two necessary RND components of the MuxABC-OpmB efflux pumps system in Pseudomonas aeruginosa.	AE004091.2:2850886- 2847775
OpmB	98,07	aminocoumarin;Makrolid;mon obactam;Tetrasyklin	OpmB is an outer membrane efflux protein in Pseudomonas aeruginosa that shows functional cooperation with MuxABC to form the efflux pump system MuxABC-OpmB.	AE004091.2:2847779- 2846282
opmD	98,84	acridine_dye;Fluorokinoloner; Tetrasyklin	OpmD is the outer membrane channel protein of the efflux complex MexGHI-OpmD.	AE004091.2:4710620- 4712084
opmE	98,31	acridine_dye;carbapenem;diam inopyrimidine;Makrolid;pheni col;Tetrasyklin	opmE is an outer membrane factor protein that is part of the multidrug efflux pump MexPQ-OpmE.	AB219524.1:4334- 5810
OpmH	99,66	triclosan	OpmH is an outer membrane efflux protein required for triclosan-specific efflux pump function.	AE004091.2:5584100- 5585549
OprJ	97,99	aminocoumarin;aminoglycosid e;Kefalosporin;diaminopyrimi dine;Fluorokinoloner;Makrolid ;penam;phenicol;Tetrasyklin	OprJ is the outer membrane channel component of the MexCD-OprJ multidrug efflux complex.	U57969:4622-6062
OprM	98,90	acridine_dye;aminocoumarin;a minoglycoside;carbapenem;Ke falosporin;cephamycin;diamin opyrimidine;Fluorokinoloner; Makrolid;monobactam;penam; penem;Peptid;phenicol;sulfona mide;Tetrasyklin	OprM is an outer membrane factor protein found in Pseudomonas aeruginosa and Burkholderia vietnamiensis. It is part of the MexAB-OprM MexVW-OprM MexXY-OprM and the AmrAB-OprM complex.	AE004091.2:476332- 477790
OprN	98,17	diaminopyrimidine;Fluorokino loner;phenicol	OprN is the outer membrane channel component of the MexEF-OprN multidrug efflux complex.	AE004091.2:2813193- 2814612

OXA-50	98,86	Kefalosporin;penam	OXA-50 is a Betalaktamase found in Pseudomonas aeruginosa. It confers decreased susceptibility to ampicillin and ticarcillin and interestingly to moxalactam and meropenem in P. aeruginosa but not in E. coli. Also confers resistance to piperacillin-tazobactam and cephalotin.	AY306130:0-789
PDC-3	99,50	carbapenem;Kefalosporin;mon obactam	PDC-3 is a extended-spectrum Betalaktamase found in Pseudomonas aeruginosa.	FJ666066:0-1194
PmpM	99,02	aminoglycoside;benzalkonium _chloride;Fluorokinoloner	PmpM is a multidrug efflux pump belonging to the MATE family of Pseudomonas aeruginosa. PmpM is an H+ drug antiporter and is the first reported case of an H+ coupled efflux pump in the MATE family. PmpM confers resistance to Fluorokinoloners fradiomycin benzalkonium chloride chlorhexidine gluconate ethidium bromide tetraphenylphosphonium chloride (TPPCl) and rhodamine 6G.	AE004091.2:1473980- 1472546
Pseudomonas_ aeruginosa_cat B7	97,65	phenicol	catB7 is a chromosome-encoded variant of the cat gene found in Pseudomonas aeruginosa	NC_002516.2:780101- 779462
Pseudomonas_ aeruginosa_Cp xR	99,70	aminocoumarin;aminoglycosid e;carbapenem;Kefalosporin;ce phamycin;diaminopyrimidine; Fluorokinoloner;Makrolid;mo nobactam;penam;penem;Pepti d;phenicol;sulfonamide;Tetras yklin	CpxR is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. CpxR is required to enhance mexAB-oprM expression and drug resistance in the absence of repressor MexR.	LT673656.1:1885022- 1884344
Pseudomonas_ aeruginosa_em rE	98,80	aminoglycoside	EmrE is a small multidrug transporter that functions as a homodimer and that couples the efflux of small polyaromatic cations from the cell with the import of protons down an electrochemical gradient. Confers resistance to tetraphenylphosphonium methyl viologen gentamicin kanamycin and neomycin.	AE004091.2:5606102- 5606435
Pseudomonas_ aeruginosa_so xR	99,15	acridine_dye;Kefalosporin;Flu orokinoloner;glycylcycline;pe nam;phenicol;rifamycin;Tetras yklin ;triclosan	SoxR is a redox-sensitive transcriptional activator that induces expression of a small regulon that includes the RND efflux pump-encoding operon mexGHI-opmD. SoxR was shown to be activated by pyocyanin.	AE004091.2:2503895- 2503424

TriA	99,13	triclosan	TriA is a membrane protein that is fused to TriB and both are required for the triclosan efflux pump function of TriABC- OpmH in P. aeruginosa.	AE004091.2:177306- 178458
TriB	99,25	triclosan	TriB is a membrane protein that is fused to TriA and both are required for the triclosan efflux pump function of TriABC- OpmH in P. aeruginosa.	AE004091.2:178454- 179525
TriC	98,92	triclosan	TriC is a resistance nodulation cell division (RND) transporter that is a part of TriABC-OpmH a triclosan-specific efflux protein.	AE004091.2:179521- 182569

Resultater ved søk i databasen NCBI for prøvene identifisert som E. coli, P2.SP.MB_ESBL og P5.SV.MB_ESBL

Gene	Identity (%)	Coverage (%)	Resistance	Product	Accession
blaCTX-M- 15	100,00	100,00	Cephalosporin	class A extended-spectrum beta-lactamase CTX-M-15	NG_048935.1
blaEC-13	99,56	100,00	Cephalosporin	class C extended-spectrum beta-lactamase EC-13	NG_049079.1
blaOXA-50	98,86	100,00	Beta-laktams	Oksacillin-hydrolyserende klasse D betalaktamase	NG_049777.1
blaPDC-374	98,94	100,00	Cephalosporine	Klasse C betalaktamase	NG_065926.1
qnrS1	100,00	100,00	Quinolone	quinolone resistance pentapeptide repeat protein QnrS1	NG_050543.1

Tabell 19. Resistensgener detektert ved søk i databasen NCBI for prøve P2.SP.MB_ESBL og P5.SV.MB_ESBL.

Resultater ved søk i databasen CARD for prøven identifisert som P. aeruginosa, P10.SP.BR_ESBL

Gene	Identity (%)	Coverage (%)	Resistance	Product	Accession
aph(3')-IIb	98,02	100,00	Kanamycin	aminoglycoside O-phosphotransferase APH(3')-IIb	NG_047424.1
blaOXA-50	98,86	100,00	Beta-laktams	oxacillin-hydrolyzing class D beta-lactamase OXA- 50	NG_049777.1
blaPDC-374	98,94	100,00	Cephalosporine	class C beta-lactamase PDC-374	NG_065926.1
catB7	97,65	100,00	Chloramphenocol	type B-4 chloramphenicol O-acetyltransferase CatB7	NG_047614.1
fosA-354827590	98,28	100,00	Fosfomycin	FosA family fosfomycin resistance glutathione transferase	NG_047883.1

Tabell 20. Resistensgener detektert ved søk i databasen NCBI for prøve P10.SP.BR_ESBL

Resultater ved søk i databasen MyVirDB for prøve P2.SP.MB_ESBL

Tabell 21.	Virulensgener	detektert ve	ed søk i database	n MyVirDB fo	or prøve P2.SP.MB	ESBL.

Gene/ marker name	Nucleotide match (%)	Coverage	Contig ID	Location	Comment	Accession number
AcrA	99,83	1194 / 1194	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	127946129139	Multidrug efflux pump subunit AcrA	NC_000913
acs	99,23	1959 / 1959	contig00011 len=154626 cov=39.9 corr=0 origname=NODE_11_length_1546 26_cov_39.898237 sw=shovill- spades/1.1.0 date=20230425	7441976377	Acetyl-coenzyme A synthetase. APEC acs-yjcH- actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages.	NC_000913

actP	98,48	1650 / 1650	contig00011 len=154626 cov=39.9 corr=0 origname=NODE_11_length_1546 26_cov_39.898237 sw=shovill- spades/1.1.0 date=20230425	7225873907	Cation/acetate symporter ActP. APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages.	NC_000913
aer	98,29	1521 / 1521	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007 2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425	7434875868	Aerotaxis receptor	NC_011751
ag43	97,35	1960 / 2847	contig00036 len=13897 cov=42.4 corr=0 origname=NODE_36_length_1389 7_cov_42.389831 sw=shovill- spades/1.1.0 date=20230425	11960	A self-recognizing adhesin that is associated with cell aggregation and biofilm formation in E. coli.	NZ_WJRE010000 40
ag43	99,89	2666 / 3120	contig00019 len=82238 cov=41.2 corr=0 origname=NODE_19_length_8223 8_cov_41.235687 sw=shovill- spades/1.1.0 date=20230425	7957382238	A self-recognizing adhesin that is associated with cell aggregation and biofilm formation in E. coli.	NZ_ANXM01000 041
APEC O1 conserved protein (APECO1 _2080)	99,95	2202 / 2202	contig00015 len=127106 cov=40.4 corr=0 origname=NODE_15_length_1271 06_cov_40.418872 sw=shovill- spades/1.1.0 date=20230425	7051472715	APEC O1 conserved protein from CP000468	CP000468
arnC	99,38	969 / 969	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	7690077868	Undecaprenyl-phosphate 4- deoxy-4-formamido-L- arabinose transferase	NC_000913
bcr	98,15	1191 / 1191	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286	151793152983	Bicyclomycin resistance protein	CP027060

			1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425			
bcsA (cellulose synthase)	99,18	1347 / 1347	contig00027 len=42030 cov=40.0 corr=0 origname=NODE_27_length_4203 0_cov_40.049214 sw=shovill- spades/1.1.0 date=20230425	1526016606	Catalytically active subunit of cellulose synthase (Biofilm related)	CP006632
BlaAMP H	98,7	1158 / 1158	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	3643037587	A weak Betalaktamase	AP012030
blaEC15	99,51	1234 / 1234	contig00002 len=402972 cov=42.6 corr=0 origname=NODE_2_length_40297 2_cov_42.555171 sw=shovill- spades/1.1.0 date=20230425	46765908	AmpC-family class-C Betalaktamase (EC15)	NG049081
cadA (lysine decarbox ylase)	98,93	2148 / 2148	contig00011 len=154626 cov=39.9 corr=0 origname=NODE_11_length_1546 26_cov_39.898237 sw=shovill- spades/1.1.0 date=20230425	137804139951	Inducible lysine decarboxylase	CP025573
cas1 (CRISPR associated)	95,89	924 / 924	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	288260289183	CRISPR-associated endonuclease Cas1	BA000007
casA (CRISPR associated)	95,91	1563 / 1563	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	283712285274	CRISPR system Cascade subunit CasA	BA000007
CblD	100,00	1089 / 1089	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007	102968104056	Pilus assembly protein CblD	CP031321

			2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425			
cfaB	100,00	501 / 501	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007 2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425	106829107329	The major subunit, CfaB, of colonization factor antigen I (CFA/I) from ETEC	CYCQ01000001
cheW	100,00	504 / 504	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	9508295585	Chemotaxis protein	CP027060
cheY	100,00	390 / 390	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	8929489683	Chemotaxis protein	CP028306
CI772_23 180	99,74	1560 / 1560	contig00019 len=82238 cov=41.2 corr=0 origname=NODE_19_length_8223 8_cov_41.235687 sw=shovill- spades/1.1.0 date=20230425	7561377172	DUF3987 domain-containing protein	NQFM01000137.1
cirA	99,42	1026 / 1026	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	185697186722	Outer membrane receptor for colicins IA and IB	CP030337
copA	97,37	2505 / 2505	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	152193154697	Copper-exporting P-type ATPase	CP027060
CRISPR- associated	97,85	789 / 789	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796	287475288263	CRISPR system Cascade subunit CasE	BA000007

protein CasE			8_cov_39.976209 sw=shovill- spades/1 1 0 date=20230425			
csgA	99,54	439 / 450	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	446148446586	curli fimbriae gene	NZ_CP042892
csgB	99,79	483 / 483	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	446627447109	curli fimbriae gene	CP000800
csgE	99,49	390 / 390	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	448491448880	curli fimbriae gene	NC_011750
csgF	98,8	417 / 417	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	448905449321	curli fimbriae gene	NZ_ANXX010000 28
csgF	98,8	417 / 417	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	448905449321	curli fimbriae gene	NC_011750
CsgG	98,56	834 / 834	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	449348450181	curli fimbriae gene	CP003034
СТХ-М- 15	100,00	876 / 876	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286	231476232351	Extended-spectrum β- lactamase (ESBL) CTX-M- 15	KF055402

			1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425			
cusA	97,58	3144 / 3144	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	693810081	Part of a cation efflux system that mediates resistance to copper and silver.	NZ_NMMD01000 001
CvaA- colicin V secretion protein	97,99	1242 / 1242	contig00034 len=26260 cov=41.7 corr=0 origname=NODE_34_length_2626 0_cov_41.669762 sw=shovill- spades/1.1.0 date=20230425	891110149	Involved, in conjunction with CvaB, in the secretion of colicin V.	GG773553
eafC	99,88	2592 / 2595	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007 2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425	104146106737	Putative outer membrane usher protein	CYDF01000002
ecotin	99,76	419 / 419	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	128543128961	General inhibitor of pancreatic serine proteases	CP025268
ecpB (common pilus)	99,55	669 / 669	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	8954390211	common pilus gene	NZ_QOON010000 45
ecpD (common pilus)	98,78	1644 / 1644	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	9275294395	common pilus gene	NZ_UASG010000 05
ECs3706/ yqeK	99,53	426 / 426	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796	175683176108	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695

(ETT2- related)			8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425			
ECs3707 ygeF (ETT2- related)	96,34	492 / 492	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	174999175489	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ECs3725/ epaP (ETT2- related)	97,75	666 / 666	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	163019163684	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ECs3736/ pkgA (ETT2- related)	98,19	1047 / 1059	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	160903161949	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ECs3737 (ETT2- related)	98,67	602 / 606	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	160298160899	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ehaB	99,36	2979 / 2979	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	3274035718	Associated with the formation and maintenance of biofilms and other virulence traits in pathogens and related commensals	NZ_AOUP010002 60
ehaC/Yfa L	95,82	3757 / 3753	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	96567100301	AIDA-I family autotransporter adhesin YfaL/EhaC	NZ_CP023749
ehaG	99,20	4116 / 4767	contig00018 len=104015 cov=39.8 corr=0 origname=NODE_18_length_1040	8605990174	Trimeric autotransporter protein (TAA), EhaG is localized at the bacterial cell	BA000007

			15_cov_39.794860 sw=shovill- spades/1.1.0 date=20230425		surface and promotes cell aggregation, biofilm formation, and adherence to a range of ECM proteins.	
eivH (ETT2- related)	100,00	294 / 294	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	165914166207	Part of Escherichia coli type III secretion system 2 (ETT2)	DQ077151
elfG	96,83	1071 / 1071	contig00012 len=151348 cov=40.5 corr=0 origname=NODE_12_length_1513 48_cov_40.468435 sw=shovill- spades/1.1.0 date=20230425	8362584695	Part of the elfADCG- ycbUVF fimbrial operon, which promotes adhesion of bacteria to different abiotic surfaces	CP011134
entA	98,39	747 / 747	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	3590536651	enterobactin biosynthesis and transportation	CP027060
entE	98,82	1611 / 1611	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	3342435034	enterobactin biosynthesis and transportation	CP027060
entH	95,41	414 / 414	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	3665437067	enterobactin biosynthesis and transportation	CP027060
epaO (ETT2- related)	98,10	948 / 948	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	162082163029	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470

epaQ (ETT2- related)	96,93	261 / 261	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	163694163954	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
epaR (ETT2- related)	96,74	768 / 768	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	163956164723	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
epaS1 (ETT2- related)	97,65	468 / 468	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	164732165192	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
epaS2 (ETT2- related)	100,00	363 / 363	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	165490165852	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
eprH (ETT2- related)	95,13	1191 / 1191	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	166958168148	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011751
EprI (ETT2- related)	97,10	241 / 240	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	168162168402	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
eprJ (ETT2- related)	96,40	333 / 333	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	168422168753	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470

espL1	97,31	1601 / 1899	contig00002 len=402972 cov=42.6 corr=0 origname=NODE_2_length_40297 2_cov_42.555171 sw=shovill- spades/1.1.0 date=20230425	131048132646	Putative type III secreted effector	NC_002695
espX5	95,67	1293 / 1293	contig00011 len=154626 cov=39.9 corr=0 origname=NODE_11_length_1546 26_cov_39.898237 sw=shovill- spades/1.1.0 date=20230425	7078872080	Putative type III secreted effector	NC_013008
etrA	97,41	501 / 501	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	166209166709	Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian pathogenic Escherichia coli	KU684467
fdeC	96,85	4254 / 4254	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	8096085213	FdeC (factor adherence E. coli) able to mediate E. coli adhesion to mammalian cells and extracellular matrix.	NZ_QOON010000 45
fecA	99,74	2325 / 2325	contig00019 len=82238 cov=41.2 corr=0 origname=NODE_19_length_8223 8_cov_41.235687 sw=shovill- spades/1.1.0 date=20230425	6046162785	Outer membrane ferri- siderophore receptor, an E. coli 83972 isolate during deliberate bladder colonization lost genes for the aerobactin siderophore system, which is immunogenic, while expression of the ferric citrate receptor FecA was upregulated	NC_011751
feoB	97,37	2322 / 2322	contig00008 len=192892 cov=39.6 corr=0 origname=NODE_8_length_19289	6971672037	Fe(2+) transporter	HG941718

			2_cov_39.638928 sw=shovill- spades/1.1.0 date=20230425			
fepA	96,92	1945 / 1947	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	1790419848	Ferrienterobactin receptor	CP000468
fepB	97,39	957 / 957	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	3090831864	Ferrienterobactin-binding periplasmic protein	AE014075
fepC	97,3	816 / 816	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	2673827553	Predicted ATP-binding subunit of a ferrric enterobactin ABC transporter	AE014075
fepD	95,97	1017 / 1017	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	2853929555	Ferric enterobactin (Enterochelin) transport	AE014075
fepG	97,48	993 / 993	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	2755028542	Ferric enterobactin transport system permease protein	CP025573
fes	97,96	1125 / 1125	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	2016921293	Enterochelin esterase	CP027060
fiu	98,77	2283 / 2283	contig00016 len=124250 cov=40.3 corr=0 origname=NODE_16_length_1242	105938108220	Catecholate siderophore receptor	CP027060

