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A B S T R A C T

In this paper we examine how sensitive Value-at-Risk (VaR) forecasts based on simple linear
quantile regressions are to the sampling frequency used to calculate realized volatility. We use
sampling frequencies from one to 108 min for ICE Brent Crude Oil futures and test the out-
of-sample performance of a set of quantile regression models using formal coverage tests. The
results show that a one-factor model performs exceptionally well for most sampling frequencies
used to calculate realized volatility. In comparison with the well-known Heterogeneous Auto-
regressive Model of Realized Volatility (HAR-RV) and a quantile regression version of the
HAR model (HAR-QREG), we also find that the one-factor model is much less sensitive to the
sampling frequency used to calculate realized volatility.

. Introduction

Value-at-Risk (VaR) is one of the most commonly used measures to quantify and manage financial risk and it has entrenched
tself as a common benchmark for empirical checks, and to control and measure the underlying uncertainty of a portfolio. VaR
orecasts have typically been obtained using more or less advanced time series models of the volatility of the assets or portfolio
nder consideration using returns at daily frequencies (see e.g., Mabrouk, 2009; Shao et al., 2009). Over the past decades, however,
esearch has shown that more precise volatility estimates can be obtained by using high-frequency (intra-daily) data and the concept
f realized volatility (Andersen and Bollerslev, 1998; Andersen et al., 2001a,b).

Using quantile regression to forecast VaR is not new. Haugom et al. (2016) for example use a quantile version of the HAR-model
f Corsi (2009) combined with volatility estimates obtained from daily data with good results when compared to a set of alternative
odels. High-frequency data and realized volatility have also been used to forecast VaR in several studies (see Louzis et al., 2014 for
review). Combining the use of high-frequency data and realized volatility with quantile regression to forecast VaR has received less
ttention though. This is somewhat puzzling given the well-documented properties of realized volatility as a good estimator of the
rue (unobserved) volatility of financial assets, and because VaR is simply the conditional quantile of a portfolio return distribution.

rare example of previous research combining realized volatility with quantile regression is the seminal paper by Žikeš and Baruník
2015). They calculate realized volatility for S&P500- and WTI Crude Oil futures and use simple linear quantile regression models to
orecast conditional daily returns. Their results show that the quantile regression models perform well compared to more advanced
enchmark models and the findings hold across assets and the examined quantiles.
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Our study builds on the work by Žikeš and Baruník (2015) but differs in several ways. First, Žikeš and Baruník (2015) use a
-minute sampling frequency for the returns to calculate realized volatility. Hence, they do not examine how the sampling frequency
ffects the performance of the various VaR forecast. Though much extant research on realized volatility uses a 5-minute sampling
requency to balance the impact of microstructure noise with efficiency (see e.g., Andersen et al. (2007), Corsi et al. (2010)), the
o-called signature plot cannot necessarily be used to assess how sensitive the VaR forecasts are to the sampling frequency. Though
ccess to high-frequency data may not be an issue for most agents in the industry, the principle of parsimony still holds. That is, if
qually good VaR forecasts can be obtained using a lower sampling frequency to calculate realized volatility, the simpler approach
lower frequency) should be used. Our main objective in this study is therefore to assess the sensitivity in the VaR forecasts based
n quantile regression across sampling frequency used to calculate realized volatility. To assess this sensitivity we use sampling
requencies of between one and 108 min in our empirical analysis.

Second, Žikeš and Baruník (2015) focus solely on the main trading hours (9:30–16:00 EST) when calculating the realized volatility
easures used in the quantile regressions to forecast VaR. We also construct volatility estimates and perform VaR predictions for the
hole day (24 h) as suggested by Hansen and Lunde (2005). By doing so, we can also assess how sensitive the 24 h VaR forecasts
re to the sampling frequency used to calculate the realized volatility measure for the whole day.

Third, while Žikeš and Baruník (2015) test their models when forecasting 5%- and 10% VaR in both tails, we also include both
he 1%- and 2.5% VaR levels. Methodology-wise we focus on the quantile version of the HAR model proposed by Corsi (2009)
nd a simple one-factor model where only the current day estimate of realized volatility is used to generate the next day’s VaR
orecast. We then compare these models with the corresponding OLS alternatives combined with Gaussian critical quantile values
o form the VaR forecasts as done in Haugom et al. (2014). We also include the results of the Dynamic Quantile Regression proposed
y Laporta et al. (2018) and reported to perform well compared with a set of other models, including the CAViAR models of Engle
nd Manganelli (2004).

Our article thus contributes to answering a few conceptual questions:

• How does sampling frequency affect the quality of VaR forecasts for Brent Crude oil based on simple linear quantile regression
models?

• How important is information about historical volatility beyond the one-day horizon when forming the VaR forecasts based
on linear quantile regression models?

• Are there differences in how sensitive the VaR forecasts are across sampling frequencies for techniques including historical
weekly- and monthly volatility estimates compared with techniques using just the last available one-day estimate of volatility?

Our results show that the relatively simple one-factor model can compete with more complex models in terms of accuracy
nd provides an advantage in terms of robustness against changes in the sampling frequency. The VaR forecasts based on quantile
egression models are generally less sensitive to the sampling frequency used to calculate realized volatility compared with forecasts
ased on standard regression models. Among the quantile regression models, the one-factor model is the least sensitive to the
ampling frequency used to calculate realized volatility. We also find that our simple one-factor model performs better both within
standard regression- and a quantile regression framework when compared with a corresponding three-factor (HAR) model. Finally,

he DQR model used by Laporta et al. (2018) performs poorly in our analysis and is only able to pass the conditional coverage test
or the 10% VaR level for the 24-hour returns.

While our emphasis is on one-day-ahead VaR forecasting, our paper naturally connects to the literature on forecasting (realized)
olatility in general. Examples are (Chen et al., 2020) who use auto-regressive models to forecast realized volatility of crude oil
utures prices, and Thomakos and Wang (2003) who use high-frequency data and realized volatility for various currency and index
utures. We stress at this point that our focus is entirely on one-day ahead forecasts. Ghysels et al. (2019) assess direct against
terated multi-period forecasts on returns’ variance within the GARCH and RV families with a similar agenda, but focusing on the
onger term and not including quantile regression-based methods. However the latter indicates that the approach can be extended
o include multi-period quantile forecasts using the methodology developed in Ghysels et al. (2016). In fact Žikeš and Baruník
2015) include a 5- and 10-day horizon in their forecasts of conditional returns and volatilities. A natural extension could therefore
e to examine how sensitive longer-horizon VaR forecasts are to the sampling frequency used to calculate realized volatility. We
eave this as potential future work. Such work could focus on testing the usefulness of using high-frequency data for longer-horizon
aR forecasts in general, in line with the work done by Ghysels and Valkanov (2012). Nevertheless, we note that these studies
re thematically aligned with ours by emphasizing that a relatively simple methodology can produce excellent results when using
igh-frequency data.

