
Philosophiae Doctor (PhD)
Thesis 2023:47

Runar Helin

Exploring the transition from
traditional data analysis to
machine- and deep learning
approaches

Utforsking av overgangen fra tradisjonell
dataanalyse til metoder med maskin- og
dyp læring

Philosophiae D
octor (PhD

), Thesis 2023:47
Runar H

elin

Norwegian University of Life Sciences
Faculty of Science and Technology
Department of Data Science

Exploring the transition from traditional data analysis to
machine- and deep learning approaches

Utforsking av overgangen fra tradisjonell dataanalyse til metoder med maskin- og dyp
læring

Philosophiae Doctor (PhD) Thesis

Runar Helin

Norwegian University of Life Sciences
Faculty of Science and Technology

Department of Data Science

Ås, 2023

Thesis number 2023:47
ISSN 1894-6402

ISBN 978-82-575-2076-2

Acknowledgments

First, I want to thank my main supervisor Kristian Hovde Liland. I am very
grateful for all the guidance, patience, feedback and discussions that helped
me stay motivated throughout my thesis work. I also want to thank my
co-supervisors Oliver Tomic and Ulf Geir Indahl for all the interesting ideas,
fruitful discussions and helpful advice. Each supervisor also deserves a special
thanks for introducing me, during my studies at NMBU, to the mathematics,
programming and machine learning that made me want to pursue this PhD.

I want to thank all my colleagues in the data science, physics and material
science departments. The lunches, coffee breaks, and friendly chats have all
been invaluable and made every day more interesting.

Finally, I want to thank my family for all the support and especially my
girlfriend, Hanne, for always being encouraging and tolerating the many late
working hours, especially towards the end of this thesis work.

Summary

Data analysis methods based on machine- and deep learning approaches are
continuously replacing traditional methods. Models based on deep learning (DL)
are applicable to many problems and often have better prediction performance
compared to traditional methods. One major difference between the traditional
methods and machine learning (ML) approaches is the black box aspect often
associated with ML and DL models. The use of ML and DL models offers
many opportunities but also challenges. This thesis explores some of these
opportunities and challenges of DL modelling with a focus on applications in
spectroscopy.

DL models are based on artificial neural networks (ANNs) and are known to
automatically find complex relations in the data. In Paper I, this property is
exploited by designing DL models to learn spectroscopic preprocessing based on
classical preprocessing techniques. It is shown that the DL-based preprocessing
has some merits with regard to prediction performance, but there is considerable
extra effort required when training and tuning these DL models. The flexibility
of ANN architecture designs is further studied in Paper II when a DL model for
multiblock data analysis is proposed which can also quantify the importance of
each data block.

A drawback of the DL models is the lack of interpretability. To address this,
a different modelling approach is taken in Paper III where the focus is to use
DL models in such a way as to retain as much interpretability as possible. The
paper presents the concept of non-linear error modelling, where the DL model
is used to model the residuals of the linear model instead of the raw input
data. The concept is essentially a shrinking of the black box aspect since the
majority of the data modelling is done by a linear interpretable model.

The final topic explored in this thesis is a more traditional modelling approach
inspired by DL techniques. Data sometimes contain intrinsic subgroups which
might be more accurately modelled separately than with a global model. Paper
IV presents a modelling framework based on locally weighted models and
fuzzy partitioning that automatically finds relevant clusters and combines the

iv Summary

predictions of each local model. Compared to a DL model, the locally weighted
modelling framework is more transparent. It is also shown how the framework
can utilise DL techniques to be scaled to problems with huge amounts of data.

Sammendrag

Metoder basert på maskin- og dyp læring erstatter i stadig økende grad tradis-
jonell datamodellering. Modeller basert på dyp læring (DL) kan brukes på
mange problemer og har ofte bedre prediksjonsevne sammenlignet med tradis-
jonelle metoder. En stor forskjell mellom tradisjonelle metoder og metoder
basert på maskinlæring (ML) er den "svarte boksen" som ofte forbindes med
ML- og DL-modeller. Bruken av ML- og DL-modeller åpner opp for mange
muligheter, men også utfordringer. Denne avhandlingen utforsker noen av disse
mulighetene og utfordringene med DL modeller, fokusert på anvendelser innen
spektroskopi.

DL-modeller er basert på kunstige nevrale nettverk (KNN) og er kjent for å
kunne finne komplekse relasjoner i data. I Artikkel I blir denne egenskapen
utnyttet ved å designe DL-modeller som kan lære spektroskopisk preproses-
sering basert på klassiske preprosesseringsteknikker. Det er vist at DL-basert
preprosessering kan være gunstig med tanke på prediksjonsevne, men det kreves
større innsats for å trene og justere disse DL-modellene. Fleksibiliteten til
design av KNN-arkitekturer er studert videre i Artikkel II hvor en DL-modell
for analyse av multiblokkdata er foreslått, som også kan kvantifisere viktigheten
til hver datablokk.

En ulempe med DL-modeller er manglende muligheter for tolkning. For å
adressere dette, er en annen modelleringsframgangsmåte brukt i Artikkel III,
hvor fokuset er på å bruke DL-modeller på en måte som bevarer mest mulig
tolkbarhet. Artikkelen presenterer konseptet ikke-lineær feilmodellering, hvor
en DL-modell blir bruk til å modellere residualer fra en lineær modell i stedet
for rå inputdata. Konseptet kan ses på som en krymping av den svarte boksen,
siden mesteparten av datamodelleringen er gjort av en lineær, tolkbar modell.

Det siste temaet som er utforsket i denne avhandlingen er nærmere en tradis-
jonell modelleringsvariant, men som er inspirert av DL-teknikker. Data har av
og til iboende undergrupper som kan bli mer nøyaktig modellert hver for seg
enn med en global modell. Artikkel IV presenterer et modelleringsrammeverk
basert på lokalt vektede modeller og "fuzzy" oppdeling, som automatisk finner

vi Sammendrag

relevante grupperinger ("clusters") og kombinerer prediksjonene fra hver lokale
modell. Sammenlignet med en DL-modell, er det lokalt vektede modellering-
srammeverket mer transparent. Det er også vist hvordan rammeverket kan
utnytte teknikker fra DL for å skalere opp til problemer med store mengder
data.

List of Papers

Paper I

Helin R., Indahl U. G., Tomic O., Liland K. H. On the possible benefits of
deep learning for spectral preprocessing. Journal of Chemometrics, 36(2):e3374,
2022.

Status: Published

Paper II

Jenul A., Schrunner S., Huynh B. N., Helin R., Futsæther C. M., Liland K.
H., Tomic, O. Ranking feature-block importance in artificial multiblock neural
networks. In: Artificial Neural Networks and Machine Learning – ICANN 2022,
vol. 13532, pages 163-175, Springer Nature Switzerland, 2022.

Status: Published. Reproduced with permission from Springer Nature.

Paper III

Helin R., Indahl, U. G., Tomic, O., Liland, K. H. Non-linear shrinking of linear
model errors. Analytica Chimica Acta, 1258:341147, 2023.

Status: Published

viii List of Papers

Paper IV

Helin, R., Indahl, U. G., Tomic, O., Liland, K. H. Fuzzy regression and
classification using locally weighted ensemble models (LoWEM).

Status: Manuscript, not published.

Contents

Acknowledgments i

Summary iii

Sammendrag v

List of Papers vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation and background . 1

1.1.1 Data analysis approaches 1

1.1.2 Spectroscopic data . 3

1.1.3 Related work . 3

1.2 Research aims . 4

1.3 Outline . 5

2 Theory 7

x CONTENTS

2.1 Spectroscopy . 7

2.2 Partial least squares model . 10

2.3 Preprocessing . 12

2.4 Fuzzy C-means . 14

2.5 Machine learning modelling . 15

2.6 Deep learning . 16

2.6.1 Backpropagation . 18

2.6.2 Convolutional neural networks 20

2.6.3 Network hyperparameters 21

3 Summary of papers 23

3.1 Paper I - Spectral preprocessing 23

3.2 Paper II - Ranking feature-block importance 24

3.3 Paper III - Non-linear error modelling 25

3.4 Paper IV - Locally weighted ensemble modelling (LoWEM) . . . 26

4 Discussion 29

4.1 Overview . 29

4.2 Contribution . 29

4.2.1 DL models for spectroscopic data 30

4.2.2 Applying DL models in a traditional framework 31

4.2.3 Improving traditional methods using DL techniques . . . 32

4.2.4 Alternatives to DL models 32

4.2.5 Transparency VS performance 33

4.3 Future perspectives . 34

CONTENTS xi

Paper I 39

Paper II 61

Paper III 77

Paper IV 91

List of Figures

2.1 Example of NIR spectra from corn. 8

2.2 Example of FTIR spectra taken from dry-films obtained during
enzymatic protein hydrolysis of different rest raw materials and
commercial enzymes. 9

2.3 Example of Raman spectra from samples of milk. 9

2.4 Score and loading plot of a PLS model fitted to NIR spectra
of corn with moist content as response value. The NIR spectra
were preprocessed using a Savitzky-Golay filter width window
size 9, 2nd order polynomial and 2nd derivative. 11

2.5 Illustration of how deep learning relates to machine learning and
artificial intelligence. 16

2.6 Illustration of the connection of one layer neural network. The
white node illustrates the bias unit. 18

2.7 Illustration of a simple multi-layered Perceptron (MLP) network.
The white nodes illustrate the bias unit. 19

2.8 Illustration of the cross-correlation (flipped convolution) between
a signal and a filter. 20

4.1 Illustration of how the different works in this thesis are tied
together in the context of traditional and modern data analysis
approaches. 30

List of Tables

2.1 Some examples of deep learning model parameters to tune . . . 22

Chapter 1

Introduction

1.1 Motivation and background

In recent years deep learning (DL) models have become the dominant tool
in natural language processing and image recognition tasks. The DL models,
trained on a huge amount of data, achieve remarkable results compared to
more traditional methods on these tasks. In essence, the DL models are just
complicated networks of interconnected nodes that learn to map data from
an input domain to an output domain. When trained on enough data, this
mapping can be very accurate, but the details of exactly how the DL model
relates the input to the output are lost in the complicated network structure.
DL models are gradually replacing traditional methods in different domains,
and this transition is the subject of this thesis. Both possibilities and challenges
of DL modelling are explored with a focus on applications in spectroscopy.

1.1.1 Data analysis approaches

The work in this thesis has focused on exploring the transition from traditional
data analysis to machine- and deep learning approaches. This topic is quite
broad and could have been taken in many different directions. Therefore, a
more precise description of the chosen scope of this thesis is given here. The
first point is to define what is meant by traditional data analysis and modern
machine- and deep learning approaches in the context of this thesis.

Machine learning (ML) can be seen as a collection of techniques which uses
an algorithm to adjust model parameters based on some input data and an

2 Introduction

objective (i.e. cost-function/loss-function) [1]. In other words, provided with
some data, a machine learning algorithm tries to learn how to perform a
particular task. Machine learning covers a broad range of models including DL
methods.

On the other hand, the term traditional data analysis is taken to cover methods
and techniques which have a focus on the interpretation of models and data.
These methods cover linear models and utilisation of domain knowledge to
simplify the problems (i.e. specific preprocessing of data). Such methods
are often based on assumptions and simplifications in order to utilise linear
relationships between variables, which makes interpretation easier. Much
research in this thesis has been done using spectroscopic data. Therefore, the
discipline of chemometrics is taken as part of the traditional analysis methods.
Chemometrics is the study of chemical data using mathematical, computational
and statistical tools such as multivariate data analysis, design of experiments
and curve fitting.

Admittedly, the border between machine learning methods and traditional
analysis methods is fuzzy. For example, models such as basic linear regression
and principal component analysis (PCA) are used in both disciplines. However,
the use of these models may differ. A machine learning person might use the
PCA model for dimensionality reduction with the aim of reducing noise and
improving the prediction performance. In chemometrics, on the other hand, the
principal components from the PCA would be analysed in more detail to look
for patterns in the data in relation to the variation explained by the principal
components.

To summarise, the main difference between traditional methods and machine
learning is that machine learning is mainly focused on prediction performance.
This focus has steered the development of new models in increasingly complex
models to model the data more accurately, which has led to the recent success
of DL models and artificial neural networks (ANNs). These models are powerful
tools capable of solving highly non-linear problems. However, the complex
inner structure of these models makes them black boxes with few options for
interpreting the relation between input and output. More traditional approaches
can be interpreted but they lack the same predictive power as the modern DL
models. The gap between traditional data analysis and modern ML approaches
is the subject of study in this PhD project.

1.1 Motivation and background 3

1.1.2 Spectroscopic data

To explore the transition from traditional data analysis to modern machine
and deep learning approaches, a field of study where both traditional and
machine learning approaches have some merits was chosen. This excluded
image recognition and natural language processing (NLP) tasks, where DL
models clearly outperform more traditional models and are able to utilise more
data than traditional models can handle. The majority of the research in
this thesis was therefore limited to focus on challenges and opportunities in
spectroscopy. During the time at the start of this thesis work (2019), DL models
showed promising results in data modelling of spectroscopic data [2, 3, 4]. Still,
the research on the topic in the literature was limited. Spectroscopy thus
offered an ideal field to explore the transition from traditional methods to
machine learning approaches. A typical spectroscopic dataset encountered in
chemometrics has only up to a few hundred samples. Furthermore, the data
often contains more features than samples, which can pose a challenge for DL
models which are often trained on massive datasets. Spectroscopic data is also
challenging to model because of its high dimensionality and multicollinearity.
Tools from chemometrics efficiently deal with these challenges, but the question
is whether machine learning approaches can be equally or even more efficient.

1.1.3 Related work

This thesis contributes to the development of new modelling techniques for
spectroscopic data and provides new tools for chemometricians to use. The
contribution will be an extension to other research done on the subject. A
short summary of some related work is given here.

The use of ANNs in chemometrics can be traced back to the early 90s [5]. The
ANN models at the time were simpler compared to modern ANN architectures
and had limited applications at the time. Later, convolutional neural networks
showed remarkable results for image classification tasks [6, 7, 8], and when it
turned out that similar architectures were favourable on spectroscopic data,
the interest of DL models in spectroscopy began to increase. The CNNs were
first developed for image recognition problems where one key aspect is the
combination of multiple convolutional filters to detect features in the image
independent of its spatial locations. Despite this aspect not being necessary for
1D spectroscopic data, the same CNN architecture has been shown to be a good
choice also in spectroscopy. Compared to traditional chemometric models such
as partial least squares (PLS), which operates in a lower-dimensional subspace,
the CNN models have been successfully applied with even tens of thousands of

4 Introduction

model parameter to train, suggesting that there might be some redundancy in
the CNN model weights. The use of CNNs for spectroscopy is partly motivated
by the assumption that the convolutional filters are suitable to extract different
properties from peaks and shapes from the spectra.

Other research on the use of DL models in spectroscopy includes the use of
autoencoders. An autoencoder is a kind of ANN model which simultaneously
learns an encoding of a signal to a lower-dimensional latent space and a
decoding of the lower-dimensional representation so that most of the original
signal is reconstructed. The autoencoder can also be used to decode the lower-
dimensional signal into other signals related to the input. For example, an
autoencoder can be trained to learn a computationally demanding preprocessing
procedure [9] or predict future spectra in a chemical process [10]. A different
approach involves the use of data augmentation techniques to artificially increase
the sample size of the spectroscopic data. For example, an augmentation
technique based on extended multiplicative signal correction (EMSC) has been
proposed [11] and the master student Tahla Neveed also explored the effects of
different data augmentation techniques on spectroscopic data [12] under my
supervision.

1.2 Research aims

The overarching aim of this thesis is to explore different modelling techniques
to build the bridge between traditional data modelling and modern machine
learning technology. On one hand, the possibilities of using DL technology to
improve traditional models in terms of prediction accuracies are studied. On
the other hand, how traditional methods can be used in conjunction with DL
models is explored. The focus of the thesis is on applications in spectroscopy
with an emphasis on exploring different alternatives to pure black box ANN
modelling. More specifically, the thesis is concentrated on the specific research
goals given below.

1) Explore techniques to improve DL models for typical short-wide spectro-
scopic data.

2) Develop methods that use DL models in a more traditional data modelling
framework.

3) Develop methods based on DL techniques to improve the predictive
performance of traditional models while retaining interpretability.

4) Develop alternatives to DL models based on traditional methods.

1.3 Outline 5

1.3 Outline

In Chapter 2, a short introduction to spectroscopic data analysis is given
followed by a presentation of chemometric- and machine learning approaches.
Chapter 3 presents the results as a summary of the papers making up this
thesis followed by a discussion in Chapter 4. The full articles are included at
the end.

Chapter 2

Theory

In this section, the relevant methods and tools studied in the thesis are presented.
First, a general overview of spectroscopy is given followed by a description of
the partial least squares (PLS) model and common preprocessing techniques
for this kind of data. Then, the Fuzzy C-means (FCM) algorithm is presented
followed by an introduction to machine learning and deep learning (DL) models
with a description of some common types of artificial neural network (ANN)
models.

2.1 Spectroscopy

Spectroscopy is the study of interactions between matter and electromagnetic
radiation. Properties such as absorbance, transmission, reflection and emission
are studied. When analysed, these properties can give information about the
structure of the sample at the atomic level. Different types of interactions and
measuring techniques result in different kinds of spectroscopic data to study.
Three types of spectra used in this thesis, all in the category of vibrational
spectroscopy, are near-infrared (NIR), Fourier-transform infrared (FTIR) and
Raman spectra.

These kinds of spectroscopic data are obtained by the study of molecular
vibrations. Each molecule has characteristic interactions with electromagnetic
radiation (light) of different frequencies/wavelengths. By sending light with
different frequencies to a sample and measuring these interactions, the corres-
ponding spectrum is obtained. By studying the peaks in the resulting spectrum,
it is, for example, possible to say something about the chemical compounds in
the sample. A spectrum typically contains information about hundreds or even

8 Theory

thousands of wavelengths, making the data extremely high-dimensional.

The NIR spectra show the absorbance of light as a function of the wavelength
of light. The wavelengths lie in the range between 700 nm to approximately
2500 nm and cover the infrared part of the light spectrum closest to the visible
light region, hence the name NIR. The spectra are obtained by sending light
with different wavelengths to a sample and calculating the absorbance by
comparing the incidence light with the light reflected or transmitted from the
sample. Compared to the other spectra, the NIR spectra are characterised by
broad and overlapping peaks and are less specific as illustrated in Figure 2.1.

Figure 2.1: Example of NIR spectra from corn.

The Fourier transform infrared (FTIR) data is an alternative to NIR data. One
difference is that the FTIR spectra cover a broader range of wavelengths and
typically have a higher resolution. An example is shown in Figure 2.2 where the
absorbance is plotted as a function of the frequency instead of wavelength, as
is typically done for this type of spectra. They typically measure wavelengths
in the NIR and mid-infrared region of the light spectrum up to 25μm, but
larger wavelengths are also possible. When obtaining the FTIR spectra, light
consisting of the whole desired wavelength range is sent to the target. With
a beam splitter, two beams that have travelled different optical path lengths
through the sample are then combined. Based on interference patterns between
the two beams and Fourier transformation, the FTIR spectra can be calculated.

2.1 Spectroscopy 9

Figure 2.2: Example of FTIR spectra taken from dry-films obtained during enzymatic
protein hydrolysis of different rest raw materials and commercial enzymes.

Raman spectra follow a different principle than NIR and FTIR. It is not based
on the absorbance of light but on inelastic scattering effects. The spectra are
obtained by sending monochromatic light with different frequencies on a sample.
Most of the scattered light from the sample will have the same frequency as
the incident light, but a small amount has a change in frequency. At each
measured wavelength, the intensity of this Raman scattering forms a Raman
spectrum. This kind of data is often regarded as complementary to FITR
spectra since it measures molecular vibrations that do not absorb infrared light
and are thus not captured in the FTIR spectra. Usually, the Raman spectra
contain signals caused by fluorescence which need to be separated out later.
The Raman spectra are often characterised by having peaks of high resolution
in contrast to NIR spectra for example as illustrated in Figure 2.3. Similar
to FTIR spectra, the Raman spectra are depicted using frequencies instead of
wavelengths.

Figure 2.3: Example of Raman spectra from samples of milk.

10 Theory

Spectroscopic data analysis

While the spectra can be analysed directly to determine the chemical constitu-
ents in a sample they can also be used to predict a response value or to classify
samples into different groups. A successful model requires high-quality meas-
urements and good reference values. The process of collecting these reference
values is often time-consuming and needs to be obtained through chemical
or physical processes. They often rely on manual work and can destroy the
sample in the process. The investment in obtaining high-quality reference
values pays off when having obtained an accurate model, which repeatedly can
make predictions quicker and non-destructive from the measured spectra.

Beer-Lamberts law states that absorption is proportional to the concentrations
of chemical analytes. This law is a common assumption in chemometrics and is
a justification for the extensive use of linear models such as partial least squares
(PLS) models. Although Beer-Lamberts law often is valid, spectroscopic data
can sometimes be distorted by so-called interferents, which make the data more
non-linear [13]. Other sources of nonlinearities include noise and complex or
heterogeneous sample structures. To successfully model the spectroscopic data
with such non-linearities a single linear model is not sufficient. Variations of
the PLS model such as kernel PLS are one option to model non-linearities [14].
The fact that some spectroscopic data contain non-linearities is the reason DL
has successfully been used to model such data.

2.2 Partial least squares model

The partial least squares (PLS) model is a commonly used model in chemomet-
rics [15]. The model is well suited for data suffering from high multicollinearity
and solves this issue by a dimensional reduction. In contrast to other dimen-
sionality reduction methods such as principal component analysis (PCA), the
features in the new lower dimensional latent space, called components, are
found with the idea of best predicting the response y from the data X. More
specifically, the components are found as explaining most of the covariance
between X and y.

The goal of the PLS algorithm is to decompose X as TP T + E, where the
columns in the matrices T and P are called the scores and loadings respectively
and E is the residual matrix. There are also corresponding loading weights
W and y-loading q. There exist different PLS algorithms with differences in
calculation speed and numerical stability.

2.2 Partial least squares model 11

(a) Scoreplot of the first two PLS components (b) Loading plot of the first PLS component

Figure 2.4: Score and loading plot of a PLS model fitted to NIR spectra of corn with moist
content as response value. The NIR spectra were preprocessed using a Savitzky-Golay filter
width window size 9, 2nd order polynomial and 2nd derivative.

Regression coefficients can then be calculated based on the m components cor-
responding to the highest covariance to obtain a partial least squares regression
(PLSR) model with the formula

βPLS = W
(
P TW

)−1
q (2.1)

The scores and loadings in the PLS model are useful for interpretation and can
give you insights into the dataset. Figure 2.4 shows an example of a score- and
loadings plot from a PLS model trained to predict moist content from NIR
spectra of corn. In the score plot to the left, The x and y axis are the two first
PLS components respectively with the percentage of explained variance for each
given. The moist content of each sample is indicated by different colours. It can
be seen that the samples with less moisture tend to be located to the left while
the samples with higher moist content are more to the right. This suggests
that the variance in moist content in the sample is clearly captured by the
first PLS component. From the loading plot, the peaks indicate which original
features the PLS model focuses on. It can be used to determine what chemical
properties the component focuses on. For instance, the peaks at around 2300
nm correspond to wavelengths with high absorption of oil while peaks at 1900
and 1450 are bands with large water absorption [16].

The score and loadings plot are powerful ways to gain information about the
dataset. It can be used to infer the types of variance the PLS components
explain as well as detect groups of data that share similarities.

The PLS model can also be used for classification in binary or multiclass
problems. It is done by using a dummy-matrix representation (one-hot encoding)

12 Theory

of the class-membership vector and using the PLS2 algorithm suitable for
multiple responses to fit the data. Alternatively, the PLS-DA [17] algorithm can
be used. In both cases, the PLS model is combined with a discriminant analysis
such as linear discriminant analysis (LDA) to obtain the class predictions.

2.3 Preprocessing

Preprocessing of data is usually a required step in data analysis in order to
get meaningful data for the model to train on [18]. Common preprocessing
steps include transformations of features, feature selection, handling missing
values, mean centring and normalisation of each feature in the data and outlier
detection. Different domains also have specific preprocessing steps to handle
known effects present in the data. In the field of spectroscopy, preprocessing
steps aim at removing variation in the data caused by unwanted physical effects.
For example, some preprocessing techniques correct for multiplicative effects
caused by differences in the optical pathway when measuring a sample. The
differences make the light travel different lengths resulting in uneven light
absorption in the sample. This is among other things caused by differences in
material thickness, heterogeneity in the sample or variation in the light source.
The standard preprocessing techniques in spectroscopy are designed to correct
for similar known effects. In the following, a few such preprocessing techniques
are presented.

Multiplicative scatter correction: Multiplicative scatter correction model
(MSC) is an example of a specific preprocessing model used in vibrational
spectroscopy. The method was first developed for the analysis of NIR spectra
[19]. Based on the Beer-Lambert law, the MSC model decomposes each
spectrum x as a constant baseline a, a typical spectrum xref called a reference
spectrum scaled by a constant b and an error term e. More specifically, each
spectrum xi is decomposed as

xi = a+ xref · b+ e, (2.2)

where, e is a residual term. The scalars a and b are unique for each sample
but found using a common reference spectrum. The parameters a and b are
estimated using a least squares approximation. The idea is to make all samples
as close to the reference spectrum as possible by removing the additive and
multiplicative effects. The interesting chemical variation in the spectrum is
then left in the error term e. After obtaining estimates of a and b, a corrected
spectrum xcorr is given by

2.3 Preprocessing 13

xcorr =
xi − a

b
(2.3)

Extended multiplicative signal correction: By taking the MSC model
as a basis, the extended multiplicative signal correction (EMSC) model was
developed as a generalisation of the MSC model where the same framework is
used to correct for more general signals in addition to scattering effects [20, 21].
The model is based on the same derivation but adds more terms corresponding
to basis vectors of polynomials νj with increasing polynomial degree. The
corrected spectra for en EMSC model with j = 1,. . . , n polynomial correction
is defined by

xcorr =
xi − a−∑n

j=1 djν
j

b
(2.4)

Both the MSC and EMSC corrected spectra can be written in an alternative
form

xcorr = xref +
1

b
e (2.5)

In this form, it is more apparent that the variation in the spectra is caused
by chemical factors captured in the residual term e, and that the corrected
spectra correspond to variation around a common reference spectrum. Usually,
the mean spectrum across all spectra is taken as the reference spectrum.

The EMSC model using second-order polynomial correction is often called
basic EMSC. Additionally, numerous variations of the EMSC method have
been developed such as the ability to include corrections of known physical
or chemical variations with the use of constituent spectra [20], add replicate
correction [22] or correct for Mie-scattering [23].

Standard normal variate: A closely related preprocessing technique to MSC
is the standard normal variate (SNV)[24]. The SNV correction is identical to
Equation 2.3. However, the scalars a and b are instead taken to be the mean
value and standard deviation of spectrum xi. In contrast to MSC, the SNV
corrects each spectrum individually and is not based on a common reference
spectrum.

Savitzky-Golay: Another popular preprocessing technique is the Savitzky-
Golay (SG) filtering [25]. This method aims at smoothing a signal without

14 Theory

distorting the information it contains. It achieves this by fitting a polyno-
mial curve to a local neighbourhood around every point and using the local
polynomial approximation as the smoothed signal. This procedure can be
seen as a convolution of the signal with a kernel representing the polynomial
approximation. In addition to smoothing a signal, SG filtering can be used to
approximate derivatives of the signals, which has been proven useful for noisy
types of signals such as in FTIR spectroscopy [26].

In the context of PLS models, preprocessing has the benefit that one typically
needs fewer components to successfully model the signal. In other words, less
noise is included in the model if preprocessing is performed. The same argument
can be made for neural networks as well, and in that sense, preprocessing should
not be disregarded even though it might not be strictly necessary for good
prediction performance. It can, on the other hand, improve robustness.

2.4 Fuzzy C-means

Fuzzy C-means (FCM) is an iterative clustering algorithm similar to K-means
clustering [27]. The difference is that instead of assigning each sample to a
cluster, each sample is given a set of membership values between 0 and 1, one
for each cluster in the algorithm. For each sample, these membership values
sum to one across all clusters and represent how similar the sample is to a
prototype of each cluster or the distance to the cluster centres. The clustering
is fuzzy since a sample belongs, to some degree, to more than one cluster.
The amount of fuzziness is controlled by a parameter q > 1 which affects the
clustering. A value close to 1 translates to very crisp clusters, where samples
have large membership values for the closest clusters and small values for the
others, while large values of q mean that the membership values are almost
equal for every cluster.

The FCM algorithm starts with initialising k = 1, . . . ,m cluster centres θk
either randomly or by using a more clever initialisation such as kmeans++. The
membership values μik for each sample i and cluster k are calculated according
to the equation

μik =

[
m∑
j=1

(||xi − θk||2
||xi − θj||2

) 1
q−1

]−1
, (2.6)

Based on these membership values, new cluster centres θk are calculated
according to

2.5 Machine learning modelling 15

θk =

∑n
i=1 μ

q
ikxi∑n

i=1 μ
q
ik

. (2.7)

This process of calculating the cluster membership values and updating cluster
centres continues until the cluster centres stop changing or a maximum number
of iterations are reached.

2.5 Machine learning modelling

The topic of this thesis has been the transition from traditional data analysis
to machine learning approaches. Therefore, a more in-depth description of
machine learning is given first.

As mentioned in the introduction, machine learning is a collection of tech-
niques/models that automatically adjust model parameters based on input
data and an objective function. Examples of tasks suitable for machine learning
include classification, regression, identifying groupings/clusters among meas-
ured samples or even playing chess. A distinction is made between different
types of learning tasks. Many tasks are of the type supervised learning which
covers all problems of learning a mapping from some input to an output based
on a labelled set of samples. The goal of such tasks is to learn this mapping
from a limited (random) selection of samples to be accurate for predictions of
new samples. Regression and classification tasks fall both under this category.

A second type of learning task is unsupervised learning which deals with the
problems of discovering patterns and structure in input data without being
told what to look for. Models and algorithms that do not rely on response
values are considered unsupervised. Principal component analysis (PCA), and
different clustering algorithms, such as fuzzy C-means, are examples of this
type of learning task. Autoencoders are examples of unsupervised DL models.

A third type of learning task is reinforcement learning which is a type of
learning similar to trial and error. Given a defined environment, a learning
algorithm (also called an agent) is given the challenge of learning the optimal
choices in different situations within this environment. This type of learning is
the driving force of the recent AlphaZero-machine which learned to play chess,
shogi and go on a super-human level [28]. In this thesis, most of the work is
done relating to supervised learning and some unsupervised learning.

Machine learning approaches are driven by making accurate models. When
faced with a modelling challenge, the choice of model and corresponding hyper-

16 Theory

Deep Learning

Machine Learning

Artificial
Intelligence

Figure 2.5: Illustration of how deep learning relates to machine learning and artificial
intelligence.

parameters need to be chosen to fit the particular problem. The process is
summarised to first find an appropriate model. The second step includes an
evaluation of how well the model performs. Depending on the size of the
dataset, a typical approach is to divide the dataset into a training and test
partition, where the test partition is used to estimate the model performance.
This partition will only be used when the best model is already chosen. The
model needs to be chosen based on the training set. The typical approach is to
use a part of the training data as a validation set to evaluate different model
and hyperparameter choices. Alternatively, a cross-validation procedure can
be performed. The process of finding the optimal model in this framework is
usually automated and the main concern is to minimise the prediction error.

2.6 Deep learning

Deep learning is a sub-field of machine learning and consists of machine learning
models which are constructed to learn different layers of representations from
the input data [29]. In a broader sense, machine learning is again a sub-field of
artificial intelligence as illustrated in Figure 2.5.

Deep learning models are built from interconnected nodes which make up what
is called an artificial neural network (ANN), also referred to as a deep neural
network (DNN). The layers of representations are called hidden layers and the
number of hidden layers in a network is referred to as the depth of the network.

2.6 Deep learning 17

Mathematically speaking, a deep learning model is the mapping fΘ : Rp → R
c

from some input data x ∈ R
p to an output y ∈ R

c, where Θ is the model
parameters to be learned. The mapping is a composite function of intermediate
mappings where each intermediate mapping corresponds to a layer in the
network. Each layer l is described by a non-linear function f (l)(z(l−1)), where
z(l−1) is the output of layer l−1. The whole deep learning model with d number
of layers is thus the composition of such non-linear functions on the form:

fΘ(x) = f (d)(f (d−1)(· · · (f (1)(x)) · · ·)) (2.8)

The challenge of deep learning models is to learn these layer representations
given a set of data samples (xi,yi), i = 1, . . . , n.