			50_cov_40.259820 sw=shovill- spades/1.1.0 date=20230425			
flgD	99,71	696 / 696	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	418481419176	Basal-body rod modification protein	CP027060
flgM	99,32	294 / 294	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	420902421195	Negative regulator of flagellin synthesis	CP028192
fmlA (F9- fimbriae)	98,05	564 / 564	contig00021 len=66895 cov=41.1 corr=0 origname=NODE_21_length_6689 5_cov_41.135157 sw=shovill- spades/1.1.0 date=20230425	15982161	F9 Fimbriae of Uropathogenic Escherichia coli Are Expressed at Low Temperature. https://doi.org/10.1371/journ al.pone.0093177	BA000007
fsr (Fosmido mycin resistance)	99,26	1221 / 1221	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	146996148216	Fosmidomycin resistance protein	CP027060
gspD (E. coli)	97,43	2061 / 2061	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	3485036910	Type II secretion system protein	NC_011750
HlyE	98,37	918/918	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	287110288026	Toxin, which has some hemolytic activity towards mammalian cells. Acts by forming a pore-like structure upon contact with mammalian cells.	BA000007

Hypotheti cal Protein	97,69	866 / 867	contig00018 len=104015 cov=39.8 corr=0 origname=NODE_18_length_1040 15_cov_39.794860 sw=shovill- spades/1.1.0 date=20230425	3837739242	Hypothetical Protein from E. coli strain NRZ14408 (hybrid strain?)	LT599825
ibeB	96,03	1384 / 1383	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360 79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425	39495331	Invasion protein	AF094824
ibeC	97,12	1734 / 1734	contig00026 len=44525 cov=39.8 corr=0 origname=NODE_26_length_4452 5_cov_39.849192 sw=shovill- spades/1.1.0 date=20230425	2386625599	Invasion protein	CP019777
invH (ETT2- related)	100,00	294 / 294	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	165914166207	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_018658
iss (O55:H7)	100,00	294 / 294	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	334748335041	The increased serum survival gene	NC_013941
ivy	99,79	474 / 474	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	123757124230	Inhibitor of vertebrate lysozyme	CP025268
lpfA	99,83	573 / 573	contig00017 len=120113 cov=40.5 corr=0 origname=NODE_17_length_1201 13_cov_40.471522 sw=shovill- spades/1.1.0 date=20230425	3021230784	Long polar fimbriae	CP003289

matB	99,49	588 / 588	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	8889889485	matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group	LS483297
matD	97,94	2526 / 2526	contig00014 len=129053 cov=44.2 corr=0 origname=NODE_14_length_1290 53_cov_44.179371 sw=shovill- spades/1.1.0 date=20230425	9023792762	Predicted outer membrane protein associated with E. coli common pilus (ECP) formation in pathogenic E. coli strains	HM102365
mdfA	99,11	1233 / 1233	contig00020 len=78151 cov=39.5 corr=0 origname=NODE_20_length_7815 1_cov_39.531706 sw=shovill- spades/1.1.0 date=20230425	5066551897	Multidrug transporter	Y08743
mdtH	98,35	1209 / 1209	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	425704426912	Multidrug resistance protein	CP019777
mngB (mannosy l glycerate Hydrolase)	99,92	2634 / 2634	contig00016 len=124250 cov=40.3 corr=0 origname=NODE_16_length_1242 50_cov_40.259820 sw=shovill- spades/1.1.0 date=20230425	3432836961	May play a role in the thermoprotection of cell components in vivo. At least in vitro 2-O- α -Mannosyl-d-glycerate has been shown to be efficient in the protection of some enzymes against thermal inactivation.	NC_011415
mviM	97,84	924 / 924	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	423301424224	Putative virulence factor	CU928164
nikA	97,78	1575 / 1575	contig00008 len=192892 cov=39.6 corr=0	146060147634	Nickel-binding periplasmic protein	CU928163

			origname=NODE_8_length_19289 2_cov_39.638928 sw=shovill- spades/1.1.0 date=20230425			
nlpD- lipoprotei n	98,77	1140 / 1140	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	299276300415	NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli	NC_017634
ompW	98,90	639 / 639	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	206558207196	Outer membrane protein W	CP027060
ppk	98,98	2067 / 2067	contig00006 len=244801 cov=39.7 corr=0 origname=NODE_6_length_24480 1_cov_39.718573 sw=shovill- spades/1.1.0 date=20230425	154052156118	Polyphosphate kinase	CP025268
qnrS1	100,00	657 / 657	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	226179226835	Plasmid-Mediated Fluorokinoloner Resistance Gene	NC_020086
recG	96,01	2082 / 2082	contig00018 len=104015 cov=39.8 corr=0 origname=NODE_18_length_1040 15_cov_39.794860 sw=shovill- spades/1.1.0 date=20230425	3922841309	RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria.	CP019455
rhs	95,85	4411 / 4833	contig00023 len=54530 cov=41.6 corr=0 origname=NODE_23_length_5453 0_cov_41.551847 sw=shovill- spades/1.1.0 date=20230425	4886553270	rhs type-4 secretion protein	NZ_ADIK0100001 0
sapA	99,03	1644 / 1644	contig00001 len=453720 cov=41.0 corr=0	166144167787	Antimicrobial Peptid ABC transporter substrate-binding	NC_011751

			origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425		protein [Escherichia coli UMN026]	
sbmC (DNA Gyrase inhibitor)	97,89	474 / 474	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	376006376479	sbmC, a stationary-phase induced SOS Escherichia coli gene, whose product protects cells from the DNA replication inhibitor microcin B17	CP027060
sfmC	98,99	693 / 693	contig00023 len=54530 cov=41.6 corr=0 origname=NODE_23_length_5453 0_cov_41.551847 sw=shovill- spades/1.1.0 date=20230425	3255433246	Probable fimbrial chaperone SfmC; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes	CP032667
shiA	97,95	1317 / 1317	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	178048179364	shiA, suppress the host inflammatory response	NC_011751
sitA	98,02	910/915	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	5975060659	In E. coli SitABCD represents a manganese and iron transporter	FQ482074
sitB	98,30	825 / 825	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	6066261486	In E. coli SitABCD represents a manganese and iron transporter	NC_017659

sitC	99,30	858 / 858	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	6148362340	In E. coli SitABCD represents a manganese and iron transporter	CP000836
sitD	100,00	858 / 858	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	6233763194	In E. coli SitABCD represents a manganese and iron transporter	UGFR01000001
Slp- lipoprotei n	99,82	567 / 567	contig00008 len=192892 cov=39.6 corr=0 origname=NODE_8_length_19289 2_cov_39.638928 sw=shovill- spades/1.1.0 date=20230425	180576181142	The Escherichia coli O157:H7 carbon starvation- inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. https://doi.org/10.1371/journ al.pone.0216791	NZ_NLYY010000 04
stcD (Fimbrial adhesin)	98,26	1033 / 1035	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	255309256341	Putative fimbrial-like adhesin protein gene	NC_018658
sugE	98,43	318 / 318	contig00002 len=402972 cov=42.6 corr=0 origname=NODE_2_length_40297 2_cov_42.555171 sw=shovill- spades/1.1.0 date=20230425	37404057	Quaternary ammonium compound-resistance SugE	CP018976
tehA	99,50	993 / 993	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	17092701	Tellurite resistance protein TehA	CP027060

tehB	99,66	594 / 594	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	11191712	Tellurite resistance protein TehB	CP027060
terC	99,28	966 / 966	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007 2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425	9493895903	Tellurite resistance protein TerC	NC_000913
tnpA iSEcp1- transposa se	100,00	1266 / 1266	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	232607233872	Typically associated with CMY-type Betalaktamases	NC_014384
tonB	98,75	720 / 720	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	209408210127	TonB is a component of the energy transducing Ton system	CP027060
tssG (Type-6 secretion gene)	100,00	1089 / 1089	contig00030 len=34894 cov=39.2 corr=0 origname=NODE_30_length_3489 4_cov_39.206965 sw=shovill- spades/1.1.0 date=20230425	2529126379	Type VI secretion system baseplate subunit	NC_011741
ybbP (putative ABC- transporte r permease)	96,98	2415 / 2415	contig00010 len=167506 cov=40.0 corr=0 origname=NODE_10_length_1675 06_cov_40.024705 sw=shovill- spades/1.1.0 date=20230425	163734166148	YbbP is the predicted membrane-spanning subunit of a putative ATP-binding cassette (ABC) exporter complex	NC_011751
ybdO	97,79	903 / 903	contig00013 len=136079 cov=39.6 corr=0 origname=NODE_13_length_1360	4406944971	YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis	NZ_KI303915

			79_cov_39.596759 sw=shovill- spades/1.1.0 date=20230425			
ycgV	98,58	2887 / 2868	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	261538264424	ycgV is an autotransporter adhesin. It is homologous to Ag43. It greatly increases adhesion to solid surfaces.	NC_011751
ychO (Autotran sporter adhesin)	99,50 1	1395 / 1395	contig00001 len=453720 cov=41.0 corr=0 origname=NODE_1_length_45372 0_cov_40.975539 sw=shovill- spades/1.1.0 date=20230425	243309244703	ychO plays a role in the pathogenicity of APEC strain SEPT362. The ychO gene is highly expressed in the lungs and spleen during in vivo infection assays by strain SEPT362. doi: 10.1186/s12866-016-0654-2	NC_009801
ydeR	99,60	504 / 504	contig00021 len=66895 cov=41.1 corr=0 origname=NODE_21_length_6689 5_cov_41.135157 sw=shovill- spades/1.1.0 date=20230425	64826985	Two genes of the F9 operon, ydeQ and ydeR, were increased 2.2-fold with bile treatment. doi: 10.1371/journal.pone.007464 7	CU928163
yecI (ferritin- like protein 2	98,02	504 / 504	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	108395108898	Gene encoding a ferritin-like protein (FtnB). Ferritin Mutants of Escherichia coli Are Iron Deficient and Growth Impaired	AE014075
yejO	97,77	2512 / 2511	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286 1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425	142652145162	Putative autosecreted adhesin/ATP-binding component of transport system. YejO shows sequence similarity to the α43 subunit of Ag43	NC_011750
yfcI	96,84	885 / 903	contig00004 len=382861 cov=40.0 corr=0 origname=NODE_4_length_38286	2581326697	Putative transposase	NC_011750

			1_cov_39.976419 sw=shovill- spades/1.1.0 date=20230425			
yfdV (transport er gene)	98,73	945 / 945	contig00006 len=244801 cov=39.7 corr=0 origname=NODE_6_length_24480 1_cov_39.718573 sw=shovill- spades/1.1.0 date=20230425	3311334057	Predicted transporter. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon	NC_011750
ygeG/ECs 3708 (ETT2- related)	96,92	487 / 492	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	174283174769	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygeH (ETT2- related)	97,82	1377 / 1377	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	172572173948	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygeI (ETT2- related)	99,54	219/219	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	172186172404	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
ygeJ/PBL (ETT2- related)	99,80	502 / 503	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	171602172103	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913
ygeK/ECs 3712 (ETT2- related)	97,16	633 / 633	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	170950171582	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygfI	99,00	897 / 897	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796	9175392649	regulatory RNA gene	CU928163

			8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425			
yjcH	100,00	315 / 315	contig00011 len=154626 cov=39.9 corr=0 origname=NODE_11_length_1546 26_cov_39.898237 sw=shovill- spades/1.1.0 date=20230425	7390474218	APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host- induced transcription during its proliferation in macrophages.	NC_000913
урјА	96,15	2781 / 4587	contig00033 len=29958 cov=39.0 corr=0 origname=NODE_33_length_2995 8_cov_39.027924 sw=shovill- spades/1.1.0 date=20230425	19754753	adhesin-like autotransporter	CP001368
yqeH (ETT2- related)	99,68	633 / 633	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	177875178507	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913
yqeI (ETT2- related)	96,3	810 / 810	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	176732177541	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
yqeJ (ETT2- related)	97,31	483 / 483	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	176257176739	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
yqfA (Hemolys in-III family gene)	99,39	660 / 660	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	116123116782	When expressed from plasmids, three genes (dkgA, yqhD, and yqfA) were found to decrease furfural tolerance. Encoding an inner membrane protein of the hemolysin 3 family with	CP027060

					putative oxidoreductase function.	
YqgB (putative virulence promotin g factor)	100,00	147 / 147	contig00003 len=387968 cov=40.0 corr=0 origname=NODE_3_length_38796 8_cov_39.976209 sw=shovill- spades/1.1.0 date=20230425	6885068996	Gene of unknown class or function significantly induced by AI-2 quorum signaling	CP023258
zntA	99,86	2199 / 2199	contig00008 len=192892 cov=39.6 corr=0 origname=NODE_8_length_19289 2_cov_39.638928 sw=shovill- spades/1.1.0 date=20230425	138844141042	Zinc/cadmium/lead- transporting P-type ATPase.	AP010958
ZnuA	100,00	933 / 933	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	6370364635	Protein associated with the high-affinity ATP-binding cassette ZnuABC transporter	CP027060
znuB	100,00	786 / 786	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	6546666251	Protein associated with the high-affinity ATP-binding cassette ZnuABC transporter	NC_000913
znuC	99,74	756 / 756	contig00009 len=192238 cov=40.8 corr=0 origname=NODE_9_length_19223 8_cov_40.811342 sw=shovill- spades/1.1.0 date=20230425	6471465469	Protein associated with the high-affinity ATP-binding cassette ZnuABC transporter	NC_000913
zupT	99,61	774 / 774	contig00005 len=280072 cov=39.9 corr=0 origname=NODE_5_length_28007 2_cov_39.885592 sw=shovill- spades/1.1.0 date=20230425	4070841481	Zinc transporter	CP027060

Resultater ved søk i databasen MyVirDB for prøve P5.SV.MB_ESBL

Gene/ marker name	Nucleotide match (%)	Coverage	Contig ID	Location	Comment	Accession number
AcrA	99,83	1194 / 1194	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	127966129159	Multidrug efflux pump subunit AcrA	NC_000913
acs	99,23	1959 / 1959	contig00012 len=154666 cov=29.2 corr=0 origname=NODE_12_length_154666_cov_29.24 5117 sw=shovill-spades/1.1.0 date=20230426	7827080228	Acetyl-coenzyme A synthetase. APEC acs- yjcH-actP operon, encoding acetate assimilation system, presented the host- induced transcription during its proliferation in macrophages.	NC_000913
actP	98,48	1650 / 1650	contig00012 len=154666 cov=29.2 corr=0 origname=NODE_12_length_154666_cov_29.24 5117 sw=shovill-spades/1.1.0 date=20230426	8074082389	Cation/acetate symporter ActP. APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host- induced transcription during its proliferation in macrophages.	NC_000913
aer	98,29	1521 / 1521	contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426	7436875888	Aerotaxis receptor	NC_011751
ag43	97,37	1980 / 2847	contig00034 len=13937 cov=30.5 corr=0 origname=NODE_34_length_13937_cov_30.485 896 sw=shovill-spades/1.1.0 date=20230426	1195813937	A self-recognizing adhesin that is associated with cell	NZ_WJRE010 00040

Tabell 22. Virulensgener detektert ved søk i databasen MyVirDB for prøve P5.SV.MB_ESBL.

					aggregation and biofilm formation in E. coli.	
ag43	99,89	2686/3120	contig00018 len=82278 cov=29.6 corr=0 origname=NODE_18_length_82278_cov_29.617 693 sw=shovill-spades/1.1.0 date=20230426	12686	A self-recognizing adhesin that is associated with cell aggregation and biofilm formation in E. coli.	NZ_ANXM01 000041
APEC O1 conserv ed protein (APEC O1_208 0)	99,95	2202 / 2202	contig00014 len=127146 cov=29.2 corr=0 origname=NODE_14_length_127146_cov_29.18 0588 sw=shovill-spades/1.1.0 date=20230426	7053472735	APEC O1 conserved protein from CP000468	CP000468
arnC	99,38	969 / 969	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	305014305982	Undecaprenyl- phosphate 4-deoxy-4- formamido-L-arabinose transferase	NC_000913
bcr	98,15	1191 / 1191	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	229899231089	Bicyclomycin resistance protein	CP027060
bcsA (cellulos e synthase)	99,18	1347 / 1347	contig00024 len=42844 cov=29.3 corr=0 origname=NODE_24_length_42844_cov_29.303 747 sw=shovill-spades/1.1.0 date=20230426	1528016626	Catalytically active subunit of cellulose synthase (Biofilm related)	CP006632
BlaAM PH	98,70	1158 / 1158	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	3645037607	A weak Betalaktamase	AP012030
blaEC15	99,51	1234 / 1234	contig00020 len=55952 cov=30.0 corr=0 origname=NODE_20_length_55952_cov_30.010 781 sw=shovill-spades/1.1.0 date=20230426	5002551257	AmpC-family class-C Betalaktamase (EC15)	NG049081

cadA (lysine decarbo xylase)	98,93	2148 / 2148	contig00012 len=154666 cov=29.2 corr=0 origname=NODE_12_length_154666_cov_29.24 5117 sw=shovill-spades/1.1.0 date=20230426	1469616843	Inducible lysine decarboxylase	CP025573
cas1 (CRISP R associat ed)	95,89	924 / 924	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	288280289203	CRISPR-associated endonuclease Cas1	BA000007
casA (CRISP R associat ed)	95,91	1563 / 1563	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	283732285294	CRISPR system Cascade subunit CasA	BA000007
CblD	100,00	1089 / 1089	contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426	102988104076	Pilus assembly protein CblD	CP031321
cfaB	100,00	501 / 501	contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426	106849107349	The major subunit, CfaB, of colonization factor antigen I (CFA/I) from ETEC	CYCQ010000 01
cheW	100,00	504 / 504	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	9667497177	Chemotaxis protein	CP027060
cheY	100,00	390 / 390	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	102576102965	Chemotaxis protein	CP028306
CI772_2 3180	99,74	1560 / 1560	contig00018 len=82278 cov=29.6 corr=0 origname=NODE_18_length_82278_cov_29.617 693 sw=shovill-spades/1.1.0 date=20230426	50876646	DUF3987 domain- containing protein	NQFM010001 37.1
cirA	99,42	1026 / 1026	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	196160197185	Outer membrane receptor for colicins IA and IB	CP030337

