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Abstract

Germanium telluride (GeTe) has for many years attracted attention because of its good
thermoelectric properties. The remarkably low lattice thermal conductivity, despite the
simple crystal structure, is an interesting property and gives rise to the question of why.
Many thermoelectric materials that are being researched often have more complex crystal
structures compared to the diatomic GeTe.

In GeTe a phase transition occurs around temperatures T = 630 K ∼ 740 K. Previous
studies have found that when the trigonal structure is nearing the phase transition, the
shape of the structure shifts towards a more cubic structure. This change from a quasi-cubic
to a cubic structure is thought to be related to the low lattice thermal conductivity of GeTe.

The effect caused by changing the angle of the trigonal structure of GeTe is what this
study investigates, in addition to finding the phase transition. First-principles calculations
of the Free energy and phonon dispersion relation have been made at finite temperatures
and various trigonal angles using density functional theory (DFT) and temperature de-
pendent effective potential (TDEP). The volumes of the cubic and trigonal cells have been
kept constant at the ground state calculated volumes, meaning that the thermal expansion
has not been included.

Precise force constants were found using an iterative process where the new iteration is built
on the calculations of the previous iterations. This method was successful at improving
the precision of the force constants, as high precision is necessary for phonon calculations.

This study shows that the volume of the unit cell is very important when calculating
the Free energy. In addition to this, it is important to optimise the atomic positions in
the trigonal unit cell. This is because the atomic positions influence the phonon disper-
sion much. Therefore, to be able to describe the phase transition and dispersion relation
of GeTe precisely, temperature, volume, angle and atomic position need to be taken into
consideration. In this thesis, only temperature and angle have been included meaning the
results are somewhat insufficient in describing the phonon dispersion relation at the phase
transition.

In addition to the complexity of the system, the findings suggest that as the temperature
decreases, the cubic structure exhibits phonon softening and broadening. This indicates
that there is a phase transition occurring in GeTe and that near the phase transition the
lattice thermal conductivity is low.
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Sammendrag

Germanium tellurid (GeTe) har i mange år fått mye oppmerksomhet på bakgrunn av dens
gode termoelektriske egenskaper. Den lave gitterledningsevnen, tross den enkle krystall-
strukturen, er svært interessant og gjør at man stiller seg spørsmålet om hvorfor dette er
tilfellet. Forskning på termoelektriske materialer gjøres ofte på mer komplekse krystall-
strukturer enn diatomiske GeTe.

GeTe opplever en faseovergang ved temperaturene T = 630 K ∼ 740 K. Tidligere studier
har funnet at når det trigonale fasen nærmer seg faseovergnagstemperaturen, endrer den
trigonale enhetscellen seg til å bli mer kubisk formet. Denne endringen fra en kvasi-kubisk
til en kubisk struktur, er ment å være tilknyttet årsaken til den lave gitterledningsevnen i
GeTe.

Effekten fra å endre vinkelen til den trigonale strukturen i GeTe er hva som undersøkes
i denne studien, samt å finne faseovergangen. Førsteprinsipps beregninger av Fri energi
og fonondispersjonsrelasjonen ved endelige temperaturer og forskjellige vinkler er gjort
med tetthetsfunksjonalteori (DFT) og temperaturavhengige effektive potensialer (TDEP).
Volum til de kubiske og trigonale cellene er holdt konstant ved grunntilstandsvolumen, noe
som betyr at termisk ekspansjon ikke er medberegnet.

Presise kraftkonstanter er funnet ved bruk av en iterativ prosess, der den nye iterasjonen
er bygd på beregningene fra de forekommende iterasjonene. Metoden var vellykket med
å øke presisjonen til kraftkonstantene, noe viste seg å være nødvendig ved fononberegniner.

Studien viser at volum til enhetscellen er svært viktig for fri energi-beregninger. I tillegg
til dette er det viktig å optimalisere atomposisjonene i den trigonale strukturen. Dette
ble ikke gjort automatisk under relaksering. Årsaken å inkludere atomposisjonene er at de
har stor innvirkning på fonondispersjonen. Dette fører til at temperatur, volum, vinkel og
atomposisjoner må tilpasses for beregning av GeTe faseovergangen og fonondispersjonen.
I dette studiet har kun temperaturen og vinkelen blitt inkludert, noe som har medført at
resultatene fra dispersjonsrelasjonen er noe mangelfull i sin beskrivelse av faseovergangen.

I tillegg til å vise kompleksiteten til GeTe, viser funnene i studien at når temperaturen
synker, opplever den kubiske strukturen fononmykning og fononspredning. Dette indikerer
at det det skjer en faseovergang i GeTe, og at ved faseoverganger er gitterledningsevnen
lav.
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Chapter 1

Introduction

The world is in constant need of more energy. According to the United Nations, there are
46 least developed countries [1] and the availability of energy is an important factor for
them to develop further. With the environmental impact of using fossil fuels, there is a
need to look for other ways to accommodate this demand. A solution might be to find new
resources or to improve on already existing ones.

Thermoelectricity might be part of the solution in solving the energy shortage problem.
Thermoelectric materials were first discovered around 1820. It was found that certain
materials can deflect a compass needle when there is a temperature gradient going the
material [2]. Later it have been discovered that there are two thermoelectric effects, the
Seebeck and the Peltier effect, working in opposite ways of each other.

Figure 1.1: Illustration of the Seebeck effect. The electric field is represented by the arrow
and the electrons are represented by the e− symbols.

The Seebeck effect is the generator of the two thermoelectric effects and can be viewed in
Figure 1.1. When electrons thermally diffuse from the hot end to the cold end of a ther-
moelectric material a voltage difference between the two ends will appear. This voltage
difference can be used to generate electricity. The Peltier effect is the opposite, meaning
that a current, or a voltage difference, will move electrons from the cold side to the warm
side creating a temperature difference [2]. This effect can be used in coolers such as refrig-
erators and in cars [3].

How well a thermoelectric material performs is described by the unitless thermoelectric

1



figure of merit (ZT )

ZT =
σS2T

κe + κl
. (1.1)

Here the electrical conductivity σ, Seebeck coefficient S and the electron thermal conduc-
tivity κe all depend on the thermally diffusing electrons in the material. This means that
when engineering the material to optimise one of these quantities, all the other quantities
also get affected. The last two parts are the temperature T and the lattice thermal con-
ductivity κl [4].

The lattice thermal conductivity κl is, as the name implies, dependent on the lattice
dynamics of the system and not the movement of electrons. The atoms in the crystal lat-
tice vibrate, and their periodic collective vibration is called phonons [5]. It is the phonons
that are responsible for the heat transport in the lattice, and the main focus of this thesis.

Suitable thermoelectric materials are typically materials with complex crystal structures.
Examples of such crystals can be seen in the paper ”New and Old Concepts in Thermo-
electric Materials” by Joseph Sootsman et al [6]. The complex structures tend to scatter
phonons more easily, hence lowering the lattice thermal conductivity. However, the com-
pound studied in this thesis, germanium telluride (GeTe), does not have a complex crystal
structure, but rather a simple sodium-chloride configuration. Despite the simple structure,
the lattice thermal conductivity of GeTe is low, making the question of why this is, inter-
esting.

A possible explanation for the good thermoelectric properties of GeTe is that it expe-
riences a structural phase transition between two very similar crystal structures. The
lattice thermal conductivity of GeTe can be seen in the right plot in Figure 1.2. The lat-
tice thermal conductivity for GeTe is the lowest just before the phase transition. Usually,
when thinking about a phase transition it is the solid-liquid-gas transformations that first
come to mind. This is known as a change of matter. On the other hand, the structural
phase transition has no shift in the state of matter but rather modifies the lattice structure
of the material. This means that the same compound might on a microscopical level have a
different structure depending on parameters like temperature, pressure and composition [7].

The Free energy of the system decides whether the crystal structure of a compound changes
or not. The structure with the lowest Free energy is the thermodynamically preferred struc-
ture. When one crystal structure gets lower Free energy than another possible structure,
a phase transition can occur [7].

The phase transition occurring in GeTe is a first-order phase transition. This means
that when the temperature approaches the phase transition, there is a sudden shift in the
structural parameters and not a continuous transition. This can be seen in the left plot in
Figure 1.2 for GeTe.

2



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: GeTe as the (a) angle (b) lattice thermal conductivity changes as functions of
temperature. The black solid lines represent the phase transition. The figures are adapted
from [8, 9].

The aim of this master thesis is to investigate two competing phases of GeTe around
the phase transition. The two phases are the trigonal and cubic structures as they have
been experimentally found [10, 11]. The effects of the trigonal structure changing to
be more cubic as the phase transition approaches will be also investigated. To make this
investigation, the Free energy and phonon dispersion will be calculated using first-principles
calculations with density functional theory (DFT) and temperature dependent effective
potential (TDEP). Additionally, the effect of converging the force constants through an
iterative approach will be explored. The phonon dispersion relation with and without
broadening will be calculated in order to perhaps find a connection to why GeTe is a
good thermoelectric material. Calculations will be made at various temperatures and
trigonal unit cell angles in an attempt at finding and understanding the phase transition.
The study’s limitation is that thermal expansion caused by temperature changes will be
omitted from the calculations, meaning the volume will be constant at the ground state
size.
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Chapter 2

Theory

In this chapter, a short introduction to GeTe will be made together with key concepts
concerning crystals and lattice dynamics. This is to build a basis for understanding the
phonon dispersion relation and the various effects that can occur surrounding phonons
when dealing with a phase transition. In the last part of the chapter, the phase transition
itself will be discussed.

2.1 Germanium Telluride

The focus of this thesis is on the investigation of the compound germanium telluride (GeTe).
This is a material well known for its promising thermoelectric properties and phase-change
abilities. GeTe has been found to have several solid phases. At room temperature, there
are three possible states, amorphous-, rhombohedral- (α-GeTe) and orthorhombic-GeTe
(γ-GeTe). At high temperatures, the crystal structure is cubic (β-GeTe) [12].

GeTe has a phase transition occurring at a temperature around T = 630 K ∼ 740 K
[8, 11, 13]. This transition happens between the rhombohedral structure and the cubic
structure. The melting temperature of GeTe is at a temperature T = 725 ◦C = 998 K [14].

In addition to this, experiments have shown that GeTe has a low lattice thermal con-
ductivity κlat. The trigonal structure has reported values around 2.7 Wm−1K−1 [15].
This low lattice thermal conductivity can perhaps be explained by the phase transition of
GeTe and the lattice dynamics surrounding this.

2.2 Lattice dynamics

The study of the collective vibrations in a crystal is called lattice dynamics [16]. In or-
der to understand the impact the phase transition has on the lattice, it is important to
understand how the lattice behaves. Therefore, this section will present concepts regard-
ing crystal structures, unit cells, and the direct and reciprocal lattice. Phonons and the
dispersion relation will also be explained. This section is primarily based on the books
”The Physics of Phonons” by Gyaneshwar P. Srivastava [5] and ”Introduction to solid state
physics” by Charles Kittel [17].
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2.2.1 Crystal structure

In order to understand crystal vibrations, it is important to understand the crystal itself.
An ideal crystal is made up of groups of atoms infinitely repeated in a periodic pattern. The
repeating arrangement of these groups of atoms is called a crystal structure. This repeating
unit can be defined as a unit cell. With suitable translational vectors repeating the unit
cell, the cell can fill all space. All information about a crystal is contained within a unit cell.