Our work also contributes more generally to the literature that looks at how econometric methodology is affected by sample
requency and the transition from discrete to continuous time. Key contributions in this literature include McCrorie (2009), Chambers
2011), and Chambers et al. (2018). Robustness against changes in sampling frequency is an attractive attribute of an estimator and
n our case selects a simple quantile regression among the alternatives.

Overall, despite the significant importance of VaR, research focusing on VaR forecasting based on high-frequency data for Brent
rude oil is still scarce (Brownlees and Gallo, 2010; Grigoletto and Lisi, 2009; Nieto and Ruiz, 2016). We focus our analysis on
rent Crude oil futures as it is, by far, the most important commodity traded globally (Sadorsky, 2006). In fact, understanding the
ariability of crude oil prices is of fundamental importance and has been found to predict a significant number of industry portfolios,
s shown by Wang et al. (2016). As noted by Žikeš and Baruník (2015), oil prices also exhibit substantially higher volatility than
tock indices or FX and thus serve as a good test of methodology on less well-behaved financial time series.
2
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The rest of the paper is organized as follows: In Section 2 we briefly discuss the theory of quadratic variation and describe our
pproach to forecasting VaR. Section 3 presents the data and preliminary analyses while our main results are presented in Section 4.
inally, we conclude with a brief summary and outlook in Section 5, illustrating various extensions of our approach which can be
xamined further in future work.

. Quadratic variation and realized volatility

.1. Realized volatility

Let 𝑟𝑖,𝑡 be the continuously compounded return for sub-period 𝑖 on day 𝑡 and let 𝑀 be the sampling frequency in one time unit
(i.e., one day in this case). Realized variance is then defined as,

𝑅𝑉𝑡 =
𝑀
∑

𝑖=1
𝑟2𝑖,𝑡. (1)

Hence, the term realized variance is the sum of the intra-daily squared returns sampled at short intervals. The mathematical
theory of quadratic variation suggests that the following holds if the discretely sampled returns are serially uncorrelated and the
sample paths for 𝜎𝑡 are continuous (see e.g., Karatzas and Shreve, 1988; Poon and Granger, 2003; Andersen et al., 2003):

𝑝 − lim
𝑀→∞

(

∫

1

0
𝜎2𝑡+𝜏𝑑𝜏 −

𝑀
∑

𝑖=1
𝑟2𝑖,𝑡

)

→ 0, (2)

where the limit above denotes the limit in probability. This result shows that the latent (unobservable) variance can be measured
(almost) perfectly using discrete data if the sampling frequency is high enough.1 But what exactly is high enough? Previous research
has shown that micro-structure noise induces bias in the variance estimate obtained by realized variance (see e.g., Bandi and
Russell, 2008) when using very high sampling frequencies. In practice, there are also computational costs and costs associated
with storing excessive amounts of high-frequency data. These costs must be compared with the potential benefits of more accurate
VaR forecasts. To make a valid assessment of the trade-off between sampling frequency and forecast accuracy, the risk modeler
needs decision support based on the application the data are meant for.

Forecast accuracy should of course remain as the primary objective, but if a forecast is highly sensitive to the sampling frequency
in the data, then it disqualifies itself, if the true underlying model is in fact in continuous time. Sample frequency robustness should
therefore be used as an additional criterion when choosing a specific forecasting method, and in our case this secondary criterion
selects our simple one factor quantile regression model against some of the more advanced models we investigated.

2.2. Overnight returns and whole-day realized volatility

For some markets, trading takes place around the clock and a variance measure for the whole day can be readily obtained
from high-frequency data. For ICE Brent Crude oil futures the trading hours are from 12:00 AM to 10.00 PM London time (GMT).
One could therefore use data from this 22-hour trading window and probably obtain good estimates of the whole-day-variance
(24-h). The information ‘lost’ in the two-hour window is likely low for most trading days. From both a practical and an academic
perspective, however, there are reasons to choose another approach. First, liquidity is relatively low during night-time GMT, and
particularly so for the early sample period. Low liquidity will induce many zero-returns at the highest sampling frequencies and
market microstructure noise can influence the volatility estimates (see e.g., Andersen et al. (2003); (Hansen and Lunde, 2006)).
Second, many financial institutions require VaR forecasts to be handed in by the end of the ‘regular’ trading day. Waiting until
10.00 PM (GMT) to obtain all the intra-daily information to form a next-day VaR forecast is then not an option.2 We therefore
construct a whole-day variance measure by properly scaling the realized-variance measure for regular business hours (from 8.00
AM to 5.00 PM London time) and the last available overnight return variance. The same intra-day sampling period for Brent Crude
oil futures was used by Haugom et al. (2014) and Haugom and Ray (2017). In a similar way, Hansen and Lunde (2006) also discarded
observations outside ‘‘regular trading hours’’ (from 9.30 AM to 4.00 PM) when studying transaction prices from NYSE and NASDAQ.

Several ways of constructing such a 24-h ‘whole-day-variance’ measure have been suggested in the literature, but we rely on the
procedure described by Hansen and Lunde (2005), which is simple to implement and has been shown to perform well in empirical
applications.

1 Over recent years, volatility estimation using such high-frequency, intra-daily, data has been subject to growing interest among researchers and practitioners
nd the concept is by now well established in the literature. A full review will not be provided here. See the following references for detailed descriptions
nd/or empirical examination of realized volatility using high-frequency data: Dacorogna et al. (2001), Andersen and Bollerslev (1998), McAleer and Medeiros
2008) and Kambouroudis et al. (2016).

2 Another issue is that in periods with extreme volatility huge additional margin requirements could be imposed by the clearing house within a trading day
3

nd with a short time limit. Institutions are therefore in need of such VaR forecasts to estimate the financial needs for margin requirements.
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The aim is to find optimal weights, 𝜔1 and 𝜔2, for the overnight and business-hours variance by minimizing the variance of
he whole day. If we define 𝑟2𝑐𝑜,𝑡 as the overnight variance3 and 𝑅𝑉𝑡 business-hours variance - both for day 𝑡 - we can, according
o Hansen and Lunde (2005), calculate a realized-variance measure for the whole day as follows:

𝑅𝑉 ∗
𝑡 = �̂�1𝑟

2
𝑐𝑜,𝑡 + �̂�2𝑅𝑉𝑡 (3)

The approach to calculating the optimal weights involves estimating the expected values, the variance, and covariance of the
hole-day variance (𝑟2𝑐𝑜,𝑡 + 𝑅𝑉𝑡), the overnight variance (𝑟2𝑐𝑜,𝑡) and the business-hours variance (𝑅𝑉𝑡). The calculation steps are

horoughly described by Hansen and Lunde (2005) and Haugom et al. (2014) and will not be repeated here.

