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Introduction

Since the difficulty and even impossibility of solving equations by traditional methods, the numerical
methods play an essential role in understanding the dynamic behavior of a system and in solving physical
and engineering problems [11]. The Taylor series, as a way of studying integrators of ordinary differential
equations, have important properties. An most important example of these tools is the Butcher series or
B-series. These were originally introduced by Butcher [3] and formulated by Hairer and Wanner [7] as
a tool to study Runge–Kutta methods for the numerical solution of ordinary differential equations. The
concept “B-series”, also known as the “Butcher series”, was introduced by Ernst Hairer and Gerhard
Wanner in 1974. Each term in a Butcher series consists of a weighted elementary differential, and
the set of all such differentials is isomorphic to the set of rooted trees. The significance of trees in
mathematics was pointed out by Arthur Cayley (1857) [4]. Aromas and aromatic trees were invented
by Iserles, Quispel, and Tse [10], and by Chartier and Murua [5]. A generalization of B-series is formed
by the aromatic B-series introduced by Munthe-Kaas and Verdier. Aromatic B-series were a tool for the
study of volume-preserving integrators, and they allow to compute the divergence of a B-series. Volume
preservation as a geometric property can be encountered in a large class of dynamical systems with
many applications, for instace, it underlies ergodic theory and thus statistical mechanics, and it appears
in the tracking of particles in incompressible fluid flow [10]. As we know, the Runge-Kutta methods can
not preserve volume for all linear source-free ODEs [10]. It has been proved by Feng and Shang. The
exponential Runge–Kutta (ERK) methods do preserve volume for all linear source-free ODEs [10]. ERK
methods cannot preserve volume for all nonlinear ODEs. It has been proved by Iserles, Quispel, and
Tse [10], and also by Chartier and Murua [5]. B-series methods (which include RK, ERK, and several
more classes of methods) cannot preserve volume for all source-free ODEs. But the aromatic B-series do.
We are interested in finding the conditions of the volume-preserving by using the aromatic B-series. The
structure of this thesis is as follows: in the first chapter, we introduce the background on the numerical
integration methods, Taylor series, B-series, and aromatic B-series with more details. We introduce
structures of aromas and elementary differential. In the second chapter, we introduce the divergence as
an operator and the condition of volume-preserving methods. The important part of Chapter 2 is using
aromatic B-series as a numerical integration. The last part is the Appendices which include more details
of the computations that occurred in Chapter 2. All computations in Chapter 2 are up to order 2 or 3,
but in the appendices, computations are presented up to order 5.
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Chapter 1

Series and Numerical Methods

Series have been a tool for studying numerical integrators of ODEs. Taylor and Taylor’s expansion
is used for representing a function as an infinite sum of terms. Taylor expansion uses for function
approximation with finite terms. The Butcher series or B-series, are introduced by Butcher and by
Hairer and Wanner [1], as a tool to study Runge-Kutta methods for the numerical solution of ordinary
differential equations.

1.1 Taylor series

Before beginning with the Butcher series, we recall the Taylor series and Taylor expansion [16].

Definition 1.1.1. let f be a function with derivatives of all orders throughout some interval containing
a as an interior point. Then the Taylor series generated by f at x=a is:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

Or it can be written like this:

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn

n!
f (n)(a) + · · · . (1.1)

1.1.1 Differential equations

An ordinary differential equation is expressed in the form

ẋ =
dx

dt
= f(t, x(t)), where f : R× RN → RN (1.2)

or, written in terms of individual components,

dx1

dt
= f1(t, x1(t), x2(t), ..., xN (t)),

dx2

dt
= f2(t, x1(t), x2(t), ..., xN (t)),

...

dxN

dt
= fN (t, x1(t), x2(t), ..., xN (t)).

(1.3)

This can be formulated as an autonomous problem
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ẋ = f(x(t)), f : RN → RN

by increasing N if necessary and introducing a new dependent variable x0 which is forced to always equal
x. The autonomous form of (1.3) becomes

dx0

dt
= 1,

dx1

dt
= f1(x0(t), x1(t), x2(t), ..., xN (t)),

dx2

dt
= f2(x0(t), x1(t), x2(t), ..., xN (t)),

...

dxN

dt
= fN (x0(t), x1(t), x2(t), ..., xN (t)).

1.2 B-Series

The Butcher series are mathematical objects introduced by the New Zealand mathematician John
Butcher in the 1960s. He introduced them as part of his study of Runge–Kutta methods, a popular
class of numerical methods for evolution equations such as initial-value problems for ordinary differential
equations. They remain indispensable in the numerical analysis of differential equations [13]. Butcher
series are intimately associated with the set of smooth (infinitely differentiable) vector fields on vector
spaces. Indeed, let f be a smooth vector field on a vector space Rn, defining the ordinary differential
equation (ODE) (1.2). Let x(h) be the solution of the differential equation (1.2) at time t = h, and the
initial condition is x(0) = x0. The solution x(h) can written as a Taylor series:

x(h) = x(0) + hẋ(0) +
h2

2!
ẍ(0) +

h3

3!

...
x (0) + · · · . (1.4)

And the other terms can be written as follows after chain and product rules:

ẋ = f(x),

ẍ =
d

dt
ẋ =

d

dt
f(x) = f ′(x)ẋ = f ′(x)f(x),

...
x = f ′(x)f ′(x)f(x) + f ′′(x)(f(x), f(x)),

x(4) = f ′(x)f ′(x)f ′(x)f(x) + f ′(x)f ′′(x)(f(x), f(x)) + 3f ′′(x)(f ′(x)f(x), f(x)) + f ′′′(x)(f(x), f(x), f(x)),

...

If we substitute f and its derivatives in the Taylor series (1.4), we find the form:

x(h) = x(0) + hf +
h2

2
f ′f +

h3

6
f ′f ′f +

h3

6
f ′′(f, f) + · · · . (1.5)

Where f and its derivatives are called an elementary differentials, and where each elementary differential
is evaluated at x0. Notice that the power of h in each term is determined by the multiplicity of f in the
elementary differential. However, the coefficients 1, 1, 1/2, 1/6, 1/6, and so on are not determined by their
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corresponding elementary differentials. A Butcher series, shortly denoted B-series, is a generalization of
allowing arbitrary coefficients, i.e., a formal series of the form:

B(c, f) := c0x(0) + c1hf + c2h
2f ′f + c3h

3f ′f ′f + c4h
3f ′′(f, f) + · · · . (1.6)

where ci ∈ R.

1.2.1 Rooted Trees

Here we will explain the context for the given autonomous problem:

ẋ = f(x(t)); x(t0) = x0,

x : R → RN ,

f : RN → RN

written in component form:

dxi

dt
= f i(x1, x2, ..., xN ), where i = 1, 2, ..., N

The second derivative of xi can be obtained by the chain rule followed by substitution of the known first
derivative of a generic component f i. That is,

d2xi

dt2
=

N∑
j=1

∂f i

∂xj

∂xj

∂t
=

N∑
j=1

∂f i

∂xj
f j . (1.7)

This can be written in a more compact form by using subscripts to indicate partial x derivatives. That
is,

f i
j =

∂f i

∂xj
.

A further simplification results by adopting the ”Einstein summation convention”, in which repeated
suffixes in expressions like f i

jf
j , imply summation without this being written explicitly. Hence, we can

write:
d2xi

dt2
= f i

jf
j .

We take this further and find formulae for the third and fourth derivatives:

d3xi

dt3
= f i

jkf
jfk + f i

jf
j
kf

k,

d4xi

dt4
= f i

jklf
jfkf l + 3f i

jkf
jfk

l f
l + f i

jf
j
klf

kf l + f i
jf

j
kf

k
l f

l,

...

(1.8)

And simple writing, we ”disregard” the use of indexes (i, j, k, ...), then we get the form:

dx

dt
= f,

d2x

dt2
= f ′f,

d3x

dt3
= f ′′(f, f) + f ′f ′f,

d4x

dt4
= f ′′′(f, f, f) + 3f ′′(f ′f, f) + f ′f ′′(f, f) + f ′f ′f ′f,

...

