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Abstract
The perineuronal nets (PNNs) are sugar coated protein structures that encapsulate certain neurons in the brain, such as par-
valbumin positive (PV) inhibitory neurons. As PNNs are theorized to act as a barrier to ion transport, they may effectively 
increase the membrane charge-separation distance, thereby affecting the membrane capacitance. Tewari et al. (2018) found 
that degradation of PNNs induced a 25%-50% increase in membrane capacitance c

m
 and a reduction in the firing rates of 

PV-cells. In the current work, we explore how changes in c
m

 affects the firing rate in a selection of computational neuron 
models, ranging in complexity from a single compartment Hodgkin-Huxley model to morphologically detailed PV-neuron 
models. In all models, an increased c

m
 lead to reduced firing, but the experimentally reported increase in c

m
 was not alone 

sufficient to explain the experimentally reported reduction in firing rate. We therefore hypothesized that PNN degradation 
in the experiments affected not only c

m
 , but also ionic reversal potentials and ion channel conductances. In simulations, we 

explored how various model parameters affected the firing rate of the model neurons, and identified which parameter vari-
ations in addition to c

m
 that are most likely candidates for explaining the experimentally reported reduction in firing rate.

Keywords  Perineuronal nets · Capacitance · Firing rate · PV cells · Fast-spiking interneurons · Multicompartment models 
of neurons

1  Introduction

The perineuronal nets (PNNs) are condensed structures of 
extracellular matrix that encapsulate the soma and proxi-
mal dendrites of among others parvalbumin positive (PV) 
inhibitory neurons in the brain (Fawcett et al., 2019). PNNs 
are composed of hyaluronan chains, to which chondroitin 

sulphated proteoglycans (CSPGs) are attached. The CSPGs 
in PNNs are mainly aggrecan and brevican. Both hyaluronan 
and chondroitin sulfate are glycosaminoglycans, which are 
large, unbranched, strongly negatively charged sugar mol-
ecules. The CSPGs in the PNNs are cross-linked by tenascin-
R. PNNs are long-lived, stable structures hypothesized to sta-
bilize synapses and they have to be enzymatically cleaved to 
allow for synapse growth (van ’t Spijker & Kwok, 2017). Fur-
thermore, they are thought to act as a barrier to ion transport 
because of their massive negative charge (Morawski et al., 
2015; Hanssen & Malthe-Sørenssen, 2022).

Enzymatic degradation of PNNs induces a dramatic 
increase in plasticity in visual cortex (Pizzorusso et al., 
2002) and reduces spiking activity of putative PV neurons 
in vivo (Balmer, 2016; Lensjø et al., 2017; Christensen 
et al., 2021). However, the mechanisms underlying these 
changes remain elusive. Some experimental studies find 
no significant differences in the electrophysiological prop-
erties of neurons with and without PNNs, using chondroi-
tinase ABC treatment to degrade the PNNs (Dityatev et al., 
2007; Pyka et al., 2011).
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Tewari et al. (2018) performed in vitro measurements of 
capacitance and firing rate f under the presence of glutamate-
releasing tumor GBM22 and non-glutamate releasing tumor 
GBM14, and found that matrix metalloproteinases (MMPs) 
released from the tumors disintegrated the PNNs, leading 
to a 25% increase in capacitance for the PNN-enwrapped 
interneurons and the 38% decrease in f seen in Fig. 1.

However, variability within their results implies that the 
change in capacitance in some instances could be up to 50%. 
As a control, they also showed that application of MMP-
blocker GM6001 in the presence of tumor, resulted in nor-
mal behavior of the PNN-enwrapped neurons. In an attempt 
to reproduce the results in vitro, acute brain slices were 
treated with the bacterial chondroitinase-ABC (chABC) 
which degrades PNNs. Recording from the same neurons 
before and after chABC treatment showed an increased 
capacitance and decreased f. To complement their experi-
mental findings, Tewari et al. performed simulations using 
a modified one-compartment version of the Hodgkin-Huxley 
(HH) model (as proposed by Abbott and Kepler (1990)). 
Similar to the experiments, the simulations showed that an 
increase in Cm resulted in a reduced f. However, the effect 
in the model was smaller than in their experiments (Tewari 
et al., 2018).

Since the membrane is largely impermeable to ions, it 
acts as the dielectric in a capacitor which can separate a 
net positive charge (on one side) from a net negative charge 
(on the other side). PNNs have been suggested to act as 
an insulator that effectively acts to thicken the membrane, 
thereby decreasing Cm by increasing the distance between 
the exterior and interior membrane charges Tewari et al. 
(2018). This provides an explanation to why PNN degrada-
tion leads to an increased Cm in the experiments by Tewari 
et al. (2018). In principle, the insulating properties of PNNs 
might also lead to an increase in the membrane resistance 
Rm , but notable effects of PNN degradation on Rm were not 
found in the experiments by Tewari et al. (2018).

Since the membrane time constant �m is related to Cm by 
�m = RmCm , a decrease in Cm (with a fixed Rm ) will lead to 
a decrease in �m . As a decrease in Cm leads to a decrease in 
the membrane time constant and thereby to faster membrane 
dynamics, we might expect a decrease in Cm to increase the 
firing frequency f of the neuron. Likewise, we might expect 
an increase in Cm , e.g. due to degradation of PNNs, to reduce 
f. However, altering the time course of the membrane poten-
tial dynamics will also alter the complex interplay between 
various depolarizing and hyperpolarizing membrane cur-
rents through active ion channels. Hence, the relationship 
between Cm and f is not trivial, and will generally depend on 
the ion channels that a neuron possesses, as well as its input 
conditions (Szlavik, 2003; Wang et al., 2012).