Fully connected network

The most basic neural network is the fully connected feed-forward network
also known as a multilayer Perceptron (MLP) or a dense network. These MLP
models are all built from individual nodes called neurons. Each neuron receives
a vector as the input signal and returns a single scalar as the output. The
output z of a neuron is based on an affine function of its input x on the form

z = σ
(
xTw + b

)
, (2.9)

where w and b are the neuron parameters called the weights and bias respectively.
The function σ (·) is a non-linear scalar function called the activation function,
and is the key factor that makes the network able to model non-linearities.
There are a lot of different choices for activation functions, but one of the most
common is the rectified linear unit (ReLU) defined by

σ (x) =

{
x if x > 0

0 otherwise
(2.10)

A slight variation of the ReLU activation function is the exponential linear unit
(ELU) defined by

σ (x) =

{
x if x > 0

α(exp(x)− 1) otherwise
(2.11)

18 Theory

Compared to the ReLU activation function, ELU is supposed to achieve faster
convergence and better prediction accuracy [30].

Layer of neurons

Input signal

Figure 2.6: Illustration of the connection of one layer neural network. The white node
illustrates the bias unit.

When several neurons are connected to the same input signal, a layer in the
network is formed as shown in Figure 2.6. In the figure, an input signal of
length 3 is connected to a layer containing 5 neurons. This layer is called fully
connected since all the neurons are connected to each value in the input signal.

The set of outputs of all the neurons in the hidden layer is the layer representa-
tion of the input and can be connected to another hidden layer to form a new
layer representation of the input. Figure 2.7 shows a network with two hidden
layers plus an output layer containing only one node.

Each neuron in the network contain its own set of weights and bias and the
combined weights and biases of all neurons in the network forms the full set of
network model parameters Θ. The network in Figure 2.7 is just an illustration
of a basic ANN model with two hidden layers. The largest types of ANN models
used today use hundreds of hidden layers resulting in billions of parameters.

2.6.1 Backpropagation

Backpropagation [31] is the main technique used to fit a DL model to data.
Consider a neural network with weights Θ and denote the prediction of a
dataset X as ŷ = f(X;Θ). The evaluation of the prediction performance
of the network is done by the loss function L(y, ŷ). The backpropagation
algorithm is based on the gradient descent, which is an optimisation algorithm
that iteratively updates the weights Θ to minimise the loss function L. The
gradient of the loss function with respect to the model weights gives the direction

2.6 Deep learning 19

Hidden layers

Output node

Input signal

Figure 2.7: Illustration of a simple multi-layered Perceptron (MLP) network. The white
nodes illustrate the bias unit.

to adjust the weights to minimise the loss function. By iteratively adjusting
the weights in small steps in the gradient direction with the step size controlled
by a learning rate parameter η, a minimum value of the loss function will be
found. The optimisation is highly non-convex so it is impossible to know if it is
the global minimum (i.e. the best solution one can find). Let the gradient with
respect to the weights from a hidden layer h at iteration number t be denoted
∇L

W
(t)
h

. Using the gradient descent, the weights at the next iteration t+ 1 are
given by

W
(t+1)
h = W

(t)
h − η∇L

W
(t)
h

(2.12)

Backpropagation is an efficient algorithm to update the ANN model by first
calculating the gradient of the final layer and subsequently calculating the other
gradients moving backwards through the network. This is sometimes called
error propagation. The reason this is efficient is the structure of the ANN
model as a composition of functions. Therefore the gradient at one layer can
be calculated using the chain rule starting from the final layer of the network.
By starting with the final layer, the calculations for the errors can be reused in
the calculation from the earlier layers.

The neural network training is usually performed by stochastic gradient descent
where smaller random subsets of the data, called mini-batches, are used to
calculate the gradients at each iteration instead of using the whole dataset.
This allows the ANN models to be trained on extremely large datasets because
the whole dataset does not need to be stored in computer memory at the same

20 Theory

1 2 3 2 -1 � -1 0 1 � 2 0 -2
Signal Filter Output

Figure 2.8: Illustration of the cross-correlation (flipped convolution) between a signal and
a filter.

time to train the model, which is usually necessary for traditional models. By
utilising stochastic batch-wise training with small weight updates, the network
weights usually converge towards good values for minimising the loss function.

2.6.2 Convolutional neural networks

Convolutional neural networks are deep learning models in the same form
as equation 2.8, but where at least one of the intermediate mappings f (l) is
replaced with the convolution operator. Mathematically, a convolution of two
signals u and v with lengths N and M respectively is defined by

[u� v] (i) =
N∑
j=1

ujvi−j, for i = 1, . . . ,M (2.13)

In the context of ANNs, the convolution is performed between the input signal
x and a filter or kernel w. In practice, cross-correlation is usually the value
that is calculated in ANNs. The only difference between cross-correlation and
convolution is that the filter is flipped. The term convolution has become
standard to use in the literature. Therefore, this term will be used here even
though the operation described strictly speaking is the cross-correlation.

Figure 2.8 shows the calculations between a signal and a filter. The convolutional
filter is applied at every location of the input signal in a sliding fashion,
calculating a sum of the elementwise multiplication of the signal and filter
values at each location as the output. The operation is a kind of local correlation
measure where large output values indicate a high correlation between the filter
and the signal at that point and negative values indicates a negative correlation.
On spectroscopic data, the convolutions are therefore useful for detecting peaks
and shapes in the spectra.

In a neural network layer, the convolutional filter is the weights associated
with the convolutional layer. A convolution can be represented as a matrix

2.6 Deep learning 21

multiplication with a sparse matrix replacing the convolutional operator. The
weights of a convolutional layer can therefore still be represented as a matrix
W , making the equations for a CNN equivalent with an MLP. The convolutions
are often combined with pooling operations such as max-pooling. The pooling
operators are used to reduce the dimension of the signal for the next layer in
the network (usually by half). Max-polling returns the local maximum value
at each location of the signal. For example, by returning the maximum value
of every two neighbouring values, the max-pooling operator is reducing the
signal by half. In 2-dimensional (2D) CNNs for images, the use of several
CNN-pooling stacks makes the network able to detect objects and specific
features in the image independent of the location in the image. The CNNs for
images are usually structured as having the convolutional layers first in the
network working as a feature extractor. These features are later connected
using fully connected layers at the end. The learned feature extractors can
then be used to extract useful features on other images not being part of the
network training, which is the basis of transfer learning.

In convolutional layers, the weights of the convolutional filters are updated using
backpropagation just as for MLP models described above. Another benefit of
CNNs is the aspect of weight sharing. Each convolutional filter is used across
the whole signal which drastically reduces the number of parameters compared
to a fully connected layer which has a unique weight associated with each
location in the signal.

2.6.3 Network hyperparameters

When training an ANN model, the choice of architecture is crucial. The network
suffers from the same balancing problem between over- and underfitting as other
machine learning models. However, freedom in the hyperparameter choices is
much greater. Again, if the network is too simple, i.e. too few layers, it may
fail to model the relevant relation between the data and the target, but if the
network is too complex it will quickly overfit the data. Tuning a network is
thus an important aspect of DL modelling.

Over the years, there has been developed a number of standard network base
architectures for image and text analysis models such as Unet, Resnet and
Transformer networks [32]. Of course, these architectures should also be tuned
before training them on new data. However, these have been proven to perform
well on a certain type of data which reduces the number of hyperparameters to
adjust. Deep learning models for spectroscopy are not as well studied in the
literature, and no standard model for such data is established.

22 Theory

Table 2.1: Some examples of deep learning model parameters to tune

Category Parameter choice

Network
architecture

Activation functions
Number of hidden layers
Number of convolutional layers
Size of convolutional filters
Dropout rate
Batch Normalisation

Network
training

Optimisation algorithm
Learning rate
Batch size
Number of epochs
Weight initialisation

Instead of describing every possible choice and their implications on the network,
an overview of typical parameters one might want to adjust is given in Table 2.1.
Going systematically through all of them is too time-consuming given the vast
number of different possible combinations, so a more shallow search based on
prior experience or a Bayesian optimisation approach can be taken instead
[33].

Chapter 3

Summary of papers

3.1 Paper I - Spectral preprocessing

On the possible benefits of deep learning for spectral pre-
processing

Preprocessing is a mandatory step in spectroscopic data analysis to remove
unwanted variations in the signals. More specifically, the preprocessing aims
at removing physical effects captured by the sensors during the measurements
which distort the chemical signal of interest. Choosing the correct preprocessing
procedure is necessary for the successful modelling of the signal. Traditionally,
the preprocessing and data modelling is performed in subsequent steps. The
optimal preprocessing procedure is found by trial and error from a list of
suitable preprocessing methods. This process can be time-consuming and it is
not guaranteed that the best preprocessing technique is found. An alternative
is to integrate preprocessing into the data modelling procedure. Artificial
neural networks (ANNs) are powerful machine learning models capable of
automatically finding complex relations in the data. The flexibility of the ANN
model opens up the possibility to design an ANN with an integrated adaptive
preprocessing procedure, which can alleviate the burden of manually finding
the optimal preprocessing for each problem.

The main ambition of this paper was to explore different designs of ANN
layers for spectroscopic preprocessing and how these layers affected prediction
performance. One aspect was to see if the adaptive preprocessing gave an
increased prediction performance in ANN models and partial least squares
(PLS) models. Another aspect was to see if the preprocessing module in the

24 Summary of papers

ANN model made it easier for the model to learn from fewer data. This study
was inspired by a paper by Dong et al. [34], who proposed a convolutional neural
network where two of the layers were restricted such that the output of these
layers performed baseline correction and smoothing respectively. Our study
expands on this concept by implementing the baseline correction and denoising
layers as separate modules to be used with any ANN architecture. Additionally,
a novel preprocessing ANN layer based on the extended multiplicative signal
correction (EMSC) method was developed called neural network EMSC (NN-
EMSC). In comparison to the traditional EMSC method, NN-EMSC uses an
adaptive reference spectrum, where the values of the reference spectrum are
adjusted according to the ANN prediction error minimisation.

In the paper, it is shown that ANN-based preprocessing can be used to obtain a
slight increase in predictive performance for both PLS models and ANN models
compared to classical preprocessing techniques. However, the increased com-
putational cost and effort required in tuning and training the neural networks
make deep learning-based preprocessing less attractive as an alternative to
classical preprocessing. Furthermore, evidence was found that suggests, despite
the effort of forcing the network to perform specific preprocessing, that the role
of the preprocessing modules in the ANN in the context of the whole network
dynamics might be more complex than just the desired preprocessing. This
does not change the possible usefulness of the proposed ANN preprocessing
layers. However, interpretations of these models are not straightforward.

3.2 Paper II - Ranking feature-block importance

Ranking feature-block importance in artificial multiblock
neural networks

The study of feature importance is important in trying to understand artifi-
cial neural networks (ANNs). Many studies exist that focus on ranking the
importance of individual features. However, in Paper II, the focus has been to
extend the concept to ranking the importance of groups of features, referred to
as blocks. The features within each block are similar in the sense that they are
derived from the same source or are of the same type. Ranking of the different
feature blocks gives information about redundant or non-informative blocks
which then can be excluded from further modelling. Furthermore, the ranking
scores of the blocks can give insights into the behaviour of ANN models.

The flexibility of ANN designs allows each feature block to enter the network in

3.3 Paper III - Non-linear error modelling 25

separate branches. The proposed model is called an artificial multiblock neural
network. Each branch is itself a smaller network which deeper in the multiblock
network are connected. The structure of the multiblock network makes it
possible to use concepts from information theory to quantify the importance of
each feature-block network. Three different strategies are presented in the paper
and compared using both simulated data and real cases. One approach is based
on established methods for ranking individual feature contributions and the two
others are based on the concept of including or excluding individual blocks in
the network to study the difference in information passed through the network.
It was shown that each strategy successfully identified the important blocks
and that each strategy has its own merit with respect to different scenarios.

3.3 Paper III - Non-linear error modelling

Non-linear shrinking of linear model errors

ANNs are powerful models capable of modelling complex non-linear relations
in the data. The drawback is that these models are black boxes which makes
interpretation hard or even impossible. In many situations, model interpretation
is important to gain a better understanding of the problem and to build trust
towards the results. When using ANN models, interpretability is sacrificed
for higher prediction accuracy. To gain the performance of an ANN while
simultaneously having options for interpretations, one option is to develop
techniques and tools to uncover and explain the dynamics of the neural network.
An alternative is to instead use a linear interpretable model as the main model
and instead use an ANN to model the residuals of that linear model. This
procedure allows the same interpretation of the linear model while the ANN
model is used to boost the predictive performance. The approach can be seen
as a decomposition of the signal into a linear part and a non-linear part, where
the non-linear part is modelled by the ANN from the linear model residuals
instead of the original signal. Paper III presents this error modelling framework
for regression problems and shows how the framework can be extended to
classification problems. Classification can be done using a dummy matrix
representation (one-hot encoding) of the class-membership vector and fit an
ANN to predict the residual dummy matrix. The classification is done by
discriminant analysis of the sum of linear and ANN predictions. Alternatively,
the ANN can be forced to learn the residuals indirectly by training the ANN
as a classification model but combining the linear model predictions and the
ANN output before the classification layer. It turned out that the ANN model
could undermine the intention of learning the residuals by making its own

26 Summary of papers

output values extremely large in comparison with the linear prediction, thereby
turning in effect the residual modelling into a pure ANN model. By adding a
regularisation term on the ANN output values the model behaved as intended.
Similar to the results in Paper I, it is difficult to force an ANN model to behave
in a specific way.

The paper shows that for sufficiently complex problems the residual modelling
scheme could achieve similar prediction performance as a pure ANN model. In
some cases the ANN model failed to improve the prediction performance of the
linear model, meaning that the data might not contain any relevant nonlinear-
ities or the residuals were too noisy for the network to learn from. Despite not
being able to improve the prediction performance in all the cases, it did not
make the prediction worse. The paper demonstrates possible interpretation
options for a linear PLS model and also how the change in the residuals after
the ANN modelling can be used to gain further insights. Overall, the error
modelling scheme is a simple yet powerful modelling alternative. Compared
to a pure ANN model, the size of the black box model is reduced since the
majority of the modelling is done by a linear interpretable model.

3.4 Paper IV - Locally weighted ensemble mod-
elling (LoWEM)

Fuzzy regression and classification using locally weighted
ensemble models (LOWEM)

In many modelling situations, the data contain intrinsic subgroups caused by
differences between samples, measurement techniques or other factors. To
successfully model such data, it can be advantageous to model each subgroup
separately. When the information about the subgroups is known, one can first
train a classifier to predict the subgroups and then train local models for each
subgroup based on the classification [26]. When there is no information about
the underlying subgroups available, another approach must be taken. Paper
IV proposes an approach based on the concept of locally weighted ensemble
models (LoWEM). The proposed method was partly inspired by theories about
classes of ANNs being composed of max affine spline operators (MASOs) [35].
In fact, this interpretation makes intuitive sense since most standard ANN
architectures consist of just a series of matrix multiplications and simple non-
linear activations such as the rectified linear unit (ReLU) function. The MASO
theory argues that the network is actually discovering the relevant subgroups
internally during the model training and that new predictions are based on

3.4 Paper IV - Locally weighted ensemble modelling (LoWEM) 27

similarities to these learned subgroups. LoWEM uses fuzzy clustering but
includes information about the prediction error when updating cluster centres.
The idea is to find local clusters where similar samples are close in feature space
but also share common relations to the response, thus resulting in an accurate
model. Each local model is trained using the cluster membership values as
sample weights, and the final model prediction combines all local models. The
concept is also expanded to tackle classification. As the choice of the type of
local models, both ordinary least squares (OLS) and partial least squares (PLS)
models are used in the paper. Also discussed is the use of linear Perceptron
models with batch-wise training to scale the framework up to problems with
huge amounts of data.

The LoWEM framework is demonstrated on real and simulated data with a
focus on high-dimensional spectroscopic data. LoWEM successfully outperforms
a global model on high-dimensional problems and demonstrates the possibility
of accurately classifying samples that are not linearly separable by using
more clusters than the number of classes to predict. It also showed that the
samples near each local cluster centre in LoWEM tend to share some biological
similarities.

Chapter 4

Discussion

4.1 Overview

An overview of the thesis is given in Figure 4.1. In the figure, the linear and
non-linear data modelling problems are separated. One of the main motivations
for using deep learning (DL) models is their ability to model complex non-linear
relations. They can in principle solve linear problems as well, but that is usually
done by simpler models. The figure illustrates what the main model and kind
of problem in each of the four papers focus on. For instance, it is clear that
the pls model has been a staple in Papers I, III and IV while ANNs have been
used in Papers I, II and III. Paper I is placed in the linear problems partition
despite using ANNs because the paper focuses on preprocessing methods that
are linear in nature. It is also seen that Papers III and IV both lie at the border
between linear and non-linear problems. In Paper III, both linear PLS and
non-linear ANN is used to model a linear and non-linear partition of the data
respectively, while Paper IV combines local linear models to be able to model
complex non-linearities. Finally, Paper II uses a pure ANN model capable of
solving non-linear problems. This paper is connected to traditional analysis
methods through the use of multiblock analysis.

4.2 Contribution

The main purpose of this thesis has been to explore the transition from tra-
ditional data modelling to machine- and deep learning approaches. To this
end, new methods based on combinations of techniques from both modelling

30 Discussion

LinearNon-linear problems

Partial least squares

Artificial
neural networks

III: Residual
modelling

II: Feature-block
importance

I: Deep learning
preprocessing

IV: Cluster
modelling

Figure 4.1: Illustration of how the different works in this thesis are tied together in the
context of traditional and modern data analysis approaches.

paradigms have been developed and tested on real and simulated datasets.

4.2.1 DL models for spectroscopic data

Most of the data analysis in this thesis has been done on spectroscopic data.
Therefore, a large part of the work went into exploring designs of DL models
applicable for short-wide datasets typically encountered in spectroscopy. It had
already been discovered that convolutional neural networks work well on these
data. However, there are still many choices to make regarding the network
architecture. Paper I explores to an extent an alternative multi-layer perception
(MLP) architecture but they seemed to be more unstable than the ANNs based
on convolutions. The CNNs used in Papers I and III for spectroscopic data
were relatively shallow with just one convolutional layer followed by one to
three fully connected layers. Deeper architectures were explored as well but
they showed more variability in prediction performance and were more prone
to overfitting. A possible reason for this behaviour could be that the more
complex deeper network more easily captures the variation of the training data
but fails to properly generalise. The standard approach to fix such problems
would be to add restrictions to the network or train the network on more
data. In fact, Paper I tries to make the problem easier for the DL models by
restricting convolutional layers to perform preprocessing. The benefit of using
a more shallow neural network is that the relation between the input features
and the response is not as complicated which gives more hope in trying to
understand this relation.

4.2 Contribution 31

Other useful techniques learned by modelling spectroscopic data include the
usefulness of mean-centring and, for regression problems, the use of the mean
response value as initialisation for the weight in the ANN prediction layer. The
last trick helps the network reach faster convergence of the ANN models by
using starting values close to the typical response values.

The typical small number of samples involved in spectroscopic data poses
challenges for DL modelling. Few training samples mean the DL model easily
overfits the training data and causes a large variation in the estimation of the
model performance. This makes hyperparameter tuning and model validation
a frustrating aspect. Even two identical network architectures trained on the
same data can have similar predictive performance but completely different
model weights caused by different weight initialisation.

To picture this, one can look at two ANN models with the same architecture
as the biological brains of two identical twins. At birth, each brain has
the same structure but the initial strengths of the synapses (connections
between the biological neurons) are different. This corresponds to different
weight initialisation of the ANNs. During their lives, each twin gets the exact
same sensory inputs but their brains develop differently because of the initial
differences in the connections between the neurons. Despite their differences in
neuron connections, the twin can make identical choices and behave the same in
different situations. This is analogous to two ANNs giving the same predictions
on the same data despite having very different model weights. When the twins
have been subject to much sensory information (analogous to big data for
ANNs), the two brains develop a kind of common understanding of the world
and thus the two twins behave more similarly. On the other hand, if the twins
receive less sensory information or just information of the same type, the two
different brains are more likely to process other sensory information differently
(new data), leading to more dissimilar behaviour of the twins. The different
behaviours of the twins are an illustration of the high variance observed in
ANN predictions when the models are trained on too little data.

4.2.2 Applying DL models in a traditional framework

Traditional and machine learning approaches work differently in the sense that
machine learning models learn whatever is relevant to the problem automatically
from the data without humans explicitly trying to incorporate knowledge into
the model. It is hard to argue against the viability of the machine learning
approach when one sees the achievements in image recognition tasks and large
language modelling such as the recent ChatGPT model. However, one key
factor for a successful DL model is to have plenty of data. Since this is not

32 Discussion

easy to obtain in spectroscopy, traditional methods are often the better choice.
As an alternative to pure DL modelling, Papers I and II explore different
alternatives of using DL models in a more traditional framework. Paper I
uses DL models to learn optimal preprocessing to be used on a traditional
PLS model. Paper II utilises the flexibility in ANN architectures to model
data in the more traditional framework of multiblock analysis and to quantify
the importance of each data block. The pure DL alternative to modelling
such multiblock data would be to just concatenate all features to one large
data matrix and let the network do whatever it wants. This might lead to a
more accurate model since the network has more freedom to connect the input
features. However, it would be near impossible to say anything about feature
importance in that case.

4.2.3 Improving traditional methods using DL techniques

The main research question in Paper III is to develop a framework where
DL technology is used to improve the prediction performance of traditional
methods while retaining interpretability. The proposed method is to simply use
a linear model to capture all the linear relations between the features and the
output and let a DL model figure out the non-linear relations from the linear
model residuals. Although this modelling approach doesn’t improve the linear
model directly, the combined linear and DL prediction is a boost in prediction
performance compared to the single linear model. This is a way to utilise the DL
models without having to sacrifice model transparency since the linear model is
still interpretable. An attempt to improve traditional preprocessing was done in
Paper I, but the improvement was not large compared to classical preprocessing
techniques and the interpretation of the DL-generated preprocessing turned
out to be questionable.

4.2.4 Alternatives to DL models

After having explored how DL models can be used to model spectroscopic
data both with and without the help of traditional approaches in Papers I
and III and how DL models can be applied in the framework of traditional
modelling in Papers I and II, Paper IV explores more traditional alternatives
to DL models that are inspired by neural networks. DL models are powerful
and useful in many situations. They are, however, not always applicable
where little data is available and the model needs to be transparent such as in
applications in health sciences. It is important to have alternatives that still
are able to tackle complex problems. Paper IV addresses this by proposing

4.2 Contribution 33

a flexible framework for using Locally Weighted Ensemble Models (LoWEM).
Each model is locally linear but the combination makes it possible to model
more complicated interactions both for regression and classification problems.
There is a connection to ANNs in theories about the inner workings of ANNs
as discussed in the paper. Furthermore, the framework is possible to scale
up to really huge datasets by using a linear Perceptron as the class of local
models as an alternative to an ordinary least squares (OLS) model. The
Perceptron supports batch-wise training and can benefit from highly efficient
implementations and GPU utilisation in software such as Tensorflow to tackle
large problems. The LoWEM concept is demonstrated on smaller datasets in
the paper, but the upscaling to large datasets will be interesting to study in
more detail in the future.

4.2.5 Transparency VS performance

A common argument for the use of DL models is the performance in terms of
prediction accuracy. On the other hand, arguments against them are usually
based on the black box aspect of these models. In this thesis, there have
been examples where DL models beat a traditional PLS model but with more
sophisticated modelling such as two-level PLSR (Paper I and IV) or LoWEM
(Paper IV), it is possible to outperform DL models. The strength of DL models
in these situations is therefore that they provide good performance with minimal
domain knowledge. Traditional models such as PLS are often preferred by
chemometricians because of the possibility of interpretation with tools such
as score- and loading plots. For these interpretations to be possible, or even
accurate, domain knowledge is needed. Furthermore, domain knowledge is
required in order to compose more sophisticated models that are able to beat
DL models.

Interpretation of traditional models is not completely unproblematic. For
example, if models are overfitted the interpretations might not be valid. Also,
different people might interpret the same results differently. Even linear models
such as PLS become more challenging to interpret when the number of com-
ponents gets large and the cluster-based local modelling presented in Paper
IV becomes confusing with many clusters. Another consideration is whether
interpretability is always needed in a model. Accurate black box models can
still be used to simplify certain tasks, but one has to be mindful of how these
models are used and be critical when using them to make decisions.

DL models can to some degree be interpreted as seen in Paper II with respect
to feature importance or one can study the feature maps of the model to try
and explain parts of the model. In Paper I, an attempt to force the neural

34 Discussion

network to do a specific preprocessing was made, but the DL model ended up
doing something more complicated and non-transparent. A similar behaviour
was experienced in Paper III when trying to force the DL model to learn the
linear model residuals for classification. An ANN model is only concerned about
minimising the objective function (loss function) it has been given and does
this in the simplest possible ways it can find. This behaviour of the network
caused at least two ideas to be scrapped from this project. At one point it was
attempted to provide information about known subgroups in a dataset to the
DL model by having two output nodes, one for predicting the known subgroups
and one for predicting a continuous response value. It was, however, not possible
to show any improvements in the network with this network configuration and
it was hard to tell how the network managed the additional information it
was given. The second failed attempt was an implementation of a PLS layer
as a module for the neural network. The idea was to use the dimensionality
reduction properties of the PLS model to improve the ANN weight updates in
terms of efficiency and to more useful features for a PLS model. The resulting
ANN model instead became unstable and did not show any promises. These
two examples just illustrate the difficulties in trying to force a black box model
which is not completely understood to do something specific.

4.3 Future perspectives

A challenge in spectroscopy is the small amount of available labelled data. One
avenue of future work is to develop modelling strategies that can scale up to
more data to get more accurate models. Paper IV is a step in that direction
and does not rely on DL models. Further development into this framework to
make the transition from iteration to iteration smoother is something to look
into. Additionally, a faster implementation that utilises parallelisation would
be useful.

The DL models already show promise in spectroscopy today, and it is reasonable
to believe they will only get better with more data. Developing techniques to
be able to train DL models on spectroscopic data from different sources is an
interesting idea to increase the sample size. It could be possible to train a neural
network to extract general features across the different spectroscopic sources,
similar to ANN models used for transfer learning. Some early experimentation
has shown that it is possible to build a network that has multiple input heads
connected to a main body network and multiple outputs, one input-output pair
for each data source. It remains to be seen if such a network architecture is
able to work as the intended general feature extractor or if the ANN model
decides to do something completely different again.

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[2] Chenhao Cui and Tom Fearn. Modern practical convolutional neural net-
works for multivariate regression: Applications to nir calibration. Chemo-
metrics and Intelligent Laboratory Systems, 182:9–20, 2018.

[3] Jacopo Acquarelli, Twan van Laarhoven, Jan Gerretzen, Thanh N. Tran,
Lutgarde M.C. Buydens, and Elena Marchiori. Convolutional neural
networks for vibrational spectroscopic data analysis. Analytica Chimica
Acta, 954:22–31, 2017.

[4] Salim Malek, Farid Melgani, and Yakoub Bazi. One-dimensional convo-
lutional neural networks for spectroscopic signal regression. Journal of
Chemometrics, 32(5):e2977, 2018.

[5] Tormod Næs, Knut Kvaal, Tomas Isaksson, and Charles Miller. Artificial
neural networks in multivariate calibration. Journal of Near Infrared
Spectroscopy, 1(1):1–11, 1993.

[6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, 1989.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. Communications of the
ACM, 60(6):84–90, 2017.

[8] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gambardella, and Jür-
gen Schmidhuber. Deep, big, simple neural nets for handwritten digit
recognition. Neural Computation, 22(12):3207–3220, 2010.

[9] Eirik Almklov Magnussen, Johanne Heitmann Solheim, Uladzislau Blazhko,
Valeria Tafintseva, Kristin Tøndel, Kristian Hovde Liland, Simona Dzuren-
dova, Volha Shapaval, Christophe Sandt, Ferenc Borondics, and Achim

36 BIBLIOGRAPHY

Kohler. Deep convolutional neural network recovers pure absorbance spec-
tra from highly scatter-distorted spectra of cells. Journal of Biophotonics,
13(12), 2020.

[10] Miroslav Kuchta, Sileshi Gizachew Wubshet, Nils Kristian Afseth, Kent-
André Mardal, and Kristian Hovde Liland. Encoder–decoder neural net-
works for predicting future ftir spectra – application to enzymatic protein
hydrolysis. Journal of Biophotonics, 15(9), 2022.

[11] Uladzislau Blazhko, Volha Shapaval, Vassili Kovalev, and Achim Kohler.
Comparison of augmentation and pre-processing for deep learning and
chemometric classification of infrared spectra. Chemometrics and Intelli-
gent Laboratory Systems, 215:104367, 2021.

[12] Talha Naveed. Explore the effect of data augmentation of spectroscopic
data for deep learning models. Accsessed: 07/04/2023.

[13] M. Mamouei, K. Budidha, N. Baishya, M. Qassem, and P. A. Kyriacou.
An empirical investigation of deviations from the beer–lambert law in
optical estimation of lactate. Scientific Reports, 11(1):13734, 2021.

[14] Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression
in reproducing kernel hilbert space. Journal of Machine Learning Research,
2:97–123, 2001.

[15] Svante Wold, Harold Martens, and Herman Wold. The multivariate
calibration problem in chemistry solved by the pls method. In Matrix
pencils, pages 286–293, 1983.

[16] W. Fred McClure and Donald L. Stanfield. Near-infrared spectroscopy of
biomaterials. In Handbook of Vibrational Spectroscopy. Wiley, 2006.

[17] Hicham Nocairi, El Mostafa Qannari, Evelyne Vigneau, and Dominique
Bertrand. Discrimination on latent components with respect to patterns.
application to multicollinear data. Computational Statistics and Data
Analysis, 48(1):139–147, 2005.

[18] Åsmund Rinnan. Pre-processing in vibrational spectroscopy – when, why
and how. Anal. Methods, 6(18):7124–7129, 2014.

[19] Harald Martens, SA Jensen, and P Geladi. Multivariate linearity trans-
formation for near-infrared reflectance spectrometry. In Proceedings of the
Nordic symposium on applied statistics, pages 205–234. Stokkand Forlag
Publishers, 1983.

BIBLIOGRAPHY 37

[20] Harald Martens and Edward Stark. Extended multiplicative signal cor-
rection and spectral interference subtraction: New preprocessing methods
for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical
Analysis, 9(8):625–635, 1991.

[21] Nils Kristian Afseth and Achim Kohler. Extended multiplicative signal
correction in vibrational spectroscopy, a tutorial. Chemometrics and
Intelligent Laboratory Systems, 117:92–99, 2012.

[22] A. Kohler, U. Böcker, J. Warringer, A. Blomberg, S. W. Omholt, E. Stark,
and H. Martens. Reducing inter-replicate variation in fourier transform
infrared spectroscopy by extended multiplicative signal correction. Applied
Spectroscopy, 63(3):296–305, 2009.

[23] Paul Bassan, Achim Kohler, Harald Martens, Joe Lee, Edward Jackson,
Nicholas Lockyer, Paul Dumas, Michael Brown, Noel Clarke, and Peter
Gardner. Rmies-emsc correction for infrared spectra of biological cells: Ex-
tension using full mie theory and gpu computing. Journal of Biophotonics,
3(8-9):609–620, 2010.

[24] R. J. Barnes, M. S. Dhanoa, and Susan J. Lister. Standard normal variate
transformation and de-trending of near-infrared diffuse reflectance spectra.
Applied Spectroscopy, 43(5):772–777, 1989.

[25] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation
of data by simplified least squares procedures. Analytical Chemistry,
36(8):1627–1639, 1964.

[26] Kenneth Aase Kristoffersen, Kristian Hovde Liland, Ulrike Böcker, Sile-
shi Gizachew Wubshet, Diana Lindberg, Svein Jarle Horn, and Nils Kristian
Afseth. Ftir-based hierarchical modeling for prediction of average molecular
weights of protein hydrolysates. Talanta, 205:120084, 2019.

[27] James C Bezdek. Pattern recognition with fuzzy objective function al-
gorithms. Plenum, 1981.

