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Preface

This is my master thesis in biostatistics at the Norwegian University of Life

Sciences supervised by Professor Thore Egeland. In this thesis I wish to explore

the possibility of combining different kinds of forensic data to solve forensic

identification cases. Forensic cases often rely solely on DNA analysis to identify,

I wish to consider other options. I am grateful for the guidance I have received

on this 60 credit master thesis.
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Abstract

Forensic identification is the process of identifying for judicial purposes using

scientific methods. Such techniques may be applied to humans, animals or ob-

jects. In this thesis the focus is on identifying humans. Forensic identification

problems involving humans range from standard paternity cases to complex

identification problems involving a large number of victims. In a murder case

there may be trace evidence at the crime scene which helps identify the perpe-

trator. In a paternity case DNA analysis can determine whether or not a man

fathered a child.

In identification cases investigators will make multiple hypotheses in the form

of pedigrees. Out of these at most one can be true. The most likely hypothesis

may be found through statistical analysis. Several forensic methods exist and

may be applied for identification. When multiple data sources are available, it

would be favourable for researchers to be able to combine the results based on

all available data. The goal of this thesis is to provide a framework for solving

identification problems using multiple forms of data for the same hypothesis

tests. Specifically, DNA data will be paired with other non-genetic data in the

data analysis.

Combining DNA with other data from the forensic case is desired because it

allows researchers more material to draw conclusions from. This is particularly

useful in cases where no conclusion may be drawn from DNA analysis alone.

One such case involves two full siblings of the same sex who have gone missing,

where neither sibling has descendants. If DNA is found from one of them, it is

impossible to determine which of the siblings it belongs to even if DNA data

from their family is accessible. Another way other data may assist in a forensic

case is that information like age may be used to limit the hypotheses space, thus

simplifying the forensic case. This emphasizes why multiple types of forensic

data should be used in forensic analysis. The concept of combining different

kinds of information for identification is the core of this thesis.
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Sammendrag

Forensisk identifisering er prosesser der en identifiserer ved hjelp av vitenskapelige

metoder. Slike teknikker kan bli anvendt p̊a mennesker, dyr eller objekter. I

denne avhandlingen er fokuset p̊a å identifisere mennesker, og form̊alene vari-

erer fra farskapssaker til komplekse problemer med et stort antall offere. I en

mordsak kan det finnes bevis p̊a åstedet som kan benyttes til å identifisere gjern-

ingsmannen. I en farskapssak kan DNA-analyse avsløre om en mann er far til

et barn.

I identifikasjonssaker vil etterforskere lage flere hypoteser i form av pedigreer.

Bare en av disse kan være sann. Den mest sannsynlige hypotesen kan finnes

gjennom statistisk analyse. Flere forensiske metoder finnes og kan benyttes

for identifikasjon. N̊ar flere datakilder er tilgjengelige, vil det være gunstig for

forskere å kunne kombinere resultatene basert p̊a all tilgjengelig data. Målet

med denne avhandlingen er å gi et utgangspunkt for å løse identifikasjonsprob-

lemer der flere former av forensisk data kombineres. DNA-data vil pares med

ikke-genetiske data i analysen.

Kombinasjon av DNA-data med andre data er ønsket fordi det lar forskere

bruke mer materiale til å trekke konklusjoner. Dette er spesielt gunstig i til-

feller der ingen konklusjon kan trekkes fra DNA-analyse alene. Et eksempel p̊a

en slik sak involverer to helsøsken av samme kjønn uten etterkommere der begge

søsknene er savnet. Om DNA er funnet av den ene, er det umulig å bestemme

hvilken av søsknene det kommer fra selv om DNA fra familiemedlemmer ville

være tilgjengelig. En annen m̊ate andre data kan være til nytte i en foren-

sisk undersøkelse er ved at informasjon som alder kan brukes til å begrense

hypoteserommet, og dermed forenkle undersøkelsen. Dette fremhever hvorfor

flere typer data burde brukes i forensisk analyse. Konseptet med å kombinere

forskjellige typer informasjon for identifikasjon er kjernen i denne avhandlingen.
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1 Introduction

1.1 Background for the thesis

Within forensic identification, the aim is to find the truth behind forensic cases,

with what little information one may have. Traditionally, forensic identifica-

tion involving genetics has been divided into criminal cases and kinship cases.

Cases of the latter form are addressed by this thesis. The simplest kinship cases

involve determining paternity, more complex cases involve discovering relation-

ships between distant family members. Such a relationship case may be deciding

whether two people are first cousins through forensic genetics. Distant relatives

will have less DNA in common than close relatives, and kinship will be harder

to prove for distant relatives than for close ones with forensic evidence. The

type of kinship case this thesis focuses on, disaster victim identification, may

be viewed as multiple kinship cases treated as one.

A disaster victim identification (DVI) case is shown in Figure 1. The victims

are plotted on the left, the pedigree containing missing people on the right. The

victims are referred to as V 1 and V 2, the missing people are referred to as M1

and M2. The sex of the people in the plots is indicated with shapes. A circle

means the person is female, a square means the person is male. The plots tell

that M1, M2, V 1 and V 2 are all males. The norm when it comes to ordering

siblings is to order them from left to right, oldest to youngest. Thus the plot

implies that M1 is older than M2.

Some of the people in the pedigree plots in Figure 1 have been assigned

numbers which show their reported genotype. The genotype is the alleles an

individual has for a gene. These numbers 1/2, 1/2 and 2/3 reference the alleles

the victims and relative have been shown to have in their genome through

genotyping.

Table 1 is output from a computation-backed investigation of a simulated

DVI case. Each row contains the description and evaluation of one DVI hy-

pothesis. The five columns have the names ”V1”, ”V2”, ”loglik”, ”LR” and
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Figure 1: A simple DVI case. There are two genotyped male victims, V 1 and

V 2, and two missing brothers, M1 and M2. The mother of the missing brothers

is the genotyped reference.

”posterior”. The two leftmost columns correspond to the victims, V 1 and V 2.

These columns contain the assigned missing people. In the first mentioned hy-

pothesis in the upper row, V 1 was assigned M1 while V 2 was assigned M2.

This means that the hypothesis claims V 1 and M1 are the same and that V 2

and M2 are the same. The stars (*) visible in some of the rows are empty

spaces. An empty space simply means no known missing person was assigned

to that victim, and that the victim thus is someone who is not among the re-

ported missing people. For instance, no known missing person was assigned to

a victim in the bottom hypothesis, hypothesis #7. This means hypothesis #7

should be interpreted as V 1 and V 2 being neither of the two reported missing

people, but rather two other missing people not yet considered in the disaster

victim investigation.

The three rightmost columns in Table 1 contain the calculated log-likelihood,

the likelihood ratio and the posterior probability for each hypothesis. These

columns are named ”loglik”, ”LR” and ”posterior”, respectively. They reflect

on the likelihoods of the various hypotheses considering the forensic data avail-

able. These columns will be explained later on in Section 3.3. Though, for now,
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V1 V2 loglik LR posterior

1 M1 M2 -9.2876 321.9697 0.4313

2 M2 M1 -9.2876 321.9697 0.4313

3 M1 * -11.8133 25.7576 0.0345

4 M2 * -11.8133 25.7576 0.0345

5 * M1 -11.8432 25.0000 0.0335

6 * M2 -11.8432 25.0000 0.0335

7 * * -15.0621 1.0000 0.0013

Table 1: Summary of motivational example discussed in Section 1.1 and in

greater detail in Section 3.3. The only data used here was a single genetic

marker with alleles denoted 1, 2, 3, 4 with allele frequencies p1 = 0.33, p2 =

0.01, p3 = 0.33, p4 = 0.33. See also Figure 1.

consider the posterior probabilities. The higher the posterior probability, the

more likely the hypothesis is to be true. Note that the two top hypotheses in

Table 1 have the same posterior probability, and thus one may not be consid-

ered more plausible than the other. An explanation of this phenomenon is in

Section 2.2.3.

1.2 A brief review of the literature

The book ’Mass Identifications: Statistical Methods in Forensic Genetics’ [1]

provides the required background for this thesis. The genetical and forensic

background are explained in addition to case studies based on realistic cases.

The paper ’Joint DNA-based disaster victim identification’ [2] provides details

on recent methods and also presents the R library dvir that will be used for

examples in this thesis. The books [3, 4] give further information on statistical

methods and software, particularly on forensic genetics in R. The report ’Making

sense of forensic genetics’ [5] is intended for the general audience and introduces

forensic genetics in a simpler way. However, models for non-genetic evidence

and how to combine genetic (DNA) data and non-genetic data, are not covered
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in the previously mentioned references. Some models that include non-genetic

evidence are contained in the article ’Incorporating non-genetic evidence in large

scale missing person searches: A general approach beyond filtering’ [6]. There

are, however, some problems with these methods and we will investigate some

alternatives.

1.3 Aims of the thesis

DNA analysis has historically been invaluable for forensic research, with its

history spanning decades. However, data other than DNA data may provide

stronger proof in favour of the true hypothesis in cases where such data is

available. Suppose that the collected DNA data supports a hypothesis. Then, if

the collected non-genetic forensic data also supports this hypothesis, combining

the two types of forensic evidence will create stronger conviction in favour of

this hypothesis. On the other hand, if DNA data supports a hypothesis which

does not fit the other forensic data, this points in the direction that one might

have made errors in the investigation.

Methods designed to solve disaster victim identification problems as the one

described in Sections 1.1 above, are reviewed. Combining DNA data with other

forensic data may result in stronger likelihoods for hypotheses. Because situa-

tions exist where DNA readings fail to identify, like the symmetric case presented

above, more complex methods are highly desirable. The goal of this thesis is to

provide a framework for solving identification problems using multiple forms of

data for the same hypothesis tests. Specifically, DNA data will be paired with

other, non-genetic data, in the analyses.

A conventional approach to DVI problems is to first list all possible solutions

(assignments). However, this may not be feasible for large problems. Therefore

we have explored how sex and age information can be used to restrict the number

of assignments.
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1.4 Organisation of the thesis

This thesis is constructed with focus on explanation of material (data) and

methods first, results and discussion thereafter. The section on material and

methods (see Section 2) starts with a brief review of DNA data and forensic

statistics. The remaining parts of Section 2, starting with Section 2.3 present

methods not well covered in existing literature. The theory is exemplified in

Section 3 and discussed in 4. The appendices A provide some further details on

implementation.
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2 Material and methods

2.1 DNA and DNA analysis

DNA is found, with some exceptions, in all the cells in a body. Thus, at any

disaster scene or crime scene forensic researchers have a high chance of finding

small amounts of DNA, even in cases of severe body degradation. DNA can be

found in all sorts of body remains, including trace amounts of spit, blood, hair,

semen or dead skin cells. This, combined with the fact that no two humans have

identical DNA, makes DNA analysis an invaluable tool in forensic identification.

All humans share approximately 99.9% of their DNA with other humans [5].

Despite this, due to many small differences, everyone has a unique genome

which differs from that of everyone else. Even monozygotic twins are expected

to have some very small differences in their respective genomes when they are

compared [7]. Thus, DNA analysis can, in theory, identify anyone. The segments

of the human genome with the most variability may be sampled from a person

to create a DNA profile for them.

Authorities may store the genetic material of citizens in DNA databases.

The DNA which is stored can be that of convicted criminals or from plausible

suspects in crime cases. Usually authorities do not have DNA from every citizen

on record, as there are ethical dilemmas with storing the genetic material in

terms of privacy.

DNA analysis for forensic sciences produces powerful, but not infallible ev-

idence. Forensic investigators must recognize that there are situations where

DNA analysis produces misleading results, and hence DNA should never cause

a verdict in a criminal investigation as the only piece of evidence. There are a

few ways in which gene reading can go wrong and result in misleading conclu-

sions. The DNA found at a crime scene does not need to be that of someone

involved in that crime. One way this may happen is that humans spit when

they talk, and traces of spit from someone not present during a crime may still

be found at the crime scene. Sometimes investigators do not even know how the
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DNA showed up in the investigation, as by itself a DNA profile cannot provide

information about the body fluid it came from. Further, forensic investigators

are prone to making human error, and mistakes done by researchers during the

analysis may produce misleading results. One possible error is that researchers

accidentally mix samples from different forensic cases [5].