copA	97,37	2505 / 2505	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	152213154717	Copper-exporting P- type ATPase	CP027060
CRISPR - associat ed protein CasE	97,85	789 / 789	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	287495288283	CRISPR system Cascade subunit CasE	BA000007
csgA	99,54	439 / 450	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	71557593	curli fimbriae gene	NZ_CP04289 2
csgB	99,79	483 / 483	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	66327114	curli fimbriae gene	CP000800
csgE	99,49	390 / 390	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	48615250	curli fimbriae gene	NC_011750
csgF	98,80	417 / 417	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	44204836	curli fimbriae gene	NC_011750
CsgG	98,56	834 / 834	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	35604393	curli fimbriae gene	CP003034
CTX- M-15	100,00	876 / 876	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	150531151406	Extended-spectrum β - lactamase (ESBL) CTX- M-15	KF055402
cusA	97,58	3144 / 3144	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	125959129102	Part of a cation efflux system that mediates resistance to copper and silver.	NZ_NMMD0 1000001
CvaA- colicin V secretio	97,99	1242 / 1242	contig00032 len=26300 cov=29.5 corr=0 origname=NODE_32_length_26300_cov_29.476 001 sw=shovill-spades/1.1.0 date=20230426	893110169	Involved, in conjunction with CvaB, in the secretion of colicin V.	GG773553

proteincontig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426104166106757 membrane usher proteinPutative outer membrane usher proteinCYDF010000 02ecotin99,76 99,76419 / 419 and the second	n						
eafC99,88 $2592/2595$ contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426104166106757Putative outer membrane usher proteinCYDF010000 02ecotin99,76419/419contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426253921254339General inhibitor of pancreatic serine proteasesCP025268ecpB (commo n pilus)99,55669/669contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.353923139899common pilus geneNZ_QOON01 000045ecpD (commo98,781644/1644contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.353504736690common pilus geneNZ_UASG01 000005	protein						
origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426membrane usher protein membrane usher protein02ecotin99,76419 / 419contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426253921254339General inhibitor of pancreatic serine proteasesCP025268ecpB99,55669 / 669contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.353923139899common pilus geneNZ_QOON01 000045(commo6583 sw=shovill-spades/1.1.0 date=202304263504736690common pilus geneNZ_UASG01 000005	eafC	99,88	2592 / 2595	contig00005 len=280348 cov=29.2 corr=0	104166106757	Putative outer	CYDF010000
ecotin99,76419 / 419contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426253921254339General inhibitor of pancreatic serine proteasesCP025268ecpB (commo n pilus)99,55669 / 669contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=202304263923139899common pilus geneNZ_QOON01 000045ecpD (commo98,781644 / 1644contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461 cov=32.353504736690common pilus geneNZ_UASG01 000005				origname=NODE_5_length_280348_cov_29.161		membrane usher protein	02
ecotin99,76419 / 419contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426253921254339General inhibitor of pancreatic serine proteasesCP025268ecpB (commo n pilus)99,55669 / 669contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=202304263923139899common pilus geneNZ_QOON01 000045ecpD (commo98,781644 / 1644contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461 cov=32.353504736690common pilus geneNZ_UASG01 000005				952 sw=shovill-spades/1.1.0 date=20230426			
origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426pancreatic serine proteasesecpB (commo n pilus)99,55669 / 669 origname=NODE_13_length_129461_cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=202304263923139899 OWNE_01200000000000000000000000000000000000	ecotin	99,76	419 / 419	contig00004 len=382901 cov=29.1 corr=0	253921254339	General inhibitor of	CP025268
Image: constraint of common500 sw=shovill-spades/1.1.0 date=20230426proteasesecpB99,55669 / 669contig00013 len=129461 cov=32.4 corr=03923139899common pilus geneNZ_QOON01(commoorigname=NODE_13_length_129461_cov_32.356583 sw=shovill-spades/1.1.0 date=202304263923139899common pilus geneNZ_QOON01ecpD98,781644 / 1644contig00013 len=129461 cov=32.4 corr=03504736690common pilus geneNZ_UASG01(commoorigname=NODE 13 length 129461 cov 32.35000005000005000005				origname=NODE_4_length_382901_cov_29.054		pancreatic serine	
ecpB 99,55 669 / 669 contig00013 len=129461 cov=32.4 corr=0 3923139899 common pilus gene NZ_QOON01 (commo n pilus) 6583 sw=shovill-spades/1.1.0 date=20230426 3923139899 common pilus gene NZ_QOON01 ecpD 98,78 1644 / 1644 contig00013 len=129461 cov=32.4 corr=0 3504736690 common pilus gene NZ_UASG01 (commo origname=NODE 13 length 129461 cov 32.35 000005 000005 000005				500 sw=shovill-spades/1.1.0 date=20230426		proteases	
(commo n pilus) origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=20230426 000045 ecpD 98,78 1644 / 1644 contig00013 len=129461 cov=32.4 corr=0 origname=NODE 13 length 129461 cov 32.35 3504736690 common pilus gene NZ_UASG01 000005	ecpB	99,55	669 / 669	contig00013 len=129461 cov=32.4 corr=0	3923139899	common pilus gene	NZ_QOON01
n pilus) 6583 sw=shovill-spades/1.1.0 date=20230426 NZ_UASG01 ecpD 98,78 1644 / 1644 contig00013 len=129461 cov=32.4 corr=0 3504736690 common pilus gene NZ_UASG01 (commo origname=NODE 13 length 129461 cov 32.35 000005 000005	(commo			origname=NODE_13_length_129461_cov_32.35			000045
ecpD 98,78 1644 / 1644 contig00013 len=129461 cov=32.4 corr=0 3504736690 common pilus gene NZ_UASG01 (commo origname=NODE 13 length 129461 cov 32.35 3504736690 common pilus gene NZ_UASG01	n pilus)			6583 sw=shovill-spades/1.1.0 date=20230426			
(commo origname=NODE 13 length 129461 cov 32.35 000005	ecpD	98,78	1644 / 1644	contig00013 len=129461 cov=32.4 corr=0	3504736690	common pilus gene	NZ_UASG01
	(commo			origname=NODE_13_length_129461_cov_32.35			000005
n pilus) 6583 sw=shovill-spades/1.1.0 date=20230426	n pilus)			6583 sw=shovill-spades/1.1.0 date=20230426			
ECs370 99,53 426/426 contig00003 len=388008 cov=29.3 corr=0 175703176128 Part of Escherichia coli NC_002695	ECs370	99,53	426 / 426	contig00003 len=388008 cov=29.3 corr=0	175703176128	Part of Escherichia coli	NC_002695
6/yqeK origname=NODE_3_length_388008_cov_29.268 type III secretion system	6/yqeK			origname=NODE_3_length_388008_cov_29.268		type III secretion system	
(ETT2- 664 sw=shovill-spades/1.1.0 date=20230426 2 (ETT2)	(ETT2-			664 sw=shovill-spades/1.1.0 date=20230426		2 (ETT2)	
related)	related)			A			
ECs370 96,34 492/492 contig00003 len=388008 cov=29.3 corr=0 175019175509 Part of Escherichia coli NC_002695	ECs370	96,34	492 / 492	contig00003 len=388008 cov=29.3 corr=0	175019175509	Part of Escherichia coli	NC_002695
7ygeF origname=NODE_3_length_388008_cov_29.268 type III secretion system	7ygeF			origname=NODE_3_length_388008_cov_29.268		type III secretion system	
(ETT2- 664 sw=shovill-spades/1.1.0 date=20230426 2 (ETT2)	(ÉTT2-			664 sw=shovill-spades/1.1.0 date=20230426		2 (ETT2)	
related)	related)			•			
ECs372 97,75 666 / 666 contig00003 len=388008 cov=29.3 corr=0 163039163704 Part of Escherichia coli NC_002695	ECs372	97,75	666 / 666	contig00003 len=388008 cov=29.3 corr=0	163039163704	Part of Escherichia coli	NC_002695
5/epaP origname=NODE 3 length 388008 cov 29.268 type III secretion system	5/epaP			origname=NODE 3 length 388008 cov 29.268		type III secretion system	
(ETT2- 664 sw=shovill-spades/1.1.0 date=20230426 2 (ETT2)	(ETT2-			664 sw=shovill-spades/1.1.0 date=20230426		2 (ETT2)	
related)	related)			L L			
ECs373 98,19 1047 / 1059 contig00003 len=388008 cov=29.3 corr=0 160923161969 Part of Escherichia coli NC 002695	ECs373	98,19	1047 / 1059	contig00003 len=388008 cov=29.3 corr=0	160923161969	Part of Escherichia coli	NC 002695
6/pkgA origname=NODE 3 length 388008 cov 29.268 type III secretion system	6/pkgA			origname=NODE 3 length 388008 cov 29.268		type III secretion system	
(ETT2- 664 sw=shovill-spades/1.1.0 date=20230426 2 (ETT2)	(ETT2-			664 sw=shovill-spades/1.1.0 date=20230426		2 (ETT2)	
related)	related)			L L			
ECs373 98,67 602 / 606 contig00003 len=388008 cov=29.3 corr=0 160318160919 Part of Escherichia coli NC 002695	ECs373	98.67	602 / 606	contig00003 len=388008 cov=29.3 corr=0	160318160919	Part of Escherichia coli	NC 002695
7 origname=NODE 3 length 388008 cov 29.268 type III secretion system	7			origname=NODE 3 length 388008 cov 29.268		type III secretion system	
(ETT2- $664 \text{ sw}=\text{shovill-spades}/1.1.0 \text{ date}=20230426$ 2 (ETT2)	(ETT2-			664 sw=shovill-spades/1.1.0 date=20230426		2 (ETT2)	
related)	related)					(··/	

ehaB	99,36	2979 / 2979	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	3276035738	Associated with the formation and maintenance of biofilms and other virulence traits in pathogens and related commensals	NZ_AOUP01 000260
ehaC/Yf aL	95,82	3757 / 3753	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	282581286315	AIDA-I family autotransporter adhesin YfaL/EhaC	NZ_CP02374 9
ehaG	99,2	4116 / 4767	contig00017 len=104055 cov=29.0 corr=0 origname=NODE_17_length_104055_cov_28.95 5601 sw=shovill-spades/1.1.0 date=20230426	1386217977	Trimeric autotransporter protein (TAA), EhaG is localized at the bacterial cell surface and promotes cell aggregation, biofilm formation, and adherence to a range of ECM proteins.	BA000007
eivH (ETT2- related)	100,00	294 / 294	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	165934166227	Part of Escherichia coli type III secretion system 2 (ETT2)	DQ077151
elfG	96,83	1071 / 1071	contig00007 len=229449 cov=29.6 corr=0 origname=NODE_7_length_229449_cov_29.609 554 sw=shovill-spades/1.1.0 date=20230426	144735145805	Part of the elfADCG- ycbUVF fimbrial operon, which promotes adhesion of bacteria to different abiotic surfaces	CP011134
entA	98,39	747 / 747	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	99389100135	enterobactin biosynthesis and transportation	CP027060
entE	98,82	1611 / 1611	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	101006102616	enterobactin biosynthesis and transportation	CP027060
entH	95,41	414 / 414	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	9897399386	enterobactin biosynthesis and transportation	CP027060

epaO (ETT2- related)	98,1	948 / 948	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	162102163049	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
epaQ (ETT2- related)	96,93	261 / 261	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	163714163974	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
epaR (ETT2- related)	96,74	768 / 768	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	163976164743	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
epaS1 (ETT2- related)	97,65	468 / 468	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	164752165212	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
epaS2 (ETT2- related)	100,00	363 / 363	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	165510165872	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
eprH (ETT2- related)	95,13	1191 / 1191	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	166978168168	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011751
EprI (ETT2- related)	97,10	241 / 240	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	168182168422	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
eprJ (ETT2- related)	96,40	333 / 333	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	168442168773	Part of Escherichia coli type III secretion system 2 (ETT2)	KU684470
espL1	97,31	1601 / 1899	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	267262268860	Putative type III secreted effector	NC_002695
espX5	95,67	1293 / 1293	contig00012 len=154666 cov=29.2 corr=0 origname=NODE_12_length_154666_cov_29.24 5117 sw=shovill-spades/1.1.0 date=20230426	8256783859	Putative type III secreted effector	NC_013008
etrA	97,41	501 / 501	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	166229166729	Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian	KU684467

					pathogenic Escherichia coli	
fdeC	96,85	4254 / 4254	contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=20230426	4422948482	FdeC (factor adherence E. coli) able to mediate E. coli adhesion to mammalian cells and extracellular matrix.	NZ_QOON01 000045
fecA	99,74	2325 / 2325	contig00018 len=82278 cov=29.6 corr=0 origname=NODE_18_length_82278_cov_29.617 693 sw=shovill-spades/1.1.0 date=20230426	1947421798	Outer membrane ferri- siderophore receptor, an E. coli 83972 isolate during deliberate bladder colonization lost genes for the aerobactin siderophore system, which is immunogenic, while expression of the ferric citrate receptor FecA was upregulated	NC_011751
feoB	97,37	2322 / 2322	contig00009 len=192912 cov=29.2 corr=0 origname=NODE_9_length_192912_cov_29.184 958 sw=shovill-spades/1.1.0 date=20230426	120876123197	Fe(2+) transporter	HG941718
fepA	96,92	1945 / 1947	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	116192118136	Ferrienterobactin receptor	CP000468
fepB	97,39	957 / 957	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	104176105132	Ferrienterobactin- binding periplasmic protein	AE014075
fepC	97,3	816 / 816	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	108487109302	Predicted ATP-binding subunit of a ferrric enterobactin ABC transporter	AE014075
fepD	95,97	1017 / 1017	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	106485107501	Ferric enterobactin (Enterochelin) transport	AE014075
fepG	97,48	993 / 993	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	107498108490	Ferric enterobactin transport system permease protein	CP025573
---	-------	-------------	--	--------------	---	-----------
fes	97,96	1125 / 1125	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	114747115871	Enterochelin esterase	CP027060
fiu	98,77	2283 / 2283	contig00015 len=124290 cov=29.6 corr=0 origname=NODE_15_length_124290_cov_29.62 9986 sw=shovill-spades/1.1.0 date=20230426	105958108240	Catecholate siderophore receptor	CP027060
flgD	99,71	696 / 696	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	3456535260	Basal-body rod modification protein	CP027060
flgM	99,32	294 / 294	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	3254632839	Negative regulator of flagellin synthesis	CP028192
fmlA (F9- fimbriae)	98,05	564 / 564	contig00033 len=23107 cov=28.2 corr=0 origname=NODE_33_length_23107_cov_28.193 773 sw=shovill-spades/1.1.0 date=20230426	16182181	F9 Fimbriae of Uropathogenic Escherichia coli Are Expressed at Low Temperature. https://doi.org/10.1371/j ournal.pone.0093177	BA000007
fsr (Fosmid omycin resistanc e)	99,26	1221 / 1221	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	147016148236	Fosmidomycin resistance protein	CP027060
gspD (E. coli)	97,43	2061 / 2061	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	3487036930	Type II secretion system protein	NC_011750
HlyE	98,37	918 / 918	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	165715166631	Toxin, which has some hemolytic activity towards mammalian cells. Acts by forming a pore-like structure upon	BA000007

					contact with mammalian cells.	
Hypothe tical Protein	97,69	866 / 867	contig00017 len=104055 cov=29.0 corr=0 origname=NODE_17_length_104055_cov_28.95 5601 sw=shovill-spades/1.1.0 date=20230426	6479465659	Hypothetical Protein from E. coli strain NRZ14408 (hybrid strain?)	LT599825
ibeB	96,03	1384 / 1383	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	130709132091	Invasion protein	AF094824
ibeC	97,12	1734 / 1734	contig00023 len=44852 cov=29.5 corr=0 origname=NODE_23_length_44852_cov_29.450 079 sw=shovill-spades/1.1.0 date=20230426	1909220825	Invasion protein	CP019777
invH (ETT2- related)	100,00	294 / 294	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	165934166227	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_018658
iss (O55:H 7)	100,00	294 / 294	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	118700118993	The increased serum survival gene	NC_013941
ivy	99,79	474 / 474	contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=20230426	52125685	Inhibitor of vertebrate lysozyme	CP025268
lpfA	99,83	573 / 573	contig00016 len=120153 cov=28.8 corr=0 origname=NODE_16_length_120153_cov_28.81 9988 sw=shovill-spades/1.1.0 date=20230426	3023230804	Long polar fimbriae	CP003289
matB	99,49	588 / 588	contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=20230426	3995740544	matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group	LS483297
matD	97,94	2526 / 2526	contig00013 len=129461 cov=32.4 corr=0 origname=NODE_13_length_129461_cov_32.35 6583 sw=shovill-spades/1.1.0 date=20230426	3668039205	Predicted outer membrane protein associated with E. coli common pilus (ECP)	HM102365

					formation in pathogenic E. coli strains	
mdfA	99,11	1233 / 1233	contig00007 len=229449 cov=29.6 corr=0 origname=NODE_7_length_229449_cov_29.609 554 sw=shovill-spades/1.1.0 date=20230426	2627527507	Multidrug transporter	Y08743
mdtH	98,35	1209 / 1209	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	2682928037	Multidrug resistance protein	CP019777
mngB (mannos yl glycerat e Hydrola se)	99,92	2634 / 2634	contig00015 len=124290 cov=29.6 corr=0 origname=NODE_15_length_124290_cov_29.62 9986 sw=shovill-spades/1.1.0 date=20230426	3434836981	May play a role in the thermoprotection of cell components in vivo. At least in vitro 2-O- α -Mannosyl-d-glycerate has been shown to be efficient in the protection of some enzymes against thermal inactivation.	NC_011415
mviM	97,84	924 / 924	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	2951730440	Putative virulence factor	CU928164
nikA	97,78	1575 / 1575	contig00009 len=192912 cov=29.2 corr=0 origname=NODE_9_length_192912_cov_29.184 958 sw=shovill-spades/1.1.0 date=20230426	4527946853	Nickel-binding periplasmic protein	CU928163
nlpD- lipoprot ein	98,77	1140 / 1140	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	299296300435	NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli	NC_017634
ompW	98,9	639 / 639	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	246545247183	Outer membrane protein W	CP027060
ppk	98,98	2067 / 2067	contig00006 len=244841 cov=29.4 corr=0 origname=NODE_6_length_244841_cov_29.429 743 sw=shovill-spades/1.1.0 date=20230426	154072156138	Polyphosphate kinase	CP025268