(1.9)
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Thus, the Taylor series:

x(t0 + h) = x0 + hf +
h2

2
f ′f +

h3

6
f ′f ′f +

h3

6
f ′′(f, f) + · · · . (1.10)

1.2.2 Graphs and trees

A directed graph in mathematics is a set of vertices and a set of edges between some of the ordered pairs
of vertices. It is convenient to name or label each of the vertices and use their names in specifying the
edges. If V is the set of vertices and E is the set of edges, then the graph is referred to as (V, E) [4].
Basic terminology and observations:

1. A graph is connected if between any pair of vertices, the sequence of vertices such that any successive
pair is connected by an edge (we ignore the direction).

2. A loop is a sequence of vertices where the first and the last vertex is the same, and each vertex is
joined by an edge respectively.

3. The order of a graph is the number of vertices.

4. A tree is a connected graph with at least one vertex and with no loops.

5. For a tree, the number of edges is one less than the number of vertices. (that means n vertices,
n− 1 edges)

6. The “empty tree” ∅, with V = E = ∅ , is sometimes included, as an additional tree.

7. The set of trees with a positive number of vertices will be denoted by T and the set of trees, with
∅ included by T ∪ {∅}.

1.2.3 The importance of studying trees

There is a good reason for studying trees, both rooted and unrooted. Trees play a central role in the
formulation of order conditions for Runge-Kutta and other numerical methods. In particular, elementary
differentials, which are building blocks of B-series and aromatic B-series, are indexed on the set of rooted
trees. Furthermore, unrooted trees emerge as fundamental concepts in the theory of symplectic methods
and their generalizations [4, 7]. Examples of trees are shown in the table (1.1).

Definition 1.2.1 (Order of a tree [4]). The order of the tree τ = (V, E) is |τ | = |V |.

Definition 1.2.2 (Symmetry of a tree). The symmetry of a tree τ , written σ(τ), is the order of the
group A(τ), where A(τ) is the group of automorphism of τ .

Theorem 1.2.1 (Symmetry coefficients) σ(τ)). The symmetry coefficients σ(τ) are defined by:
σ( ) = 1 and,
σ(τ) = Πm

i=1ki!σ(τi)
ki , for τ = [τk1

1 τk2
2 ...τkm

m ]

Definition 1.2.3 ( Elementary Differentials). For a tree τ ∈ F the elementary differential is a mapping
F(τ) : Rn → Rn, defined recursively by F( )(x) = f(x) and

F(τ)(x) = f (m)(x)(F(τ1)(x), · · · ,F(τm)(x)),

for τ = [τ1, · · · , τm]

The quantities |τ |, σ(τ) and F(τ) for all trees up to order 4 are given in Table 1.1 See the table (1.1)

8



1.2.4 The relation between elementary differential and rooted trees

John Butcher explains clearly the structure of the elementary differentials, and crucially, shows how
they are in one-to-one correspondence to rooted trees. This development, perhaps regarded initially as a
bookkeeping device for finding and keeping track of the different terms, has over time become central to
the combinatorial and algebraic study of B-series. The expressions f, f ′f, f ′f ′f, f ′′(f, f), ... are examples
of elementary differentials, and each of them corresponds to a graph like a tree. To explain the relation
between a graph and the corresponding elementary differential, we will call f a child or grandchild, and
f ′, f ′′, f ′′′, ... a parent or grandparent. It depends on the form of the graph. The tree that corresponds to
f ′ is a node with a link to a possible child (f). The term f ′f corresponds to this link having been made
to the child represented byf . The term f ′′ corresponds to a node with two possible links, but in f ′′(f, f)
these links are filled with copies of the child represented by f . Finally, the term f ′f ′f corresponds to a
three-generation family with the first f ′ playing the role of grandparent, the second f ′ playing the role of
a parent, and the final operand f playing the role of grandchild and child, respectively, of the preceding
f ′ operators [4]. The rooted trees (T ), and their associated elementary differentials F(T ) are shown in
the table (1.1). σ(τ) denotes the symmetry of the rooted trees. See the table below (1.1).

Order Tree(τ) symmetry σ F(τ)
0 ∅ 1 x
1 1 f

2 1 f ′f

3
1 f ′f ′f
2 f ′′(f, f)

4

1 f ′f ′f ′f

1 f ′′(f ′f, f)

2 f ′(f ′′(f, f))
6 f ′′′(f, f, f)

...
...

...
...

Table 1.1: The relation between trees, elementary differentials, and their symmetries

1.2.5 B-Series

B-series are a formalism for expressing the Taylor series for the solution to questions written in terms
of the triple (x, h, f). They are always written in terms of elementary differentials, which in turn are
indexed by the trees [4].

Definition 1.2.4. Let a is a mapping a: T ∪ {∅} → R, where a(∅) = 1. Then the B-series is a formal
series defined by:

(βfa)x = a(∅)x+
∑
τ∈T

h|τ |a(τ)

σ(τ)
Ff (τ)(x), (1.11)

where τ is a tree, T is the set of trees, |τ | is the order of a tree. σ(τ) is the symmetry of τ , and Ff (τ)
is the mapping of the elementary differentials.
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1.3 Aromatic B-series

1.3.1 Aromas

Definition 1.3.1 (Aromas). An aroma is a connected directed graph where each vertex has exactly one
outgoing edge.

It can be shown that an aroma has to contain exactly one cycle [2]. The smallest aromas are:

, , , , , , · · · . To simplify graphics, directions of edges are not shown unless
they are necessary to distinguish between aromas. The edges are oriented so that the ring is a cycle
and other edges are oriented towards the ring. Aromas and aromatic trees were originally introduced by
Iserles, Quispel, and Tse [10], and by Chartier and Murua [5]. While generalization of B-series is formed
by the aromatic B-series, introduced by Munthe-Kaas and Verdier, and their structure was investigated
by Munthe-Kaas and Verdier [14] and by Bogfjellmo [1]. We will refer to the set of aromas as A′ and the
set of multisets (products) of aromas as A. The empty multiset will be denoted by 1. Given a vector
field f , an aroma λ represents a scalar function F(λ) according to the following procedure:

1- Label each node i, j, k, · · ·

2- For each node with label i, form the factor f i
j1,j2,...,jm

where j1, j2, ..., jm are the labels of the nodes
pointing towards node i. The upper index on f corresponds to vector components, and the lower
to partial derivatives with respect to coordinate directions, i.e.

f i
j1j2···jm =

∂mf i

∂xj1∂xj2 · · · ∂xjm

. (1.12)

3- Finally, take the product of the factors and sum all terms using Einstein’s summation convention.

1.3.2 Details about aromas

Definition 1.3.2 (Directed graphs). A directed graph γ = (V,E) is defined by a finite set of vertices,
and a set of edges E ⊆ V × V . We say that the edge (v1, v2) goes out of v1 and into v2. A subgraph of
γ, is another directed graph (W, F ) where W ⊆ V , and F ⊆ W ×W ∩ E.
In this definition of graph, we allow the empty graph with 0 vertices and self-loops [1].

Definition 1.3.3 (Directed predecessor). On a given graph, we define the direct predecessor function
πγ from V to the power set of V by v1 ∈ πγ(v2) iff (v1, v2) ∈ E.

Definition 1.3.4 (Aromatic forest). An aromatic forest is an equivalence class of directed graphs where
each node has at most one outgoing edge. We denote the set of aromatic forests as AF. A root of an
aromatic forest is a node with zero outgoing edges. The set of roots of the aromatic forest ϕ is denoted
r(ϕ) [1].

AF ={ , , , , , , , , , , , ,

, , , , ... }
where AF = A× F

Result from the definition: An aromatic forest consists of connected components, each of which
has either (i) one root, in which case the connected component is a rooted tree, or (ii) no roots, in which
case it contains exactly one cycle and is called an aroma.

Definition 1.3.5 (Some subsets of aromatic forests). A is the set of aromatic forests with no roots.

A = {1, , , , , , , , · · · }.
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A′ is the set of connected aromatic forests with no roots, or aromas.

A′ = { , , , , , · · · }.

T is the set of rooted trees, or connected aromatic forests with exactly one root.

T = { , , , , · · · }.

AT is the set of aromatic forests with exactly one root. Where AT = A× T (Cartesian product)

AT = { , , , , · · · }.