A consequence of the improvements in DNA reading techniques over the

last few decades is how increasingly smaller amounts of cells are sufficient to

accurately read the DNA of someone. Because low amounts of organic material

are required, sometimes investigators detect DNA which they cannot determine

the source of. While they may still want to know which individual the DNA

belongs to, drawing conclusions on if and how this individual was involved in

the case will be difficult, if not impossible, without context.

2.1.1 Genetic markers and genome locations

When we use DNA information to connect disaster victims to missing people,

we want to compare the base pairs at specific locations in their genomes to

each other. Not all the DNA of a victim or a suspect is important for analytic

purposes. Most interesting for analysts is the 0.1% of the human genome which

differs the most between people. These 0.1% may be used to create a DNA

profile for a human. If DNA profiles from two samples are mostly or entirely

identical, investigators may theorize that the two samples come from the same

person.

It is possible to use less genetic information than a DNA profile contains to

identify humans. A possible narrower data set than a complete DNA profile is

a set of genetic markers. A genetic marker is a DNA sequence on a specific

location in a genome. Genetic markers differ from DNA profiles, not only be-

cause the length of the DNA data for markers is much shorter, but also because

in a marker the data is limited to a single, continuous segment of the genome.

DNA profiles contain multiple segments from multiple chromosomes. Reading a

single genetic marker gives little information, therefore reading multiple genetic
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markers is recommended for statistical analysis if possible.

Investigators need to decide which genetic markers should be read in a DNA

analysis. In disaster victim identification the selected markers are read for

both disaster victims and relatives of the missing people, and the results are

compared. In a crime investigation the pertinent DNA segments are read from

both samples collected from suspects and from DNA strains acquired at the

crime scene. DNA strains may be small or damaged and therefore difficult to

read, thus investigators may choose which genetic markers to use for the analysis

based on which segments they are able to read. In a paternity case the DNA of

both the father and the alleged child is read.

For a genetic marker to be useful in the context of forensic analysis, several

variations of the gene it tracks should exist within a population. Naturally

occurring variations in the DNA sequence of a gene are called alleles. Often

each allele of a gene is given a unique number or letter. If two alleles of a gene

are known to exist within a population, these may be numbered as allele 1 and

allele 2.

As a demonstration, an example autosomal SNP marker in the human

genome has only two alleles, 1 and 2. A SNP (single nucleotide polymorphism)

is the genetic variation at a single DNA base pair within a population. An auto-

somal SNP is an SNP located on a chromosome which is not a sex chromosome.

Any individual will have two copies of an autosomal SNP in their genome,

except in cases of polysomy where there are more than two instances of non-sex

chromosomes. For the example marker, a human can either have two alleles

of type 1 (genotype 1/1), two alleles of type 2 (genotype 2/2) or one allele of

each type (genotype 1/2). This is because, with some exceptions, any chosen

individual will have two versions of any genetic marker in their genome, one

version being maternal and the other being paternal. Exceptions include genetic

markers present on sex chromosomes and markers in the mitochondrial DNA.

Only autosomal markers will be used in the examples in this thesis.

Out of all versions of this SNP marker within all people in a population, a

percentage is of allele 1 and another percentage is of allele 2. These percentages,

14



or frequencies, will be referred to as p1 and p2. Then the probability that a

randomly selected chromosome with this markers happens to have allele 1 is p1.

Equivalently, the probability for allele 2 is p2. Because type 1 and 2 are the only

alleles for this gene, p2 must be 1 − p1 as the allele frequencies should sum to

1. Formulas for the probabilities of specific genotypes may be derived from the

allele frequencies. This will be done in the section covering the Hardy-Weinberg

equilibrium (HWE), Section 2.1.2.

For the genotype to be 2/2 for a person, both chromosomes the person has

which contain the genetic marker must have the second variation, allele 2. For

this combination to occur, the individual must have inherited this variation both

from their mother and from their father. The probability of this happening is

p22 assuming HWE. Generally speaking, the probability of an individual having

a specific allele i on both strands of the chromosome is p2i if HWE is true. In

such cases the individual is homozygote for the marker. It follows that the

probability for genotype 1/1 in an individual is p21.

The probability of an individual being heterozygote with alleles 1/2 is 2p1p2,

not p1p2. This is because the probability of 1 coming from the mother and 2

coming from the father is p1p2, while the probability of 1 coming from the father

and 2 coming from the mother is also p1p2. Both possibilities must be taken

into count, as they both produce the genotype 1/2 in the offspring.

The genetic marker which was discussed here is an SNP marker. Another

type of genetic marker is the single tandem repeat (STR) type marker. This

marker marks a piece of the genome which contains a repeating DNA pattern,

the number of repeats varies within a population. Single tandem repeats are

also called microsatellites.

The database NorwegianFrequencies [8] in the R library forrel contains fre-

quency data for 35 STR markers. Table 2 shows one of these markers, CSF1PO.

The allele designations, the numbers 7, 8,...,16, refer to the number of times a

specific sequence, ATCT in this case, is repeated [1]. As an example, the allele

denoted 10 has the sequence repeated 10 times. In relatively rare cases, there

may be a partial repeat and that is why the allele called 10.3 may exist. After
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ten repeats follows only ATC, only three out of four base pairs were present in

the eleventh repeat.

allele frequency

7 0.0006

8 0.0031

9 0.0221

10 0.2472

10.3 0.0001

11 0.2989

12 0.3299

13 0.0812

14 0.0133

15 0.0036

16 0.0001

Table 2: The marker CSF1PO from the database NorwegianFrequencies in the

R library forrel [8].

2.1.2 The Hardy-Weinberg principle

The Hardy-Weinberg principle, also called Hardy-Weinberg equilibrium (HWE),

is a principle which states that the allele frequencies for a gene within a large

population will stay the same over time. Each new generation will then inherit

the allele frequencies from the previous. If HWE is assumed true for a popula-

tion, then it is assumed that for all genes in the genome of the species, genotype

frequencies will remain constant over time from generation to generation.

An example gene has alleles A and a, with allele frequencies p and q, re-

spectively. If the Hardy-Weinberg equilibrium holds for this gene, then within

a population:

� Genotype AA occurs with frequency p2

� Genotype Aa occurs with frequency 2pq
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� Genotype aa occurs with frequency q2

HWE is important for statistical calculations since probabilities of genotypes can

then be calculated using no other information than allele frequencies. There are

reasons why the Hardy-Weinberg equilibrium may not be true for a popula-

tion. Some assumptions are therefore necessary when HWE is assumed true. A

necessary assumption is that mating is random. The individuals within the pop-

ulation may be objected to some sort of selection, in which case the probability

of mating may depend on genotype. This is true if a specific genotype provides

a natural advantage. When mating probabilities in a population depend on a

gene, then the proportions of the alleles for this gene within this population

would increase or decrease in the long run.

HWE states that genotype frequencies will remain constant from generation

to generation. Under this assumption one will be able to compute the genotype

probabilities for individuals of the current generation as well as for individuals

of all future generations with no more information than the current proportions

of each allele. Then, the probabilities are as simple as

P (AA) = p2, P (Aa) = 2pq, P (aa) = q2

as mentioned previously. If there is Hardy-Weinberg disequilibrium, then these

genotype frequency formulas will not hold. The change in the probability for-

mulas can be explained and modelled through a parameter, θ. The formulas for

genotype frequencies will then instead be these;

P (AA) = θp+ (1− θ)p2,

P (Aa) = 2pq(1− θ),

P (aa) = θq + (1− θ)q2.

Here θ is a measurement of general background relationship between individuals

not connected by a pedigree. Typical values for θ are in the interval [0, 0.03].

Note that in the case of HWE, θ = 0, and the formulas are simplified. The

general case, with more than two alleles, is explained in [9].
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The Hardy-Weinberg equilibrium is assumed to be true in the analysis done

in this thesis.

2.2 Forensic statistics and identification

We first briefly explain forensic statistics generally. Consider two hypotheses

� H1 : AF is the biological father of C.

� H2 : AF and C are unrelated.

The objective is to summarise the statistical evidence to help decision makers

reach a conclusion. In a case with two hypotheses, two possible errors can be

made. These are concluding with H2 when H1 is true and concluding with

H1 when H2 is true. Conventionally, hypotheses are tested using p-values in

statistics. This approach assumes that it is most important to avoid the first

error. This assumption cannot be made in forensics and p-value based testing

is not used. Usually more than two hypotheses are made in a forensic case.

Through statistical analysis investigators want to determine which hypoth-

esis is most likely. This is done by calculating how realistic each possible hy-

pothesis is and comparing them against each other using this information. The

recommended approach is to report the likelihood ratio (LR) defined as

LR =
P (data | H1)

P (data | H2)
.

A value of 1 is neutral whereas large or small values favour H1 or H2, respec-

tively. There are several tables published giving thresholds for the LR, one is

reproduced in Figure 2 from [5]. Likelihood ratios are produced using foren-

sic data. An example of a likelihood ratio being calculated in a forensic case

(paternity case) is in Section 3.1.

It is possible to make multiple LR-s in a forensic case, using different kinds

of data to calculate each LR. If LR1, LR2, . . . LRn have been calculated from

independent data, we can multiply these LR-s to get the overall likelihood ratio.

DNA readings and other forensic evidence do not provide an indisputable

answer to forensic cases. However, forensic evidence may provide insight in
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Figure 2: Threshold values for LR. The table is copied from [5]

terms of probability. Through forensic analysis researchers may find that one

hypothesis is more plausible than others, the difference in probability between

hypotheses may be expressed by magnitude. If the hypothesis with the highest

probability is less than ten times as likely than at least one of the others, the

forensic data provides weak support in favour of this hypothesis. On the other

hand, if the highest probability hypothesis is shown to be millions of times more

likely than any other hypothesis, this hypothesis has particularly strong support

as shown in Figure 2.

2.2.1 Bayesian approach

Alternatively, a Bayesian approach can be used. Then prior probabilities need

to be specified.

The assigned probability of the hypothesis being true before taking the foren-

sic data into count is the prior probability. All valid hypotheses need to be

assigned a prior probability by the people doing the statistical analysis. The

term prior probability is not precisely defined, and it is up to the researcher

how much information they will include to form these probabilities. The poste-

rior probability of a hypothesis is the probability of the hypothesis being true

when the prior probabilities and forensic data are taken into count. Below the

Bayesian approach is detailed.
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Let P (Hj) denote the prior probability of hypothesis Hj . Furthermore,

LRj,1 is the likelihood ratio when hypothesis j is compared to hypothesis 1.

Note that LR1,1 = 1. Then, if there are k hypotheses, Bayes theorem gives

P (Hi | data) =
LRi,1P (Hi)∑k

j=1(LRj,1P (Hj))

which simplifies to

P (Hi | data) =
LRi,1∑k
j=1 LRj,1

. (1)

for flat priors, i.e. when all prior probabilities are equal, i.e.

P (H1) = ... = P (Hk) = 1/k.

Bayes theorem may alternatively be formulated on odds form

P (H1 | data)

P (H2 | data)
=
P (data | H1)

P (data | H2)
× P (H1)

P (H2)
(2)

which may be formulated verbally as

posterior odds = LR · prior odds.

In the above example with flat priors, the prior odds is 1 and the posterior

odds equals LR, but the interpretation differs. The posterior odds refers to the

probability of the hypotheses given the data.

2.2.2 Forensic identification

Forensic identification is the process of identifying someone or something using

forensic sciences. Techniques within forensic sciences may be applied to identify

humans, animals or objects. The techniques used for identifying humans are

relevant for this thesis. With these techniques, forensic researchers analyse var-

ious attributes of human subjects such as DNA, size, dental structure, injuries,

fingerprints and tattoos. Data collected from evidence in a forensic investigation

is referred to as forensic data. Analysts try to find links between the forensic

data and suspects.
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2.2.3 Kinship cases

Not all forensic cases can be solved using DNA analysis alone. For instance,

two close relatives may be impossible to separate based on their post-mortem

DNA readings and DNA readings from their extended family. For instance, in

a case involving two brothers as the victims, the DNA data may not suffice to

solve the case by itself. If the victims have no descendants, the family relation

between each of them and each known relative is exactly the same, because their

genetic relations go through their parents. The genetic overlap with each parent

will be 50% for both of them, so there are no differences in genetic relations.

Thus, the DNA of these relatives may not be used to separate the brothers from

one another. If one or both the brothers have one or more biological children,

then these children could be DNA tested. These tests could give information on

how the brothers should be separated as will be exemplified in Section 3.5. If

neither of the brothers have children, then all the DNA information to go by is

the information from the parents or from someone related to the parents, and

they will be impossible to separate.