The one-compartment HH model used by Tewari et al. 
has its limitations when it comes to modeling effects of 
PNN changes in PV neurons. Firstly, the HH model was 
constructed from measurements from the squid giant axon 
and does not encompass the properties of mammalian PV 
interneurons. It is common to distinguish between two types 
of excitability in neurons: Type I excitability, where the neu-
ron can fire with arbitrarily low firing frequency close to 
the threshold current, and Type II, where firing increases 
abruptly from zero to a non-zero value when the threshold 
is reached. The HH model has Type II excitability. Thus, the  
HH model does not share the dynamical properties of the PV 
neurons in Tewari et al.’s experiments, whose f − I curves 
displayed a Type I excitability (Sterratt et al., 2011).

Lastly, PNNs typically enwrap only the soma and proxi-
mal dendrites of PV neurons. Using a one-compartment 
model, one cannot account for such geometrical specific-
ity, as one are forced to introduce the same changes in Cm 
over the neuron as a whole. Thus, the one-compartment HH 
model is not the best choice for capturing the firing charac-
teristic of PV cells, for which there exist recent state-of-the-
art multicompartment models.

In the present work, we perform a more systematic 
modeling study to explore possible mechanisms behind 
the reduction in f observed in vitro by Tewari et al. (2018). 
Similar results have also been observed in vivo (Balmer, 

Fig. 1   Fast-spiking interneurons without perineuronal nets show 
reduced firing rate in experimental data from Tewari et  al. (2018). 
Recordings were made from brain slices from mice injected with the 
following: Sham - phosphate-buffered saline, GBM14 - Non-gluta-
mate releasing tumor, GBM22 - Glutamate-releasing tumor. Measure-
ments were made on a minimum of seven neurons for each injection 
type. The tumors were shown to break down PNNs in their proxim-
ity. Firing rate f is plotted against input current I. The decrease in f 
was 38% from Sham to GBM22 and 41% from Sham to GBM14, as 
measured for the highest input current in the figure. The data were 
provided by Tewari et al. (2018)
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2016; Lensjø et al., 2017). To do this, we implement a 
range of models taken from the literature, including mod-
els constrained to electrophysiological data from PV cells. 
We find that in none of the models, the moderate capaci-
tance changes observed in the experiments of Tewari and 
co-workers are sufficient to explain the measured changes 
in f, suggesting that PNN degradation also affects other cel-
lular properties. We therefore expand the study, suggesting 
additional candidate mechanisms that may have contributed 
to the experimentally observed changes in f.

2 � Methods

In the present study we try to explain the experiments by 
Tewari et al. (Fig. 1) in terms of changes in specific membrane 
capacitance cm (capacitance per membrane area), conductance 
values ḡX for maximally open ion channels, and reversal poten-
tials EX for various ion channels X. The effects of these can-
didate mechanisms on the firing frequency f were studied in 
nine models, as presented in Table 1: a one-compartment HH 
model (OC), a ball-and-stick HH model (BAS) and three mod-
els developed by the Allen Institute for Brain science (A1, A2, 
A3). The multi-compartmental models come in two versions: 
one where cm is varied everywhere (all), and one where cm is 
varied only on the soma and proximal dendrites (sprx), as the 
PNNs are normally believed to encapsulate these parts of the 
neuron (Sorg et al., 2016). The proximal part of the dendrites 
was set to encompass every segment of the dendrite less than 
3.5 soma lengths away from the cell body as measured by path 
distance along the neurites.

All models were based on a Hodgkin-Huxley type for-
malism, where the membrane potential dynamics in a given 

compartment j (with membrane area Aj ) is governed by the 
differential equation,

Here, Ij−1,j and Ij,j+1 represent incoming and outgoing 
axial currents, respectively, from neighboring compartments 
(relevant only for multicompartment models). Parameters 
affecting the axial currents explicitly were not changed in 
this project. The remaining currents are membrane current 
densities for the leakage channel

and various ion channels

the assembly of which differed between the different models.  
In this general formalism, m and h are so-called gating vari-
ables, opening and closing the ion channels as a function of 
membrane potential and time, while � and � represent the 
number of gates of each type. Whereas these gating variables 
express genetically coded kinetics of the ion channel, ḡX rep-
resents the conductance when all channels of type X are fully 
open. EX is the reversal potential for the ion channel of type X.

The Hodgkin-Huxley model contains conductances for 
sodium, potassium and a leak conductance. The Allen models 
incorporate six different potassium conductances, a voltage 
dependent-sodium conductance, two calcium conductances 
and a general cation conductance, along with a passive leak 
conductance. The calcium reversal potential ECa can change 
dynamically, as a function of intracellular calcium dynamics, 
which was explicitly accounted for in the Allen models.

2.1 � Implementation

Simulations with varying input currents, conductances, 
reversal potentials and specific capacitances were run in 
NEURON (Carnevale & Hines, 2006) with LFPy (Hagen 
et al., 2018) as a wrapper. Time and somatic membrane 
potential was written to file and analyzed using custom-
made scripts. The time step of all simulations was set to 
dt= 0.0078125 ms, and all simulations were run for 600 ms 
before the recording started.

2.2 � One‑compartment model

The one-compartment model was simulated with the use 
of NEURON’s built-in Hodgkin-Huxley mechanisms. The 
length and diameter of the one-compartment model was set 
to 10 �m.

(1)c
m, j

dV
m, j

dt
= −i

L, j −
∑

X

iX, j +
I
stim, j

Aj

+
Ij−1, j − Ij, j+1

Aj

.