1.3.3 Geometric properties of aromatic B-series

A fundamental property of the exponential map 1 is its equivariance with respect to the full group of
diffeomorphisms on the domain. This means that if a vector field is transformed by a diffeomorphism and
afterward exponentiated, we obtain exactly the same result as if the original vector field is exponentiated
and the result is transformed by given diffeomorphism [4]. B-series methods have the property that this
modified vector field f˜ can be expanded in a specific form:

f˜= b0f + b1f
′(f) + b2f

′′(f, f) + b3f
′(f ′(f)) + · · · . (1.13)

where the terms are indexed by rooted trees. The first few terms of the expansion of a local, affine
equivariant method, are of the form:

ϕ(f) = b0f + b1f
′(f) + b2div(f)f + b3f

′′(f, f) + b4⟨grad(div(f)), f⟩f + · · · . (1.14)

By comparing (1.13) and (1.14), we observe that terms of a new kind appear, such as grad⟨div(f)⟩f .
We are able to completely describe those terms, and they turn out to be associated with aromatic trees,
which are generalized rooted trees. The aromatic trees corresponding to the terms in (1.14) are the
following, where the new terms are emphasized [14]:

Elementary differential tree or aroma
f

f ′f

div(f)f

f ′′(f, f)

⟨grad(div(f)), f⟩f
...

...

1.3.4 Elementary differentials on aromas

A given vector field f , to any aromatic forest γ, there corresponds an elementary differentials F(γ). The
quantity f i

j1j2···jn shows that that the upper index on f corresponds to the vector components and the
lower indexes are partial derivatives with respect to the coordinate directions,

f i
j1j2···jn =

∂nf i

∂xj1xj2 · · · ∂xjn

. (1.15)

For example, an elementary differential is the following tree, with three nodes and two edges:

γ = −→ F(γ) = f i
jkf

jfk. (1.16)

1exp is defined by the property that: u′(x) = f(x) and u(0) = x0.
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where Ff is the bijective function from T to the set of elementary differentials formed from f [1]. And
an example of an aromatic forest that contains a tree and an aroma:

γ = −→ F(γ) = f i
jf

j
kf

kf l
mnf

m
l fn.

NB: We have to know that often, when we draw a graph without orientation, that means that it is
oriented in the counterclockwise direction. And the root of a tree is the bottom node, and the direction
of the edges goes towards the root [14]. We provide a set with aromatic trees of orders up to 4. This set

will help us to find the traces later. AF ={ , , , , , , , ,

, , , , , , , , ... }.
Munthe-Kaas and Verdier showed that a larger class of methods, Aromatic B-series methods, are

equivariant under all invertible affine maps [1]. The crucial difference between B-series and aromatic B-
series is that in the aromatic case, trace operations are also allowed in forming elementary differentials,
e.g. Tr(f ′)f = (divf)f (see [6]). These elementary differentials are obtained by replacing the set of
rooted trees with a larger set of directed graphs [1], e.g.

Tr(f ′)f = Ff ( )

This property is very important to use aromatic B-series inside the Newton-Girard formula (2.4), which
we will use it to obtain the volume-preserving method.

Examples: Some examples of elementary differentials:

F(1) = 1,

F( ) =
∑
i

f i
i

F( ) =
∑
i

f i
jf

j
i

F( ) =
∑
i

f i
ijf

j
kf

k

...

(1.17)

The simplest aromas are the cyclic aromas, , , , , , . . .. whose images under F
are traces of powers of f ′

F( ) = Tr(f ′) = div(f),

F( ) = Tr(f ′2),

F( ) = Tr(f ′3),

F( ) = Tr(f ′4),

...

(1.18)

Explanation: As Bogfjellmo explain in [1], when ϕ contains no aromas, the elementary differential
operator Ff (ϕ) corresponds to the product of elementary differential operators. If γ ∈ A, then Ff (γ)
is a scalar field. If ϕ = γτ1τ2 · · · τn, where γ ∈ A, τi ∈ T , then Ff (ϕ) = Ff (γ)Ff (τ1) · · · Ff (τn) is the
product of the scalar field Ff (γ) and n vector fields Ff (τ1),Ff (τ2), · · · ,Ff (τn).
NB: The image of two aromas is a product of the images of everyone.
For example:

F( ) = F )F( ) = Tr(f ′)2,

F( ) = F )F( ) = Tr(f ′).T r(f ′2).
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Definition 1.3.6 (Aromatic B-series). Let a : AT ∪{∅} → R, where a(∅) = 1, and f be a smooth vector
field on the finite-dimensional vector space W . The aromatic B-series of the coefficient map a is the
following formal series

(βfa)x = a(∅)x+
∑

τ∈AT

h|τ |a(τ)

σ(τ)
Ff (τ)x, (1.19)

where σ(τ) is the size of the symmetry group of τ .

In [14] by Munthe-Kaas and Verdier, aromatic B-series methods are defined as integrators whose
series expansions only contain terms of the form Ff (τ), where τ is an aromatic tree. Munthe-Kaas and
Verdier had earlier [14] showed that a larger class of methods, Aromatic Butcher series methods, are
equivariant under all invertible affine maps.

13



Chapter 2

Volume Preservation with aromatic
B-series Method

2.1 Divergence-free vector field

Divergence:
Divergence of a vector field: Let f be a vector field f : Rn → Rn then, the divergence of f is:

div(f) =
∑
i

(
∂f i

∂xi
) = f i

i (2.1)

The main property of the aromatic B-series is to study volume-preserving integrators. There are many
methods to study the existing volume-preserving integrators. Some methods are splitting methods and
generating methods. And for the quadratic differential equation, there exists Kahan´s method (Hirota-
Kimura method) discretization [8, 9] for the preservation of measures. A new methodology has been
created by Laurent, McLachlan, and Munthe-Kaas [12] for the description of volume-preserving methods
for solving general ordinary differential equations (1.2)
Divergence operator: The k-loops arise from acting the divergence operator on elementary differentials
[10]. For instance, let we have the elementary differential of order 2 is f i

jf
j(y). If we apply the divergence

on f i
jf

j(y) the divergence, this yields two separate contracted elementary differentials by the product
rule, and they are represented by the 1-loop and the 2-loop, as it is shown below:
The divergence of elementary differentials f i

jf
j is

div(f i
jf

j) = f i
ijf

j + f i
jf

j
i .

And by using trees and aromas, we find:

div( ) = + .

The source-free dynamical systems on the Euclidean space Rn are defined by divergence-free vector
fields f : Rn → Rn

div(f) =

n∑
i=1

∂f i

∂xi
= 0. (2.2)

One question raised by Munthe-Kaas and Verdier [14] is the existence of volume-preserving aromatic
B-series methods. It is known that B-series methods cannot be volume-preserving (apart from the exact
integrator), but that aromatic B-series methods can be [14]. However, it has so far not been possible to
find an equation defining the update map for a volume-preserving aromatic B-series method [1]. Volume
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preservation is one of the qualitative characteristics common to many dynamical systems. Runge-Kutta
methods can not preserve volume for all linear source-free ODEs. This has been proved by Feng and
Shang. But Exponential Runge-Kutta methods can do preserve volume for all linear source-free ODEs
(But not for all non-linear) [10]. In [10] Iserles, Quispel, and Tse proved that B-series methods (which
include RK, ERK, and several more classes of methods) can not preserve volume for all source-free
ODEs. Feng and Shang show that for a general (linear ) source-free differential system of more than
two dimensions, it is not possible to preserve volume by direct integration using classical methods(for
example RK methods)

In fact, it is true that all divergence-free systems preserve volume in phase space [15].

Theorem 2.1.1. (The Liouville´s theorem ): Let ẋ = f(x) be a system of ODEs on Rd. Let D ⊂ Rd

be open and bounded, let φt be the flow of f and set D(t) = φt(D), and v(t) = vol(D(t)) =
∫
D(t)

dV . If

div(f) = 0 then v(t) = v(0) for all t > 0.

Proof. Expanding the solution y(t) with initial value y(0) = y to the first order yields x(t) = φt(x) =
x+ tf(x) +O(t2). The formula for changing variables in multiple integrals gives:

v(t) =

∫
D(0)

det(
∂φt

∂x
)dV.

Differentiating the expansion to the first order of x(t) with respect to x we find

∂φt

∂x
= I +

∂f

∂x
t+O(t2), for t → 0

For matrix A we have:
det(I + tA) = 1 + tT r(A) +O(t2).

Consequently

det(
∂φt

∂x
) = det(I +

∂f

∂x
t+O(t2)) = 1 + tT r(

∂f

∂x
) +O(t2).