[28] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[29] Francois Chollet. Deep Learning With Python. Manning, 2 edition, 2021.

[30] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus), 2015.
arXiv: 1511.07289v5 [cs.LG].

38 BIBLIOGRAPHY

[31] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536,
1986.

[32] Alejandro F Frangi, Joachim Hornegger, Nassir Navab, and William M
Wells. U-net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, pages 234–241. Springer International Publishing AG,
Switzerland, 2015.

[33] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian
optimization with neural architectures for neural architecture search, 2019.
arXiv: 1910.11858 [cs.LG].

[34] Jialin Dong, Mingjian Hong, Yi Xu, and Xiangquan Zheng. A practical
convolutional neural network model for discriminating raman spectra of
human and animal blood. Journal of Chemometrics, 33(11), 2019.

[35] Randall Balestriero and richard baraniuk. A spline theory of deep learning.
In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 374–383. PMLR, 2018.

Paper I

S P E C I A L I S S U E - R E S E A R CH AR T I C L E

On the possible benefits of deep learning for spectral
preprocessing

Runar Helin | Ulf Geir Indahl | Oliver Tomic | Kristian Hovde Liland

Faculty of Science and Technology,
Norwegian University of Life Sciences, Ås,
Norway

Correspondence
Runar Helin, Faculty of Science and
Technology, Norwegian University of Life
Sciences, Ås 1430, Norway.
Email: runarhel@nmbu.no

Abstract

Preprocessing is a mandatory step in most types of spectroscopy and spectrom-

etry. The choice of preprocessing method depends on the data being analysed,

and to get the preprocessing right, domain knowledge or trial and error is

required. Given the recent success of deep learning-based methods in numer-

ous applications and their ability to automatically detect patterns in data, we

aimed at exploring the possibilities of using such methods for preprocessing.

Our study considered a flexible but systematic investigation of spectroscopic

preprocessing methods (classical and deep learning-based) combined with pre-

dictive modelling, including both traditional linear modelling and artificial

neural network-based modelling. The main ambition of the present work was

to assess if the advantages of deep learning-based methods in spectral

preprocessing are sufficient to justify the additional efforts in model set-up and

training and the possible losses of interpretability and transparency. With the

use of data from different vibrational spectroscopy techniques, we demon-

strated that deep learning-based preprocessing successfully increased the pre-

dictive performance of our models but that classical preprocessing still is a

good alternative or even the best one in some cases. A significant increase in

effort was required when using deep learning-based preprocessing together

with linear model prediction. Compared with classical preprocessing tech-

niques, deep learning-based preprocessing decreased the transparency and

showed only modest improvements of the prediction performance of linear

models. Our conclusion is that deep learning-based preprocessing is best suited

when integrated in neural network predictions.

KEYWORD S

artificial neural networks, deep learning, model validation, preprocessing, spectroscopy

Received: 9 March 2021 Revised: 3 September 2021 Accepted: 6 September 2021

DOI: 10.1002/cem.3374

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2021 The Authors. Journal of Chemometrics published by John Wiley & Sons Ltd.

Journal of Chemometrics. 2021;e3374. wileyonlinelibrary.com/journal/cem 1 of 19

https://doi.org/10.1002/cem.3374

1 | BACKGROUND

Our goal with this study is to make objective comparisons of various strategies for preprocessing and prediction, here
termed pipelines. In addition to rigorous evaluation of the predictive performance for the proposed pipelines, we will
also discuss the following key moments:

• Time required for fitting models and predictions based on new samples.
• Effort required to set up and tune the pipelines.
• Transparency and complexity of the pipelines and interpretability of the models.
• Robustness with respect to outliers and new data points.

Spectroscopy is the study of the interactions between electromagnetic radiation and matter. More specifically, it is
the study of absorbance, emission and reflection of light at different energy levels in different samples. Vibrational
spectroscopy is the subfield where the emitted light is affected by molecular vibrations in the molecular structure,
manifesting itself as peaks or overtones at various wavelengths/wavenumbers in the spectra. Such data, which includes
Raman and infrared spectra, contain a lot of information about atoms and molecules in the samples. Being high-
dimensional and possibly highly correlated, the data can be challenging to analyse and to interpret. Preprocessing of
the data is often required for the removal of irrelevant variation in the data, such as phenomena caused by light
scattering, differences in temperature or differences in humidity.1 Traditional analysis methods include principal
component analysis (PCA),2 partial least squares (PLS) regression3,4 and support vector machines (SVMs).5 However,
there is limited research on the use of deep learning (DL) models with spectroscopic data. We begin by giving a brief
introduction to the field of DL.

1.1 | Deep learning

The history of artificial neural networks (ANNs) and DL can be traced back to the first descriptions of artificial neurons
called Threshold Logic Units proposed by Warren McCulloch and Walter Pitts in 1943 and Rosenblatt's perceptron6 in
1958. Important milestones in training and designing network architectures include the back-propagation algorithm7,8

invented in 1986, and the advent of convolutional neural networks (CNNs) in 1989.9,10 Further development led to the
artificial intelligence (AI) revolution in image-based classification and descriptions, starting with the AlexNet11 winning
the ImageNet competition in 2012.

An ANN has an architecture based on a series of interconnected units (neurons) organised in layers. The intercon-
nections are sets of parameters w (weights) representing the strength of the connections between specific units in differ-
ent layers of the network. These weights are the model parameters to be updated through minimisation of some loss
function Lðy, ŷÞ, where y is the true response and ŷ is the response predicted by the model. Common loss functions

include the mean squared error (MSE): 1
n

Pn
i¼1ðyi � ŷiÞ2 for regression problems and categorical cross-entropy,12 also

known as the Bernoulli log-likelihood loss:
Pn

i �yilogðŷiÞ for classification problems, where yi is a one-hot (dummy)
encoded class label vector and ŷi is the corresponding vector of class probabilities predicted by the model. The categori-
cal cross-entropy error function is a common choice in multiclass logistic regression and serves as a measure of the
classification error on a continuous scale. The process of tuning the weights is referred to as training of the model.
Training of an ANN is an iterative process, where one full cycle through the available training data for updating the
model parameters is referred to as an epoch.

In the classical ANNs, all the units of one layer are connected to all of the units in the subsequent layer. Such
models are often referred to as Multilayer Perceptrons (MLPs), fully connected feed-forward networks or simply a set of
dense layers if included as modules in a more complex network architecture.

A key part of the ANNs is the activation function, which modulates the output of the layers. The activation
function is usually non-linear, which gives the network the capability of representing complex non-linear relation-
ships between the input and output data. A popular activation function alternative is the rectified linear unit
(ReLU) defined as

2 of 19 HELIN ET AL.

f ðxÞ¼ x if x >0

0 otherwise

�

Different arrangements of the interneuron connections and the number of layers (depth of the network) yield different
network architecture options. In this study, we consider both MLPs and CNNs, characterised by the use of convolutions
representing the connections between layers.

Originally designed for solving 2D image recognition problems, the CNNs include a number of convolutional
filters at each layer, each with its own set of model weights. A key property of CNNs is the sparse connectivity
between the layers, meaning that the inputs to each node of one layer are restricted to the outputs from nodes in a
local neighbourhood (defined by the filter size) of the preceding layer. In addition, each filter is shifted across the
input signal (image or spectrum) to allow the same filter parameters to be used on different locations of the input
signal. The latter is also known as parameter sharing. Figure 1 illustrates the differences between a fully connected
and convolutional layer. The neighbourhood restriction and parameter sharing reduce the number of network
parameters compared with a fully connected architecture and is therefore computationally more efficient when
training the CNN model. The filter size defines the so-called the receptive field of the layer and enables the network
to account for spatial relationships in the input signals. This property has been proven extremely useful in problems
involving object detection in images, such as recognition of handwritten digits.13 For more details regarding CNNs,
see Goodfellow.14

The use of ANNs with spectroscopic data was explored by Næs et al15 with an emphasis on near infrared (NIR)
applications. More recent studies that utilise CNNs include Liu et al,16 whose neural network achieved superior
classification results of mineral species based on their Raman spectra compared with other popular shallow machine
learning methods such as K-nearest neighbour (KNN),17 SVMs5 and random forests.18 Acquarelli et al19 proposed a
simple CNN architecture that outperforms popular linear models in chemometrics on a collection of popular datasets.
The authors of these papers have also demonstrated that their ANNs achieve good regression performance using spec-
troscopic data without the need of a separate preprocessing step. Furthermore, Cui et al20 achieved good performance
using CNN on NIR calibration, and Malek et al21 have proposed a CNN that uses an optimisation method based on
particle swarms as an alternative to back-propagation. In our study, we focus on the possibility of using DL for
preprocessing and explore how to use these methods in combination with linear prediction modelling.

FIGURE 1 Illustrations of a dense and convolutional connection in a 1D artificial neural network (ANN). The fully connected layer to

the left contains k hidden units (neurons), where the white parts of the input and weights represent the bias units. The illustrated

convolutional layer to the right contains f filters, each including c weights. The white parts of the convolutional neural network (CNN) input

layer represents padding with zeros

HELIN ET AL 3 of 19

1.2 | Preprocessing

1.2.1 | Classical preprocessing

In spite of the vast number of spectral preprocessing methods proposed in the literature, we have chosen to restrict our
attention to the Savitzky–Golay filters, polynomial baseline corrections and intensity correction as accounted for by the
extended multiplicative signal correction (EMSC).22 These are all popular methods for removal of known artefacts from
the data caused by phenomena such as instrumentation and light scattering. Our choices represent a selection of
methods applicable for different types of spectra, each requiring possibly different preprocessing approaches. The choice
of preprocessing obviously influences the subsequent prediction modelling subject to validation of its predictive
performance.

Savitzky–Golay
Savitzky–Golay filtering aims at smoothing a signal without corrupting its information content. The method is based

on a sliding window approach where a polynomial curve is fitted locally to the data. Furthermore, the method can be
implemented efficiently as a convolution operation. In addition to choosing different polynomial degrees, one can
approximate the derivatives of the signal, which is useful for many types of noisy spectral data, especially Fourier-
transform infrared (FTIR).23 The Savitzky–Golay filter has become a standard preprocessing tool in spectroscopic
analysis within a wide range of applications. For equally spaced data points, the values of the filters can be found
analytically, and implementations exist in both commercial and non-commercial software packages (such as the EMSC
package in R24 and the SciPy25 ecosystem of Python-based open-source software).

Extended multiplicative signal correction
The EMSC signal correction method is a popular choice in vibrational spectroscopy. It is used for correction of

global intensity differences and baselines in the spectra. The EMSC extends the multiple scatter correction (MSC)26

method and incorporates the possibility of also eliminating polynomial baseline trends in addition to the constant
baselines handled by the ordinary MSC.

The EMSC considers a signal as represented by a constant term (a) together with a linear combination of a reference
spectrum (Xref) and additional terms corresponding to the polynomial trends of degree i¼ 1,…,n (νi) plus a residual
term (e):

X ¼ aþX ref �bþ
Xn
i¼1

diν
i þe:

The coefficients a, b and di are estimated individually for each spectrum in the dataset, and the chemical variance is
accounted for by the residual term, e. The EMSC-corrected spectrum can then be expressed as follows:

X corr ¼X �a�Pn
i¼1diν

i

b
¼X ref þ e

b
: ð1Þ

Direct extensions of the EMSC method handle interferents,27 replicate variation,28 Mie scattering,29 multiple refer-
ences30 and more. The EMSC method is useful for a range of different kinds of spectroscopic techniques, such as NIR,22

Raman31 and FTIR.27

We also note the close relationship between the standard normal variate (SNV) transformation and the MSC.32 If
the coefficients a and b in Equation (1) represent the mean and standard deviation of the spectrum X, the expression
corresponds to the associated SNV transformation. The main difference between the two is that MSC is a transforma-
tion based on a reference spectrum, where the mean spectrum is a common choice, whereas SNV is a transformation
(i.e., centring and scaling) of each spectrum independently.

1.2.2 | DL-based preprocessing

DL models offer flexibility in design, can handle non-linearities and adapt to both known and unknown phenomena.
Because of this, such models can sometimes be applied successfully, even without including all the prior knowledge

4 of 19 HELIN ET AL.

concerning the feature extraction procedures and required preprocessings to obtain successful applications of
traditional statistical and chemometric models. Trainable preprocessing based on DL will inherit some of these traits.

In this paper, we present two preprocessing alternatives, both achieved by including trainable layers of a neural
network. This approach combines the preprocessing and prediction steps of the data analysis problem into one unified
model. The idea was first proposed by Dong et al33 who introduced a model called Raman-CNN to classify blood
samples based on their Raman spectra. Our first preprocessing alternative builds on their work, with two ANN layers
being carefully designed for handling denoising and baseline correction, respectively. Our second alternative is a novel
design of a neural network layer able to perform EMSC by evolving an appropriate candidate reference spectrum
during the training process. We will refer to these alternatives as neural network denoising and baseline correction
(NN-NoiseBase) and neural network EMSC (NN-EMSC), respectively.

These approaches have in common their trainable weights in the preprocessing layers. The outputs of the complete
trained ANNs including the preprocessing layers can be considered directly as model predictions, where the
preprocessing step and prediction model are combined in a single model. In addition, the outputs of the preprocessing
layers can be considered as preprocessed (corrected) input data, also available for other choices of prediction modelling,
including traditional linear models such as PLS. Furthermore, in our work, we consider two different classes of ANN
architectures (MLP and CNN) attached after the preprocessing layers. The architectural details are given in the next
section. In general, any choice of ANN is applicable. We have chosen to focus on these two architectures because they
represent fairly general ANN architectures known from successful applications within many fields of analysis. Earlier
studies using ANNs on spectroscopic data also include similar architectures.

The proposed NN-NoiseBase has two convolutional layers with added constraints on the weights of the convolution
filters. An illustration of the configuration is included as Figure S1. The constraints require non-negative weights
w¼ ½w1,w2,…,wk�T (where k is the filter size), which sum to 1:

wi ≥ 0,
Xk
i¼1

wi ¼ 1, for i¼ 1,2,…,k: ð2Þ

These constraints ensure that the layers can actually evolve into meaningful filters performing denoising and base-
line correction. Each of the two layers consists of a single filter. Furthermore, we deliberately omit the bias term in the
convolution filters (to avoid shifting the outputs of the corresponding convolutional layers).

The denoising is obtained by a smoothing filter representing a local weighted average, and the filter size should be
chosen experimentally just large enough to remove high-frequency noise from the spectra without affecting significant
trends in the spectra. Thereafter, the baseline correction is achieved by using a wider smoothing kernel for capturing
the main trends of the noise reduced spectra, which further is subtracted to obtain the baseline corrected data. With
h(�) denoting the smoothing kernel, the corrected spectra can be expressed as follows:

X corrected ¼X �X smoothed ¼X �X ∗hð�Þ¼X ∗ ðI�hð�ÞÞ, ð3Þ

where I is the identity spectrum. The kernel ðI�hð�ÞÞ is then the baseline correction kernel. The required associated
constraints are

wi ≤ Ii,
Xk
i¼1

wi ¼ 0, for i¼ 1,2,…,k, ð4Þ

that is, the weights must sum to 0, and each weight must be smaller than the identity kernel I. See Dong et al33 for
more details about the derivation of this procedure. We expand on the Raman-CNN by considering NN feed-forward
architectures that are not necessarily of the fully connected type proposed by the authors. Additionally, we apply the
expanded Raman-CNN on various types of spectra. For this preprocessing approach, the sizes of the baseline correction
and denoising filters are hyperparameters.

Our novel DL preprocessing technique, designed to perform EMSC, is implemented as an ANN layer that takes a
raw spectrum as input and outputs the scatter-corrected spectrum. However, the reference spectrum is not predefined
but considered as a vector of trainable weights, which makes the preprocessing step adaptive. Starting out with a

HELIN ET AL 5 of 19

meaningful initialisation of the reference spectrum such as the mean spectrum, the reference spectrum weights are
updated using the gradient descent algorithm as part of the loss minimisation during the network training process. The
corresponding layer is implemented as a “Keras layer” in the terminology of the Tensorflow package.34 Similar to the
classical EMSC applications, the choice of polynomial degree to be included in the correction is a hyperparameter to be
chosen by the user.

1.3 | Prediction models

To assess the utility of the DL-based preprocessing techniques, we compare the predictive performance of the
preprocessed spectra using representatives of linear models and neural networks.

1.3.1 | Linear modelling

There is a wide range of linear regression and classification methods routinely used with spectroscopic data. However,
most of these achieve highly similar performance and robustness. We therefore choose a single proven representative,
namely, PLS regression3,4 for our comparisons. We refer to Wold et al35,36 for historic roots and algorithmic details.

With PLSR, the input data are sequentially transformed into a subspace representation guided by the response(s),
resulting in a lower-dimensional representation appropriate for prediction and interpretation. In contrast to PCA, the
PLSR method is taking into account the response information available in regression and classification problems when
determining the subspace representation. Using a dummy representation of categorical responses, the PLS methodology
is also appropriate for classification purposes,37 then becoming PLS discriminant analysis (PLS-DA).

1.3.2 | DL modelling

The choice of DL model architecture is often a challenging task. The number of layers and number of nodes per layer
are in general problem dependent, based on experience and often found by trial and error. In our work, we based our
choice of architecture on literature reviews, simple structure and testing on preliminary experiments. To be able to dis-
tinguish effects of the preprocessing techniques, the network architecture was kept fixed across all the experiments.
However, in practical applications, architectural choices can be included in the tuning process for further optimisation.
Two different ANN architectures were considered in this work with an illustration of these architectures found in
Figure S2 where more details are given.

The proposed architecture (A) is an MLP network with three hidden layers containing 128, 256 and 128 nodes,
respectively. This is similar to the architecture used in Dong et al33 but with one additional hidden layer. The proposed
architecture (B) is convolution based and consists of one hidden layer with 8 convolution filters of size (9 � 1) and one
hidden dense layer with 32 nodes. CNNs used for computer vision problems are useful due to their ability to capture
certain translational invariant features in the input images. In spectroscopy, the shapes and magnitudes of the spectra
are of interest and not the spatial invariance. This suggests that not many convolutional layers are needed. In fact,
practical experience shows that the added convolutional layers increase convergence speed but do not improve the
prediction ability. For architecture (B), we also included batch normalisation38 of the outputs from the convolutional
layer. Batch normalisation affects the propagation of the gradient during the training process and often results in faster
convergence of the loss function minimisation. During our experimentation, we experienced that standardised
(autoscaled) data were needed as input to the neural networks to achieve efficient convergence. Autoscaling makes the
features homogeneous, and it ensures that each feature has equal influence on the gradient update and that the
network weights and features have similar magnitude. In order to compare our DL-based preprocessing techniques
with the classical ones, we used the raw data (without autoscaling) as input to the preprocessing layers. To obtain faster
convergence, we included a batch normalisation layer after the preprocessing layers for both the NN-EMSC and
NN-NoiseBase, acting as an adaptive scaling of the preprocessing stage.

Both the MLP and CNN architectures use ReLU activation functions for transforming the outputs from each inter-
mediate layer. For the outputs of the final layer (the output node[s]), we used linear and softmax functions as activation
functions for the regression and classification problems, respectively.

6 of 19 HELIN ET AL.

2 | DATASETS

In the present study, we have focused on two different datasets. The first dataset contains FTIR spectra of food
by-product hydrolysates collected from a controlled experiment for the purpose of determining protein size distribu-
tions. The noise contained in these spectra is mitigated through the experimental set-up. Although such datasets
usually are of high quality, they are often expensive to produce, meaning that the number of samples is often
limited. It should be noted that ANN models often have difficulties in obtaining good generalisation when the
sample size is too small.

The other dataset contains NIR spectra from a hyperspectral image. Each pixel of the image corresponds to a
spectrum and is considered as a separate sample. Compared with datasets obtained from controlled experiments, such
data may be more affected by noise but are generally cheaper to collect. Such pixel-based data contain a lot more data
points and are more likely to be suitable for ANN modelling.

2.1 | The FTIR spectra

The first dataset represents a regression problem where the predictors are FTIR spectra of protein hydrolysates. The
hydrolysates are made from various by-products from the food industry through enzymatic protein hydrolysis using
different enzymes. There are 28 different by-product/enzyme combinations in total. Figure 2 shows some sample
spectra. The response to be modelled is the corresponding (continuous) average molecular weight (AMW) measured
by size exclusion chromatography. A detailed description can be found in Kristoffersen et al.39 In total, there are
885 spectra obtained from different time steps of the hydrolysis process. Additionally, the sampling of some
by-product and enzyme combinations has been repeated, resulting in 332 unique samples when grouping by
by-product, enzyme and time step. The spectra contain 1712 spectral bands in the range from 4000 to 400 cm�1. In
our analysis, we limited the spectral region to 3700–400 cm�1 as the region above 3700 was without signal. This
dataset has been studied by Kristoffersen et al39 using classical models. They used a hierarchical modelling approach
with a canonical PLS (CPLS) + linear discriminant analysis (LDA) model for classification of by-product/enzyme
combinations as the first layer and a set of PLSR regression models for prediction of AMW as the second layer. We
will use their modelling approach as our benchmark. As noted by the authors, the samples measured on
by-products of turkey are challenging to predict because they are known to contain a larger amount of longer pep-
tides at the start of the hydrolysis process in comparison with the other measured samples in the experiments. It
could be claimed that the turkey samples should have been hydrolysed differently to obtain a peptide fraction of
similar quality to the samples of chicken, salmon and mackerel.

FIGURE 2 Samples from the two datasets. (A) One spectrum for each enzyme-material class in the Fourier-transform infrared (FTIR)

dataset before preprocessing. The spectral range depicted is the same as passed to the models in the analysis. (B) Remote-sensing dataset.

Top row: a sample image of one spectral band (1153 nm) with the corresponding label mask. Bottom: sample of one spectrum from each of

the 16 classes

HELIN ET AL 7 of 19

2.2 | The AVIRIS remote sensing data

Our second dataset represents a classification problem containing remote sensing data acquired by the AVIRIS instru-
ment, a hyperspectral image showing the reflectance of different types of vegetation and soil types over an area in the
Salinas Valley, California (see Figure 2). The hyperspectral image has 512 � 217 pixels with 224 spectral bands in the
range from 400 to 2500 nm. The spatial resolution of the images is 3.7 m per pixel. In total, there are 16 different classes
of vegetation and soil types. As response, we used the pixel-wise annotated class membership, making this dataset a
representative of classification problems. Considering each pixel as a sample spectrum, the amount of data should
theoretically suit DL models. For the model building, we use only a subset containing 8000 pixels and its corresponding
spectra, in order to keep the computational cost lower. We also kept the relative sizes of the 16 classes fixed, meaning
that the subset contained the same imbalance of the classes as the original image, having class sizes ranging from 1.7%
to 20.85% of the pixels.

3 | METHODS

In our study, we considered three families of preprocessing alternatives combined with predictive modelling, as
illustrated in Figure 3:

1. The classical preprocessing alternative by EMSC and/or Savitzky–Golay filtering followed by training either a linear
model (PLS or PLS-DA) (1), a fully connected feed-forward neural network (MLP) (2) or a CNN (3).

2. The NN-EMSC alternative including EMSC with an adaptive reference spectrum found during the training process
of either an MLP (5) or a CNN (7). Alternatively, each of the resulting preprocessing parts obtained from the two
trained neural models is used as filters before training a PLS-model (4, 6).

FIGURE 3 Overview of the various pipelines considered. “SavGol” is short for Savitzky–Golay filtering. The two colors of

“NN-NoiseBase” indicate that the method consists of two parts: denoising (green) and baseline correction (yellow)

8 of 19 HELIN ET AL.

3. The NN-NoiseBase alternative, which performs denoising and baseline correction preprocessing during the training
process by either an MLP (9) or a CNN (11). Alternatively, each of the resulting preprocessing parts obtained from
the two trained neural models is used as filters before training a PLS model (8, 10).

For the classical alternative, there are three model fitting pipelines. For each of the neural network-based
preprocessing alternatives, there are four pipelines, because each alternative can be trained using either an MLP and a
CNN as the main networks (two DL-based predictions) and a PLS model can be fitted for each alternative (two linear
predictions).

Thus, our study considers a total of 11 pipelines, where all except of one include the training of an ANN. Addition-
ally, we trained each of the three prediction models PLSR, MLP and CNN on the raw data to use as a benchmark for
the preprocessing techniques. Each preprocessing method has its own set of hyperparameters that must be determined
for each prediction model. To mitigate the complexity, we split our analysis into two phases: one phase concerning the
selection of preprocessing hyperparameters and the other concerning the model selection, using the optimal parameters
for each pipeline found in the first phase. Because the aim of the preprocessing hyperparameter search was to get a
sense of which parameter and model combinations perform well, the number of epochs to train the ANNs was limited
to 500 in this phase to make the search computationally feasible. However, in the model selection phase, the ANNs
were allowed to train for up to 5000 epochs.

3.1 | Validation

As a metric for evaluation, we used the root mean squared error (RMSE) for the regression problem and classification
accuracy for the classification problem. Despite the imbalance in the data of the classification task, we found by inspec-
tion of the prediction accuracies of each class that the accuracy metric did not pose problems; that is, prediction accura-
cies of the large classes were not prioritised at the expense of the small classes. Figure 4 sketches the data splits used in
the different phases of the analysis. All the segments were stratified to keep the original class balances. To validate the
results, we used 75% of the data for the parameter selection phase (blue colour), leaving the final 25% as a test set for
the model selection phase (orange colour). Furthermore, in the parameter selection phase, 2/3 of the data (Train data
1) was used in a threefold cross-validation to estimate the optimal number of PLS components and neural network
epochs. The final 1/3 of the training data (validation data) was used to compute the prediction errors. When computing
the prediction errors, all the samples used in the cross-validation (Train data 1) were used to fit the models for
prediction.

In the model selection phase, all the samples from the parameter selection phase (Train data 1 + validation data)
were used in a sevenfold cross-validation to estimate the optimal number of PLS components and neural network
epochs. Similar to the parameter selection phase, all the samples from the cross-validation were reused to fit new
models when computing the prediction errors. The prediction errors for each pipeline were computed on the 25% of the
data not previously used (test data). The evaluation of the pipelines was based on these prediction errors.

Using a k-fold cross-validation is not the most common validation method of ANNs, where usually a single split is
used as validation set. Most applications using DL models have plenty of data available; thus, a single validation split is
often sufficient to accurately validate the models. However, we observed that the validation score was highly dependent
on the split due to the number of samples and classes in our datasets. The cross-validation approach gave more stable
and representative evaluations but came at the cost of training k neural networks instead of just one. In practice, this
extra computational cost did not pose a problem for our analysis, because the total number of samples in each of the
k neural networks was relatively small and training times correspondingly shorter.

FIGURE 4 Data splitting scheme for the two analysis phases. “Training data 1” and “Validation data” are used for parameter selection.

“Training data 2” and “Test data” are used for model selection. Note that “Train data 2” = “Train data 1” [“Validation data”

HELIN ET AL 9 of 19

Special care had to be taken when validating the pipelines involving neural network-based preprocessing with a
component-based linear prediction model such as PLS. In these pipelines, the predictive performance of the PLS model
had to be evaluated for a selection of epochs of model training in order to allow the PLS model to determine the optimal
number of epochs for training the preprocessors. In order to reduce the computational cost, we chose to evaluate the
PLS models every 50 epochs in the parameter selection phase and every 25 epochs in the model selection phase. The
resulting evaluation amounted to matrices containing the predictive performance for different number of epoch and
PLS component combinations (Figure S3). From this matrix, the optimal number of epochs and components could be
chosen based on the global optimum or by some other procedure.

3.1.1 | Parameter selection phase

The parameter selection phase was included as a step to reduce the complexity of the full model search. In this phase,
training of all neural network models was limited to 500 epochs each, in order to finish the parameter search in feasible
time. This did not guarantee convergence of every model, but experimentation showed that the number of epochs was
sufficient to see the main trends and differences. For each preprocessing method, we performed a grid search over a
range of selected hyperparameters as shown in Table 1.

For the NN-NoiseBase method, the sizes of the two preprocessing filters are hyperparameters. Different spectral
data contain peaks with different widths. We adjusted the range of possible baseline correction filter sizes for each
dataset, to allow the filter to cover the width at the base of the peaks.

An ANN is a stochastic model with a lot of randomness. The initial network weights are randomly drawn from
some probability distribution, and the network training is stochastic because it uses randomly selected subsets of the
data during the weight updates. Also, the inclusion of dropout layers in the network adds more randomness. The sto-
chastic nature is useful in that it helps the model avoid local minima during optimisation and to find model weights
that on average work well for the problem. However, the randomness causes different runs of the same model, using
the same data set, to yield different results. This is usually more pronounced for models with small datasets. To mitigate
the effects of this randomness, we computed the prediction error for each choice of hyperparameters several times,
using different weight initialisations of the neural networks. During the parameter selection phase, we chose to com-
pute the prediction error three times. The average prediction error across the three repetitions was used to determine
the best hyperparameters for each pipeline. Optimally, the ANN models used during the cross-validation should also be
trained with additional weight initialisations, but given the size of our grid search, it was too computationally expensive
to perform.

3.1.2 | Model selection phase

The main assessment of the different preprocessing techniques, using either PLS or an ANN for prediction, was based
on the results from the model selection phase. In this phase, we used the optimal hyperparameters found for each of

TABLE 1 Preprocessing hyperparameters

Preprocessing method Hyperparameters

Savitzky–Golay Window size: {7, 9, 11, 13}

Derivative: {0, 1, 2}

Poly. degree: {2, 3}

EMSC Poly. degree: {0, 1, 2}

NN-NoiseBase Denoising filter (both datasets): {3, 5, …, 19}

Baseline correction filter (FTIR): {11, 36, …, 211}

Baseline correction filter (remote-sensing): {11, 21, …, 91}

NN-EMSC Poly. degree: {0, 1, 2}

Abbreviations: EMSC, extended multiplicative signal correction; FTIR, Fourier-transform infrared; NN-EMSC, neural network extended multiplicative signal
correction; NN-NoiseBase, neural network denoising and baseline correction.

10 of 19 HELIN ET AL.

the pipelines during the parameter selection phase and validated the preprocessing techniques on more data. Addition-
ally, we allowed the ANNs to train for more epochs. A sevenfold cross-validation scheme was used to find the optimal
number of PLS components and the number of epochs for each pipeline. Initially, we computed the prediction errors
three times for each pipeline, varying the random initiation of weights, similar to what was done in the parameter
selection phase. However, the variation between each run was found to be larger than anticipated, especially for the
FTIR dataset. Therefore, the prediction errors were computed 30 times, in order to get a more accurate estimation of
the performances. The repeated computations of the prediction errors were computationally feasible because there were
only 11 prediction models in this phase (one model per pipeline), compared with the parameter selection phase.

4 | RESULTS

Assessment of the pipelines involving DL-based models is challenging due to the stochastic nature of the ANN training
process. Because finding the globally best hyperparameters was not the focus in this study but rather to obtain suffi-
ciently good models for fair comparison, we automated the process and did not assess all of the model variability in the
parameter search phase. However, it was possible to discern some patterns across the hyperparameters for the different
pipelines. We therefore start by presenting these observations.

We experienced that the model predictions for the FTIR dataset depended heavily on both the data size and the
samples of each subset. In general, we observed that the cross-validation errors were larger than the test-set prediction
errors for all pipelines, with a greater difference between the two in the parameter selection phase compared with the
model selection phase. As stated earlier, the choice of the optimal preprocessing hyperparameters for each pipeline was
based on the prediction errors on the validation data (see Figure 4) and not the cross-validation error.

4.1 | The preprocessing hyperparameters

In accordance with our expectations, we observed that the same set of hyperparameters was not equally good for
modelling of the two datasets in our study.

Starting with the FTIR dataset, the best parameter choices for the PLS model did not include EMSC. On the other
hand, the EMSC technique with second-order polynomial correction was preferred by the PLS prediction model on the
remote-sensing dataset. The Savitzky–Golay filtering without estimation of derivatives was favoured by PLS for both
datasets. For the MLP and CNN prediction models, the best predictions were achieved when not including the EMSC
technique. Different from the best PLS model, however, was that the inclusion of first derivative estimation in the
Savitzky–Golay filtering gave the best predictions for both MLP and CNN modelling with the FTIR dataset. The same
Savitzky–Golay filter parameters were also found for the best models based on the remote-sensing dataset; however,
CNN modelling also achieved almost the same predictive performance without including the derivative estimation.