(2)iL = ḡL(V − EL),

(3)iX = ḡXm
𝛼h𝛽(V − EX),

Table 1   Models used in this study. OC is a one-compartment Hodg-
kin-Huxley model, BAS is a ball-and-stick model with passive den-
drite and Hodgkin-Huxley mechanisms in the soma, and A1-A3 are 
three PV interneuron models developed by the Allen Institute for 
Brain Science constrained to morphological and electrophysiological 
data from real PV neurons. cm,all - cm is changed everywhere, cm,sprx  
- cm is changed only on the soma and proximal dendrites, Multicomp. 
- Multicompartment

Model Multicomp. HH Allen cm,all cm,sprx

OC ✓ ✓

BAS, all ✓ ✓ ✓

BAS, sprx ✓ ✓ ✓

A1, all ✓ ✓ ✓

A2, all ✓ ✓ ✓

A3, all ✓ ✓ ✓

A1, sprx ✓ ✓ ✓

A2, sprx ✓ ✓ ✓

A3, sprx ✓ ✓ ✓
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2.3 � Ball‑and‑stick models

The ball-and-stick models were constructed by connecting a 
soma compartment to a dendrite compartment in NEURON. 
The dendrite was divided into segments of 5 � m for the 
simulations. The diameter of the soma was 10 �m.

The dendrite length was set to l = 1000 � m and the den-
drite diameter to d = 1 � m. NEURON’s HH mechanisms 
were inserted into the soma and passive mechanisms were 
inserted into the dendrite. The leak potential of the dendrite 
was set to -65 mV to match the resting potential of the soma, 
and the leak conductance was set to 0.0003 S/cm2 in the 
dendrite. The axial resistivity Ra was set to 100 Ωcm.

2.4 � Allen models

Mechanisms and morphologies of PV-neurons were taken 
from the Allen Brain Atlas’ Cell Database (Allen Insti-
tute for Brain Science, 2022) and run in NEURON. Allen 
model 1, 2 and 3 are the perisomatic models (meaning 
that active conductances were only included in the soma 
compartment) of cells with CellID 471077857, 487667205 
and 396608557, respectively. The Allen group removed 
all axon compartments and replaced them with an axon 
initial segment of 60 � m length and 1 � m diameter before 
performing the fit. For consistency, we used the same axon, 
giving it two compartments of two segments each.

The Allen models included the following mechanisms 
(Allen Institute for Brain Science, 2017):

•	 Hyperpolarization-activated cation conductance gh
•	 Markov-style formulation Na+ channel conductance gNaV
•	 Kv1-like K+ conductance gKd
•	 Kv2-like conductance gKv2like
•	 Fast-inactivating ( Kv4-like ) K + conductance gKT
•	 Kv3-like conductance gKv3
•	 M-type K + conductance gImv2

•	 SK-type Ca2+-activated K + conductance gSK
•	 High-voltage-activated Ca2+ conductance gCaHVA
•	 Low-voltage-activated Ca2+ conductance gCaLVA
•	 A passive conductance gL

The conductances were fit to experimental recordings by the 
Allen Institute for Brain Science and differed from model 
to model.

2.4.1 � Changes in Nernst potentials

The reversal potential Ek of ion species k is

(4)Ek =
RT

zkF
ln

[k]out

[k]in
,

where R is the gas constant, F is Faraday’s constant, zk is the 
valency and [k]in and [k]out are the intracellular and extracel-
lular concentrations. In the Allen models, ECa varied dynam-
ically through equations for calcium dynamics proposed by 
Destexhe et al. (1994) and Eq. (4), as Ca2+ currents affected 
the intracellular Ca2+ concentration. When we investigated 
hypothesized effects on ECa due to PNN degradation, we 
changed ECa(t = 0) by specifying fixed changes in the extra-
cellular Ca2+ concentration, which did not vary dynamically 
in the model.

2.5 � Simulation protocol

Frequency-input ( f − I ) curves were computed by injecting 
constant currents of different amplitude into the soma. The cur-
rent was increased in increments of 0.01 nA up to the value 
where the neuron was driven into depolarization block and was 
no longer able to fire action potentials. The input current dura-
tion was set to 1000 ms for the HH models. The Allen model 
neurons often exhibited late-onset spiking for current injections 
close to the threshold current. They were therefore stimulated 
by currents of 2000 ms duration, with the spiking frequency 
obtained from the last 1000 ms of the stimulus. The same pro-
tocol was used to find the threshold current, with a resolution 
of 0.001 nA. Spike frequencies and thresholds were found for 
sustained firing: Spikes were only counted if at least one spike 
occurred in the latter half of the stimulation interval, that is the 
last 1000 ms for the Allen models and the last 500 ms for the 
HH models. A spike was detected if the voltage at one point in 
time was larger than for both the preceding and the following 
time step, while also being larger than -20 mV.

3 � Results

We studied how f − I curves in the nine models described 
in the methods section were sensitive to a selection of model 
parameters, including the specific membrane capacitance 
cm , maximal conductances ḡX for various ion channels, and 
ionic reversal potentials Ek.

3.1 � Effects of c
m

 on firing properties

The firing properties of all models were sensitive to the 
value of cm∕cm0 , where cm0 is the model’s default value of 
the capacitance. An example illustration is given in Fig. 2A 
showing the voltage trace of Allen model 1, where an 
increasing cm lead to a broadening of the spikes, a lower 
spike amplitude and a decreased firing rate. The broadening 
was general for all models (Fig. 2E, F), as expected, since 
cm ∝ �m should slow down the membrane dynamics.
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Fig. 2   Properties of the neuron model as a function of specific mem-
brane capacitance cm . cm0 is the default value of cm in the model. A 
Voltage trace for Allen model 1 for default cm and 1.5cm . Inset: nor-
malized voltage trace over the duration of one peak. The two traces 
have been shifted to align the peak maxima, B Threshold current 
vs cm , C Frequency f vs cm for all models for input current I = 0.2 
nA, D f vs cm for the Allen models for I = 0.4 nA, E Spike duration 

(defined as the width of the spike at -40 mV) for I = 0.2 nA, F Spike 
duration at -40 mV for I = 0.4 nA. Note that the one-compartment 
model and the ball-and-stick model do not fire for I = 0.4 nA. OC - 
one-compartment model, BAS - ball-and-stick model, A1 - Allen 
model 1, A2 - Allen model 2, A3 - Allen model 3, all - cm changed at 
every segment of the neuron, sprx - cm only changed at the soma and 
proximal dendrites
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Note that the Allen models exhibit narrower spikes 
than the HH models, resembling the short spike duration 
observed in PV cells (Bartos & Elgueta, 2012).