Since Tr(∂f∂x ) = div(f), we get:

v(t) =

∫
D(t)

(1 + tdiv(f) +O(t2))dV.

so at t=0
dv

dt
|t=0 =

∫
D(0)

div(f)dV

The argument can be repeated for any t0 > 0 and we simply get at t=0,

dv

dt
|t=0 =

∫
D(t0)

div(f)dV.

so for divergence free f we conclude that dv
dt = 0, and v(t) is constant [15].

It is well known that intrinsic to all source-free systems, there is a volume form of the phase space
Rn, say

α = dx1 ∧ dx2 ∧ ... ∧ dxn, (2.3)

such that the evolution of dynamics preserve this form. In other words, the phase flow φt, of source-free
system ẋ = f(x), satisfies the volume-preserving condition

φ∗
tα = α,
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or equivalently,

det(
∂φt

∂x
)(x) = 1.

for x ∈ Rn and t ∈ R.
If div(f) = 0, the the solution of ODE is volume-preserving [12].

The flow of a differential equation ẋ = f(x) in Rn is volume-preserving if and only if divf(x) = 0 for all
x. For proof of this lemma, see [7].

2.2 Applying the Newton-Girard formula on Aromatic B-series

The Newton-Girard formula: The newton-Girard formula for symmetric polynomials from [2]:

det(I + hA) = P (r1, ..., rd), (2.4)

where ri = Tr(hif ′(x)i) and P is a symmetric multivariate polynomial, each term of P is a trace of the
order k. The first terms of (2.4) are:

det(I + hA) = 1 + hTr(A) +
h2

2
(Tr(A)2 − Tr(A2)) +O(h3).

We refer to (2.7) to see The Newton-Girard formula up to order 5.
Let us have the system of the ordinary differential equation (1.2)

ẋ = f(x)

An aromatic B-series method is a numerical integrator such that each individual step of the integrator
can be expanded as an aromatic B-series:

xn+1 = xn + βf (a)(xn). (2.5)

where h is the step size and it is included in vector field f .
The first few terms of (2.5) are:

xi
1 = xi

0 + h⟨b, ⟩f i + h2⟨b, ⟩f i
kf

k + h2⟨b, ⟩fk
k f

i + · · · . (2.6)

The terms up to order 5 are given in the appendix (A.1). We derive the equation (2.6) with respect to
the component (j) 1:

∂xi
1

∂xj
0

= δij + h⟨b, ⟩f i
j + h2⟨b, ⟩(f i

kjf
k + f i

kf
k
j ) + h2⟨b, ⟩(fk

kjf
i + fk

k f
i
j) +O(h3).

We assume that ⟨b, ⟩ = 1, thus:

∂xi
1

∂xj
0

= δij + hf i
j + h2⟨b, ⟩(f i

kjf
k + f i

kf
k
j ) + h2⟨b, ⟩(fk

kjf
i + fk

k f
i
j) +O(h3).

If we take h as a common factor, we find:

∂xi
1

∂xj
0

= δij + h(f i
j + h⟨b, ⟩(f i

kjf
k + f i

kf
k
j ) + h⟨b, ⟩(fk

kjf
i + fk

k f
i
j) +O(h2)).

Now we write:

Ai
j = f i

j + h⟨b, ⟩(f i
kjf

k + f i
kf

k
j ) + h⟨b, ⟩(fk

kjf
i + fk

k f
i
j) +O(h2).

1Some computations in the body of the thesis are only written up to order 2 or 3, but in the appendix, they are given
up to order 5
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Then,
∂xi

1

∂xj
0

= δij + hAi
j .

By the Newton-Girard formula (2.4):

det(
∂xi

1

∂xj
0

) = det(δij + hAi
j) (2.7)

= 1 + hTr(A) +
h2

2
(Tr(A)2 − Tr(A2)) +

h3

6
(Tr(A)3 − 3Tr(A2)Tr(A) + 2Tr(A3))

+
h4

24
(Tr(A)4 − 6Tr(A2)Tr(A)2 + 3Tr(A2)2 + 8Tr(A3)Tr(A)− 6Tr(A4))

+
h5

120
(Tr(A)5 − 10Tr(A)3Tr(A2) + 20Tr(A3)Tr(A)2 + 15Tr(A)Tr(A2)Tr(A2)

− 30Tr(A)Tr(A4)− 20Tr(A3)Tr(A2) + 24Tr(A5)) +O(h6).

Now we will try to find each term of (2.7) severally. Under the computations, we assume that div(f) = 0
because we study the volume-preserving. It means that all simple loops be zero under the map F

F( ) = F( ) = F( ) = F( ) = 0.

Ai
j is given by the following (see (A.2) for the details).

Ai
j = f i

j + h⟨b, ⟩(f i
kjf

k + f i
kf

k
j ) + h2⟨b, ⟩(f i

kjf
k
l f

l + f i
kf

k
ljf

l + f i
kf

k
l f

l
j)

+
h2

2
⟨b, ⟩(f i

kljf
kf l + f i

klf
k
j f

l + f i
klf

kf l
j) +

h2

2
⟨b, ⟩(fk

ljf
l
kf

i + fk
l f

l
kjf

i + fk
l f

l
kf

i
j) +O(h3).

Finding Ai
i: Here we will derive the equation (2.6) with respect to (i) and after that, we can find

Ai
i we refer to (A.3 )to see how it has been computed after that we vanish all simple loops from the set

of aromatic forests.

Ai
i = h⟨b, ⟩(f i

jf
j
i ) + h2⟨b, ⟩(f i

jf
j
kif

k + f i
jf

j
kf

k
i )

+
h2

2
⟨b, ⟩(f i

jkf
j
i f

k + f i
jkf

jfk
i +) +

h2

2
⟨b, ⟩(f j

kif
k
j f

i + f j
kf

k
jif

i) +O(h3).

Now to simplify all these computations and indices writing, we will write (A.3) as aromatic functions:

Ai
i = h⟨b, ⟩( ) + h2⟨b, ⟩( + ) +

h2

2
⟨b, ⟩(2 ) +

h2

2
⟨b, ⟩(2 ) +O(h3).

See (A.4).
Now we can find the traces terms in (2.7) by using aromas
Tr(A):

Tr(A) = Ai
i = h⟨b, ⟩( ) + h2⟨b, ⟩( + ) +

h2

2
⟨b, ⟩(2 ) +

h2

2
⟨b, ⟩(2 ) +O(h3).

Tr(A)2:

Tr(A)2 = Ai
iA

j
j = h2⟨b, ⟩2( ) +O(h3).

Tr(A2):

Tr(A2) = Ai
tA

t
i = + h⟨b, ⟩(2 + 2 )
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+ h2⟨b, ⟩(2 + 2 + 2 ) +
h2

2
⟨b, ⟩(2 + 4 )

+
h2

2
⟨b, ⟩(4 + 2 ) + h2⟨b, ⟩2( + 2 + ) +O(h3).

Tr(A)3

Tr(A)3 = Ai
iA

j
jA

k
k = O(h3).

Tr(A2)Tr(A)

Tr(A2)Tr(A) = h⟨b, ⟩( ) + h2⟨b, ⟩2(2 + 2 ) + h2⟨b, ⟩( + )

+
h2

2
⟨b, ⟩(2 ) +

h2

2
⟨b, ⟩(2 ) +O(h3).

Tr(A3)

Tr(A3) = Ai
jA

j
sA

s
i = + h⟨b, ⟩(3 + 3 )

+ h2⟨b, ⟩2(3 + 6 + 3 ) + h2⟨b, ⟩(3 + 3 + 3 )

+
h2

2
⟨b, ⟩(3 + 6 ) +

h2

2
⟨b, ⟩(6 + 3 ) +O(h3).

Tr(A)4:

Tr(A)4 = O(h4).

Tr(A2)Tr(A)2:

Tr(A2)Tr(A)2 = h2⟨b, ⟩2( ) +O(h3).

Tr(A2)2:

Tr(A2)2 = + h⟨b, ⟩(4 + 4 ) +O(h2)

Tr(A3)Tr(A):

Tr(A3)Tr(A) = h⟨b, ⟩( ) +O(h2).

Tr(A4):

Tr(A4) = Ai
jA

j
kA

k
l A

l
i = + h⟨b, ⟩(4 + 4 ) +O(h2).