Out of the unit cells, the smallest cell contains only one lattice point and is called a
primitive unit cell, or a primitive cell. The primitive unit cell volume is spanned by the
lattice vectors a1, a2 and a3. A face-centered cubic (FCC) primitive cell for the GeTe
is illustrated in Figure 2.1a. Though the unit cell only has one lattice point, the cell can
contain several atoms or molecules belonging to that single point. This group of atoms or
molecules is called a basis. In Figure 2.1a the basis is one germanium and one tellurium
atom. If the lattice point is at the centre of the germanium atom, they together form the
primitive unit cell.

Though a primitive cell contains all the necessary information to build a crystal structure,
it oftentimes might be more convenient to describe the crystal in a unit cell containing
more atoms. One such cell is the conventional unit cell. Unlike the primitive cell, the
conventional cell can have more than one lattice point. This can often make it easier to
understand and visualise the crystal. An example of a conventional unit cell for a FCC
structure containing 2 types of atoms can be seen in Figure 2.1b. The conventional cell of
GeTe shows how the atoms are aligned in the same way as for rock-salt, NaCl.

The atom positions in a cell and the lattice vectors that define the cell volume are col-
lectively called a supercell, as defined by David Sholl [7]. This means that both the con-
ventional and primitive unit cells are supercells as long as they fulfil these requirements.
When doing calculations on materials, information about the supercell is one of the most
important inputs to give [7]. Depending on what calculations to make, the size of the
supercell matters. A supercell consisting of four conventional unit cells can be viewed in
Figure 2.1c.

(a) (b) (c)

Figure 2.1: Three possible ways of representing the face-centered cubic (FCC) structure of
germanium telluride (GeTe). The unit cells are (a) a primitive cell, (b) a conventional cell
and (c) a supercell. The supercell in (c) contains 4 conventional cells.

There are several different ways the atoms can arrange themselves to create lattices. In
order to sort the possible crystal lattices they are divided into 14 different lattices, called
the Bravais lattice. These lattices can then be sorted into 7 different crystal systems, de-
scribing the shape of the unit cells.
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2.2. LATTICE DYNAMICS

The crystal structures discussed in this thesis are the cubic (face-centered cubic) and
trigonal (rhombohedral) phases of GeTe. The lattice constants, the angles between the
lattice vectors and the space group of the trigonal and cubic structure can be found in
Table 2.1.

Table 2.1: The characteristics of the cubic and trigonal unit cells [18].

Crystal system Cubic (β-Gete) Trigonal (α-GeTe)

Bravais lattice Face-centered cubic Rhombohedral

Angles α = β = γ = 90◦ α = β = γ ̸= 90◦

Lattice constants a=b=c a=b=c

Space group Fm3m R3m

As seen in Table 2.1 the difference between the cubic and trigonal cell shapes lies in the
angle. This shift in the angle from the non-cubic to the cubic 90◦ results in the cubic being
one of the structures with the most symmetry, while the trigonal structure has less so. The
shift in angle also results in the shape of the trigonal structure being very similar to the
cubic structure, only elongated in the [1 1 1] direction [19]. This is why the trigonal phase
of GeTe is often called a quasi-cubic structure.

Another way that the structures can differ is by the atomic placement inside the unit
cells. One unit cell shape can stay the same, but the atoms might position themselves in
such a way that they are at a local or global minimum. At the thermodynamically most
stable atomic positions, the atoms are at a global minimum.

(a) Cubic unit cell (b) Trigonal unit cell

Figure 2.2: The (a) cubic and (b) trigonal conventional unit cell geometries, with α and a
being the angle and lattice constant respectively.

In Table 2.1 the space group for the two phases of GeTe have been listed. A space group is
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defined by a series of symmetry operations that the structure can undergo, without having
to change the positions of the atoms within the cell [20].

2.2.2 The direct and reciprocal lattice

Crystals have two associated lattices, the direct lattice and the reciprocal lattice. The
direct lattice space is the three-dimensional space where each lattice point represents a
basis. The lattice space is spanned by the lattice vectors, a1, a2 and a3. The vectors
are defined so that the crystal arrangement looks the same at a point r as at a point
r′ = r + u1a1 + u2a2 + u3a3, where ui are arbitrary integers. The vector from a chosen
point to another point in the lattice is described by the translation vector

T = n1a1 + n2a2 + n3a3. (2.1)

Where nj are integers. The dimension of the direct lattice vector T is in [length].

A mathematical representation of the crystal planes in the form of a lattice is often used
when discussing crystals. This is the second associated lattice, the lattice in the reciprocal
space. Every plane in the real space becomes a lattice point in the reciprocal space [21].
When mapping between the direct and reciprocal lattice the relationship

eiG·T = 1 (2.2)

is used. Here G is the reciprocal translation vector, similar to the translation vector T ,
only for reciprocal space.

The connection between the direct and reciprocal space can be mathematically described
by the following equations

b1 = 2π
a2 × a3

Vcell
, b2 = 2π

a3 × a1

Vcell
, b3 = 2π

a1 × a2

Vcell
. (2.3)

Here b1, b2 and b3 are the reciprocal lattice vectors and Vcell = a1 ·a2×a3 is the volume
of the unit cell. The reciprocal translation lattice vector is defined as

G = m1b1 +m2b2 +m3b3 (2.4)

with mi being integer numbers. The dimension G is [1/length].

Brillouin zone

A primitive unit cell in the reciprocal space containing only one lattice point is called the
first Brillouin zone. Depending on the crystal lattice and its symmetry, the Brillouin zone
differs. The Brillouin zone for a FCC structure is shown in Figure 2.3.
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2.2. LATTICE DYNAMICS

Figure 2.3: The Brillouin zone of the cubic phase of GeTe with symmetry group Fm3m.
The high symmetry points are marked with filled and unfilled circles. The figure is adapted
from the Bilbao Crystallographic Server [22, 23].

It is very costly to sample the entire Brillouin zone when doing calculations. Calculations
along lines between high symmetry points in the Brillouin zone are therefore usually made.
The Brillouin zone for a FCC structure together with high symmetry points are shown in
Figure 2.3. At the centre of the Brillouin zone, lies the Γ-point, the origin of the reciprocal
space.

2.2.3 Phonons

Heat travels through a material by the collective vibrating atoms in a crystal known as
phonons. The centre of mass for the atoms is stationary, but the relative motion of the
atoms creates a wave effect and this is the phonons. For practical purposes, one assigns a
momentum h̄q to the phonons, with q being the wave vector. This particle-like behaviour
of the atoms is called a quasi-particle.
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CHAPTER 2. THEORY

Phonon dispersion relation

The phonon dispersion relation is the relationship between the energy (frequency, ω) and
wave vector (q). The relationship ω = ω(q) is used for understanding phonons.

In a crystal with p atoms per unit cell, the displacement of the bth atom in the lth unit
cell is denoted u(lb). A Taylor expansion of the potential energy U is then as follows:

U = U0 +
∑
lb

α
∂U

∂uα(lb)

∣∣∣
0
uα(lb) +

1

2!

∑
lb,l′b′

∑
αβ

∂2U

∂uα(lb)∂uβ(l′b′)

∣∣∣
0
uα(lb)uβ(l

′b′)

+
1

3!

∑
lb,l′b′,l′′b′′

∑
αβγ

∂3U

∂uα(lb)∂uβ(l′b′)∂uγ(l′′b′′)

∣∣∣
0
uα(lb)uβ(l

′b′)uγ(l
′′b′′) + ...

(2.5)

U = U0 + U1 + U2 + ... (2.6)

Here U0 is the equilibrium potential, and Φαβ = ∂2U
∂2uα∂uβ

∣∣∣
0

and Φαβγ = ∂3U
∂uα∂uβ∂uγ

∣∣∣
0

are
the second-and third-order force constants. α, β and γ are indices for Cartesian directions.

The first term in equation 2.5 can be set to zero in dynamic problems as it is the dis-
placement of the atoms that are important. The second term in the equation disappears in
the equilibrium configuration. The following equation represents the harmonic approach
used for calculating the dispersion relation:

Uharm = U2 =
1

2

∑
αβ

∑
lb;l′b′

Φαβ(lb; l
′b′)uα(lb)uβ(l

′b′). (2.7)

To exemplify the phonon dispersion relation, one can look at an infinitely long diatomic
system on a linear chain. This is illustrated in Figure 2.4. There are 2N atoms forming
N unit cells and each unit cell has a length of 2a. The m and M are the masses for the
atoms in the cell with m < M .

Figure 2.4: A diatomic linear chain. The masses m and M are alternating, with m < M .
2a is the length of the unit cell.

When one atom is moved away from its equilibrium position, the neighbouring atoms will
”feel” this movement. This is approximated with there being a spring in between the atoms,
making the atoms feel spring forces. This is in accordance with Hooke’s law. The use of
Newton’s second law results in the equations of motion

m
d2u2n
dt2

= C[u′2n+1 + u′2n−1 − 2u2n] (2.8)

M
d2u′2n+1

dt2
= C[u2n+2 + u2n − 2u′2n+1] (2.9)

9
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for the atoms. Here C is the force constant and ui is the displacement of atom i. The
suggested solution for the displacements are

u2n = A1e
i(2nqa−ωt) (2.10)

u′2n+1 = A2e
i[(2n+1)qa−ωt] (2.11)

with q being the wave vector and ω the frequency. Combining equation 2.8 and 2.9 with
the equations of motion gives

−ω2mA1 = C[A2e
iqa +A2e

−iqa − 2A1] (2.12)

−ω2MA2 = C[A1e
−iqa +A1e

iqa − 2A2]. (2.13)

The solution to the two equations above can be expressed only if the determinant of the
unknown coefficients A1 and A2 dissipates. By doing so one gets an expression for the
phonon dispersion relation for a diatomic linear system

ω2 = C
( 1

m
+

1

M

)
± C

[( 1

m
+

1

M

)2
− 4

mM
sin qa2

]1/2
. (2.14)

Equation 2.14 is shown in Figure 2.5. The two signs in the equation indicate that there are
two phonon branches or phonon modes. The two modes are the acoustic and the optical
modes.

Figure 2.5: The dispersion relation for a diatomic linear lattice showing the optical and
acoustical branches. The lattice constant is of length 2a.

Although the diatomic linear chain is a simple system, it can still give information about a
three-dimensional system. The number of phonon modes is determined by the number of
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atoms in the unit cell. In the three-dimensional system with p number of atoms in the unit
cell, there are a total of 3p phonon modes. There are three acoustic modes and 3p− 3 op-
tical modes. In a diatomic system, there are three acoustic modes and three optical modes.

The modes can further be divided into longitudinal and transverse modes. This gives
longitudinal LA and transverse acoustical TA modes, and longitudinal LO and transverse
optical TO modes.

The phonon is acoustic when the atoms in the unit cell are vibrating together in phase.
This is the same as sound waves through a material. The acoustic branches also have the
property that ω(q) → 0 when q → 0. This is at the Γ-point. The orange line in Figure 2.5
illustrates this for the diatomic linear chain.