Another unsolvable case involves two victims. The missing people are a

mother and a daughter. No relatives of these missing people are available for

genotyping. Separating the two will be impossible, because they share 50% of

their genome with one another and there is no information in the DNA which

can reveal which victim the mother is and which victim the daughter is.

2.2.4 Disaster victim identification

Within forensic sciences, researchers are sometimes required to identify victims

of a disaster. This field is known as disaster victim identification, DVI. De-

termining who a dead victim is may be done with forensic techniques. In an

investigation of a DVI case, the data collected by investigators is sorted into

two categories; post-mortem (PM) and ante-mortem (AM). PM data is data

collected from unidentified disaster victims. AM data is data collected either

from family members of missing individuals, or from known information about
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the missing individuals themselves. Figure 1 in Section 1.1 provides an example.

Here the PM data is data collected from the victims, while the AM data is data

collected from the mother of two missing brothers.

In a hypothesis, each disaster victim is paired with either one of the reported

missing people, or no individual at all. Thus, a disaster victim is never paired

with more than one missing person. Simultaneously, none of the missing peo-

ple are paired with more than one disaster victim. These restrictions provide

grounds for rejecting hypotheses which break them. Some pairings between a

victim and a missing person may be deemed impossible prior to the statistical

analysis, for instance if the sex of the victim is identified and is not that of

the missing person. Hypotheses containing impossible pairings are impossible

and may be ignored in the statistical analysis. If no victim-missing pairing is

known to be impossible, then all combinations of pairings which can be made

need to be considered as valid hypotheses. The total number of valid hypothe-

ses in a forensic case can be in the millions if many victims and missing people

are involved. Generation and rejection of DVI hypotheses for a forensic case is

one of the goals of this thesis, and general solutions have been implemented as

functions in R.

2.2.5 Kinship blind search

Blind search is a DNA analysis method where no AM data is used. When this

method is used for kinship analysis, the goal is to find patterns in the data

to try to extract information about possible family bonds between victims and

similar. The term ‘blind’ indicates that we are searching for certain specified

close relationships among PM samples, like parent - offspring, sibs and half-sibs.

2.3 Models for non-genetic data

In this section, forensic data other than DNA data is used. DNA data can be

combined with more DNA data in the same way DNA data can be combined

with other forensic data. If there is reason to believe that the DNA data will
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be correlated with other data types, then this may in principle be taken into

count by including the correlation between the data types into the calculations,

similar to how correlated markers may be handled. Ultimately, combining DNA

data with non-DNA data in forensic analysis is at the core of this thesis.

For instance, a missing person may be known to have a bone fracture in

their body. If this is the case, then one would assume to find the same bone

fracture in the victim, if they are the same person. Through knowledge about

the injury and statistics, one can calculate posterior probabilities for different

DVI hypotheses based on data from victims and missing people about such an

injury.

2.3.1 Review of DNA based kinship testing and DVI problems

We briefly review the essential parts of [2]. Assume a DVI case has victims

V1, . . . , VnV and missing individuals M1, . . . ,MnM . DNA data from the victims

will be the PM data in the investigation while DNA data from reference families

will be the AM data.

Each family includes at least one genotyped reference individual Ri. A

possible solution, referred to as an assignment, to the DVI problem we are

addressing, is a one-to-one correspondence, denoted a, between a subset of V =

{V1, . . . ,VnV } and a subset of M = {M1, . . . ,MnM}. Note that the empty

assignment (∗, . . . , ∗) is a valid solution, referred to as the null model below and

denoted a0. Essentially all results rely on the assignment likelihood

L(a) = P (PM and AM data | a,Φ) (3)

where Φ includes the fixed parameters, i.e., reference pedigree, marker allele

frequencies and mutation models.

2.3.2 Statistical model

While the likelihood for the genetic data in equation (3) is based on well estab-

lished methods, there is little information published on how statistical models
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for non-genetic evidence should be formed, and how likelihoods should be cal-

culated. Some statistical models will be formed and used in this thesis, they

will differ from those presented in the paper by Franco Marsico and Inés Caridi:

”Incorporating Non-Genetic Evidence in Large Scale Missing Person Searches:

A General Approach Beyond Filtering” [6].

Considering a statistical model for features, when a forensic feature is ac-

counted for in a DVI case, it will be assumed that one value to describe this

feature is observed in each victim and in each missing person. This value will

be a whole number between 1 and c, where c is the number of possibilities. Ex-

ceptions might be made for binary cases where one feature may be considered a

non-feature and given value 0. Such an example may be in the case of observ-

ing whether or not a person has an injury, a feature which can be denoted by

numbers 1 or 2 for having the injury and not having the injury. Instead, this

feature may be labelled with 1 and 0 for having the injury and not having the

injury, respectively. This latter approach might seem natural as 0 now means

”no injury” or ”none”. A features with no more than two possible states is

called a binary feature.

Another example of a feature which may be denoted by numbers is age. This

feature could simply note the age of a person in years, but could also denote age

categorizations, ranging from 1, the youngest category to c, the oldest category.

Let x = (x1, . . . , xnV ) and y = (y1, . . . , ynM ) denote the values for the victims

and the missing people, respectively. Here nV denotes the number of victims

while nM denotes the number of missing people. We assume independence, i.e.,

p(x) = ΠnV
i=1P (xi) and p(y) = ΠnM

j=1P (yj) (4)

if not stated otherwise. The conditional distribution of xi | (yj , Vi = Mj) is

modelled by a c × c matrix M = (mst) where all elements have non-negative

values and the sum of each row is 1. M is a transition matrix, used e.g. to

model mutations in forensic genetics as explained in [10]. In other words,

P (xi = s | yj = t, Vi = Mj) = mst
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P (xi = s | yj = t, Vi and Mj are unrelated) = P (xi = s) = ps (5)

The simplification in equation (5) is possible because if Vi and Mj are unrelated,

then the attributes of Vi and Mj are independent of another. Because yj and

xi are independent variables the value of yj does not affect the probability

distribution of xi, hence the expression may be simplified like there was no

known prior data. It is reasonable that x and y should have the same marginal

distribution. If we assume that the model (M,p) is stationary, i.e., pM = p,

then P (yj = s) = ps. A simple sufficient condition for stationarity is that the

detailed balance holds [10], i.e.,

psmst = ptmts if s 6= t, (6)

and then (M,p) is a reversible model. In the binary case, c = 2, reversibility and

stationarity are equivalent. However, stationarity is a quite strong assumption

imposing restrictions on the transition matrix as the following section shows.

2.4 Forming the statistical model

This case only involves one victim, V 1, and one missing individual, M1. x and y

are the variables which describe their features, respectively. The data collected

on the missing person M1 is assumed to be correct, hence, y is assumed

observed without uncertainty. If V 1 and M1 are the same person, then x

is expected to have the same value as y if no error was done in the identification

process, and the forensic material was in good shape. Because identification will

not always be accurate, the possibility of a misidentification should be taken into

count.

A matrix expressing the probability of matches or mismatches in the case

of a binary feature is shown in equation (7). The same matrix is shown with

parameters instead of probability expressions in equation (8)
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M =

P (xi = 1 | yj = 1, Vi = Mj) P (xi = 0 | yj = 1, Vi = Mj)

P (xi = 1 | yj = 0, Vi = Mj) P (xi = 0 | yj = 0, Vi = Mj)

 (7)

M =


y\x 1 2

1 1− µ1 µ1

2 µ2 1− µ2

 (8)

Here, µ1 is the probability of a victim having feature 1 is misclassified and

reported as x = 2. Similarly, µ2 is the probability that feature 2 is misclassified

as feature 1. It would be possible that the chance of misclassification was the

same for both features, denoted as µ. However, that would lead to some issues

with calculations, as explained in this section.

A victim and a missing person are one and the same, and their observed

features are x (PM data) and y (AM data), respectively. When a value of y

is observed, it is assumed observed without uncertainty, hence a y value of 1

means we assume that the missing person has feature 1 with 100% certainty.

The matrix says that if the probability of y being feature 1 is 100% or 1, then

the probability of x being feature 1 is 1 − µ1 and the probability of x being

feature 2 is µ1. Hence the matrix is used to calculate probabilities for what an

observed value of x will be using values of y. This is shown in equation (9).

y = (100%, 0%) = (1, 0)

x = yM = (1− µ1, µ1)
(9)

Example: An unreasonable model

Consider the binary case with only one victim and one missing person. The two

features are 1 and 2. Assume that the probability of misclassification, µ, is the

same for both features. Here, H1 is the hypothesis stating that the victim and
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the missing person are one and the same.

P (x = 1 | y = 2, H1) = P (x = 2 | y = 1, H1) = µ.

Assume also that the probability of being reported to have feature 1 is the same

for both.

P (X = 1) = P (Y = 1) = α

P (X = 2) = P (Y = 2) = 1− α

This is a seemingly reasonable and intuitive approach but it is arithmetically

problematic. Problems arise when it is considered that the observed feature

of the victim is subject to error, while the feature of a missing person is not.

Calculating P (X = 1) given that H1 is true gives equation (10).

P (X = 1|V = M) = P (X = 1|Y = 2, V = M)P (Y = 2)

+ P (X = 1|Y = 1, V = M)P (Y = 1) (10)

Then the result in equation (11) follows.

P (X = 1|V = M) = µ ∗ (1− α) + (1− µ) ∗ α = µ+ α− 2µα (11)

P (X = 1) should be independent of the underlying hypothesis if y is un-

known, and should thus be equal to α. According to equation (11), then

α = µ + α − 2µα. Therefore one must either have the restriction µ = 0, or

the restriction p1 = p2 = 0.5, where p1 = α is the frequency of feature 1 and

p2 = (1 − α) is the frequency of feature 2. The same conclusions are reached

when considering the stationary requirement, as then the detailed balance (6)

implies

p1µ = (1− p1)µ

Again one must set µ to 0 or accept p1 = p2 = 0.5.

The model exemplified above is not reasonable, as one would either need to

assume that the frequencies of the two features are equal, or that there is no
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possibility of misclassification. Otherwise one would break mathematical rules.

Typically the information on p is more precise than on M . Hence, p would be

specified. Then M could be chosen based on the information available. One

could accept that the model is non-stationary, as is typically the case in forensic

genetics. Alternatively, a stationary model could be chosen directly or (M,p)

could be transformed to a stationary model [11] or a reversible model [12].

Example: Stationary model

The model (M,p) where

M =

 1− µ µ

p1
1−p1µ 1− p1

1−p1µ

 (12)

is well defined and stationary if 0 ≤ 1− p1
1−p1µ ≤ 1.

The model (M,p) is bounded if

mst ≤ pt if s 6= t. (13)

In other words, the probability of observing the value t in the victim as a result

of misclassification, is bounded from above by the prevalence of t.

The model (M,p) where M is the matrix and p is the vector is stationary if

pM = p, as mentioned previously. This means vector p may be multiplied by

M as many times as one may want, and it will remain the same.

This matrix corresponds to a case of two possible features, feature 1 with

frequency p1 and feature 2 with frequency p2. Because the sum of frequencies

must be 1, p2 = 1 − p1. Calculating the product between the vector of feature

probabilities and the matrix M will result in the feature probability vector,

proving the matrix to be stationary.

One may solve the issue of conditional probabilities by introducing one more

parameter. The probabilities of the features 1 and 2 are p1 and p2, respectively.

They must add up to 1, so p1 uniquely defines p2 and vice versa. However, the

parameter µ, which denotes the probability of a misdiagnosis, does not need to

be the same for the two features. It is possible that that the chance of mistaking
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feature 2 for feature 1 is different from the probability of mistaking feature 1

for feature 2. The parameter µ will then be replaced by parameters µ1 for

feature 1 and µ2 for feature 2. If one is also willing to accept that µ2 must be

given a specific value based on µ1, p1 and p2, then it will be possible to create

a statistical model which resolves the conditional probability issue, such that

P (X = 1) = P (Y = 1) = p1 and P (X = 2) = P (Y = 2) = p2.

This derivation determines the value µ2 must take to make the conditional

probability matrix stationary.