Tr(A)5:

Tr(A)5 = Tr(A)4Tr(A) = h5(⟨b, ⟩)5( ) +O(h6).

Tr(A)3Tr(A2):

Tr(A)3Tr(A2) = h3(⟨b, ⟩)3( ) +O(h4).
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Tr(A3)Tr(A)2:

Tr(A3)Tr(A)2 = h2⟨b, ⟩2( ) +O(h3).

Tr(A3)Tr(A2):

Tr(A3)Tr(A2) = +O(h).

Tr(A)Tr(A2)Tr(A2):

Tr(A)Tr(A2)Tr(A2) = O(h).

Tr(A)Tr(A4):

Tr(A)Tr(A4) = O(h).

Tr(A5):

Tr(A5) = Ai
jA

j
kA

k
l A

l
mAm

i = +O(h).

2.3 Coefficients of the volume-preserving aromatic B-series method:

Now we substitute all traces which we have found in the formula (2.7), and collect all terms according
to the aromatic function instead of the coefficients, we find the following:

det(I + hA) = 1

+ h2F( )(⟨b, ⟩ − 1

2
)

+ h3F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩)

+ h3F( )(⟨b, ⟩ − ⟨b, ⟩+ 1

3
)

+O(h4).

We refer to (A.23) for the more details of det(I + hA). To find the conditions of the volume-preserving,
we use the theorem (2.1.1). It means that det(I+hA) = 1. To obtain this condition, each term in (A.23)
must equals zero. Consequently, the coefficient of each term equals zero as follows: the second term:

h2(⟨b, ⟩ − 1

2
) = 0 ⇒ ⟨b, ⟩ − 1

2
= 0 ⇒ ⟨b, ⟩ = 1

2
.

In the same way, we can find the value of the simple coefficients that correspond to the circle loops aroma

( , , , , ...), as they are shown in the table below (2.1):

Coefficient The value

⟨b, ⟩ 1
2

⟨b, ⟩ 1
6

⟨b, ⟩ 1
24

⟨b, ⟩ 1
120

Table 2.1: Bamboo trees coefficient
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The other coefficients can not be found exactly, but we can find the linear combination between them

after substituting the results from the table (2.1). In the aromatic function with three nodes F( )
the relation is :

⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ = 0 ⇒ ⟨b, ⟩+ ⟨b, ⟩ = 1

3
.

Another linear combination corresponding to the aromas with four nodes is shown in the table (2.2).
By using linear algebra to find this relation, we find a system of 4 equations with 7 variables that has
infinite solutions.

F( ) ⟨b, ⟩+ ⟨b, ⟩ = 1
8

F( ) 1
2 ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ = − 3

24

F( ) ⟨b, ⟩ − ⟨b, ⟩ = 0

F( ) 1
2 ⟨b, ⟩+ ⟨b, ⟩+ 1

2 ⟨b, ⟩ = 0

Table 2.2: Relations between coefficients

In the same way, we can find the relation between coefficients that correspond to the aromas functions
with five nodes. We find 12 equations with 26 variables. We substitute relations in the table (2.2), and
rearrangement the equations, we find a system of 12 equations with 23 variables.
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Conclusion

Studying volume-preserving methods has been an important topic for many years. It has been studied
by Feng and Shang [11], and by Cartier and Murua [5], and by others. But it is a few articles about
studying this subject by using aromatic B-series. It has been studied by Bogfjellmo [2] and by Laurent,
McLachlan and Munthe-Kaas [12].

This work can help to understand how the computations take place and how the algebraic combina-
tions between the coefficients look like. The aromatic B-series is a very useful tool in this field because it
provides the divergence. In addition, using the Newton-Girard formula was useful to use with the opera-
tions on traces. To obtain the goal, it needs a huge computation on traces and vector field. By using the
divergence-free vector field, we could reduce a lot of computations because the divergence sends every
loop with one node to zero. Instead of using the traditional way with elementary differentials, which
needs a lot of computation with a lot of concentration, using aromas methods saves a lot of effort and
time.
In the Appendices, we have shown the difference between using f i

j1...jn
(see A.3) and using the aromas

(see A.4). To find the traces Tr(A), we should do a lot of computation to obtain up to order 5. After
that, we have found the conditions of the coefficients. Coefficients of the simple aromas could be found
exactly. But the coefficients of the other aromas could not be found exactly. We could find the linear
combinations between them. The coefficients for the aromas with five nodes were a system of 12 equa-
tions with 26 variables. We think that the combination between coefficients up to order 6 will not be
linear. The method we used to find these results was by hand. For instance to find Tr(A2), we should do
the multiplication Ai

jA
j
i . Each of these series has 12 terms with respect to the indices. This method of

computation could consequence many errors. We think it will be useful in the future to find an algorithm
that makes these computations easier by the computer.
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Appendix A

Computations of traces

The numerical solution for the system of equation (1.2) up to order 5 is after vanishing the simple aromas
because of the divergence-free vector field:

xi
1 = xi

0 + h⟨b, ⟩f i + h2⟨b, ⟩f i
kf

k + h3⟨b, ⟩(f i
kf

k
l f

l) +
h3

2
⟨b, ⟩(f i

klf
kf l) +

h3

2
⟨b, ⟩(fk

l f
l
kf

i) (A.1)

+ h4⟨b, ⟩(f i
kf

k
l f

l
mfm) +

h4

6
⟨b, ⟩(f i

klmfkf lfm) + h4⟨b, ⟩(f i
klf

kf l
mfm)

+
h4

2
⟨b, ⟩(f i

kf
k
lmf lfm) +

h4

2
⟨b, ⟩(fk

l f
l
kf

i
mfm) +

h4

3
⟨b, ⟩(fk

l f
l
mfm

k f i)

+ h4⟨b, ⟩(fk
lmf l

kf
mf i) +

h5

24
⟨b, ⟩(f i

klmnf
kf lfmfn) +

h5

2
⟨b, ⟩(f i

klmfkf lfm
n fn)

+
h5

2
⟨b, ⟩(f i

klf
k
mf l

nf
mfn) +

h5

2
⟨b, ⟩(f i

nkf
nfk

lmf lfm) + h5⟨b, ⟩(f i
nkf

nfk
l f

l
mfm)

+
h5

6
⟨b, ⟩(f i

kf
k
lmnf

lfmfn) + h5⟨b, ⟩(f i
kf

k
lmf lfm

n fn) +
h5

2
⟨b, ⟩(f i

kf
k
l f

l
mnf

mfn)

+ h5⟨b, ⟩(f i
kf

k
l f

l
mfm

n fn) +
h5

4
⟨b, ⟩(f l

mfm
l f i

knf
kfn) +

h5

2
⟨b, ⟩(f l

mfm
l f i

kf
k
nf

n)

+ h5⟨b, ⟩(f l
mnf

m
l fnf i

kf
k) +

h5

3
⟨b, ⟩(fk

l f
l
mfm

k f i
nf

n) +
h5

2
⟨b, ⟩(fk

lmfmf l
knf

nf i)

+ h5⟨b, ⟩(fk
lmf l

kf
m
n fnf i) + h5⟨b, ⟩(fk

lnf
nf l

mfm
k f i) +

h5

4
⟨b, ⟩(fk

l f
l
mfm

n fn
k f

i)

+
h5

2
⟨b, ⟩(fk

lmnf
l
kf

mfnf i) +
h5

8
⟨b, ⟩(fk

l f
l
kf

m
n fn

mf i)

+O(h6).