. Methodology

.1. Value-at-Risk and the proposed model

Value-at-Risk (VaR) is one of the most widely used risk measures in financial risk management. It can be defined as the loss,
n present value terms, that we are 𝛼% confident will not be exceeded if the portfolio is held static over a certain period of ℎ
ays (Alexander, 2009). Formally, if we let {𝑟𝑡}𝑇𝑡=1 denote a time series of portfolio returns, the challenge is to forecast VaR𝑡+1 such
hat:

𝑃 [𝑟𝑡+1 < VaR𝑡+1|𝛺𝑡] = 𝛼 (4)

here 𝛺𝑡 is the information set available at the time the VaR forecast is made. The information set will vary among various players
n the marketplace and trying to include all possible variables that investors may be using when making trading decisions is an
mpossible task. All of the information that the various market players possess will, however, ultimately be reflected in the price
ovements of the asset under consideration, as suggested by the efficient market hypothesis (Fama, 1970). The current volatility

f the portfolio returns is therefore an obvious choice if the objective is to operationalize the information set in an efficient and
oherent way. The problem is then to forecast VaR𝑡+ℎ such that:

𝑃 [𝑟𝑡+ℎ < VaR𝑡+ℎ|𝜎𝑡] = 𝛼, (5)

where 𝜎𝑡 is the day 𝑡 volatility which can be accurately estimated by realized volatility. The current day volatility reflects not only
the information becoming available on day 𝑡, but also what investors believe is relevant historical information, and expectations
about the future.

As VaR is the conditional quantile of the portfolio return distribution, we can use the quantile regression method by Koenker
and Bassett (1978) to estimate the ℎ-day 𝛼% VaR. If we let 𝑞 = 𝛼 and 𝑌𝑞 = VaR𝑞,𝑡+1, we can use the definition given in Eq. (5) to
express the conditional quantile function as:

𝑌𝑞|𝜎𝑡 = �̂�𝑞 + 𝛽𝑞𝑅𝑉𝑡. (6)

The model is easily estimated for all relevant conditional 𝑞 quantiles (0 < 𝑞 < 1) by solving the minimization problem presented
in Koenker and Bassett (1978):

min
𝛼𝑞 ,𝛽𝑞

𝑇
∑

𝑡=1
(𝑞 − 1𝑌𝑞≤𝛼𝑞+𝛽𝑞𝑅𝑉𝑡 )(𝑌𝑞 − (𝛼𝑞 + 𝛽𝑞𝑅𝑉𝑡)), (7)

here

1𝑌𝑞≤𝛼𝑞+𝛽𝑞𝑅𝑉𝑡 =

{

1 if 𝑌𝑞 ≤ 𝛼𝑞 + 𝛽𝑞𝑅𝑉𝑡
0 otherwise.

(8)

An illustration of the basic properties of the model is presented in Fig. 1. Panel 1(a) shows how a scatterplot of next day’s return
𝑟𝑡+1) and an estimate of current day volatility (𝜎𝑡) could look like. Panel 1(b) illustrates conditional quantile estimates based on
q. (7). The line with the steepest positive slope would reflect a conditional quantile in the far right tail of the return distribution,
nd vice versa. The illustration highlights a few key points. First, the estimated slope for a conditional quantile will increase in
bsolute terms the further away from the conditional median. Second, the estimate of the conditional quantile will increase with
he current day volatility, except for the conditional median and conditional quantiles very close to that. The latter point reflects
he aspect of volatility clustering as high current day volatility will induce more extreme next day tail predictions compared with
ow current day volatility levels. Hence, small price changes will tend to be followed by small price changes of either sign, and vice
ersa.

To assess the performance of the proposed one-factor model, we also include VaR forecasts based on the Heterogeneous
utoregressive Model of Realized Variance (HAR-RV) as proposed by Corsi (2009):

𝑅𝑉 𝑡+1 = �̂� + 𝛽𝑑𝑅𝑉𝑡 + 𝛽𝑤𝑅𝑉𝑡,𝑡−4 + 𝛽𝑚𝑅𝑉𝑡,𝑡−19 + 𝜀𝑡 (9)

3 The subscript 𝑐𝑜 stands for close-open.
4
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Fig. 1. Illustration of the potential relationship between next day return and current daily volatility (left panel) and conditional quantile estimates (right panel).
The conditional quantile lines with the steepest positive slopes would reflect the right tail of the return distribution and vice versa.

where 𝑅𝑉𝑡+1 denotes next day realized volatility, 𝑅𝑉𝑡 is the observed realized volatility today, 𝑅𝑉𝑡,𝑡−4 is the average observed realized
volatility over the last five business days, and 𝑅𝑉𝑡,𝑡−19 is the average realized volatility over the last four business weeks (i.e., the
last 20 business days).4

The volatility forecasts from this model are then combined with Gaussian critical quantile values to form the VaR forecasts.
One may argue that return distributions are rarely Gaussian and that the above approach therefore is doomed to fail. Andersen
et al. (2001b), however, have shown that daily exchange-rate returns standardized by realized volatility are close to Gaussian. The
approach was also used by Haugom et al. (2014) when using high-frequency data of Crude oil futures with good results. Nevertheless,
this approach is less direct as it first needs a forecast of the volatility and then make a distributional assumption to obtain the VaR
forecast, while quantile regression directly targets VaR.

One could argue though that the more or less static approach based on Eq. (6) is missing dynamic properties of the realized
volatility process and is therefore less suitable to make longer term or multi-stage forecasts as compared to (9). We therefore include
a quantile version of the three factor HAR-model (called HAR-QREG) and an OLS version of the one factor model combined with
Gaussian quantile values in our analysis.

𝑌𝑞|𝜎𝑡 = �̂�𝑞 + 𝛽𝑑,𝑞𝑅𝑉𝑡 + 𝛽𝑤,𝑞𝑅𝑉𝑡,𝑡−4 + 𝛽𝑚,𝑞𝑅𝑉𝑡,𝑡−19 + 𝜀𝑞,𝑡, (10)

𝑅𝑉 𝑡+1 = �̂� + 𝛽𝑑𝑅𝑉𝑡 + 𝜀𝑡, (11)

Additionally, we test the performance of the DQR model which has recently been used by Laporta et al. (2018) and reported to
perform well:

𝑌𝑞|𝑟𝑡 = �̂�𝑞 + 𝛽𝑞𝑟𝑡 + 𝜀𝑞,𝑡. (12)

That is, the conditional quantile the next business day is predicted using only the latest available return (𝑟𝑡).

3.2. Evaluating the value-at-Risk forecasts

To assess the performance of the VaR forecasts based on the various models using sampling frequencies of between one and
108 min we apply both an unconditional- and a conditional coverage test. The accuracy of a given VaR forecast can simply be
assessed by comparing the fraction of the ex-post returns that exceed the forecasted VaR level:

𝐼𝑡+1 =

{

1 if 𝑟𝑡+1 < VaR𝑡+1,𝛼

0 otherwise.
(13)

4 Note that the HAR-RV model is in a sense a so-called MIDAS regression with step-functions. See Ghysels and Valkanov (2012) and Ghysels et al. (2007)
for details.
5
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Kupiec (1995) then formulated a test to assess whether the number of violations is sufficiently close to the VaR level of interest:

𝐿𝑅𝑢𝑐 = −2𝑙𝑜𝑔
[

𝛼𝑛1(1 − 𝛼)𝑛0

�̂�𝑛1(1 − �̂�)𝑛0

]

∼ 𝜒2(1) (14)

where 𝑛0 and 𝑛1 represent the number of non-VaR violations and VaR violations at the given 𝛼 quantile level and �̂� = 𝑛1∕(𝑛0 + 𝑛1)
s thus the observed proportion of violations. The test assumes independent violations and the obtained test statistic is compared to
he critical value of the chi-square distribution with one degree of freedom at a chosen significance level.