[
p1 p2

]
=
[
p1 p2

] 1− µ1 µ1

µ2 1− µ2


[
p1 1− p1

]
=
[
p1 1− p1

] 1− µ1 µ1

µ2 1− µ2


[
p1 1− p1

]
=


(1− µ1)p1 µ1p1

+ +

µ2(1− p1) (1− µ2)(1− p1)


[
p1 1− p1

]
=
[
p1 + µ2 − µ1p1 − µ2p1 1− p1 − µ2 + µ1p1 + µ2p1

]
It is clear that µ2 − µ1p1 − µ2p1 = 0. Thus µ2 − µ2p1 = µ1p1, and

µ2 = µ1
p1

1−p1

Following is the same calculation done for the sake of verifying that the

substitutions µ1 = µ and µ2 = p1
1−p1µ do make a stationary model.
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M =


y\x 1 2 3

1 λ1 λ1 ∗ ε12 λ1 ∗ ε13
2 λ2 ∗ ε21 λ2 λ2 ∗ ε23
3 λ3 ∗ ε31 λ3 ∗ ε32 λ3


Figure 3: A probability matrix M in the case of three features. Here, λi is the

probability of feature i being classified correctly in a victim. The probability of

feature i being misclassified as feature j is denoted as λi ∗ εij .

pM =
[
p1 p2

] 1− µ µ

p1
1−p1µ 1− p1

1−p1µ


pM =

[
p1 1− p1

] 1− µ µ

p1
1−p1µ 1− p1

1−p1µ



pM =


(1− µ)p1 µp1

+ +

p1
1−p1µ(1− p1) (1− p1

1−p1µ)(1− p1)


pM =

[
p1 − µp1 + µp1 µp1 + 1− p1 − µp1

]
pM =

[
p1 1− p1

]
pM =

[
p1 p2

]
pM = p

In the case considered, x and y take on one of two possible values. If there

are more than two possibilities for x and y, a larger transition matrix, also

denoted by M , is required to contain all the possible combinations of feature

values and misdiagnoses. As an example, consider a feature with three possible

states, denoted 1, 2 and 3. The former matrix of conditional probabilities may

be expanded to include all three states both in victims and in missing people.

This is done in Figure 3. This matrix form is proposed in [6].
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M =



y\x 1 2 3 4 5

1 λ1 λ1 ∗ ε12 λ1 ∗ ε13 λ1 ∗ ε14 λ1 ∗ ε15
2 λ2 ∗ ε21 λ2 λ2 ∗ ε23 λ2 ∗ ε24 λ2 ∗ ε25
3 λ3 ∗ ε31 λ3 ∗ ε32 λ3 λ3 ∗ ε34 λ3 ∗ ε35
4 λ4 ∗ ε41 λ4 ∗ ε42 λ4 ∗ ε43 λ4 λ4 ∗ ε45
5 λ5 ∗ ε51 λ5 ∗ ε52 λ5 ∗ ε53 λ5 ∗ ε54 λ5


Figure 4: A probability matrix M in the case of five features. Parameters λi

and εij have the same meaning as in Figure 3.

One may expand the matrix further, like in Figure 4 where the number

of feature values is five. Regardless of how many different values a feature is

represented by, the stationary property is desired. Thus, we want p = pM for

feature frequency vector p and probability matrix M .

The general formula for the LR for hypothesis Ha against hypothesis H0

is derived and the result is equation (14). Here H0 is the hypothesis which

contains no matches between victims and missing people.

LRa =
P (XI1 = xI1, ..., XIv = xIv | Y I1 = yI1, ..., Y Im = yIm, Ha)

P (XI1 = xI1, ..., XIv = xIv | Y I1 = yI1, ..., Y Im = yIm, H0)

LRa =
P (XI1 = xI1 | Y I1 = yI1, ..., Y Im = yIm, Ha)

P (XI1 = xI1)
× ...

...× P (XIv = xIv | Y I1 = yI1, ..., Y Im = yIm, Ha)

P (XIv = xIv)

LRa =

v∏
k=1

P (XIk = xIk|Y I1 = yI1, ..., Y Im = yIm, Ha)

P (XIk = xIk)

LRa =
∏
k∈Ha

P (XIk = xIk|Y Ik = yIk, V Ik = MIk)

P (XIk = xIk)

∏
k/∈Ha

P (XIk = xIk)

P (XIk = xIk)

LRa =
∏
k∈Ha

P (XIk = xIk|Y Ik = yIk, V Ik = MIk)

P (XIk = xIk)

LRa =
∏
k∈Ha

∏
f∈features

P (XIkf = xIkf |Y Ikf = yIkf, V Ik = MIk)

P (XIkf = xIkf)
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LRa =
∏
k∈Ha

∏
f∈features

Mfyx
P (XIkf = xIkf)

(14)

Here v is the number of victims and m is the number of missing people.

Victims are denoted with V -s, while missing people are denoted with M -s. The

X-s and Y -s denote stochastic variables for the reported features for victims

and missing people, respectively. Similarly, the x-s and y-s denote the values

observed for these stochastic variables in the forensic investigation. All V -s,

M -s, X-s, Y -s, x-s and y-s are indexed with I1...Iv for victims and I1...Im for

missing people. For any k such that 1 ≤ k ≤ v, V Ik, XIk and xIk reference

the same victim. Similarly, for any k such that 1 ≤ k ≤ m, MIk, Y Ik and yIk

reference the same missing person.

Indices I1...Iv and I1...Im are arranged such that within any victim-missing

pair in the hypothesis Ha, the victim and the missing person are given the same

index. In other words, they are victim V Ik and missing person MIk for some

k. The notation k ∈ Ha means that the victim V Ik with feature XIk and

observed feature value xIk is in a victim-missing pair in Ha. The X-s and Y -s

may contain data for multiple statistically independent features, the individual

observed features are denoted XIkf and Y Ikf for some feature f . Mf is here

the feature classification probability matrix M for feature f . The probability

matrices are on the form explained in this section, for example, with five possible

values for a feature, the matrix will be on the form in Figure 4. Mfyx denotes

the number in row y and column x in this matrix.

Note that in this result the assumption that features are independent of each

other is made. This may not be a particularly realistic assumption.

The following will be a discussion of the paper by Franco Marsico and Inés

Caridi [6]. This paper suggests using non-genetic forensic data alongside forensic

data to identify. Hypotheses tested in the paper are constructed the same way

as the hypotheses in this one, with a set of missing people and a set of victims

(called unidentified persons) where victims and missing people are paired against

each other. The paper mentions that in the past, when doing forensic analysis,
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one would filter out impossible victim-missing pairs from the analysis prior to

running a hypothesis search. The paper argues against this approach because of

the possibility of errors in the forensic investigation with regards to identifying

features in the victims.

The paper argues for splitting the statistical analysis into multiple steps.

Bayes theorem is used for this. Assuming the forensic post-mortem data is split

into k segments, and all these are statistically independent of each other, the

posterior probability computation for a hypothesis Hi may be done like this:

P (Hi|Dj+1) =
P (Dj+1|Hi)P (Hi)

P (Dj+1)

P (Hi|Dj+1) =
P (Dj |Hi)P (dj+1|Hi)P (Hi)

P (Dj)P (dj+1)

P (Hi|Dj+1) =
P (dj+1|Hi)
P (dj+1)

P (Dj |Hi)P (Hi)
P (Dj)

P (Hi|Dj+1) =
P (dj+1|Hi)P (Hi|Dj)

P (dj+1)

The equation shows how different forms of forensic data, assumed indepen-

dent, may be combined iteratively. The lower-case dj denotes one kind of foren-

sic data, the different kinds are called d1, d2, . . .. The upper case Dj denotes

the combination of all data types up to dj , i.e., d1, . . . , dj .

In this paper, there are five possible values for hair colour and two possible

values for sex. However, we do not have a set number of age groups. Age is taken

into count through the use of the floating bin approach, which separates people

of different ages into different age range groups. This model does to some extent

account for the variability in the data. As per the feature model described above,

age groups close to one another time-wise may be assigned higher probability

of being warped to a close group than to a far away group. The uncertainty in

this variable is associated with inaccurate testimony or laboratory estimations.

Instead of designing age bins a priori, each bin is designed based on the victim

that is being identified. A match between ages happens when there is overlap

between the age intervals of the victim and that of the missing person. The age

of the missing person may be assumed without uncertainty, though this is not

what is done in Marsico/Caridi, rather something done in this thesis.

With sex, hair colour and age as the non-genetic data, the formula for com-
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bined likelihood is defined as in equation (15). The likelihood ratios for all

non-genetic data combined is here noted as LRNG. The likelihood ratio when

only looking at age is LRA, for sex it is LRS and for hair colour it is LRC .

LRNG = LRS ∗ LRC ∗ LRA (15)

This does assume independence between the attributes, in practice this is

not actually the case. There is dependence between age and sex, because women

live longer on average. Proportions of hair colour in populations of different ages

is also not the same, for example, grey hair is a lot more common among the

older generation.

2.4.1 Likelihood ratios

Consider first H1 : Vi = Mj and H2 : Vi and Mj are unrelated. Then

LRNG
ij =

P (Xi = xi, Yj = yj | H1)

P (Xi = xi, Yj = yj | H2)
(16)

LRNG
ij =

P (Xi = xi | Yj = yj , H1)P (Yj = yj)

P (Xi = xi)P (Yj = yj)
=
mij

pi
(17)

where NG abbreviates ‘Non Genetic’ evidence. The likelihood ratio LRNGij is

the ratio of the likelihood of the hypothesis Vi = Mj and the likelihood of

the hypothesis Vi 6= Mj . It was assumed that P (yj | H1) = P (yj | H2) =

P (yj). This assumption is justified by noting that while xi and yj are dependent

stochastic variables if H1 is true, if yj is not known then xi will have marginal

probabilities P (Xi = 1) = p1 and P (Xi = 2) = p2, independent on which

hypothesis is actually true. The fact that Mj is identical to Vi is irrelevant

when we do not condition on data for Vi. If yj is known but not xi, the same is

true for P (Yj = 1) = p1 and P (Yj = 2) = p2.

For a bounded model LRij ≤ 1 if the victim and the missing person do not

share a feature.
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Consider next a specific assignment a against a0. Then the likelihood ratio

based on non-genetic data is found with equation (18).

LRNG
a =

P (x, y | a)

P (x, y | a0)
= Π{(i,j):Vi=Mj}LRNG

ij . (18)

This is the product of the likelihood ratios for each pair in the hypothesis.

For every victim-missing pair in the hypothesis a, the likelihood ratio as defined

in equations (16) and (17) is included in the product. The combined likelihood

ratio for the hypothesis a is LRNGa . Statistical independence is assumed between

all factors in the products because in a valid hypothesis no victim or missing

person will be included in more than one pair.

2.5 Combining genetic and non-genetic evidence

We assume independence between genetic evidence (G) and non-genetic evi-

dence (NG). Hence, for a specific assignment a compared to the null model, the

combined likelihood ratio becomes

LRa = LRG
a · LRNG

a . (19)

The posterior pairing probabilities qi,j = P (Vi = Mj | D) for i = 1 . . . , v and j =

1, . . . ,m, and the posterior non-pairing probability, qi,∗ = P (Vi = ∗ | D), where

D denotes all evidence, genetic and non genetic, are computed as explained

in [2]. Here v is the number of victims while m is the number of missing people.

Vi and Mj are the ith victim and the jth missing person, respectively.

2.5.1 Example: Stationary binary model

Consider the binary case with only one victim and one missing person. Hy-

potheses H1 and H2 are as defined in Section 2.4.1. The transition matrix is

given in (12). The likelihoods and likelihood ratios are given in Table 3. A few

comments are in order

� If µ = 0, the LR-s vanish if the missing person and victim do not share a

feature.
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x y L(H1) L(H2) LR p2 = 1− p1
1 1 (1− µ)p1 p1p1

1−µ
p1

1−µ
p1

2 1 µp1 p2p1
µ
p2

µ
p2

1 2 p1
1−p1µp2 p1p2

µ
1−p1

µ
p2

2 2 (1− p1
1−p1µ)p2 p2p2

1− p1
1−p1

µ

p2

p2−p1µ
p22

Table 3: Distribution of LR for various values of x and y. The rightmost column

simplifies the expressions for LR using p2 = 1− p1.

� If µ = 0, the LR-s are 1/p1 and 1/p2 for (x = 1, y = 1) and (x = 2, y =

2). These are intuitive values and also these values will decrease when µ

increases.