qnrS1	100,00	657 / 657	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	156047156703	Plasmid-Mediated Fluorokinoloner Resistance Gene	NC_020086
recG	96,01	2082 / 2082	contig00017 len=104055 cov=29.0 corr=0 origname=NODE_17_length_104055_cov_28.95 5601 sw=shovill-spades/1.1.0 date=20230426	6272764808	RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria.	CP019455
rhs	95,85	4411 / 4833	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	137516141921	rhs type-4 secretion protein	NZ_ADIK010 00010
sapA	99,03	1644 / 1644	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	285954287597	Antimicrobial Peptid ABC transporter substrate-binding protein [Escherichia coli UMN026]	NC_011751
sbmC (DNA Gyrase inhibitor)	97,89	474 / 474	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	64036876	sbmC, a stationary- phase induced SOS Escherichia coli gene, whose product protects cells from the DNA replication inhibitor microcin B17	CP027060
sfmC	98,99	693 / 693	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	157540158232	Probable fimbrial chaperone SfmC; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes	CP032667

shiA	97,95	1317 / 1317	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	1289514211	shiA, suppress the host inflammatory response	NC_011751
sitA	98,02	910 / 915	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	393082393991	In E. coli SitABCD represents a manganese and iron transporter	FQ482074
sitB	98,30	825 / 825	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	392255393079	In E. coli SitABCD represents a manganese and iron transporter	NC_017659
sitC	99,30	858 / 858	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	391401392258	In E. coli SitABCD represents a manganese and iron transporter	CP000836
sitD	100,00	858 / 858	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	390547391404	In E. coli SitABCD represents a manganese and iron transporter	UGFR010000 01
Slp- lipoprot ein	99,82	567 / 567	contig00009 len=192912 cov=29.2 corr=0 origname=NODE_9_length_192912_cov_29.184 958 sw=shovill-spades/1.1.0 date=20230426	1177112337	The Escherichia coli O157:H7 carbon starvation-inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. https://doi.org/10.1371/j ournal.pone.0216791	NZ_NLYY01 000004
stcD (Fimbria 1 adhesin)	98,26	1033 / 1035	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	126541127573	Putative fimbrial-like adhesin protein gene	NC_018658
sugE	98,43	318/318	contig00020 len=55952 cov=30.0 corr=0 origname=NODE_20_length_55952_cov_30.010 781 sw=shovill-spades/1.1.0 date=20230426	5187652193	Quaternary ammonium compound-resistance SugE	CP018976

tehA	99,50	993 / 993	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	451040452032	Tellurite resistance protein TehA	CP027060
tehB	99,66	594 / 594	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	452029452622	Tellurite resistance protein TehB	CP027060
terC	99,28	966 / 966	contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426	9495895923	Tellurite resistance protein TerC	NC_000913
tnpA iSEcp1- transpos ase	100,00	1266 / 1266	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	149010150275	Typically associated with CMY-type Betalaktamases	NC_014384
tonB	98,75	720 / 720	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	243614244333	TonB is a component of the energy transducing Ton system	CP027060
tssG (Type-6 secretio n gene)	100,00	1089 / 1089	contig00028 len=34934 cov=29.0 corr=0 origname=NODE_28_length_34934_cov_29.026 190 sw=shovill-spades/1.1.0 date=20230426	2531126399	Type VI secretion system baseplate subunit	NC_011741
vgrG	98,53	1902 / 1902	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	135106137007	type VI secretion system tip protein VgrG	NZ_LQSN010 00194
ybbP (putativ e ABC- transpor ter permeas e)	96,98	2415 / 2415	contig00011 len=167369 cov=29.6 corr=0 origname=NODE_11_length_167369_cov_29.60 2937 sw=shovill-spades/1.1.0 date=20230426	163754166168	YbbP is the predicted membrane-spanning subunit of a putative ATP-binding cassette (ABC) exporter complex	NC_011751
ybdO	97,79	903 / 903	contig00010 len=190572 cov=29.6 corr=0 origname=NODE_10_length_190572_cov_29.57 3550 sw=shovill-spades/1.1.0 date=20230426	9106991971	YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis	NZ_KI303915

ycgV	98,58	2887 / 2868	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	189317192203	ycgV is an autotransporter adhesin. It is homologous to Ag43. It greatly increases adhesion to solid surfaces.	NC_011751
ychO (Autotra nsporter adhesin)	99,50	1395 / 1395	contig00002 len=482858 cov=29.9 corr=0 origname=NODE_2_length_482858_cov_29.936 590 sw=shovill-spades/1.1.0 date=20230426	209038210432	ychO plays a role in the pathogenicity of APEC strain SEPT362. The ychO gene is highly expressed in the lungs and spleen during in vivo infection assays by strain SEPT362. doi: 10.1186/s12866-016- 0654-2	NC_009801
ydeR	99,60	504 / 504	contig00033 len=23107 cov=28.2 corr=0 origname=NODE_33_length_23107_cov_28.193 773 sw=shovill-spades/1.1.0 date=20230426	65027005	Two genes of the F9 operon, ydeQ and ydeR, were increased 2.2-fold with bile treatment. doi: 10.1371/journal.pone.00 74647	CU928163
yecI (ferritin- like protein 2)	98,02	504 / 504	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	8336183864	Gene encoding a ferritin-like protein (FtnB). Ferritin Mutants of Escherichia coli Are Iron Deficient and Growth Impaired	AE014075
yejO	97,77	2512 / 2511	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	237720240230	Putative autosecreted adhesin/ATP-binding component of transport system. YejO shows sequence similarity to the α43 subunit of Ag43	NC_011750

yfcI	96,84	885 / 903	contig00004 len=382901 cov=29.1 corr=0 origname=NODE_4_length_382901_cov_29.054 500 sw=shovill-spades/1.1.0 date=20230426	356185357069	Putative transposase	NC_011750
yfdV (transpo rter gene)	98,73	945 / 945	contig00006 len=244841 cov=29.4 corr=0 origname=NODE_6_length_244841_cov_29.429 743 sw=shovill-spades/1.1.0 date=20230426	3313334077	Predicted transporter. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon	NC_011750
ygeG/E Cs3708 (ETT2- related)	96,92	487 / 492	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	174303174789	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygeH (ETT2- related)	97,82	1377 / 1377	377 / 1377 contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426		Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygeI (ETT2- related)	99,54	219 / 219	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	172206172424	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
ygeJ/PB L (ETT2- related)	99,80	502 / 503	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	171622172123	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913
ygeK/E Cs3712 (ETT2- related)	97,16	633 / 633	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	170970171602	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_002695
ygfI	99,00	897 / 897	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	9177392669	regulatory RNA gene	CU928163
ујсН	100,00	315/315	contig00012 len=154666 cov=29.2 corr=0 origname=NODE_12_length_154666_cov_29.24 5117 sw=shovill-spades/1.1.0 date=20230426	8042980743	APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host- induced transcription	NC_000913

			1	1		1
					during its proliferation in macrophages.	
урјА	96,15	2781 / 4587	contig00031 len=30096 cov=28.2 corr=0 origname=NODE_31_length_30096_cov_28.203 969 sw=shovill-spades/1.1.0 date=20230426	19954773	adhesin-like autotransporter	CP001368
yqeH (ETT2- related)	99,68	633 / 633	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	177895178527	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_000913
yqeI (ETT2- related)	96,30	810 / 810	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	176752177561	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
yqeJ (ETT2- related)	97,31	483 / 483	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	176277176759	Part of Escherichia coli type III secretion system 2 (ETT2)	NC_011750
yqfA (Hemol ysin-III family gene)	99,39	660 / 660	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	116143116802	When expressed from plasmids, three genes (dkgA, yqhD, and yqfA) were found to decrease furfural tolerance. Encoding an inner membrane protein of the hemolysin 3 family with putative oxidoreductase function.	CP027060
YqgB (putativ e virulenc e promoti ng factor)	100,00	147 / 147	contig00003 len=388008 cov=29.3 corr=0 origname=NODE_3_length_388008_cov_29.268 664 sw=shovill-spades/1.1.0 date=20230426	6887069016	Gene of unknown class or function significantly induced by AI-2 quorum signaling	CP023258
zntA	99,86	2199 / 2199	contig00009 len=192912 cov=29.2 corr=0 origname=NODE_9_length_192912_cov_29.184 958 sw=shovill-spades/1.1.0 date=20230426	5187154069	Zinc/cadmium/lead- transporting P-type ATPase.	AP010958

ZnuA	100,0	933 / 933	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	127624128556	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	CP027060
znuB	100,00	786 / 786	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	126008126793	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	NC_000913
znuC	99,74	756 / 756	contig00001 len=539302 cov=30.6 corr=0 origname=NODE_1_length_539302_cov_30.614 189 sw=shovill-spades/1.1.0 date=20230426	126790127545	Protein associated with the high-affinity ATP- binding cassette ZnuABC transporter	NC_000913
zupT	99,61	774 / 774	contig00005 len=280348 cov=29.2 corr=0 origname=NODE_5_length_280348_cov_29.161 952 sw=shovill-spades/1.1.0 date=20230426	4072841501	Zinc transporter	CP027060

Resultater for søk i databasen VFDB for prøve P2.SP.MB_ESBL

Gene	Coverage	Coverage (%)	Identity (%)	Product	Accession
aec17	1-501/501	100,00	99,60	hypothetical protein	gi:260842460
aec18	1-1476/1476	100,00	97,56	hypothetical protein	gi:260866372
aec19	1-414/414	100,00	96,14	hypothetical protein	gi:260842457
aec22	1-1089/1089	100,00	99,54	hypothetical protein	gi:218693690
aec23	1-1302/1302	100,00	99,46	hypothetical protein	gi:218693689
aec24	1-525/525	100,00	99,81	hypothetical protein	gi:386612386
aec25	1-1332/1332	100,00	99,85	hypothetical protein	gi:386612385
aec26	1-762/762	100,00	100,00	hypothetical protein	gi:386612384
aec28	1-744/744	100,00	100,00	hypothetical protein	gi:260842449
aec29	1-1413/1413	100,00	100,00	hypothetical protein	gi:260842448
aec30	1-3525/3525	100,00	99,29	hypothetical protein	gi:157155738
aec31	1-1443/1443	100,00	99,79	hypothetical protein	gi:218693681

 Tabell 23.
 Virulensgener detektert ved søk i databasen VFDB for prøve P2.SP.MB_ESBL.

aec32	1-483/483	100,00	100,00	Hcp-like protein	gi:260866361
agn43	1-2666/3120	85,45	95,46	CP4-44 prophage; antigen 43 (Ag43) phase-variable biofilm formation	gi:49176177
				autotransporter	
artj	1-732/732	100,00	96,86	E.coli artP artI artQ artM and artJ genes.	SPG000096
b2854	1-477/477	100,00	99,79	Putative lytic transglycosylase Adherence Hemorrhagic coli pilus	SPG000125
b2972	1-810/810	100,00	95,80	Prepilin peptidase Adherence Hemorrhagic coli pilus	SPG000090
cadA	1-2176/2176	100,00	99,49	gb AY319765.1 :1081-3256 Escherichia coli cadBA operon partial	SPG000027
				sequence	
cfaA	1-717/717	100,00	99,30	putative fimbrial protein	gi:260869848
cfaB	1-501/501	100,00	100,00	fimbrial subunit	gi:260845908
cfaC	1-2703/2703	100,00	99,96	hypothetical protein	gi:410480837
cfaD	1-1089/1089	100,00	100,00	pilus biogenesis initiator protein	gi:157157077
cheA	1-1965/1965	100,00	98,63	chemotaxis protein CheA	gi:15802300
cheB	1-1050/1050	100,00	98,76	chemotaxis-specific methylesterase	gi:15802295
cheR	1-861/861	100,00	99,30	chemotaxis methyltransferase CheR	gi:15802296
cheW	1-504/504	100,00	98,81	purine-binding chemotaxis protein	gi:15802299
cheY	1-390/390	100,00	99,23	chemotaxis regulatory protein CheY	gi:15802294
cheZ	1-645/645	100,00	99,38	chemotaxis regulator CheZ	gi:15802293
clpV	1-2766/2766	100,00	99,17	ATP-dependent Clp proteinase ATP-binding chain	gi:260842450
csgA	1-459/459	99,35	93,03	cryptic curlin major subunit	gi:15801159
csgB	1-456/456	99,78	84,03	(csgB) minor curlin subunit precursor curli nucleator protein CsgB	NP_460114
				[Agf (VF0103)] [Salmonella enterica subsp. enterica serovar	
				Typhimurium str. LT2]	
csgB	1-483/483	100,00	99,38	minor curlin subunit CsgB	VFG045792
csgC	1-333/333	100,00	98,80	putative autoagglutination protein	gi:15801160
csgD	1-651/651	100,00	81,11	(csgD) DNA-binding transcriptional regulator CsgD [curli fibers/thin	NP_460113
				aggregative fimbriae (AGF) (AI094)] [Salmonella enterica subsp.	
				enterica serovar Typhimurium str. LT2]	
csgD	1-651/651	100,00	99,23	putative 2-component transcriptional regulator for 2nd curli operon	VFG045791
csgE	1-390/390	100,00	99,23	curli assembly protein CsgE	gi:15801156
csgF	1-417/417	99,04	81,23	(csgF) curli production assembly/transport protein CsgF [Agf	NP_460111
				(VF0103)] [Salmonella enterica subsp. enterica serovar Typhimurium	
				str. LT2]	
csgF	1-417/417	100,00	99,76	curli assembly protein CsgF	gi:15801155

csgG	1-834/834	100,00	83,09	(csgG) curli production assembly/transport protein CsgG [Agf (VF0103)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]	NP_460110
csgG	1-834/834	100,00	98,32	curli production assembly/transport component 2nd curli operon	gi:15801154
eaeH	1-4254/4254	100,00	97,06	adhesin	gi:410484074
EcE24377 A_0237	1-1851/1851	100,00	97,68	hypothetical protein	gi:157155723
ecpA	1-588/588	100,00	100,00	fimbrillin MatB	gi:157155651
ecpB	1-717/717	100,00	98,33	Hypothetical protein yagY precursor	gi:26246301
ecpC	1-2526/2526	100,00	99,80	outer membrane usher protein	gi:260853521
ecpD	1-1644/1644	100,00	99,94	hypothetical protein	gi:260853520
ecpR	1-591/591	100,00	99,66	transcriptional regulator	gi:410484079
ECs3712	1-633/633	100,00	97,16	hypothetical protein	gi:15832966
ECS88_35 47	1-885/885	100,00	99,77	lipoprotein NlpI	gi:218560235
ehaB	1-2949/2949	99,90	95,91	structural protein	gi:222155165
entA	1-747/747	100,00	95,98	(entA) 23-dihydro-23-dihydroxybenzoate dehydrogenase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752614
entA	1-747/747	100,00	95,98	23-dihydro-23-dihydroxybenzoate dehydrogenase	gi:26246575
entB	1-858/858	100,00	97,90	(entB) isochorismatase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752613
entB	1-858/858	100,00	97,90	isochorismatase	gi:26246574
entC	1-1188/1188	100,00	97,47	(entC) isochorismate synthase 1 [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752611
entC	1-1188/1188	100,00	97,47	isochorismate synthase 1	gi:26246572
entD	1-771/771	100,00	94,03	(entD) phosphopantetheinyl transferase component of enterobactin synthase multienzyme complex [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752599
entD	1-771/771	100,00	94,03	phosphopantetheinyl transferase component of enterobactin synthase multienzyme complex	gi:26246560
entE	1-1611/1611	100,00	95,78	(entE) 23-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752612

entE	1-1611/1611	100,00	95,78	23-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex	gi:26246573
entF	1-3830/3882	98,66	95,41	(entF) enterobactin synthase multienzyme complex component ATP- dependent [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752604
entF	1-3830/3882	98,66	95,41	enterobactin synthase multienzyme complex component ATP- dependent	gi:26246565
entS	1-1251/1251	100,00	95,60	(entS) enterobactin exporter iron-regulated [enterobactin (IA019)] [Escherichia coli CFT073]	NP_752609
entS	1-1251/1251	100,00	95,60	enterobactin exporter iron-regulated	gi:26246570
epaO	1-987/987	100,00	96,56	surface presentation of antigens protein SpaO	gi:15832980
epaP	1-666/666	100,00	97,75	surface presentation of antigens protein SpaP	gi:15832979
epaQ	1-261/261	100,00	96,94	EpaQ	gi:15832978
epaR	3-466/468	99,15	96,12	-	VFG042210
epaS	1-1122/1122	99,91	96,97	surface presentation of antigens protein SpaS	gi:15832975
eprH	1-735/735	100,00	97,14	EprH	gi:15832973
eprI	1-240/240	100,00	97,09	EprI	gi:15832972
eprJ	1-333/333	99,70	97,30	EprJ	gi:15832971
eprK	1-735/735	100,00	97,82	EprK	gi:15832970
espL1	1-1899/1899	98,42	95,26	(espL1) Type III secretion system effector espL1 [LEE encoded T3SS (SS020)] [Escherichia coli O157:H7 str. EDL933]	NP_288154
espL1	1-1899/1899	98,42	95,31	hypothetical protein	gi:15831681
espL3	1-1878/1878	100,00	99,09	gi 47118301:4652971-4654848 Escherichia coli O157:H7 str. Sakai DNA complete genome PTS system arbutin-like IIC component	SPG000024
espL4	1-1575/1575	100,00	99,30	T3SS effector-like protein EspL	gi:260870723
espR1	198- 1253/1260	83,81	94,22	(espR1) Type III secretion system effector espR1 [LEE encoded T3SS (SS020)] [Escherichia coli O157:H7 str. EDL933]	NP_287686
espR1	1-1332/1332	100,00	99,85	T3SS effector-like protein EspR-homolog	gi:260843778
espX1	1-1422/1422	99,93	94,66	(espX1) Type III secretion system effector EspX1 [LEE encoded T3SS (SS020)] [Escherichia coli O157:H7 str. EDL933]	NP_285716
espX1	1-1422/1422	99,93	95,85	T3SS effector-like protein EspX	gi:260866172
espX4	1-1581/1581	99,94	93,11	(espX4) Type III secretion system effector EspX4 [LEE encoded T3SS (SS020)] [Escherichia coli O157:H7 str. EDL933]	NP_290672
espX4	1-1581/1581	99,94	93,11	Type III secretion system effector EspX4	gi:15804631