The effect of cm on the threshold current for firing onset is 
shown in Fig. 2B. The threshold current remained constant 
or varied only slightly with the capacitance, except for the 
ball-and-stick model. However, in none of the models the 
onset was shifted when varying cm over the interval relevant 
under Tewari et al.’s experiments (i.e. from default to a fac-
tor 1.5 increase). This held both for simulations where cm 
had only been altered in the soma and proximal dendrites, 
as indicated by dashed lines, and simulations where cm was 
changed everywhere, as indicated by solid lines.

There was no clear general trend shared among the 
models in terms of how the firing frequency f depended on 
cm . Over the same cm interval, f increased with cm in some 
models, while it decreased with cm in others (Fig. 2C, D). 
This was also the case for the cm interval relevant under the 
experiments by Tewari et al. However, for the strongest of 
the current injections considered (0.4 nA in Fig. 2D), all 
models except Allen model 2 (which stopped firing at ∼ 
25% increase in cm ) showed a decreasing trend in f with cm . 
This suggests that at least the maximal firing rate in these 
models should be reduced, like in the experiments, when cm 
is increased (as an effect of PNN degradation).

For all the Allen models, f vs cm varied less when cm was 
only changed in the soma and proximal dendrites, which 
is to be expected as we altered cm on a smaller part of the 
neuron. For Allen model 3, for instance, this graph appeared 
far less curved when cm was changed in the soma and the 
proximal dendrites compared to when cm was changed eve-
rywhere. However, within the range cm∕cm0 ∈ [1.0, 1.5] , the 
difference between the two cases was relatively small. In the 
following, we therefore show results only for the supposedly 
more realistic case where PNN degradation is assumed to 
alter cm only on the soma and proximal dendrites (results for 
cm altered everywhere is found in Supplementary Fig. 1).

To compare with the f − I curves of Tewari et al. (2018) 
(Fig. 1) we stimulated the different neuron models with 
a range of input currents for various values of cm . Except 
for stimuli near the onset threshold, all models displayed a 
reduction in f when increasing cm (Fig. 3).

In addition to affecting the firing rate, changes in cm 
caused a shift in the spiking onset threshold in some of the 
models (Fig. 3). However, in none of the models the onset 
was shifted when varying cm over the interval relevant under 
the Tewari et al.’s experiments.

The HH models (Fig. 3A, B) exhibited type II firing, 
meaning that the firing rate increases abruptly from zero to 
a higher value when the threshold current is reached. How-
ever, Tewari et al. observed Type I firing in their experi-
ments. The HH models are therefore not ideal for simulating 
PV cells.

The Allen models, which were constructed based on 
morphological and electrophysiological recordings from 
real PV cells, had f − I curves that were more similar to the 
the experimental recordings. For Allen model 1 the firing 
frequency increased with cm for input currents close to the 
threshold current (Fig. 3C). At an input current of around 
I = 0.28 nA, the f − I curves crossed, after which the firing 
frequency decreased with cm . For Allen model 2, the f − I 
curve crossings started closer to the threshold current and 
were less pronounced (Fig. 3D). For a relatively larger range 
of input currents f decreased with increasing cm . For Allen 
model 3, the firing frequency was approximately equal for 
all cm for stimuli up to I = 0.18 nA, after which f started to 
decrease as cm was increased (Fig. 3E).

None of the f − I curves in Fig. 3 show a sufficient reduc-
tion in firing when reducing cm by 25 or 50% to explain the 
observations in the experiments by Tewari et al. (as seen from 
Fig. 3G). In other words, changing cm was on its own not enough 
to reproduce their findings. We therefore hypothesized that PNN 
degradation affected additional mechanisms which also contrib-
uted to the observed reduction in f. It has been reported that 
PNNs might affect both local concentrations of ions (Morawski 
et al., 2015; Burket et al., 2021) or currents through ion chan-
nels (Vigetti et al., 2008; van ’t Spijker & Kwok, 2017). In the 
following sections, we have therefore explored how variations 
in reversal potentials Ek and ion channel conductances ḡX affect 
the firing frequency of our model neurons.

As the HH models contained relatively few of the mem-
brane mechanisms present in PV neurons, and also produced 
type II firing unlike the type I firing seen in Tewari et al.’s 
experiments, we excluded them from our further analyses, 
and focused on the Allen models.

3.2 � Effects of reversal potentials on firing rates

PNNs have been shown to be involved in the regulation of 
ionic concentrations (Morawski et al., 2015; Burket et al., 
2017), and it is therefore likely that PNN degradation will 
lead to changes in ionic reversal potentials. This may in turn 
have dramatic consequences for neural firing properties, as 
has been the topic of many previous studies (Kager et al.,  
2000; Wei et  al., 2014; Sætra et  al., 2020). In order to  
gauge their general effect on the firing in PV neurons, all 
reversal potentials in the Allen models were changed sepa-
rately by up to ±20 mV, as shown in Fig. 4.

The simulations suggested that, among the reversal poten-
tials, ENa (all Allen models: Fig. 4A-C) and ECa (in Allen 
model 1: Fig. 4J) seemed the most likely candidates to have 
contributed during the experiments by Tewari et al. Both 
these led to moderate changes in the firing rate without 
strongly affecting the onset of firing. In contrast, changes in 
EK and EL (Fig. 4D-I) caused large shifts in firing onset not 
seen in the experiments, or no effect at all (Fig. 4H).
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3.3 � Effect of conductances on firing rates

To gauge the effect of conductance changes on f − I curves, 
we varied all conductances one-by-one over an interval rang-
ing from 0.3ḡX to 10.0ḡX , where ḡX is the default maximal 
conductance (for fully open ion channels). Among the nine 
models, Allen model 1 responded most strongly to conduct-
ance changes. We therefore show results only for that model 

(Figure 5). The effect of conductance on Allen models 2 and 
3 is shown in (Supplementary Figs. 2 and 3).