Christoffersen (1998) correctly points out, however, that the assumption of independent violations is not always fulfilled in
ractice. He, therefore, proposed a joint likelihood ratio test statistic of unconditional coverage and independence as follows:

𝐿𝑅𝑐𝑐 = −2𝑙𝑜𝑔
(1 − 𝛼𝑛0)𝛼𝑛1

(1 − �̂�𝑛01)𝑛00�̂�𝑛01
01 (1 − �̂�11)𝑛10�̂�𝑛11

11

∼ 𝜒2(2) (15)

where 𝜋𝑖𝑗 are the transition probabilities and 𝑛𝑖𝑗 is the number of observations with value 𝑖 followed by 𝑗. As the test of Christoffersen
(1998) included both an assessment of unconditional coverage and independence we focus on this when reporting the results for
expository reasons. The unconditional coverage test results are available upon request.

4. Data, analysis, and results

The data used in our empirical analysis consist of almost 16 years of high-frequency transaction level data for the front-month
Brent Crude oil futures contracts traded at the Intercontinental Exchange (ICE). The sample period extends from January 3, 2006
to October 29, 2021, for a total of 4048 trading days. The contract price is given in US dollars and cents per barrel and the contract
size is 1,000 barrels (42,000 US gallons).

For our sample period, trading in each contract ceases at the end of the designated period of settlement on the Business Day (a
trading day that is not a public holiday in England and Wales) immediately preceding: (i) Either the fifteenth day before the first
day of the contract month, if this fifteenth day is a Business Day, or (ii) if this fifteenth day is not a Business Day, the next preceding
Business Day (ICE, 2018).5

The front-month contract is by far the most liquid contract, and it is also the price movements of this contract that is reported in
the news worldwide. In the empirical analysis, we therefore focus on the front-month contract. Haugom et al. (2014) note, however,
that the trading volume on the last trading day of the front-month contract is only one tenth of the average trading volume for the
rest of the trading days for ICE Brent Crude futures. We therefore follow their procedure and roll over to the second-position contract
for the last trading day of the first-position contract. We employ this rollover strategy over the entire sample period.

Fig. 2 shows the daily realized volatility estimates based on sampling frequencies from one minute to one hour (60 min).6 We
note that the sample includes the very volatile period associated with the Covid-19 outbreak when daily realized volatility reached a
maximum of approximately 20%. From the plots it is also evident that the variance of the realized volatility estimates decreases with
sampling frequency. The signature plot presented in Fig. 3 confirms this: The standard deviation of realized volatility is negatively
related to the sampling frequency (right y-axis) and is more than 13% higher when using the lowest sampling frequency (∼ 0.0085)
compared with using the highest sampling frequency (∼ 0.0075) to calculate it.7 The same figure also shows that the average realized
volatility estimate is highly dependent on the sampling frequency. Using a sampling frequency of one minute induce an average
realized volatility estimate that is more than 10% higher compared with the realized volatility estimates obtained with sampling
frequencies of one hour or lower.

Andersen et al. (1999) suggest that the signature plot of realized volatility itself can be used as a simple approach to assess the
sampling frequency. The aim is to find the highest sampling frequency for which realized volatility is approximately constant. The
corresponding measure of realized volatility sampled at this frequency is fairly accurate and free of micro-structure bias (Bollerslev
et al., 2008). In our case, the signature plot suggest that at a sampling frequency of approximately 20 min should be used to balance
between the theoretical result of improved precision of realized volatility at higher sampling frequencies and problems related to
market micro-structure noise occurring in practice.

In the current study, however, we are first and foremost interested in examining how sensitive the VaR forecasts are to the
sampling frequency used to calculate realized volatility. We therefore do not focus on the optimal sampling frequency of realized
volatility per se.

5 A new expiration date procedure was implemented by ICE for contract months beginning March 2016. Specifically, for these contracts, trading ceases at
he end of the designated settlement period on the last Business Day of the second month preceding the relevant contract month (e.g. the March contract will
xpire on the last Business Day of January). If the day on which trading is due to cease would be either: (i) the Business Day preceding Christmas Day, or (ii)
he Business Day preceding New Year’s Day, then trading shall cease on the next preceding Business Day. See ICE (2018) for further details.

6 To simplify language and notation we refer to sampling frequency in minutes rather than per minute or per hour. A sampling frequency of 60 min means
hat one sample is taken every sixty minutes. A higher sampling frequency corresponds to a lower number of minutes between the sampled prices. Note that
ll the sampling frequencies we employ ensure that the last sampled price is exactly at 5:00 PM. E.g., when using a sampling frequency of 108 min, we sample
rices at 8.00 AM; 9.48 AM; 11.36 AM; 1.24 PM; 3.12 PM; 5.00 PM.

7 Note: The estimator of each days realized volatility has a standard deviation and based on the law of large numbers, this standard deviation will clearly
ecrease when the sampling frequency goes up, i.e. the more data are used. This is reflected in Eq. (2). However, this is not the standard deviation that Fig. 2
eflects upon. Here we are looking at the estimates of realized volatility on each day and the standard deviation of these as in the time series of daily realized
olatilities.
6
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Fig. 2. Realized volatility calculated from various sampling frequencies.

The empirical results for the models using realized volatility are presented in Tables 1, 2, 3, and 4. The two former focus on
business hours returns, while the two latter show the results for 24 h returns. Table 5 presents the results for the DQR model as
proposed by Laporta et al. (2018). In all cases we estimate the models using a rolling window of 500 business days (corresponding
to approximately two years) and make one-day ahead VaR forecasts out of the estimation sample. The estimates are thus solely
obtained with the information available at the time the forecast is made.

Focus first on the results presented in Table 1 and note that the quantile regression version of the one factor model (right panel)
in general performs better than the OLS version of the same model, based on the conditional coverage test. For the highest sampling
frequencies between one and ten minutes, the quantile regression version passes almost all the examined VaR levels. Though the
7
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Fig. 3. Average realized volatility and its standard deviation across sampling frequencies. The sampling frequency used to calculate daily realized volatility is
iven on the 𝑥-axis and ranges between one and 108 min.

Table 1
VaR forecast based on one-factor models using daily realized volatility.