Phonons out of phase within the unit cell are called optical phonons. They are named
optical phonons because if the atoms are carrying opposite charges, they may excite a mo-
tion similar to the electric field of a light wave [17]. For optical phonons, ω(q) → constant
when q → 0. This is visualised by the blue lines in Figure 2.5.

The Debye temperature

There is an upper limit to the frequency that the lattice vibrations can have. Using
the Debye model, this limit is known as the Debye frequency (ωD) and separates when
the lattice vibration goes from collective to individual vibrations [24]. The temperature
associated with this phenomenon is called the Debye temperature (θD) and is defined as

θD =
h̄ωD

kB
(2.15)

with h̄ being the reduced Planck constant and kB Boltzmann constant [17].

Lattice thermal conductivity

A reason to investigate phonons is their connection to the lattice thermal conductivity κ.
κ describes how heat propagates through a material. The lifetime τ , heat capacity c and
group velocity v of the phonons are connected to κ through

καβ =
1

V

∑
λ

cλvαλvβλτβλ. (2.16)

Here V is the volume, λ indicates the phonon modes and α and β are directions. For the
high-symmetry cubic system equation 2.16 becomes

κ =
1

V

∑
λ

cλv
2
λτλ. (2.17)

From these equations one can see that the lattice thermal conductivity is dependent on how
long the phonons live, the speed they travel and the heat they carry. The easiest property
to observe in a phonon dispersion relation is the group velocity of the phonons. The group
velocity v = ∂ω

∂q can be seen in the dispersion relation as the slope of the branches. This
means that the steeper the slope is, the higher the velocity.

The heat capacity is the property that converts energy to temperature. The heat ca-
pacity is closely connected to the Debye temperature and is at low temperatures obeying
the T 3 law. This can be elaborated further in the Debye model, but will not be further
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discussed here.

In the harmonic approach, the phonons act without interaction meaning they technically
propagate infinitely. In order to include scattering effects, and hence lifetimes, the third-
order force constants need to be included in the potential energy. This is called anhar-
monicity. What this entails will be discussed next.

At low temperatures the displacement of the atoms caused by the vibrating atoms, com-
pared to the interatomic distances, is small and the phonons can be described using a
harmonic potential. When the temperature increases the anharmonicity of the phonons
increases, meaning the potential is no longer harmonic and the atoms can vibrate with
larger displacements [25]. When the distances of the atoms are changing, so do the allowed
energy states for the phonons. The phonons become less stable. This is visualised by a less
well-defined phonon mode, called broadening. More broadening means that the phonon
lifetime τ is shorter, something positive when wanting low lattice thermal conductivity as
seen in equation 2.16. Broadening for trigonal GeTe can be seen in Figure 2.6.

Figure 2.6: Dispersion relation of trigonal GeTe with broadening at T = 700 K.

Phonon softening

The frequency of a phonon mode can change when the temperature changes. If the fre-
quency of the phonon modes decreases, this is called phonon softening. If a phonon softens
all the way to a frequency of zero, the system is dynamically unstable.

If a structure has soft phonon branches (lower frequency) at low temperatures, the phonons
might become more highly exited at higher temperatures. With more highly exited phonons,
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the entropy of the system increases. This lowers the Free energy and can lead to a phase
transition [17]. An example of phonon softening for the cubic phase of GeTe can be seen
in Figure 2.7.

Figure 2.7: Phonon softening around the Γ-point for cubic GeTe.

Phonon softening can occur in the crystal lattice when a phase transition is approached.
This can happen when approaching the transition both from above and below. In the first-
order phase transition, discussed in the next section, the phase transition occurs before the
phonon modes are able to reach zero [26].

2.3 Phase transition

The change of atomic arrangement in a crystal due to temperature change, called a struc-
tural phase transition, will be discussed in this section. The section will explain why a
phase transition occurs in materials in addition to the distinction between the first- and
second-order phase transitions.

2.3.1 Free energy

The reason why a ball rests at the bottom of a bowl instead of hanging on the edges is
that it seeks the energetically lowest point to rest. The same principle applies to crystals
and their atomic arrangements. Atoms try to stack themselves in the most stable and
energetically lowest configuration. A quantity that can be minimised in order to find a
phase transition is Free energy.
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One way of calculating the Free energy is by Helmholtz’s Free energy (F )

F (T ) = U0 − TS. (2.18)

Where U0 is the internal energy, while T and S are the temperature and entropy respec-
tively.

A structure having the lowest Free energy at some conditions does not always mean being
the most stable structure. The Free energy changes as the conditions change, and the
difference in Free energy between structures changes at different rates. It is necessary to
look at the difference in Free energy to see which state is the most stable. This gives the
equation

∆F = ∆U0 − T∆S. (2.19)

The temperature when a phase transition happens is called the critical temperature (Tc).
At this temperature two competing structures A and B will have the same Free energy,
FA(Tc) = FB(Tc). Figure 2.8 shows the difference in Free energy between the two structures
A and B as the temperature rises. Equation 2.19 was used in order to visualise the phase
transition.

Figure 2.8: Phase transition is visualised by the difference in Helmholtz Free energy be-
tween structure A and structure B. Under the red dashed line, structure A is the most
stable, and over the red line structure, B is the most stable state. In the intersection
between the red and the blue line, a phase transition occurs at the critical temperature Tc.

2.3.2 First-and second-order phase transition

There are two different types of phase transitions, first-order and second-order. An order
parameter, such as the distortion of a material µ, is used to see whether it is a first-order
or second-order phase transition. During a first-order phase transition, there is a sudden
shift in the order parameter when reaching the critical temperature. The order parameter
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changes continuously in a second-order phase transition [27]. The first- and second-order
phase transition is shown in Figure 2.9.

(a) First-order phase transition (b) Second-order phase transition

Figure 2.9: Illustration of a (a) first-order phase transition and a (b) second-order phase
transition as the temperature changes. The figure is adapted from [28].
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Computational methods

In this chapter, the methods used for doing ab initio calculations will be presented. This
includes an introduction to density functional theory (DFT) and temperature dependent
effective potential (TDEP). Furthermore, the iterative method of converging force con-
stants will be discussed. A description of the calculations made in this study and their
limitations on them will also be presented. Lastly, the convergence and choice of the
numerical parameters used for the calculations will be presented together with the used
software.

3.1 Density functional theory

The first principles calculations were made with density functional theory (DFT). DFT is
an ab initio quantum mechanical modelling method that can be used for solving problems
in chemistry, physics, materials science and more. It enables the user to find properties
like the bandgap, total energy and density of states for a system [7]. This section gives an
overview of the theory behind DFT and will not provide a comprehensive understanding
of DFT. The following subsections will be based on a compendium by Clas Persson [29]
and ”Density Functional Theory a practical introduction” by David S. Sholl [7].

3.1.1 Kohn-Sham density functional theory

Schrödinger Equation

The description of particle behaviour is a subfield of physics called quantum mechanics
and it is successful at predicting the behaviour of microscopic particles [30, 31]. In non-
relativistic quantum mechanics, that describe particles and more complex systems like
atoms and molecules, the fundamental equation is the Schrödinger equation (SE) [32].
The time-independent non-relativistic SE is given by

ĤΨ = EΨ (3.1)

Where Ĥ is the Hamiltonian operator, Ψ is the wave function and E is the energy of a
system.

The state of a system is described by the wave function. In order to find the wave function
the SE needs to be solved. As the shape of the wave function depends on the system, this
can quickly become a challenging task.
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For simple systems like the one-electron hydrogen atom, the SE can be solved analyti-
cally as there are few interactions to consider and it is possible to guess the solution for the
wave function. In crystals, all interactions between the electrons, the electrons and nuclei
and the nuclei themselves need to be considered. This makes the many-particle solution
of the SE impossible to solve analytically.

In order to simplify the Schrödinger equation one can assume the motion of the elec-
trons to be independent of the motion of the nuclei. The mass of the nuclei is much larger
than the mass of the electrons and the positions of the nuclei can therefore be treated as
fixed. This simplifies the SE so that the nuclei and the electron parts of the equation do
not need to be solved simultaneously. This is called the Born-Oppenheimer approximation
(BOA).

Hohenberg-Kohn theorems

To solve the SE, DFT makes calculations on atoms or molecules at the lowest possible
energy state. This is called the ground state. This means that the systems that are calcu-
lated are at a temperature T = 0 K.

The two main theorems that DFT is based on are called the Hohenberg-Kohn theorems.
The first theorem states that all ground state properties, like the ground state energy, are
determined by the electron ground state density (n(r)) of that system. The density is
given by

n(r) =

Ne∑
j=1

|ψKS
j (r)|2 (3.2)

where ψKS
j are single-particle auxiliary wave functions and Ne is the number of electrons

in the system. The single particle wave functions are connected to the total wave function
by a Hartree-like function Ψ(r1, r2..., rNe) = ψKS

1 ψKS
2 ψKS

3 ...ψKS
Ne .

The second theorem states that if n0 is the ground state electron density, n is another
electron density and E = E[n] is the energy density functional, then E[n0] < E[n]. This
means that when the energy density functional E is minimised, the resulting density for
that minimisation is the ground state density n0.

The form of the energy density functional is unfortunately unknown and because of the
complexity of its nature, it might never be known. DFT is therefore incapable of finding
material ground state properties on its own. However, by including the BOA and the
Hartree-like wave function, the Kohn-Sham equation (KS-eq) can be expressed as

{
−
h̄2∇2

j

2me
+ VH(r) + Ven(r) + Vxc(r)

}
ψKS
j (r) = ϵKS

j ψKS
j (3.3)

Here h̄ is the reduced Planck constant and me the electron mass. The Coulomb repulsion
between the electrons is described by the Hartree potential VH(r). Ven(r) is the electron-
nuclei interaction and Vxc(r) is the exchange-correlation potential. Lastly, the Kohn-Sham
eigenvalue of the jth electron is ϵKS

j .

While most of the terms in equation 3.3 are known, there are two terms that have no
analytical solution. This is the exchange-correlation potential and the Hartree potential.
In order for the KS-eq to be solved, the unknown terms need to be decided.
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Exchange-correlation functional

There are several possible ways of approximating the exchange-correlation functional. The
simplest approximated functional is the local density approach (LDA)-functional. This
functional assumes that the exchange-correlation energy of the system is the same as in
a uniform electron gas, meaning the electron density is constant; n(r) = constant. The
advantage of this is that the density of the electron gas is known and works as an approx-
imation. Unfortunately, the LDA is incapable of accurately describing any other system
other than the uniform electron gas.

There have been created several other exchange-correlation functionals that try to improve
the LDA. A more complex functional is the generalised gradient approximation (GGA).
Instead of a constant electron density, the GGA functional approximates the functional
with a gradient ∇n(r). There are numerous different GGA functionals that include the
gradient information in different ways, yielding different results.

In addition to the LDA and GGA, there have been created many other functionals. Which
exchange-correlation functional yields the best results depends on the system, and needs
to be tested. More complex functionals are more computationally expensive than simpler
functionals which are important to consider when choosing functional.