� The expected likelihood ratio for H1 against H2 is;

– E(LR | H1) = ( µp2 − 1)2 + 1, here H1 is assumed true.

– E(LR | H2) = 1, here H2 is assumed true.

The expected likelihood ratio for H1 against H2 depends on which hypoth-

esis is true. Thus, E(LR|H1) and E(LR|H2) have different values.

E(LR | H1) =

2∑
x=1

2∑
y=1

(
P (x, y|H1)

P (x, y|H2)
P (x, y|H1))

E(LR | H1) =
(1− µ)2p21
p1p1

+
µ2p21
p2p1

+

p21
(1−p1)2µ

2p22

p1p2
+

(1− p1
(1−p1)µ)2p22

p2p2

Assuming p2 = 1− p1, this expression can be simplified to ( µp2 − 1)2 + 1.
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E(LR | H2) =

2∑
x=1

2∑
y=1

P (x, y|H1)

P (x, y|H2)
P (x, y|H2)

E(LR | H2) =

2∑
x=1

2∑
y=1

P (x, y|H1)

E(LR | H2) = 1

E(LR | H2) could be found easily because it is just the sum of the proba-

bilities of all possible x, y pairs under a hypothesis. All possible outcomes must

sum to 1.

2.6 Generating hypotheses

The solution to DVI problems implemented in the R library dvir may be roughly

summarized with two steps.

1. Generate all a priori possible assignments.

2. Calculate all likelihoods and sort them to obtain the best solutions.

In this section we first review a formula counting the number of a priori possible

solutions. This number may be prohibitively large. The number may be reduced

by taking into account e.g. age information, this will be discussed.

2.6.1 Number of assignments without gender

The number of possible solutions, assignments to a DVI problem is important as

it indicates the complexity of the problem. Below we present a formula giving

the required number based on [2]. Let A denote the sex-consistent assignments

for a given DVI problem and n = |A|, the number of elements. Assume first

that sex is not known, neither for victims nor missing people. Then the total

number of assignments is

min(s,m)∑
k=0

(
s

k

)(
m

k

)
k!. (20)
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where s is the number of victims and m the number of missing people. The

argument is as follows: For each k, there are
(
s
k

)
different subsets of k victims.

Each can be assigned to
(
m
k

)
different subsets of the m missing people. In the

end, each assignment can be shuffled in k! ways.

When sex is known, the formula (20) applies to females and males indepen-

dently, and the total number is

n = n(sF , sM ,mF ,mM )

=

min(sF ,mF )∑
k=0

(
sF
k

)(
mF

k

)
k!

min(sM ,mM )∑
k=0

(
sM
k

)(
mM

k

)
k!

 , (21)

where sF (sM ) is the number of female (male) victims and mF (mM ) the number

of female (male) missing individuals.

2.6.2 Sorting by age

The R-program expandgridnodup2 includes an R function with the same name

which identifies all the possible hypotheses for a forensic identification case.

This function has been developed during the writing of this thesis. This kind

of program is needed because it is very difficult to manually list and keep track

of all hypotheses within a DVI case, as well as to recognize the hypotheses with

high likelihood. An example using this code can be found in the appendix,

see A.1.

A DVI hypothesis consists of a list of victim/missing person pairs. Not all

victims need to be paired with a missing person and vice versa, the hypothesis

will still be valid. Then, we wish to screen these hypotheses for maximum

likelihood. The hypothesis with the highest likelihood may then be selected as

the ‘correct’ one.

Several parameters need to be taken into count when forming these hypothe-

ses, as some may be impossible. First of all, the hypotheses where one victim

or missing person has two or more matches need to be eliminated from the

analysis.
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Often, the ages of victims are not provided as numbers, but rather as in-

equalities. Knowledge about the ages of the victims relative to one another may

be beneficial for investigation and hypothesis testing. An example DVI case

is provided here to demonstrate age restrictions. In this case there are three

missing people; M1, M2 and M3, as well as three victims; V 1, V 2 and V 3.

The age of all three missing people is known, and from these ages it is deducted

that M1 is the oldest of the three, while M2 is the youngest. Forensic methods

performed on the victims concluded that V 1 was younger than V 2. One victim

is deemed younger than another victim.

A matrix containing information about age is exemplified in Figure 5. In

order to account for age in the calculations, the following steps were taken.

The first step was to convert age restrictions from string form to a matrix.

For computer algorithms an age restriction matrix is desired, but age restric-

tions represented as strings are more readable for humans. In R code these

strings may be, for example, ”V 1 > V 2”. The function expandgridnodup2

takes age restrictions on the string form as input and the age restriction matrix

was constructed within the function. In the example in appendix A.2, the age

restriction matrix was instead created manually. In the age restriction matri-

ces, the number +1 means the victim corresponding to the row is older than the

victim corresponding to the column, while −1 means the opposite. An example

matrix is shown in Figure 5.

From the matrix it is clear that all age relations are known except that of

V 4 and V 1. Information on whether V 1 is older than V 4 or vice versa was not

provided.

2.6.3 How hypotheses are stored

Like expandgridnodup2 described in Section 2.6.2, the R functions included in

appendix A.2 generate DVI hypotheses. These hypotheses will be generated

in an R matrix and stored in an R data frame. While the idea behind these
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String form: ”V 1 > V 2 > V 3”, ”V 2 < V 4”

Matrix form:

V 1 V 2 V 3 V 4

V 1 0 1 1 0

V 2 −1 0 1 −1

V 3 −1 −1 0 −1

V 4 0 1 1 0

Figure 5: Age restrictions represented on matrix form. This is how they are

stored in the program expandgridnodup2 in appendix A.1. Note that the re-

strictions on the string form also imply that ”V 3 < V 4”.

functions is the same as that of expandgridnodup2, some changes are done in

the implementation for the sake of speed. The functions are stored on Google

Drive, and these are the functions which will be discussed the the following

sections. The link is in appendix A.2. Like expandgridnodup2, these functions

were also created during the writing of this thesis.

Among other data, these R functions need to be provided with an age matrix

and a pair restriction matrix. This age matrix is on the same form as the one in

Figure 5. The pair restriction matrix contains the possible pairings of victims

and missing people, pairings not contained in the matrix are assumed to be

impossible following results from forensic analysis. These pairings may have

been rejected since the sexes of the victim and missing person do not match, or

due to other factors.

The restrictions in these two matrices, the age restriction matrix and the pair

restriction matrix, are processed by the R function createrestrictionmatrix in

appendix A.2. This function will output new restriction matrices on a different

form which may be difficult to read for a human, but is desirable for further

computations. The form of this output is explained later in Section 2.6.5. This

output is sent as an argument to the function hypsolverrestrictions, which is

also in appendix A.2. This function generates the hypotheses and outputs an R

data frame containing them.

40



A DVI hypothesis is defined as a set of pairs containing one victim and one

missing person. One way to store them would be to represent them as a list of

pairs, but this approach could quickly become messy. Instead, the hypotheses

will be stored as lists of people, where the position of a person in the list will tell

who the person is paired with. The lists will be made up of missing people, and

each position in the list will correspond to a victim. One wants the possibility

of a victim to be unassigned, hence empty slots in the lists will be allowed.

The hypotheses search is done in a way such that each of the victims is

assigned one column in the hypothesis data frame. The data frame entries will

consist of missing people. Each row of the data frame then corresponds to a

hypothesis.

In the first step the first victim, or the leftmost column, will be assigned

missing people. The missing people which are assigned to this victim are the

missing people which may be paired with the victim in a hypothesis according

to the restriction matrix.

After this first step, the next step is to fill out the column corresponding to

the second victim with all the missing people it may be paired with. Using a

Kronecker product, the hypothesis matrix is expanded to contain all possible

combinations of pairs involving the first victim and pairs involving the second

victim.

Figure 6 demonstrates how hypotheses are stored in the R matrix. The

example case in the figure involves five victims, two of the victims have so

far been assigned in this instance. Those victims are the two first columns.

The first victim has been assigned no one, hence a zero. The second victim

has been paired with the third missing person. The next three columns contain

restrictions on the remaining victims. They contain the number 4 (= 23) because

the third missing person has already been paired with the second victim. This

will be further explained in Section 2.6.5. The last column contains a count of

victims so far paired with an empty missing person, 1 in this case.
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0 3 4 4 4 1

Figure 6: This figure shows an example of how a hypothesis is stored as a row

in a matrix in R.

2.6.4 How hypotheses are generated

These hypotheses are generated by creating permutations of the list containing

the missing people. The length of each permutation should be the number of

victims. Each hypothesis must take into count which missing people can match

with which victims. One hypothesis is a set of pairs consisting of one missing

person and one victim, just like the DVI hypotheses discussed earlier.

First find all missing people which may be paired with the first victim. One

may also include the possibility of an unassigned victim. Numbers referring to

the selected missing people, along with a zero if the first victim may be left

unassigned, are then placed in the leftmost column in the hypothesis matrix,

starting at the top.

Expand the hypothesis list by Kronecker multiplication, such that each ex-

isting hypothesis can be expanded by a new victim-missing pair. All possible

missing person matches for the victim corresponding to the next column are

identified. If the victim not being assigned a missing person is possible, then

this possibility must be taken into count, and ”empty” is added to the list of

possible matches. The total number of matches, including the empty missing

person, is called n.match in the function. The current number of generated

hypotheses is called n.hyp. With Kronecker multiplication the hypothesis list

is repeated n.match times. Then, the next column in the hypothesis table is

filled with missing people such that each hypothesis is paired with each of the

n.match missing people to form n.hyp× n.match total hypotheses.

Next, all invalid hypotheses are cut out, before the next victim column in

filled. The process of adding missing people to the columns of the hypothe-

sis matrix and removing invalid hypotheses is repeated until all victim columns

have been filled. There are four reasons why a hypothesis could be invalid, these
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are;

1. The victim and missing person in a pair do not match, due to not being

of the same sex or due to other reasons.

2. The age restrictions on the victims and the age restrictions on the missing

people contradict each other.

3. One missing person has been paired with two or more different victims.

In practice there will at most be two because such hypotheses will be removed

before the missing person is added to a third victim.

4. A hypothesis contains more victims assigned an ”empty” missing person

than what has been allowed.

Impossible pairs between victims and missing people are already accounted

for when the columns are expanded. The age restrictions are kept track of in

the rightmost victim columns, along with information on already used missing

people. The age restriction matrices exemplified in Figure 8 are used to grad-

ually add to the restrictions in the hypothesis matrix. These age restriction

matrices will be explained in detail in Section 2.6.6.

2.6.5 How hypotheses are checked for validity

The hypothesis matrix is filled from left to right. When the first k victims have

been assigned a missing person or been filled by an empty slot, only the numbers

in the k leftmost columns refer to missing people and make up the hypotheses.

The other columns may be used to store other information in the meantime.

Because each element in the matrix contains a number, the goal is to store

as much information as possible in each. This may be done using bitwise op-

erations. A 32-bit integer can then be used to store 32 boolean statements
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32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

000000000000000000000000000000000000000000000000000000000000000000000000000000000111000000111000

Figure 7: The bit lookup table for restrictions for one matrix entry. Here, the

missing people not allowed are #02 and #05. The integer value is 21 + 24 = 18.

Note that the last bit is 20, hence it is the ”ones” bit.

which are either true or false. For simplicity, restrictions for one matrix cell

are stored in that same cell. Hence, the restrictions on the third victim for the

fifth hypothesis are stored in the cell in the fifth row and the third column.

The matrix cells yet unused could have stored all the necessary information to

validate hypotheses, but for simplicity one more column is added to the right

end of the matrix. This column will store the number of victims not matched

with a missing person but left empty for each row or hypothesis. Only victims

representing already completed columns are counted here, not victims whose

columns are yet to be filled with missing people.

If each bit corresponds to a missing person, one will be able to keep track

of which out of (up to) 32 missing people may be placed in one cell in the

matrix. Initially, each cell is assumed to be able to store any given missing

person without breaking any of the limiting rules. All bits in all these cells will

be 0, hence they all contain the number 0. As restrictions are identified, the

corresponding bits will be changed to 1 with a bitwise OR operation.

To reduce computation, all age restrictions already have a set of bits calcu-

lated. These restrictions will then be applied continuously as the hypotheses

are generated. One small matrix of age restrictions will be made for each victim

prior to the generation. The information contained in these matrices will be

applied once the victim has been assigned missing people.