Business hours returns (open-close)

HAR-RV: One factor model HAR-QREG: One factor model

Left tail Right tail Left tail Right tail

Sampling 1% 2.50% 5% 10% 10% 5% 2.50% 1% 1% 2.50% 5% 10% 10% 5% 2.50% 1%
1 1.72% 3.17% 5.37% 9.78% 7.86% 4.01% 2.09% 0.90% 1.39% 2.71% 4.81% 8.99% 10.29% 5.09% 2.86% 1.22%
2 1.92% 3.73% 5.65% 10.15% 8.17% 4.13% 2.32% 0.99% 1.27% 2.71% 4.89% 9.05% 10.12% 5.12% 2.77% 1.16%
3 2.01% 3.79% 5.94% 10.57% 8.48% 4.41% 2.35% 1.10% 1.30% 2.71% 4.81% 9.08% 10.38% 5.32% 2.66% 1.33%
4 2.09% 3.99% 6.19% 10.55% 8.51% 4.38% 2.52% 1.27% 1.27% 2.69% 4.86% 9.13% 10.09% 5.26% 2.77% 1.19%
5 2.12% 3.82% 6.45% 10.72% 8.68% 4.50% 2.60% 1.24% 1.13% 2.71% 4.89% 9.10% 10.15% 5.12% 2.74% 1.24%
6 2.21% 3.90% 6.50% 10.97% 8.93% 4.44% 2.63% 1.33% 1.22% 2.71% 4.92% 9.30% 10.23% 5.06% 2.66% 1.16%
9 2.26% 4.04% 6.42% 11.20% 9.05% 4.83% 2.83% 1.33% 1.24% 2.80% 4.78% 9.30% 10.29% 5.06% 2.69% 1.13%
10 2.23% 3.99% 6.53% 11.22% 9.08% 4.86% 2.88% 1.30% 1.24% 2.71% 4.98% 9.44% 10.35% 5.15% 2.71% 1.24%
12 2.29% 3.99% 6.47% 11.48% 8.88% 4.64% 2.86% 1.47% 1.36% 2.77% 5.00% 9.41% 10.29% 5.20% 2.63% 0.90%
15 2.37% 4.27% 6.50% 11.45% 9.19% 4.86% 2.80% 1.47% 1.47% 2.77% 4.95% 9.41% 10.15% 5.17% 2.83% 1.13%
18 2.40% 4.16% 6.64% 11.51% 8.99% 4.95% 2.88% 1.67% 1.24% 2.80% 5.12% 9.50% 9.95% 5.15% 2.54% 1.33%
20 2.54% 4.35% 6.70% 11.90% 9.61% 5.17% 3.00% 1.58% 1.36% 2.86% 4.89% 9.44% 10.07% 5.15% 2.69% 1.19%
27 2.40% 4.44% 6.96% 11.99% 9.36% 5.15% 3.14% 1.78% 1.39% 2.86% 4.92% 9.67% 10.32% 5.06% 2.83% 1.36%
30 2.52% 4.33% 6.81% 11.73% 9.47% 5.06% 3.19% 1.67% 1.36% 2.86% 4.78% 9.56% 10.01% 5.17% 2.77% 1.19%
36 2.77% 4.47% 7.24% 12.10% 9.75% 5.09% 3.03% 1.78% 1.53% 3.05% 5.00% 9.47% 10.29% 5.34% 2.80% 1.27%
45 2.63% 4.86% 7.04% 12.41% 9.67% 5.46% 3.42% 2.04% 1.39% 2.77% 5.03% 9.50% 10.40% 5.15% 2.57% 1.44%
54 2.54% 5.00% 7.35% 12.04% 9.84% 5.26% 3.56% 1.98% 1.39% 3.08% 5.09% 9.98% 10.40% 5.32% 2.66% 1.44%
60 3.00% 4.98% 7.75% 12.72% 9.78% 5.57% 3.65% 2.21% 1.22% 2.97% 5.00% 9.75% 10.18% 5.15% 2.66% 1.39%
90 3.19% 5.29% 7.80% 12.92% 10.09% 5.57% 3.82% 2.21% 1.47% 3.00% 5.09% 9.73% 10.09% 5.34% 2.60% 1.58%
108 3.39% 5.57% 8.14% 13.12% 10.74% 5.88% 3.85% 2.52% 1.36% 3.14% 5.17% 10.07% 10.15% 5.32% 2.60% 1.27%

Min 1.72% 3.17% 5.37% 9.78% 7.86% 4.01% 2.09% 0.90% 1.13% 2.69% 4.78% 8.99% 9.95% 5.06% 2.54% 0.90%
Max 3.39% 5.57% 8.14% 13.12% 10.74% 5.88% 3.85% 2.52% 1.53% 3.14% 5.17% 10.07% 10.40% 5.34% 2.86% 1.58%
Range 1.67 2.40 2.77 3.34 2.88 1.87 1.75 1.61 0.40 0.45 0.40 1.07 0.45 0.28 0.31 0.68
Pass 0% 0% 10% 35% 60% 90% 70% 40% 70% 95% 100% 100% 100% 100% 95% 85%

Notes. Green color indicates that the VaR forecasts at the given level pass the conditional coverage test.

OLS version of the one factor model (left panel) also performs well, it consistently fails to pass the conditional coverage test at the
10% VaR level in the right tail — with only a few exceptions.

The second thing to note is that the one factor quantile regression model continuous to perform well also for the lower sampling
requencies used to calculate realized volatility. Even when using a one hour sampling frequency the model passes seven out of the
ight VaR levels tested in the empirical exercise. The corresponding results for the OLS version is worse. The performance drops
uickly when using a sampling frequency beyond 10 min. Using a sampling frequency of 20 min the model only passes three out
f the eight defined VaR levels and from 54 min and lower frequencies the model only passes two out of eight. The finding is
elated to the accuracy of the VaR forecast themselves. For all the examined VaR levels the range of the predicted exceedances
re generally much higher for the OLS version compared with the quantile regression model. For example, if using a sampling
requency of 108 min the forecasted exceedances at the 1% left tail VaR is at 2.91%. This is almost three times what it should be.
he corresponding result for the quantile one factor model is 1.75%.

Let us now focus on the results in Table 2, where the results of the HAR-RV and HAR-QREG models are presented. We notice
hat the OLS version now actually performs best when using the highest sampling frequencies to calculate realized volatility. For a
8
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Table 2
VaR forecast based on three-factor models using daily, weekly, and monthly realized volatility. Business hours returns.