For NN-EMSC preprocessing, the critical hyperparameter is the degree of the polynomial trend in the correction. It
was found that the better choice when using PLS as the prediction model was degree 0 for the FTIR dataset (resulting
in MSC) and degree 1 for the remote-sensing dataset. Interestingly, both the MLP and CNN models gave better predic-
tions with a second-order polynomial trend for both datasets.

For the NN-NoiseBase alternative, we observed a clear difference in the best choices of the hyperparameters for the
different types of prediction models. The prediction results on the validation data for the different parameter choices
are summarised in Figure 5. The pipelines using a PLS prediction model showed better performances when large filters
were used, whereas the opposite was true for the pipelines using an ANN prediction model. The figure also illustrates
that the ANN prediction pipelines contained a larger variability in model performances compared with the PLS
pipelines.

4.2 | Pipeline comparison

The numerical results from the model selection phase are summarised in Table 2. The prediction performance, mea-
sured by the root mean squared error of predictions (RMSEP) and accuracy of predictions (AccP) (proportion correctly
classified), is also shown in Figure 6. Notice that for both datasets, the best predictions were achieved by the pipelines
with ANNs as prediction model.

HELIN ET AL 11 of 19

Taking a closer look at the FTIR results, we see that the best predictions were obtained using the NN-NoiseBase
preprocessing technique in combination with an MLP. The NN-EMSC preprocessing technique and SG-EMSC
(classical) preprocessing technique both achieved predictions close to the NN-NoiseBase technique when combined
with a CNN. Somewhat surprisingly, the CNN model gave very good predictions for the raw data compared with
the other pipelines. The poorest predictions were obtained by the pipeline using the NN-EMSC in combination with

FIGURE 5 The prediction results on the validation set during the parameter selection phase of the pipelines using the NN-NoiseBase

preprocessing technique for different sizes of the denoising and baseline-correction filters. Left column: Fourier-transform infrared (FTIR)

dataset. Right column: remote-sensing dataset. Each line shows the mean score with standard error as bars

TABLE 2 Prediction performance of the model selection phase

Preproc. method Preproc. engine Prediction model RMSE-CV RMSEP AccCV AccP

Raw MLP 512 465.0 ± 3.01 0.910 0.91 ± 0.0016

Raw CNN 426 353.0 ± 7.0 0.925 0.926 ± 0.0012

Raw - PLS 457 426.0 ± 0.0 0.913 0.914 ± 0.0

SG-EMSC MLP 439 357.0 ± 2.57 0.949 0.948 ± 0.0007

SG-EMSC CNN 401 323.0 ± 3.96 0.950 0.948 ± 0.001

SG-EMSC - PLS 457 415.0 ± 0.0 0.917 0.918 ± 0.0

NN-EMSC MLP 543 514.0 ± 5.92 0.929 0.929 ± 0.001

NN-EMSC CNN 427 319.0 ± 6.93 0.928 0.922 ± 0.0017

NN-EMSC MLP PLS 442 421.0 ± 0.35 0.915 0.915 ± 0.0001

NN-EMSC CNN PLS 420 406.0 ± 1.57 0.916 0.916 ± 0.0001

NN-NoiseBase MLP 427 316.0 ± 4.34 0.939 0.938 ± 0.0029

NN-NoiseBase CNN 425 336.0 ± 4.2 0.934 0.926 ± 0.0017

NN-NoiseBase MLP PLS 450 413.0 ± 1.1 0.916 0.912 ± 0.0002

NN-NoiseBase CNN PLS 455 425.0 ± 1.57 0.916 0.914 ± 0.0004

Note: The RMSECV column is the average prediction error for the sevenfold cross-validation. The RMSEP column is the mean prediction error of 30 repeated

trials. The AccCV column is the prediction accuracy for the sevenfold cross-validation. The AccP column is the mean prediction accuracy of 30 repeated trials,
including the standard error. The bold font indicates the pipelines with the lowest RMSEP and the highest AccP.
Abbreviations: AccP, accuracy of predictions; CNN, convolutional neural network; MLP, multilayer perceptron; NN-EMSC, neural network extended
multiplicative signal correction; NN-NoiseBase, neural network denoising and baseline correction; PLS, partial least squares; RMSE-CV, root mean squared
error cross-validation; RMSEP, root mean squared error of predictions; SG, Savitzky–Golay.

12 of 19 HELIN ET AL.

the MLP model. The general impression is that the pipelines including neural networks with convolutions, either in
the form of a CNN prediction model or in the form of filters in the NN-NoiseBase preprocessing stage, performed
better.

The predictions of the pipelines using PLS models did not vary as much as those using ANNs. All the preprocessing
techniques resulted in better predictions by the PLS model compared with predictions on the raw data. The best predic-
tions were achieved using the novel NN-EMSC technique, with the NN-EMSC filter fitted using th CNN model
(Pipeline 6). Note that by including DL-based preprocessing filters (NN-EMSC or NN-NoiseBase) in the pipelines with
PLS models, we introduce variance as indicated by standard errors of AccP. This needs to be taken into account in the
comparisons.

For the classifications with the remote-sensing dataset, the best predictions were achieved using the classical
preprocessing techniques in combination with either an MLP or a CNN model. The classical preprocessing was also the
best choice for PLS modelling. Comparing the PLS pipelines, the poorest predictions were achieved by the pipeline
using the NN-NoiseBase technique with MLP as the preprocessing engine. Compared with the predictions for the raw
data, the DL-based preprocessing techniques improved the PLS predictions only slightly on this dataset. Similarly as for
the FTIR dataset, the CNN model predicted fairly well also on the raw data. A difference from the FTIR dataset is that
the NN-EMSC technique worked better with the MLP model than with the CNN model. This illustrates that the choice
of ANN architecture is critical in combination with the DL-based preprocessing techniques proposed in this paper.

4.3 | Time usage

Table 3 shows the time usage of each prediction model in our experiment for both datasets. The table gives the time
(in seconds) used to fit the model to the training set and make predictions on the test set. The timing was performed on
the model selection phase.

From the table, it is clear that the PLS models had far less run time compared with the ANNs. For the remote-
sensing dataset (the largest one), the slowest model was a CNN using the NN-EMSC technique, which used approxi-
mately 14 min to complete the 5000 training epochs on our computer. The largest time sink in our experiment was
caused by the validation step. During this step, the pipelines containing a DL-based preprocessing technique followed
by PLS prediction were the slowest. This is because our experimental setup required repeated fitting of the PLS model
during training of the DL-based preprocessing layer. With the PLS evaluations for every 50 epochs in our set-up, the
total number of model evaluations was 200 during our 5000 epochs of training for each pipeline. Despite the quick eval-
uation of the PLS models, these evaluation slowed down the executions due to the additional cross validation steps.
During the model selection phase with three repeated evaluations on the test set, all the pipelines using classical
preprocessing (Pipelines 1–3) had a combined run time of 26 min for the FTIR dataset and 2 h for the remote-sensing

FIGURE 6 Results from the model selection phase. (A) Results for the Fourier-transform infrared (FTIR) dataset. Solid lines: mean root

mean squared error of predictions (RMSEP) over 30 repetitions with standard error. Dotted lines: mean RMSEP and standard error of

predictions on the test samples containing turkey. (B) The results from the remote-sensing dataset. The lines show the mean accuracy

predicted (AccP) over 30 repetitions with standard error. The partial least squares (PLS) performances for the neural network extended

multiplicative signal correction (NN-EMSC) and neural network denoising and baseline correction (NN-NoiseBase) techniques are averaged

over the two preprocessing engines for both datasets

HELIN ET AL 13 of 19

dataset. The pipelines using the NN-EMSC technique (4–7) had a combined runtime of 2 and 15.5 h, whereas the
pipelines using the NN-NoiseBase technique (8–11) had a combined runtime of 1 h and 50 min and 14 h and 40 min,
respectively, for the two datasets. Rerunning the test set predictions with 30 repetitions required approximately 5 h for
the FTIR dataset and 18.5 h for the remote-sensing dataset.

5 | DISCUSSION

5.1 | DL-based preprocessing with ANN prediction models

In this work, we have explored how one can use DL-based techniques to perform spectral preprocessing. In the pipeline
configurations containing both DL-based preprocessing and an ANN prediction model, the whole pipeline is a single
seamless neural network but with added constraints on the first few layers. The constraints give us some idea about the
role of these layers, but the whole model is mainly of the black box type. The ANNs using the DL-based preprocessing
techniques resulted in better predictions compared with vanilla ANNs trained on raw data, especially regarding the
FTIR dataset. Remarkably, the training of our proposed CNN architecture resulted in good prediction performance even
when trained directly on the raw data without any preprocessing. When training the network on raw data, adequate
preprocessing seems to be handled implicitly by the network. The success of ANN prediction on raw data is in accor-
dance with the observation done by Liu et al.16 While we were able to improve the predictions of the ANNs by explicitly
adding either classical or DL-based preprocessing, the additional efforts required to tune the DL-based preprocessing
parameters may be considered superfluous. Another additional step required for the DL-based preprocessing is the
tuning of hyperparameters. With little or no domain knowledge, the hyperparameter search may be time-consuming.
Obviously, the choice of ANN architecture is also crucial to obtain a resulting model that predicts well. In our experi-
ments, the use of the NN-EMSC technique in combination with an MLP turned out to be a poor alternative for the
FTIR dataset. However, the same preprocessing technique combined with a CNN resulted in a very good model. For
the remote-sensing dataset, the configurations using MLP were more favourable for both the NN-EMSC and
NN-NoiseBase techniques. The choice of a good network architecture is a complicated matter, and by introducing
further hyperparameters with the DL-based preprocessing techniques, the efforts and time required to set up the
experiment will be rather extensive. Even on our small selection of datasets, we experienced that one specific network
architecture is not effective for every pipeline configuration.

TABLE 3 Time usage for training of each prediction model and the additional time of including the preprocessing alternatives

(in seconds)

Classical alternatives FTIR Remote-sensing

PLS/PLS-DA 1.0 15.4

SavGol +0.011 +0.022

EMSC +0.024 +0.027

DL alternatives FTIR Remote-sensing

MLP 107.9 352.9

CNN 121.4 467.2

NN-EMSC (MLP) +40.7 +257.4

NN-EMSC (CNN) +49.2 +250.3

NN-NoiseBase (MLP) +27.8 +205.7

NN-NoiseBase (CNN) +36.6 +205.0

Note: The table shows the time for fitting the training data and predicting test data in the model selection phase. The PLS models used 70 and 120 components
on the FTIR and remote-sensing datasets, respectively, whereas each ANN was trained for 5000 epochs. The ANN modelling was performed on an NVIDIA
RTX8000 graphics card, whereas the PLS models were run on an AMD EPYC 7302 16-Core Processor.

Abbreviations: CNN, convolutional neural network; FTIR, Fourier-transform infrared; MLP, multilayer perceptron; NN-EMSC, neural network extended
multiplicative signal correction; NN-NoiseBase, neural network denoising and baseline correction; PLS-DA, partial least squares discriminant analysis;
RMSE-CV, root mean squared error cross-validation; RMSEP, root mean squared error of predictions.

14 of 19 HELIN ET AL.

5.2 | DL-based preprocessing with PLS prediction models

When including neural networks in the preprocessing step, we introduced additional model variance in the PLS predic-
tions. This variance is caused by the random weight initialisation and the random batch selections (during the network
training) of the ANNs used to train the DL-based preprocessing filters. This implies that the weights in the
preprocessing filters most likely converge to different values (corresponding to local minima of the associated optimisa-
tion problem). A possible disadvantage with the approach using part of a trained neural network prior to a PLS model
is that the prediction errors of the PLS model do not influence the updating of the weights in the preprocessing layer of
the neural network. This was the reason why we needed to repeatedly fit PLS models for validation when using
DL-based preprocessing in combination with PLS model predictions. The argument we make for the DL-based
preprocessing is that the trained preprocessing layers will be adequate for any prediction model because, by design,
they represent a kind of preprocessing such as denoising, baseline correction or EMSC. With good choices for the
NN-architecture, we have demonstrated that this approach can in fact increase the predictive performance of the
subsequent PLS model. However, the model selection- and validation process for this approach is much more time-
consuming than for the traditional preprocessing methods combined with ordinary PLS modelling. A way to simplify
the model selection and validation process could be based on some clever way of incorporating the prediction errors
from the PLS model with the optimisation of the neural network weights.

5.3 | ANN as a feature extractor for linear models

In a neural network, all the the layers except the final one are trained such that the network non-linearly transforms
the input data for obtaining the best possible predictions from the final layer. In other words, one can think of the early
layers of the network as useful feature extractors calculated from the input data. Besides supporting the predictions of
the neural network itself, these features can be used as inputs for any prediction model. The idea of considering an
ANN as a feature extractor for spectroscopic signal regression was explored by Malek et al.21 By discarding the final
layer of a network after the training process was completed, they used the ANN model exclusively as a feature extractor,
providing input data the prediction models used in their analysis.

In our work, we are doing something similar by discarding all parts of the trained neural network that are not
corresponding to the trained preprocessing filters of the NN-EMSC and NN-NoiseBase techniques. As illustrated above,
ANNs are able to implicitly perform adequate preprocessing. When discarding a subset of the preprediction layers, it is
harder to discern the exact roles of the different layers as preprocessors or feature extractors. It may well be that useful
parts of the preprocessing actually occur after the dedicated preprocessing layers. Because the output of the
preprocessing layers is not necessarily the best for linear models such as PLS, careful model validation is obviously
extremely important. As discussed above, the preprocessing layers of the DL-based preprocessing techniques may pro-
vide more useful information for the ANN prediction models than for the PLS prediction models. This begs the question
whether the neural network by itself produces features in the preprocessing layers that are useful for the PLS model or
if some feedback from the PLS modelling part is needed. The problem would then be reduced to fitting only a single
model, which would lead to a simpler validation process as well as possibly faster convergence and better concordance
between the choices of the preprocessing weights and resulting model performance.

5.4 | Interpretability

Another issue worth discussing concerning the DL-based preprocessing is the lack interpretability. The classical
preprocessing techniques have been designed for the purpose of eliminating unwanted variation from specific
sources with known characteristics. This part is omitted when introducing neural networks in the preprocessing
procedure. Although our DL-based preprocessing techniques are mimicking classical methods, the neural network
weights of the preprocessing filters are determined from the data by the complex relationships modelled by the
chosen ANN architecture(s). Therefore, there is no precise way to conclude exactly how the DL-based preprocessing
is correcting the data. The preprocessing layers may act differently depending on the choice of prediction model.
Figure 5 supports this hypothesis. Compared with predictions on raw data, the NN-NoiseBase technique was
successful both with the MLP as the prediction model and when used as a feature extractor for a PLS model. When

HELIN ET AL 15 of 19

looking at the optimal hyperparameters of this preprocessing alternative (the filter sizes) for the MLP and PLS
models, we see that the MLP gave better model predictions with short filters, whereas the PLS gave better model
predictions with longer filters.

As pointed out in the Section 2, the FTIR dataset contains some samples measured on turkey, which are consid-
erably harder to model than the other samples. Therefore, we also included the test set predictions for only the
turkey samples in Figure 6. Note that the predictions of the turkey samples were much better for a CNN trained on
the raw data compared with any of the preprocessing pipelines. A possible explanation for this phenomenon may
be that the CNN model is leveraging raw-material information in the spectra when modelling the AMW, thus
obtaining a more robust model. Except for the combination of NN-NoiseBase and MLP, the DL-based preprocessing
was not capable of providing features to predict the turkey samples well. This indicates that an ANN model trained
on the raw data may be more robust to new unseen data. It should also be noted that the raw data used to train
the ANNs were autoscaled. As explained in Section 1.3.2, the autoscaling was a necessary preprocessing step for
good convergence. The use of autoscaling is not common in spectroscopy where interpretation is important.
However, in the setting of neural networks, we argue that it should not be avoided. In contrast to PLS, ANNs do
not rely on a low-dimensional latent space to fit its model easily. Therefore, it is more beneficial to make all the
features have similar distributions at the expense of loosing the connection between features through autoscaling.
Furthermore, when using ANNs, the possibility of interpretation is heavily reduced, and the use of autoscaling will
not change that aspect. Despite the overall superior performance of the DL-based preprocessing, it is interesting that
the classical SG-EMSC preprocessing technique seems to work better for the ANNs to predict the turkey samples.
These remarks indicate some of the complexities and challenges associated with ANN modelling. In order to get
improved predictive performance on the FTIR dataset, Kristoffersen et al39 performed a two-level modelling
approach (classify enzyme/material combination, then predict AMW from local model). For comparison, we
repeated their modelling approach on the same train-test split as described in our paper. We applied preprocessing
using Savitzky–Golay filtering followed by EMSC and used the spectral range between 1800 and 700 cm�1 as done
in their paper. Using a single PLS model fitted on the training data (75% of the total data), the RMSEP for the test
data was 454. Their two-level approach yielded an RMSEP of 280, which beats all our pipelines, while still having a
linear and transparent model. This demonstrates that clever use of classical models can beat DL models on this
particular dataset. Our best pipeline using DL prediction achieved an RMSEP of 316, which is also very good but
required a considerable effort to achieve. A slight improvement might be possible by further tuning the ANN archi-
tecture and model parameters but then further increasing the effort. This shows that the DL models can do a great
job working with spectral data, even with a limited amount of data. However, classical modelling schemes should
not be underestimated.

5.5 | Neural networks and small datasets

When working with small datasets, the model validation process becomes very important in order to prevent over-
fitting and poor predictions on new unseen data. The FTIR dataset contains more features than samples and in the
context of this experiment is considered a small dataset. We believe that the observed large variation in the predic-
tion performance of the ANNs for this dataset is partly explained by the relatively low number of samples. It is also
possible that some variation can be explained by the fact that the objective of the FTIR dataset is regression in
contrast to the classification problem for the remote-sensing dataset. During our experiment, we observed two kinds
of variations in the prediction performance. One was the variation when training from scratch, which means that
the ANN models are sensitive to the weight initialisation and gradient updates. The other variance was seen in the
difference between RMSECV and RMSEP for all the pipelines, which suggests a sensitivity in the splitting of the
dataset. In addition to the data size, the variations can be explained by the fact that the dataset is heterogeneous in
the sense that it has many subgroups, which increases the complexity of the underlying subspace. This fact was
demonstrated by a previous analysis of the dataset.39 Despite the difficulties regarding this dataset, our experiment
shows that the ANNs performed well. However, special care had to be taken in the validation process to confidently
arrive on such a conclusion. With small datasets, we suggest that the prediction performance of ANNs should be
reported as an average of training using different weight initialisations in order to assess some variability. This will
make the results more convincing and add confidence in the ANN model.

16 of 19 HELIN ET AL.

5.6 | Time usage

In the Section 4, we reported the time usage of each prediction model. None of the datasets we used in our experiment
can be considered as particularly large, and our network architectures are relatively shallow compared with the
common architectures used in many ANN applications. Therefore, the training of a single neural network was not
particularly time time-consuming. Although the runtimes of the ANNs were considerably larger compared with the
PLS models, they were still comfortably within the range of practical use on a personal computer. As explained in the
Section 4, the validation of each pipeline was the most time-consuming part of the modelling process. Careful valida-
tion of the PLS models was important in order to make an accurate assessment of the predictive performance of each
pipeline, but the additional cost required makes this approach rather unattractive. Based on the time usage alone, it is
evident that our DL-based preprocessing alternatives are more suitable as integrated parts of a neural network and not
for subsequent linear predictions.

5.7 | Efforts required

The classical preprocessing + PLS modelling pipeline was straightforward and did not require much efforts to set
up. All elements of this pipeline are readily available in both commercial and open software packages and are straight
forward to combine. Without much risk of making serious mistakes, several of the preprocessing parameters can be
assumed as fixed in advance based on the type of spectra to be analysed. And from a user's perspective, the comforting
effect of obtaining deterministic results (same result if run again) should not be underestimated.

We had to put a lot of efforts into setting up and tuning the different pipelines involving the ANN modelling. A
large part of these efforts went into testing the alternative architectural choices of the MLP and CNN models. Different
depths of the networks, choice of activation functions, choice of the number of convolution filters and regularisation
alternatives such as dropout40 were tested. Over time, we accumulated some confidence in what choices that were likely
to work well on our datasets. When comparing the network architectures, we had to make sure these networks
contained sufficient complexities to account for the structures of the data without being too prone to overfitting.

Regarding the ANNs, hyperparameters such as the learning rate and the batch size had to be determined. These
hyperparameters generally affect both the speed of the convergence and the value of the converged loss function.
Additionally, we observed that the convergence rate (in number of epochs) depended on the choice of preprocessing
method, with the NN-EMSC method being the slowest alternative.

For the pipelines including both the DL-based preprocessing and ANN prediction modelling, an additional consid-
eration about the number of epochs between the PLS predictions was needed to obtain a fair assessment of prediction
power.

Ideally, the hyperparameters related to the ANN modelling should be included in the grid search together with the
preprocessing parameters in case of interaction effects between the two sets of parameters. However, this parameter
search alternative quickly became overwhelming when combining the different choices of ANN architectures, the train-
ing parameters (like learning rate and epochs) and the preprocessing parameters. Therefore, we decided to use two
fixed ANN architectures based on some trial and error to do prediction modelling for our datasets and split the search
for best preprocessing parameters and comparison of pipelines into two separate experiments.

Tuning of the pipelines was relatively slow because this required training of multiple ANN models. Another compli-
cation was that the ANNs were very sensitive to the weight initialisation when trained with the FTIR data. Because of
this, we had to tune the pipelines based on multiple runs and not just a single one. From the knowledge we have gained
through this work, we expect the set-up for a new experiment to be easier and faster; however, tuning the pipelines will
still require considerable extra efforts compared with the classical pipeline including some preprocessing alternative
followed by PLS modelling.

6 | CONCLUSION

In this study, the predictions obtained by the ANN models were generally better than the predictions obtained by the
PLS models. This indicates the usefulness of such models for prediction modelling based on vibrational spectroscopic
data. However, a careful assessment of the model variance is required before definite conclusions can be made. In our

HELIN ET AL 17 of 19

study, the best prediction results for the FTIR dataset were achieved by training the NN-NoiseBase preprocessor
combined with an MLP. The best prediction results on the remote-sensing dataset were obtained using the classical
SG-EMSC preprocessing alternative, which provided the inputs for training an MLP model. Across all the preprocessing
alternatives, the MLP prediction model alternative resulted in both the best and worst models, emphasising the impor-
tance of choosing a proper preprocessing alternative. On the other hand, the prediction results obtained by using CNN
models did not vary as much across the different preprocessing alternatives and were outperformed by the best MLP
models with less than one standard error. Our results therefore indicate that convolutional-based neural networks may
be the more robust alternative, which also have the ability to capture an implicit preprocessing of the spectra better
than the MLP models. We have also demonstrated that some DL-based preprocessing alternatives are capable of
improving the predictive performance of PLS modelling when compared with the classical pipelines. However, these
improvements come at the cost of longer training time and a larger effort in setting up the ANN modelling pipeline
supplying the preprocessing filters. For quick analyses of spectroscopic data, the reliance on Beer–Lambert's law and
classical methods are still relevant, but for models to be used over time, small improvements in predictions may be
worth the extra effort of DL-based preprocessing.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/cem.3374.

ORCID
Runar Helin https://orcid.org/0000-0001-7455-3108
Ulf Geir Indahl https://orcid.org/0000-0002-3236-463X
Oliver Tomic https://orcid.org/0000-0003-1595-9962
Kristian Hovde Liland https://orcid.org/0000-0001-6468-9423

REFERENCES
1. Rinnan Å. Pre-processing in vibrational spectroscopy-when. Anal Methods. 2014;6(18):7124-7129.
2. Pearson K. On lines and planes of closest fit to points in space. Philos Mag. 1901;2:559-572.
3. Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method. In: Kågström B, Ruhe A, eds.

Matrix Pencils. Lecture Notes in Mathematics. Vol 973. Havsbad, Sweden: Springer; 1983:286-293. https://doi.org/10.1007/BFb0062108
4. Wold S, Ruhe A, Wold H, Dunn Iii WJ. The collinearity problem in linear regression. The partial least squares (PLS) approach to

generalized inverses. SIAM J Sci Stat Comput. 1984;5:735-743.
5. Cortes C, Vapnik V. Support-Vector Networks. Mach Learn. 1995;20(3):273-297.
6. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386-408.
7. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986a;323:533-536.
8. Rumelhart DE, Hinton GE, Williams RJ. Learning Internal Representations By Error Propagation. Technical report, San Diego, Institute

for Cognitive Science; 1986b.
9. Denker JS, Gardner WR, Graf HP et al. Neural network recognizer for hand-written zip code digits. In: Advances in Neural Information

Processing Systems (NIPS 1989). Denver, CO, USA; 1989.
10. LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541-551.
11. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in Neural

Information Processing Systems. Lake Tahoe, NV, USA; 2012.
12. Bishop CM. Pattern Recognition and Machine Learning. New York, NY: Springer; 2006. https://doi.org/10.1007/978-0-387-45528-0
13. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278-2324.
14. Goodfellow I. Deep Learning. Boston, MA, USA: MIT Press; 2016. https://www.deeplearningbook.org
15. Næs T, Kvaal K, Isaksson T, Miller C. Artificial neural networks in multivariate calibration. J Near Infrared Spectrosc. 1993;1:1.
16. Liu J, Osadchy M, Ashton L, Foster M, Solomon CJ, Gibson SJ. Deep convolutional neural networks for Raman spectrum recognition: a

unified solution. Anal. 2017;142:4067-4074.
17. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175-185.
18. Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):832-844.
19. Acquarelli J, van Laarhoven T, Gerretzen J, Tran TN, Buydens LM, Marchiori E. Convolutional neural networks for vibrational spectro-

scopic data analysis. Anal Chim Acta. 2017;954:22-31.
20. Cui C, Tom Fearn.. Modern practical convolutional neural networks for multivariate regression: applications to NIR calibration

Chemometrics and Intelligent Laboratory Systems. 2018;182:9-20.

18 of 19 HELIN ET AL.

21. Malek S, Melgani F, Bazi Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J Chemom. 2018;32:
e2977.

22. Martens H, Stark E. Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near
infrared spectroscopy. J Pharm Biomed Anal. 1991;9:625-635.

23. Savitzky A, Golay MJ. Smoothing and differentiating of data by simplified least-squares procedures. Anal Chem. 1964;36:1627-1639.
24. Skogholt J, Liland KH, Indahl UG. EMSC: Extended Multiplicative Signal Correction. https://cran.r-project.org/package=EMSC; 2020.
25. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;

17:261-272.
26. Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc.

1985;39:491.
27. Martens H, Bruun SW, Adt I, Sockalingum GD, Kohler A. Pre-processing in biochemometrics: correction for path-length and

temperature effects of water in FTIR bio-spectroscopy by EMSC. J Chemom. 2006;20:402-417.
28. Köhler A, Sulé-Suso J, Sockalingum GD, et al. Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier

transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc. 2008;62:259-266.
29. Kohler A, Böcker U, Warringer J, et al. Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended

multiplicative signal correction. Appl Spectrosc. 2009;63:296-305.
30. Skogholt J, Liland KH, Indahl UG. Preprocessing of spectral data in the extended multiplicative signal correction framework using

multiple reference spectra. J Raman Spectrosc. 2019;50:407-417.
31. Liland KH, Kohler A, Afseth NK. Model-based pre-processing in Raman spectroscopy of biological samples. J Raman Spectrosc. 2016;47:

643-650.
32. Helland IS, Næs T, Isaksson T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data.

Chemom Intell Lab Syst. 1995;29:233-241.
33. Dong J, Hong M, Xu Y, Zheng X. A practical convolutional neural network model for discriminating Raman spectra of human and

animal blood. J Chemom. 2019;33:e3184.
34. Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems; 2015. https://static.

googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
35. Indahl UG. The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic

approaches to PLS1 modelling. J Chemom. 2014;28:168-180.
36. Liland KH, Stefansson P, Indahl UG. Much faster cross-validation in PLSR-modelling by avoiding redundant calculations. J Chemom.

2020;34:e3201.
37. Indahl UG, Liland KH, Næs T. Canonical partial least squares-a unified PLS approach to classification and regression problems.

J Chemom. 2009;23(9).
38. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International

Conference on Machine Learning ICML 2015. Lille, France; 2015.
39. Kristoffersen KA, Liland KH, Böcker U, Wubshet SG, Lindberg D, Horn SJ, Afseth NK. FTIR-based hierarchical modeling for prediction

of average molecular weights of protein hydrolysates. Talanta. 2019;205:12.
40. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting.

J Mach Learn Res. 2014;14:1929-1958.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Helin R, Indahl UG, Tomic O, Liland KH. On the possible benefits of deep learning for
spectral preprocessing. Journal of Chemometrics. 2021;e3374. doi:10.1002/cem.3374

HELIN ET AL 19 of 19

Paper II

Ranking Feature-Block Importance
in Artificial Multiblock Neural Networks

Anna Jenul() , Stefan Schrunner , Bao Ngoc Huynh , Runar Helin ,
Cecilia Marie Futsæther , Kristian Hovde Liland , and Oliver Tomic

Norwegian University of Life Sciences, Universitetstunet 3, 1432 Ås, Norway
{anna.jenul,stefan.schrunner,ngoc.huynh.bao,runar.helin,
cecilia.futsaether,kristian.liland,oliver.tomic}@nmbu.no

Abstract. In artificial neural networks, understanding the contribu-
tions of input features on the prediction fosters model explainability and
delivers relevant information about the dataset. While typical setups
for feature importance ranking assess input features individually, in this
study, we go one step further and rank the importance of groups of fea-
tures, denoted as feature-blocks. A feature-block can contain features of
a specific type or features derived from a particular source, which are
presented to the neural network in separate input branches (multiblock
ANNs). This work presents three methods pursuing distinct strategies
to rank feature-blocks in multiblock ANNs by their importance: (1) a
composite strategy building on individual feature importance rankings,
(2) a knock-in, and (3) a knock-out strategy. While the composite strat-
egy builds on state-of-the-art feature importance rankings, knock-in and
knock-out strategies evaluate the block as a whole via a mutual informa-
tion criterion. Our experiments consist of a simulation study validating
all three approaches, followed by a case study on two distinct real-world
datasets to compare the strategies. We conclude that each strategy has
its merits for specific application scenarios.

Keywords: Feature-block importance · Importance ranking ·
Multiblock neural network · Explainability · Mutual information

1 Introduction

In machine learning, datasets with an intrinsic block-wise input structure are
common; blocks may represent distinct data sources or features of different types
and are frequently present in datasets from industry [7], biology [3], or healthcare
[5]. For example, in healthcare, heterogeneous data blocks like patient histology,
genetics, clinical data, and image data are combined in outcome prediction mod-
els. However, good prediction models do not necessarily depend equally on each
block. Instead, some blocks may be redundant or non-informative. Identifying
the key data sources in multi-source treatment outcome models promises to
deliver new insights into the behavior of black-box models like ANNs. In partic-
ular, potential benefits include improving model explainability, reducing costly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Pimenidis et al. (Eds.): ICANN 2022, LNCS 13532, pp. 163–175, 2022.
https://doi.org/10.1007/978-3-031-15937-4_14

164 A. Jenul et al.

data acquisitions that do not contribute to the model prediction, and allowing
domain experts to explore latent relations in the data. Thus, there is a need to
measure the importances of feature-blocks, denoted as feature-block importance
ranking (BIR).

Fig. 1. M-ANN architecture.

In order to exploit the internal
structure of the block-wise data in
neural networks, a multiblock ANN
(M-ANN) architecture is used. As
depicted in Fig. 1, the M-ANN con-
sists of a separate input branch for
each block, a concatenation layer to
merge information from all branches,
and a blender network to map the
information to the model output. The
architecture allows for any type of
network layer, depth, activation, or
other network parameters, including
the special case where the concatena-
tion layer equals the input layer (block
branches of depth 0).
Ranking individual features by

their importances (feature importance ranking, FIR) has been studied for differ-
ent types of ANNs [8,14,15]. An extensive evaluation [9] showed that versions of
the variational gradient method (VarGrad) [1,2] outperformed competitors such
as guided backprop and integrated gradients. For BIR, however, a combination
of features in one block may accumulate a larger amount of information than
each feature separately due to informative non-linear relations between features.
Hence, using FIR might oversimplify the problem of measuring block importance
since interactions between features of the same block are disregarded. Neverthe-
less, the strategy of reducing BIR to a simple summary metric (sum, mean, max)
over FIR scores is considered in our evaluation.
A related problem to FIR is feature selection, where the input dimensionality

is reduced to the most influential features as part of the preprocessing. Feature
selection is widely studied in ANNs. Furthermore, specialized feature selectors
can account for block structures like UBayFS [11] or groupLasso [16]. Concep-
tually, these feature selectors aim to improve model performance and classify
an entire block as important/unimportant in a binary way before model train-
ing. In contrast, our BIR problem is considered a post-processing procedure,
focusing on analyzing the model after training without influence on the model
performance.1

This study presents and discusses three distinct approaches to quantify the
importance of feature-blocks in M-ANNs. While exploiting the flexibility of
ANNs and their capacities to learn complex underlying patterns in the data, the

1 BIR may be used for block feature selection if deployed as filter method—however,
this aspect is beyond the scope of the present work.