Finding Ai
j:

Ai
j = f i

j

+ h⟨b, ⟩(f i
kjf

k + f i
kf

k
j )

+ h2⟨b, ⟩(f i
kjf

k
l f

l + f i
kf

k
ljf

l + f i
kf

k
l f

l
j)

+
h2

2
⟨b, ⟩(f i

kljf
kf l + f i

klf
k
j f

l + f i
klf

kf l
j)
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+
h2

2
⟨b, ⟩(fk

ljf
l
kf

i + fk
l f

l
kjf

i + fk
l f

l
kf

i
j)

+ h3⟨b, ⟩(f i
kjf

k
l f

l
mfm + f i

kf
k
ljf

l
mfm + f i

kf
k
l f

l
mjf

m + f i
kf

k
l f

l
mfm

j )

+
h3

2
⟨b, ⟩(fk

ljf
l
kf

i
mfm + fk

l f
l
kjf

i
mfm + fk

l f
l
kf

i
mjf

m + fk
l f

l
kf

i
mfm

j )

+
h3

3
⟨b, ⟩(fk

ljf
l
mfm

n f i + fk
l f

l
mjf

m
n f i + fk

l f
l
mfm

njf
i + fk

l f
l
mfm

n f i
j)

+
h3

2
⟨b, ⟩(f i

kjf
k
lmf lfm + f i

kf
k
lmjf

lfm + f i
kf

k
lmf l

jf
m + f i

kf
k
lmf lfm

j )

+ h3⟨b, ⟩(f i
kmjf

k
l f

lfm + f i
kmfk

ljf
lfm + f i

kmfk
l f

l
jf

m + f i
kmfk

l f
lfm

j )

+ h3⟨b, ⟩(f l
kmjf

k
l f

mf i + f l
kmfk

ljf
mf i + f l

kmfk
l f

m
j f i + f l

kmfk
l f

mf i
j)

+
h3

6
⟨b, ⟩(f i

klmjf
kf lfm + f i

klmfk
j f

lfm + f i
klmfkf l

jf
m + f i

klmfkf lfm
j )

+
h4

24
⟨b, ⟩(f i

nklmjf
nfkf lfm + f i

nklmfn
j f

kf lfm + f i
nklmfnfk

j f
lfm + f i

nklmfnfkf l
jf

m + f i
nklmfnfkf lfm

j )

+
h4

2
⟨b, ⟩(f i

nkljf
l
mfmfnfk + f i

nklf
l
mjf

mfnfk + f i
nklf

l
mfm

j fnfk + f i
nklf

l
mfmfn

j f
k + f i

nklf
l
mfmfnfk

j )

+
h4

2
⟨b, ⟩(f i

nkjf
k
mfn

l f
lfm + f i

nkf
k
mjf

n
l f

lfm + f i
nkf

k
mfn

ljf
lfm + f i

nkf
k
mfn

l f
l
jf

m + f i
nkf

k
mfn

l f
lfm

j )

+
h4

2
⟨b, ⟩(f i

nkjf
nfk

lmf lfm + f i
nkf

n
j f

k
lmf lfm + f i

nkf
nfk

lmjf
lfm + f i

nkf
nfk

lmf l
jf

m + f i
nkf

nfk
lmf lfm

j )

+ h4⟨b, ⟩(f i
nkjf

nfk
l f

l
mfm + f i

nkf
n
j f

k
l f

l
mfm + f i

nkf
nfk

ljf
l
mfm + f i

nkf
nfk

l f
l
mjf

m + f i
nkf

nfk
l f

l
mfm

j )

+
h4

6
⟨b, ⟩(f i

njf
n
klmfkf lfm + f i

nf
n
klmjf

kf lfm + f i
nf

n
klmfk

j f
lfm + f i

nf
n
klmfkf l

jf
m + f i

nf
n
klmfkf lfm

j )

+ h4⟨b, ⟩(f i
njf

n
klf

kf l
mfm + f i

nf
n
kljf

kf l
mfm + f i

nf
n
klf

k
j f

l
mfm + f i

nf
n
klf

kf l
mjf

m + f i
nf

n
klf

kf l
mfm

j )

+
h4

2
⟨b, ⟩(f i

njf
j
kf

k
lmf lfm + f i

nf
n
kjf

k
lmf lfm + f i

nf
n
k f

k
lmjf

lfm + f i
nf

n
k f

k
lmf l

jf
m + f i

nf
n
k f

k
lmf lfm

j )

+ h4⟨b, ⟩(f i
njf

n
k f

k
l f

l
mfm + f i

nf
n
kjf

k
l f

l
mfm + f i

nf
n
k f

k
ljf

l
mfm + f i

nf
n
k f

k
l f

l
mjf

m + f i
nf

n
k f

k
l f

l
mfm

j )

+
h4

4
⟨b, ⟩(f l

mjf
m
l f i

nkf
nfk + f l

mfm
lj f

i
nkf

nfk + f l
mfm

l f i
nkjf

nfk + f l
mfm

l f i
nkf

n
j f

k + f l
mfm

l f i
nkf

nfk
j )

+
h4

2
⟨b, ⟩(f l

mjf
m
l f i

nf
n
k f

k + f l
mfm

lj f
i
nf

n
k f

k + f l
mfm

l f i
njf

n
k f

k + f l
mfm

l f i
nf

n
kjf

k + f l
mfm

l f i
nf

n
k f

k
j )

+ h4⟨b, ⟩(f l
kmjf

mfk
l f

i
nf

n + f l
kmfm

j fk
l f

i
nf

n + f l
kmfmfk

ljf
i
nf

n + f l
kmfmfk

l f
i
njf

n + f l
kmfmfk

l f
i
nf

n
j )

+
h4

3
⟨b, ⟩(fk

ljf
l
mfm

k f i
nf

n + fk
l f

l
mjf

m
k f i

nf
n + fk

l f
l
mfm

kjf
i
nf

n + fk
l f

l
mfm

k f i
njf

n + fk
l f

l
mfm

k f i
nf

n
j )

+
h4

2
⟨b, ⟩(fn

kljf
kf l

nmfmf i + fn
klf

k
j f

l
nmfmf i + fn

klf
kf l

nmjf
mf i + fn

klf
kf l

nmfm
j f i + fn

klf
kf l

nmfmf i
j)

+ h4⟨b, ⟩(fk
nljf

n
k f

l
mfmf i + fk

nlf
n
kjf

l
mfmf i + fk

nlf
n
k f

l
mjf

mf i + fk
nlf

n
k f

l
mfm

j f i + fk
nlf

n
k f

l
mfmf i

j)

+ h4⟨b, ⟩(fn
kmjf

mfk
l f

l
nf

i + fn
kmfm

j fk
l f

l
nf

i + fn
kmfmfk

ljf
l
nf

i + fn
kmfmfk

l f
l
njf

i + fn
kmfmfk

l f
l
nf

i
j)

+
h4

4
⟨b, ⟩(fn

kjf
k
l f

l
mfm

n f i + fn
k f

k
ljf

l
mfm

n f i + fn
k f

k
l f

l
mjf

m
n f i + fn

k f
k
l f

l
mfm

njf
i + fn

k f
k
l f

l
mfm

n f i
j)
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+
h4

2
⟨b, ⟩(fn

klmjf
lfmfk

nf
i + fn

klmf l
jf

mfk
nf

i + fn
klmf lfm

j fk
nf

i + fn
klmf lfmfk

njf
i + fn

klmf lfmfk
nf

i
j)

+
h4

8
⟨b, ⟩(fn

kjf
k
nf

l
mfm

l f i + fn
k f

k
njf

l
mfm

l f i + fn
k f

k
nf

l
mjf

m
l f i + fn

k f
k
nf

l
mfm

lj f
i + fn

k f
k
nf

l
mfm

l f i
j)

+O(h5). (A.2)

Here we will derive (2.6) with respect to (i) and after that we can find Ai
i

Ai
i = h⟨b, ⟩(f i

jf
j
i ) (A.3)

+ h2⟨b, ⟩(f i
jf

j
kif

k + f i
jf

j
kf

k
i )

+
h2

2
⟨b, ⟩(f i

jkf
j
i f

k + f i
jkf

jfk
i +)

+
h2

2
⟨b, ⟩(f j

kif
k
j f

i + f j
kf

k
jif

i)

+ h3⟨b, ⟩(f i
jf

j
kif

k
l f

l + f i
jf

j
kf

k
lif

l + f i
jf

j
kf

k
l f

l
i )

+
h3

2
⟨b, ⟩(fk

lif
l
kf

i
jf

j + fk
l f

l
kif

i
jf

jfk
l f

l
kf

i
jf

j
i )

+
h3

3
⟨b, ⟩(f j

kif
k
l f

l
jf

i + f j
kf

k
lif

l
jf

i + f j
kf

k
l f

l
jif

i)

+
h3

2
⟨b, ⟩(f i

jf
j
klif

kf l + f i
jf

j
klf

k
i f

l + f i
jf

j
klf

kf l
i )

+ h3⟨b, ⟩(f i
jlf

j
kif

kf l + f i
jlf

j
kf

k
i f

l + f i
jlf

j
kf

kf l
i )