3.3.1 � Calcium conductances

In many neuron types, inward depolarizing Ca2+ cur-
rents trigger outward hyperpolarizing K + currents 

Fig. 3   Frequency-input curves for selected values of cm for the vari-
ous models. cm is altered in the soma and proximal dendrites. A The 
one-compartment Hodgkin-Huxley model, B The ball-and-stick 
Hodgkin-Huxley model, C Allen model 1, D Allen model 2, E Allen 

model 3, F The relative difference in f between the 1.0cm - and 1.5cm 
curves computed at the largest current that gave sustained firing in 
both cases



290	 Journal of Computational Neuroscience (2023) 51:283–298

1 3

through Ca2+-activated K + channels (see e.g. Destexhe  
& Sejnowski (2003) or Halnes et al. (2011)). Hence, whether 
the overall effect of a Ca2+ current leads to an increased  
or decreased firing rate generally depends on the neu-
ron’s ion channel composition.

In Allen model 1, the direct depolarizing effect associated 
with inward Ca2+ currents was much smaller than the second-
ary hyperpolarizing effects associated with the activation 
of Ca2+ - activated SK channels. Increasing ḡCaHVA thus had 

a negative effect on the firing rate in this model (Fig. 5A). 
Increasing ḡCaHVA by factors 3, 7 and 10, lead to quite pro-
nounced decreases in f by 28%, 54% and 65%, respectively, 
at the maximal current injection considered (0.8 pA). In com-
parison, the decrease in f (at the maximal current injection) in 
Tewari et al.’s experiments was 38%. The increased conduct-
ance did not lead to a shift in the onset of firing. Likewise, 
reductions in f (without a shift in the onset threshold) could 
also be obtained by an increase in ḡCaLVA (Fig. 5B).

Fig. 4   Frequency-input curves when varying the different reversal potentials in the Allen models. Note that the reversal potential of calcium in 
the Allen models was found using calcium dynamics together with Eq. (4), so ECa is given at t = 0 ms and will vary throughout the simulations
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Combined with changes in cm and possibly other mecha-
nisms, ḡCaHVA and ḡCaLVA could be candidate mechanisms for 
explaining effects of PNN degradation on firing properties. 
However, we did not find experimental studies in support of 
the notion that PNN degradation should increase Ca2+ con-
ductances. Contrarily, in retinal photoreceptors, chondroitin 
sulfates, which are key components of the PNNs, were found 
to shift the activation curve of unspecified calcium chan-
nels towards lower voltages (Vigetti et al., 2008). Hence, if  

removing PNNs means removing chondroitin sulfates, we 
would expect activation to shift towards higher values, 
resulting in generally reduced calcium current ICa . Likewise, 
in experiments on hippocampal slices, (Kochlamazashvili 
et al., 2010) found that ICaHVA was reduced upon break-
down of PNN component hyaluronan by hyaluronidase, and 
increased when hyaluronan was added to the hyaluronidase-
treated neurons. If anything, the cited experiments thus sug-
gest that PNN degradation should decrease overall calcium 

Fig. 5   Frequency-input curves when varying different conductances in Allen model 1. ḡX is the default value of the conductance. A  ḡCaHVA , 
B ḡCaLVA , C ḡNaV , D ḡKv3 , E ḡKv2like , F ḡSK , G ḡKd , H ḡImv2 , I ḡKT , J ḡh , K ḡL
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currents, rather than increase them, as we needed to do to 
reduce f in Allen model 1. Hence, we do no not consider 
ḡCaLVA or ḡCaHVA as main candidates for explaining Tewari 
et al.’s results.

We note that while ḡCaHVA had almost no effect on 
f in Allen models 2 and 3 (Supplementary Figs. 2A and 
3A), increases in ḡCaLVA had a small positive effect on f in 
these models (Supplementary Figs. 2B and 3B). The lat-
ter suggests that in these models, the depolarizing effect 
of ICaLVA dominated over indirect hyperpolarizing effects 
via SK activation. However, f was insensitive to reductions 
in ḡCaHVA and ḡCaLVA in these models. Hence, the decrease 
in f observed in Tewari et al.’s experiments could not be 
obtained by reducing Ca2+ conductances in any of the Allen 
models.

3.3.2 � Sodium conductance

An increase in ḡNaV lead to a downward (towards lower 
input) shift in the onset of firing (Fig. 5C) in Allen model 
1, and thus and increased f for weak stimuli. However, the 
f − I curves for various ḡNaV crossed at about I = 0.22 nA, 
and for input stronger than this, increase in ḡNaV caused a 
decrease in f, as has been seen in a previous modeling study 
(Kispersky et al., 2012).

There is experimental support that PNNs affect NaV cur-
rents. Tenascin-C and net component tenascin-R have been 
found to play a crucial role in localizing NaV channels in the 
axon initial segment and nodes of Ranvier (Srinivasan et al., 
1998), and tenascin-R has also been found to increase the 
maximum amplitude of NaV currents when in solution, thus 
indicating an increase in ḡNaV (Xiao et al., 1999).

As tenascin-R is a crosslinker in the nets, it is unclear 
whether it would get close enough to the NaV channels to 
affect them when present in intact PNNs. It is possible that 
removing the nets would lead to free tenascin-R and hence 
increased ḡNaV , but this effect might be transient due to dif-
fusion of tenascin-R away from the cell surface. If tenascin-
R lingers near the cell membrane after dissolving PNNs, 
a resulting increase in ḡNaV could, as we saw in Fig. 5C, 
partially explain the decrease in firing in Fig. 1. However, 
increases in ḡNaV produced pronounced shifts in the onset 
of firing not seen in the Tewari et al.’s experiments, and 
changes in ḡNaV thus does not seem like a main candidate 
for explaining the experiments.