This bit representation of hypothesis restrictions is shown in Figure 7. Bits

set to 1 denote missing people who may not be eligible for the corresponding

matrix cell.
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This bit representation of data, with integers being used as lists of boolean

values (true or false), is called a bit field. The main argument for storing data

this way is that it cuts down the amount of computer memory necessary. By

storing the restriction information in the same array as the hypotheses, less

memory is utilized, and usage of memory is more efficient. More importantly,

being able to represent entire lists of missing people as single integers greatly cuts

down on required memory. Further, computers are designed to execute bitwise

operations very quickly. Thus, the more efficient usage of memory which bit

fields allow does not come at the cost of computation time.

2.6.6 Another way to store age information

In Section 2.6.2, age information was stored in a matrix as in Figure 5. With the

function createrestrictionmatrix, the age information in that kind of matrix is

processed and new restriction matrices are made, one matrix per victim. In fact,

in these new matrices both age restrictions and restrictions on no overlapping

pairs are handled. These matrices will then influence the hypothesis restrictions

by bitwise OR operations. To illustrate what this matrix looks like, a DVI case

is provided. This case has the following information;

� 5 victims given: V 1,V 2,V 3,V 4,V 5

� 5 missing people given: M1,M2,M3,M4,M5

� Everyone is of the same sex, hence no victim-missing pairs are excluded

based on that feature.

� Among ages of the missing people it is known that M4 is older than M1,

that is, M4 > M1.

� Among ages of the victims it is known that V 1 > V 2 > V 3, V 1 > V 4 and

V 5 > V 3.

The restriction matrix has been made for V 1 in Figure 8. The figure contains

two versions of this matrix, one which is on the bit representation form explained
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V 2 V 3 V 4 V 5

M1 9 9 9 1

M2 2 2 2 2

M3 4 4 4 4

M4 8 8 8 8

M5 16 16 16 16

V 2 V 3 V 4 V 5

M1 M1,M4 M1,M4 M1,M4 M1

M2 M2 M2 M2 M2

M3 M3 M3 M3 M3

M4 M4 M4 M4 M4

M5 M5 M5 M5 M5

Figure 8: Restriction matrix for V 1. The matrix on the left is the numerical bit

representation matrix as stored in memory. The matrix on the right contains

the same information in the form of lists of missing people to be ruled out.

in Figure 7, and one which shows the missing people being ruled out. In a

hypothesis, V 1 will either be assigned one of the missing people or no one. If

V 1 is assigned a missing person, restrictions need to be implemented for this

hypothesis. The matrix row corresponding to the chosen missing person contains

these restrictions. If V 1 is instead assigned no missing person, then the number

of unassigned victims is incremented by one for this hypothesis.

Restrictions which matter for V 1 are that if V 1 is M1, then neither V 2, V 3

or V 4 can be M4. Hence, if V 1 is assigned M1 in a hypothesis, M4 must be

ruled out for V 2, V 3 and V 4 in that same hypothesis. At the same time, the

function is not allowed to repeat the same missing person multiple times in one

hypothesis. If V 1 is assigned a missing person (non-empty), this missing person

may not be assigned to another victim. Thus, this missing person must be ruled

out so that no other victim will be paired with them. All victims except the

last (V 5 in this case) will have a matrix like this. The last victim does not

need a restriction matrix, simply because when the column corresponding to

this victim is filled out, the hypothesis generation is finished.

In Figure 8 one can see that the missing people M1, M2, ... , M5 all

rule themselves out for all other victims if they are paired with V 1. It is also

clear that the age restrictions involving V 1 are implemented in this matrix, as

V 1 = M1 rules out the possibility that M4 is paired with V 2, V 3 or V 4.
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2.6.7 Handling hypothesis limit

The function hypsolverrestrictions takes a maximum hypothesis number as

one of its inputs. If this limit is exceeded, the hypothesis generation needs to be

segmented. Instead of trying to create all possible hypotheses simultaneously,

the search is divided. When the program registers that the hypothesis limit is

about to be passed, the set of missing people matching the current victim will

be split in two parts, where only the first part is being done in the current run.

The other missing people need to wait for a future run. Information is stored

on how the hypothesis search should be continued.

This DVI case is implemented and run with the functions hypsolverrestrictions

and createrestrictionmatrix as an example in appendix A.2. The functions are

ran with restrictions as described earlier.
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3 Results

3.1 Paternity example

In this example the basic concepts of forensic genetics and paternity testing are

illustrated in a simple paternity case. While a paternity case is a kinship case

and not a DVI case, many of the same principles apply. Like when solving DVI

cases, when solving kinship cases one will make a set of hypotheses and calculate

their likelihood ratios. This paternity case involves three people: A male child,

the undisputed mother of the child, and the alleged father of the child. The

alleged father, the child and the mother have been given the abbreviations AF,

C and M, respectively. The investigators will form two hypotheses; one which

states that AF is the biological father of the child and one which states that

AF and the child are unrelated. The two hypotheses will be compared to each

other in a hypothesis test by calculating the likelihood ratio between them.

If the hypothesis gives an LR above a specified threshold, see Figure 2, the

conclusion is that AF is the biological father.

Formally, the two hypotheses are defined as previously in Section 2.2 as

follows:

� H1: The alleged father (AF) is the biological father.

� H2: The alleged father and the child are unrelated.

The alleged father, the child and the mother are all genotyped for a set of

genetic markers.

Because the biological mother of the child is undisputed in this forensic

case, neither of the two hypotheses considered claim otherwise. The fact that

the child is male has been implemented in the pedigree plots in Figure 9, as

conventionally, squares represent males. A fourth person, the true father (TF),

has been included in the plot of H2 in Figure 9. H2 states that AF and TF are

not the same individual.

The code which creates the pedigree plots of the two hypotheses is here.
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Figure 9: The paternity case. H1 and H2 denote the two cases.

library(dvir)

H1 = nuclearPed(mother = "M", father = "AF", children = "C")

H2 = list(nuclearPed(mother = "M", father = "TF",

children = "C"), singleton("AF"))

plotPedList(list(H1, H2),

hatched = c("M", "C", "AF"),

titles = c("H1", "H2"))

Consider only the first marker. This marker has at least two alleles; A and

B. The allele frequencies for these alleles are pA and pB , respectively. Gene

mutations are not considered a possibility in this example.

The likelihood ratio when the genotypes are gAF = A/A, gM = B/B and

gC = A/B for AF, M and C respectively is

P (data | H1)

P (data | H2)
=
P (gAF , gM , gC | H1)

P (gAF , gM , gC | H2)
=
P (gc | gAF , gM , H1)P (gAF , gM | H1)

P (gc | gAF , gM , H2)P (gAF , gM | H2)

(22)

=
P (gc | gAF , gM , H1)

P (gc | gAF,gM , H2)
=

1

pA
(23)

When AF and M have genotypes A/A and B/B, respectively, and AF and M
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are the biological parents of C, then the probability of C having genotype A/B is

1, or 100%. This is because C must have inherited allele A from AF and allele B

from M, if gene mutations are assumed impossible. If M has genotype B/B and

is the biological mother of C, and no assumptions about the father are made,

the probability that C has genotype A/B is pA. C must have inherited the gene

of allele B from M with probability 1. The probability that the paternal gene

is of allele A is pA.

Equation (23) shows that likelihood ratio is the inverse of pA. Thus, the LR

increases as pA decreases. This is because the allele is less likely to come from a

random person if the frequency of allele A in the population, which pA denotes,

is very small.

3.2 The number of assignments with age restrictions

Here follows an explanation of the number of hypotheses which are valid for

the DVI case explained in Section 2.6.6, with two additional restrictions added.

The hypothesis list for the case is generated by the code in appendix A.2. The

list of restrictions is repeated here, with the additional restrictions added at the

bottom.

� 5 victims given: V 1,V 2,V 3,V 4,V 5

� 5 missing people given: M1,M2,M3,M4,M5

� Everyone is of the same sex, hence no victim-missing pairs are excluded

based on that feature.

� Among ages of the missing people it is known that M4 is older than M1,

that is, M4 > M1.

� Among ages of the victims it is known that V 1 > V 2 > V 3, V 1 > V 4 and

V 5 > V 3.

� Hypotheses may not contain any unmatched victims. The possibility of

unmatched victims is omitted to reduce the number of hypotheses which
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will be generated.

� It is known that all victim-missing pairs are possible, except that V 3 can’t

be M2 or M3.

Under these restrictions, the number of possible hypotheses is 50. To arrive

at this conclusion we start by finding out how many different ways the 5 missing

people can be arranged. The answer to this is 120, because 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 =

5! = 120. Two fifths of these 120 hypotheses are removed because of restrictions

on V 3 stating it cannot match with M2 or M3. That leaves 72, but some of

these are invalidated by the age restrictions. These restrictions are shown in

Figure 10.

Thus, there are only 50 valid hypotheses. Not more than one out of the

five age restrictions on the victims may be broken by a single hypothesis. Thus,

there is no overlap between the hypotheses each age restriction invalidates. This

is because the one age restriction on missing people, M4 > M1, may not be

broken more than once in a single hypothesis. If M4 > M1 is broken, then the

victim assigned M4 must be younger than the victim assigned M1. These two

victims may only correspond to one of the restrictions laid out in Figure 10.

The functions in appendix A.2 will be used to find out what would happen

if up to one unmatched victim was allowed per hypothesis. Then, for each of

the 50 hypotheses in the previous case, one of the five missing people may be

replaced by an empty slot to form a new hypothesis. Thus one may effectively

form five new hypotheses from each previous hypothesis. Because all the valid

hypotheses under the stricter restrictions are still valid now, this should leave

50 ∗ 6 = 300 possible hypotheses.

However, the program output 384 hypotheses instead. The actual number is

higher than 300 because some of the hypotheses that were removed in the case

where no empty victims were allowed, become valid if one removes a victim-

missing pair.
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List of age restrictions

� V 1 > V 2 invalidates 2 of the remaining hypotheses

� V 1 > V 3 invalidates 6 of the remaining hypotheses

� V 2 > V 3 invalidates 6 of the remaining hypotheses

� V 1 > V 4 invalidates 2 of the remaining hypotheses

� V 5 > V 3 invalidates 6 of the remaining hypotheses

Figure 10: List of age restrictions. To only have two victims in each restriction,

V 1 > V 2 > V 3 is split into three parts; V 1 > V 2, V 1 > V 3 and V 2 > V 3.

3.3 Calculations for motivational example

We explain the computational details for the example in Figure 1. It shows two

male victims and a reference family with two missing brothers and a genotyped

mother. Obviously, the second solution in Table 1 cannot be distinguished from

the first. We also see from Table 1 that the top two solutions have posteriors

0.43. The number of assignments follows from equation (20):

min(s,m)∑
k=0

(
s

k

)(
m

k

)
k! =

(
2

0

)(
2

0

)
0! +

(
2

1

)(
2

1

)
1! +

(
2

2

)(
2

2

)
2! = 1 + 4 + 2 = 7.

There are four alleles, denoted 1, 2, 3, 4, with frequencies p1 = 0.33, p2 =

0.01, p3 = 0.33, p4 = 0.33. The likelihood of the null assignment, corresponding

to no identifications, the null solution, is obtained my multiplying the genotype

probabilities of all genotyped individuals, i.e.,

L7 = 2p1p2 · 2p2p3 · 2p1p2 = 2.87496× 10−07.

Hence the log likelihood is lf = log(2.87496× 10−7) = −15.062057 as shown in

Table 1. The LR comparing the assignment (V1 = M1, V2 = M2) to the null

solution is

LR1 =
exp(−9.287599)

exp(−15.062057)
= 321.97.
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Figure 11: R code for Table 1 explained in Section 3.3 .

The prior is 1/7 for each assignment, a flat prior. Hence, the posterior for the

assignment (V1 = M1, V2 = M2) becomes, according to equation (1)

LR1

LR1 + · · ·+ LR6 + 1
= 0.43.

Figure 11 shows the R-code used to generate the table.