espX5	1-1293/1293	100,00	95,67	(espX5) Type III secretion system effector EspX5 [LEE encoded T3SS	NP_290699
				(SS020)] [Escherichia coli O157:H7 str. EDL933]	
espX5	1-1293/1293	100,00	95,82	hypothetical protein	gi:291285483
etrA	1-501/501	100,00	96,81	transcriptional regulator	gi:15832974
fdeC	1-4245/4251	99,76	92,37	(fdeC) adhesin FdeC [FdeC (VF0506)] [Escherichia coli O45:K1:H7 str. S88]	YP_00239013 2
fepA	1-2241/2241	100,00	96,79	(fepA) ferrienterobactin outer membrane transporter [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752600
fepA	1-2241/2241	100,00	96,79	ferrienterobactin outer membrane transporter	gi:26246561
fepB	1-957/957	100,00	97,39	(fepB) ferrienterobactin ABC transporter periplasmic binding protein [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752610
fepB	1-957/957	100,00	97,39	ferrienterobactin ABC transporter periplasmic binding protein	gi:26246571
fepC	1-816/816	100,00	97,30	(fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752606
fepC	1-816/816	100,00	97,30	ferrienterobactin ABC transporter ATPase	gi:26246567
fepD	1-1017/1017	100,00	95,97	(fepD) ferrienterobactin ABC transporter permease [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752608
fepD	1-1017/1017	100,00	95,97	ferrienterobactin ABC transporter permease	gi:26246569
fepE	1-1134/1134	100,00	94,62	ferric enterobactin transport protein FepE	gi:26246566
fepG	1-993/993	100,00	93,96	(fepG) iron-enterobactin ABC transporter permease [Enterobactin (VF0228)] [Escherichia coli CFT073]	NP_752607
fepG	1-993/993	100,00	93,96	iron-enterobactin ABC transporter permease	gi:26246568
fes	1-1203/1203	100,00	96,76	(fes) enterobactin/ferric enterobactin esterase [enterobactin (IA019)] [Escherichia coli CFT073]	NP_752602
fes	1-1203/1203	100,00	96,76	enterobactin/ferric enterobactin esterase	gi:26246563
fimA	1-606/606	100,00	92,24	(fimA) Type-1 fimbrial protein A chain precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757241
fimA	1-549/549	100,00	99,64	major type 1 subunit fimbrin (pilin)	gi:16132135
fimB	1-603/603	100,00	98,18	(fimB) Type 1 fimbriae Regulatory protein fimB [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757239
fimB	1-603/603	100,00	100,00	tyrosine recombinase/inversion of on/off regulator of fimA	gi:16132133
fimC	1-726/726	100,00	98,48	(fimC) Chaperone protein fimC precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757243
fimC	1-726/726	100,00	100,00	chaperone periplasmic	gi:218707983

fimD	1-2637/2637	100,00	98,26	(fimD) Outer membrane usher protein fimD precursor [Type 1	NP_757244
fimD	1 2627/2627	100.00	100.00	fimbriae (VF0221)] [Escherichia coli CF10/3]	~
fimE	1-2037/2037	100,00	100,00	(fmE) Tang 1 findhing Degaletere gratein findhing 1 findhing	gl.210707904
TIME	1-597/597	100,00	98,66	(VF0221)] [Escherichia coli CFT073]	NP_/5/240
fimE	1-597/597	100,00	100,00	tyrosine recombinase/inversion of on/off regulator of fimA	gi:16132134
fimF	1-534/534	100,00	97,38	(fimF) FimF protein precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757245
fimF	1-531/531	100,00	100,00	minor component of type 1 fimbriae	gi:16132139
fimG	1-504/504	100,00	98,02	(fimG) FimG protein precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757247
fimG	1-504/504	100,00	100,00	minor component of type 1 fimbriae	gi:16132140
fimG	1-504/504	100,00	99,80	fimbrial-like adhesin protein	gi:410482685
fimH	1-912/912	100,00	97,26	(fimH) FimH protein precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757248
fimH	1-903/903	100,00	100,00	minor component of type 1 fimbriae	gi:16132141
fimI	1-540/540	100,00	98,33	(fimI) Fimbrin-like protein fimI precursor [Type 1 fimbriae (VF0221)] [Escherichia coli CFT073]	NP_757242
fimI	1-648/648	100,00	99,38	FimI fimbrial protein	gi:291285696
flgA	1-660/660	100,00	97,27	flagellar basal body P-ring biosynthesis protein FlgA	gi:15801189
flgB	1-417/417	100,00	99,28	flagellar basal body rod protein FlgB	gi:15801190
flgC	1-405/405	100,00	98,52	flagellar basal body rod protein FlgC	gi:15801191
flgD	1-696/696	100,00	98,85	flagellar basal body rod modification protein	gi:15801192
flgE	1-1206/1206	100,00	98,34	flagellar hook protein FlgE	gi:15801193
flgF	1-756/756	100,00	98,02	flagellar basal body rod protein FlgF	gi:15801194
flgG	1-783/783	100,00	99,36	flagellar basal body rod protein FlgG	gi:15801195
flgH	1-699/699	100,00	99,57	flagellar basal body L-ring protein	gi:15801196
flgI	1-1098/1098	100,00	97,54	flagellar basal body P-ring protein	gi:15801197
flgJ	1-942/942	100,00	98,09	flagellar rod assembly protein/muramidase FlgJ	gi:15801198
flgK	1-1644/1644	100,00	98,54	flagellar hook-associated protein FlgK	gi:15801199
flgL	1-954/954	100,00	98,43	flagellar hook-associated protein FlgL	gi:15801200
flgN	1-417/417	100,00	98,56	flagella synthesis protein FlgN	gi:15801187
flhA	1-2077/2079	99,90	98,51	flagellar biosynthesis protein FlhA	gi:15802291
flhB	1-1149/1149	100,00	98,78	flagellar biosynthesis protein FlhB	gi:15802292

flhC	1-579/579	100,00	99,48	transcriptional activator FlhC	gi:15802303
flhD	1-360/360	100,00	98,89	transcriptional activator FlhD	gi:15802304
flhE	1-393/393	100,00	97,96	flagellar protein	gi:15802290
fliA	1-720/720	100,00	99,17	flagellar biosynthesis sigma factor	gi:15802357
fliD	1-1398/1398	100,00	97,87	flagellar capping protein	gi:15802359
fliE	1-315/315	100,00	97,46	flagellar hook-basal body protein FliE	gi:15802372
fliF	1-1659/1659	100,00	98,79	flagellar MS-ring protein	gi:15802373
fliG	1-996/996	100,00	98,59	flagellar motor switch protein G	gi:15802374
fliH	1-687/687	100,00	98,84	flagellar assembly protein H	gi:161367588
fliI	1-1374/1374	100,00	98,54	flagellum-specific ATP synthase	gi:161367587
fliJ	1-444/444	100,00	99,78	flagellar biosynthesis chaperone	gi:15802377
fliK	1-1128/1128	100,00	98,76	flagellar hook-length control protein	gi:15802378
fliL	1-465/465	100,00	98,71	flagellar basal body-associated protein FliL	gi:15802379
fliM	1-1005/1005	100,00	98,91	flagellar motor switch protein FliM	gi:15802380
fliN	1-414/414	100,00	99,03	flagellar motor switch protein FliN	gi:15802381
fliO	1-366/366	100,00	98,09	flagellar biosynthesis protein FliO	gi:161367586
fliP	1-738/738	100,00	98,64	flagellar biosynthesis protein FliP	gi:15802383
fliQ	1-270/270	100,00	98,15	flagellar biosynthesis protein FliQ	gi:15802384
fliR	1-786/786	100,00	99,87	flagellar biosynthesis protein FliR	gi:15802385
fliS	1-411/411	100,00	98,78	flagellar protein FliS	gi:15802360
fliT	1-366/366	100,00	98,91	flagellar biosynthesis protein FliT	gi:15802361
fliY	1-801/801	100,00	97,75	cystine transporter subunit	gi:15802355
fliZ	1-588/588	100,00	97,79	flagella biosynthesis protein FliZ	gi:15802356
flk	1-995/996	99,90	98,79	flagella biosynthesis regulator	gi:15802868
gadX	1-633/633	100,00	98,10	gb ADUM01000070.1 :99762-100394 Escherichia coli 3431	SPG000043
C				gec3431.assembly.48 whole genome shotgun sequence HTH-type	
	1.001/001	100.00	05.07	transcriptional regulator gadX	ND 404500
gspC	1-831/831	100,00	95,07	(gspC) general secretion pathway protein C [12SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404599
gspC	1-960/960	100,00	99,06	putative type II secretion protein GspC	gi:157156659
gspD	1-1836/1836	100,00	97,03	(gspD) general secretion pathway protein D [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404600
gspD	1-2061/2061	100,00	98,79	general secretion pathway protein D	gi:157157281

gspE	1-1494/1494	100,00	97,06	(gspE) general secretion pathway protein E [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404601
gspE	1-1494/1494	100,00	98,33	general secretory pathway protein E	gi:157159001
gspF	1-1200/1200	100,00	96,17	(gspF) general secretion pathway protein F [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404602
gspF	1-1224/1224	100,00	99,84	general secretion pathway protein F	gi:157154920
gspG	1-456/456	100,00	95,61	(gspG) general secretion pathway protein G [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404603
gspG	1-456/456	100,00	99,78	general secretion pathway protein G	gi:157157959
gspH	1-531/531	100,00	96,05	(gspH) general secretion pathway protein H [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404604
gspH	1-564/564	100,00	97,52	general secretion pathway protein H	gi:157158634
gspI	1-372/372	100,00	95,16	(gspI) general secretion pathway protein I [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404605
gspI	1-372/372	100,00	100,00	general secretion pathway protein I	gi:157156956
gspJ	1-570/570	100,00	97,19	(gspJ) general secretion pathway protein J [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404606
gspJ	1-600/600	100,00	100,00	general secretion pathway protein J	gi:157157609
gspK	1-978/978	100,00	96,11	(gspK) general secretion pathway protein K [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404607
gspK	1-978/978	100,00	99,90	general secretion pathway protein K	gi:157155920
gspL	1-861/861	100,00	97,56	(gspL) general secretion pathway protein L [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404608
gspL	1-1179/1179	100,00	99,15	GspL-like protein	gi:157156601
gspM	1-423/423	100,00	94,09	(gspM) general secretion pathway protein M [T2SS (VF0333)] [Shigella dysenteriae Sd197]	YP_404609
gspM	1-537/537	100,00	100,00	putative general secretion pathway protein YghD	gi:157154814
hcp	1-519/519	100,00	99,61	hypothetical protein	gi:15799915
hlyE	1-1056/1056	99,91	98,39	hemolysin E	gi:209398688
hofB	1-1386/1386	100,00	98,05	hypothetical protein	gi:15799791
hofC	1-1203/1203	100,00	97,59	type IV pilin biogenesis protein	gi:15799790
hofq	1-1239/1239	100,00	98,71	Outer membrane secretin Adherence Hemorrhagic coli pilus	SPG000051
ibeB	1-1383/1383	100,00	100,00	copper/silver efflux system outer membrane protein CusC	gi:157156221
ibeC	1-1734/1734	100,00	99,94	hypothetical protein	gi:157157305

iss2	1-308/309	99,68	95,78	Escherichia coli Iss (iss) gene complete cds.	SPG000143
matF	1-756/756	100,00	97,62	Mat/Ecp fimbriae periplasmic chaperone protein	VFG045787
motA	1-888/888	100,00	99,10	flagellar motor protein MotA	gi:15802302
motB	1-927/927	100,00	97,84	flagellar motor protein MotB	gi:15802301
nada	1-1044/1044	100,00	99,52	Escherichia coli str. K-12 substr. MG1655 complete genome	SPG000048
nadb	1-1623/1623	100,00	97,53	Escherichia coli str. K-12 substr. MG1655 complete genome	SPG000049
ompA	1-1041/1041	100,00	94,30	(ompA) outer membrane protein A [OmpA (VF0236)] [Escherichia coli O18:K1:H7 str. RS218]	AAF37887
orgA	1-582/582	100,00	96,22	hypothetical protein	gi:15832969
orgB	1-432/432	100,00	95,14	hypothetical protein	gi:15832967
ppda	1-471/471	100,00	98,51	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000131
ppdb	1-564/564	100,00	98,76	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000112
ppdc	1-324/324	100,00	97,53	Pilin-like protein minor pilin or pseudopilin Adherence Hemorrhagic coli pilus	SPG000140
ppdD	1-441/441	100,00	99,32	putative major pilin subunit	gi:15799792
sitA	1-915/915	100,00	98,80	iron ABC transporter substrate-binding protein	gi:387606979
sitB	1-828/828	100,00	99,64	iron ABC transporter ATP-binding protein	gi:387606978
sitC	1-858/858	100,00	99,65	iron ABC transporter permease	gi:387606977
sitD	1-858/858	100,00	97,32	iron transport protein inner membrane component	gi:218704667
stgA	1-573/573	100,00	99,83	StgA	gi:46487739
stgB	1-732/732	100,00	99,73	StgB	gi:46487740
stgC	1-2523/2523	100,00	99,84	StgC	gi:46487741
stgD	1-1074/1074	100,00	99,44	StgD	gi:46487742
tar/cheM	1-1662/1662	100,00	98,38	methyl-accepting chemotaxis protein II	gi:15802298
upaG/ehaG	1-4851/4851	100,00	99,96	adhesin	gi:410480308
vgrG	1-2142/2142	100,00	97,85	hypothetical protein	gi:15799916
yagV/ecpE	1-754/756	99,74	96,82	(yagV/ecpE) E. coli common pilus chaperone EcpE [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286006
yagW/ecpD	1-1644/1644	100,00	98,60	(yagW/ecpD) polymerized tip adhesin of ECP fibers [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286007
yagX/ecpC	1-2526/2526	100,00	98,65	(yagX/ecpC) E. coli common pilus usher EcpC [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286008

yagY/ecpB	1-669/669	100,00	98,66	(yagY/ecpB) E. coli common pilus chaperone EcpB [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286009
yagZ/ecpA	1-588/588	100,00	99,32	(yagZ/ecpA) E. coli common pilus structural subunit EcpA [ECP (VF0404)] [Escherichia coli O157:H7 str. EDL933]	NP_286010
ycbF	1-738/738	100,00	98,51	putativi pili assembly chaperone	gi:15804987
ycbQ	1-549/549	100,00	82,43	putative fimbrial-like protein	gi:15800799
ycbR	1-702/702	100,00	97,29	putative chaperone	gi:15800800
ycbS	1-2601/2601	100,00	97,85	PapC-like porin protein involved in fimbrial biogenesis	gi:15804976
ycbT	1-981/981	100,00	97,66	fimbrial protein	gi:15800801
ycbU	1-477/477	100,00	100,00	hypothetical protein	gi:15800802
ycbV	1-564/564	100,00	98,94	putative fimbrial-like protein	gi:15800803
ycfz	1-789/789	99,87	90,00	putative factor	SPG000092
ygdb	1-408/408	100,00	95,34	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic	SPG000137
				coli pilus	
ygeG	6-492/492	98,98	96,92	hypothetical protein	gi:15832962
ygeH	1-1377/1377	100,00	97,82	transcriptional regulator	gi:15832963
yggr	1-981/981	100,00	95,72	Retraction ATPase Adherence Hemorrhagic coli pilus	SPG000074
yghg	1-411/411	100,00	98,54	Pilotin Secretion system Type II Secretion System	SPG000136
ykgK/ecpR	1-591/591	100,00	97,63	(ykgK/ecpR) regulator protein EcpR [ECP (VF0404)] [Escherichia coli	NP_286011
				O157:H7 str. EDL933]	
Z0263	1-225/225	100,00	100,00	hypothetical protein	gi:15799912
Z0265	1-144/144	100,00	99,31	hypothetical protein	gi:15799914
Z1307	1-1041/1041	100,00	94,87	outer membrane protein A	gi:15800816
Z2200	1-564/564	100,00	98,05	putative major fimbrial subunit	gi:15801631
Z2201	1-720/720	100,00	98,19	putative fimbrial chaperone protein	gi:15801632
Z2203	1-2652/2652	100,00	98,91	putative fimbrial usher protein	gi:15801633
Z2204	1-531/531	100,00	99,62	putative fimbrial-like protein	gi:15801634
Z2206	1-915/915	100,00	98,58	putative adhesin; FimH protein	gi:15801636

Resultater for søk i databasen VFDB for prøve P5.SV.MB_ESBL

Gene	Coverage	Coverage (%)	Identity (%)	Product	Accession
aec15	1-2145/2145	100,00	97,30	hypothetical protein	gi:291282560
aec17	1-501/501	100,00	99,60	hypothetical protein	gi:260842460
aec18	1-1476/1476	100,00	97,56	hypothetical protein	gi:260866372
aec19	1-414/414	100,00	96,14	hypothetical protein	gi:260842457
aec22	1-1089/1089	100,00	99,54	hypothetical protein	gi:218693690
aec23	1-1302/1302	100,00	99,46	hypothetical protein	gi:218693689
aec24	1-525/525	100,00	99,81	hypothetical protein	gi:386612386
aec25	1-1332/1332	100,00	99,85	hypothetical protein	gi:386612385
aec26	1-762/762	100,00	100,00	hypothetical protein	gi:386612384
aec28	1-744/744	100,00	100,00	hypothetical protein	gi:260842449
aec29	1-1413/1413	100,00	100,00	hypothetical protein	gi:260842448
aec30	1-3525/3525	100,00	99,29	hypothetical protein	gi:157155738
aec31	1-1443/1443	100,00	99,79	hypothetical protein	gi:218693681
aec32	1-483/483	100,00	100,00	Hcp-like protein	gi:260866361
agn43	1-2684/3120	86,03	95,45	CP4-44 prophage; antigen 43 (Ag43) phase-variable biofilm formation autotransporter	gi:49176177
artj	1-732/732	100,00	96,86	E.coli artP artI artQ artM and artJ genes.	SPG000096
b2854	1-477/477	100,00	99,79	Putative lytic transglycosylase Adherence Hemorrhagic coli pilus	SPG000125
b2972	1-810/810	100,00	95,80	Prepilin peptidase Adherence Hemorrhagic coli pilus	SPG000090
cadA	1-2176/2176	100,00	99,49	gb AY319765.1 :1081-3256 Escherichia coli cadBA operon partial sequence	SPG000027
cfaA	1-717/717	100,00	99,30	putative fimbrial protein	gi:260869848
cfaB	1-501/501	100,00	100,00	fimbrial subunit	gi:260845908
cfaC	1-2703/2703	100,00	99,96	hypothetical protein	gi:410480837
cfaD	1-1089/1089	100,00	100,00	pilus biogenesis initiator protein	gi:157157077
cheA	1-1965/1965	100,00	98,63	chemotaxis protein CheA	gi:15802300
cheB	1-1050/1050	100,00	98,76	chemotaxis-specific methylesterase	gi:15802295
cheR	1-861/861	100,00	99,30	chemotaxis methyltransferase CheR	gi:15802296