Self-consistent calculations

The KS-eq have no analytical solution and therefore must be numerically solved. In ad-
dition to the exchange-correlation potential, the Hartree potential is also unknown. The
Hartree potential needs the electron density, n(r) =

∑
j |ΨKS

j (r)|2, to be defined. The
electron density is found by using the wave function, and the wave function is calculated
by solving the KS-eq. Solving the KS-eq is therefore a self-iterative process and the steps
to solve it are:

1. Choose an exchange-correlation functional.

2. Define an initial trial electron density n(r).

3. Solve the KS-eq using the trial n(r) to get the single-particle wave functions ψi(r)
and total energy.

4. Calculate the new electron density with equation 3.2.

5. Set the electron density to become the new trial electron density and start the process
again from step 3.

The loop continues until the density is converged and ground state energy is reached. It is
then possible to calculate the forces, elastic constants and ground state energy, that later
will be used for calculations with temperature dependent effective potential.

3.2 Temperature dependent effective potential

Temperature dependent effective potential (TDEP) is a method that effectively extracts
second-, third, and fourth-order force constants. At finite temperatures, it is a tool to
calculate lattice dynamics such as phonon frequency, lattice thermal conductivity and Free
energy [33]. TDEP can be utilised using results from any programme that is capable of
calculating energies and forces from a given atomic configuration. Hence it is not a stand-
alone programme but can be integrated with other programmes [33]. For this project,
TDEP has been used together with DFT calculations in VASP to find the Free energy and
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the phonon dispersion relation.

This section will give an understanding of TDEP. The text is based on the articles from
Olle Hellman on TDEP [34, 35, 36] and the TDEP-manual website [33], that can be viewed
for a deeper understanding of TDEP. The PhD theses by Rasmus A. Tranås [37] and Nina
Shulumba [38], which both give an explanation of the TDEP method, have also been used.

3.2.1 Model Hamiltonian

As previously stated, DFT calculations are static calculations at the absolute zero tem-
perature. In order for TDEP to extract second- and third-order force constants at finite
temperature, TDEP finds a model Hamiltonian (Ĥ) for the lattice dynamics. The ex-
panded model Hamiltonian to the third order is given by

Ĥ = U0 +
∑
i

P 2
i

2mi
+

1

2!

∑
ij

∑
αβ

Φαβ
ij u

α
i u

β
j +

1

3!

∑
ijk

∑
αβγ

Φαβγ
ijk u

α
i u

β
j u

γ
k . (3.4)

Here Φαβ
ij and Φαβγ

ijk are the second-and third-order force constants and uαi is the displace-
ment from equilibrium for atom i in the direction α. The first two terms in the equation are
the static lattice potential energy U0 and the kinetic energy. The second-and third-order
force constants represent two- and three-body atomic interactions.

In a two-body interaction, the second-order force constants can be represented in a matrix
Φαβ
ij containing 32 variables. For a three-body interaction, the number of variables in the

force constant matrix Φαβγ
ijk is 33 [37]. The two- and three-body interactions are often

referred to as harmonic and anharmonic force constants.

In crystals, there are an immense amount of force constants between the atoms. Some
of these forces are similar to each other. In order to reduce the number of force constants
that TDEP need to calculate, a series of symmetry operations can be applied to reduce
the number of unknown variables. In addition to this, a cutoff radius rc can be used to
limit the distance where the two- and three-body interactions are considered.

From the model Hamiltonian the forces on atom i in direction α becomes

Fα
i =

∑
iβ

Φαβ
ij u

β
j +

1

2

∑
ijβγ

Φαβγ
ijk u

β
j u

γ
k . (3.5)

The forces from all the atoms can be collected in the vector FTDEP. The DFT calculated
forces on the same set of atoms can be collected into the vector FDFT. By making a
comparison between the forces, TDEP minimises the difference between them,

min
Φ

∆F =
1

NTDEP

NTDEP∑
i=1

|F i
DFT − F i

TDEP|2. (3.6)

Here NTDEP is the number of configurations. After the minimisation, the model force con-
stants can be used to calculate properties needing second-and third-order force constants.
This includes the lattice thermal conductivity, Free energy and phonon dispersion relation,
with and without broadening.
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3.2.2 Free energy

The way that TDEP determines the Free energy of a system is by calculating the Helmholtz
free energy [36]. Using the quasiharmonic approximation the Free energy is defined as

F = U − TS

= Utot − TSel + < Ek > + < Uvib > + Uzp − TSvib.
(3.7)

The electronic contribution, Fel, of the equation is divided into the total energy of the
lattice, Utot, and the electronic entropy, Sel. The rest of the terms are the kinetic energy
Ek, the potential energy of the ions Uvib, vibrational entropy Svib and the zero point energy
Uzp, and are called the vibrational contribution, Fvib.

The electronic contribution is calculated from DFT calculations. The vibrational (phonon)
Free energy can be calculated from statistical physics and is given by

Fvib = −kBT lnZ

=
∑
λ

h̄ωλ

2
+ kBT ln

[
1− exp

(
− h̄ωλ

kbT

)] (3.8)

with kB and h̄ being the Boltzmann constant and reduced Planck constant. ωλ is the
frequency of the phonon mode λ and T is the temperature. Lastly, Z is the partition
function for a harmonic oscillator [39]

Z =
∏
λ

e−βh̄ωλ/2

1− e−βh̄ωλ
(3.9)

where β = 1
kBT .

TDEP then combines the Fvib and Fel with an adjustment for a new baseline ∆U at
a finite temperature and becomes the Free energy

FTDEP = Fel + Fvib +∆U. (3.10)

When doing calculations for the same supercell at different temperatures, the DFT calcu-
lations remain the same, and it is only the Fvib additions that change [33].

3.2.3 Canonical configurations

TDEP generates configurations of a supercell with slightly varied atomic positions to simu-
late the behaviour of atoms at a finite temperature. In this way, it captures the behaviour
of a material at specific temperatures. Running DFT calculations on these configura-
tions gives force constants and positions that can be extracted for further use. Figure 3.1
illustrates how three canonical configurations be created based on the input supercell (a).
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(a) Original structure (b) Configuration 1

(c) Configuration 2 (d) Configuration 3

Figure 3.1: Visualisation of three different canonical configurations created from the input
supercell in (a). The dashed square represents a unit cell. The different coloured circles
are different atoms.

When creating canonical configurations in TDEP there are two options for doing this. One
is to build the configurations from sets of force constants and positions. This requires that
the user has available force constants and positions for their system. The other possibility
is to use the Debye temperature to create approximated force constants for the canonical
configurations. Calculated force constants for the crystal systems are better, but in the
case where there are no force constants and position available, the Debye temperature ap-
proach can give a good result or starting point [40], though not for all types of calculations.
Both of these approaches will be combined into an iterative method and used in this thesis.

To find the Debye temperature, the elastic constants for the cubic and trigonal phases
of GeTe was calculated. The Debye model was then used to find the Debye temperature
for the two phases from the elastic constants. The temperatures were T = 238 K for the
trigonal structure and T = 251 K for the cubic structure. The Debye model is a model
that estimates the phonon contribution to the specific heat in a solid [17]. For a more
detailed explanation of the Debye method, please refer to the cited source.

3.2.4 Iterative process of finding force constants

When modelling phonons there is a need for high precision of the force constants. To get
higher numerical precision, an iterative process has been used. As shown in Figure 3.2,
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the first iteration is based on approximate force constants modelled from using the Debye
temperature as explained in 3.2.3.

Figure 3.2: The iterative process of finding converged force constants. The first iteration
of canonical configurations is built on fake force constants generated from the Debye tem-
perature. The proceeding iterations are created based on the accumulated force constants
from previous iterations. Each conf000n is a separate DFT calculation on the GeTe su-
percell.

The second iteration takes the extracted force constants from the first iteration and uses
them to create canonical configurations. The third iteration extracts force constants from
both the first and the second iterations. Using this iterative process, the TDEP model
is provided with an increasing number of configurations to extract force constants from,
where each iteration has higher precision than the last. The process continues until the
force constants are converged. To see whether the force constants are converged or not,
the difference in Free energy between two subsequent calculations has been checked. In
this study, the achieved convergence was when the difference in Free energy was less than
∆F = 0.5 meV/atom.

3.2.5 TDEP implementation

The steps for utilising the TDEP method are visualised in Figure 3.3 and Figure 3.2. The
process can be summarised in the following steps:

1. Converge and relax a primitive unit cell.

2. Generate a supercell from the primitive cell with at least 100 atoms and as cubic
shape as possible [33].

3. Generate n canonical configurations based on the Debye temperature and run indi-
vidual DFT calculations on the configurations.

4. Extract forces corresponding to the positions of the various configurations.

5. Calculation of the second-order force constants.
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6. Begin iterative calculations of force constants:

(a) Generate n configurations from the accumulated previously calculated force
constants.

(b) Run DFT calculations for the new configurations.

(c) Extract force constant and position pairs, from all previous iterations.

(d) Calculate second-order force constants.

(e) Repeat from 6a.
When the change in Free energy between two subsequent iterations is sufficiently
small, continue the process.

7. From the accumulated force constants, calculate temperature-dependent properties
like the phonon dispersion relation, density of states (DOS) and Free energy.

Figure 3.3: The process of using TDEP. A converged and relaxed primitive unit cell is used
to find the Debye temperature. A supercell is created from repetitions of the primitive cell,
before calculating force constants. After finding the force constants, lattice dynamics like
the dispersion relation and Free energy can be calculated. The process of converging the
force constants can be seen in Figure 3.2.

3.3 The calculations

In this section, the specifics of the calculations will be presented. This includes Free energy
calculations, changing the angle for the trigonal structure and finding the phonon disper-
sion relation.

To investigate if a phase transition between the trigonal and the cubic phase of GeTe
occurs, the Free energy for the phases was calculated at temperatures from T = 100 K to
T = 900 K with an interval of 200 K. The Free energy was also calculated for the trigonal
structure after having the cell shape changed to become more cubic. Angles ranging from
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α = 88.6◦ to α = 90.4◦ with an interval of 0.3◦ was used. The Free energy at 90◦ was
also included. This was done at 500 K, 600 K and 700 K. At every temperature and angle
combination, the iterative process of finding force constants was used.

In order to change the angle of the trigonal unit cell, only the shape was changed and
not the atomic positions with it. The trigonal cell was expanded from a primitive cell to
a conventional quasi-cubic unit cell. It was the conventional unit cell that had its angle
changed before the shape was cut down back to the primitive cell. The PYTHON script
used for doing this can be found in Appendix A. After converging the force constants, the
Free energy and phonons dispersion relation was calculated.

Limitations of the study

In order to get the full picture of the Free energy and phonon dispersion relation for the two
phases calculations with various volumes, temperatures and angles (trigonal only) would
be needed. Due to the time constraints of this thesis, some limitations were imposed in
order to ensure timely completion. This includes the decision to keep the volume constant
for all calculations except one.

In addition to this, some of the iterative processes for convergence of the force constants
had to be stopped before reaching convergence. This was also due to time constraints.

3.4 Software

3.4.1 VASP and Atomic Simulation Environment

The Vienna ab initio Simulation Package (VASP) was used for the first-principles density
functional theory calculations in this thesis. VASP can solve the Kohn-Sham equations
and computes properties on the atomic scale from first-principles [41, 42, 43].