3.4 Resolving symmetry by restricting hypotheses

This example continues on the previous one. Assume that it is known that V 1

is older than V 2 and that M1 is older than M2. Then the symmetry problem is

resolved and the results are summarised in Table 4. In such a case, V 1 cannot

be M2 if V 2 is M1. A hypothesis where V 1 is M2 and V 2 is M1 implies that V 1

is younger than V 2 because M2 is younger than M1. However, this contradicts

the information that V 1 is older than V 2.
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V1 V2 loglik LR posterior

1 M1 M2 -9.2876 321.9697 0.8615

3 M1 * -11.8133 25.7576 0.0689

4 M2 * -11.8133 25.7576 0.0689

5 * M1 -11.8432 25.0000 0.0669

6 * M2 -11.8432 25.0000 0.0669

7 * * -15.0621 1.0000 0.0027

Table 4: Age information is used to a priori exclude the assignment where both

V 1 = M2 and V 2 = M1.

.

3.5 Resolving symmetry by typing more references

The two leftmost panels in Figure 12 are similar to Figure 1. It shows two

male victims and a reference family with two missing brothers and a genotyped

mother R1. In this example we will consider three alternative pedigrees of

relatives to identify V 1 and V 2, denoted AM1, AM2 and AM3 in Figure 12.

The simulation involved the 13 CODIS markers, allele frequencies were taken

from the database NorwegianFrequencies in the R library forrel [8].

Figure 12: Two missing males are shown to the left followed by three versions

of AM data.
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3.5.1 Case AM1

The two top solutions in this are (V 1 = M1, V 2 = M2) and (V 2 = M1,

V 1 = M2). They both have posteriors close to 0.5 as shown in Table 5. With

the mother R1 being the only reference, no information which may distinguish

the brothers from one another is provided. The brothers both have the same

familial relationship with the mother.

V1 V2 loglik LR posterior

1 M1 M2 -100.01 4.94e+09 0.50

2 M2 M1 -100.01 4.94e+09 0.50

3 M1 * -108.17 1.42e+06 0.00

4 M2 * -108.17 1.42e+06 0.00

5 * M1 -115.12 1.36e+03 0.00

6 * M2 -115.12 1.36e+03 0.00

7 * * -122.33 1.00e+00 0.00

Table 5: CASE AM1: The top two solutions are symmetric.

3.5.2 Case AM2

In this case a daughter of M1 is added to the pedigree, see Figure 12. This

daughter will be genotyped for the same markers that the two victims were

genotyped for. By typing a relative closer toM1 thanM2, one will have a chance

of distinguishing these two missing people. The correct underlying hypothesis

will likely be identified when a child of a brother can be identified, as this

child in expectation will have half their fathers DNA IBD and only a quarter of

their uncles DNA IBD. ”IBD” means ”identical by descent”, and DNA identical

by descent is DNA which is inherited from a shared ancestor. IBD genes are

different from IBS (”Identical by state”) genes in that IBS genes may not be

traced back to a shared common ancestor from recent time. In this case the

posterior probability for hypotheses where M1 is V 2 are not included in the

table, because these cases are impossible according to the generated DNA data.
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If M1 was V 2, then one of the alleles V 2 has for each gene must have been

inherited by R2. The generated DNA data contained genes for which V 2 and

R2 did not share a single allele, hence if mutations are assumed impossible,

M1 being V 2 causes a contradiction. The expected findings are confirmed in

Table 6.

V1 V2 loglik LR posterior

1 M1 M2 -112.86 9.22e+14 1.00

2 M1 * -126.12 1.61e+09 0.00

3 M2 * -129.46 5.72e+07 0.00

4 * M2 -136.94 3.21e+04 0.00

5 * * -147.32 1.00e+00 0.00

Table 6: CASE AM2: The two solutions given the same probability in Case

AM1 are now distinguished.

3.5.3 Case AM3

In this last example case, M1 has a granddaughter who was genotyped for the

markers, though his daughter was not. This approach is less likely to separate

M1 from M2 than when the daughter of M1 was genotyped in case AM2.

This illustrates how a more distant relative implies weaker evidence. The more

distant a relative is, the less genes the relative will share with the missing

person, hence kinship is harder to prove. The correct solution now has posterior

probability 0.911 as shown in Table 7.

All of these three cases were simulated 10000 times in R. These results show

the calculated posterior probability of the correct hypothesis. The results can

be seen in Figure 13. Here, case AM1 is on the left, case AM2 is in the middle

and case AM3 is on the right. In the first case, the brothers will be inseparable

every time. This is because DNA information from the mother may only be used

to eliminate hypotheses where one or both victims remain unidentified. This

information may not be used to separate the hypothesis stating that V 1 = M1
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V1 V2 loglik LR posterior

1 M1 M2 -123.56 2.81e+14 0.91

2 M2 M1 -125.88 2.76e+13 0.09

3 M1 * -143.23 8.07e+05 0.00

4 M2 * -143.91 4.08e+05 0.00

5 * M2 -144.07 3.48e+05 0.00

6 * M1 -145.56 7.90e+04 0.00

7 * * -156.83 1.00e+00 0.00

Table 7: CASE AM3: The top two solutions are now distinguished, but not as

clearly as in Table 6.

and V 2 = M2 from the hypothesis stating V 1 = M2 and V 2 = M1. In the

case AM2, the brothers will be separated most of the time. The posterior

probability for the correct hypothesis was higher than 0.95 in nearly all the

simulations. Case AM3 is interesting. Here, conviction was higher than in case

AM1, but still in a lot of cases not so high that it could be used as undisputable

proof. Access to more forensic data would be helpful here.

Table 8 contains information on how many simulations resulted in posterior

probabilities above certain thresholds. It is clear from this table that in cases

of the form AM2 the genetic evidence is quite convincing. The results show an

estimated 96% chance of genetic data providing a posterior probability above

0.99 for the correct underlying hypothesis. It is also clear that in cases of

the form AM1 genetic data will never be able to separate the brothers, as

the posterior probability never goes above 0.5 for the correct hypothesis. The

simulation data used to make this table is the same data used to generate the

boxplots in Figure 13.
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Figure 13: The cases AM1, AM2 and AM3 were simulated 10000 times each.

There are two genotyped male victims, V 1 and V 2, and two missing brothers,

M1 and M2. The mother of the missing brothers is genotyped in all three cases.

In AM2 the daughter of M1 is also genotyped. In AM3 the granddaughter of

M1 is genotyped instead of the daughter.

3.6 LR for discrete data

A missing person Mi has a property yi, which describes a feature or attribute

which this individual may or may not have. If the individual has this feature,

yi = 1, otherwise yi = 0.

The case involves two brothers, M1 and M2, who have gone missing. Only

one victim has been found, V 1. V 1 has an attribute, x1 = 1. Among the

brothers only M1 has the attribute. In other words; y1 = 1 and y2 = 0.

The three DVI hypotheses in this case are;

� H1 : V 1 = ∗

� H2 : V 1 = M1

� H3 : V 1 = M2

A flat prior is assumed, so all hypotheses are assigned a probability of 1/3

before data is looked at. By knowing that M1 has a feature which M2 does
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Threshold AM1 AM2 AM3

> 0.499 9809 9921 8473

> 0.5 0 9918 8468

> 0.75 0 9831 6843

> 0.90 0 9730 4706

> 0.95 0 9679 3403

> 0.975 0 9642 2330

> 0.99 0 9616 1289

> 0.999 0 9463 231

> 0.9999 0 9042 30

> 0.99999 0 8022 5

> 0.999999 0 6411 1

Table 8: A table containing results from simulated DVI cases of the types AM1,

AM2 and AM3. The numbers tell how many out of 10000 simulations resulted

in a posterior probability above various thresholds.

not, one may conclude who the victim V 1 really was; M1, M2, or neither.

P (xi 6= yj | Vi = Mj) = µ

P (xi = 1) = P (yj = 1) = α

These are the definitions of µ and α for an observed binary feature in this

DVI case. Here, the probability of a feature being observed in a victim is the

same as the frequency of the feature within a population. If only P (yj = 1) = α

is assumed, the probability P (xi = 1) may be expressed as a function of µ and

α.
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P (xi 6= yj | Vi = Mj) = µ

P (yj = 1) = α

P (xi = 1) = P (yi = 1) ∗ (1− µ) + P (yi = 0) ∗ µ

P (xi = 1) = α ∗ (1− µ) + (1− α) ∗ µ

P (xi = 1) = µ+ α− 2αµ

For P (xi = 1) = α, the probability of a victim being observed with a feature,

to be the same as P (yj = 1), then µ has to be the same as 2αµ, which means

either µ = 0 or α = 1/2 (or both).

To put this in relation to stationary matrices, the stationary matrix for two

states of a feature is as in equation (12) in Section 2.4.

The model (M,p) where

M =

P (xi = 1 | yj = 1, Vi = Mj) P (xi = 0 | yj = 1, Vi = Mj)

P (xi = 1 | yj = 0, Vi = Mj) P (xi = 0 | yj = 0, Vi = Mj)

 (24)

can be written as

M =

 1− µ µ

p1
1−p1µ 1− p1

1−p1µ

 (25)

is well defined and stationary if 0 ≤ 1− p1
1−p1µ ≤ 1.

Here, p1 is the probability for feature 1, i.e. p1 = α. The stationary model

allows for other values of α by allowing the two features to have different prob-

ability of being misdiagnosed. The probability P (xi 6= yj | Vi = Mj) is different

for yj = 1 and yj = 0 in this case. If P (xi 6= yj | Vi = Mj , yj = 1) = µ, then

P (xi 6= yj | Vi = Mj , yj = 0) = α
1−αµ.

3.6.1 Trying to solve the motivational example

An attempt was made at solving the forensic case in Section 1.1 using genetic

evidence. This did not work out, but depending on the situation, the case might

be solvable if feature data is provided instead.
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This case involved two victims, V 1 and V 2, and two missing people, M1

and M2. If there is one feature recorded for each victim and each missing

person, then this feature could be used to draw conclusions within the forensic

investigation.

Assume that the hypothesis which states that V 1 = M1 and V 2 = M2 is the

true underlying hypothesis. If M1 and M2 have features 1 and 2, respectively,

and V 1 and V 2 were correctly diagnosed with these features, then the likelihood

ratios for the seven possible hypotheses will be those in Table 9. Here the

parameters µ12 and µ21 are introduced. These are the probabilities of feature 1

being misdiagnosed as feature 2 and feature 2 being misdiagnosed as feature 1,

respectively. The old parameters µ1 and µ2 have the same meaning as before,

and are related to the new parameters as they are the sum of the probabilities

of all possible misdiagnoses for one feature. For example, if there are three

features 1, 2 and 3, then µ1 = µ12 + µ13.

V1 V2 LR

1 M1 M2 (1-µ1)(1-µ2)/p1p2

2 M2 M1 µ12µ21/p1p2

3 M1 * (1-µ1)/p1

4 M2 * µ21/p1

5 * M1 µ12/p2

6 * M2 (1-µ2)/p2

7 * * 1

Table 9: Likelihood ratios for the possible hypotheses if V 1 and M1 have been

assigned feature 1 and V 2 and M2 have been assigned feature 2.

For small values of p1, p2, µ1 and µ2 the first hypothesis will correctly be

chosen as the most likely when the features are correctly identified. However,

in the case of one misdiagnosis (i.e. V 1 was instead assigned feature 3) the

likelihood ratios will be as in Table 10.

If a flat prior is used, and p3 is greater than µ13, then hypothesis #6 will be
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V1 V2 LR

1 M1 M2 µ13(1-µ2)/p2p3

2 M2 M1 µ12µ23/p2p3

3 M1 * µ13/p3

4 M2 * µ23/p3

5 * M1 µ12/p2

6 * M2 (1-µ2)/p2

7 * * 1

Table 10: Likelihood ratios for the possible hypotheses if V 1 was assigned feature

3, M1 was assigned feature 1 and both V 2 and M2 were assigned feature 2.

selected over hypothesis #1. For the record, p3 should be greater than µ13 in

the large majority of probability models. V 1 would then remain unidentified.

With DNA data added to the analysis, that could have assisted in identifying

the two victims, if they were unrelated. However, in this DVI case it would

not help because the brothers may not be separated with DNA data from their

relatives. DNA data from close relatives like their parents could potentially

confirm that the victims were the missing brothers, but it could not assist in

telling them apart. For that purpose one would have needed DNA data from a

descendant of one of the brothers.

3.7 More likelihood ratios when using the stationary model

The parameters µ and p1 = α are here as defined in the stationary model in

equation (25) in Section 3.6. The two features are denoted as 1 and 0. This

DVI case involves one victim V 1, and two missing people M1 and M2. V 1 is

reported to have feature 1. M1 is known to have feature 1, and M2 is known

to have feature 0. The hypotheses are defined in the following list.