Business hours returns (open-close)

HAR-RV: Three factor model HAR-QREG: Three factor model

Left tail Right tail Left tail Right tail

Sampling 1% 2.50% 5% 10% 10% 5% 2.50% 1% 1% 2.50% 5% 10% 10% 5% 2.50% 1%
1 1.81% 3.14% 5.23% 9.75% 8.03% 4.07% 2.26% 0.76% 1.72% 3.11% 4.83% 9.02% 10.60% 5.60% 3.00% 1.53%
2 1.98% 3.42% 5.77% 10.09% 8.51% 4.24% 2.40% 0.90% 1.55% 3.00% 4.75% 9.19% 10.55% 5.37% 2.88% 1.58%
3 2.01% 3.56% 6.02% 10.40% 8.68% 4.55% 2.49% 1.02% 1.55% 3.03% 4.86% 9.13% 10.80% 5.40% 3.05% 1.61%
4 2.12% 3.53% 6.08% 10.55% 8.85% 4.55% 2.54% 1.10% 1.55% 2.97% 4.78% 9.27% 10.97% 5.40% 2.91% 1.67%
5 2.23% 3.73% 6.19% 10.80% 9.05% 4.64% 2.63% 1.22% 1.47% 3.03% 4.72% 9.10% 10.63% 5.48% 3.00% 1.50%
6 2.06% 3.68% 5.97% 10.72% 9.10% 4.78% 2.63% 1.10% 1.50% 3.08% 4.81% 9.16% 10.69% 5.57% 3.08% 1.70%
9 2.35% 3.93% 6.45% 11.11% 9.41% 4.89% 2.80% 1.27% 1.39% 3.11% 4.69% 9.10% 10.91% 5.51% 3.17% 1.33%
10 2.40% 3.99% 6.53% 11.17% 9.39% 4.89% 2.71% 1.24% 1.67% 3.05% 4.83% 9.22% 10.72% 5.63% 2.97% 1.64%
12 2.29% 3.90% 6.28% 11.34% 9.56% 4.86% 2.83% 1.30% 1.58% 3.11% 4.64% 9.16% 10.66% 5.51% 3.11% 1.53%
15 2.49% 3.99% 6.76% 11.39% 9.53% 5.03% 3.00% 1.44% 1.47% 3.00% 4.89% 9.05% 10.57% 5.37% 2.97% 1.55%
18 2.46% 4.07% 6.56% 11.45% 9.87% 5.00% 3.05% 1.47% 1.64% 2.83% 4.55% 9.08% 10.35% 5.40% 2.94% 1.50%
20 2.49% 3.96% 6.79% 11.73% 9.87% 5.17% 2.88% 1.55% 1.53% 2.97% 4.81% 9.08% 10.43% 5.43% 2.94% 1.70%
27 2.60% 4.01% 6.76% 11.62% 9.78% 5.29% 3.28% 1.61% 1.44% 2.86% 4.72% 9.22% 10.60% 5.60% 2.88% 1.47%
30 2.57% 3.96% 6.96% 11.56% 9.98% 5.40% 3.22% 1.61% 1.47% 2.77% 4.78% 9.13% 10.69% 5.65% 3.03% 1.55%
36 2.54% 4.01% 7.12% 12.02% 10.15% 5.17% 3.08% 1.58% 1.53% 2.94% 4.86% 8.96% 10.80% 5.40% 3.11% 1.55%
45 2.83% 4.13% 7.55% 12.19% 10.38% 5.40% 3.34% 1.95% 1.64% 2.80% 4.66% 8.99% 10.94% 5.43% 3.14% 1.50%
54 2.69% 4.30% 7.24% 12.07% 10.38% 5.46% 3.25% 1.64% 1.58% 2.80% 4.58% 9.02% 10.86% 5.20% 2.97% 1.61%
60 2.83% 4.35% 7.58% 12.50% 10.32% 5.82% 3.42% 1.92% 1.36% 2.83% 4.81% 9.36% 10.72% 5.37% 2.83% 1.33%
90 3.00% 4.50% 7.89% 12.98% 10.86% 6.02% 3.65% 1.95% 1.33% 2.94% 4.86% 9.16% 11.11% 5.43% 2.77% 1.33%
108 3.03% 4.64% 8.00% 12.92% 10.80% 6.16% 3.73% 2.18% 1.61% 3.00% 4.92% 9.27% 10.88% 5.32% 2.86% 1.47%

Min 1.81% 3.14% 5.23% 9.75% 8.03% 4.07% 2.26% 0.76% 1.33% 2.77% 4.55% 8.96% 10.35% 5.20% 2.77% 1.33%
Max 3.03% 4.64% 8.00% 12.98% 10.86% 6.16% 3.73% 2.18% 1.72% 3.11% 4.92% 9.36% 11.11% 5.65% 3.17% 1.70%
Range 1.22 1.50 2.77 3.22 2.83 2.09 1.47 1.41 0.40 0.34 0.37 0.40 0.76 0.45 0.40 0.37
Pass 0% 5% 10% 35% 80% 85% 65% 45% 10% 100% 100% 80% 65% 100% 95% 15%

Notes. Green color indicates that the VaR forecasts at the given level pass the conditional coverage test.

Table 3
VaR forecast based on one-factor models using daily realized volatility. 24 hours returns.

24 hours returns (close-close)

HAR-RV: One factor model HAR-QREG: One factor model

Left tail Right tail Left tail Right tail

Sampling 1% 2.50% 5% 10% 10% 5% 2.50% 1% 1% 2.50% 5% 10% 10% 5% 2.50% 1%
1 1.39% 2.71% 5.03% 9.16% 7.32% 3.99% 1.98% 0.96% 1.44% 2.69% 4.58% 9.73% 10.23% 5.40% 2.94% 1.44%
2 1.58% 3.00% 5.40% 9.39% 7.66% 4.13% 2.18% 1.05% 1.39% 2.54% 4.66% 9.73% 10.26% 5.57% 2.91% 1.44%
3 1.58% 3.11% 5.51% 9.78% 7.80% 4.07% 2.15% 1.13% 1.44% 2.54% 4.81% 9.73% 10.21% 5.29% 2.91% 1.44%
4 1.61% 3.17% 5.51% 9.92% 7.92% 4.33% 2.29% 1.10% 1.39% 2.43% 4.64% 9.58% 10.23% 5.37% 2.94% 1.55%
5 1.70% 3.11% 5.68% 10.12% 8.14% 4.35% 2.32% 1.24% 1.47% 2.54% 4.81% 9.92% 10.21% 5.37% 2.94% 1.47%
6 1.70% 3.11% 5.65% 10.12% 7.97% 4.47% 2.49% 1.19% 1.41% 2.60% 4.78% 9.73% 10.32% 5.23% 2.86% 1.44%
9 1.67% 3.48% 5.82% 10.26% 8.06% 4.55% 2.60% 1.22% 1.44% 2.54% 4.78% 9.75% 10.09% 5.29% 2.94% 1.41%
10 1.67% 3.42% 5.97% 10.57% 8.37% 4.55% 2.52% 1.39% 1.30% 2.66% 5.09% 9.92% 10.38% 5.48% 3.00% 1.33%
12 1.75% 3.56% 5.91% 10.49% 8.26% 4.52% 2.74% 1.33% 1.47% 2.52% 4.83% 9.84% 10.04% 5.29% 2.91% 1.47%
15 1.81% 3.31% 5.85% 10.69% 8.57% 4.52% 2.63% 1.44% 1.41% 2.57% 5.03% 10.23% 9.92% 5.34% 2.80% 1.55%
18 1.75% 3.59% 6.11% 10.63% 8.43% 4.72% 2.71% 1.36% 1.41% 2.54% 5.00% 10.12% 10.07% 5.40% 2.97% 1.41%
20 1.72% 3.65% 6.11% 10.91% 8.51% 4.61% 2.77% 1.58% 1.44% 2.57% 4.98% 9.98% 10.18% 5.17% 2.91% 1.41%
27 2.01% 3.90% 6.08% 10.63% 8.54% 4.81% 2.71% 1.50% 1.61% 2.63% 4.64% 9.84% 10.26% 5.29% 2.91% 1.47%
30 1.95% 3.70% 6.16% 10.88% 8.62% 4.81% 2.69% 1.64% 1.44% 2.57% 5.03% 10.18% 10.04% 5.43% 2.97% 1.58%
36 2.09% 4.16% 6.22% 10.83% 8.54% 4.95% 2.83% 1.64% 1.50% 2.66% 4.95% 9.75% 9.98% 5.43% 3.03% 1.61%
45 2.21% 3.90% 6.56% 10.94% 8.85% 5.23% 3.03% 1.53% 1.70% 2.54% 5.06% 9.95% 9.90% 5.23% 2.80% 1.53%
54 2.18% 4.13% 6.70% 11.28% 8.76% 5.23% 2.94% 1.75% 1.67% 2.71% 5.26% 10.07% 10.15% 4.95% 3.05% 1.53%
60 2.49% 4.38% 6.93% 11.48% 8.93% 5.37% 2.94% 1.78% 1.47% 2.71% 5.32% 9.70% 10.07% 4.95% 2.94% 1.55%
90 2.43% 4.10% 6.84% 11.82% 8.82% 5.29% 3.19% 1.81% 1.55% 2.54% 4.78% 10.04% 9.84% 5.26% 2.91% 1.44%
108 2.77% 4.81% 7.07% 11.59% 9.16% 5.68% 3.28% 1.89% 1.61% 2.80% 5.23% 10.12% 9.95% 5.26% 2.80% 1.47%