3.4.2 PYTHON packages

In order to change the angle of the trigonal primitive cell and find other properties like the
distance and angles between atoms for the structures, the Atomic Simulation Environment
(ASE) was used [44]. ASE is a tool written in the PYTHON programming language with
easy integration with VASP.

Another PYTHON tool used is Scikit-learn. Scikit-learn is a tool much used in machine
learning [45]. The function r2_score has been used to calculate the R2-score for fitted
functions by using the formula

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3.11)

Where ȳ is the average value of the true calculations yi, ȳ = 1
n

∑n
i=1 yi. ŷi is the predicted

value of the i-th calculation out of a total of n calculations.

3.5 Calculation details

3.5.1 Convergence tests

In order to solve the KS-eq, the DFT method needs a self-iterative process to reach self-
consistency. To achieve this, there are some numerical parameters that need to be decided.
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These are the energy cutoff, k-point density, pseudopotential and exchange-correlation
functional. They all are parameters that can impact the numerical stability, precision and
how computationally expensive the calculations are. For the TDEP method, the supercell
size, force constants, number of q-points and the cutoff radius need to be decided.

Energy cutoff

In order to solve the KS-eq exactly, an infinite number of plane waves need to be summed
over. This is not feasible to do for a computer and therefore an energy cutoff is introduced
when calculating. The energy cutoff represents the highest energy that the plane waves
can have when being summed over. Though not all possible plane waves are included, it is
known that the high-energetic plane waves contribute relatively little to the shape of the
wave functions [7].

When deciding the energy cutoff, DFT calculations for the primitive cells were made at
energies ranging from 350 eV to 900 eV with intervals of 50 eV. The number of k-points
for these calculations was 4× 4× 4.

(a) (b)

Figure 3.4: Convergence tests of the forces for the functionals PBE, PBEsol, SCAN and
vdW-DF-cx for the energy cutoff. Figure (a) and (b) is for the trigonal and cubic primitive
cell respectively. The blue dashed line represents the convergence criterion for the forces
at F = 5 meV/Å.

In Figure 3.4 the change in the largest interatomic force that the system is experiencing
as the cutoff energy rises is plotted. For the trigonal unit cell, everything is relatively well
converged until Ecut = 850 eV. The resulting energy cutoff for the calculations was set to
520 eV despite the sudden inaccuracy at Ecut = 850 eV.

The cutoff energy was set to 520 eV because of two reasons. One is that the compu-
tational cost increases with higher cutoff energy. When doing convergence tests on a small
primitive cell with two atoms, the calculations are quick. When doing calculations on
supercells with over 100 atoms a high cutoff energy will be too expensive.

The other reason for choosing 520 eV is that this cutoff energy matches the cutoff en-
ergy used for the calculations in ”The Materials Project” [46]. In the early stages of the
study, several functionals were considered. If the PBE functional was used, the values
from this study could directly be compared to their values. In addition to this, it is rec-
ommended to use a cutoff of at least 30 % over the default cutoff value for the chosen
pseudopotentials. 520 eV is the highest needed value for any pseudopotential in VASP
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using this criterion.

K-point density

Another numerical parameter that needs to be tuned is the number of k-points used for
calculating the DFT energies. At each k-point, a summation of an integral occurs. This
makes choosing a suitable k-mesh important for the calculations not to be too computa-
tionally expensive. The chosen size for sampling k-points in this thesis is 10 × 10 × 10
around the Γ-point for the primitive cells. This resulted in a k-point density of 6.5 around
the Γ-point [47]. When this density was used for the 132 atoms supercell the mesh became
3× 3× 3.

Pseudopotentials

The innermost electrons in an atom, known as core electrons, are usually not important
when defining the physical characteristics of materials. It is the less tightly bound valence
electrons that are important for these purposes. An approximation of a potential for the
core electrons and the nucleus that matches the physical and mathematical properties of
the true ion core is made. This is called a pseudopotential [7].

In VASP there are several different pseudopotential libraries available. The projector aug-
mented wave (PAW) potentials [48] have been used as pseudopotentials and the specific
potentials were Ge_d for germanium and Te for tellurium. Comparing the Ge_d and Ge
pseudopotentials, the difference would be that Ge_d includes the electrons in the 3d10 band
as valence electrons in the calculation and not as core electrons. The Ge pseudopotential
has 4 valence electrons, the Ge_d pseudopotential has 14 and Te has 6.

Exchange-correlation functional

As previously mentioned, it is necessary to determine which exchange-correlation func-
tional to use. The exchange-correlation functionals used for initial testing are the GGA
functionals PBE [49] and PBEsol [50], the meta-GGA functional SCAN [51], and the van
der Waals (vdW) functional vdW-DF-cx [52]. For the cubic primitive cell, except for the
SCAN functional, all the functionals are converged, even at small energies as seen in Figure
3.4. The results will show that the vdW-DF-cx functional has been chosen as the final
functional for the calculations.

Supercell size

In order to include enough information from the forces between the atoms, it is important
to have a sufficiently large supercell. This is to be able to extract unique force constants to
get precise phonon calculations. A bigger supercell means more atoms described explicitly.
This again means that calculation will be more computationally expensive. A trade-off
between the precision of the calculations and the supercell size needs to be made.
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Figure 3.5: How the Free energy per atom for the trigonal supercell at 600 K changes with
the number of atoms in the supercell.

In Figure 3.5 the Free energy for 4 trigonal supercells with different numbers of atoms is
visualised. From 64-112 atoms there was a significant shift, after that, the energy stabilised.
A supercell size of 132 atoms was therefore chosen since this supercell had a more cubic
shape than the 112 atoms supercell.

Cutoff radius

One way to reduce the number of force constants that TDEP need to calculate, is by
setting a cutoff radius to limit the sampling range. This has been explained in section
3.2.1. The effect of choosing different second-order force constant cutoff radii can be seen
in Figure 3.6. When holding the third-order cutoff radius (rc,3) constant and changing the
second-order radius cutoff (rc,2) the intensity state peaks change position. The intensity
states are the number of energy states at a certain frequency. The chosen high symmetry
point for the calculations was the L-point. The L-point in a FCC Brillouin zone can be
seen in Figure 2.3.
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Figure 3.6: The intensity states of one mode at the high-symmetry point L for a constant
third-order cutoff rc,3 = 5 Å and different second-order radius cutoffs.

There is a large shift from holding rc,3 = 5 Å to rc,2 = 6 Å, as seen in Figure 3.6. This in-
dicates that the increase in radius includes atoms with sets of force constants and position
pairs that provide more information.

When changing the cutoff radius for sampling atoms for the third-order force constants rc,3,
a shift in the intensity peak, between the radius rc,3 = 5 Å and rc,3 = 6 Å happens. This
shift changes the height of the peak and not so much its position, which the second-order
cutoff radius does.
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Figure 3.7: The intensity states for one mode at the high-symmetry point L when keeping
rc,2 constant and changing rc,3.

From these results, the radius used for extracting the second-order force constants was the
maximum for the 132-atom supercell. At the radius rc,2 = 7.3 Å this was achieved. The
radius for the third-order cutoff radius was chosen to be rc,3 = 5 Å for the calculations
to not be too computationally expensive. The number of included neighbours at different
distances can be seen in Table 3.1.

Table 3.1: The number of neighbouring atoms at different cutoff radii rc for the cubic
structure.

Cutoff radius,
rc [Å]

Neighbours
per atom

5.0 18
5.2 26
6.0 32
7.0 56
7.3 80

qg-point convergence

To get the phonon dispersion relation with smearing the number of q-points (denoted
qg-points in TDEP) needs to be specified. The computational cost is rapidly rising with
higher q-points, so it is important not to use excessively many.

The cubic structure at T = 600 K was used. To converge the q-points a high-symmetry
point with much smearing was first chosen. For the cubic structure, the L-point was cho-
sen. Convergence was tested with respect to the full width half maximum (FWHM) to
see whether the width of the intensity peaks changed considerably when increasing the
number of q-points. In addition, the change in positions of the peaks was also used to see
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if enough q-points were included.

To find the FWHM and intensity peaks, the curves were fitted to a Lorenzian function
[53] using the curve_fit function in the PYTHON package Scipy [54]. The resulting q-
points became a 16× 16× 16 grid.
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Chapter 4

Results

The presented results have been found using the approach and tools described in Chapter
3. This includes calculations of the Free energy and dispersion relation for the trigonal
and cubic phase of GeTe, with first and last iteration force constants. Calculations of the
Free energy and phonon dispersion relation were made in order to find the phase transition
and the effect the phonons might have on the lattice thermal conductivity in GeTe. The
comparison between the first and last iteration of force constants is used to visualise the
effect of using accumulated force constants from iteratively found force constants.

The vdW-DF-cx exchange-correlation functional and converged force constants are used
for all calculations unless otherwise specified. This applies to all the results except in
Section 4.1 where DFT ground-state calculations of primitive cells have been made.

4.1 Choice of functional and energy surface

In order to find which functional to use, ground state calculations where the cell shape,
atomic positions and volume all could relax were made. An overview of the calculated
structural parameters is presented in Table 4.1. This includes angle, volume and lattice
constant, depending on the functional. The angles vary from α = 57.75◦− 58.82◦ with the
experimental average at ᾱ = 57.95◦. The calculated volumes range from V = 52.43 Å3 to
V = 59.12 Å3 with the experimental data having an average of V̄ = 53.61 Å3.
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Table 4.1: Calculated ground-state (0 K) and experimental structural parameters for the
trigonal phase of GeTe. Four different GGA functionals and one vdW-DF functional were
used for the calculations. The experimental data have been found at [10, 13, 55]

Functional Primitive angle

[deg]

Conventional

angle [deg]
Volume [Å3] Lattice

constant [Å]

PBE 57.75 88.01 56.23 4.377

PBEsol 58.82 88.97 52.43 4.240

revPBE 56.53 86.89 58.20 4.457

RPBE 56.53 86.89 59.12 4.496

vdW-DF-cx 58.67 88.83 53.20 4.265

Experimental results

Wdowik (309 K) [10] 58.03 88.26 53.42 4.29

Goldak (300 K) [55] 57.94 88.14 53.87 4.31

Chattopadhyay

(295 K)[13]
57.93 88.17 53.52 4.31

As discussed in Chapter 3, different functionals yield different results at equilibrium. Not
only are the values of the ground-state energies different, but the shape of the cells might
also differ. The results in Table 4.1 show how a number of functionals have relaxed the trig-
onal structure of GeTe differently, both over and underestimating the volume and angle. It
is important to note that the calculated values are at 0 K, while the experimentally found
angles are at room temperature. This means that the GeTe trigonal angle and volume at
T = 0 K might be different and are not directly comparable.

The PBE functional has the best corresponding angle to the angles found experimentally,
with a difference of ∆α = 0.20◦. Comparing the experimentally found and calculated
volumes, the PBE functional volume has a large difference of ∆V = 2.26 Å3, despite the
correctness of the angle. Although this study is investigating the angle change of GeTe the
difference in volume is large, resulting in the PBE functional not being chosen for this study.