Ranking Feature-Block Importance in ANNs 165

discussed methods aim to deliver insights into the trained network’s dependence
structure on the distinct input blocks and thereby foster model explainability.
We propose three paradigms for BIR: a block is considered as important if

1. it consists of features with high FIR scores (composition strategy), or
2. it explains a large part of the network output (knock-in strategy), or
3. its removal significantly changes the network output (knock-out strategy).

We evaluate and discuss the proposed paradigms in a simulation study and
present two case studies on real-world datasets, where the behaviors of the pro-
posed ranking strategies become apparent.
In the following, bold letters denote vectors and matrices; non-bold let-

ters denote scalars, functions or sets. Square brackets denote index sets [n] =
{1, . . . , n}.

2 Block Importance Ranking Methods

We assume data input x from some feature space D ⊂ R
N , N ∈ N, following

a probability distribution X ∼ PX , and a univariate target variable y ∈ T ⊂
R following a probability distribution Y ∼ PY . Given training data (x, y) ∈
Dtrain × Ttrain ⊂ D × T , model parameters w ∈ W ⊂ R

M , M ∈ N, are trained
with respect to some loss term e : D × T → R

+,

w� = min
w∈W

e (fw (x), y) ,

where the ANN is a function fw : D → T given weights w.
In an M-ANN architecture, see Fig. 1, the block structure of the model input

is represented by a direct sum of subspaces D =
B⊕
b=1

Db, each corresponding to

one block b ∈ [B] with dimension Nb = dim(Db), N =
B∑
b=1

Nb. Each block enters

a distinct branch of the network that processes the block input. Afterwards,
the outputs of all branches are merged in a concatenation layer, which consists
of nb nodes associated with each block b, respectively. A so-called blender net-
work fblenderw connects the concatenation layer to the network output. Network
training is performed using backpropagation, where all block branches and the
blender network are trained simultaneously in an end-to-end manner.

2.1 Composite Strategy

Our first paradigm composes block importance measures from FIR in a direct
way. As a prototype of state-of-the-art FIR methods, we use VarGrad [2]. Var-
Grad builds on the idea that variations of an important feature provoke mea-
surable variations in the output. Under the assumption that features are on
a common scale, we estimate the gradient of the function fw with respect to
each feature by adding small random perturbations in the input layer. A large

166 A. Jenul et al.

variance in the gradient indicates that the network output depends strongly on
a feature, i.e., the feature is important. We denote the importance of feature
n ∈ [N] as quantified by VarGrad, by αn ∈ R

+.
To translate the feature-wise importance measure to feature-blocks in M-

ANNs, we deploy a summary metric ϕ over all single-feature importances in a

block b ∈ [B]. Thus, block importances γ(b)ϕ are defined as

γ(b)ϕ = ϕ(α
(b)
1 , . . . , α

(b)
Nb
), (1)

where α
(b)
n denotes the nth feature associated with the bth block. Intuitive choices

for ϕ are either the sum, mean, or maximum operator, denoted as ϕsum, ϕmean,
or ϕmax, respectively. Rankings based on mean and sum are equal, if all blocks
contain the same number of features. Operators ϕsum and ϕmean accumulate the
individual feature importances: a block with multiple features of high average
importances is preferred over blocks with few top features and numerous unim-
portant features. In contrast, ϕmax compares the top-performing features out
of each block, while neglecting all other’s contributions. Statistical properties
of block importance quantifiers implementing the composite strategy are trans-
mitted from (i) the feature importance ranking method and (ii) the summary
metric. Since this approach cannot capture between-feature relations, potentially
impacting the importance of a block, we suggest two other paradigms.

2.2 Knock-In Strategy

The knock-in strategy is inspired by work on the information bottleneck [4],
demonstrating that node activations can be exploited for model interpretation in
ANNs. In the concatenation layer of the M-ANN (Fig. 1), where information from
the blocks enters the blender network, activations are of particular importance
since they represent an encoding of the block information. When passing model
input x through the network, we denote the activation of the nth node associated
with block b ∈ [B] in the concatenation layer by cb,n(x), n ∈ [nb]. The average
activation of the nth node in block b ∈ [B] across all training data x ∈ Dtrain is
denoted by c̄b,n.
For BIR, we compute a pseudo-output by passing data of only one block b

through the network. For this purpose, we introduce a pseudo-input v(b)(x) as

v
(b)
b′,n(x) =

{
cb′,n(x) if b

′ = b
c̄b′,n otherwise,

(2)

where b′ ∈ [B], and n ∈ [nb]. By propagating pseudo-input v(b)(x) through
the blender network, we obtain the pseudo-output fblenderw (v(b)(x)). The main
assumption behind the knock-in strategy is that high agreement between output
fw (x) and pseudo-output f

blender
w (v(b)(x)) indicates a high importance of block

b, since information from b is sufficient to recover most of the model output. In
contrast, a large discrepancy between the two quantities indicates low explana-
tory power of the block b, and thus, a lower block importance. The concept to
generate knock-in pseudo-outputs is illustrated in Fig. 2.

Ranking Feature-Block Importance in ANNs 167

Fig. 2. Knock-in strat-
egy: Pseudo-outputs for
feature-block b = 1 are
generated by activating
block b, while imputing
averaged activations for
all other blocks.

We implement the knock-in concept via the mutual
information (MI) [6], an information-theoretic mea-
sure to quantify the level of joint information between
two discrete random variables Z and Z ′, defined as

MI(Z,Z ′) =
∑
z

∑
z′
pZ,Z′(z, z′) log2

(
pZ,Z′(z, z′)
pZ(z)pZ′(z′)

)
.

If Z and Z ′ are independent, MI(Z,Z ′) is 0. Other-
wise, MI(Z,Z ′) is positive, where a high value indi-
cates a large overlap in information. To quantify the
joint and marginal distributions of continuous vari-
ables Z and Z ′, two-dimensional and one-dimensional
histograms can be used as non-parametric estimators
for pZ,Z′ , pZ , and pZ′ , respectively. We denote the
number of equidistant histogram bins along each axis
by � ∈ N. It follows from the properties of entropy [6]
that an upper bound to MI(Z,Z ′) is given by log2(�).
As shown in Fig. 2, the random variable of (full)

model output, Y F = fw (X), and the random vari-
able of the pseudo-output with respect to block b,
Y (b) = fblenderw (v(b)(X)), where X follows the input
distribution PX , are used to measure knock-in (KI)
block importance as

γ
(b)
KI =

MI(Y F, Y (b))

log2(�)
. (3)

2.3 Knock-Out Strategy

The knock-out paradigm is an ablation procedure where one block at a time is
removed from the model in order to measure the impact of the remaining blocks.
We pursue a similar approach as in the knock-in paradigm and specify knock-out
pseudo-inputs v(−b)(x) as

v
(−b)
b′,n (x) =

{
c̄b′,n if b′ = b
cb′,n(x) otherwise,

(4)

for an arbitrary block b ∈ [B]. Thus, the definition in Eq. 4 represents an opposite
behavior of Eq. 2 in the knock-in case. In analogy to the knock-in notation, we
denote the random variable of pseudo-outputs with respect to v(−b) as Y (−b) =
fblenderw (v(−b)(X)). The knock-out concept is illustrated in Fig. 3. In contrast
to knock-in, we assume that leaving out block b having a relevant impact on
the final output delivers a more dissimilar pseudo-output to the full output
since relevant information is lost. Removing an unimportant block preserves the
relevant information and delivers a pseudo-output similar to the full output.

168 A. Jenul et al.

Fig. 3. Knock-out strat-
egy: Pseudo-outputs are
generated by activating
all but one blocks.

Finally, we define the importance of block b ∈ [B]
with respect to the knock-out strategy (KO) as

γ
(b)
KO =

log2(�)−MI(Y F, Y (−b))
log2(�)

. (5)

For both, KI and KO, importance scores γ
(b)
KI and γ

(b)
KO

are bounded between 0 (unimportant block) and 1
(important block).

3 Experiments

As a proof of concept, we conduct two experiments
to assess BIR in M-ANNs. The first experiment
involves six simulated, non-linear regression problems,
where our simulation setup delivers information on
the ground truth block importances. This experiment
verifies that our suggested measures can identify the
ground truth block rankings, defined by their corre-
sponding paradigms. Real-world datasets are evalu-
ated in two case studies in experiment 2, where no
exact ground truth block ranking is available. Instead,
we compare BIR strategies to each other.

3.1 Simulation Experiment

We simulate a synthetic datasets along with six distinct target functions, denoted
as setups S1a–S1c and S2a–S2c. The dataset consists of N = 256 features,
divided randomly into B = 8 blocks (B1–B8) à Nb = 32 features. The sam-
ple size is set to |Dtrain| = 10 000 and |Dtest| = 10 000. All features are simulated
from a multivariate normal distribution with mean vector μ = 0 and a random-
ized covariance matrix Σ; hence a non-trivial correlation structure is imposed.2

Setups S1a–S1c and S2a–S2c differ in the parameters used to compute the
non-linear target variable y, which is simulated via a noisy linear combination
of the squared features with coefficient matrix β(b) ∈ R

Nb×Nb , given as

y =

8∑
b=1

xTβ(b)x

︸ ︷︷ ︸
g(x)

+εnoise, where

εnoise ∼
i.i.d.

N (
0, σ2noise

)
, and

β(b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βimp 0 ...
0 0 ...

0
βint βimp 0 0 0

· · · . . .

βint βint βimp 0 0
0 0 0 0 0

· · · . . .

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6)

2 Code and details on simulation and network architecture are available at https://
github.com/annajenul/Block Importance Quantification.

Ranking Feature-Block Importance in ANNs 169

Table 1. Specifications for matrix β(b): block importance is steered via count Nimp,
coefficient βimp, and interaction βint of the important features.

Setup Block

B1 B2 . . . B7 B8

Nimp βimp βint Nimp βimp βint . . . Nimp βimp βint Nimp βimp βint

S1a 2 7 0 2 6 0 . . . 2 1 0 0 0 0

S1b 7 2 0 6 2 0 . . . 1 2 0 0 0 0

S1c 1 7 0 2 6 0 . . . 7 1 0 0 0 0

S2a 2 7 1 2 6 1 . . . 2 1 1 0 0 1

S2b 7 2 1 6 2 1 . . . 1 2 1 0 0 1

S2c 1 7 1 2 6 1 . . . 7 1 1 0 0 1

The matrix β(b) ∈ R
Nb×Nb contains an Nimp × Nimp quadratic sub-matrix

consisting of coefficients βimp of important features, i.e. features with relevant
contribution to the target, and interactions βint. The noise parameter σnoise is
set to 10% of the standard deviation of the linear combination g(x) across the
generated samples x. As shown in Table 1, block importances are varied between
the setups and as follows

– S1a: varying coefficients of important features, but constant counts;
– S1b: varying counts of important features, but constant coefficients;
– S1c: varying counts and coefficients of important features;
– S2a–S2c: same as S1a–S1c, but with interaction terms between features.

Due to the randomized correlation matrix of the feature generation, unimportant
features may be correlated with important features, as well as with the target y.
For each setup, we trained the described M-ANN model in 30 independent

runs with distinct weight initializations after data standardization. Since BIR
methods are deployed post-hoc and assume a model with appropriate perfor-
mance, runs with poor performances (R2 < 0.8) were excluded from the analysis
after outlier removal. Hence, the number of model runs in the analysis was 20
(S1a, S1b, S2a, S2b), 18 (S1c), and 19 (S2c), respectively. The remaining models
achieved an average performance of ≥0.9 (R2 score) and ≤0.2 (RMSEIQR: root
mean squared error scaled by inter-quartile range) on the test set.
For evaluation, importance scores across all model runs were tested for signif-

icant differences using a pairwise Wilcoxon-test with Bonferroni correction. If the
p-value in a comparison between two blocks was above a significance level of 0.01,
both were counted as tie. Figure 4 illustrates the distributions of BIR scores after
min-max-normalization by setup and method, along with rankings (colors) based
on significant group differences. All methods discovered the intrinsic ranking in
dataset S1a. In dataset S1b, knock-in, knock-out, and VarGrad-mean identified
the ranking by underlying important feature counts Nimp, while VarGrad-max
failed to deliver a significant distinction between blocks with higher counts of

170 A. Jenul et al.

Fig. 4. Distributions of the normalized BIR scores across model runs. Rankings are
indicated by colors and refer to significant group differences based on a pairwise
Wilcoxon-test (significance level 0.01).

Ranking Feature-Block Importance in ANNs 171

Table 2. Averaged Spearman’s rank correlation coefficients comparing each ranking
to the ground truth BIR for each paradigm across model runs. Standard deviations
were ≤0.03 for S1a, S1b, S2a and S2b, and ≤0.06 for S1c and S2c.

Paradigm Dataset

S1a S1b S1c S2a S2b S2c

Composite (VarGrad-max) 0.97 0.58 0.93 0.98 0.58 0.91

Composite (VarGrad-mean) 0.98 0.95 0.96 0.97 0.95 −0.40
Knock-in 0.99 0.98 0.85 0.97 0.99 0.89

Knock-out 0.99 0.98 0.81 0.99 0.99 0.89

important features. For dataset S1c, VarGrad-max mostly ranked by underlying
βimp and ignored Nimp, while knock-in, knock-out and VarGrad-mean delivered
trade-offs between counts Nimp and coefficients βimp of important features. In
setups S2a, S2b, and S2c with between-feature interactions, the same rankings as
in S1a, S1b, and S1c could be obtained by all methods with negligible deviations.
Hence, we conclude that all metrics remain stable in more complex scenarios.
We further validated the paradigms by comparing the results to their cor-

responding ground truth block importances, determined by the real coefficients
in the simulation setup. For the composite max and mean paradigms, the cor-
responding maxima and means over β(b), were used as references. Ground truth
importances for knock-in (KI), and knock-out (KO) were based on the explained
variances of the single block b in the underlying linear combination, given as

KIb = E

(
y −

(
x(b)

)T
β(b)x(b)

)
, andKOb = E

⎛
⎜⎜⎝y − 8∑

b′=1
b′ �=b

(
x(b′)

)T
β(b′)x(b′)

⎞
⎟⎟⎠ ,

where x(b) denotes projection of input x on the subspace of block b, Db. The
comparison between the rankings based on (average) predicted importance scores
and ground truth rankings was made using Spearman’s correlation coefficient,
see Table 2. With two exceptions, all correlation values were at a high level,
indicating that our methods accurately predicted the ground truth. Spearman’s
correlation coefficient is not representative in S1b, and S2b with respect to the
maximum metric since the ground truth ranking is equal for blocks B1–B7. In
S2c VarGrad-mean is distracted by decreasing βimp and an increasing number
of interaction terms, although underlying block importances are in increasing
order with respect to the mean metric.

3.2 Real-World Experiment

Since verification on simulated data showed that the presented approaches match
the ground truth according to their paradigms, we deployed the methods on two

172 A. Jenul et al.

real-world datasets, where underlying block importance is unknown. Prior to
analysis, both datasets were standardized on the trained data. Again, we trained
30 independent model runs.

(a) Breast Cancer Wisconsin dataset.

(b) Servo dataset.

Fig. 5. Distributions of normalized BIR scores in experiment 2 across model runs.

The Breast Cancer Wisconsin dataset (BCW) [13] describes a binary classi-
fication problem (malignant or benign tumor) and consists of 569 samples (398
train, 171 test) and three blocks with ten features each, representing groups of
distinct feature characteristics (mean values, standard deviations, and extreme
values of measured parameters). The average performance was 0.95 (accuracy)
and 0.96 (F1 score) without outliers. The average scores and rankings delivered
by BIR methods are shown in Fig. 5a. All four paradigms discovered that block
3 is dominant, which agrees with previous research on the dataset [10]. However,
knock-in was the only method that distinguished between the importances of B1
and B2. According to [10], block B1 contains overlapping information with B3,
while B2 is rather non-informative. Thus, the experiment underlines a difference
between knock-in and knock-out rankings in the presence of redundancies.
Servo [12] is a dataset containing 167 samples (120 train, 47 test), a uni-

variate, numeric target variable, and four features, two of which are categorical
variables with four levels each, and two are numerical variables. Each feature
was assigned its own block. One-hot encoding was performed for the two blocks
containing categorical features, leading to two blocks (B1 and B2) of four binary
features, each. Blocks corresponding to numerical features (B3 and B4) contain
one feature each. In the 30 M-ANN model runs, an average performance of 0.21
(RMSEIQR) and 0.87 (R2) was obtained without outliers. Figure 5b shows that

Ranking Feature-Block Importance in ANNs 173

for all four paradigms, block B3 was most important. While VarGrad methods
delivered a binary ranking, knock-in and knock-out suggested a ranking with
3 and 4 distinct importance levels, respectively—thus, the level of detail was
higher in the MI-based rankings compared to VarGrad methods.

4 Discussion

Our experiments demonstrated several differences between the proposed strate-
gies. While the composite strategy evaluates features individually and depends
on two user-selected parameters (the feature-wise ranking scheme and the sum-
mary metric), the knock-in and knock-out strategies consider each block a closed
unit. They require no selection of a summary statistic. MI-based rankings deliver
a score in [0, 1], while VarGrad has no upper bound. However, the discretization
associated with the mutual information calculation may influence the impor-
tance scores and, thus, the rankings by knock-in and knock-out. All strategies are
applicable for multivariate target variables, as well. However, an MI-based com-
parison between outputs and pseudo-outputs is prone to suffer from the curse of
dimensionality since higher-dimensional probability distributions are compared
to each other. On the contrary, the vanishing gradient problem can influence
VarGrad in deep ANN architectures. All approaches delivered accurate experi-
mental results, but only knock-in and knock-out provided a consistent ranking of
blocks with minor importance in dominant blocks, such as for the servo dataset.
Even though knock-in and knock-out rely on the same concept of assessing

pseudo-outputs related to each block, their properties and interpretations differ.
The knock-in strategy determines whether a block can deliver a reasonable tar-
get description independently from the remaining blocks. This interpretation of
block importance evaluates the performance achieved if we reduce the model to
solely one block at a time. In contrast, knock-out quantifies whether the contri-
bution of a block can be compensated by any other block. If two blocks contain
redundant information about the target, knock-in delivers high values for both
blocks since each block individually has high explanatory power. In contrast,
knock-out penalizes redundant blocks since each of them can be removed with-
out loss of information. This property became evident in the BCW experiment,
where B3 was dominant but shared overlapping information with B1: knock-in
was the only approach that discovered the higher information content in B1
compared to the uninformative B2.

5 Conclusion

We have demonstrated three strategies to rank the importance of feature-blocks
as post-processing in ANNs with block-wise input structure. The composite
strategy, which is a direct generalization of feature-wise importance rankings,
provided promising results in most cases, but selecting the correct summary
statistic was crucial. Knock-in and knock-out strategies, implemented using
an information-theoretic measure on the model outputs, delivered a trade-off

174 A. Jenul et al.

between the extremes of maximum and mean feature importance in the compos-
ite case. All methods uncovered the true block importance with high accuracy
and delivered new insights into the ANN’s behavior. Still, computing multiple
proposed metrics is advantageous for making informative block ranking deci-
sions.

Acknowledgment. The authors gratefully acknowledge the financial support from
internal funding scheme at Norwegian University of Life Sciences (project num-
ber 1211130114), which financed the international stay at the University of British
Columbia, and thereby fostered the completion of this work.

References

1. Adebayo, J., Gilmer, J., Goodfellow, I., Kim, B.: Local explanation methods for
deep neural networks lack sensitivity to parameter values. arXiv (2018)

2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. In: Advances in Neural Information Processing Systems,
vol. 31 (2018)

3. Alnemer, L.M., et al.: Multiple sources classification of gene position on chromo-
somes using statistical significance of individual classification results. In: Interna-
tional Conference on Machine Learning and Applications and Workshops, vol. 1,
pp. 7–12 (2011). https://doi.org/10.1109/ICMLA.2011.101

4. Amjad, R.A., Geiger, B.C.: Learning representations for neural network-based
classification using the information bottleneck principle. IEEE Trans. Pattern
Anal. Mach. Intell. 42(9), 2225–2239 (2019). https://doi.org/10.1109/TPAMI.
2019.2909031

5. Cao, B., He, L., Kong, X., Philip, S.Y., Hao, Z., Ragin, A.B.: Tensor-based multi-
view feature selection with applications to brain diseases. In: IEEE International
Conference on Data Mining, pp. 40–49 (2014)

6. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (2012)
7. Dagnely, P., Tourwé, T., Tsiporkova, E.: Annotating the performance of industrial
assets via relevancy estimation of event logs. In: IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 1261–1268 (2018). https://doi.
org/10.1109/ICMLA.2018.00205

8. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In:
AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–3688 (2019)

9. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability
methods in deep neural networks. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

10. Jenul, A., Schrunner, S., Liland, K.H., Indahl, U.G., Futsæther, C.M., Tomic, O.:
Rent-repeated elastic net technique for feature selection. IEEE Access 9, 152333–
152346 (2021)

11. Jenul, A., Schrunner, S., Pilz, J., Tomic, O.: A User-Guided Bayesian Frame-
work for Ensemble Feature Selection in Life Science Applications (UBayFS). arXiv
(2021)

12. Quinlan, J.R.: Combining instance-based and model-based learning. In: Interna-
tional Conference on Machine Learning, pp. 236–243 (1993)

Ranking Feature-Block Importance in ANNs 175

13. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for
breast tumor diagnosis. In: Acharya, R.S., Goldgof, D.B. (eds.) Biomedical Image
Processing and Biomedical Visualization, vol. 1905, pp. 861–870. SPIE (1993).
https://doi.org/10.1117/12.148698

14. Wojtas, M., Chen, K.: Feature importance ranking for deep learning. Adv. Neural.
Inf. Process. Syst. 33, 5105–5114 (2020)

15. Yu, R., et al.: NISP: pruning networks borisusing neuron importance score prop-
agation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
9194–9203 (2018)

16. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

Paper III

��������	
��

��������������	
��������

�
��
���	
������ ����������	
� �������
������ ���
����	�������� ��	���
�������	
��
�
�������������������
������	�������������
���	
������
���������������	����

� � ! � � ! � � " � ! � # $ � � % # �# & " � � # % � �

• ������	���

����������������'�����
�(��
�

��
�������	�����	���)�	�����'
�(����*�

• �
�� '
�'����� ��
	���+� �	�� ��'
����
'
���������� ,
����
��	������
����
'
��	(����+*�

• �
��� ����
�(����� ��� �-'�	��	(��� #�� (+�
�

��������
��(�	���(�-����#���*��

� � � % . �� � / � � �

����������
������	������������
�+(
���������
���
	�����,�
��
����
'
��	�����
0��'���	
�����
$ "��

& " � � # % � � �

�	� ����
���#
��)��	�� ���
	�� ���,�
��� 1#���2� �	�� (�� 	� '�,�
���� ����� ��
� �'���
����'��� �	�	� 	�	�+���*� �
��
�
	(����+�����������	������������'��-�
��	����������
���	�	��	+���	����������	������'
����������	'	(���������(����
��
'
�����������
���������	
�����)������������
'
�����������
���	����������
��	����������
��(�	���(�-�#���������*�
#����	�������	
����
�����	��(�����(�����(+�)
���)������	�����	
�����������
���	�	������,���(+�	���������	
�
)����������
������	
�������
�����	���������	��#��*��
���'	'�
��-'��
����
���������
�����	���������������
��
��
���������	���	�	�����������
�����
	�����,�
��	
�
������
��*�
!��������&+����(����������	
��	���#��������������,���������
	����
	��������'����(������	�
�����(��
������������
'�
��
�	����,
����
��	����������
'
��	�������
����
������	
�'	
������
�������*��
��'
�'�����
�����	������������
	''
�	�
� ��� ��	��	���� ��� ���
�
��
����������	�� �	�	������
�'
��������� �,��
��
������� 	��� �,�� ��	���)�	�����
'
�(����*�#�������	��+��	��������
	��������'����(�������
'
��	��������
��3����	
�������������
�	����	�	����*��
��
����+������������
	������
������������'
�(��������	�������)������+����'��-��	�	�1�*�*����������	
�����2���
��
��
����	�������������	������	�����'
�����
��'�
��
�	�������	�����	
�������	���	�
����������	
�'�
��
�	����	��'�
��
#����������,
����
��	�������	��	(�������
'
��	��������
�	��	
���'
�'�
���������
���	
�	����	�����������
*�
���
�"�	
���	
��
�
�������
��'	'�
�'
�������	�
�����	��������������
��������������
�����
	�����,�
��	
�
��
�����
��*�/�
�
�
��
����,���������-������������
�����	��������������
���	���)�	������	����	
��'
�'����*��
������+�
��������	��	����'���,	
����-'�	��	(���#���,��
��
��	�������	������	�	�����������������	
��)��	�����
	�����,�
���
��
���
	��'	
���*���

� %�

��'�������	��
�
*�
#$%	���	��������
��	
*
����4��(�*���1�*������2*��

%��������������	�	��	(���	��"������0�
����

#�	�+���	�%
����	�#��	�
journal homepage: www.elsevier.com/locate/aca

��'�566���*�
�678*78796:*	�	*;8;<*<=77=>�
���������;7�0����(�
�;8;;?�������������
���������
��7>�@	
�
�;8;<?�#���'����;=�@	
�
�;8;<���

�� �����	
�����

$	
��	�� �	��� "3�	
��� 1$ "2� A7�;B� ��� 	� '�'��	
� ���
��� ��
� ����	
�

��
�������������(��������	����	�	�	�	�+�������
��
����������	���'���
�
����'���	���������������	
��	�	*��
������	
�$ "��������	
���������
���
���(��
��	�����+����'����	�������
'
��	(���(+��������
�����
�����
���	���
��	����������
���(�	������
����
��������(��������'
�����*� ������
�����
&��
� 	�(�
�’�� �	,��,
��
� ��	���� �
	�� �
�� 	(��
(���� ��� 	� �
����	��
�'���������'
�'�
����	������
���������
	���������
	���'���������	��	�'����
����	
��������	
�����	��+�	����������(�����)��������
�����������(����
����'���
����'����	�	����������*�#��
���
��������	��������������	�����(+�
'
+���	���
��
����	�� ����
��
������ ��	���
�������������
����'��-� ��
���
��
����	��
�	���	
�� ���
���� �
	���	+�����	���&��
� 	�(�
�’�� �	,�A<B*�
���������������
	����
�,���
	����������	
��������(�������	
��)��	��
���
	�����,�
���1#���2��	������������	�
�����(����
�'
���������'�
�
��
�	�����
	��$ "��������A=–9B*��
����)�������������
���(����+�����
��
����������������
	�����,�
�������
����	��	
������(�-���
��'���
����'���
�	�	�	�	�+���*�

�
��
	'��� 	��	����� ��� ���'� ��	
����� ���
�����+�
	��� ���� ��� 	��
���
�	��������
��������
������+�������
	�����,�
���	����
��
�'������	����
�
������(��������(��������'���
����'����	�	*�0��'�����
������
�	�������
��
�����
���	
�
����'
�(�����
��	���������	����	�����-��	�	�+����	
��������
�
�������	���	
�	�����	''���	����*�&+�	�	'��������
��3�����
������	(�
���
������'� ��	
������������� ���
	��(�����������
	���� �
	�� ��������
����	�� ���
	�� ���,�
��� 1%���2� 	
�� ��'���	��+� ���������� ��� 70�
�'���
����'����	�	�A>–77B*�/�
�
�
��
���	��%����
	���	�
������
��
�
'
���������'�
��
�	���������,��
���������������-'������'
�'
������������
�
��
	,��'���
	�AC�7;B���
�
��	
�������	�������
	���
�������������
��'
��
'
������������'���������
�����
	���	��	���	��+�(����	
������
�����
��%���
��	
�����'
��������������
	��
����	����	
�	���������
������
��
��������	���
���'
����������
���'���
	*�

�
��	(����+������	
���������	��
��
�'
�����	������	����	���	��+��
���
�
���	�	� ���������� �
����
�������	���������#���������*���,���
�� �
���
������	���
�����������������
	��'	
���+�	����	�����
��
������������
	��
���,�
��������,�	��
������
����������
'
��	������,
������'	
�������
��
����	
���������(�	�����(+�$ "�	���
��	�������
���*��
���
��(�������
����
��	���������#��������������	�����(+��
�����'��-���3����������
��������	
� �
	����
�	������ ��
� �	����	����� �
�� ���,�
�� ���'���� 1'
��
��������2��
����
����'����	�	*�

����
��
�����(�	���������� ����
'
��	������	�����,��
��
������������
�
�
�� 	
�� �,�� �(������ 	���
�	�����5� 72� ���� �	�� ����	
�� #���(����
������� 	���
��+� �����+� ��� ����
'
��	(���������� �(�	����� (+� ���'��
�
1����	
2���
	�������	���
��'����(����������������'
���������'�
��
�	���*�;2�
���� �	�� ������ ��� ������'���� ��''������	
+����
������+� ��� �(�	���
��
�������������
'
��	�������
���#��������������
�	����	��
����'�
�
�	����� A7<B*� #� �
�
�� 	���
�	����� ��� ��� �������
� 	�
+(
��� ����������
	''
�	�
��
	���'������
��������(��������'
�����������	�����	
�'	
��1��
�
����
'
��	�����2� 	��� 	� ��������	
� '	
�� 1��
� ��
	����� ������

'�
��
�	���2*�����
������
	��
����
���	���
�	''
�	�
�
	�������
�����	����
1(��
�
+(
�������������	���
�����	������������
	���(��������2*�

&'&' (�%)	����
�������������	�����

�+(
���	���
�����	������������
	���(����'
�'���������	
�������
��*�
#�'�'��	
�	''
�	�
����
+(
�����������������������	��#���	��	���	��
��
�-�
	���
�A7DB*��
���'
�����
���	��(�����������-�
	�����������	
���	��
���
����	��
�(�����������(+���
�
������������
�	��	�$ "�������A7=B*�@�
��

������+���	
���#����'
���
	���������	�������	�	����������	����	
�������
����-�
	�������
	�� ��	��
��� �
�����	���� ���(�������	�� ��'��� ��
���
�
�
�������A7EB*�#���
�
���
�����
+(
���������������������������	
�����������
��
��
��
����	��
����������	��#���A7CB*��
������	�����������	��
�������
���
����	''
�	�
� ���
��'� �
��#���������)����������
��	������ ��� �
��
�	�	��	����	��(����������������	������,��
��������	�	��	(����	�	*�#��
�
��
	''
�	�
��	��� �
������ ����������� ��� �
��� ����+�� ��� �������	��#������
������ �
��
�����	��� �
���	� ����	
������� A79B*��
�� �����'��,	��)
���
'
�'����������'
����'
���������'�
��
�	�������	��#���,
��
������
���
�
��� '��
� ����
	���	������ A7>B*� �
�� '�
��
�	���� ,	�� ��'
����� (+�
�
	�������
��#��������	
���
�������
�����(��,�����
������	
�������'
��
��������	����
��
��'������	����	�����(��3�����+����(�����
������	
�	���
#���'
���������*�������	������������
	��	����(���������������+�	''�����
��� ����� ��
���� 	�	�+���� (���� ��� �
�� ����	
� 	���
��
������� �����
	����
�������	��
	���1#��@#2�A;8–;;B*�

F��
����
�	�����	�����������	�	�����������	���(����
����'���	
�����
���
�����+������
��#����������	
�����������'�
��
�������
���
	���
����	�� ������*� �
���� �
��
�����	�� ���������� ���
�� ���� ������	
��+�
��'
�����
��'
���������'�
��
�	����	��,	���
�,������
���	
���
��������*�
#���
�� ����
�������	������ ��� �
�
���
�� ������� �
��
�����	������������
�
	��,�
�����(����
�����
��	����
��'
�(����	����	�	*��
��'
����������+�
�-'��
����
���'����(����+��������
'
��	�����,��
����
��
�����	������������
�
	��,�
�*��
���
	��,�
����������	
��������	������	�*�A7>B��(��������
����
�����'���	
��������
��3�������
�	��
����)�������	
�������1�� �2�
	����	���������������	����
�'�����	+�
��A;<B�����(�	���(����
�'�
��
�����
#���������*�0����
�����
���'
����������������,��	''�+�����
��#���
	
�
������
�������-'��
���
���������������������������	
���������������
��

�����	��� �
��� 	� ����	
� ������ ,��
� 	� ������ ��� �	���	������ ������
����
'
��	(����+*��
�� ����+� �����������
��
����������	�� �'���
����'���
�	�	�,
��
�
	��������
����,�����������'
�������+�(���������,��
�
��
����	�����������*�$ "�	���%����������	
�������	���-	�'�����������	
�
	������'���	
�������������
��'�������+��(��	��������
��
���	����������
��
����
	��
��
��	
����� ����
'
��	�����'����(�������� 	���'�
��
�	����,��
�
�'���
	���	�	�A;=�;CB*�/��*�7��
�,��	�(����������
	���������
������������
��
���*�$
������������	���,��	�'�������(�	�����(+�	�������
��'
��������

�����	����
��	����
��'
����������
����
������	
������������
�
*�

�����
�����+���
��
�����	���������������	''�����������
������
����
��
��
���������	���	�	����*�F��	����'
�������,��������	''
�	�
����
	���-�����
�
�����	����������
�����	������������	������
���	���)�	�����'
�(����*��
��

����
�� "�
��	����������
	���������
����������	
�
�����	�����������*��
����'����	�	����'
��������(+�	�$ "��������������
	�������
'
��	(�������	
�'
���������ŷ$ "*��
��
����	
�'
��������������(�
	������
����
���
���
��'���������(�	����
��
�����	����$ "�,
��
�	
�����������(+��
��#�����
���'
�����'�
��
�	��������
��
+(
��������*��
��
)�	��'
��������� ŷ ����
��
+(
�������������(�	�����	���
��������� ŷ$ "� 	��� r̂#��*�

!'�*���
����	�'��

'
���������'�
��
�	��������
��
+(
���������������
����������'	
������
(��
�'�
��$ "����������� 	��� ��	����	��#������������*� /�
�
�
��
���
'����(��� ��	�������� ������ ��
������� ����
'
��	������ 	
�� '
��������	���
������������
�	������
�'
�(����*�

�� �����	�
��	
��������

����
�������,�����,�������	�����
���,�����
������������������
�������+�
	��� 	� ���	����� ����
�'����� ��� �
�� ��������	
�
�����	�� ����������
	''
�	�
*�

+'&' ,������

$
��������������� (�������� ��� 	� ��	
�����'
������ ��
��	''���� �	�	�
�
��� ����� ��'��� �'	���R)� ��� 	�����'��� �'	���R�*� /�
� �
��
��
�������
'
�(������������
���
�
����
�����'����'	�������������������	��1��= 72�
	�����
���	���)�	�����'
�(������
�����(�
������������������3�	����
��
���(�
�����
��'�*�

����
�������,���������X ∈ R
×)�(��	��	�	��	�
�-�,��
�
���	��
�������
���)����������	���	�'���*�#�������
	���
�������
���	���'����(�+���
�
�
�
'
�'
�������*� �������������	�
�,������
��
����
����	�
�-�,��
���

��
�'�������
��'������	���1�2�y ∈ R�*�

�
��'
����������	''�������	�����	
��������	��(������
�(���(+��
��
�3�	�����
ŷ = Wx + b 172��

,
�
��W ∈ R�×)�	���b ∈ R��	
���
��'	
	����
���	�������������	���-�	�����

��'�������+������	�
������	
�����	������������
�����"���
���	����
�����)���
�����	��������	����
������
���*�����
���	������	�$ "���������3�	�����172�
(������� ŷ = βx+ y�� ,
�
���
= β ��� 	� �	�
�-� ,��
�
��
������� ���
��)��������������

���
��
��$ "�	���
��
��	���y 	
���
����	��
��'�����
�	��������
��
���
	���������*��
��$ "�������'
�:������
����'����	�	������	�
��,����������	�� �	����� �'	���
�'
�������� (+� ���
�� �����
�� �	*� �
����
���
�������
��	
����������3�����	��+�	���
������	
����(��	����������
��
�
����	����	��
����
	���	-�������
�����	
�	����(��,����	����'����	�
�-�
�
 	���
��'����� �*� ��� �
�� $ "������� (��������� �
�� ���
�� �����
�� 	
��
	�����	����,��
���

��'���������	����������
���	�,
��
�
�'
���������
�
���	���� ��� �
�� ��	��
��� ��� �
�� ���'
������ ��(�'	��*� �����
�
�� �
��
���
���	�����	����������
����
��
	��������	�
�����,
��
�	����������
�
�
��
�� �
�� �
����	�� �	�	� 1�	-����� ���(�
� ��� ���'������2� �
� 	��
	''
�-��	����5�X̂ = ∑.

	=7t	p�	 *�
#��#�������������������	��+�	�����������
	���	'��	����'��������
����

�������	�	
��
������
����'��� �

���
�	���3�����������������	
� �
	���
��
�	������ �7��…�� �/*� �
�������� ��� �
	����� (+� 	�:������� �
�� ���,�
��
'	
	����
��1,���
��2����	���'�
�������	�
���*�/�
�	����,�
��,��
��	+�
��
��= 7��…��/���	�
�����	������
����������
��'
������������	��	�'���������
�(�	�����(+��
�����'������	''����

ŷ = (fD∘⋯∘f1)(xT). 1;2��

.	�
��
	����
�	��������
�'
��������(+�	���������	
����������1	����	�����
��������2�����
��,���
��������������������
���'����	�������*�*��	���������	
�
�����
���������
��	''���� 	�����	����,��
� �
�� ������ 	���,���
��� (��
�,�����,�� �	���������
�����,�
��	
�
������
�*�/�
��-	�'�����
���
	���
��
�	����� 	�����	���� ,��
� 	� ����+� ���������� �	+�
� �� ��� ��)���� 	��
��1��2:=φ1���
+ ��2��,
�
��φ1⋅2� ��� �
����������	
�	����	����� ���������
�'�
	�������������,��������
��	
������������
*��
��,���
���	�
�-����
�	��	���
�	�����+�(��
�'�	����(+�	��������������	�
�-6�'�
	��
�����(�	���
	��������������	+�
*�.	�
��	+�
����	�����	����,��
������,���������,���
���
	���(�	�����
	����
�����
���
	������'
������	
��	�:���������
	�����+�(+�	��
�

�
�(���'
�'	�	������
	��������������	���
��
�*�

�
���������'�
�	�����	�����
��
������������������������������+�������
'	
	����
��	�����
��������������	���'
����������

�
��,
���	''�+�����
��
�����*�#�'�'��	
���
	���+���������	
�
���
��
��������'	
	����
�������
��������
����	���3�	
����

�
�1@".2�����
���
	�������	�	5� ‖ y − ŷ ‖ ;/
��
,
�
��
� ��� �
�� ���(�
� ��� �	�'���� 	��� ŷ 	
�� �
�� 	�����	���� ������
'
���������*�

���$ "�
��
���������
���(:���������'���������(+��
��	���
��
�����
������� �����'�������� 	��� ����������
��������� ��� �
�� �	�	��	�
�-��

�����,���(+�����	
���	����3�	
�������������,��
��
��
��������	�	*�/�
�	�
���
	�����,�
���
���(:�����������
�����	��	���������������1�������������2�
���(������������(+�	��
	����������������	
�
*������	���)�	�����'
�(������
�
���(:�����������������������
�����(�
���������	���)����	�'���*�/�
�	�
��	���)�	�����'
�(���������������������
������	�����1�
��'�2��	���	��
��
���������	�������
�
�'
����������
����	����	(���������
���	���
�������	��+�

�'�	����(+�	�1����
����������2�Y ∈ R(
×�) ����+��	�
�-*�

����
��$ "�����������	''
�	�
������	���)�	������
������+��	�
�-����
�	����	���
��
��'������	�	�����(�	����
��������'
����������Ŷ*��
�
�	���
��
	���	���)�	������������	��(���(�	�����(+�����	
�����
����	���	�	�+����
1 0#2�A;9B�����
��)������	�����Ŷ*�

�
������+��	�
�-��
�	��	����(���	����	���
��
��'��������
��
	������
	��#���������,��
������'������������������������	-��
	����
�	���������
�
�����������'��� ���'
��������	������(�
�
�'�'
�((�������*�#��	���
��
��	���
�������
�'+������������������)����(+�

L(Y, Ŷ) = −
∑n

i=1

∑c

j=1

Yi,jln Ŷ i,j 1<2��

���������������������
��
	�������
����	���)�	�����#����,
�
��0̂ �,1� ����
��
'
��������'
�((����+�����	�'��������(�����������	���1*�

+'+' ����	��
����� �	������������	
����	�
�
��

%
������� 	�� ��)������ ���
	�� ���,�
�� 	
�
������
�� ��� �
	���������

����
�� ������
	���������
��(������
	�����,�
��	
�
������
���������
��
��70��	�	����*��

!'�*���
����	�'��

�������
��	�������������������(�
����'����(������,�
�����)��
	�����*�
���� ��� �
�� ����� ��'�
�	��� 	�'����� ��� ���)��� �
�� ��

���� ������
���'��-��+6�	'	���+*� �
�� ���,�
�� ����� (�� ���)������+� ���'��-� ���
�������
���	�	*���,���
��������������������	�+�,���
����	+���	�����
���������
)�����*�0��������������
���	
�
�������,�
��	
�
������
�����
�
70� �'���
����'��� �	�	�� �
�
�� 	
�� ��� ���	
�
��������	������ ��
� �
��
�
��������������	
�
������
����������
������������	��	
���	��������������
�'�������������������*�

����
��'
������'	'�
����
��
����1�2����	
�
������
�1�2�	
��(�������
'
��
� �-'�
������
�'�
���� ��� �
�� ����
	��
�� A7;�;>B*�#�� ������
	����� ���
�
�,�����/��*�;*�

�
���	
�
������
����������������������������	+�
������,���(+�	���	���
��� ����+� ���������� 1�����2� �	+�
�*�#���������	
� 	����	����� ��������� ���
�������������,��������
���	''�����(��,�����	�
��	+�
��	����
���
�'����
'
����'���A;<B�����������
��
���	''�����������
��)�	���	+�
*��
�����(�
�
	�����G������
��������������)���
����
�����(�
��������+������������	+�
���
�
�����(�
��������������	�
�
�������	+�
���
���+'�����	����	��������������
	����
���
�'����
	���	
��	������(���������
���	��
+'�
'	
	����
�*�

�
��
+'�
'	
	����
������
����
�����'��-��+�����
��������	���	
��
������ ��� �	�
� �'���)�� �	�	���� ��� �
�� '
������,�
�� ������ 	� &	+���	��
�'�����	����� A;DB*� #� $+�
��� 	���
��
�� ���������� �
�� ��
	�� ��(
	
+� ���
�����
/��,�A;EB���'���������
���
	������'
�����*�"'���)�	����������
��

	��������������
��
+'�
'	
	����
���	
�
�	
��'
�����������
��"�''���
����	
+� �	��
�	��*� �
�� ���'��	������ ,�
�� �-������� ��� 	�� �H�0�#�
I�	�
����J�D888��
	'
����'
�������������� 1!$�2*��
��$ "�	��� 0#�
����������,�
�������������$+�
���	����
�����������	
��'	��	�����
�����
7*7*7�A<8B*�

�
�� #���� ����� ��
� ������ '
���������� 	��� ��������	
�
�����	��
�������������70��	�	������
��(���	
�
������
������
�(���	(���*�#�����
�
���	�	������
�
�����������������	������;0���	�������
�,
��
��
��#���
��������	���	��	
��;0�%�������	(�����
���	���
����������*��
���;0�	
�
�
������
��������������(��������������������� �	+�
��	���(��
���
�	��
��	������	+�
��,��
���������+������������	+�
�	���
����	
�������
�'����
(���
�� �
�� ���'��� �	+�
*� 0���������
��������� ��� �(�	����� (+� ��
�����
������������� (��,���� ����� ���,�
�� �	+�
�*� /�
���
�� ���	���� ��� �
��
	
�
������
��������
��"�''������	
+��	��
�	��*�

�
��#����
	���������(��������������'�	�������
���������'����'��
��
����

�
�(���'
�'	�	����*��
�����(�
�����'��
��1�+������

���
��
��
�
	�������	�	2�����������	����
���������
�����,�
���	�����	��������
��	������
��� ���
6����
�)�����*� 0���
���	����� ��� �
�� 	''
�'
�	��� ���(�
� ���
�'��
����
��
	������������	��+������(+�������
�����
�������1'
���������
�

�
2����	������'��������	���	�����������
�����
���
	������'
	��*�

+'2' ��
$��
�	��������	��%������
��

�
�������'��(�
����
�����	��������������������'
�����
��'
���������
'�
��
�	�������	� ����	
�������(+��-'������+����������� �
��'
���������
�

�
��1
�����	��2��
����
	������	
�������������	����
	�����,�
�*��
���
���	� ��� ����� ��
	��
����
,	
�� ��
�
��
������� '
�(������ (��� �
�� �	���
�����'�� �	��(��	''����������	���)�	�����'
�(����� 1����
�(���(���,2*�
�
��
�����	������������'
�����
�����������
	�������/��*�7*�/�
�����
����'���
�	�	�1����2�	
�����������
	���	�$ "�������,
��
�����
	�����
�� ����	
�
'
���������ŷ$ "*�"�������	��#�������
	������������
��
�����	���r$ " = y−
ŷ$ "�	���	
������
��
�����,�
�*�������
	���
�����,�
���	�����
���	����	�	�
�
 	�� ��'��*� 0�������� �
�� '
��������� ��� �
��
�����	��� r̂#���� �
��)�	��

'
�������������
����������	
�
�����	���

�������'
�(��������
������ŷ =
ŷ$ " + r̂#��*�

+'2'&' (�	���"�	���
�)��-��%��
��� �������	���(������
�,�����
	����
���
��
�����	�������������
���

����������� ����������� �

�
�� ��� ��

������� �	����
��	�� ����
��	���)�	�����*�F���-'��
��	������'	
���,�������
����	''
�	�
����	�����
@".��

������� 	��� %.��

������� 1����
�(��� (���,2�
�'
���������
�����
����,	+��������������
��#��������

�����
������	
����������'���*�

��� �
�� @".��

������� 	''
�	�
�� �
�� #��� ��� �
	����� ��� ��	
�� �
��
�	�
�-����
�����	����
����
����������	���$ "�'
���������R = Y− Ŷ$ "*�
�
���	''
�	�
���������	
����
��
�������'
�(�����,
�
���
�����,�
���
����
�����	
���
�������
�����(��,�����
������
������������	�
�-�	����
��$ "�
'
��������*��
��)�	��'
�������������(�	�����(+�	�� 0#��������
	��������
�
������Ŷ$ " + R̂#��*��
��������������������
������,�
�����@".��
������
��
�	���@".��

������*�

��� �
�� @".��

������� 	''
�	�
�� �
�� #��� ��� �������	��+� ������ 	�

��
�������	��������	,	
������
��)�	����	�������	���)�	����*�����
��
����
�(�	���	���(:���������
��
����	�����
���	���)�	�����'
�(������,��	����
�������
����
��%.��

�������	���
�	�����,
�
���
�����,�
�����������Ŷ$ "�
	��	�������	����'���*��
��'�
'��������
���	''
�	�
��������
+������	
���
��

�����	�����'������+�(+���
������
�����,�
�������'
��������
��'
�������
$ "�'
���������*��
������	�
������(+�	�������
��$ "�'
���������Ŷ$ "� ���
�
�����'�������
���	����	+�
�'
��
�����
�������	-�	����	�����	��������
	����
���/��*�<*�"������
��������������������
������,�
������
���������+������
�	����
��	���
�������
�'+��,��
���
�����
���	���
�	�����
�����	������������
	''
�	�
�	��%.��

������*�

�'��� ��������� ��� ��
�������� �
	�� �
�����,�
���
�3��
��� ���������
��
	��������	���������
�����
��'
�������$ "�'
���������*�F��
��������
��
	�������
�����,�
���������
	��	��������+�����	����
�����'��������
��
#���(����� �
�,�� ���/��*�<��-�
����+� �	
��*� ���������� �
��� �������	��+�
�	����
��'
�������$ "�'
�����������

����	��*�

������
������
���'
�(�����,�����������	�� ;�
����	
��	���������
��
#�������
�(������(+�	������λ ‖ Z ‖ ����
�����������������,
�
��
����
��
'
�������	-����'�������
��#���(����*�&+��
�����
���	�����	
����
�������(��
���	��	�������������	
�����
��$ "�'
���������*��

���
�����	�����'��������
���,	���������
	��λ = 7������
	������
�����,�
���������������)������+�
(��������������
*�"������
��ŷ$ "�,����
	����	���������������
��
	����8–7��
������
�	���	(������	�������
	��λ = 7����	�������
�����
��	
����������
��
�	�	���*�#��	���
�	������������	�����'����������������'	
���
��/
�(������
��
��� ��� Ŷ$ "� 	���
 ��� ����
����� �
�� 	''
�'
�	��� �	���� ��� λ*� �
��
'	
	����
� λ 	���� 	�� 	�� 	�������	��
+'�
�'	
	����
� �
	�� ����
��� �
��
�
	������� (��,���� ����
'
��	����� 	��� '�
��
�	���*� F��
� �����)������

����	
��	�����1λ �
��������(��������	��2���
��$ "�����������
'
��	������
�����
�
+(
�������������	''
�	�
��	+�(�����	���*�

+'2'+' ,�������������
�	
��
	���	���
�
�
����������	
�
�����	������������	''
�	�
�,	���������������
�
��
��

���������	��(���
�	
���	�	���������
�(�������
����-���������*�0�
����
�
�� 	�	�+����� 	��� �	�	������ �-��'�� �
�� @��"�� �	�	� ,�
�� �������� �����
�
	������1>CK2�	��������1;CK2���������	���
	��)����	���
�,
�
��	''���
�	(��*��
������������,�
��
����	�������
��
��)�	����������	��	�����*��
��
@��"���	�	���� ���	���-��'����������� ���������,��
�'
���)������������
�
	�������	���������	�	*�

�
��
��
�������'
�(�����,�
����	��	�����������
���;����
���	����
��
��	���)�	����� '
�(����� (+� '
��������� 	���
	�+� 1�*�*�� '�
����	��� ���
��

����+���	���)����	�'���2*�0�
�����
	����������
��#������
��@".�,	��
���������*�

+'2'+'&' ,�������������
' &��
��
��$ "�	���#����������
�3��
���������
��������� ���'��-��+*� �
��� ���'��-��+�,	�� ������ ��
� �	�
� ��������	��
�	�	���*� /�
� �
�� $ "�������� �
�� �'���	�� ���(�
� ��� ���'�������,	��
������������	�C�������
�����	���	���������
���
	������'	
�����������
���	�	*�
�
���'���	�����,�
��	
�
������
����
��	�
�'
�(����,	���������������
��
&	+���	�� �'�����	����� �
	��,�
�� ����
�(��� �	
���
�� ,��
� 76<� ��� �
��

����
!� ������
	���������
��%.��

�������	''
�	�
*��
��'��	����������
�(���������
�
��#���'
���������	����
��$ "�'
���������	
��	����������
�
�1��������,���2�
(���
���
�������	-�	����	���������
�����,�
�*�������
	���
��$ "�'
������������
���
	�������
�����
��#����
	������'
	��*�

!'�*���
����	�'��

�
	�������	�	�	��	��	���	��������*�������	��������'	
�����������
���
	������
����
������� ���'��	����	�� ����� �
	����	��+� ���'	
��� ��� 	� ����� �
����
�	���	�����'
�����
�*�F��
	��� �	���� �
��'�������� ���,� �
	��	�������
'
���������,��������
���	���	������	�	����	�����-'���������'�
��
��,�������
�
����������*�

+'2'+'+' ,����� �
	��	���
' 0�
���� ��	��	����� ��� �
�� �������� �
�� $ "�
������,	���
	���������
��,
�����
	����������1>CK�����
�����	��	���������
�	�	2�	�����	��	��������
����������*��
��#���������,	���
	��������;6<�
����
���
	�������	�	�,
�
���
��)�	��76<�,	�������	��	��	���	������������
����
�����
�,��	�+��'��
������
	����
��#���(���
�������
�����*��
��
�
	��������,�
��,	���
�������������	��	����
����������*�#���
�
�'
	������
��������������
��-'�
�������,	���������
�������������	��	�����(�������
�
��	��
	������78����
	�����,�
��������������������
����
	�����,���
��
�����	���	����������
��
�����(�	�����
��
�(���������	��������
���-'������
'
���������'�
��
�	���*�

/��������
��������� ����
����������	
�
�����	�������������
	�����(��
����� ,��
� �	
�*� �
�� $ "� ������ �
	������
�����	��� ,���� �+'��	��+� (��
��	���
�����	���������
	���
���	���	�����
�����	���	���
���	����	�'����
	
�� ����� ��
� �
	������ 	���'
��������*� �
�����	��� �
��#���,����� (��
�
	����� ��� ��
�	�������
�����	�� �	��������� ��� 	''����� ��
����+� ��� �
��
�
	������
�����	��*�#�C�������
�����	���	�����,	���
�
���
�����������(�	���
��
��
�	������� �����	���� ��� �
��
�����	��� �
��� �
�� $ "������� (���
��
�
	�������
��#����������
���
�����	���	����
�����	���	��
��'�����*�#���
�
�
	�������
��
�����	��#�������
���
�����	���	����
�����	����	�	���������
76<�����
���	�	��������
����������
����������
�����,�
����
�����������
'
����������,�
���	���(+�)
���
��
	�������
��$ "�����������
��,
����
�
	������ �	�	���� ��� �(�	��� �
�� ����	
� ����� ���� '
���������� ŷ$ "−����*�
�
�
�	���
���
��#����������
	���������
���
�����	���	����
�����	���,	��
���������(�	����
����������	
�'
����������r̂#��−����� ����
����������*�

+'3' /	�	�����

+'3'&' ��4!�
�
��)
��� �	�	���� ��� ��
�
��
������� 	��� ����	���� /��
��
��
	����
��

���
	
��� 1/���2� �'���
	� �(�	����� �
��� ��G+�	���� '
������
+�
��+����
'
����������������
����
����
	,��	��
�	����
��������'
���������A<7B*��
��

	,��	��
�	���������
���)�
�	���'����
+�����
�	��)�
�
�	���	����
������
���
	���	����(������
��������,
��
�,�
��
+�
��+����(+������
����������
�����G+���*�#���
��
��'�������
��	��
	����������	
�,���
��1#@F2����
'
�������,	��������,
��
�,�
���	��	�'
�-+���
��
�����
������
+�
��+���*�
��� ���	��� �
�� �	�	���� ����	���� DDC� �'���
	�,��
� 	� �	
+���� ���(�
� ���

�'���	���*� ��� �
����(��3�����	�	�+����� �
���'���
	�,��
�,	�����(�
��
(��,����7D88���−7�	���>88���−7�	
��������
������������C>7���	��
�����
�
�	�
��'���
��*�$
��
�����
��������������
���'���
	�,�
��'
�'
��������
������"	���G�+�!��	+������
������������
��	������,��
�)���
�,���
����
77�'������	���'��+����	�������
�������<
�����
��������,���(+��-�������

�����'���	����� ����	�� ��

������� 1.@"%2�,��
� ;��� ���
��� '��+����	��
(���������

������*�#��	���-�
	�'
�'
������������'���
��
�����
	������
,�
��� 1(��
� #��� ���������� 	���
�����	�� �

������2�� �
�� �	�	� ,	��
��	��	
�������������,����1	�����	����2*�

+'3'+' !	%	
�
�
����������	�	���������
�
��
�������	�������	�����	�	���'���
	��
���

�	�'������������A<;B*��
���	�	��������	����;9D;��'���
	�,��
��	
+����
���(�
�����
�'���	���*��
��,	�����(�
�
	�������(��,����<788���−7����
7;8���−7��
������������;E>E���	��
�����
��	�
��'���
��*�.	�
��'���
���
,	�� '
�'
�������� ������ .@"%� ,��
� 9�
� �
��
� '��+����	�� (�������
��

������*������
�
�
�'
�'
���������,	�������'
��
�����
�����
	������
,�
�����
��
����	�	���*�

+'3'2' �4!�
�
�� �
�
�� �	�	���� ��� 	� ��	���)�	����� '
�(���� 	��� ����	���� ��	
�

���
	
���1���2��'���
	��
���	�
��������������
+'�
�'���
	����	������
�
	��	
�	�����
����79������
���������	�����	���������+'������"	���	��H	���+��
%	����
��	�A<<B*��
���'���
	�����
��
��,	�������
�
	����=88���–;C88�
���	���
	���;8=���	��
����	�
*������
��-'�
�������	�
	�������(�������
;88��	�'����'�
���	���,	������*�$
��
�����
��	�	�+������
��
+'�
�'���
	��
(���� ��

��'������� ��� ,	��
� 	(��
'����� ,�
��
������*� #�� 	� '
��
'
������������'���
��"�	��	
����
�	��H	
�	���1"�H2�,	��'�
��
���*����
��
�
�
�'
�'
���������,	�������'
��
�����
�����
	�����,�
��*�

+'3'3' ,�4���
�
��)�	���	�	��������
��@���)����	����	���������������"�	��	
���	���

���
�����+� �	�	(��� 1@��"�2� �	�	���� ����������� ��� ;D� × ;D� '�-���
�
�+��	�����	�������
	��,
�������������A<=B��������
���	���)�	����*�/�
�
�
��$ "��������,�������
���
���	�'�������70�(+��
�	������	�
�'�-���	��	�
��	��
���
������������>D=���	��
���������	�*��
����	�	��������	����>8 888�
�	�'���� 198 888� ��
� �
	������	���78 888� ��
� �������2*��
����	�����	
��

��	�����+� (�	����� ,��
� �
�� ��	������ 	��� �	
����� ��	����� ����	������
E*8;K� 	��� 77*;CK� ��� �
�� ���	�� �	�	�
��'�������+*� .	�
� ��	��
�� ,	��
��
�	���������
	����	�����(��,����8�	���7*������
�
�
�'
�'
���������
,	���	�����
�	�+�����
��������*�#�;0�%������(����
������������	'��
��
��	��
�������
����	�������������	�����	������������
���'	��	������
�	�����
����
���	�	*��
�
���
���	�;0�%���,	��	''�����,��
��
���
����	����'���
�	�	� �
	'�� ��� ;D�× ;D� '�-���� ��
� (��
� #������������� 	���
�����	��
�

������*�

!� "��
���

�
��'
���������'�
��
�	��������	�
��������������	
��������/���*�=�
	���C*�"�	
�����,��
��
��
��
�������'
�(�����	����
��/�����	�	������
��
(����'�
��
�	����,	��	�
������(+��
����������	
�
�����	��������,��
�	��
�;� ���
�����8*D=7*��
��#���,	������
��+�1(������������)�	���+2�,�
���
,��
�	���;� ���
�����8*D<<*�&��
�	���
�	���������	
�+����'�
��
�����
��
$ "�������,
��
�����	���;����
�����8*>E>*�F��
��
���	�	���	�	������
��
'�
��#���'�
��
��������
��+�(����
��
	���
��$ "�,��
��;����
������8*E7C�
	���8*DED�
��'�������+*��������
	�������
��/�����	�	������
����������	
�

�����	����������������������'
��������
������	
�'
��������*��
��$ "�
���������
��
��/����	����	�	���	�	����� ���������;D�	���79����'��
�������
��'�������+*�

/�
��
����	���)�	������	�	�����,�������'
���������	���
	�+�1'
�'�
�
�������

����+���	���)��2�	��'�
��
�	������	��
���������
���	�	�����,�
��

��	�����+�(�	����*�/�
��
�������	�	���
��$ "�������	�
������	��	��
��
	�+����8*ECD*��
��#���
	���
����,����	���
	�+����8*ECC�,
�����
��
@".�� 	���%.��

����������
����
	�� 	���
	����� ��� 8*ECD� 	��� 8*E9<��

��'�������+*��	����� �
������
�	������� �����	�������������	�������	���
�
	��	�+�����
�����
	�����,�
��(�������
�������'�
��
����
��$ "����
�
����	�	�������	������
	���
��$ "�������,	�����)��������
��
����	��*����
�
��@��"���	�	������
��$ "�����������	��	���
	�+����8*D>>�,
�����
��
'�
�� #��� ���� 	�� 	���
	�+� ��� 8*EE;*� �
�� @".��

������� 	��� %.��
�

������� ���
��3��������	���
	��������8*EE=�	���8*ED9��
��'�������+��
(��
������)�	�����'
������������
��
������
�+����$ "������*��
��$ "�

����
 #� ���
������� '
�(����*� #���
������� 	
�� �
�� ��	��� ��� 78� �
�	��� ,��
�
��	��	
������	�����	���
���

�
�(
*��
��+�	-�������
���	���*�

!'�*���
����	�'��

���������
��
������	���@��"���	�	����������;8�	���;>����'��������

��'�������+*��
��
��	�����+�
��
����(�
�������'�������������������(��
�����������
������
���	
������(�
������	�����179���
��
�������	�	2�	����
��

��
����
	���	����	
�	�����1�	
�����,	+�����,
�������
���	���������2*�

2'&' 4
���)���	���
�

�
���	��������	�������
�	''�+������������	
�
�����	������������,	��
����������� �
��'�,�
�������
	�����,�
��� �����������������	
�
��	�����
�
�'���,
����
��	�������
������
'
��	(����+*�"������
��
�����	������������

����
$� %�	���)�	�����'
�(����*�#���
�������	
���
����	������78��
�	���,��
���	��	
������	�����	���
���

�
�(
*��
��+�	-�������
���	���*��

����
%� "��
��'������
����
��$ "�����������
��/�����	�	���*�.-'�	�������	��
���	
�	��������
�,�����'	
���
������
	,��	��
�	��	
����������	�������
��	���
��'�����
�	�����	����
������G��*�1/�
�����
'
��	���������
��
���
��������������
�����
���)��
�����������
��
�	��
����
���

�������
��F�(���
���������
���	
�����*2�

����
&� ���
�����������)��������
���$ "���������
	���������
���	�	��������	�	����������9��7;�	���79����'������*��

!'�*���
����	�'��

���������	�������
������	
�'
���������'	
���	�������
'
��	����������
��$ "�
������	
�����������(���������
���	���	���*�����
�������,����,���-'��
��	�
�������������'����(����
	'
��	����	��������������	����
��
�'�
'���*�@	�+�
����
������	��������������	
������	�	��	(������'�
��#�������������	���

��
���
����
�����������������
��
�����	������������	''
�	�
*�

/��*�9��
�,�����
��'���������
��)
������
�$ "����'��������
����
��

�������
	���������
��/�����	�	���*��
�����������'����
��
���
���'	���
���
����
���	������'	�����
�,��(+������	
�������
�������
������	�'��������
��
��	���
�'����*�&	��������
���(��
�����
��'����������������������'����(���
����-'�	���,
��
��	�'�����
	
���
����	���
�'
+���	��'
�'�
���������
��
��

��'����������'������*�/�
�����	�����(+������
�����
���	�'�������
�
��� �	�	���� (+� �
��
� '
������ �
��'� 1�
������� ��
��+�� �	���
��� 	���

����
 '� "��
�� '����� �
��� �
�� $ "������� ��� �
��
������ �������� ���� �	�	���*� .-'�	����� ��	��
�� �	
�	���� ��� �
�,�� ��� '	
���
����� 	��� �+�(��� ��	��� �����	����
�����
������	����*�

����
(� "��
��'������
����
��$ "��������
	���������
��@��"���	�	���*�.-'�	�������	��
���	
�	��������
�,�����'	
���
������	����+�(��������
�������	���������*�1/�
�
����
'
��	���������
��
���
��������������
�����
���)��
�����������
��
�	��
����
���

�������
��F�(���
���������
���	
�����*2�

����
�)� �	�����,���
�������
��)
������
�$ "����'��������
����
��@��"���	�	�����
��
	'���(�������
����	����	�����G��1;D�× ;D2*��

!'�*���
����	�'��

�	����2�� ��� ��� ���)
���� �
	�� �
��)
��� �,�� ���'������� ����������
���
�	������
�����
�
��	�'���*��
��'����	������'
	������	��
��'������
��+�
�	�'���� ,��
� �	
��
� #@F� �	����*� �
��� �������
	���� �
	�� �
��� ���
�
���
�� '����� ���� �	�� ������� '����(�+� �����,�� �
��'����� �
� ���)
��
	�
�	�+����,���
�
+'��
��������
��'���������
���	�	*�/�
�
�
��
������
�
'������	��	����(�����������
�����������������
�*�

/��*�>��
�,�������'���������
��
��
�����������)��������(�	������
���
�

��� �����
���� $ "�������� ���������� 9�� 7;� 	��� 79� $ "� ���'��������

��'�������+��	����
	���������
���	�	��������	�	���*�"��
�'�����	
���������
��
�������������'�
�	���
�����������
����	��
���'	�����
�'
����������
��

��'������ �����	���� (+� '�������� �
� ���	����� '�	��� 	��� ����
	���*� �
��
����������������9�$ "����'��������
�,��	�'�	������
��
������	
�����
�
�� 7>88� ��−7� �
���*� �
��� '�	�� ��� �+'��	�� ��� �+������,��
�
��
� ��'���
�����������
�	���
�����	�'����A<;B�	����	��(��	�������	���������	
+����

��'������������	�����,��
��
����������	�����	
�	����*���
�
�	
�	��������
��
������
������	
���(��	�������������<888���−7�	���7<88���−7��,
�
��
�������'�	���	
��	�����(��
���*���,���
����
���
	��9�$ "����'�������
	
���������(���
���
����(����������	��+�	''	
���*�#���
�
��(��
�	�����
��� �
	�� �
��
��
������� ����)������� ���� ��
�� ����+� ,��
� 	�� ���
�	����
���(�
�������'�������	������	�������	�����������������
�)�����*�

/�
��
������
���������������	�	������
�����
��'������
�,�����/��*�D�

���	����'�
�	��������
��*��
��)
����,�����'�������1�����)��
�2����'�	+��
	���
�+���
����
��,
��
������	�����
	���
�
���	+�(������������������
��
�'���
	�'�������'�(+��
���������
	���
�����
	���(������

��������
����
�
��'
�'
��������*�#�
+'��
�������
��-'�	�������
���'
�������������
	��
���
	�������
����������,��
��
��'
���
�	���������
���������
��,	��
��
	(��
(����'	
������
���'���
	�'
��
�����
��	�	�+���*� ���(��
�'�����,��
����	�����	�����)
�	���������
�������	
��+�����	�'����,��
����
���	���
�	����
+� 	��,���� 	�� �����	����� ��� ����+���� �	�'����� �*�*�� �
��H��+	
��
��
���	���
�������(��
�	�����	��	
��������
���	����1;��8*C2�����
�����������
'���*�

/�
��
��@��"���	�	������
��	�����	�������
��'��������/��*�E��
�,�
�,�
�����	
������(��,�����
�������
������	������	��(��
���	���*��
�����
��'����
����
��)
����,�����'���������
�,���
	���������,��
������	
�	''�	
	����
���
�	��=��E�	���>���������(���
��'���������+������
�
*�/�
�
�
��
���
�	�'��������
��������7������	
�	,	+��
����	�'�������������8�������	������
	��
�
��)
��� ���'����������������
��� ��
���� �
��� ��
	��
�� �����*�#���
�
�
����
��������(��
�	���������
	���
��	����������-'�	������	
�	��������	�
�+�
��,���
��
���	
���
����'����������'	
�������
�����������
��
����
�
�
�	�	������ ��	����� �
	�� $ "� ����������
�3��
��� ��
�� ���'������� ���
����������+��	'��
��	����	
�	��������
��@��"����	��
��*�"������
��@��"��
�	�	����������������;0��	�'�����	�����������	����'����(����������	������
��
$ "���	�����,���
���	����	��������
���
����	��;D�× ;D�'�-�����	����'	���
	���
�,�����/��*�78*��
����	�����,���
���
��
���
��
�����������
����'���
�'	���,��
��	
�����'	�������
��
���������$ "������1�2�	���	�����	����

����
 ��� ���� '���� ��� �
�� ����� ����
�����	��� 1	(������� �	����2� �
��� �
�� /����

+�
��+�	�����	�	������
��
��'�
��$ "�������	���	���
��
��
�����	�����������*�
�
��(����	���
����������
�,��
��$ "�������
�����	���	����
����,�
�����	���	���
�
�
��
�����	���

�������
��'�������+���� ���
�	������
��
��
�����������
��
�*��
��
�
�+�������
�,���
����,�
�����	���	���
��
��
�����	���

�����������
���	����
��
�
	���
����
����$ "�
�����	��*�1/�
�����
'
��	���������
��
���
��������������
�����
���
)��
�����������
��
�	��
����
���

�������
��F�(���
���������
���	
�����*2�

����
��� %����������	�
�����������������'
��������������
��@��"���	�	���*� ���5�$ "��������
��
�5�$ "�+ ��������	
�
�����	�����������*��
�����(�
������
����	���	���
	
��
���������
���	
��+�	����
������
�	������������	
���������
��(
�'����	���
��(�����*��
��(
�'�����
�,���
����	���)�	�����	���
	�+�'�
���	�����
��	�
������*�

!'�*���
����	�'��

'
���������*��
��)
���$ "���	��������������(��������������	'��
������	��
�
	'��������G�
��������������,��
��
���	
���
�����
'
��	������
����
�����
��
'���*��
����
�
���	������	����
����(�����
����
�������	����	
�
	��,
������
���(�
�*�

�
��
�����	������������	''
�	�
�����
��	�������	���'������
��	
�����
����������
'
��	�����(+�����+����
�,��
��)�	��
�����	���	
���
	�����
���'	
�������
��$ "�
�����	��*�/�
�
��
�������'
�(�������
���
	������	��
(������	������	�������'�����	�����/��*�77*�����
���)��
����
��	(��������	�����
����
��
�����	�������
�����������'
����������	
���
�,�*��
��(�������������
��
)��
����

��'���������
��$ "�������
�����	���'�������������
�	������
��
�

�
�������� ���
��
�*��
����

��'���������,�
�����	���	���
��
��
�����	��
�

�������	
���
�,��(+��
���
�+�����*��
��
����������

��'���������
����
��,�
�����	���	���
��
��
�����	���

�������������
�	������
��
*�����	��(��
�(��
�����
	���
��$ "�
�����	���,��
��	
���	(��������	�����������������

�������(+� �
��#����,
���� ������	�'��������	�
��
�
�
�����	��	���
�
'�
��
������
��
�����	�����������*��
��'����
���	����
���	�������
��
��
����	�������������	����	+�(�����������
��������+����'����(���������
����*�
�*�� �	�'����,��
����	(�+� �	
��
�
�����	������'	
��� ��� �
�����
	���
��
����	������
�(�����*��
�������	��������+�����	�'�����	���
���(�����'���
���� ,��
�
��'���� ��� ������	�� �

����	
������ ��� �
�� �	�	� �����������
'
�����
�*�

�����	���)�	�����'
�(������	����'�����	��������������������+��
���������
����
��
�����	������������	
�������������	�
�����	���
�,�����/��*�7;*�#�
�����������	�
�-��������������	��	���	�������'�
��
�	����(+��������	�
����	
+�����
�������������
�����
����'
����������	����*�&+�������������
�
�� ���������� �	�
�-�
�,�� �����	��� �
�� �
��� ��	��� 	��� �
�� ��������
�����	����
��'
����������	��*�/�
�	����������	���)�	�������������
����	��
��	�����
������
�,�����
�����(�
������

����+���	���)����	�'������
�����
����	����
���	
��������(�
�*���
����
�������(�
��	
������	
�����	��	�
(
�'������
���������
���,*��
�������������	�
�����
���	����	������
	��
	
����
���
	����������
	����
�
*�/�
�����	������
��$ "�������'
�������
�
��������>����(��	�E�,
����+�>7������*���,���
���
�������	����	�����,��
�
�������
�
���	
����

������(+��
��#��������*�#�������	��+�������	�������
	�� ��������	�� �	�'���� ,
��
� �
�� $ "� ������ '
�������� ,
����+� 	���
��

������(+��
��
�����	���

��������,��
��
��	������'��'�����,
�
���
��
����	
�������,�
���'��
�+*�#���-	�'�����	�������
�,�����/��*�7<�,
�
��
�
��$ "�������'
���������
��������E������	������
����

����������D*��
��
(
'�����
�,���
	���
��$ "�������,	��������
+����)���������������������
	������
��	���
�	������	����	����1D��=�	���92*�����
�������+���
��������

����
�!� ���'����
���$ "�������	���	���
��
��@".��

�������	''
�	�
���
�	��	�'�����	��*��
����	(��5�D��$ "�'
��������5�E��'
���������	���
�
�����	���

������5�D*��

����
�#� �;����
������
����������	
�
�����	�����������������������
�������(�
��
��� $ "� ���'������*� �
�� �

�
� (
�� �����	��� �
�� ��	��	
�� ����	����� ��� 78�
�����
����#���,���
�������	���	�����*�

����
�$� #���
	�+����
������
����������	
�
�����	��������������
���	���)�	����������������
�������(�
�����$ "����'������*��
���

�
�(
�������	����
����	��	
��
����	��������78������
����#���,���
�������	���	�����*�

!'�*���
����	�'��

�(�	�����	���
��
��
�����	�������	���������-�
����+����)������������'
��
������������
����	������(��	��D*�

#� *���
�����

�
���	���(���)������
��'
����������������	
�
�����	����������
����
����
	������������
'
��	������	
��'	
��+�	�	��	(�����*�*���
����
������	
�
'	
������
�����������*�����	����,
�
���
������	
�'	
�����	�
+(
���������
�����	�����
������
�(���������'
������������	����'
�������(����
������
���
�
	���
��'�
��#�������������	���
�	����*��
���-	�'�����
�,������
��

��������������������	����
	����������	
�#�����������������
������	
�$ "�

�����	���+��������������
	��	
������������������
��'�
��#�������������
'�
��
�	���*��
��������+�����
����������	
�
�����	������������(�������
�������������,
����
��'
�(����������)������+����'��-�	����	+���
���	��
	��������	���
�	��������	�(�	���(�-�#��*�

��
�
�������	���������	����
	��#���(�����������	
������	�,	+���
��
��'�
��
��
�����
��	
����������'
���������*�/�
�(��
��
���	�	���	���
�����	�	�����	�	�+��������
�������+���
�������
��������'
���������'�
��
�
�	����(��,�����
��#����	���$ "��������,�
���������)�	��*�/�
����
�
���'���'
�(�������������
�
���
��������
'
�������
	���
�����	����
+(
���
���������� 	���� ������� �
� ���
����,��
�
��	
�� ��� ��'
����� '
���������
'�
��
�	���*�

��� �������,�
�
+��
	��(��
��
��@".��

������	���%.��

�������	'�
'
�	�
��� ��
� ��	���)�	����� '�
��
���� ,���� ���'���� �����
������ ��� �
��
��

��'��������'�����	�����'
�(�����1�*�*�������
������������������2*����
������������	��(���
	,��,
��
�
���������
���,��	''
�	�
��������'�
��
�
(��������
���-	�'�����������
���
�
�*������	:�
������
�����(��,����
�
�� �,�� 	���
�	������ ��� �
	�� �
�� %.��

�������
�3��
��� ������� ��� 	��
	�������	��
+'�
'	
	����
���������
��(�	����(��,����
�,����
��
��
$ "��	����
��#�������������
�(��������
��
+(
���������'
���������*�

#� �	�
� 3�������� ��� 	��� ���,
��
�
� �
�� '
�'�����
+(
��� ��������	
�

�����	�� ���������� ��� ������	
+� �
� ��� ���� 	���
�	�����+� ������ �
	��� 	�
$ "� ������ ��� ��''�
�� ����
'
��	������ 	��� 	� ��'	
	��� #��������� ���

	����� �
�� '
���������*� ��,���
�� �
��� 	���
�	����� '
������� ��� ��
����
�����������(��,�����
����'	
	���$ "��	���#���������(�
	����
�*�F��
�
�
��
+(
���
�����	�� ���������� ��
���� ��� ,���� 	�,	+�� (�� '����(��� ���
���'����	�'
������������	�������������'��������,��
�
��	
������
������	
�
	�����������	
�����
�(������*�������������
��'
�'�����
+(
�������������
�	��(���
���
�����	���

��������
����G������
��”(�	���(�-” 	�����	����,��
�
�
��#����������,
�
���
���

���	�����'���������
�������	��������
��
����	
�������'	
�*�

"�''�
���� (+� '
��
� ���,������
��	
����� �
�� �	�	�� ��(:���� ��� �
��
������ (��������� ��� ��� '����(��� ��� :����� �
�� �	�����+� ��� 	� ������ (+�
�������
�����
��������������
�������
��������������	���	��������
��3���*�
�
����	����������������
�����
'
��	�����'
���������	��
���
�+�(����������
������,���	����
���*�����
������
	�����
�����
���	�����	�����'�����'
��
����� �����
�� ����� �
�� ��(�'	��� �'	����� (+� �
�� $ "� ���'������*� �
��
��
�
��+'���������	���	��������'
�������(+�)���
��	�����	��
���	'������
��
���
	�� ���,�
�� 	��� ����
��� 	� �����
���� ��	��
�� �'	��� �
	�� �
�� $ "�
�����*��
���
������������	���	������
����
��#��������'�����������
��
���,�
��	
�
������
���	�����

����+������������	���	+�
��������������
�
�
��(�����'�����*�%�

����+���������	���
����
��	����������	���	����������	����
	���
�,��,��
��
��@��"���	�	���*�&����70�����	����	��(���
�	�������	�
�����	
��	�
��������������
����������
��
�
�	����	�����A>B*�

�
��
�����	�� ���������� ��� ���� �
�� ���+� ,	+� ��� ���������� �����
����	
������,��
�	�$ "������*�#���
�	�����+��	���������	
��-������������
$ "����������� ���
� 	�� �&/�$ "� A<CB� �	�� (�� �������
��*� �
���������
���
�� (�� 	� ����� 	���
�	����� (��� �	��� �
�� �	��� L�-�(����+� ��� ��	��
��

�'
�����	������ �
��#���'
������*� ����
'
��	(����+��

���
��
���������
��
�����������������
��	����(���
	��������*�

"����� �
��@��"�� �	�	���� ��������� ��� ;0� ��	���� ��
����� 	� �

����
���������	�� �����
�
�'
�����	�������� ��'����	�	��X�� 	��	���
�	����� ���
�����
������ 1���������2� �
�� ��	���� ��� (�� ��	��
��� ��
� �
���	
+� $ "�
��������������
��	''���	��������	����������	
�$ "���
������������$ "��
����
%$ "� A<9�<>B���
����+�,��
� �
�� �����
�
�'
�����	����*��
�������
����
	���� '
������ ��	����� ,���
��� 	��� ��	������ 	����� �	�
� ��� �
�� ��	���

����������� ,
��
� �	�� (�� (���)��	�� ��
� ����
��	������ �
��
���������
�����*���,���
��,
������'	
�����
��������������	���
�	��������
��
��
@��"���	�	��'�
��
�	����,	����	
��������	������
���	
+�$ "*�

�����
��-	�'�������������	
�
�����	������������,	��	''��������$ "�
������� ������ �
�� �'���	�� ���(�
� ��� ���'������� �������� (+� �
�����
�	���	����*� ��� �	�� (�� 	
����� �
	�� ������ ��,�
� ���'������� ���
�� (��
(���)��	����
��
����(��3�����
�����	������������	''
�	�
*�F��
���,�
�
$ "����'���������
�����
	�����,�
���������	��+��������
���
������������
�
��$ "�����������������-'�	���	�����
��	
�	���*�/�
�
�
��
���������
����
'
��	���������+'��	��+�������������
��)
�����,����'�����������
����
�
�������
���	
��
��	����*���������,�
�$ "����'����������
��	����
������
�
��
����������������
��$ "�������	����'�������������������	
��������
��
������� ��
� �
�� #��*� ��� ����� �
�� ������� ��� ������ �����
���� ���(�
�� ���
���'��������	����-	�'����,�
��
�'�	����������9�	���7;�$ "����'�������

��'�������+��	������'�������
+�
������������
	������,
����
�'�	�����
�
��#��������
����,�	����	
��
�
�����	��*�#�'
�����	���������
��
�������
���(�����'	
���	
���
�,�����/���*�7=�	���7C*��������
	����
�����������,�
�
$ "����'�������
�����������(����
�'�
��
�	��������
��
���������
+(
���
�����*�#���-��'���������
���	�	���	�	����,
�
���
�����������,�
�$ "�
���'��������	��������)�	���+�,�
���'�
��
�	���*�#�'����(����-'�	�	�
�������
� �
��� ��� �
	�� �
��#����
	������'
������,	����	(��� ���)���	�+�

����	�������
�	���������
��
�����	��*���������
��#���,	������	(������
�����������+��������
���	
��
�
�����	����
���	�
�������$ "�������1��,�
�
���'������2��
������������	�����
	���,�
���'�
��
�	�������'	
������	��
�'���	��$ "������*��
���	���
������
��
�����	����������������
�,��(+��
��

��
�
��	
�	��������
��	�����	�����

�
�(
���
��
��9����'������������
	���
�	����*�

$� +����
����

F��
	��� �������
	���� 	�
+(
��� ���������� �
	��,�
�� ,
�
�� 	��
	
��)��	�����
	�����,�
��1#��2������������'
������
�����	����
���	�����	
�
�����*� �
�� �����'�� ��� '
�������� ��
�
��
������� '
�(����� 	��� �	��
�
�-���������
���	���)�	������	���*�����
��
�����	��������������
������
��
�	�	���������������'���� �����	�����	
�	�����������	
�'	
���	���,�����
��
�	:�
��+� ��� �
�� �	�	����������� ��� (�� ����� (+� 	� ����	
� ����
'
��	(���
������,
�����
��#��������������(������
��'
���������'�
��
�	���*�������
�
�,���
	��,��
��
��'
�'������
	��,�
���������'����(������	�
�����	������
�
���	���'
���������'�
��
�	����	��	�'�
��#�������������(���,��
��
��
	�����(���)���
	��	��	
��
�'
�'�
���������
���������	��(������
'
������
�
�
�(+��

��������
��(�	���(�-�����
��#��*�

+"�	�,
�
��������
�������
����
���������

"
���
-����.
@��
������+��"���,	
���F
������– �
����	���
	��*�/�0

��	���.
%����'��	��G	������@��
������+��"�'�
��������F
������–
����,�
���������*�1��2��
,����.
@��
������+��"�'�
��������F
������–
����,���
�������*�3�������
-�2	�
4����	.
%����'��	��G	������@��
������+��"��
'�
��������F
������–
����,����������*�

*����������
�0
���������
��������

�
��	��
�
������	
���
	���
�+�
	���������,�����'������)�	���	��
����
������
�'�
���	��
��	�����
�'���
	��������
	���	''�	
��������L������
�
��,�
��
�'�
��������
���'	'�
*�

*���
�2����������

0	�	�,����(���	���	�	��	(������
�3����*�

5����	��
5� 6
�����������
	���

"�''������	
+��	�	�����
���	
�������	��(���������������	��
��'�566���*�
�
�678*78796:*	�	*;8;<*<=77=>*�

!'�*���
����	�'��

"�0�������

A7B "�	����F������	
����@	
��������
�	��F������
��������	
�	����	��(
	�����'
�(����

����
�����
+��������(+��
��$ "����
������5�@	�
�-�$��������"'
����
��7ED<��
''*�;D9–;E<*�

A;B "*�F�����#*���
����*�F�����F*M*�0������
���������	
��+�'
�(�����������	
�

��
������*��
��'	
��	����	����3�	
���1$ "2�	''
�	�
��������
	��G�������
�����"�#@�
M*�"��*�"�	�*�%��'��*�C�17ED=2�><C–>=<*�

A<B @*�@	��������*�&����
	���*�&	��
+	��@*�I	������$*#*��+
�	�����#����'�
��	��
��������	������������	�������
����
��(��
–�	�(�
���	,�����'���	�������	��������
�	��	����"��*���'*�77�172�1;8;72��7<><=–7<><=*�

A=B #*��	�'�
��.��	
�����#��
�	��&	������
����&*��������M	�� 	
������(
	
���#
�	�	���
$	���	�#*�"	��	�����	�� �����*�*�%�����������$
���������'������'�
��
�	����
��
����
���������	
����
	
����'���
����'����	�	5�	����'	
	�������	��	��������7��
�������������	�����
	�����,�
���'	
��	����	����3�	
����	���
�����
��
�������
����������M*�%
������
�<9�1;2�1;8;;2�

ACB ���	
������������!��
����	
��������
���������
����	�������� ��	��������
��'����(���
(���)���������'���	
�������
��'���
	��'
�'
����������M*�%
������
�<9�1;2�1;8;;2�

A9B $������@��

	��0	́
���$	������@��������'���7����������	�������������	�����
	��
���,�
�����
�������	������'
�����������������
�����
	��������
����(���������	
��
���
	
����'���
����'+��$���
	
�����&���*����
���*�7D<�1;8;;2*�

A>B M	��'��#�3�	
�������,	���	�� 		

������!�

��G���M	����
	�
��*��
	���
@*� ���	
����%*�&�+������.���	�@	
�
��
���%����������	�����
	�����,�
�����
�
��(
	����	���'���
����'����	�	�	�	�+�����#�	�*�%
��*�#��	�EC=�1;87>2�;;–<7*�

ADB ��	�G���	��&�	G
����H��
	�"
	'	�	���H	���������	�����#�
�����
��
��%��'	
��������
	������	�����	���'
��'
�����������
����'���	
�����	����
������
�����	���)�	�����
������
	
����'���
	��%
������
�������� 	(*�"+��*�;7C�1;8;72*�

AEB J�	�����N
	�����	�� ����M���	��J���J�	�� ����O�(���O�����0��'�'���
	5�	����������
�������'���	
�����	''
�	�
���
�3�	����	������'���
	��	�	�+�����#�	�*�%
��*�#��	�
78CD�1;87E2�=D–C>*�

A78B "	����@	�����/	
���@���	����O	���(�&	G����������������	�������������	�����
	��
���,�
�����
��'���
����'�������	��
��
��������M*�%
������
�<;�1;87D2���;E>>�

A77B M�	����0�����@���:�	��������O��J���J�	��3�	��N
�����#�'
	����	�������������	��
���
	�����,�
����������
�����
����	������	�	���'���
	����
��	��	���	���	��
(������M*�%
������
�<<�1;87E2���<7D=�

A7;B %
��
	��%��������/�	
���@���
��'
	����	�������������	�����
	�����,�
�����
�
������	
�	���
��
������5�	''���	��������������	��(
	������%
������
�������� 	(*�
"+��*�7D;�1;87D2�E–;8*�

A7<B "	
	������
��0����
��.

	���$����
�M	�������
�	����&���������#�(���
�	
����
�
����
'
��	(����+����
����������'����
	�����,�
������5��*�F	��	�
���*� 	
��
������
#*�&�+���G���
��/*��’#��
�́�&����.*�/�-���*�!	
�����1.��*2��#��	�����������
	��
����
�	�����$
���������"+����������*�<;��%�

	��#�����	��������*��;87E*�

A7=B !
���
�#���
������$���
��	���	���� 	
�����(�
�����������	
�����������,��
�	�
���'�������
	�����,�
����'���
��
��������+������M*�%
������
*�78�1C–92�17EE92�
98C–97=*�

A7CB @�
����
	�
����#���N���	���	�	�	����@�
���&�:	
���#�������
+(
�����	���)�	�����
���������	
��)��	�����
	�����,�
���	��������'�������	
�
��
���������������.-'�
��
"+��*�#''�*�<E�1<2�1;87;2�;989–;9;8*�

A79B $������O���@���O��� �,��F��(�	��N
����0�����'��������	�'	
��	����	����3�	
����
	
��)��	�����
	�����,�
��1'���	��2�
+(
�����������
��
��'
�������������������
�
����������
������
�	�+�����
�����
������	�(���
	�����/�������*����*�78<�1;87D2�
9D–>C*�

A7>B @*#*�����	����@*�"
)�
��	
�	���%*F*�����$
������������'�
�����
�	�����
1'�
����+2������������
�����
+���5�����
����������(+��
���������
+(
������
	��
���,�
���M*�/����.��*�C7�1<2�1;88;2�;<E–;=D*�

A7DB "�
��
�0	
	��$
�+	��	�����	��/�	��
���-�
	������(+����������'���	
����5�	���
��+��
��5�;87D�"����������
�	����	��%����
��������.����
�������%�������	�����	���
#�
��'	������
�����+�1�%.%#2��;87D��''*�7>EC–7D87*�

A7EB @�
	�����&
	
������	����&���
	��	��#(�����	
	(�@����	�����0��'���	
�������
�
���	�������	���5���	���)�	�����	����+�'���������	��G	������#''�*�#
���*�������*�<7�
1=2�1;87>2�;EE–<7C*�

A;8B !*�$���
��N
	��*��������
������
��	������������	�
+(
���	
��	�	������
	�����,�
��
����������
����'������C8�1;88<2�7CE–7>C*�

A;7B $
	��
	��
��#
�������������(��"��:+�����
��������+	�	��#����
��O��	��
#�
+(
���	
��	�	������
	�����,�
����������
��
�
����
��'
������
��	���������
��
����	�����	
������...��
	��*�$�,�
�"+��*�;C�172�1;8782�C;=–C<8*�

A;;B !��+����F	���� ����N
�	���� ������@���J�	�����O���$����F���J�	�'����F���&	�5�	�
����	
��������	
�
+(
����������
����'
�����������������
������������
���#�
������
��
7<�1;2�1;8;<2�<>E*�

A;<B �����
�"
��	��	�	��!����
�+���������#��-��
�G
����+����+	�"�������
��
����	��"	�	�
���������0
�'���5�	����'���,	+����'
���������
	�����,�
����
���
���
)�������M*�@	�
*� �	
�*����*�7C�1C92�1;87=2�7E;E–7ECD*�

A;=B 0	����@*��		�	����.�,	
��H*��
��	���$	
��	����	����3�	
������
������
��'���
	��
	�	�+���*�7*�
��	����������
�
�3�	����	������	��(
	��������
����	����
���-�
	���������
3�	���	���������
�	������#�	�*�%
��*�98�1772�17EDD2�77E<–7;8;*�

A;CB $������@��

	��0	́
���$	������/���
����@	
�����M�����J���M����@*�#������#�����
#*�!�,����M�
����M*�M	������#����	��
	�&�	����������M�	��@��
�������
��0����	��
�*�����������#��������
�����0��'���	
�������
���	
����
	
����'���
	���	�	�
���������5�
+'���	���(���)�����
#%���
�����#�	�*�%
��*�7C>�1;8;;2*�

A;9B �
���
��	��������(�
����(�
�
	����M�
����/
����	����
��.�����������"�	������	��
 �	
����*�"'
����
�"�
�������"�	���������"'
����
����,�O�
���;88E*�

A;>B 0	́
���$	������$������@��

	��#�����
�	�����	����	����
+'�
'	
	����
�����������
���'��'���
	��������������
�
��
�������	�����	���)�	������	�����%
������
��������
 	(*�"+��*�;;<�1;8;;2*�

A;DB %�����F
�����F����������,	���
��O	�
�"	�	����&	�	�	�5�&	+���	���'����G	�����,��
�
���
	��#
�
������
�����
����
	��#
�
������
��"�	
�
��;87E�	
J��5�7E78*77DCD�A��*�
 !B*�

A;EB @	
�P��#(����#�
��
�#�	
,	���&	

	��$	����.������&
������N
������%
����
%��
��%
	����!
���"*�%�

	����#��+�0	�����M���
�+�0�	���@	��
����0������
"	�:	+�!
��	,	����	��!��������,��#��
�,��	
'��!����
�+��
������@��
	�����	
���
O	��3����M�	���	�	��M�G���,��G�� ��	�G��	���
��@	�:��	�
������
��M��
� ����(�
���
0	��������@	��́���	:	��@���	��"
�

+�@��
���0�
���@�

	+��%

�����	
��
@����"�
����
��M��	�
���"
������&������"�����
����+	�"�������
�����	���	�,	
��
$	��������
��H	�
������H��������H�:	+�H	�����	���/�
�	��	�H��́�	����
����
H��+	����$����F	
�����F	����(�
��@	
�����F�����@	
�����O��O�	���
J�	�3�	���N
����������
/��,5� 	
���"�	���@	�
���� �	
������������
���������
"+�������;87C*�"���,	
��	�	��	(����
���������
L�,*�
�*�

A<8B /*�$��
����	��!*�H	
�3�	�-��#*�!
	���
���H*�@��
����&*��
�
������*�!
������
@*�&��������$*�$
�����
���
���*�F������H*�0�(��
���M*�H	���
'�	���#*�$	������
0*�%��
�	'�	���@*�&
��
�
��@*�$�

����.*�0��
���	+��"��������	
�5��	�
����
��	
��������$+�
����M*�@	�
*� �	
�*����*�7;�1;8772�;D;C–;D<8*�

A<7B ������
�#	����
�������
������
����	�������� ��	������
����&�̈���
��"����
��
!�G	�
�,�F�(�
����0*� ���(�
���"�����M	
�����
���������
����	��#����
��/����(����

��
	
�
��	�������������
�'
������������	��
	����������	
�,���
������'
������

+�
��+�	������	�	��	�;8C�1;87E2�7;*�

A<;B �
����	�������� ��	����#�
�����
��
��������
����	��#����
��@�����(����'
���
'
�������������	�	���'���
����'+����(�������	���	�'�����M*��	�	��"'���
���*�=>�
192�1;8792*�

A<<B @*�!
	�̃	��@*#*�H��	�G�����&*�#+�
����"	���	��H	���+�
+'�
�'���
	����	����0	�	�

��
�������
���!
�'����������������	�%��'��	����	���
��'�566,,,*�
�*���6��,��
����6����-*'
'Q�����=�+'�
�'���
	�R������R"������R"�������
��'�566,,,*�
�*�
���6��,�����6����-*'
'Q�����=�+'�
�'���
	�R������R"������R"�����*�

A<=B O	��� �%���� �́���&�������O��
�	�&�������$	�
�����	����
��!
	������(������	
�����
	''�����������������
������������$
��*��...�D9�1772�17EED2�;;>D–;<;=*�

A<CB &*�F	��G	���0* *�@	��	
����
��
	��	��(��������������— '	
��	����	����3�	
���
	''
�	�
�	��	�L�-�(�����������	
�
��
����������
��3����#�	�*�%
��*�#��	�<<7�1<2�
17EE92�7>>–7DC*�

A<9B �	�����&
���@����,	+��	��(
	����*����������	
�'����M*�%
������
*�78�172�17EE92�
=>–97*�

A<>B �
����	�������� ��	��������!��
����	
���M�	����"���
�����$������@��

	���
��
�	�����	��'	
��	����	����3�	
���	''
�	�
����	�	�+����������,	+��	�	����—��%$ "��
M*�%
������
�<9�1>2�1;8;;2�

!'�*���
����	�'��

Paper IV

FUZZY REGRESSION AND CLASSIFICATION USING LOCALLY
WEIGHTED ENSEMBLE MODELS (LOWEM)

Runar Helin, Ulf Geir Indahl, Oliver Tomic, Kristian Hovde Liland
Faculty of Science and Technology

Norwegian University of Life Sciences
1430 Ås, Norway

ABSTRACT

In many data collection processes, we find subgroups of observations, e.g., due to natural variation,
batch effects, uncontrollable events or pooling of related observations into a larger dataset. There
are various regression and classification methods in the literature trying to explicitly or implicitly
model such data. We propose a flexible framework suitable for tabular data, high-dimensional data
and big data with continuous and categorical responses. The concepts of locally weighted regression
and Fuzzy C-regression are evolved and simplified and demonstrated on both real and simulated
data. The proposed framework is shown to find meaningful subgroups and improve the prediction
performance by combining local models.

Keywords fuzzy clustering, local modelling, regression, classification, Perceptron

Prediction Error Clustering

Table of Contents Figure: Illustration of a Locally Weighted Ensemble. Samples are modelled by overlapping linear
models that together form a flexible ensemble.