Tabell 24. Virulensgener detektert ved søk i databasen VFDB for prøve P5.SV.MB_ESBL.

cheW	1-504/504	100,00	98,81	purine-binding chemotaxis protein	gi:15802299
cheY	1-390/390	100,00	99,23	chemotaxis regulatory protein CheY	gi:15802294
cheZ	1-645/645	100,00	99,38	chemotaxis regulator CheZ	gi:15802293
clpV	1-2766/2766	100,00	99,17	ATP-dependent Clp proteinase ATP-binding chain	gi:260842450
csgA	1-459/459	99,35	93,03	cryptic curlin major subunit	gi:15801159
csgB	1-483/483	100,00	99,38	minor curlin subunit CsgB	VFG045792
csgC	1-333/333	100,00	98,80	putative autoagglutination protein	gi:15801160
csgD	1-651/651	100,00	99,23	putative 2-component transcriptional regulator for 2nd curli operon	VFG045791
csgE	1-390/390	100,00	99,23	curli assembly protein CsgE	gi:15801156
csgF	1-417/417	100,00	99,76	curli assembly protein CsgF	gi:15801155
csgG	1-834/834	100,00	98,32	curli production assembly/transport component 2nd curli operon	gi:15801154
eaeH	1-4254/4254	100,00	97,06	adhesin	gi:410484074
EcE243	1-1851/1851	100,00	97,68	hypothetical protein	gi:157155723
77A_02					
$\frac{37}{200}$	1 599/599	100.00	100.00	fimbrillin MatB	ai.157155651
copA	1-308/308	100,00	08.22	Hunothetical protein warV presurger	gi.157155051
ecpb	1-717/117	100,00	90,33	autor mombrane ucher protein	gi.20240301
ecpe	1-2320/2320	100,00	99,80	buret memorane usher protein	gi.200853521
oopP	1-1044/1044	100,00	99,94	transcriptional regulator	gi.200835320
EC ₂ 271	1-391/391	100,00	99,00	humothatical protain	g1.410464079
2	1-033/033	100,00	97,10	nypothetical protein	gl:13832900
ECS88_	1-885/885	100,00	99,77	lipoprotein NlpI	gi:218560235
3547					
ehaB	1-2949/2949	99,90	95,91	structural protein	gi:222155165
entA	1-747/747	100,00	95,98	23-dihydro-23-dihydroxybenzoate dehydrogenase	gi:26246575
entB	1-858/858	100,00	97,90	isochorismatase	gi:26246574
entC	1-1188/1188	100,00	97,47	isochorismate synthase 1	gi:26246572
entD	1-771/771	100,00	94,03	phosphopantetheinyl transferase component of enterobactin synthase multienzyme complex	gi:26246560
entE	1-1611/1611	100,00	95,78	23-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex	gi:26246573
entF	1-3830/3882	98,66	95,41	enterobactin synthase multienzyme complex component ATP-dependent	gi:26246565
entS	1-1251/1251	100,00	95,60	enterobactin exporter iron-regulated	gi:26246570

epaO	1-987/987	100,00	96,56	surface presentation of antigens protein SpaO	gi:15832980
epaP	1-666/666	100,00	97,75	surface presentation of antigens protein SpaP	gi:15832979
epaQ	1-261/261	100,00	96,94	EpaQ	gi:15832978
epaR	3-466/468	99,15	96,12	-	VFG042210
epaS	1-1122/1122	99,91	96,97	surface presentation of antigens protein SpaS	gi:15832975
eprH	1-735/735	100,00	97,14	EprH	gi:15832973
eprI	1-240/240	100,00	97,09	EprI	gi:15832972
eprJ	1-333/333	99,7	97,30	EprJ	gi:15832971
eprK	1-735/735	100,00	97,82	EprK	gi:15832970
espL1	1-1899/1899	98,42	95,31	hypothetical protein	gi:15831681
espL3	1-1878/1878	100,00	99,09	gi 47118301:4652971-4654848 Escherichia coli O157:H7 str. Sakai	SPG000024
				DNA complete genome PTS system arbutin-like IIC component	
espL4	1-1575/1575	100,00	99,30	T3SS effector-like protein EspL	gi:260870723
espR1	1-1332/1332	100,00	99,85	T3SS effector-like protein EspR-homolog	gi:260843778
espX1	1-1422/1422	99,93	95,85	T3SS effector-like protein EspX	gi:260866172
espX4	1-1581/1581	99,94	93,11	Type III secretion system effector EspX4	gi:15804631
espX5	1-1293/1293	100,00	95,82	hypothetical protein	gi:291285483
etrA	1-501/501	100,00	96,81	transcriptional regulator	gi:15832974
fepA	1-2241/2241	100,00	96,79	ferrienterobactin outer membrane transporter	gi:26246561
fepB	1-957/957	100,00	97,39	ferrienterobactin ABC transporter periplasmic binding protein	gi:26246571
fepC	1-816/816	100,00	97,30	ferrienterobactin ABC transporter ATPase	gi:26246567
fepD	1-1017/1017	100,00	95,97	ferrienterobactin ABC transporter permease	gi:26246569
fepE	1-1134/1134	100,00	94,62	ferric enterobactin transport protein FepE	gi:26246566
fepG	1-993/993	100,00	93,96	iron-enterobactin ABC transporter permease	gi:26246568
fes	1-1203/1203	100,00	96,76	enterobactin/ferric enterobactin esterase	gi:26246563
fimA	1-549/549	100,00	99,64	major type 1 subunit fimbrin (pilin)	gi:16132135
fimB	1-603/603	100,00	100,00	tyrosine recombinase/inversion of on/off regulator of fimA	gi:16132133
fimC	1-726/726	100,00	100,00	chaperone periplasmic	gi:218707983
fimD	1-2637/2637	100,00	100,00	outer membrane usher protein type 1 fimbrial synthesis	gi:218707984
fimE	1-597/597	100,00	100,00	tyrosine recombinase/inversion of on/off regulator of fimA	gi:16132134
fimF	1-531/531	100,00	100,00	minor component of type 1 fimbriae	gi:16132139
fimG	1-504/504	100,00	100,00	minor component of type 1 fimbriae	gi:16132140
fimG	1-504/504	100,00	99,80	fimbrial-like adhesin protein	gi:410482685
fimH	1-903/903	100,00	100,00	minor component of type 1 fimbriae	gi:16132141

fimI	1-648/648	100,00	99,38	FimI fimbrial protein	gi:291285696
flgA	1-660/660	100,00	97,27	flagellar basal body P-ring biosynthesis protein FlgA	gi:15801189
flgB	1-417/417	100,00	99,28	flagellar basal body rod protein FlgB	gi:15801190
flgC	1-405/405	100,00	98,52	flagellar basal body rod protein FlgC	gi:15801191
flgD	1-696/696	100,00	98,85	flagellar basal body rod modification protein	gi:15801192
flgE	1-1206/1206	100,00	98,34	flagellar hook protein FlgE	gi:15801193
flgF	1-756/756	100,00	98,02	flagellar basal body rod protein FlgF	gi:15801194
flgG	1-783/783	100,00	99,36	flagellar basal body rod protein FlgG	gi:15801195
flgH	1-699/699	100,00	99,57	flagellar basal body L-ring protein	gi:15801196
flgI	1-1098/1098	100,00	97,54	flagellar basal body P-ring protein	gi:15801197
flgJ	1-942/942	100,00	98,09	flagellar rod assembly protein/muramidase FlgJ	gi:15801198
flgK	1-1644/1644	100,00	98,54	flagellar hook-associated protein FlgK	gi:15801199
flgL	1-954/954	100,00	98,43	flagellar hook-associated protein FlgL	gi:15801200
flgN	1-417/417	100,00	98,56	flagella synthesis protein FlgN	gi:15801187
flhA	1-2077/2079	99,90	98,51	flagellar biosynthesis protein FlhA	gi:15802291
flhB	1-1149/1149	100,00	98,78	flagellar biosynthesis protein FlhB	gi:15802292
flhC	1-579/579	100,00	99,48	transcriptional activator FlhC	gi:15802303
flhD	1-360/360	100,00	98,89	transcriptional activator FlhD	gi:15802304
flhE	1-393/393	100,00	97,96	flagellar protein	gi:15802290
fliA	1-720/720	100,00	99,17	flagellar biosynthesis sigma factor	gi:15802357
fliD	1-1398/1398	100,00	97,87	flagellar capping protein	gi:15802359
fliE	1-315/315	100,00	97,46	flagellar hook-basal body protein FliE	gi:15802372
fliF	1-1659/1659	100,00	98,79	flagellar MS-ring protein	gi:15802373
fliG	1-996/996	100,00	98,59	flagellar motor switch protein G	gi:15802374
fliH	1-687/687	100,00	98,84	flagellar assembly protein H	gi:161367588
fliI	1-1374/1374	100,00	98,54	flagellum-specific ATP synthase	gi:161367587
fliJ	1-444/444	100,00	99,78	flagellar biosynthesis chaperone	gi:15802377
fliK	1-1128/1128	100,00	98,76	flagellar hook-length control protein	gi:15802378
fliL	1-465/465	100,00	98,71	flagellar basal body-associated protein FliL	gi:15802379
fliM	1-1005/1005	100,00	98,91	flagellar motor switch protein FliM	gi:15802380
fliN	1-414/414	100,00	99,03	flagellar motor switch protein FliN	gi:15802381
fliO	1-366/366	100,00	98,09	flagellar biosynthesis protein FliO	gi:161367586
fliP	1-738/738	100,00	98,64	flagellar biosynthesis protein FliP	gi:15802383
fliQ	1-270/270	100,00	98,15	flagellar biosynthesis protein FliQ	gi:15802384

fliS 1-411/411 100,00 98,78 flagellar protein FliS gi:158 fliT 1-366/366 100,00 98,91 flagellar biosynthesis protein FliT gi:158 fliY 1-801/801 100,00 97,75 cystine transporter subunit gi:158 fliZ 1-588/588 100,00 97,79 flagella biosynthesis protein FliZ gi:158	02360 02361 02355 02356 02356 02868 0043
fliT 1-366/366 100,00 98,91 flagellar biosynthesis protein FliT gi:158 fliY 1-801/801 100,00 97,75 cystine transporter subunit gi:158 fliZ 1-588/588 100,00 97,79 flagella biosynthesis protein FliZ gi:158	02361 02355 02356 02868 0043
fliY 1-801/801 100,00 97,75 cystine transporter subunit gi:158 fliZ 1-588/588 100,00 97,79 flagella biosynthesis protein FliZ gi:158	02355 02356 02868 0043
fliZ 1-588/588 100,00 97,79 flagella biosynthesis protein FliZ gi:158	02356 02868 0043
	02868 0043
flk 1-995/996 99,90 98,79 flagella biosynthesis regulator gi:158	00043
gadX 1-633/633 100,00 98,10 gb ADUM01000070.1 :99762-100394 Escherichia coli 3431 SPG00	
gec3431.assembly.48 whole genome shotgun sequence HTH-type	
transcriptional regulator gadX	
gspC 1-960/960 100,00 99,06 putative type II secretion protein GspC gi:157	156659
gspD 1-2061/2061 100,00 98,79 general secretion pathway protein D gi:157	157281
gspE 1-1494/1494 100,00 98,33 general secretory pathway protein E gi:157	159001
gspF 1-1224/1224 100,00 99,84 general secretion pathway protein F gi:157	154920
gspG 1-456/456 100,00 99,78 general secretion pathway protein G gi:157	157959
gspH 1-564/564 100,00 97,52 general secretion pathway protein H gi:157	158634
gspI 1-372/372 100,00 100,00 general secretion pathway protein I gi:157	156956
gspJ 1-600/600 100,00 100,00 general secretion pathway protein J gi:157	157609
gspK 1-978/978 100,00 99,90 general secretion pathway protein K gi:157	155920
gspL 1-1179/1179 100,00 99,15 GspL-like protein gi:157	156601
gspM 1-537/537 100,00 100,00 putative general secretion pathway protein YghD gi:157	154814
hcp 1-519/519 100,00 99,61 hypothetical protein gi:157) 9915
hlyE 1-1056/1056 99,91 98,39 hemolysin E gi:209	398688
hofB 1-1386/1386 100,00 98,05 hypothetical protein gi:157) 9791
hofC 1-1203/1203 100,00 97,59 type IV pilin biogenesis protein gi:157) 9790
hofq 1-1239/1239 100,00 98,71 Outer membrane secretin Adherence Hemorrhagic coli pilus SPG00	0051
ibeB 1-1383/1383 100,00 100,00 copper/silver efflux system outer membrane protein CusC gi:157	156221
ibeC 1-1734/1734 100,00 99,94 hypothetical protein gi:157	157305
iss2 1-308/309 99,68 95,78 Escherichia coli Iss (iss) gene complete cds. SPG00	0143
matF 1-756/756 100,00 97,62 Mat/Ecp fimbriae periplasmic chaperone protein VFG0	15787
motA 1-888/888 100,00 99,10 flagellar motor protein MotA gi:158)2302
motB 1-927/927 100,00 97,84 flagellar motor protein MotB gi:158)2301
nada 1-1044/1044 100,00 99,52 Escherichia coli str. K-12 substr. MG1655 complete genome SPG00	0048
nadb 1-1623/1623 100,00 97,53 Escherichia coli str. K-12 substr. MG1655 complete genome SPG00	0049
orgA 1-582/582 100,00 96,22 hypothetical protein gi:158	32969

orgB	1-432/432	100,00	95,14	hypothetical protein	gi:15832967
ppda	1-471/471	100,00	98,51	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000131
ppdb	1-564/564	100,00	98,76	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000112
ppdc	1-324/324	100,00	97,53	Pilin-like protein minor pilin or pseudopilin Adherence Hemorrhagic coli pilus	SPG000140
ppdD	1-441/441	100,00	99,32	putative major pilin subunit	gi:15799792
sitA	1-915/915	100,00	98,80	iron ABC transporter substrate-binding protein	gi:387606979
sitB	1-828/828	100,00	99,64	iron ABC transporter ATP-binding protein	gi:387606978
sitC	1-858/858	100,00	99,65	iron ABC transporter permease	gi:387606977
sitD	1-858/858	100,00	97,32	iron transport protein inner membrane component	gi:218704667
stgA	1-573/573	100,00	99,83	StgA	gi:46487739
stgB	1-732/732	100,00	99,73	StgB	gi:46487740
stgC	1-2523/2523	100,00	99,84	StgC	gi:46487741
stgD	1-1074/1074	100,00	99,44	StgD	gi:46487742
tar/che M	1-1662/1662	100,00	98,38	methyl-accepting chemotaxis protein II	gi:15802298
upaG/eh aG	1-4851/4851	100,00	99,96	adhesin	gi:410480308
vgrG	1-2142/2142	100,00	97,85	hypothetical protein	gi:15799916
ycbF	1-738/738	100,00	98,51	putativi pili assembly chaperone	gi:15804987
ycbQ	1-549/549	100,00	82,43	putative fimbrial-like protein	gi:15800799
ycbR	1-702/702	100,00	97,29	putative chaperone	gi:15800800
ycbS	1-2601/2601	100,00	97,85	PapC-like porin protein involved in fimbrial biogenesis	gi:15804976
ycbT	1-981/981	100,00	97,66	fimbrial protein	gi:15800801
ycbU	1-477/477	100,00	100,00	hypothetical protein	gi:15800802
ycbV	1-564/564	100,00	98,94	putative fimbrial-like protein	gi:15800803
ycfz	1-789/789	99,87	90,00	putative factor	SPG000092
ygdb	1-408/408	100,00	95,34	Pilin-like protein minor pilin or pseudo pilin Adherence Hemorrhagic coli pilus	SPG000137
ygeG	6-492/492	98,98	96,92	hypothetical protein	gi:15832962
ygeH	1-1377/1377	100,00	97,82	transcriptional regulator	gi:15832963
yggr	1-981/981	100,00	95,72	Retraction ATPase Adherence Hemorrhagic coli pilus	SPG000074

yghg	1-411/411	100,00	98,54	Pilotin Secretion system Type II Secretion System	SPG000136
Z0263	1-225/225	100,00	100,00	hypothetical protein	gi:15799912
Z0265	1-144/144	100,00	99,31	hypothetical protein	gi:15799914
Z1307	1-1041/1041	100,00	94,87	outer membrane protein A	gi:15800816
Z2200	1-564/564	100,00	98,05	putative major fimbrial subunit	gi:15801631
Z2201	1-720/720	100,00	98,19	putative fimbrial chaperone protein	gi:15801632
Z2203	1-2652/2652	100,00	98,91	putative fimbrial usher protein	gi:15801633
Z2204	1-531/531	100,00	99,62	putative fimbrial-like protein	gi:15801634
Z2206	1-915/915	100,00	98,58	putative adhesin; FimH protein	gi:15801636

Resultater for søk i databasen VFDB for prøve P10.SP.BR_ESBL

Tabell 23. Viruleinsgener detektert ved syk i uddousen vi DD for prove i 10.51. DK LSD	Tabell 25.	Virulensgener	detektert ve	ed søk i	databasen	VFDB	for prøve	P10.SP.BR	ESBL.
---	------------	---------------	--------------	----------	-----------	------	-----------	-----------	-------