3.3.3 � Potassium conductance: ḡKv3

Ion channel Kv3.1b is often highly expressed in PV neurons, 
which are often enwrapped in PNNs (Favuzzi et al., 2017). 
Experiments have also suggested that PNNs affect Kv3.1b 
channels. In brevican knock-out mice, clustering of these 

channels were altered, and active Kv3.1b was increased 
(Favuzzi et al., 2017). As PNNs contain brevican, it thus 
seems natural to expect that PNN degradation should lead to 
an increase in Kv3.1b conductance and hence ḡKv3.

The above evidence suggests that effects of PNN on 
ḡKv3 could be an important contributor to the reduction in f 
seen in Fig. 1. However, increasing ḡKv3 only gave a small 
reduction in f, but a pronounced shift towards higher input 
in the onset of firing (Fig. 5D), not seen in Tewari et al.’s 
experiments. According to the simulations, ḡKv3 is thus not 
a good candidate mechanism for explaining Tewari et al.’s 
experiments.

3.3.4 � Potassium conductance: ḡSK and ḡKv2like

Moderate and quite similar reductions in f could be obtained 
by increasing ḡKv2like (Fig. 5E) and ḡSK (Fig. 5F). Neither 
of these mechanisms affected the onset of the f − I curve 
significantly. The increase in ḡSK has experimental support, 
as attenuation of the extracellular matrix through applica-
tion of chondroitinase ABC have been shown to upregulate 
SK-channels in hippocampal neurons, leading to an increase 
in ISK by, on average, a factor 3 (see Fig. 2f in Dembitskaya 
et al. (2021)). When it comes to ḡKv2like , we found no men-
tion in the literature as to whether it is affected by PNNs. 
As the curves look promising and the literature does not 
exclude them, we consider both these conductances as can-
didate mechanisms for explaining parts of the reduction in f 
found in the experiments of Tewari et al.

3.3.5 � Other potassium conductances

The K + conductances ḡKd (Fig. 5G) and ḡImv2 (Fig. 5H) had 
little impact on f. Also, we have not found any mentions in 
the experimental literature suggesting that PNN affect these 
currents, and do not consider them as candidates for explain-
ing Tewari et al.’s experiments.

In contrast, ḡKT induced a clear shift in the onset of fir-
ing, as seen from Fig. 5I. Its f − I curves (for various values 
of ḡKT ) crossed at different input currents. For low input 
currents, f decreased with increasing ḡKT , while for larger 
input currents f increased with decreasing ḡKT . Due to the 
relatively large shifts and lack of mention in the literature, 
we do not consider ḡKT as a main candidate for explaining 
Tewari et al.’s experiments.

3.3.6 � gh

The hyperpolarization activated Ih current was almost 
inactive during the depolarizing current injections used 
in our simulations, and presumably also in Tewari et al.’s 
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experiments. Changing ḡh in Allen model 1 thus had almost 
no impact on its f − I curves (Fig. 5J). Due to its low impact 
on the firing frequency, we conclude that ḡh is not a candi-
date mechanism for explaining the reduction in f found in 
Fig. 1. We note that chondroitin sulfates, which are present 
in PNNs have been found to shift the activation curve of 
Ih in photoreceptors (Vigetti et al., 2008), but PNNs were 
not found to have any effect on Ih in deep cerebellar nuclei 
(Hirono et al., 2018). As previously explained, we have 
focused on conductances of various channels, and have not 
tried to account for activation kinetics.

3.3.7 � Leak conductance

A decrease in f could also be obtained by increasing the 
leak conductance ḡL (Fig. 5K). However, similarly to ḡKT , 
ḡL induced a clear shift in the onset of firing. Also, changes 
in the membrane resistance consistent with a change in ḡL 
were not found in the experiments by Tewari et al. (2018). 
We therefore do not consider ḡL as a main candidate for 
explaining Fig. 1.

3.4 � A combinatorial explanation

In the experiments by Tewari et al. (2018), PNN degrada-
tion lead to a maximum reduction in cm by 50%. As the 
simulations in Fig. 3G suggested, such a change in cm did 
reduce the firing rate in fast-spiking interneuron, but not 
sufficiently to explain the experiments in Fig. 3G). The 
parameter explorations in Sections 3.2 and 3.3 allowed us 
to identify possible candidate mechanisms that, combined 
with the observed change in cm , could explain the drop in f 
found in the experiments.

According to the simulations, ḡKd , ḡImv2 and ḡh are 
unlikely candidates since they had close to no effect on  
the f − I curve. The conductances ḡL , ḡKv3 and ḡNaV and 
the reversal potentials EK and EL are unlikely candidates 
since varying them introduced large shifts in the onset of 
the f − I curves not observed by Tewari et al.  f − I curves 
resembling those in Fig. 1 could be obtained by upregulat-
ing the Ca2+ conductances ḡHVA and ḡLVA . However, such 
upregulations are in conflict with previous experimental 
studies suggesting that PNN degradation should rather lead 
to a down-regulation of the mechanisms in question. Rul-
ing out the above parameters, we are left with four possible 
candidate mechanisms: the reversal potentials ENa and ECa , 
and the conductances ḡSK and ḡKv2like.

Upregulating the conductances ḡSK and ḡKv2like , both 
present in the Allen PV cell models, had an effect on the 
f − I curve similar to those seen in Fig. 1. Among these, 
upregulation of ḡSK by PNN degradation is supported by 
previous experiments, while we found no mention in the 
literature of PNN effects on ḡKv2like . Likewise, increasing 

ENa and ECa also lead to the desired reduction in f. PNNs  
have been shown to accumulate cationic molecules and may  
provide ion sorting on neuronal membranes (Morawski et al.,  
2015; Burket et al., 2017). The notion that PNN degrada-
tion should affect ionic reversals reversal potentials is thus  
not unlikely.