The angle of the vdW-DF-cx functional is less similar to the experimentally obtained
angles compared to the results obtained using the PBE functional. Regardless, the dif-
ference of ∆α = 0.72◦ is not too large. The volume found by the vdW-DF-cx functional
is considerably closer to the experimentally found values, with the difference being only
∆V = 0.41 Å3. The vdW-DF-cx functional was therefore chosen because of its likeness to
the experimentally found trigonal structure structural parameters, in addition to including
vdW interactions.

The calculations made in Figure 4.1 are DFT ground state calculations with varying angles
and fixed volume showing the energy for different functionals. The figure shows how the
functionals PBE, PBEsol and vdW-DF-cx give different energy minima at different angles,
again emphasising their differences.
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Figure 4.1: DFT calculations for the three functionals PBE, PBEsol and vdW-DF-cx with
varying angles. The dashed line represents the experimentally found value for the angle at
300 K [13]. The angels are conventional cell angles.

In Figure 4.2 the energy landscape for the trigonal structure has been visualised. The red
points in both subfigures show the energy minimum. This energy minimum is the same
as that of the vdW-DF-cx functional (green) in Figure 4.1. The calculations were done by
changing the lattice constant and angle systematically using a PYTHON script shown in
Appendix A. After changing the cell shapes, the atomic positions inside the unit cells were
relaxed using VASP while keeping the volume constant. Lastly, the energy was calculated.

(a) (b)

Figure 4.2: Contour plot showing the energy landscape in 2D (a) and 3D (b) for trigonal
GeTe at T = 0 K using the vdW-DF-cx functional. The angles and lattice constants are
for the conventional unit cell.

The energies in Figure 4.2 are not mirrored around 90◦. This is unexpected as the trigonal
unit cell has the same cell shapes at α = 90◦ ± n, with n being an angle difference. The
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distance between the germanium and tellurium atoms explains some of the reasons for the
lack of symmetry. The shortest interatomic distances d listed in Table 4.2 shows that at
α = 89.8◦ the distance between the atoms d is longer than at α = 90.2◦. This shows that
there are unintentional inherent differences between the unit cells at 90◦ ± n.

Table 4.2: The shortest distances between the Ge and Te atoms in a selection of unit cells.
The distances have been found using ASE.

Unit cell Ge-Te distance [Å]

Trigonal relaxed 0 K 2.843

Trigonal 89.8◦ 2.856

Trigonal 90.0◦ 2.848

Trigonal 90.2◦ 2.849

Cubic relaxed 0 K 2.967

Cubic enlarged 2.985

To find the relationship between the volume and the angle, more calculations on the trigonal
unit cell were made. While maintaining the volume of the trigonal unit cell at specific
volumes, the shapes of the unit cells were relaxed. Doing so enabled finding the angle
as a function of volume. This can be seen in Figure 4.3. As the volume decreases, the
angle increases. The cell shape approaches a nearly cubic shape at a 12 % reduction of the
volume of the fully relaxed trigonal unit cell (red line).

Figure 4.3: The preferred unit cell angle when relaxing the trigonal structure at T = 0 K
while holding the volume fixed. The values for volume and angle are for the primitive unit
cell.

4.2 Phase transition

In this section, an attempt at finding a phase transition between the trigonal and the cubic
phase of GeTe was made. The reason for finding the phase transition is to later be able
to closely investigate the phonons’ behaviour around the critical temperature Tc. Results
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from using one iteration force constants and the last iteration force constants will be pre-
sented. This is to visualise the effect of iteratively finding more accurate force constants.
The iterative process of finding force constants has been explained in Section 3.2.4.

The supercells used for the remaining calculations contain 132 atoms, for both the trigo-
nal and cubic structures. The Free energy has been calculated using equation 3.10. This
means that a TDEP calculated contribution to the Free energy will be added to the DFT
calculated ground state energy.

4.2.1 Temperature change

When attempting to find the phase transition in GeTe, the primitive unit cells used to
create supercells have been fully relaxed at ground state. This means that all variables,
volume, atomic positions and cell shape, have been relaxed. The resulting cell should be in
the energetically lowest possible state at T = 0 K. When further doing calculations using
the methods described in 3.2.5 at higher temperatures, the ground state unit cells were
kept constant.

After one iteration of force constants, a critical temperature at Tc = 740 K was found,
indicated by the orange line in Figure 4.4. The R2-score, calculated by using scikit-learn
and equation 3.11, was found to be R2 = 0.82. Convergence of the force constants resulted
in changes in the Free energy for the trigonal and cubic structures, causing the phase tran-
sition to vanish. The last iteration force constants resulted in the Free energy difference
indicated by the blue line in Figure 4.4. The R2-score was found to be R2 = 0.90.

Figure 4.4: The difference in Free energy between the cubic and the trigonal structure.
The orange points and line are the calculated values and the linearly fitted curve for the
first iteration force constants. Similarly for the blue coloured line and points, but for the
last iteration force constants. The area over the red line indicates a cubic phase, while the
area under the line is the trigonal phase.
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Figure 4.5 visualises the change in Free energy when adding more iterations of force con-
stants. The calculations reached a convergence of ∆F = 0.5 meV/atom. At a temperature
T = 900 K the Free energy difference varies a lot even after seemingly having reached
convergence. This is clearly shown by the cubic structure. Despite reaching convergence,
the difference in Free energy for the temperatures T = 500 K and T = 700 K still exhibit
variation. The calculations at the temperatures T = 100 K and T = 300 K vary substan-
tially less as indicated by the blue lines. If calculations were to be made at only T = 100
K and T = 300 K, the convergence criteria could be much lower, making the calculations
have higher precision.

(a) (b)

Figure 4.5: The convergence of force constants for the (a) trigonal and (b) cubic structure
at various temperatures. The convergence criterion ∆F = 0.5 meV/atom is marked with
an orange dashed line.
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4.2.2 Angle change

When approaching the phase transition, studies have found that the trigonal angle goes
toward α = 90◦, making the trigonal cell shape more cubic [13, 55]. To replicate the effect
that the trigonal cell transitions to become more cubic, calculations of the trigonal cell
with changes in the angle were made. In order to not change too many variables, making
the search too extensive for this study, the lattice constant of the unit cells was chosen to
be kept constant. This resulted in slight variations in the volumes as the trigonal structure
changed angle. The trigonal volumes ranged from V = 53.12 Å3 to 53.21 Å3, with the
fully relaxed trigonal cell at ground state having a volume of 53.18 Å3. The calculated
Free energies for the trigonal structure have been considered unaffected by these minor
variations in volumes. The volume is therefore referred to as being constant throughout
this study.

No phase change was found when initially calculating the Free energy. Therefore, the
experimentally found critical temperature, at around T = 630 K ∼ 740 K has been used
as a reference. The Free energy has been calculated using various angles at T = 500 K,
600 K and 700 K, as described in Section 3.3.

The calculated Free energies at the three different temperatures can be viewed in Fig-
ure 4.6. The dashed lines represent a second-order polynomial fit to the calculated points
at each temperature. The calculated Free energies show no tendency to follow the second-
order polynomial trajectory, except for the T = 600 K calculations. The R2-scores for the
fitted curves at temperatures 700 K, 600 K and 500 K were respectively 0.23, 0.88 and
0.47. The range of R2-scores indicates that the accuracy of the calculations is inadequate
to draw clear conclusions about the phase transition due to an angle change.

At T = 600 K the R2-score reached its maximum, while also having the highest amount
of iterations and canonical configurations. In addition to this, the calculations at T = 600
K had the smallest difference in Free energy between the last two calculated iterations.
The temperature with the lowest R2-score is at T = 700 K. Fewer iterations were used to
converge the force constants and there is a larger gap in the Free energy between the last
two calculated iterations. The convergence plots associated with the force constants used
in Figure 4.6 can be found in Appendix B.
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Figure 4.6: Calculated Free energy with a fitted curve at the temperatures T = 500 K, 600
K and 700 K over a range of angles.

When looking at the calculations made at T = 600 K, one can see that the energy minimum
is at angle α = 89.37◦. This is a difference of ∆α = 0.54◦ from ground state calculations
indicating that when the temperature rises, the trigonal structure becomes more cubic.

4.2.3 Comparison at 700 K

Further investigation of the Free energy was made at T = 700 K in an attempt at discov-
ering why the phase transition was not found. When changing the angle of the trigonal
structure to α = 90◦, it is expected that the resulting cell is cubic. In order to compare
the trigonal and cubic structures, to see whether they in fact are identical, a change to the
cubic volume was made.

This resulted in one more calculation for the cubic structure being made at T = 700
K. The calculation was performed on an enlarged cubic cell. The larger cell has the same
volume as the trigonal structure at α = 90◦, making direct comparisons of the Free energy
and dispersion relations easier.

Figure 4.7 illustrates a comparison of all computations conducted for the trigonal and
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cubic structures at T = 700 K. The Free energy from the fully relaxed trigonal structure
(orange) serves as the baseline. The red points are the Free energies for the cubic structure
and the blue points are for the trigonal structure with various angles.

The calculations at T = 700 K achieved a convergence of ∆F = 0.5 meV/atom and
are marked with error bars in Figure 4.7.

Figure 4.7: Comparison of the different calculated energies at 700 K. The calculations of
the trigonal structures are all at constant volumes and are marked with blue points. The
red marks are for the cubic structure with a fully relaxed primitive cell and a cell with the
same volume as the trigonal cells. The fully relaxed trigonal structure with ground state
structural parameters is used as the baseline.

From Figure 4.7 one can see that the calculated Free energies are all approximately the
same. They all lie in a range of F = 1.67 meV/atom from each other, except the Free
energy of the cubic structure with the ground state found volume.

Increasing the volume of the cubic cell has a significant effect. After changing the vol-
ume, the Free energy for the cubic structure dropped by ∆F = 3.17 meV/atom becoming
similar to the calculated Free energy for the trigonal structure at α = 90◦. This is a clear
indication that the volume is important when calculating the Free energy, and therefore
important when finding the phase transition.
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4.3 Phonon dispersion relation

The dispersion relations for the cubic structure with the first and last iterations of force
constants at five temperatures are shown in Figure 4.8. The effect of using several iterations
to converge the force constants is evident. For the cubic structure, there is some phonon
softening at the Γ-point andX-point when using the first iteration and the phonon branches
overlap at several temperatures at the Γ-point. Using the last iteration force constants, the
modes no longer overlap and phonon softening as the temperature decreases is distinct.
The phonon softening indicates a phase transition, despite the Free energy calculations
being unsuccessful at predicting it.

(a)

(b)

Figure 4.8: The dispersion relation for the cubic structure for 5 different temperatures with
(a) first iteration force constants and (b) last iteration force constant.

The trigonal structure experiences some changes between the first and last iteration of
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force constants. Where the cubic structure shows clearer softening, the phonon modes for
the trigonal structure cluster together when using more iterations. The trigonal dispersion
relation shows slight to no softening of the optical phonon modes at the Γ-point. As
the temperature changes, the frequency also changes a little. However, this is not much
compared to the cubic structure and could be caused by the high inaccuracy of the force
constants. The dispersion for the trigonal structure can be viewed in Appendix C, Figure
C.1.

Figure 4.9: The phonon dispersion relation for the trigonal structure at three different cell
shapes and constant volume. The calculations are at a temperature T = 600 K.