Gene	Coverage	Coverage (%)	Identity (%)	Product	Accession
alg44	1-1170/1170	100,00	99,66	(alg44) alginate biosynthesis protein Alg8 [Alginate (VF0091)]	NP_252232
				[Pseudomonas aeruginosa PAO1]	
alg8	1-1485/1485	100,00	99,60	(alg8) alginate-c5-mannuronan-epimerase AlgG [Alginate (VF0091)]	NP_252231
				[Pseudomonas aeruginosa PAO1]	
algA	1-1446/1446	100,00	99,10	(algA) phosphomannose isomerase / guanosine 5'-diphospho-D-mannose	NP_252241
				pyrophosphorylase [Alginate (VF0091)] [Pseudomonas aeruginosa	
				PAO1]	
algB	1-1350/1350	100,00	98,96	(algB) two-component response regulator AlgB [Alginate (VF0091)]	NP_254170
				[Pseudomonas aeruginosa PAO1]	
algC	1-1392/1392	100,00	99,35	(algC) phosphomannomutase AlgC [Alginate biosynthesis (CVF522)]	NP_254009
				[Pseudomonas aeruginosa PAO1]	
algD	1-1311/1311	100,00	99,16	(algD) GDP-mannose 6-dehydrogenase AlgD [Alginate (VF0091)]	NP_252230
				[Pseudomonas aeruginosa PAO1]	
algE	1-1473/1473	100,00	99,25	(algE) alginate biosynthetic protein AlgK precursor [Alginate (VF0091)]	NP_252234
				[Pseudomonas aeruginosa PAO1]	

algF	1-651/651	100,00	99,23	(algF) alginate o-acetyltransferase AlgF [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252240
algG	1-1632/1632	100,00	99,02	(algG) outer membrane protein AlgE [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252235
algI	1-1563/1563	100,00	99,55	(algI) alginate o-acetyltransferase AlgI [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252238
algJ	1-1176/1176	100,00	98,89	(algJ) alginate o-acetyltransferase AlgJ [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252239
algK	1-1428/1428	100,00	99,23	(algK) alginate biosynthesis protein Alg44 [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252233
algL	1-1104/1104	100,00	99,37	(algL) poly(beta-d-mannuronate) lyase precursor AlgL [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252237
algQ	1-483/483	100,00	98,76	(algQ) Alginate regulatory protein AlgQ [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_253942
algR	1-747/747	100,00	99,60	(algR) alginate biosynthesis regulatory protein AlgR [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_253948
algU	1-582/582	100,00	99,66	(algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_249453
algW	1-1170/1170	100,00	98,97	(algW) AlgW protein [Alginate regulation (CVF523)] [Pseudomonas aeruginosa PAO1]	NP_253136
algX	1-1425/1425	100,00	99,44	(algX) alginate biosynthesis protein AlgX [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_252236
algZ	1-1077/1077	100,00	99,44	(algZ) sigma factor AlgU [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_253949
aprA	1-1440/1440	100,00	99,24	(aprA) alkaline metalloproteinase precursor [Alkaline protease (VF0090)] [Pseudomonas aeruginosa PAO1]	NP_249940
chpA	1-7419/7419	99,84	98,00	(chpA) still frameshift probable component of chemotactic signal transduction system [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249104
chpB	1-1032/1032	100,00	98,84	(chpB) probable methylesterase [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249105
chpC	1-507/507	100,00	98,82	(chpC) probable chemotaxis protein [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249106
chpD	1-795/795	100,00	98,24	(chpD) probable transcriptional regulator [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249107

chpE	1-612/612	100,00	97,39	(chpE) probable chemotaxis protein [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249108
clpV1	1-2709/2709	100,00	99,04	(clpV1) type VI secretion system AAA+ family ATPase [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248780
dotU1	1-1350/1350	100,00	99,19	(dotU1) type VI secretion system protein DotU [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248768
exoS	1-1362/1362	100,00	91,47	(exoS) type III secretion system effector ExoS ADP ribosyltransferase activity and GTPase-activating protein activity [ExoS (VF0096)] [Pseudomonas aeruginosa PAO1]	NP_252530
exoT	1-1374/1374	100,00	98,69	(exoT) type III secretion system effector ExoT ADP ribosyltransferase activity and GTPase-activating protein activity [ExoT (VF0097)] [Pseudomonas aeruginosa PAO1]	NP_248734
exsA	1-837/837	100,00	99,40	(exsA) type III secretion system regulatory protein ExsA [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250404
exsB	1-414/414	100,00	99,28	(exsB) type III secretion system piolitin ExsB [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250403
exsC	1-438/438	100,00	98,86	(exsC) type III secretion system regulatory protein ExsC [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250401
exsD	1-831/831	100,00	99,16	(exsD) type III secretion system regulatory protein ExsD [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250405
exsE	1-246/246	100,00	98,37	(exsE) type III secretion system regulatory protein ExsE [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250402
fha1	1-1494/1494	100,00	98,93	(fha1) type VI secretion system forkhead-associated protein Fha1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248771
fimT	1-510/510	100,00	97,45	(fimT) type 4 fimbrial biogenesis protein FimT [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253239
fimU	1-507/507	100,00	99,01	(fimU) type 4 fimbrial biogenesis protein FimU [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253240
fimV	1-2760/2760	100,00	98,19	(fimV) putative Type IV pili related protein [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_251805
fleN	1-843/843	100,00	99,76	(fleN) flagellar synthesis regulator FleN [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250145
fleQ	1-1473/1473	100,00	98,85	(fleQ) transcriptional regulator FleQ [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249788

fleR	1-1422/1422	100,00	97,61	(fleR) two-component response regulator [Flagella (VF0273)]	NP_249790
fleS	1-1209/1209	100.00	98.92	(fleS) two-component sensor [Deoxybexose linking sugar 209 Da	NP 249789
nes	1-1207/1207	100,00	70,72	capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	111_249709
fløA	1-699/699	100.00	99 14	(flgA) flagellar basal body P-ring biosynthesis protein FlgA	NP 252040
	1 0777 077		<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[Deoxyhexose linking sugar 209 Da capping structure (AI138)]	
				[Pseudomonas aeruginosa PAO1]	
flgB	1-408/408	100,00	99,02	(flgB) flagellar basal body rod protein FlgB [Deoxyhexose linking sugar	NP 249768
U			,	209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	_
flgC	1-441/441	100,00	99,32	(flgC) flagellar basal-body rod protein FlgC [Flagella (VF0273)]	NP_249769
				[Pseudomonas aeruginosa PAO1]	
flgD	43-714/714	94,12	93,90	(flgD) flagellar basal-body rod modification protein FlgD [Flagella	NP_249770
				(VF0273)] [Pseudomonas aeruginosa PAO1]	
flgE	1-1389/1389	100,00	92,66	(flgE) flagellar hook protein FlgE [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249771
flgF	1-750/750	100,00	99,20	(flgF) flagellar basal-body rod protein FlgF [Flagella (VF0273)]	NP_249772
				[Pseudomonas aeruginosa PAO1]	
flgG	1-786/786	100,00	98,73	(flgG) flagellar basal-body rod protein FlgG [Flagella (VF0273)]	NP_249773
				[Pseudomonas aeruginosa PAO1]	
flgH	1-696/696	100,00	99,42	(flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0273)]	NP_249774
				[Pseudomonas aeruginosa PAO1]	
flgI	1-1110/1110	100,00	98,92	(flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0273)]	NP_249775
<i></i>	1 1000/1000	100.00		[Pseudomonas aeruginosa PAO1]	
flgJ	1-1203/1203	100,00	97,34	(flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249776
flgK	1-2052/2052	99,71	85,69	(flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0273)]	NP_249777
				[Pseudomonas aeruginosa PAO1]	
flgM	1-324/324	100,00	99,07	(flgM) negative regulator of flagellin synthesis [Deoxyhexose linking	NP_252041
				sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa	
				PAO1]	
flgN	1-471/471	100,00	98,51	(flgN) flagella synthesis protein FlgN [Deoxyhexose linking sugar 209	NP_252042
C11 4	1.0104/0104	100.00	00.01	Da capping structure (AII38)] [Pseudomonas aeruginosa PAOI]	ND 0501/2
ťlhA	1-2124/2124	100,00	99,06	(tlhA) tlagellar biosynthesis protein FlhA [Flagella (VF0273)]	NP_250143
				[Pseudomonas aeruginosa PAO1]	

flhB	1-1137/1137	100,00	98,68	(flhB) flagellar biosynthetic protein FlhB [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250140
flhF	1-1290/1290	100,00	99,07	(flhF) flagellar biosynthesis protein FlhF [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250144
fliA	1-744/744	100,00	99,46	(fliA) flagellar biosynthesis sigma factor FliA [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_250146
fliE	1-330/330	100,00	99,09	(fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249791
fliF	1-1797/1797	100,00	99,00	(fliF) flagellar M-ring protein FliF [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249792
fliG	1-1017/1017	100,00	99,21	(fliG) flagellar motor switch protein G [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249793
fliH	1-807/807	100,00	97,52	(fliH) flagellar assembly protein H [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249794
fliI	1-1356/1356	100,00	98,89	(fliI) flagellum-specific ATP synthase FliI [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249795
fliJ	1-444/444	100,00	99,10	(fliJ) flagellar protein FliJ [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_249796
fliK	1-1284/1284	100,00	97,74	(fliK) flagellar hook-length control protein FliK [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_250132
fliL	1-522/522	100,00	98,85	(fliL) flagellar basal body protein FliL [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_250133
fliM	1-972/972	100,00	99,49	(fliM) flagellar motor switch protein FliM [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250134
fliN	1-474/474	100,00	99,37	(fliN) flagellar motor switch protein FliN [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250135
fliO	1-453/453	100,00	98,67	(fliO) flagellar protein FliO [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250136
fliP	1-768/768	100,00	98,96	(fliP) flagellar biosynthetic protein FliP [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250137
fliQ	1-270/270	100,00	99,63	(fliQ) flagellar biosynthetic protein FliQ [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250138

fliR	1-772/777	99,36	99,09	(fliR) flagellar biosynthetic protein FliR [Flagella (VF0273)] [Pseudomonas aeruginosa PAO1]	NP_250139
fptA	1-2163/2163	100,00	98,66	(fptA) Fe(III)-pyochelin receptor precursor [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252911
hcp1	1-489/489	100,00	99,59	(hcp1) type VI secretion system substrate Hcp1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248775
hsiA1	1-1035/1035	100,00	97,97	(hsiA1) type VI secretion system hcp secretion island protein HsiA1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248772
hsiB1/ vipA	1-519/519	100,00	99,42	(hsiB1/vipA) type VI secretion system tubule-forming protein VipA [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248773
hsiC1/ vipB	1-1497/1497	100,00	99,53	(hsiC1/vipB) type VI secretion system tubule-forming protein VipB [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248774
hsiE1	1-846/846	100,00	99,05	(hsiE1) type VI secretion system hcp secretion island protein HsiE1 interacting with HsiB1 to form a novel subcomplex of the T6SS [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248776
hsiF1	1-510/510	100,00	98,63	(hsiF1) type VI secretion system hcp secretion island protein HsiF1 a gp25-like protein but not exhibit lysozyme activity [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248777
hsiG1	1-1860/1860	100,00	98,87	(hsiG1) type VI secretion system hcp secretion island protein HsiG1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248778
hsiH1	1-1047/1047	100,00	98,76	(hsiH1) type VI secretion system hcp secretion island protein HsiH1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248779
hsiJ1	1-1335/1335	100,00	99,10	(hsiJ1) type VI secretion system hcp secretion island protein HsiJ1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248769
icmF1/ tssM1	1-3306/3306	100,00	99,18	(icmF1/tssM1) type VI secretion system protein IcmF1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248767
lasA	1-1257/1257	100,00	97,61	(lasA) LasA protease precursor [LasA (VF0088)] [Pseudomonas aeruginosa PAO1]	NP_250562
lasB	1-1497/1497	100,00	98,73	(lasB) elastase LasB [LasB (VF0087)] [Pseudomonas aeruginosa PAO1]	NP_252413
lasI	1-606/606	100,00	98,84	(lasI) autoinducer synthesis protein LasI [Quorum sensing (VF0093)] [Pseudomonas aeruginosa PAO1]	NP_250123
lip1	1-465/465	100,00	99,57	(lip1) lipoprotein [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248770
mbtH- like	1-219/219	100,00	100,00	(mbtH-like) MbtH-like protein from the pyoverdine cluster [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251102

motA	1-852/852	100,00 99	9,30	(motA) flagellar motor protein [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_253641
motB	1-1044/1044	100,00 9	8,75	(motB) flagellar motor protein [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_253640
motC	1-741/741	100,00 99	9,06	(motC) flagellar motor protein [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_250151
motD	1-891/891	100,00 9	8,32	(motD) flagellar motor protein [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_250152
motY	1-966/966	100,00 9'	9,17	(motY) probable outer membrane protein precursor [Deoxyhexose linking sugar 209 Da capping structure (AI138)] [Pseudomonas aeruginosa PAO1]	NP_252216
mucA	1-585/585	100,00 9	8,97	(mucA) alkaline metalloproteinase precursor [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_249454
mucB	1-951/951	100,00 9	8,42	(mucB) anti-sigma factor MucA inhibitor of alg gene expression [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_249455
mucC	1-456/456	100,00 99	9,56	(mucC) negative regulator for alginate biosynthesis MucB [Alginate (VF0091)] [Pseudomonas aeruginosa PAO1]	NP_249456
mucD	1-1425/1425	100,00 99	9,23	(mucD) serine protease MucD precursor [Alginate regulation (CVF523)] [Pseudomonas aeruginosa PAO1]	NP_249457
mucE	1-270/270	100,00 9	7,04	(mucE) small envelope protein MucE [Alginate regulation (CVF523)] [Pseudomonas aeruginosa PAO1]	NP_252722
mucP	1-1353/1353	100,00 99	9,04	(mucP) metalloprotease protease [Alginate regulation (CVF523)] [Pseudomonas aeruginosa PAO1]	NP_252339
pchA	1-1431/1431	100,00 9	7,97	(pchA) salicylate biosynthesis isochorismate synthase PchA [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252921
pchB	1-306/306	100,00 99	9,02	(pchB) salicylate biosynthesis protein PchB [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252920
pchC	1-756/756	100,00 9	8,55	(pchC) pyochelin biosynthetic protein PchC [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252919
pchD	1-1644/1644	100,00 9	8,72	(pchD) pyochelin biosynthesis protein PchD [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252918
pchE	1-4317/4317	100,00 9	8,10	(pchE) dihydroaeruginoic acid synthetase PchE [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252916
pchF	1-5430/5430	100,00 9'	7,97	(pchF) pyochelin synthetase PchF [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252915

pchG	1-1050/1050	100,00	98,38	(pchG) pyochelin biosynthetic protein PchG [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252914
pchH	1-1713/1713	100,00	98,02	(pchH) ABC transporter ATP-binding protein [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252913
pchI	1-1725/1725	100,00	98,61	(pchI) ABC transporter ATP-binding protein [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252912
pchR	1-891/891	100,00	98,99	(pchR) transcriptional regulator PchR [Pyochelin (VF0095)] [Pseudomonas aeruginosa PAO1]	NP_252917
pcr1	1-279/279	100,00	98,92	(pcr1) type III secretion system protein Pcr1 [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250390
pcr2	1-372/372	100,00	99,19	(pcr2) type III secretion system protein Pcr2 [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250391
pcr3	1-366/366	100,00	97,81	(pcr3) type III secretion system protein Pcr3 [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250392
pcr4	1-330/330	100,00	98,48	(pcr4) type III secretion system protein Pcr4 [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250393
pcrD	1-2121/2121	100,00	98,63	(pcrD) type III secretion system protein PcrD [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250394
pcrG	1-297/297	100,00	96,30	(pcrG) type III secretion system cytoplasmic regulator PcrG [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250396
pcrH	1-504/504	100,00	98,22	(pcrH) type III secretion system regulatory protein PcrH [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250398
pcrR	1-435/435	100,00	99,31	(pcrR) type III secretion system regulatory protein PcrR [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250395
pcrV	1-885/885	100,00	98,08	(pcrV) type III secretion system hydrophilic translocator needle tip protein PcrV [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250397
phzA1	47-489/489	90,59	95,48	(phzA1) phenazine biosynthesis protein PhzA [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252899
phzA1	1-489/489	100,00	98,36	(phzA1) phenazine biosynthesis protein PhzA [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252899
phzB1	55-489/489	88,96	90,34	(phzB1) phenazine biosynthesis protein PhzB [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252900
phzB1	1-489/489	100,00	97,75	(phzB1) phenazine biosynthesis protein PhzB [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252900

phzF1	1-837/837	100,00	99,28	(phzF1) phenazine biosynthesis protein PhzF isomerase [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252904
phzG1	1-645/645	100,00	99,22	(phzG1) phenazine biosynthesis protein PhzG pyridoxamine 5'- phosphate oxidase [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_252906
phzH	1-1833/1833	100,00	98,96	(phzH) phenazine-modifying enzyme [Phenazines biosynthesis (CVF536)] [Pseudomonas aeruginosa PAO1]	NP_248741
phzM	1-1005/1005	100,00	99,10	(phzM) phenazine-specific methyltransferase PhzM (adenosylmethionine dependent methyltransferase) [Pyocyanin (VF0100)] [Pseudomonas aeruginosa PAO1]	NP_252898
phzS	1-1209/1209	100,00	98,43	(phzS) flavin dependent hydroxylase PhzS [Pyocyanin (VF0100)] [Pseudomonas aeruginosa PAO1]	NP_252907
pilB	1-1701/1701	100,00	88,30	(pilB) type 4 fimbrial biogenesis protein PilB [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253216
pilE	1-426/426	100,00	99,30	(pilE) type 4 fimbrial biogenesis protein PilE [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253246
pilF	1-759/759	100,00	98,81	(pilF) type 4 fimbrial biogenesis protein PilF [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_252494
pilG	1-408/408	100,00	99,75	(pilG) twitching motility protein PilG [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249099
pilH	1-366/366	100,00	99,18	(pilH) twitching motility protein PilH [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249100
pilI	1-537/537	100,00	99,81	(pill) twitching motility protein Pill [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249101
pilJ	1-2049/2049	100,00	99,32	(pilJ) twitching motility protein PilJ [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249102
pilK	1-876/876	100,00	98,86	(pilK) methyltransferase PilK [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249103
pilM	1-1065/1065	100,00	98,97	(pilM) type IV pilus inner membrane platform protein PilM [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253731
pilN	1-597/597	100,00	99,00	(pilN) type IV pilus inner membrane platform protein PilN [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253730
pilO	1-624/624	100,00	99,20	(pilO) type IV pilus inner membrane platform protein PilO [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253729