As shown in Fig. 6, the experiments of Tewari et al.  
could be explained through various combinations of changes 
in a selection of the parameters cm , ENa , ECa ḡKv2like and 
ḡSK . Allen model 1 was chosen as that yielded the strongest 
responses to changes in parameters, and was therefore the 
most promising candidate for recreating the 38% average 
drop in f from Tewari et al.’s experiments.

In general, achieving a reduction in f similar to what 
was seen in Fig. 1 required quite large changes in several 
parameters, and a large increase in cm was a necessary 
part of it. In Fig. 6, cm was increased by a factor 1.5, ECa 
and ENa (when included) were shifted by 30 and 10 mV, 
respectively, while ḡKv2like and ḡSK were varied (jointly, 
when both were included) by factors between 1.5 and 4 
as indicated in the figure legends. Upregulation of ḡSK by 
such a high factor due to PNN degradation is supported by 
the experiments by Dembitskaya et al. (2021). It was there 
found that on average, ḡSK increased by a factor three after 
PNN degradation, but changes up to a factor six was within 
the standard deviation in the experimental data. For the 
remaining parameters, the literature gives no guidance as 
to whether PNN degradation should affect them in the way 
suggested in Fig. 6.

Not surprisingly, the largest effect on f was found when 
the full set of candidate mechanisms were changed in the 
same model. When ḡKv2like and ḡSK were increased by a fac-
tor four (relative to their default values in the model), the 
reduction in f exceeded that seen in Fig. 1.

4 � Discussion

While an increasing number of studies show that degrada-
tion of PNNs increases plasticity (Fawcett et al., 2019), the 
underlying mechanisms remain elusive. An important piece 
of the puzzle is to reveal the role of PNNs for the neuron’s 
electrophysiological properties. In the experimental paper 
by Tewari et al. (2018) it was shown that PNN degrada-
tion led to a 25–50% increase in the membrane capacitance 
cm , and a decrease in the firing rate f of parvalbumin posi-
tive (PV) interneurons. In the current study, we showed for 
a selection of nine computational neuron models, that the 
reported reduction in cm indeed lead to reduced f, but could 
not explain a reduction as large as that seen in the experi-
ments. We therefore hypothesized that the reduction in f was 
due to a combination of cellular mechanisms affected by 
PNN degradation.
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By systematically exploring how f was reduced by 
changes in selected model parameters, we proposed an 
explanation where the reduced firing rate in Tewari et al.’s 
experiments is due to (1) the reported change in cm combined 
with (2) upregulation of potassium channels ḡSK and ḡKv2like , 
and (3) upward shifts in Ca2+ and Na+ reversal potentials. 
Whereas the upregulation of ḡSK is supported by previous 
experimental data (Dembitskaya et al., 2021), the proposed 
effects of PNN degradation on the remaining parameters 
are neither supported nor conflicted by existing literature.

Experimental literature on how PNNs affect ion channels  
and reversal potentials is sparse. In the few studies that exist, the  
focus is often on how individual PNN components affect cell 
properties, and not on PNNs as a an intact structure (see e.g. 
Xiao et al., (1999), or Favuzzi et al., (2017)). This opens up 
for speculation about how PNN degradation actually affects 
the cell. When we in the current study compared our model 
predictions with experimental findings, we assumed effects 
of net components were the same when embedded in the net 
as when applied artificially in a bath solution, and likewise 
that dissolving PNNs corresponds to degradation of all PNN  

components. However, we cannot exclude the possibility 
that components of dissolved nets in reality will be floating  
around in the extracellular space, having the same (or even 
stronger) effect on cells as when embedded in the PNNs.

PNNs encapsulate neural membranes inhibiting the 
growth of new spines (Dansie & Ethell, 2011; Bikbaev et al.,  
2015). The impact on spine growth provides a quite sim-
ple explanation to the relationship between PNNs and 
ḡSK : PNN degradation would facilitate the growth of new 
spines, and as ḡSK are expressed in spines in many neurons, 
this could lead to a quite dramatic increase ḡSK expression 
(Dembitskaya et al., 2021). The mechanisms through which 
PNNs should affect the expression or kinetics of ion chan-
nels not primarily located in spines are less clear. For sim-
plicity, we assumed that key effects of PNN degradation on 
ion channels could be modeled as up- or down regulation 
of conductances (for fully open channels). However, we 
note that in some cases, net components can have more 
complex effects on ion channels than mere up- or down-
regulation. For instance, net components have been shown 
to alter the activation curves of Ca2+ channels (Vigetti et al., 

Fig. 6   Frequency-input curves of Allen model 1 when varying cm and 
A ENa , ḡKv2like and ḡSK , B ECa(t = 0) and ḡSK , C ECa(t = 0) , ḡKv2like 
and ḡSK , D ḡKv2like and ḡSK , E ECa(t = 0) , ENa , ḡKv2like and ḡSK , F Rel-
ative difference between each parameter combination and default at 
the largest current that gave sustained firing in both cases. The hori-
zontal dashed line indicate the relative difference between f of Sham 

and GBM22 in Tewari et  al.’s experiments. The difference between 
Sham and GBM14 is a bit larger. Default - default values, ENa = 53 
mV and ECa(0) = 131.06 mV. For the altered models, ENa = 63 mV 
and ECa(0) = 161.53 mV, cm is increased by a factor 1.5 and the con-
ductances are indicated in the legend
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2008), and in principle, activation time constants could  
also be affected. Since there is little available data that 
would allow us to constrain PNN effects on ion channel 
kinetics, we made the simple choice of only varying the 
conductances. However, a more in-depth study of effects of 
PNN degradation on firing rates could be conducted when 
more data is available on how PNN degradation affects spe-
cific mechanisms on the cellular level.