� H1 : V 1 is neither

� H2 : V 1 is M1
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� H3 : V 1 is M2

The conditional probabilities of the observed data are calculated below.

P (data|H1) = P (X1 = 1 | Y1 = 1, Y2 = 0, H1)× ...

...× P (Y1 = 1 | H1)× P (Y2 = 0 | H1)

P (data|H1) = P (X1 = 1)P (Y1 = 1)P (Y2 = 0)

P (data|H1) = α2(1− α)

P (data|H2) = P (X1 = 1 | Y1 = 1, Y2 = 0, H2)× ...

...× P (Y1 = 1 | H2)× P (Y2 = 0 | H2)

P (data|H2) = P (X1 = 1 | Y1 = 1, V1 = M1)P (Y1 = 1)P (Y2 = 0)

P (data|H2) = (1− µ)α(1− α)

P (data|H3) = P (X1 = 1 | Y1 = 1, Y2 = 0, H3)× ...

...× P (Y1 = 1 | H3)× P (Y2 = 0 | H3)

P (data|H3) = P (X1 = 1 | Y2 = 0, V1 = M2)P (Y1 = 1)P (Y2 = 0)

P (data|H3) =
α

1− α
µα(1− α) = µα2

From this the likelihood ratio for each hypothesis follows.

LR(H1) = P (data|H1)
P (data|H1) = 1

LR(H2) = P (data|H2)
P (data|H1) = 1−µ

α

LR(H3) = P (data|H3)
P (data|H1) = µ

1−α

For small µ, the likelihood ratio will be large for H2 and small for H3. The

smaller α is, the more H2 is favoured over H1 and H3.

Next, likelihoods are calculated for the same case, but with V 1 being re-

ported with feature 0 instead.
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P (data|H1) = P (X1 = 0 | Y1 = 1, Y2 = 0, H1)× ...

...× P (Y1 = 1 | H1)× P (Y2 = 0 | H1)

P (data|H1) = P (X1 = 0)P (Y1 = 1)P (Y2 = 0)

P (data|H1) = α(1− α)2

P (data|H2) = P (X1 = 0 | Y1 = 1, Y2 = 0, H2)× ...

...× P (Y1 = 1 | H2)× P (Y2 = 0 | H2)

P (data|H2) = P (X1 = 0 | Y1 = 1, V1 = M1)P (Y1 = 1)P (Y2 = 0)

P (data|H2) = µα(1− α)

P (data|H3) = P (X1 = 0 | Y1 = 1, Y2 = 0, H3)× ...

...× P (Y1 = 1 | H3)× P (Y2 = 0 | H3)

P (data|H3) = P (X1 = 0 | Y2 = 0, V1 = M2)P (Y1 = 1)P (Y2 = 0)

P (data|H3) = (1− α

1− α
µ)α(1− α) = α− α2(1 + µ)

LR(H1) = P (data|H1)
P (data|H1) = 1

LR(H2) = P (data|H2)
P (data|H1) = µ

1−α

LR(H3) = P (data|H3)
P (data|H1) = 1−α(1+µ)

(1−α)2

These latter likelihood ratios are very similar to those in the previous ex-

ample, but with LR(H2) and LR(H3) swapped. This makes sense because the

victim V 1 was now reported with the same feature as M2 instead of M1. There-

fore it is only expected that this time H3 is considered more plausible than H2

for small µ. If parameters µ and α in the LR expressions in the previous case

are substituted with α
1−αµ and 1 − α, respectively, then one will arrive at the

LR expressions for this case. Note that µ
1−α still is µ

1−α after this substitution.
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3.8 Return to earlier example

This will be another throwback to the example in Section 1.1. Can this case be

solved with the use of non-genetic data? The results in this section may be seen

as an extension to those in Section 3.6.1.

The DVI case involves two victims and two missing people. The missing

people are brothers. One brother has a non-genetic binary feature which the

other brother does not have. We denote these as M1 has feature 1 and M2 has

feature 2. The likelihood ratios for the possible hypotheses are in Table 11.

With p1 = p2 = 0.5 and µ1 = µ2 = 0.05, the likelihood ratios for the various

hypotheses are those noted in Table 12. The stationary requirement for models

with binary features is fulfilled as µ2 = p1
1−p1µ1.

V1 V2 x1 = 1,x2 = 2 x1 = 1,x2 = 1 x1 = 2,x2 = 1 x1 = 2,x2 = 2

1 M1 M2 (1−µ1)(1−µ2)
p1p2

(1−µ1)µ21

p1p1

µ12µ21

p2p1

µ12(1−µ2)
p2p2

2 M2 M1 µ21µ12

p1p2

µ21(1−µ1)
p1p1

(1−µ2)(1−µ1)
p2p1

(1−µ2)µ12

p2p2

3 M1 * (1-µ1)/p1 (1-µ1)/p1 µ12/p2 µ12/p2

4 M2 * µ21/p1 µ21/p1 (1-µ2)/p2 (1-µ2)/p2

5 * M1 µ12/p2 (1-µ1)/p1 (1-µ1)/p1 µ12/p2

6 * M2 (1-µ2)/p2 µ21/p1 µ21/p1 (1-µ2)/p2

7 * * 1 1 1 1

Table 11: Likelihood ratios for the seven possible hypotheses.

From Table 12, one can see that in the first column, hypothesis #1 is cor-

rectly assigned the highest likelihood ratio. It is also clear that the likelihood

ratios for the hypotheses #3 and #6 are quite large. With a flat prior, the pos-

terior probability for hypothesis #1 is no higher than 0.419. From this result

we conclude that one fairly common feature is not highly convincing evidence

in itself.

Table 13 combines the likelihood ratios from Table 1 in Section 1.1 with

those in Table 12 for x1 = 1, x2 = 2. This is assumed to be mathematically

possible due to equation (19) in Section 2.5. This equation states that likelihood
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V1 V2 x1 = 1,x2 = 2 x1 = 1,x2 = 1 x1 = 2,x2 = 1 x1 = 2,x2 = 2

1 M1 M2 3.61 0.19 0.01 0.19

2 M2 M1 0.01 0.19 3.61 0.19

3 M1 * 1.9 1.9 0.1 0.1

4 M2 * 0.1 0.1 1.9 1.9

5 * M1 0.1 1.9 1.9 0.1

6 * M2 1.9 0.1 0.1 1.9

7 * * 1 1 1 1

Table 12: Likelihood ratios for the hypotheses in Table 11, with p1 = p2 = 0.5

and µ1 = µ2 = µ12 = µ21 = 0.05

ratios achieved through DNA analysis may be combined with likelihood ratios

achieved through other forensic analysis through simple multiplication. This

does of course assume that the data used in the analysis not involving DNA is

statistically independent from the DNA data. This assumption is reasonable if

the feature is non-genetic, as was assumed in this case. The posterior probability

for the correct hypothesis is here 0.917, a clear improvement over both the

posterior obtained by only using DNA data (0.431) and the posterior obtained

using only feature data (0.419).
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V1 V2 LRNG LRG LR posterior

1 M1 M2 3.61 321.9697 1162.3 0.91662

2 M2 M1 0.01 321.9697 3.2197 0.00254

3 M1 * 1.9 25.7576 48.939 0.03859

4 M2 * 0.1 25.7576 2.5758 0.00203

5 * M1 0.1 25.0000 2.5000 0.00197

6 * M2 1.9 25.0000 47.500 0.03746

7 * * 1 1.0000 1.0000 0.00079

Table 13: The results achieved when combining the LR-s in Table 12 for x1 = 1

and x2 = 2 with the LR-s in Table 1 in Section 1.1.

4 Discussion

In this thesis we have presented forensic kinship cases and disaster victim iden-

tification problems.

Because of the strength of DNA analysis, other forensic data will usually be

redundant, though with notable exceptions. There may be cases where DNA

evidence is close to useless due to degradation. In such cases the amount of

information researchers are able to collect from DNA readings may be very

small. Another situation where DNA evidence may not prove a hypothesis is a

case where one is unable to separate two close family members, as demonstrated

with cases involving two missing brothers. It was shown that in such a case

acquiring other forensic data than DNA data could resolve this issue. This

was possible because it was argued both in this thesis and in [6] that likelihood

ratios calculated with different kinds of forensic data could be combined through

multiplication, though this assumes independence between the different kinds

of data.

The main novelty of this thesis is the introduction of models for non-genetic

data. Such methods were also addressed in [6]. However, unlike this thesis,

the mentioned paper did not assume stationary probability models and did

not discuss the problem of non-stationarity. In other words, the distribution
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of a discrete characteristic in [6] could differ in the AM and PM samples, i.e.

the probabilities of observed features in missing people could be different from

those of victims. This may appear unreasonable as normally there is no reason

to believe that a feature like a tattoo should appear with different frequencies

in victims and missing people. Assuming a stationary model as the underlying

probability model avoids this issue.

Whether someone considers the assumption of a stationary model reasonable

should depend on what other assumptions that someone wants to make. If a

researcher assumes that the frequencies of features in AM and PM samples are

the same, and also assumes that misclassification probabilities may be modelled

by a probability matrix, we recommend that the researcher assumes that the

probability matrix is stationary. This is because if the probability matrix is not

assumed stationary, then mathematical rules will be broken by the assumption

that observed feature frequencies are the same for victims and missing people.

For DNA based problems there are lots of examples and data available.

Also, databases of allele frequencies like the one in Table 2, are published. The

statistical models for likelihood calculations have a sound biological basis. For

non-genetic data, much less is done and there is not much available of relevance

for DVI problems. Hence the specification of the probability distribution for a

discrete characteristic becomes more speculative.

Posterior probabilities are often reported for DVI problems as exemplified

in Table 1. While posteriors are more easily interpreted than LR-s, they are

based on priors. Such priors may be speculative. However, this problem is not

unique to non-genetic data.

During the writing of this thesis, functions for generating DVI hypotheses

were created. They include functionality not present in the dvir library in R.

Old methods were only able to reject hypotheses with impossible victim-missing

pairs or overlapping victim-missing pairs. The new functionality also allows for

rejection based on age restrictions and allows setting a limit on the number

of unassigned victims. More work could be done on this functionality, though

one may want to focus on one of the implementations in the appendix and not
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both, as they solve very similar problems. Currently, the implementation in

appendix A.2 is faster, but the implementation in appendix A.1 is more user

friendly.

For other possible future work, it would be interesting to perform more

simulations and analyse large, realistic cases using the techniques and models

presented in this thesis. More simulations would not assist in proving the mod-

els in this thesis reasonable, as the simulated data is based on these models.

However, simulations could give an idea on how much non-genetic data would

be required for solving forensic cases which could not be solved by genetic data

alone, and vice versa. By analysing large cases with these models and techniques

one would achieve more insight on how accurate or inaccurate the models really

are.
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A Implementation

A.1 A simple solution

The function expandgridnodup2 which was developed during this thesis is part

of the R library dvicomb. This library is loaded by typing the following in R:

install.packages(https://familias.name/alf/dvicomb_0.1.0.zip)

The example based on Figure 14 is reproduced below:

# We consider the case shown in the below plot:

plotDVI(example2)

# The below code generates the possible assignments

# accounting for sex and that V2 is older than V1.

# Hence we cannot have V1 = M1 and V2 = M2

library(stringr)

library(dvir)

pm = example2$pm

am = example2$am
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pairss = list(V1 = c("*","M1","M2"),

V2 = c("*", "M1", "M2"),V3 =c("M3","*"))

expand.grid.nodup2(pairss, pm, am, age = "V2>V1")

V1 V2 V3

1 * * M3

2 * * *

3 M1 * M3

4 M1 * *

5 M2 * M3

6 M2 * *

7 * M1 M3

8 * M1 *

9 M2 M1 M3

10 M2 M1 *

11 * M2 M3

12 * M2 *

A.2 Main Code

The functions createrestictionmatrix and hypsolverrestrictions developed dur-

ing this thesis are included in the following link;

https://drive.google.com/file/d/1V97JqWq6fhZQXGgarM4rG2U9IZfWiPRf/

view?usp=sharing

An example which utilizes these functions is found with this link;

https://drive.google.com/file/d/1BC2-nAu4lsQv_rNNKF8sa01y1L3uH2b9/
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Figure 14: Pedigree plots complementing the example R code in Section A.1 .

view?usp=sharing
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