+ h3⟨b, ⟩(f j
klif

k
j f

lf i + f j
klf

k
jif

lf i + f j
klf

k
j f

l
if

i)

+
h3

6
⟨b, ⟩(f i

jklf
j
i f

kf l + f i
jklf

jfk
i f

l + f i
jklf

jfkf l
i )

+
h4

24
⟨b, ⟩(f i

jklmf j
i f

kf lfm + f i
jklmf jfk

i f
lfm + f i

jklmf jfkf l
if

m + f i
jklmf jfkf lfm

i )

+
h4

2
⟨b, ⟩(f i

jklf
l
mif

mf jfk + f i
jklf

l
mfm

i f jfk + f i
jklf

l
mfmf j

i f
k + f i

jklf
l
mfmf jfk

i )

+
h4

2
⟨b, ⟩(f i

jkf
k
mif

j
l f

lfm + f i
jkf

k
mf j

lif
lfm + f i

jkf
k
mf j

l f
l
if

m + f i
jkf

k
mf j

l f
lfm

i )

+
h4

2
⟨b, ⟩(f i

jkf
j
i f

k
lmf lfm + f i

jkf
jfk

lmif
lfm + f i

jkf
jfk

lmf l
if

m + f i
jkf

jfk
lmf lfm

i )

+ h4⟨b, ⟩(f i
jkf

j
i f

k
l f

l
mfm + f i

jkf
jfk

lif
l
mfm + f i

jkf
jfk

l f
l
mif

m + f i
jkf

jfk
l f

l
mfm

i )

+
h4

6
⟨b, ⟩(f i

jf
j
klmif

kf lfm + f i
jf

j
klmfk

i f
lfm + f i

jf
j
klmfkf l

if
m + f i

jf
j
klmfkf lfm

i )

+ h4⟨b, ⟩(f i
jf

j
klif

kf l
mfm + f i

jf
j
klf

k
i f

l
mfm + f i

jf
j
klf

kf l
mif

m + f i
jf

j
klf

kf l
mfm

i )

+
h4

2
⟨b, ⟩(f i

jf
j
kif

k
lmf lfm + f i

jf
j
kf

k
lmif

lfm + f i
jf

j
kf

k
lmf l

if
m + f i

jf
j
kf

k
lmf lfm

i )

+ h4⟨b, ⟩(f i
jf

j
kif

k
l f

l
mfm + f i

jf
j
kf

k
lif

l
mfm + f i

jf
j
kf

k
l f

l
mif

m + f i
jf

j
kf

k
l f

l
mfm

i )

+
h4

4
⟨b, ⟩(f l

mif
m
l f i

jkf
jfk + f l

mfm
li f

i
jkf

jfk + f l
mfm

l f i
jkf

j
i f

k + f l
mfm

l f i
jkf

jfk
i )
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+
h4

2
⟨b, ⟩(f l

mif
m
l f i

jf
j
kf

k + f l
mfm

li f
i
jf

j
kf

k + f l
mfm

l f i
jf

j
kif

k + f l
mfm

l f i
jf

j
kf

k
i )

+ h4⟨b, ⟩(f l
kmif

mfk
l f

i
jf

j + f l
kmfm

i fk
l f

i
jf

j + f l
kmfmfk

lif
i
jf

j
+f

l
kmfmfk

l f
i
jf

j
i )

+
h4

6
⟨b, ⟩(fk

lif
l
mfm

k f i
jf

j + fk
l f

l
mif

m
k f i

jf
j + fk

l f
l
mfm

kif
i
jf

j + fk
l f

l
mfm

k f i
jf

j
i )

+
h4

2
⟨b, ⟩(f j

klif
kf l

jmfmf i + f j
klf

k
i f

l
jmfmf i + f j

klf
kf l

jmif
mf i + f j

klf
kf l

jmfm
i f i)

+ h4⟨b, ⟩(fk
jlif

j
kf

l
mfmf i + fk

jlf
j
kif

l
mfmf i + fk

jlf
j
kf

l
mif

mf i + fk
jlf

j
kf

l
mfm

i f i)

+ h4⟨b, ⟩(f j
kmif

mfk
l f

l
jf

i + f j
kmfm

i fk
l f

l
jf

i + f j
kmfmfk

lif
l
jf

i + f j
kmfmfk

l f
l
jif

i)

+
h4

4
⟨b, ⟩(f j

kif
k
l f

l
mfm

j f i + f j
kf

k
lif

l
mfm

j f i + f j
kf

k
l f

l
mif

m
j f i + f j

kf
k
l f

l
mfm

ji f
i)

+
h4

2
⟨b, ⟩(f j

klmif
lfmfk

j f
i + f j

klmf l
if

mfk
j f

i + f j
klmf lfm

i fk
j f

i + f j
klmf lfmfk

jif
i)

+
h4

8
⟨b, ⟩(f j

kif
k
j f

l
mfm

l f i + f j
kf

k
jif

l
mfm

l f i + f j
kf

k
j f

l
mif

m
l f i + f j

kf
k
j f

l
mfm

li f
i)

+O(h5).
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Now to simplify all these computations and indices writing, we will write (A.3) as aromatic functions:

Ai
i = h⟨b, ⟩( ) + h2⟨b, ⟩( + ) (A.4)

+
h2

2
⟨b, ⟩(2 ) +

h2

2
⟨b, ⟩(2 )

+ h3⟨b, ⟩( + + ) +
h3

2
⟨b, ⟩( + 2 )

+
h3

3
⟨b, ⟩(3 ) +

h3

2
⟨b, ⟩( + 2 )

+ h3⟨b, ⟩( + + ) + h3⟨b, ⟩( + + )

+
h3

6
⟨b, ⟩(3 ) +

h4

24
⟨b, ⟩(4 ))

+
h4

2
⟨b, ⟩( + + 2 ) +

h4

2
⟨b, ⟩(2 + 2 )

+
h4

2
⟨b, ⟩( + + 2 )

+ h4⟨b, ⟩( + + + )

+
h4

6
⟨b, ⟩( + 3 )

+
h4

2
⟨b, ⟩( + + + ) +

h4

2
⟨b, ⟩( + + 2 )

+ h4⟨b, ⟩( + + + ) +
h4

4
⟨b, ⟩(2 + 2 )

+
h4

2
⟨b, ⟩(2 + + )

+ h4⟨b, ⟩( + + + )

+
h4

3
⟨b, ⟩(3 + ) +

h4

2
⟨b, ⟩(2 + 2 )

+ h4⟨b, ⟩( + + + )

+ h4⟨b, ⟩( + + 2 ) +
h4

4
⟨b, ⟩(4 )

+
h4

2
⟨b, ⟩( + 2 + ) +

h4

8
⟨b, ⟩(4 )

+O(h5).

After computing of Ai
j and Ai

i, it is time to find each term of (2.7). For any fixed dimension, P can
be expressed as a polynomial of traces. For example, when A is a 5× 5-matrix, we have the identity
(2.7)
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A.1 Traces computations

Tr(A):
Find Tr(A) up to order 5 as we found in (A.4):

Tr(A) = Ai
i. (A.5)

Find Tr(A)2:

Tr(A)2 = Ai
iA

j
j = h2(⟨b, ⟩)2( ) (A.6)

+ h3⟨b, ⟩⟨b, ⟩(2 + 2 ) + h3⟨b, ⟩⟨b, ⟩(2 )

+ h3⟨b, ⟩⟨b, ⟩(2 )

+O(h4).

Finding Tr(A2)

Tr(A2) = Ai
tA

t
i = + h⟨b, ⟩(2 + 2 ) (A.7)

+ h2⟨b, ⟩(2 + 2 + 2 ) +
h2

2
⟨b, ⟩(2 + 4 )

+
h2

2
⟨b, ⟩(4 + 2 ) + h2(⟨b, ⟩)2( + 2 + )

+ h3⟨b, ⟩(2 + 2 + 2 + 2 ) +
h3

6
⟨b, ⟩(2 + 6 )

+ h3⟨b, ⟩(2 + 2 + 2 + 2 )

+
h3

2
⟨b, ⟩(2 + 2 + 4 )

+
h3

2
⟨b, ⟩(4 + 2 + 2 ) +

h3

3
⟨b, ⟩(6 + 2 )

+ h3⟨b, ⟩(2 + 2 + 2 + 2 )

+ h3⟨b, ⟩⟨b, ⟩(2 + 2 + 2 + 4 + 2 )

+
h3

2
⟨b, ⟩⟨b, ⟩(2 + 4 + 4 + 2 )

+
h3

2
⟨b, ⟩⟨b, ⟩(4 + 4 + 2 + 2 )

+O(h4).