An important feature of Allen model 1 (our selected  
“main model”) was that the effect on f by regulating Ca2+ 
conductances ḡHVA and ḡLVA was always indirect, i.e. via 
the activation of ḡSK by intracellular Ca2+ . The interplay 
between Ca2+ influx and the activation of Ca2+ activated  
K + channels such as SK is generally intricate (Sah & Faber, 
2002; Shin et al., 2022), and we note that the Ca2+ con-
ductances in our model could have the opposite effect if 
ḡSK were very small or absent in the model. In that case, f 
would decrease with decreasing Ca2+ conductances, and not 
increase, as it did in our simulations. This would reinstate  
the Ca2+ conductances as candidate mechanisms for firing 
frequency reduction, as a reduction in I

Ca
 and f has been found 

upon PNN degradation (Vigetti et al., 2008; Kochlamazashvili  
et al., 2010). As Allen model 1 instead leads us to suggest ḡSK 
as a key candidate mechanism for explaining reduced firing 
rates in the experiments of Tewari et al. (2018), we would 
encourage follow-up experiments aimed to verify this finding. 
Such experiments could for example use immunohistology 
or patch-clamping combined with SK antagonists or agonists 
to verify if (i) PNN degradation actually leads to a change  
in ḡSK in the relevant neurons, and (ii) whether ḡSK regula-
tion actually causes pronounced changes in their firing rates.

The idea that PNNs should affect ionic reversal potentials 
seems plausible since PNNs consist of negatively charged 
glycans. It has been suggested that these locally immobilized 
charges can accumulate a reservoir of physiologically relevant 
cations such as K + , Na+ and Ca2+ in the extracellular vicinity of 
PNN encapsulated neurons (Brückner et al., 1993; Morawski  
et al., 2015). However, it is not obvious how such a cation  
reservoir should affect the reversal potentials. One might 
imagine that the reservoir simply amounts to increased extra-
cellular concentrations of free K + , Na+ and Ca2+ , which would 
correspond to depolarized reversal potentials of these ions. 
Alternatively, one could imagine that the reservoir instead 
represents a buffering of these ions, hindering them in cross-
ing the membrane, with the possible consequence of more 
hyperpolarized reversal potentials. So far, we have failed to 
find experimental evidence for either of the possibilities, and 
the link between PNN associated glycans and ionic concen-
trations appears to be anything but trivial. For example, PNN 
associated glycans have been found to decrease the intracel-
lular Cl− concentration, and not increase it, as one intuitively 
might expect based on their negative (extracellular) charge. As 

a consequence, enzymatic digestion of glycans was found to 
depolarize the Cl−-reversal potential ECl (Glykys et al., 2014). 
When it comes to reversal potentials of the other ion species, 
we have found no clear statements in the literature as to how 
PNNs should affect them. One might seek some evidence by 
exploring effects of PNNs on resting membrane potentials, 
which depend on the weighted reversal potential of all ions 
that the resting membrane is permeable to. However, PNN 
degradation has not been consistently found to alter resting 
membrane potentials in fast-spiking interneurons (Balmer, 
2016; Tewari et al., 2018). The lacking impact on resting 
potentials implies that PNNs either have little impact on 
ionic reversal potentials, or that they by chance or evolution-
ary selection affect multiple reversal potentials in concert so 
that their net effects on the resting membrane is small. In this 
context, it should be noted that the resting membrane potential 
is by far most sensitive to EK and ECl , while ENa and especially 
ECa could in principle change quite a lot without affecting the 
resting membrane potential much (Hodgkin & Katz, 1949).

We note that PNN degradation is likely to impact many mech-
anisms besides those considered in the current study. PNNs can 
for example influence glycan-protein ligand interactions and 
accessibility to receptors on the neuronal surface (McRae et al., 
2012), influence neuron-glia interactions (Carulli et al., 2016), 
synaptic transmission (Sonntag et al., 2018), and regulate PV 
expression in itself (Enwright et al., 2016), as might have possible 
effects on the dynamical properties of the affected neurons. Most 
of these off-target changes were in the experiments of Tewari 
et al. (2018) ruled out as the main explanatory effects behind 
changed firing-rate changes (Tewari et al., 2018), and neither of  
these effects were considered in the current modeling study.

In general, the parameter changes that affected f − I 
curves in our models also affected shapes of their action 
potentials. However, the relationship between the action-
potential shapes and f − I curves is generally not trivial. 
The durations (or widths) of action potentials are in many 
studies reported to increase with firing frequency (see  
e.g. Bourque & Renaud (1985) or Stratton et al. (2012)), 
yet examples of the opposite can also be found (see e.g. 
Kispersky et al., (2012) or Halnes et al., (2019)). As demon-
strated in Supplementary Fig. 4, (panels F–K) for the final 
set of candidate models (those in Fig. 6), the duration of the 
action potentials could in our simulations both increase and 
decrease with firing frequency, depending on position on 
the stimulus-current axis. However, the overall variations 
in the action potential-shape were quite moderate, and its 
relationship to the f − I curves was not studied further here.

Finally, we note that all models are simplifications that are 
bound to lack some mechanisms present in the real systems. In 
that context, we note that the f − I curves of fast-spiking interneu-
rons in the Tewari data (Fig. 1) were more linear than the f − I 
curves of any of our nine considered computational models, both 
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under in control conditions and after PNN-degradation. Hence, 
none of the models seem to accurately describe the firing proper-
ties of the cell type in the experiments, pointing to mechanisms 
lacking in the models. The ideal starting point for the study pre-
sented would thus be the construction of a new multicompartment 
neuron model, validated against electrophysiological data from the 
relevant neuron type under the same experimental conditions as in 
the experiments of Tewari et al. (2018). This would require a large 
modeling effort including collaboration with experimentalists 
willing to do the relevant recordings, and was regarded as being 
beyond the scope of the current study. We instead considered the 
morphologically detailed state-of-the-art models from the Allen 
Brain Atlas’ Cell Database as the best candidate models for the 
neurons in question, as these had passive and active parameters 
fitted to electrophysiological data from PV neurons in mice, i.e., 
the same kind of neurons that were targeted in the experiments of 
Tewari et al. (2018).
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