Figure 4.9 shows the phonon dispersion relations for the trigonal structure when changing
the angle towards α = 90◦. The dispersion relations are calculated at T = 600 K. When
the angle goes to 90◦ there is a slight softening of the optical phonons at the Γ-point.
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Figure 4.10: The dispersion relation of the trigonal structure with angle α = 90◦ (red),
and the relaxed (blue) and enlarged (purple) cubic structures. The calculations were made
at T = 700 K.

There is a large difference between the dispersion relation for the trigonal structure at
α = 90◦ and the cubic structures. A comparison of the dispersion relations at T = 700 K
for two sizes of the cubic and the trigonal structures at 90◦ has been made in Figure 4.10.
The shape of the phonon modes is not corresponding to each other, which can be seen at
the X-point and Γ-point.

The dissimilarity between the trigonal and cubic dispersion relations, despite having the
same volume, might be due to the atomic positions in the different supercells. As men-
tioned in Section 4.1, the atomic positions for the trigonal cells are not the same as for
the cubic cells, though the cell shapes and volume are the same. This indicates that the
phonons are very sensitive to the atomic positioning in the unit cell.

The enlarged cubic cell experienced more phonon softening compared to the fully relaxed
structure, illustrated in Figure 4.10. Again, confirming the importance of thermal expan-
sion.
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4.4 Phonon dispersion relation with broadening

The phonon dispersion relation with broadening, meaning the inclusion of anharmonicity,
at T = 700 K is shown in Figure 4.11. The general shapes of the dispersion relations are
still the same, but there are areas in which the phonon modes experience broadening. This
indicates anharmonicity in the phonon modes. Some areas with much broadening can be
seen between the U/K and Γ points and at the L point for the cubic structure.

(a) Cubic structure (b) Trigonal structure

Figure 4.11: The phonon dispersion relation plot with smearing for the (a) cubic and (b)
trigonal phase of GeTe. The calculations were made at T = 700 K.

At the Γ-point for the cubic structure, there is a large area under the optical modes with
broadening. This is also the area where the cubic structure is experiencing softening. The
broadening of the dispersion relation means that the phonons scatter more easily, causing
the lifetime of the phonons to shorten. This is wanted for thermoelectric materials. There
is less broadening for the trigonal structure compared to the cubic.
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Discussion

5.1 Evaluation of the computational methods

The calculations in this thesis were made with density functional theory (DFT) and tem-
perature dependent effective potential (TDEP) in VASP. There are several aspects of the
methods that can give rise to inaccuracies in the results. Some of this inaccuracy comes
from the numerical parameters discussed in Section 3.5. This and other sources of uncer-
tainty from the method will be discussed in this section.

5.1.1 Functionals

The results show that different functionals yield different trigonal unit cell shapes. Both
the volume and the angle varies depending on the functional. The chosen functional for this
thesis, the vdW-DF-cx functional, corresponds less to the experimentally found angle at
room temperature, compared to the PBE functional. Since parts of this thesis are focused
on examining the effect of the temperature-induced angle change, choosing the vdW-DF-
cx functional over the PBE functional may have introduced some errors in the calculations.

It is difficult to determine the specific consequences of choosing one functional over an-
other. Although the volume of the PBE calculated trigonal cell is much larger than the
experimentally found volumes, the correctness of the angle might have enabled a better
investigation of the effect of the trigonal angle. Then again, the volume has been shown to
be very important when calculating the Free energy. There may be a tradeoff between the
exchange-correlation functionals since none can precisely approximate the GeTe system.
Some give good results for angle changes and others are better at volume changes. Without
making the same calculations for all functionals, it is difficult to say which effect they have.

5.1.2 Changing the angle

The contour plots in Figure 4.2 shows that the energy surface is not mirrored around 90◦.
This is due when changing the angle, the atomic positions were not manually adjusted
together with the cell shape. The intention of changing the trigonal unit cell shape was
for the atoms to reach their ideal positions within the cell through relaxing in VASP while
maintaining the wanted shape. This did not go as expected.

At angles α > 90◦, the atomic positions did not relax to their optimal positions within
the unit cells, as seen in Table 4.2. The distances between the Ge and Te atoms in the
trigonal unit cells are not equal at the angles α = 90◦ ± 2◦. A plausible explanation is
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that the positions that have been found, are local minimums. In order to move the atoms
from a local to a global minimum, the energy of the system needs to increase. This is not
something automatically done in VASP. The energies calculated at α > 90◦ have not been
calculated at the energetically lowest atomic positions in the unit cell.

An illustration of the atomic positions in a unit cell with α < 90◦ and a unit cell with
α > 90◦ can be seen in Figure 5.1. When α < 90◦ the atoms are placed along the long
diagonal, and when the angle is α > 90◦ the atoms are placed along the short diagonal.
This difference in atomic placement in the cell will consequently give different energies and
lattice properties.

(a) α < 90◦ (b) α > 90◦

Figure 5.1: Illustration of how the atoms in the trigonal unit cell have not moved when
the shape of the cell is changed. α is the angle. The green circle is Ge, while the orange is
Te.

Another consequence of not manually changing the atomic positions is that the trigonal
structure at α = 90◦ does not have the same atomic positions as the cubic cell. This
explains the differences in the dispersion relation when comparing the cubic cells and the
trigonal cell at α = 90◦. Again, VASP is unable to reach the desired atomic positions as
the energy needs to go up in order to find another minimum. An illustration visualising
how the cubic structure and trigonal structure at 90◦ differ from each other can be seen in
Figure 5.2.
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(a) Cubic structure (b) Trigonal structure at α = 90◦

Figure 5.2: Illustration over the atomic positions in the (a) cubic unit cell and (b) trigonal
unit cell with an angle α = 90◦

5.1.3 Convergence of the force constants

The effects of having converged the force constants through iterations emphasise the impor-
tance of high numerical precision when working with phonons and Free energy. Insufficient
numerical precision can cause wrong results, or experimentally observed results for the
wrong reasons. This is evident from the phase transition not being found when using the
last iteration force constants but found when using the original force constants created
from the Debye temperature. The fact that the less precise force constants got the ex-
pected results could become misleading if not investigated properly. Getting precise force
constants is necessary to accurately describe the GeTe compound.

Converging the force constants reduced the uncertainty of the calculations. Unfortunately,
due to the time constraints for this study, the force constants only reached a convergence
of ∆F = 0.5 meV/atom. This uncertainty might be one of the reasons that the R2-scores
calculated in Section 4.2.2 range from 0.23 to 0.88. The energy differences between the
angles are so small that the uncertainty can have a significant effect on the results.

The number of iterations needed to converge the force constants varies. Looking at the
convergence trends in Figure 4.5, one can see that at higher temperatures, there is more
variation. This is an indicator that force constants at higher temperatures need more iter-
ations to converge. This is probably the reason it required very few iterations at T = 500
K to reach a convergence of ∆F = 0.5 meV/atom, compared to the needed iterations at
T = 700 K, as seen in Appendix B.

The temperature has an impact, not only on the convergence rate of the force constants but
also on the agreement between the approximated force constants derived from the Debye
temperature and the actual force constants. For both the trigonal and the cubic structures,
the difference between the first and second iterations increases with temperature as seen in
Figure 4.5. At T = 100 K the force constants are almost converged instantly, but at higher
temperatures, this is not the case. Temperature T = 900 K has a Free energy difference
above ∆F = 1.5 meV/atom between the first two iterations. This indicates that using the
Debye temperature for finding approximate force constants, is better at low temperatures.
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One of the reasons that the Debye approximated force constants are inaccurate could be
because of the value of the used Debye temperature. The calculated Debye temperatures
were found to be θtri = 235 K and θcub = 251 K. In other studies, the Debye temperature for
GeTe was reported to be 180 K [56] and 200 K [8]. Since the calculated Debye temperature
is higher than previously found, this might cause the initial force constants to be imprecise.

As the iterative process was stopped before reaching adequate convergence, the uncertainty
of the calculations is higher than desired. This is not as evident when doing calculations
at different temperatures, since the energy difference between calculations ∆T = 200 K
apart is over ∆F = 0.1 eV/atom. This means that an uncertainty of 0.5 meV/atom will
influence the results less than for the calculations made at a single temperature.

The difference in Free energy is much smaller for calculations made at a single tempera-
ture. A high uncertainty results in there being no clear trend readable from the results.
An example of this can be seen in Figure 4.7. An uncertainty of 0.5 meV/atom makes all
the Free energies with angle α < 90◦ be in the range of each other. It is therefore difficult
to conclude something based on the calculations made with different angles.

Despite the lack of adequate convergence of the force constants to observe the effects of
changing the trigonal angle, the iterative process of converging the force constants can still
be considered successful and necessary. This can be seen as there are substantial changes
in the results between the first and last iterations. In Figure 4.8, the dispersion relations
at different temperatures go from overlapping at the Γ-point to not doing so, enabling the
opportunity to look at the phonon softening in more detail. There is reason to believe that
if the iterative process continued beyond what was tested in this study, the force constants
would converge. Even at higher temperatures.

One downside of this method is that it is very computationally expensive and time-
consuming. It is feasible to use this method for small projects like this, but it is encouraged
to find other methods of getting accurate force constants for larger projects. This would
both save time and resources. One such method could be machine learning. Instead of
doing pure DFT calculations, machine learning could create surrogate models to speed up
the process. One such method is the Gaussian approximation potential (GAP). This has
previously been done in several studies [39, 56, 57].

5.1.4 Volume considerations

When the temperature and pressure in a system change, the volume of that system might
also change. Both positive and negative thermal expansion has been found theoretically
and experimentally for GeTe in addition to an angle change [9, 13, 58]. Though this study
did not include thermal expansion and reduction of GeTe, one calculation at T = 700 K
with an enlarged volume compared to the ground state found cubic structure was per-
formed. The volume was adjusted to be the same as for the trigonal structure. The results
show a large difference in Free energy between the cubic structures. Since the volume was
chosen not to be included in this project, there are bound to be some errors due to this.

To capture the effect of thermal expansion and angle increase when approaching the phase
transition, a grid search with various temperatures, angles and volumes has been found
to be necessary for Free energy calculations. When looking at the calculations of angle
as a function of volume in Figure 4.3, one can see that the angle becomes smaller when
the volume increases. This means that if calculations were chosen to be made with either
experimental volume or angle as the basis and the other variable could relax freely, the
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opposite effect of what has been experimentally found would happen. There is no simple
”solution” to include both angle and volume changes.
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5.2 Phase transition

A phase transition between the trigonal and cubic phase of GeTe was not found in this
study. From the preceding discussion, there is reason to believe that if all degrees of free-
dom, temperature, angle, atomic positions and volume, were to have been included in this
method, a phase transition would have been found.

The enlarged cubic cell, with a matching volume to the trigonal cells, had Free energy
under the baseline of the fully relaxed trigonal structure at 0 K. This means that, if the
volume of the cubic structure had expanded to become the same as the volume of the
trigonal structure when increasing the temperature, a phase transition would have been
found. A phase transition occurring from the thermal expansion of the cubic structure is
under the assumption that the volume of the trigonal cell is constant at all temperatures.