Min 1.39% 2.71% 5.03% 9.16% 7.32% 3.99% 1.98% 0.96% 1.30% 2.43% 4.58% 9.58% 9.84% 4.95% 2.80% 1.33%
Max 2.77% 4.81% 7.07% 11.82% 9.16% 5.68% 3.28% 1.89% 1.70% 2.80% 5.32% 10.23% 10.38% 5.57% 3.05% 1.61%
Range 1.39 2.09 2.04 2.66 1.84 1.70 1.30 0.93 0.40 0.37 0.74 0.65 0.54 0.62 0.25 0.28
Pass 0% 25% 25% 80% 5% 85% 90% 40% 20% 95% 100% 95% 100% 100% 90% 5%

Notes. Green color indicates that the VaR forecasts at the given level pass the conditional coverage test.

sampling frequency of between one and six minutes the HAR-RV model passes almost all the defined VaR levels. The corresponding
results for the HAR-QREG show that it consistently fails to pass the 10%, 2.5%, and 1% VaR levels in the right tail. When using
lower sampling frequencies to calculate realized volatility, however, the results are consistent with the findings from the one factor
model: the performance of the quantile regression model is more stable across sampling frequencies compared with the OLS version.

When comparing the general performance of the proposed one factor model with the three factor model, the conclusion is clear:
he one factor quantile regression model passes more of the conditional coverage tests compared with the three factor version. The
esults for the corresponding OLS versions are not that clear, but the results suggest that there is not a big gain in performance from
oing from the one factor model to the three factor model in this case either.

Tables 3 and 4 present the results for the 24 h (close–close) returns. The general findings are consistent with those reported
or the business hours returns. The one factor quantile regression model performs well across all sampling frequencies while the
orresponding OLS model is not able to keep up when the sampling frequency is reduced. Again the three factor models generally
erform worse than the one factor models when using 24 h returns, but the main finding is in line with that reported earlier: the
ampling frequency affects the performance of the OLS version more than it does affect the quantile regression version.
9
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Table 4
VaR forecast based on three-factor models using daily, weekly, and monthly realized volatility. 24 hours returns.

24 hours returns (close-close)

HAR-RV: Three factor model HAR-QREG: Three factor model

Left tail Right tail Left tail Right tail

Sampling 1% 2.50% 5% 10% 10% 5% 2.50% 1% 1% 2.50% 5% 10% 10% 5% 2.50% 1%
1 1.19% 2.54% 5.03% 9.08% 7.58% 3.76% 1.92% 0.96% 1.55% 2.60% 4.78% 9.39% 10.60% 5.51% 3.11% 1.78%
2 1.30% 2.74% 5.32% 9.44% 7.89% 3.99% 2.09% 1.05% 1.58% 2.66% 4.66% 9.56% 10.57% 5.48% 3.31% 1.84%
3 1.27% 3.00% 5.51% 9.70% 8.11% 4.16% 2.12% 1.05% 1.50% 2.43% 4.92% 9.56% 10.77% 5.43% 3.22% 1.81%
4 1.41% 3.08% 5.80% 9.78% 8.11% 4.24% 2.18% 1.13% 1.44% 2.52% 4.72% 9.47% 10.63% 5.65% 3.14% 1.78%
5 1.39% 3.08% 5.77% 9.98% 8.37% 4.35% 2.21% 1.13% 1.47% 2.49% 4.66% 9.61% 10.55% 5.54% 3.31% 1.72%
6 1.41% 3.19% 5.63% 10.01% 8.45% 4.27% 2.37% 1.16% 1.44% 2.57% 4.72% 9.64% 10.72% 5.71% 3.36% 1.84%
9 1.58% 3.25% 5.80% 10.12% 8.43% 4.47% 2.32% 1.22% 1.47% 2.69% 4.78% 9.41% 10.52% 5.29% 3.34% 1.87%
10 1.58% 3.36% 5.99% 10.29% 8.48% 4.35% 2.40% 1.16% 1.58% 2.66% 4.75% 9.47% 10.66% 5.68% 3.42% 1.92%
12 1.64% 3.48% 5.82% 10.21% 8.57% 4.38% 2.40% 1.19% 1.64% 2.71% 4.78% 9.50% 10.57% 5.37% 3.36% 1.78%
15 1.64% 3.19% 5.99% 10.18% 8.62% 4.47% 2.57% 1.39% 1.47% 2.74% 4.72% 9.50% 10.49% 5.54% 3.31% 1.70%
18 1.75% 3.51% 6.22% 10.21% 8.54% 4.44% 2.60% 1.27% 1.61% 2.74% 4.69% 9.47% 10.18% 5.40% 3.25% 1.78%
20 1.81% 3.53% 6.42% 10.38% 8.91% 4.61% 2.52% 1.33% 1.50% 2.83% 4.81% 9.56% 10.52% 5.34% 3.14% 1.87%
27 1.67% 3.59% 6.22% 10.60% 8.99% 4.72% 2.71% 1.33% 1.55% 2.71% 4.75% 9.58% 10.57% 5.26% 3.03% 1.67%
30 1.78% 3.51% 6.25% 10.43% 9.16% 4.83% 2.74% 1.44% 1.55% 2.57% 4.75% 9.64% 10.60% 5.60% 3.14% 1.72%
36 2.01% 3.68% 6.22% 10.60% 9.22% 4.83% 2.66% 1.41% 1.50% 2.74% 4.81% 9.53% 10.43% 5.26% 3.14% 1.75%
45 1.81% 3.96% 6.36% 10.74% 9.22% 5.09% 2.74% 1.41% 1.64% 2.69% 4.81% 9.27% 10.72% 5.51% 3.00% 1.67%
54 1.81% 3.90% 6.47% 10.88% 9.47% 5.03% 2.77% 1.44% 1.50% 2.71% 5.03% 9.41% 10.66% 5.54% 3.03% 1.72%
60 2.06% 4.18% 6.53% 10.88% 9.73% 5.34% 2.94% 1.47% 1.50% 2.57% 4.92% 9.47% 10.63% 5.26% 2.86% 1.61%
90 2.09% 4.27% 6.64% 10.94% 9.84% 5.32% 2.91% 1.67% 1.33% 2.63% 4.75% 9.50% 10.12% 5.40% 2.97% 1.72%
108 2.18% 4.50% 6.84% 11.05% 9.70% 5.46% 3.11% 1.58% 1.44% 2.86% 4.98% 9.36% 10.32% 5.46% 2.86% 1.36%