Finding Tr(A)3

Tr(A)3 = Tr(A)2Tr(A) = Ai
iA

j
jA

k
k = h3(⟨b, ⟩)3( ) +O(h4). (A.8)

Finding Tr(A2)Tr(A) :

Tr(A2)Tr(A) = h⟨b, ⟩( ) (A.9)
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+ h2(⟨b, ⟩)2(2 + 2 ) + h2⟨b, ⟩( + )

+
h2

2
⟨b, ⟩(2 ) +

h2

2
⟨b, ⟩(2 )

+O(h3).

Finding Tr(A3)

Tr(A3) = Ai
jA

j
sA

s
i = + h⟨b, ⟩(3 + 3 ) (A.10)

+ h2(⟨b, ⟩)2(3 + 6 + 3 )

+ h2⟨b, ⟩(3 + 3 + 3 )

+
h2

2
⟨b, ⟩(3 + 6 ) +

h2

2
⟨b, ⟩(6 + 3 )

+O(h3).

Finding Tr(A)4

Tr(A)4 = Tr(A)3Tr(A) = h4(⟨b, ⟩)4( ) +O(h5). (A.11)

Finding Tr(A2)Tr(A)2

Tr(A2)Tr(A)2 = h2(⟨b, ⟩)2( ) +O(h3). (A.12)

Finding Tr(A2)2

Tr(A2)2 = Tr(A2)Tr(A2) = + h⟨b, ⟩(4 + 4 ) +O(h2). (A.13)

Finding Tr(A3)Tr(A)

Tr(A3)Tr(A) = h⟨b, ⟩( ) +O(h2) (A.14)

Finding Tr(A4)

Tr(A4) = Ai
jA

j
kA

k
l A

l
i = + h⟨b, ⟩(4 + 4 ) +O(h2). (A.15)

Finding Tr(A)5

Tr(A)5 = Tr(A)4Tr(A) = h5(⟨b, ⟩)5( ) +O(h6). (A.16)

Finding Tr(A)3Tr(A2)

Tr(A)3Tr(A2) = h3(⟨b, ⟩)3( ) +O(h4). (A.17)

Finding Tr(A3)Tr(A)2

Tr(A3)Tr(A)2 = h2(⟨b, ⟩)2( ) +O(h3). (A.18)
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Finding Tr(A3)Tr(A2)

Tr(A3)Tr(A2) = +O(h) (A.19)

Finding Tr(A)Tr(A2)Tr(A2)
Tr(A)Tr(A2)Tr(A2) = O(h). (A.20)

Finding Tr(A)Tr(A4)
Tr(A)Tr(A4) = O(h). (A.21)

Finding Tr(A5)

Tr(A5) = Ai
jA

j
kA

k
l A

l
mAm

i = +O(h). (A.22)
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A.2 Newton-Girard formula results

det(I + hA)
Now we substitute all traces which we have found in the formula (A.1), and collect all terms according
to the aromatic function instead of coefficients, we find the following:

det(I + hA) = 1 (A.23)

+ h2F( )(⟨b, ⟩ − 1

2
)

+ h3F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩)

+ h3F( )(⟨b, ⟩ − ⟨b, ⟩+ 1

3
)

+ h4F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩)

+ h4F( )(⟨b, ⟩+ 1

2
⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩ − (⟨b, ⟩)2 + ⟨b, ⟩)

+ h4F( )(⟨b, ⟩ − ⟨b, ⟩ − 1

2
(⟨b, ⟩)2 + ⟨b, ⟩ − 1

4
)

+ h4F( )(
1

2
⟨b, ⟩+ 1

2
(⟨b, ⟩)2 − 1

2
⟨b, ⟩ − 1

2
⟨b, ⟩+ 1

8
)

+ h4F( )(
1

2
⟨b, ⟩+ ⟨b, ⟩+ 1

2
⟨b, ⟩)

+ h4F( )(⟨b, ⟩+ ⟨b, ⟩)

+ h5F( )(
1

6
⟨b, ⟩+ 1

6
⟨b, ⟩+ ⟨b, ⟩ − 1

6
⟨b, ⟩)

+ h5F( )(
1

2
⟨b, ⟩+ 1

2
⟨b, ⟩+ ⟨b, ⟩+ 1

2
⟨b, ⟩

− 1

2
⟨b, ⟩⟨b, ⟩

+ h5F( )(
1

2
⟨b, ⟩+ 1

2
⟨b, ⟩+ 1

2
⟨b, ⟩+ ⟨b, ⟩ − 1

2
⟨b, ⟩

− 1

2
⟨b, ⟩ − 1

2
⟨b, ⟩.⟨b, ⟩+ 1

2
⟨b, ⟩)

+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩)

+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩

− ⟨b, ⟩.⟨b, ⟩)

+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ 1

2
⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩ − 1

2
(⟨b, ⟩)

− ⟨b, ⟩.⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩)
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2
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+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩

− ⟨b, ⟩.⟨b, ⟩ − ⟨b, ⟩.⟨b, ⟩+ 1

3
(⟨b, ⟩)2))

+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩

− ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩.⟨b, ⟩+ ⟨b, ⟩)

+ h5F( )(⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ 1

6
⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩

− 1

2
⟨b, ⟩.⟨b, ⟩ − ⟨b, ⟩.⟨b, ⟩+ 2(⟨b, ⟩)2 + ⟨b, ⟩+ ⟨b, ⟩ − ⟨b, ⟩)

+ h5F( )(⟨b, ⟩ − ⟨b, ⟩ − ⟨b, ⟩.⟨b, ⟩+ (⟨b, ⟩)2 + ⟨b, ⟩ − ⟨b, ⟩+ 24

120
)

+ h5F( )(
1

2
⟨b, ⟩+ 1

2
⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩+ ⟨b, ⟩.⟨b, ⟩+ ⟨b, ⟩.⟨b, ⟩

− 1

2
⟨b, ⟩ − ⟨b, ⟩ − (⟨b, ⟩)2 − 1

2
⟨b, ⟩ − 1

2
⟨b, ⟩ − 1

2
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2
⟨b, ⟩)

+ h5F( )(
1

2
⟨b, ⟩+ 1

6
⟨b, ⟩+ ⟨b, ⟩.⟨b, ⟩ − ⟨b, ⟩ − 1

6
⟨b, ⟩ − 1

2
⟨b, ⟩.⟨b, ⟩

− (⟨b, ⟩)2 − 1

2
⟨b, ⟩+ 1

2
⟨b, ⟩+ 20

24
⟨b, ⟩).

The relation between coefficients:
To obtain volume preserving, must det(I + hA) = 1. That means that the all term must equals to zero
except the first term (1).then the coefficients of each term must equal zero. According to condition we
can find the some coefficients exactly, but the another we can find a linear combination between them.
The coefficients of the following functions can be found exactly

F( ) : ⟨b, ⟩ = 1
2 ,

F( ) : ⟨b, ⟩ = 1
6 ,

F( ) : ⟨b, ⟩ = 1
24 ,

F( ) : ⟨b, ⟩ = 1
120 .
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A.3 Algorithm

Algorithm to find Tr(Ak)

k = 1 ⇒ Tr(A) = ( ) + h⟨b, ⟩( + ) +O(h2.

k = 2 ⇒ Tr(A2) = ( ) + h⟨b, ⟩(2 + 2 ) +O(h2).

k = 3 ⇒ Tr(A3) = ( ) + h⟨b, ⟩(3 + 3 ) +O(h2).

k = 4 ⇒ Tr(A4) = ( ) + h⟨b, ⟩(4 + 4 ) +O(h2).

k = 5 ⇒ Tr(A5) = ( ) + h⟨b, ⟩(5 + 5 ) +O(h2).

...

For k ⇒ Tr(Ak) = (λk) + h⟨b, ⟩(kµk + kλk+1) +O(h2).

where λk is a cycle with k nodes, µk is a cycle with k nodes and extra edge with one node, and k is a
positive integer.
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