1 Introduction

In many problems, the data collected might not be totally homogeneous. The measurements could have been taken at
different time points, under different conditions, with variations in sample material or preparation, or with different
equipment. Such factors might cause certain intrinsic groupings of the data. When trying to build an accurate model on
such data it might be better to model each group by a local model instead of modelling all data with a global one. If
the subgroups are known and recorded together with the object measurements, one can apply methods like Hot PLS
[1] or Two-level PLS regression [2]. The former is a hierarchical classification method that divides the data into local
subgroups before classification, while the latter classifies into known subgroups before performing local regression.
Both apply Partial Least Squares (PLS) [3, 4] for modelling and dimension reduction due to high-dimensional and
collinear data. If the information about such potential groupings is missing or unknown, the subgroups need to be
estimated or modelled indirectly.

In the context of maximum likelihood optimisation, the expectation maximisation algorithm [5] is an efficient method
when the subgroup information is missing. There are also various locally weighted regression methods, typically using
kernel weighting or nearest neighbour strategies to perform local modelling and prediction [6, 7]. Another approach is
to first perform an unsupervised clustering to detect possible subgroups and model these clusters locally subsequently. A
possible drawback of this last approach is that there are no guarantees that the groups found by the clustering algorithm
will result in a local model with low prediction error. Also, the size of the clusters may vary, which can lead to unstable
models.

Tøndel et al. [8] describe a method for hierarchical cluster-based PLSR where Fuzzy C-means is applied to the scores
of a global PLSR model before PLS regression is again used in the local clusters. There, the aspect of letting regression
influence the choice of cluster membership is done by a single global regression model, in contrast to the iterative
approach on raw input data chosen in our work.

In the literature, similar data modelling problems are sometimes termed multiple model learning [9]. The goal is to
identify multiple models in a problem and includes both situations of known and unknown subgroup information. One
aspect of multiple model learning is estimating the parameters (i.e., regression coefficients) of the multiple models
[10]. Hathaway and Bezdek introduce the concept of Fuzzy C-regression (FCR) [11] to solve these kinds of problems.
They combine fuzzy C-partitioning with the estimation of c linear model parameters and demonstrate the approach on
simulated mixed data.

The FCR model is based on the assumption that the data originates from underlying models and is concerned with
estimating the true parameters from the data. Since the response values are used to assign the data to the different
local models, the FCR cannot be used to predict new samples where the response value is unknown. This problem was
addressed by da Silva and Carvalho [12] who combined FCM with Fuzzy C-means to simultaneously perform multiple
regression model estimation and fuzzy clustering.

2

Prediction Error Clustering

Our study takes a similar approach. We start by introducing the framework with weighted Ordinary Least Squares
(OLS) as the regression method of choice for moderately large datasets without severe multicollinearity. Except for
some strategic choices, this base model coincides to a large degree with the previous work by da Silva and Carvalho
[12]. As our method was originally intended for spectroscopic data with highly multicollinear features and relatively
few samples, we extend the method with Partial Least Squares Regression (PLSR) as a plugin replacement for OLS.
Further adjustments are also made to enable classification in the same framework. We also indicate how the framework
allows for big data situations by exchanging OLS with the Perceptron [13], thus leveraging highly optimised machine
learning frameworks that scale to any data size.

2 Theory and Methods

2.1 Fuzzy C-means

The goal of any clustering algorithm is to group together samples with similar attributes. In a hard-clustering algorithm
such as K-means clustering [14], each sample is assigned to just one cluster. On the other hand, the Fuzzy C-means
(FCM) [15] algorithm assigns a number between 0 and 1 to each sample, i, for each cluster, k, representing the
membership value, μik, to each respective cluster. Each sample is therefore a member of every cluster by an amount
determined by the membership value, and

∑
k μik = 1 ∀ i.

The FCM algorithm is an iterative process that starts by randomly selectingm number of cluster centres in the domain
of a dataset X . For each sample xi the distance dik to each cluster centre θk for k = 1, . . . ,m is calculated. Based on
these distances, the cluster membership values can be calculated by the equation

μik =

[
m∑
j=1

(
dik
dij

) 1
q−1

]−1
, (1)

where q is a parameter controlling the degree of fuzziness, i.e., to which extent a sample is present in more than one
cluster. In the limit where q approaches 1, the FCM algorithm is equivalent to the K-means algorithm with crisp/hard
clusters.

After obtaining the cluster membership values, each cluster centre θk is updated according to the standard FCM
algorithm, where the cluster centres are defined by:

θk =

∑n
i=1 μ

q
ikxi∑n

i=1 μ
q
ik

. (2)

With the new cluster centres calculated, the cluster memberships are updated. This process is repeated until convergence,
i.e., where the cluster centres stop changing or a predefined number of maximum steps is reached.

2.2 Fuzzy C-regression

A modelling approach inspired by the FCM algorithm is called Fuzzy C-regression (FCR) [11] and is an algorithm
designed to estimate coefficients of multiple underlying linear models simultaneously. The main difference between
FCR and FCM is that the cluster centres are defined to be regression coefficients for local linear regression models and
that the distance metric dij is changed to the squared prediction error (y − ŷ)2.

2.3 Combining Fuzzy C-means and Fuzzy C-regression

The FCR algorithm can be successfully used to estimate model parameters for local models simultaneously. However,
to predict unseen samples successfully, the underlying subgroups in the data have to be known. If this information
is missing, a solution is to combine the FCM and FCR algorithms as first proposed by [12]. The authors proposed
an algorithm similar to FCM but instead used a combined loss function from the FCM and FCR algorithms. With a
common loss function, the cluster centres and local regression coefficients influence each other. Additionally, the authors
introduce extra parameters to be optimised which correspond to the amount of relevance of explanatory variables.

3

Prediction Error Clustering

2.4 The Locally Weighted Ensemble Modelling framework.

The proposed Locally Weighted Ensemble Modelling (LoWEM) framework as presented in this paper resembles the
combined FCM and FCR method described above, but there are some key differences. The LoWEM framework is not
only designed to be used with a basic ordinary least squares model, and it is easier to control how much the prediction
error impacts the clustering. Different from [12], LoWEM calculates two cluster membership values by minimising the
FCM and FCR loss functions separately and combining the results using a convex combination. More specifically, the
cluster membership from the FCM algorithm is found by minimising the loss function

LFCM =
m∑
k=1

n∑
i=1

μqik||xi − θk||2, (3)

while the cluster membership for the FCR algorithm minimises the loss function

LFCR =
m∑
k=1

n∑
i=1

νqik(yi − ŷi)2, (4)

where the prediction error based cluster memberships, νik, will be explained later.

These two cluster membership contributions are combined using a convex combination which preserves the property
that the sum of membership values for one sample across all clusters equals 1:

wik = (1− α)μik + ανik. (5)

Since both sets of cluster memberships scale 0-1, the α parameter is directly interpretable as balancing the contribution
in x-space and y-space. When α is set to 0 or 1, the resulting model is equivalent to FCM and FCR, respectively.

The algorithm: Different from FCM, LoWEM initiates them cluster centres θk based on the k-means++ algorithm [16]
to start with more relevant cluster centres than a random selection. The next step is to initiate the cluster membership
related to prediction error νik to 0 for every sample i and cluster k. Then, the cluster memberships based on feature
similarity μik are calculated by Equation 1, which is the solution that minimises Equation 3.

The initial LoWEM cluster membership values wik are then initialised according to Equation 5 and are used as weights
when training the local models in the next step. In the original paper for the original FCR algorithm [11], this procedure
is shown for OLS models. Here, the procedure is presented for PLS regression models.

The PLS algorithm tries to find a lower-dimensional representation of the data X with a set of components explaining
most of the cross-correlation between X and y. The result is a decomposition X = TP T +E, where T and P are
called scores and loadings, respectively, and E is the part of X not explained by the PLS components. The response is
correspondingly decomposed as y = TqT + F . These components can be found by a standard algorithm such as the
NIPALS algorithm [17].

When incorporating the cluster memberships into the modelling, it is convenient to write the fuzzy membership values
wqik for each cluster k as an n × n diagonal matrix Wk. Both X and y are subjected to a weighted centring by the
membership values in Wk. Then, scaled versions of X and y are obtained by X̃ =W

1/2
k X and ỹ =W

1/2
k y before

passing them through the PLS algorithm. The result is a weighted PLS, where the corresponding regression coefficients
in the PLS regression model incorporate the importance of the samples according to the cluster memberships. The
alternative of modelling X̃ and ỹ with an OLS model results in weighted least squares regression.

During the model fitting stage, the number of PLS components, which determines the model complexity, of each local
PLS model is chosen based on a cross-validation procedure. The optimal number of PLS components for each local
PLS is chosen as the minimum weighted cross-validated error using the corresponding cluster membership values.

After fitting each local model to the weighted samples, the cluster memberships νik based on prediction errors rik are
calculated according to

νik =

[
m∑
j=1

(
rik
rij

) 1
q−1

]−1
. (6)

This is a solution that minimises Equation 4 and is equivalent to Equation 1 with the use of prediction errors rik,
typically the squared error rik = (yik − ŷik)2. The next step is to update the combined cluster memberships wik and

4

Prediction Error Clustering

use these updated membership values to calculate new cluster centres. Here, an improved update of the cluster centres
is proposed based on gradient descent. During the development of the model, it was found that including prediction
error as a clustering criterion could result in many sudden large changes in cluster positions. To alleviate this effect, the
following update rule for the cluster centres at iteration p+ 1 based on the current cluster centres θ(p)

k is used

θ
(p+1)
k = θ

(p)
k + η(

∑n
i=1 w

q
ikxi∑n

i=1 w
q
ik

− θ
(p)
k), (7)

where η is a learning rate controlling the speed of change from iteration to iteration. After obtaining new cluster
centres, the process starting from fitting the local regression models repeats until convergence or a maximum number of
iterations is reached.

Performing prediction using all local models

Assume the algorithm has converged and all the local models are fitted accordingly. To predict a sample xi with
corresponding cluster membership values wik for k = 1, . . .m, a weighted prediction of all the local models is
calculated as follows

ŷi =
m∑
k=1

wikx
T
i β̂k (8)

When predicting new unseen samples, the information about the prediction error is of course unknown. In that case, the
cluster membership values are estimated solely based on the similarity between features according to Equation 1.

3 Extension to classification problems

The presented fuzzy clustering-based model approach can also be extended to classification. The main difference is that
the output of each sample will be a vector of predictions of a one-hot encoded response. As for the regression case, the
weighted prediction of the local models makes the total model capable of classifying non-linear data.

For classification, a sum of squared prediction errors can still be used to obtain the error-based cluster membership
values by summing over the prediction error for all the one-hot encoded response values. For a sample i, the prediction
error rik is defined by

rik =
∑
c

(y
(c)
i − ŷ

(c)
ik), (9)

where c denotes a specific class of the one-hot encoded response. When combining all local models for the final
LoWEM prediction, the predicted one-hot prediction matrices Ŷk are combined as a weighted element-wise sum to
obtain the combined prediction. To predict the categorical class, a linear discriminant analysis (LDA) can be applied
using the LoWEM predictions and categorical response of the training set to fit the LDA model.

If one applies the proposed clustering algorithm choosing more clusters than classes, it is possible to perform non-linear
classification that takes into account unlabelled sub-groups of one or more classes. This is especially useful in situations
where one or more classes wrap (partially) around other classes in the feature space. This could for instance be caused
by a too coarse level of grouping, e.g., in a biological taxonomy, leading to highly irregular group shapes in feature
space.

4 Datasets

FTIR on hydrolysates
As a representative of highly heterogeneous data with multicollinear features, we have chosen the Fourier Transform
Infrared (FTIR) spectra and Average Molecular Weight (AMW) measurements first described in Kristoffersen et al.
[2]. These are dry-film measurements of water-soluble proteins and peptides at various time points during enzymatic
protein hydrolysis reactions of various rest raw materials and commercial enzymes. In Kristoffersen et al., the 28
combinations of rest raw materials and enzymes were known and leveraged in a two-level prediction model consisting
of a material/enzyme classification model and local regression models. In this work, we only use the spectra and
AMW reference measurements, while the clustering will replace the known material/enzyme combinations. During the

5

Prediction Error Clustering

analysis, the dataset was divided into a training and test set with 590 and 295 samples in each partition, respectively.
The split was done in a stratified with respect to material/enzyme combinations and replicates were kept in the same split.

Interleaving half circles
This is a toy dataset from the software package scikit-learn [18] which is useful for illustrating the need for and
application of nonlinear models in a simple two-dimensional case. The dataset contains two variables and has two
classes. The total number of simulated samples in this dataset is 1000 (500 samples per class), divided into balanced
training (67%) and test (33%) sets during the analysis.

FTIR on moulds
This dataset has previously been analysed using Hot PLS [1] which takes explicit advantage of the known hierarchy
using a set of Canonical Powered Partial Least Squares [19] models as nodes in a tree. It further exploits replicates
by employing a voting strategy in all the nodes to boost performance. The data consist of 1399 FTIR spectra in the
spectral ranges 3000–2800 nm and 1800–900 nm, preprocessed with Savitzky-Golay [20] 1st order derivatives (3rd
order polynomial, nine-point window) and Extended Multiplicative Signal Correction [21] with replicate correction [22]
(across microtiter plate and FTIR plate replication). The moulds that were measured are associated with a phylogenetic
tree with five taxonomic levels, where species (19 different) is the lowest used in classification with FTIR. Some of the
mould species were represented by more than one strain. Further information is found in Liland et al. [1].

5 Results

Regression – hydrolysates: The optimal hyperparameters of the LoWEM model for the FTIR on hydrolysates dataset
were found to be α = 0.1 and q = 1.25, i.e., a model emphasising the X-contribution over the Y-contribution to cluster
assignments and with a relatively small amount of fuzziness. The model was trained for a maximum of 50 iterations and
stopped if the cluster membership norm did not change by more than 0.01. The LoWEM model was evaluated using 4,
10 and 28 clusters. For comparison, the same data was modelled by a global PLS model and a standard Convolutional
Neural Network (CNN) for regression with spectral data [23]. The results are given in Table 1.

Table 1: Prediction results of the FTIR on hydrolysates dataset. Each model except the Partial Least Squares model was
trained and evaluated using 10 different random states, and the standard error is given as an estimate of uncertainty.

Model RMSEP R2
pred.

PLSR 414.95 0.848
LoWEM (4 clusters) 350.76 ±3.14 0.892 ±0.002
LoWEM (10 clusters) 322.00 ±3.42 0.909 ±0.002
LoWEM (28 clusters) 320.93 ±9.85 0.909 ±0.006
CNN 342.04 ±2.8 0.897 ±0.002
Two-level PLSR 281.80 0.930

We note that the global PLSR model struggles with the heterogeneity of the data caused by raw material and enzyme
differences. As there were 28 known combinations of raw material and enzyme, we have used up to 28 clusters, however,
we observe that the increase from 10 to 28 clusters causes more increase in instability than reduced RMSEP. From this,
we concluded that the sweet spot for the number of clusters is somewhere around 10. We further note that the CNN
model, which has shown promise in previous works, is not able to match the LoWEM models with more than 4 clusters.
Finally, the Two-level PLSR from Kristoffersen et al. outperforms the other models by a substantial margin. In this
case, it is evident that explicitly leveraging the known underlying grouping of the data in modelling is a superior choice.
However, for similar data where the groups are not known, LoWEM still shows acceptable performance without the
black-box properties of CNN.

When the mean membership values across samples of the same enzyme-material group are displayed as a heatmap as
shown in Figure 1, it is possible to give some interpretations of the clusters in LoWEM. Immediately apparent is the
fact that almost all samples of Chicken muscle hydrolysed by Papain LSG 100 (CMPa) and Chicken skin hydrolysed by
Protamex (CSPr) are concentrated in just one cluster each. Furthermore, most samples of salmon (SBA, SHA, SSA) are
located near cluster 2, and most mackerel (Ma, MaA, MaF, MaPa) are located near cluster 9.

For the purpose of this work, we will not go into details about what chemical properties are observed in the loading
plots in Figure 3. What we do see, is the first loading of each of the four local PLS models in the four-cluster LoWEM

6

Prediction Error Clustering

Figure 1: Mean cluster weight per cluster for each enzyme-material combination in the hydrolysis training set.

Figure 2: Loadings plot of the first PLS component for each local PLS model in LoWEM using 4 clusters.

on the hydrolysis data. It is evident that the chemical focus is quite different between the models, especially when
looking at clusters 2 and 4.

Classification – half circles: The separating half circles data is an example of data that are not linearly separable, which
is evident from the accuracy of the PLS-DA model in Table 2. A good choice of hyperparameters for the LoWEM
on this dataset was found to be α = 0.1 and q = 1.1. Figure 3 shows the results from the LoWEM modelling when
using 10 cluster centres. The cluster centres, marked with stars, get distributed among the data with high density. The
background colour shows the model prediction at different points in the feature space and gives a decision boundary for
the classification problem. The LDA decision boundary is very crisp indicating a confident model. Each local model is

7

Prediction Error Clustering

(a) LoWEM prediction (b) LoWEM prediction after linear discriminant analysis (LDA)

Figure 3: Intersection half circles with two classes and ten local linear models. The background colour indicates the
confidence of classification to Class 1 (green) and Class 2 (purple) given the LoWEM model.

linear and can only create a linear decision boundary. However, when combining all models the decision boundary
becomes more complex and able to separate the two classes more effectively.

Table 2: Prediction accuracy of the simulated classification dataset. Each model has been trained and evaluated using
10 different random states, and the standard error is given as estimate uncertainty.

Model Accuracy
LDA 88.2% ±0.0
LoWEM (2 clusters) 92.8% ±0.05
LoWEM (5 clusters) 95.4% ±0.05
LoWEM (10 clusters) 96.3% ±0.04
Random Forest 95.7% ±0.05

In the case of these simple data, we see that the number of clusters can be quite high without incurring a penalty in the
form of higher uncertainty on the accuracy. We also see that, without fine-tuning of either model, LoWEM is able to
beat the accuracy of Random Forest. Looking at the overlap between the two classes in Figure 3, it is not likely that
performance can be pushed much higher than what has been achieved without sacrificing generalisability.

Classification – moulds: Knowing that there are two divisions, five classes, nine genera and 11 sub-genera that the 19
species are nested under, the choice of number of clusters is not given in advance. In addition, the previous example
clearly showed that more than one cluster per class can be useful for highly non-linear class boundaries. As for the
hydrolysis data, we observe a substantial improvement from using a global PLS-DA model. In this case, two out of six
biological replicates also show higher accuracy for LoWEM than the highly tailored Hot PLS method (explicit use
of phylogeny and voting between replicates). As seen for the hydrolysates data, the uncertainties of the predictions
increase somewhat when increasing the number of clusters. A good choice of LoWEM hyperparameters for this dataset
was α = 0.1 and q = 1.25, the same as for the hydrolysis data.

The bar plots in Figure 4 are generated by counting how many of the training samples are closest to each of the clusters
when the 6th biological replicate is held out for classification. The first thing we observe is that clusters 2, 6 and 7
are dominated by a single species for the case with 10 clusters. There is also a high degree of phylogenetic similarity
between species that share a cluster as can be confirmed by comparing to the phylogenetic tree in [1]. For instance, all
three species of the Mucor genus (M.) and the related Rhizopus genus (R.) are present in clusters 3 and 8, all three
species of the Aspergillus genus (A.) are present in cluster 9, and so on. Similar information is presented in Figure 5
where the mean membership values across samples of the same species are displayed as a heat map for the case with 10
clusters. Here we observe that most of the species have the bulk of their membership values spread over one or two

8

Prediction Error Clustering

Table 3: FTIR on moulds prediction accuracies. The overall errors across all biological replicates are shown in the first
row. The results from [1] are included as a reference. The standard error of 10 random initialisations of LoWEM are
included.

Biological replicate PLS-DA LoWEM (2 clusters) LoWEM (10 clusters) LoWEM (19 clusters) Hot PLS
All combined 81.0% 77.0%±0.09 86.0%±0.17 87.7±0.29 87.7%
1st 85.5% 80.9%±0.19 86.1%±0.25 85.7±0.76 86.0%
2nd 77.8% 75.5%±0.20 82.3%±0.47 87.7±0.79 82.6%
3rd 88.1% 78.8%±0.63 92.9%±0.43 96.5±0.43 93.2%
4th 66.0% 66.4%±0.17 72.9%±0.77 73.3±0.73 76.2%
5th 84.2% 80.5%±0.13 94.5%±0.59 95.2±0.28 98.3%
6th 84.7% 79.7%±0.15 87.4%±0.57 88.0±0.62 89.8%

Figure 4: Histogram of species for samples closest to each cluster center

clusters, while a few are spread over three, e.g., two of the Mucors (M.). These results indicate that the cluster centres
themselves tend to converge to clusters of samples having some biological similarity.

6 Discussion

Linear models and parsimonious data
Artificial neural networks are making a huge impact in the fields of image analysis, language modelling and other parts
of artificial intelligence, but are also finding use in regression, classification and spectroscopic data analysis. In this
work, we have continued and expanded the work on local linear models as a transparent and flexible alternative to
the more or less black-box approach with complex neural networks. As demonstrated in the examples, linear models
like PLS can model highly heterogeneous data when applied smartly while still giving linear views of the underlying
phenomena by low-dimensional compressions. This means we can push the envelope for visualisation and interpretation
further while handling more complex problems with local and non-linear phenomena. OLS/LDA and PLS are also
proven to work well in situations with short wide datasets where the number of features greatly outnumbers the number
of samples.

9

Prediction Error Clustering

Figure 5: Mean cluster weight per cluster for each species in the training set.

Reduced complexities in local models
In addition to increasing the overall prediction performance compared to a single global PLS model, it was observed
that each local PLS model in LoWEM needed fewer PLS components to achieve these results. The global PLS model
presumably needed more components to compensate for the different underlying groupings in the data. In general, it is
more desirable to have models with fever components since the later components contain more noise.

When modelling new data, each model will likely be dominated by subspace structures similar to a global PLS. A
good starting point for tuning individual models is therefore to set a maximum number of components equal to or
slightly higher than the optimum for a global PLS model (to allow for individual differences) and let cluster-wise
cross-validation decide the final number of components. This may seem like an excessive complexity for the full
LoWEM model, however, since the local models likely share overlapping properties, this should not be a concern.

Hyperparameter tuning
For the OLS/LDA-based LoWEM there are three parameters to be tuned: (1) the number of clusters (m), (2) the degree
of fuzziness (q), and (3) the balance between x-space and y-space in membership updates (α). Exchanging OLS/LDA
with PLSR/PLS-DA, a fourth parameter is the number of components. In addition, it is possible to use a learning rate
for smoother transitions from iteration to iteration. Compared to a single global model, this is indeed more complicated,
and some parameters may even have interactions with each other.

Our experience with the three datasets in this work indicates that a relatively crisp clustering with q ≈ 1.1− 1.25 was
a good choice. The relatively crisp clustering gave the best prediction performance. However, the crisp clusters also
resulted in large jumps in cluster membership values when samples "changed" clusters between iterations, resulting in
poor convergence. The challenge of unstable model convergence was addressed by basing the modelling on a fuzzy
clustering approach [15]. By increasing the fuzziness, smoother convergence is obtained but at a possible sacrifice
of some prediction performance. The number of clusters could be chosen surprisingly high, even for classification
problems. However, for both the FTIR-based datasets we observed less stable solutions when the number of clusters was
high than for more parsimonious solutions. There is also a balance between prediction performance and computational
cost, as it was observed that more clusters tend to give better predictions but require more computations. The balance
between x-space and y-space was best at α ≈ 0.1 for these datasets. Increasing the value, i.e., giving more weight to
predictions, means that the basis for assigning new samples to existing clusters becomes weaker while moving too close
to α = 0 would defeat the purpose of including the success of regression in the cluster membership criterion. Finally,
the number of components in PLS was tuned using cross-validation for each of the clusters, so only an upper bound is
needed. Our recommendation is to first optimise this on a global model and use the optimal number as a starting point in
the local models, possibly increasing the maximum with a few components to allow for locally more complex models.

10

Prediction Error Clustering

Challenges and limitations
The main challenges with the LoWEM framework compared to a single global model are the added complexity of
having more parameters to tune and the time it takes to fit the model. Since there are several local models and these
are iteratively refitted, the total number of computations will be higher than for a global model. Using an efficient
PLS algorithm is important. For optimising the number of components, one can save time by only cross-validating
every n-th model and otherwise reusing the number of components. This could, however, affect the convergence of the
cluster centres. It is also possible to exchange cross-validation with a different procedure, e.g., applying an efficient
weight randomisation test [24] as was done with success on spectral data in Mishra et al. [25]. Concerning the other
hyperparameters of LoWEM a strategy of coarse search followed by fine-tuning is recommended.

Upscaling to big data
An alternative to using OLS or PLS is the use of the linear Perceptron model. Though the optimisation criterion for the
Perceptron is different from OLS, its solution is typically very similar to that of OLS. This opens up the possibility
to train every model batch-wise, tackling problems with huge datasets and also problems with continuous streams of
data. Libraries such as TensorFlow or Pytorch offer quick access to efficient implementations of the Perceptron model,
ready to be employed on high-performance computing (HPC) clusters. As the use of the Perceptron is a direct plugin
replacement for OLS, we will not be demonstrating its use in this work.

Comparison with neural networks
There is an interesting comparison between the multiple modelling aspect presented here and neural networks. Recently,
it has been suggested that a large group of artificial neural network (ANN) models, including CNNs, can be written as a
composition of max-affine spline operators (MASOs) [26]. Among the results is the suggestion that a MASO ANN is
performing a hierarchical, greedy template matching on the input signal. The authors discuss these results for image
classification problems, but the result should be analogous for regression problems. In other words, a MASO ANN is
comparing input signals to learned "prototypes" of data and makes predictions based on closeness to them. This concept
sounds similar to the LoWEM approach presented in our paper. If the MASO ANN theory is correct, it gives hope of
being able to achieve similar prediction performance as these types of ANN models with other modelling approaches.
The results obtained in this paper regarding the hydrolysates data support this claim.

Future work
We have already mentioned some of the possible steps further like alternative ways of estimating the number of
components in the PLS models and using a learning rate to smooth transitions from iteration to iteration. The latter
can be further expanded on by setting up a learning rate schedule that lets the model make large changes in cluster
memberships early in the modelling and then reduce the learning rate as the model moves towards completion. One
could also envision a hybrid approach where known subgroups are used as a seed for a cluster-based approach where
the subgroups are allowed to evolve into something more useful for minimising prediction error than blinding trusting
the known subgroups that may be only partially relevant.

Another possible step is to implement efficient parallelisation to LoWEM. Since each local model training and
cross-validation is independent within each iteration, it is possible to distribute these computations across multiple
processors.

7 Conclusion

We have introduced a framework for fuzzy regression and classification using locally weighted ensemble models and
demonstrated how it handles heterogeneous data well without prior knowledge of subgroups. This is an evolution
of previous work where balancing the focus on x-space and y-space is better described, classification is included in
the framework and expansion to big data is trivial. Transparent modelling of complex data comes at the cost of extra
hyperparameters to tune and higher computational cost, however, we avoid black-box modelling and thousands of
parameters to estimate.

References

[1] Kristian Hovde Liland, Achim Kohler, and Volha Shapaval. Hot pls—a framework for hierarchically ordered
taxonomic classification by partial least squares. Chemometrics and Intelligent Laboratory Systems, 138:41–47,
2014.

[2] Kenneth Aase Kristoffersen, Kristian Hovde Liland, Ulrike Böcker, Sileshi Gizachew Wubshet, Diana Lindberg,
Svein Jarle Horn, and Nils Kristian Afseth. Ftir-based hierarchical modeling for prediction of average molecular
weights of protein hydrolysates. Talanta, 205:120084, 2019.

11

Prediction Error Clustering

[3] Svante Wold, Harold Martens, and Herman Wold. The multivariate calibration problem in chemistry solved by the
PLS method. In Matrix pencils, pages 286–293. Springer, 1983.

[4] S Wold, A Ruhe, H Wold, and W J Dunn. The collinearity problem in linear regression. The partial least squares
(PLS) approach to generalized inverses. SIAM Journal of Scientific and Statistical Computing, 5:735–743, 1984.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society: Series B (Methodological), 39:1–22, 1977.

[6] William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
statistical association, 74(368):829–836, 1979.

[7] Tormod Naes, Tomas Isaksson, and Bruce Kowalski. Locally weighted regression and scatter correction for
near-infrared reflectance data. Analytical Chemistry, 62(7):664–673, 1990.

[8] Kristin Tøndel, Ulf G Indahl, Arne B Gjuvsland, Jon Olav Vik, Peter Hunter, Stig W Omholt, and Harald Martens.
Hierarchical cluster-based partial least squares regression (hc-plsr) is an efficient tool for metamodelling of
nonlinear dynamic models. BMC Systems Biology, 5(1):1–17, 2011.

[9] Vidyashankar Kuppuraj and Raghunathan Rengaswamy. Evaluation of prediction error based fuzzy model
clustering approaches for multiple model learning. International Journal of Advances in Engineering Sciences
and Applied Mathematics, 4:10–21, 2012.

[10] V. Cherkassky and Y. Ma. Multiple model regression estimation. IEEE Transactions on Neural Networks,
16:785–798, 2005.

[11] Richard J Hathaway and James C Bezdek. Switching regression models and fuzzy clustering. IEEE Transactions
on fuzzy systems, 1(3):195–204, 1993.

[12] Ricardo AM da Silva and Francisco de AT de Carvalho. On combining fuzzy c-regression models and fuzzy
c-means with automated weighting of the explanatory variables. In 2018 IEEE international conference on fuzzy
systems (FUZZ-IEEE), pages 1–8. IEEE, 2018.

[13] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical
Laboratory, 1957.

[14] Hugo Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci, 1(804):801, 1956.

[15] James C Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum, 1981.

[16] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on discrete algorithms, pages 1027–1035. Society for Industrial and
Applied Mathematics, 2007.

[17] Herman Wold. Path models with latent variables: The nipals approach. In Quantitative sociology, pages 307–357.
Elsevier, 1975.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[19] Ulf G Indahl, Kristian Hovde Liland, and Tormod Næs. Canonical partial least squares—a unified pls approach
to classification and regression problems. Journal of Chemometrics: A Journal of the Chemometrics Society,
23(9):495–504, 2009.

[20] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, 36(8):1627–1639, 1964.

[21] Harald Martens and Edward Stark. Extended multiplicative signal correction and spectral interference subtraction:
new preprocessing methods for near infrared spectroscopy. Journal of pharmaceutical and biomedical analysis,
9(8):625–635, 1991.

[22] A Kohler, U Böcker, J Warringer, A Blomberg, SW Omholt, E Stark, and H Martens. Reducing inter-replicate
variation in fourier transform infrared spectroscopy by extended multiplicative signal correction. Applied
spectroscopy, 63(3):296–305, 2009.

[23] Runar Helin, Ulf Geir Indahl, Oliver Tomic, and Kristian Hovde Liland. Non-linear shrinking of linear model
errors. Analytica Chimica Acta, in press, 2023.

[24] Thanh Tran, Ewa Szymańska, Jan Gerretzen, Lutgarde Buydens, Nelson Lee Afanador, and Lionel Blanchet.
Weight randomization test for the selection of the number of components in pls models. Journal of Chemometrics,
31(5):e2887, 2017.

12

Prediction Error Clustering

[25] Puneet Mishra, Junli Xu, Kristian Hovde Liland, and Thanh Tran. Meta-pls modelling: An integrated approach to
automatic model optimization for near-infrared spectra. Analytica Chimica Acta, 1221:340142, 2022.

[26] Randall Balestriero and richard baraniuk. A spline theory of deep learning. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pages 374–383. PMLR, 2018.

13

Philosophiae D
octor (PhD

), Thesis 2023:47
Runar H

elin

117064 / AN
DVO

R
D

G
R

AFISK
.N

O

ISBN: 978-82-575-2076-2
ISSN: 1894-6402

Postboks 5003
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 9
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /DefaultDocumentLanguage <FFFE4E006F007200770065006700690061006E003A00200042006F006B006D00E5006C00>
 /Description <<
 /ENU ([Based on 'Til trykk CMYK_1_3'] [Based on 'Til trykk CMYK uten passm'] [Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (Coated FOGRA39 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.275 841.890]
>> setpagedevice