Min 1.19% 2.54% 5.03% 9.08% 7.58% 3.76% 1.92% 0.96% 1.33% 2.43% 4.66% 9.27% 10.12% 5.26% 2.86% 1.36%
Max 2.18% 4.50% 6.84% 11.05% 9.84% 5.46% 3.11% 1.67% 1.64% 2.86% 5.03% 9.64% 10.77% 5.71% 3.42% 1.92%
Range 0.99 1.95 1.81 1.98 2.26 1.70 1.19 0.71 0.31 0.42 0.37 0.37 0.65 0.45 0.57 0.57
Pass 15% 10% 0% 100% 45% 90% 95% 0% 5% 80% 95% 90% 100% 100% 45% 0%

Notes. Green color indicates that the VaR forecasts at the given level pass the conditional coverage test.

Table 5
Dynamic Quantile Regression (DQR): Business hours and 24 h returns.

Left tail Right tail Pass

Period 1% 2.50% 5% 10% 10% 5% 2.50% 1%
Business hours 1.78% 3.31% 6.16% 10.63% 10.07% 5.71% 3.31% 1.58% 0/8
24 hours 1.89% 3.48% 5.91% 10.60% 9.98% 5.29% 2.97% 1.67% 0/8

Notes. VaR forecasts based on the Dynamic Quantile Regression proposed by Laporta et al. (2018). Green color indicates that the VaR forecasts at the given
level pass the conditional coverage test.

For comparison we include the performance of the DQR model proposed by Laporta et al. (2018) in Table 5. Our results show
hat the DQR model is only able to pass one out of the eight examined VaR levels (the 10% right tail VaR), and only so when
onsidering 24 hours returns. Laporta et al. (2018) tested the model on Brent crude oil spot data using a sample period from 2002
o 2017, but only examined the 95% and 99% VaR levels. Their results show that the DQR model passed the conditional coverage
est at both these VaR levels. Our analyses are based on futures prices and the results are therefore not directly comparable with
hose reported by Laporta et al. (2018). However, the differences in performance between the DQR model and our proposed one
actor model based on realized volatility are so large that most likely we would find similar results for Brent crude spot prices.

. Summary, implications, and directions for future research

We propose a one factor quantile regression model based on realized volatility to forecast Value-at-Risk and empirically examine
he model using Brent Crude oil futures, evaluating its performance across various sampling frequencies used to calculate the daily
ealized volatility. The results are compared with VaR forecasts obtained from the well-known (three factor) HAR-RV model and
he quantile regression version of this. We also examine a one factor regression model of realized volatility to further assess the
ifference in performance between using OLS and quantile regression to forecast VaR.

The results are summarized in Tables 6 and 7 and show that the one factor quantile regression model performs as good as,
r better than the corresponding three factor model when aggregating the results across all sampling frequencies used to calculate
ealized volatility. The quantile regression models generally perform better than the corresponding one- and three factor OLS models.
mong the OLS models, there is no clear answer to whether the one- or three factor model is best. The general findings hold for
oth business hours and 24 hours (close-close) returns.

Our results should be good news to practitioners: a very simple one factor quantile regression model can be used to forecast VaR
ith good results. In addition, the model is not very sensitive to the sampling frequency used to estimate the volatility. Even with

ealized volatility estimates obtained from sampling only once every 108 min, the model performs relatively well.
A number of avenues for future research emerge. First, we need to stress that our empirical observations may be specific to

rude oil. The model performance and the sensitivity to sampling frequency used to calculate realized volatility should therefore
e examined across more securities. Clements et al. (2008) looked at quantile forecasts of daily exchange rate returns based on
10

orecasted realized volatility and it would be interesting to adapt our approach to this setting as well as investigate its applicability
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Table 6
VaR forecasts passing conditional coverage test: Business hours returns.

VaR OLS Quantile regression

One factor Three factor One factor Three factor

1.00% 0% 0% 70% 10%
2.50% 0% 5% 95% 100%
5.00% 10% 10% 100% 100%Left tail

10.00% 35% 35% 100% 80%

10.00% 60% 80% 75% 65%
5.00% 90% 85% 100% 100%
2.50% 70% 65% 95% 95%Right tail

1.00% 40% 45% 85% 15%

Notes. Fraction of VaR forecasts passing the conditional coverage test across all sampling frequencies for one
and three factor OLS- and quantile regression models using business hours returns.

Table 7
VaR forecasts passing the conditional coverage test: Business hours returns.

VaR OLS Quantile regression

One factor Three factor One factor Three factor

1.00% 0% 15% 20% 5%
2.50% 25% 10% 95% 80%
5.00% 25% 0% 100% 95%Left tail

10.00% 80% 100% 95% 90%

10.00% 5% 45% 100% 100%
5.00% 85% 90% 100% 100%
2.50% 90% 95% 90% 45%Right tail

1.00% 40% 0% 5% 0%

Notes. Fraction of VaR forecasts passing the conditional coverage test across all sampling frequencies for one
and three factor OLS- and quantile regression models using 24 h (close-close) returns.

to other commodities such as natural gas and electricity. Nevertheless, our findings have important implications for financial risk
managers with access to high-frequency data.

Second, disentangling the continuous variation from jumps has been subject to substantial interest in research on realized
volatility over recent years (see e.g., Patton and Sheppard, 2015). The performance of the proposed one factor model should therefore
be compared with models that separate the realized volatility into a continuous and jump component. If the performance of the one
factor model is similar to that obtained with a more complicated model separating the total variance into a continuous- and jump
component, one may ask if the extra effort required to properly extract the jumps is needed when it comes to VaR forecasting.
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