The volume of the trigonal GeTe phase is not constant. Researchers have found in exper-
iments and through modelling that the volume both has a positive and negative thermal
expansion when approaching the phase transition temperature from 0 K in addition to the
trigonal structure becoming more cubic [13, 55, 58]. The negative thermal expansion oc-
curs when nearing the phase transition. As no calculations have been made for the trigonal
structure with different volumes, it is difficult to say how much the volume impacts the
Free energy and which volume is ideal at certain temperatures. More thorough calculations
need to be made, to decide whether this method is capable of finding a phase transition
when taking volume into consideration. To do this, the number of calculations needed
would increase substantially.

Observing the effects of changing the trigonal cell to a more cubic shape became more
complicated than initially anticipated. To make a reliable statement about the Free en-
ergy when changing the cell shape, the precision of the calculations needs to be high. Figure
4.6 illustrates the slight energy difference between the Free energies for the trigonal cell as
a function of the angle. The precision required to draw conclusions from the results was
not attained for the angle calculations. It is therefore difficult to say which effect a change
in angle has on the Free energy for this GeTe system, though some changes have been seen.

Nonetheless, in the calculations with the highest R2-score, at T = 600 K, the found equi-
librium was closer to the cubic structure, compared to the fully relaxed trigonal structure
at 0 K. This means that the method is capable of capturing some of the characteristics of
GeTe. Regrettably, not to a significant extent.

It has previously been found that GeTe experiences a first-order phase transition [9]. Be-
cause of the inaccuracy in the calculations, this could not be confirmed in the present
study. With better-converged force constants and all degrees of freedom taken into con-
sideration, it could be possible to find out how and where the phase transition happened.
The phase change would then perhaps be indicated by phonon softening of both the cubic
and trigonal structures when approaching the critical temperature.
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5.3 Phonon dispersion relation

The results show that the cubic phase of GeTe is experiencing phonon softening of the
optical phonon modes around the Γ and X points as the temperature decreases. This
corresponds well with previous studies [8, 9, 10]. The softening of the cubic structure as
the temperature decreases is also corresponding well with the assumption that GeTe is
experiencing a phase transition.

From the dispersion relations, one can see that the cubic cells calculated at T = 700 K are
significantly different from the trigonal cell with an angle α = 90◦. The general shape of
the dispersion is the same, but apart from that, the differences are relatively large. This
can be seen in Figure 4.10. The cubic unit cells are experiencing clear softening, while the
trigonal structure at 90◦ does not. This is another indicator that not manually moving
the atomic positions when changing the trigonal unit cell, might have been an oversight.
The trigonal cell should have been identical to the enlarged cubic cell, as the shape and
volume are the same. This emphasises that atomic positions are very important in phonon
calculations.

Not including all degrees of freedom when doing calculations has made a thorough in-
vestigation of the dispersion relation at the phase transition difficult. The observations
made by Ðorđe Dangić et al. [8, 9] that there is much softening of the trigonal structure
near the phase transition and that the softening is happening as the temperature increases
are not found in this study. There are no significant changes to the calculated trigonal
dispersion giving indications that a phase transition occurs. This is despite the cubic
structure clearly experiencing softening. Thermal expansion, angle, atomic positions and
temperature is therefore important to include when calculating the trigonal structure of
GeTe, again emphasising the complexity of the problem.

Lattice thermal conductivity

When looking at the broadening for the dispersion relation in Figure 4.11, one can see
that there is much broadening at the Γ-point for the cubic structure. With much phonon
broadening, scattering increases and the lifetime of the phonons is shorter. The result of
this is that the crystal lattice transports less heat. This is highly preferable for thermoelec-
tric materials, as short lifetimes lower the lattice thermal conductivity seen in equation 2.16.

Engineering of GeTe could be used to move the critical temperature, and therefore the
phonon softening, towards room temperature. Doing so could enable GeTe to improve
its thermoelectric abilities at room temperature, as stated in the paper by Subhajit Roy-
chowdhury et al.[15]. This would be preferable for everyday applications.
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5.4 Further work

There are several aspects of this study that can be improved further. The phase transition
occurring in GeTe has been previously found, both theoretically and experimentally. With
some adjustments to the method applied in this study, it might be possible to find the
phase transition and the critical temperature. Potentially finding the critical temperature
makes it easier to further see how the phonons around the critical temperature impact the
lattice thermal conductivity for GeTe.

In order to find the phase transition, the inclusion of the thermal expansion for the cubic
and trigonal structures can have a significant effect. Changing the volume, and therefore
including one more degree of freedom, will enable the opportunity to see which crystal
structure is the most energetically stable at which temperatures. Additionally, incorporat-
ing the atomic positions in the unit cells during the modification of the trigonal cell shape
aids in identifying the global minima in the potential energy surface. Including atomic
positions is also important, since phonons are sensitive to atomic positions.

Including thermal expansion and atomic positions in addition to the temperature and
trigonal angle, would greatly increase the number of needed calculations. If all the calcu-
lations were to be calculated using the method described in this study, it would be very
computationally expensive and time-consuming. Finding other methods to obtain force
constants in a less computationally expensive way, could be advantageous. If the accu-
racy of the iteratively found force constants is high enough, it might even be possible to
interpolate them. This will lower the number of calculations needed to be made and the
calculated grid could be much denser.

The iterative method of finding force constants itself can also be improved. By automating
the process for converging the force constants, one can make sure that all force constants
are properly converged. In that way, the uncertainty of the calculations would go down.
The number of iterations needed to be made for each temperature, volume and angle,
would also be adjusted, so that the calculations at lower temperatures would stop earlier
than the calculations at higher temperatures. This would reduce the computational cost
where it is possible.

Lastly, the calculation of the lattice thermal conductivity itself would be interesting to
find in future studies. By doing so, it would be easier to draw connections between the
angle change, phonon dispersion relation and lattice thermal conductivity altogether.
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Conclusion

The aim of this thesis was to find the phase transition taking place in GeTe and examine
the phonon dispersion relation as the material is transitioning from the trigonal to the
cubic structure. Two types of calculations were made. The first was to use the ground
state calculated unit cells for making calculations at finite temperatures. The other set of
calculations was on the trigonal structure, while keeping the volume constant, the angle
was changed so that the trigonal cell shape became more cubic. The vdW-DF-cx functional
was used for the calculations as this functional corresponded the best with experimentally
found trigonal volumes and angles.

The thermal expansion of the volume and manually changing the atomic positions in the
unit were not included in this study. The results have shown that the inclusion of these
parameters would have had a significant effect on the results, as neither the phase tran-
sition nor precise enough phonon dispersion relations were found without them. For the
Free energy calculations, the volume was found to be an important parameter. The result
shows how an enlarged cubic volume lowers the Free energy considerably. This suggests
that the inclusion of thermal expansion could result in finding the phase transition.

The atomic positions in the trigonal unit cell were found to be important when calcu-
lating the dispersion relation. Because phonons arise from collectively vibration atoms, it
makes sense that the distances between them are important. Unfortunately, because the
atomic positions were not ideal this resulted in the phonon dispersions not being able to
fully explain the behaviour of the phonons at the phase transition.

The result shows that the cubic structure experiences phonon softening and broadening
at T = 700 K. This indicates that a phase transition is occurring in GeTe and that the
phase transition could be one of the reasons for the low lattice thermal conductivity. There
was no softening found for the trigonal structure with the reason probably being that the
calculations surrounding the trigonal phase of GeTe are highly complex.

High precision for the calculated force constants has also been found to be significant. Al-
though the method applied in this study is computationally expensive and time-consuming,
the force constants found through the iterative process improved the results. Lowering the
uncertainty by using more iterations and including all degrees of freedom, such as tempera-
ture, angle, volume and atomic positions, would increase the complexity of the calculations.
However, this also increases the possibility of gaining a better understanding of the phase
transition of GeTe and why it is a good thermoelectric material
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Investigation of the trigonal and cubic structures of GeTe at the phase transition can
give an understanding of why it is a good thermoelectric material. A greater understand-
ing of material properties and functions can lead to further optimisation. Additionally,
GeTe is probably not the only thermoelectric material experiencing good thermoelectric
properties because of a phase transition. By knowing how GeTe works, one can apply this
to other materials and open up the scope for perhaps finding new and better materials
with similar thermoelectric properties.
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Appendix A

PYTHON script

A.1 Changing the trigonal angle

This script shows the code used for changing the angle of the trigonal structure while
holding the lattice constant constant. The code used ASE in order to change the shape.
The positions of the atoms in the unit cell were not changed in the script but relaxed in
VASP.

1 # Importing packages
2 from ase import io
3 from ase.build import cut , sort
4 import numpy as np
5

6 # Importing fully relaxed trigonal structure POSCAR -file
7 atoms = io.read(’POSCAR ’)
8

9 # Centering the structure
10 positions = atoms.get_scaled_positions ()
11 new_positions = [np.subtract(positions [0], positions [0]),
12 np.subtract(positions [1], positions [0])]
13 atoms.set_scaled_positions(new_positions)
14

15 # Creating a quasi -cubic supercell
16 sat = cut(atoms , a =(-1,1,1), b=(1,-1,1), c=(1,1,-1))
17

18 # Keeping the lattice constant constant if wanted
19 lat_const = sat.cell.get_bravais_lattice ().a
20

21 # Input angle from the user
22 alpha = float(sys.argv [1])
23

24 # Changing the quasi -cubic cell shape
25 sat.set_cell ([lat_const , lat_const , lat_const , alpha , alpha , alpha],
26 scale_atoms=True)
27

28 # Cutting the cell shape down to a primitive unit cell size
29 at_t = cut(sat , a=(0, 1/2, 1/2), b=(1/2 , 0, 1/2), c=(1/2 , 1/2, 0))
30

31 # Naming according to input angle
32 name = ’POSCAR ’+str(alpha)
33

34 # Writing a new POSCAR file adapted to VASP
35 io.vasp.write_vasp(name , sort(at_t),vasp5=True ,direct=True)
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Appendix B

Convergence tests

B.1 Force constants

The following figures illustrate how the force constants converged at different temperatures
when changing the unit cell angle. The number of canonical configurations per iteration
was four for the temperatures T = 500 K and 700 K and seven at T = 600 K.

Figure B.1: Convergence of the force constants at T = 500 K for different angles. The
orange dashed line is the threshold at ∆F = 0.5 meV/atom.
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B.1. FORCE CONSTANTS

Figure B.2: Convergence of the force constants at T = 600 K for different angles. The
orange dashed line is the threshold at ∆F = 0.5 meV/atom.

Figure B.3: Convergence of the force constants at T = 700 K for different angles. The
orange dashed line is the threshold at ∆F = 0.5 meV/atom.
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Appendix C

Trigonal dispersion relation

The phonon dispersion relation for the trigonal structure, when using first and last iteration
force constants.

(a)

(b)

Figure C.1: The dispersion relation for the trigonal structure at 5 different temperatures
with (a) first iteration force constants and (b) last iteration force constants.

Figure C.1 illustrates the effect of using more precise force constants for phonon calculations
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as there is a relatively large change in the dispersions. The dispersion shows no sign of
phonon softening at temperatures around the experimentally found phase transition (700
K).
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