pilP	1-525/525	100,00	99,43	(pilP) type IV pilus biogenesis protein PilP [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253728
pilQ	1-2145/2145	100,00	96,60	(pilQ) type 4 fimbrial biogenesis protein PilQ [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253727
pilR	1-1338/1338	100,00	98,80	(pilR) two-component response regulator PilR [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253237
pilS	1-1593/1593	100,00	98,24	(pilS) two-component sensor PilS [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253236
pilT	1-1035/1035	100,00	99,52	(pilT) twitching motility protein PilT [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249086
pilU	1-1149/1149	100,00	99,48	(pilU) twitching motility protein PilU [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_249087
pilV	1-558/558	100,00	99,46	(pilV) type IV pilus biogenesis protein PilV [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253241
pilW	1-825/825	100,00	91,76	(pilW) type IV fimbrial biogenesis protein PilW [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253242
pilX	1-588/588	100,00	93,54	(pilX) type 4 fimbrial biogenesis protein PilX [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253243
pilY1	1-3486/3486	99,97	92,83	(pilY1) type 4 fimbrial biogenesis protein PilY1 [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253244
pilY2	1-348/348	100,00	99,42	(pilY2) type 4 fimbrial biogenesis protein PilY2 [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253245
plcH	1-2193/2193	100,00	99,09	(plcH) hemolytic phospholipase C precursor [PLC (VF0092)] [Pseudomonas aeruginosa PAO1]	NP_249535
popB	1-1173/1173	100,00	98,38	(popB) type III secretion system hydrophobic translocator pore protein PopB [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250399
popD	1-888/888	100,00	98,65	(popD) type III secretion system hydrophobic translocator pore protein PopD [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250400
popN	1-867/867	100,00	98,50	(popN) type III secretion system outer membrane protein PopN [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250389
ppkA	1-3099/3099	100,00	98,55	(ppkA) serine/threonine protein kinase PpkA [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248764
pppA	1-729/729	100,00	98,90	(pppA) Pseudomonas protein phosphatase PppA [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248765

pscB	1-423/423	100,00	99,05	(pscB) type III secretion system protein PscB [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250406
pscC	1-1803/1803	100,00	98,78	(pscC) type III secretion system secretin PscC [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250407
pscD	1-1299/1299	100,00	97,38	(pscD) type III secretion system basal body protein PscD [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250408
pscE	1-204/204	100,00	96,08	(pscE) type III secretion system cochaperone PscE for PscG [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250409
pscF	1-258/258	100,00	100,00	(pscF) type III secretion system needle filament protein PscF [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250410
pscG	1-348/348	100,00	98,56	(pscG) type III secretion system chaperone PscG for PscF [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250411
pscH	1-432/432	100,00	97,45	(pscH) type III secretion system protein PscH [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250412
pscI	1-339/339	100,00	99,11	(pscI) type III secretion system inner rod protein PscI [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250413
pscJ	1-747/747	100,00	99,20	(pscJ) type III secretion system inner MS ring protein [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250414
pscK	1-627/627	99,04	97,61	(pscK) type III secretion system protein PscK [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250415
pscL	1-645/645	100,00	98,30	(pscL) type III secretion systemt protein PscL [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250416
pscN	1-1323/1323	100,00	98,49	(pscN) type III secretion system ATPase PscN [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250388
pscO	1-477/477	100,00	98,32	(pscO) type III secretion system protein PscO [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250387
pscP	1-1110/1110	99,46	97,39	(pscP) type III secretion system protein PscP [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250386
pscQ	1-930/930	100,00	98,50	(pscQ) type III secretion system protein PscQ [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250385
pscR	1-654/654	100,00	98,93	(pscR) type III secretion system protein PscR [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250384
pscS	1-267/267	100,00	99,62	(pscS) type III secretion system protein PscS [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250383
pscT	1-789/789	100,00	98,99	(pscT) type III secretion system protein PscT [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250382
------	---------------	--------	-------	---	-----------
pscU	1-1050/1050	100,00	99,05	(pscU) type III secretion system protein PscU [TTSS (VF0083)] [Pseudomonas aeruginosa PAO1]	NP_250381
ptxR	1-939/939	100,00	98,72	(ptxR) transcriptional regulator PtxR [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_250948
pvcA	1-987/987	100,00	98,68	(pvcA) paerucumarin biosynthesis protein PvcA [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_250944
pvcB	1-876/876	100,00	98,06	(pvcB) paerucumarin biosynthesis protein PvcB [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_250945
pvcC	1-1503/1503	100,00	99,07	(pvcC) paerucumarin biosynthesis protein PvcC [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_250946
pvcD	1-648/648	100,00	97,07	(pvcD) paerucumarin biosynthesis protein PvcD [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_250947
pvdA	1-1332/1332	100,00	98,57	(pvdA) L-ornithine N5-oxygenase PvdA [Pyoverdine (VF0094)] [Pseudomonas aeruginosa PAO1]	NP_251076
pvdF	1-821/828	99,15	90,13	(pvdF) pyoverdine synthetase F [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251086
pvdG	1-765/765	100,00	98,43	(pvdG) pyoverdine biosynthesis protein PvdG [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251115
pvdH	1-1410/1410	100,00	99,01	(pvdH) diaminobutyrate-2-oxoglutarate aminotransferase PvdH [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251103
pvdL	1-13029/13029	100,00	98,43	(pvdL) Peptid synthase PvdL [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251114
pvdM	1-1344/1347	99,70	83,83	(pvdM) dipeptidase precursor [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251083
pvdN	1-1284/1284	99,45	94,71	(pvdN) pyoverdine biosynthesis protein PvdN [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251084
pvdO	1-855/855	100,00	98,01	(pvdO) pyoverdine biosynthesis protein PvdO [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251085
pvdP	1-1635/1635	100,00	81,93	(pvdP) tyrosinase required for pyoverdine maturation [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251082
pvdQ	1-2289/2289	100,00	99,00	(pvdQ) 3-oxo-C12-homoserine lactone acylase PvdQ [pyoverdine (IA001)] [Pseudomonas aeruginosa PAO1]	NP_251075

pvdS	1-564/564	100,00	98,94	(pvdS) extracytoplasmic-function sigma-70 factor [Pyoverdine (VF0094)] [Pseudomonas aeruginosa PAO1]	NP_251116
rhlA	1-888/888	100,00	98,87	(rhlA) rhamnosyltransferase chain A [Rhamnolipid (VF0089)] [Pseudomonas aeruginosa PAO1]	NP_252169
rhlB	1-1281/1281	100,00	99,22	(rhlB) rhamnosyltransferase chain B [Rhamnolipid (VF0089)] [Pseudomonas aeruginosa PAO1]	NP_252168
rhlC	1-978/978	100,00	98,57	(rhlC) rhamnosyltransferase 2 [Rhamnolipid biosynthesis (CVF524)] [Pseudomonas aeruginosa PAO1]	NP_249821
rhlI	1-606/606	100,00	97,69	(rhll) autoinducer synthesis protein RhlL [Quorum sensing (VF0093)] [Pseudomonas aeruginosa PAO1]	NP_252166
tagF/p ppB	1-681/681	100,00	99,27	(tagF/pppB) Pseudomonas protein phosphatase PppB [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248766
tagQ	1-915/915	100,00	99,34	(tagQ) type VI secretiona ssociated protein TagQ outer membrane lipoprotein [HSI-1 (Hcp-secretion island 1) (SS178)] [Pseudomonas aeruginosa PAO1]	NP_248760
tagR	1-1713/1713	100,00	99,71	(tagR) type IV secretion associated protein TagR positively regulates PpkA [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248761
tagS	1-1200/1200	100,00	98,50	(tagS) type IV secretion associated protein TagS forming a stable inner membrane complex with TagT [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248762
tagT	1-720/720	100,00	98,06	(tagT) type six secretion associated protein TagT ATP-binding component of ABC transporter [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248763
tse1	1-465/465	100,00	99,36	(tse1) type VI secretion system effector Tse1 peptidoglycanhydrolase [HSI-1 (Hcp-secretion island 1) (SS178)] [Pseudomonas aeruginosa PAO1]	NP_250535
tse2	1-477/477	100,00	98,53	(tse2) type VI secretion system effector Tse2 [HSI-1 (Hcp-secretion island 1) (SS178)] [Pseudomonas aeruginosa PAO1]	NP_251392
tse3	1-1227/1227	100,00	99,19	(tse3) type VI secretion system effector Tse3 glycoside hydrolase [HSI-1 (Hcp-secretion island 1) (SS178)] [Pseudomonas aeruginosa PAO1]	NP_252174
vgrG1 a	1-1932/1932	100,00	99,43	(vgrG1a) type VI secretion system substrate VgrG1 [HSI-I (VF0334)] [Pseudomonas aeruginosa PAO1]	NP_248781
vgrG1 b	1-2226/2226	100,00	98,38	(vgrG1b) type VI secretion system substrate VgrG1b [HSI-1 (Hcp- secretion island 1) (SS178)] [Pseudomonas aeruginosa PAO1]	NP_248785

waaA	1-1278/1278	100,00	98,51	(waaA) lipopolysaccharide core biosynthesis protein WaaP [LPS (VF0085)] [Pseudomonas aeruginosa PAO1]	NP_253675
waaC	1-1068/1068	100,00	98,88	(waaC) 3-deoxy-D-manno-octulosonic-acid (KDO) transferase [LPS (VF0085)] [Pseudomonas aeruginosa PAO1]	NP_253698
waaF	1-1038/1038	100,00	98,36	(waaF) heptosyltransferase I [LPS (VF0085)] [Pseudomonas aeruginosa PAO1]	NP_253699
waaG	1-1122/1122	100,00	99,11	(waaG) B-band O-antigen polymerase [LPS (VF0085)] [Pseudomonas aeruginosa PAO1]	NP_253697
waaP	1-807/807	100,00	98,27	(waaP) UDP-glucose:(heptosyl) LPS alpha 13-glucosyltransferase WaaG [LPS (VF0085)] [Pseudomonas aeruginosa PAO1]	NP_253696
xcpA/ pilD	1-873/873	100,00	98,86	(xcpA/pilD) type 4 prepilin peptidase PilD [Type IV pili (VF0082)] [Pseudomonas aeruginosa PAO1]	NP_253218
хсрР	1-708/708	100,00	99,01	(xcpP) secretion protein XcpP [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251794
xcpQ	1-1977/1977	99,85	92,21	(xcpQ) general secretion pathway protein D [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251795
xcpR	1-1509/1509	100,00	98,14	(xcpR) general secretion pathway protein E [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251793
xcpS	1-1218/1218	100,00	99,26	(xcpS) general secretion pathway protein F [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251792
хсрТ	1-447/447	100,00	98,66	(xcpT) general secretion pathway protein G [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251791
xcpU	1-519/519	100,00	99,61	(xcpU) general secretion pathway protein H [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251790
xcpV	1-390/390	100,00	97,69	(xcpV) general secretion pathway protein I [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251789
xcpW	1-714/714	100,00	99,30	(xcpW) general secretion pathway protein J [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251788
хсрХ	1-1002/1002	100,00	96,61	(xcpX) general secretion pathway protein K [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251787
хсрҮ	1-1149/1149	100,00	98,00	(xcpY) general secretion pathway protein L [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251786
xcpZ	1-525/525	100,00	99,24	(xcpZ) general secretion pathway protein M [xcp secretion system (VF0084)] [Pseudomonas aeruginosa PAO1]	NP_251785

Resultater for prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL ved søk i databasen ResFinder

Antimicrobial	Class	P2.SP.MB_ESBL		P5.SV.MB_ESBL		P10.SP.BR_ESBL	
		WGS-predicted phenotype	Genetic background	WGS-predicted phenotype	Genetic background	WGS-predicted phenotype	Genetic background
Amikacin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Amoxicillin	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaPAO (blaPAO_FJ666 073), blaPAO (blaPAO_FJ666 065), blaOXA- 50 (blaOXA- 50_AY306130)
Amoxicillin + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Ampicillin	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaPAO (blaPAO_FJ666 073), blaPAO (blaPAO_FJ666 065), blaOXA- 50 (blaOXA- 50_AY306130)
Ampicillin + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Ampicillin + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Apramycin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-

Tabell 26. Viser resultat for prøvene resistens mot ulike antimikrobielle stoffer hos prøvene P2.SP.MB_ESBL, P5.SV.MB_ESBL og P10.SP.BR_ESBL.

Arbekacin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Astromicin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Azithromycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Azithromycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Aztreonam	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	No resistance	-
Benzylkonium chloride	quaternary ammonium compound	No resistance	-	No resistance	-	No resistance	-
Bleomycin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Butiromycin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Butirosin	aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Carbomycin	macrolide	No resistance		No resistance		No resistance	-
Cefepime	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaPAO (blaPAO_FJ666 073), blaPAO (blaPAO_FJ666 065)
Cefixime	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Cefotaxime	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	No resistance	-
Cefotaxime + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Cefoxitin	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Ceftazidime	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaPAO (blaPAO_FJ666 073), blaPAO (blaPAO_FJ666 065)
Ceftazidime + avibactam	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Ceftiofur	Under_development	No resistance	-	No resistance	-	No resistance	-

Ceftriaxone	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	No resistance	-
Cephalothin	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Cetylpyridinium chloride	Quaternary ammonium compound	No resistance	-	No resistance	-	No resistance	-
Chloramphenicol	Amphenicol	No resistance	-	No resistance	-	Resistant	catB7 (catB7_AF0369 33)
Chlorhexidine	Quaternary ammonium compound	No resistance	-	No resistance	-	No resistance	-
Ciprofloksacin	Quinolone	Resistant	qnrS1 (qnrS1_AB187515)	Resistant	qnrS1 (qnrS1_AB187515)	No resistance	-
Clindamycin	Lincosamide	No resistance	-	No resistance	-	No resistance	-
Colistin	Polymyxin	No resistance	-	No resistance	-	No resistance	-
Dalfopristin	Streptogramin a	No resistance	-	No resistance	-	No resistance	-
Dibekacin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Doxycycline	Tetrasyklin	No resistance	-	No resistance	-	No resistance	-
Ertapenem	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Erythromycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Ethidium bromide	Quaternary ammonium compound	No resistance	-	No resistance	-	No resistance	-
Florfenicol	Amphenicol	No resistance	-	No resistance	-	No resistance	-
Fluoroquinolone	Quinolone	No resistance	-	No resistance	-	No resistance	-
Formaldehyde	Aldehyde	No resistance	-	No resistance	-	No resistance	-
Fortimicin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Fosfomycin	Fosfomycin	No resistance	-	No resistance	-	Resistant	fosA (fosA_ACWU0 1000146)
Fusidic acid	Steroid antibacterial	No resistance	-	No resistance	-	No resistance	-
g418	Aminoglycoside	No resistance	-	No resistance	-	-	-
Gentamicin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-

Gentamicin c	Aminoglycoside	No resistance	-	No resistance	-	-	-
Hydrogen peroxide	Peroxide	Resistant	sitABCD (sitABCD_AY5980 30)	Resistant	sitABCD (sitABCD_AY5980 30)	No resistance	-
Hygromycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Imipenem	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Isepamicin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Kanamycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Kanamycin a	Aminoglycoside	No resistance	-	No resistance	-	-	-
Kasugamycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Lincomycin	Lincosamide	No resistance	-	No resistance	-	No resistance	-
Linezolid	Oxazolidinone	No resistance	-	No resistance	-	No resistance	-
Lividomycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Meropenem	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Metronidazole	Nitroimidazole	No resistance	-	No resistance	-	No resistance	-
Minocycline	Tetrasyklin	No resistance	-	No resistance	-	No resistance	-
Mupirocin	Pseudomonic acid	No resistance	-	No resistance	-	No resistance	-
Nalidixic acid	Quinolone	No resistance	-	No resistance	-	No resistance	-
Neomycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Netilmicin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Oleandomycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Paromomycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Penicillin	beta-lactam	No resistance	-	No resistance	-	No resistance	-
Piperacillin	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	No resistance	-
Piperacillin + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Piperacillin + tazobactam	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Pristinamycin ia	Streptogramin b	No resistance	-	No resistance	-	No resistance	-
Pristinamycin iia	Streptogramin a	No resistance	-	No resistance	_	No resistance	-
Quinupristin	Streptogramin b	No resistance	-	No resistance	-	No resistance	_
Quinupristin + dalfopristin	Streptogramin a	No resistance	-	No resistance	-	No resistance	-

Ribostamycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Rifampicin	Rifamycin	No resistance	-	No resistance	-	No resistance	-
Sisomicin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Spectinomycin	Aminocyclitol	No resistance	-	Resistant	16S_rrsB;;16S_rrsB ;;gqbs;;16S_rrsB;;nt bq;;16S_rrsB;;bqca; ;16S_rrsB;;nbqd;;16 S_rrsB;;whlo;;16S_ rrsB;;ulwg;;16S_rrs B;;rddt;;16S_rrsB;;c utl;;16S_rrsB;;uacq; ;16S_rrsB;;upbu;;16 S_rrsB;;lhez(g.1064 _1064del)	No resistance	-
Spiramycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Streptomycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Sulfamethoxazole	Folate pathway antagonist	No resistance	-	No resistance	-	No resistance	-
Teicoplanin	Glycopeptide	No resistance	-	No resistance	-	No resistance	-
Telithromycin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Temocillin	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Temperature	Heat	No resistance	-	No resistance	-	No resistance	-
Tetrasyklin	Tetrasyklin	No resistance	-	No resistance	-	No resistance	-
Tiamulin	Pleuromutilin	No resistance	-	No resistance	-	No resistance	-
Ticarcillin	Beta-lactam	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	Resistant	blaCTX-M-15 (blaCTX-M- 15_AY044436)	No resistance	-
Ticarcillin + clavulanic acid	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
Tigecycline	Tetrasyklin	No resistance	-	No resistance	-	No resistance	-
Tobramycin	Aminoglycoside	No resistance	-	No resistance	-	No resistance	-
Trimethoprim	Folate pathway antagonist	No resistance	-	No resistance	-	No resistance	-
Tylosin	Macrolide	No resistance	-	No resistance	-	No resistance	-
Unknown aminoglycoside	Aminoglycoside	No resistance	-	No resistance	-	Resistant	aph(3')-IIb (aph(3')- IIb_CP006832)

Unknown beta-	Beta-lactam	No resistance	-	No resistance	-	No resistance	-
lactam							
Unknown	Quinolone	No resistance	-	No resistance	-	No resistance	-
quinolone							
Vancomycin	Glycopeptide	No resistance	-	No resistance	-	No resistance	-
Virginiamycin m	Streptogramin a	No resistance	-	No resistance	-	No resistance	-
Virginiamycin s	Streptogramin b	No resistance	-	No resistance	-	No resistance	-

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway