

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Tackling Lower-Resource Language

Challenges: A Comparative Study of

Norwegian Pre-Trained BERT

Models and Traditional Approaches

for Football Article Paragraph

Classification

Eirik Duesund Helland

Data Science

Abstract

In lower-resource language settings, domain-specific tasks such as paragraph classification of
football articles present significant challenges. Traditional machine learning models face difficul-
ties in effectively capturing the linguistic complexities inherent in the paragraphs, emphasizing
the need for more advanced approaches to overcome these obstacles. This thesis investigates the
potential of Norwegian pre-trained BERT (Bidirectional Encoder Representations from Trans-
formers) models for paragraph classification tasks in the context of Norwegian football articles,
a domain requiring a nuanced understanding of the Norwegian language. BERT is a power-
ful model architecture for language-specific processing tasks, which learns from the context of
words in a sentence in both directions. Specifically, this thesis compares the performance of
Transformer-based BERT models with traditional machine learning models in multi-class and
multi-label classification tasks. An existing dataset of about 5,500 football article paragraphs is
utilized to evaluate multi-class classification results. In addition, a newly annotated multi-label
dataset of just over 2,000 samples is introduced for the multi-label classification assessment.
The results reveal promising performance for the Norwegian pre-trained BERT models in both
classification tasks, achieving an accuracy of ∼ 0.88 and a weighted-average F1-score of ∼ 0.87
in the multi-class classification task and accuracy of ∼ 0.40 and a weighted-average F1-score of
∼ 0.58 in the multi-label classification task, significantly outperforming the results of the tra-
ditional machine learning models. This study highlights the effectiveness of Transformer-based
models in lower-resource language settings. It emphasizes the need for continued research and
development in Natural Language Processing for underrepresented languages.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Objectives . 4

1.3.1 Research Question . 5

1.3.2 Scope and Limitations . 5

1.3.3 Contributions . 6

2 Theory 7

2.1 Natural Language Processing . 7

2.1.1 Common challenges in NLP . 9

2.2 Machine Learning . 9

2.2.1 Statistical Methods in NLP . 10

2.2.2 Deep Learning . 13

2.2.3 Transformers . 17

2.2.4 BERT . 21

2.3 Evaluation Metrics . 23

2.3.1 Accuracy . 23

2.3.2 Precision . 23

2.3.3 Recall . 23

2.3.4 F1-score . 24

i

2.3.5 Precision, Recall and F1-score in Multi-Class Problems 24

3 Data Exploration 26

3.1 The Arx Dataset . 26

3.1.1 Label Distribution in The Arx Dataset 28

3.2 The Multi-Label Dataset . 29

3.2.1 Label Distribution in The Multi-Label Dataset 31

4 Method 35

4.1 Data Collection . 35

4.1.1 Arx Dataset Collection . 35

4.1.2 Multi-Label Dataset Collection . 36

4.2 Model Selection . 37

4.2.1 Norwegian BERT Model Selection . 37

4.2.2 Traditional Machine Learning Model Selection 38

4.3 Data Preprocessing . 39

4.3.1 Data Preprocessing for BERT Models . 39

4.3.2 Data Preprocessing for Traditional Machine Learning Models 39

4.3.3 Train/Test Split . 40

4.4 Model Tuning . 40

4.4.1 Bayesian Search . 41

4.5 Model Configurations . 43

4.5.1 Model Configurations for the Multi-Class Classification 44

4.5.2 Model Configurations for the Multi-Label Dataset 49

4.6 Hardware Specifications . 55

5 Results 56

5.1 Accuracy . 56

5.2 Precision, Recall and F1-scores . 58

5.2.1 Multi-Class Classification Performance on Arx 58

ii

5.2.2 Multi-Label Classification Performance on the Multi-Label Dataset 62

6 Discussion 67

6.1 Analysis of the Results . 67

6.1.1 Model Performance on Multi-Class Classification 67

6.1.2 Model Performance on Multi-Label Classification 68

6.1.3 Runtime Considerations . 69

6.1.4 Recommendations Based on Model Performance 70

6.1.5 Possible Factors Affecting Model Results 70

6.1.6 Ease of Implementation . 72

6.2 The Annotation Process . 72

6.3 Reflective Analysis . 73

6.4 Impact on Sports Article Classification . 74

6.5 The Benefits and Limitations of BERT . 74

6.6 Future Work . 75

7 Conclusion 77

A Table of Python-packages A

iii

List of Figures

1.1 Illustration of paragraphs from news articles and their suggested labels. 2

2.1 A snippet of dialogue with ELIZA, the first rule-based chatbot, simulating a
psychotherapist, demonstrated by Weizenbaum [36]. 8

2.2 A dataset partitioned into a training and testing split. 10

2.3 A demonstration of the Bag-of-Words technique. Figure showing how a text goes
from ordered to scramble, like in a bag, to a list of word frequencies. Figure
inspired by Jurafsky and Martin [49]. 11

2.4 Raw data is processed through the different levels of a two-layer neural network.
Figure inspired by Dinov [52]. 13

2.5 Activation Functions . 15

2.6 The general architecture of a Transformer as presented by Vaswani et al. [15]. . . 18

2.7 The layers and connections that make up the Encoder. 19

2.8 The sequential computations of an RNN model versus the parallel computations
of a Transformer model showcased with the example sequence; ”Never give up”. . 20

2.9 The general architecture of a BERT model. The number of Encoder layers can
be changed. 21

3.1 Three examples of paragraphs and classes from the Arx dataset by Nordskog
et al. [12]. 27

3.2 Distribution of labels in the Arx dataset. 28

3.3 Cumulative sum of labels in the Arx dataset ordered by the number of samples
the label supplies the sum in decreasing order. The labels that compose 80.3 %
of the data are displayed in blue. The remainder of the data is displayed in red. . 29

3.4 The different levels of information the labels aims to capture. 31

iv

3.5 The 15 most common label sets in the Multi-Label Dataset. Some label sets
include only one label, as the paragraphs are only annotated with one label. . . . 32

3.6 Label distribution for paragraphs from the Multi-Label Dataset. The y-axis
differs from Figure 3.5 as this includes both solo labels and labels annotated in
a co-occurrence with other labels. 33

3.7 Co-occurrence matrix of labels in the Multi-Label Dataset. Each cell shows the
number of times a pair of labels co-occurs in the dataset. Brighter colors represent
higher co-occurrence frequencies. 34

4.1 The GUI Doccano [71] used to annotate the Multi-Label Dataset with an example
paragraph and possible labels. 36

5.1 The macro-average of each model’s precision, recall, and F1-score at multi-class
classification on the Arx dataset. 58

5.2 The macro-average of each model’s precision, recall, and F1-score at multi-label
classification on the Multi-Label Dataset. 62

v

List of Tables

3.1 Dataset Information . 26

4.1 Hyperparameter search space for the NB-BERT model and the NorBERT2 model 41

4.2 Hyperparameter search space for RandomForestClassifier 41

4.3 Hyperparameter search space for LinearSVC . 42

4.4 Hyperparameter search space for AdaBoostClassifier 42

4.5 Hyperparameter search space for MLPClassifier 42

4.6 Hyperparameter search space for KNeighborsClassifier 43

4.7 Hyperparameter search space for GradientBoostingClassifier 43

4.8 The model configuration used for the NB-BERT model for text classification on
the Arx dataset. 44

4.9 The configure of the NorBERT2 model for text classification on the Arx dataset. 45

4.10 The configuration used for the Random Forest model for text classification on
the Arx dataset. 46

4.11 The model configuration used for the LinearSVC model for text classification on
the Arx dataset. 46

4.12 The model configuration used for the AdaBoost model for text classification on
the Arx dataset. 47

4.13 The model configuration used for the Multilayer Perceptron model for text clas-
sification on the Arx dataset. 47

4.14 The model configuration used for the KNeighborsClassifier model for text classi-
fication on the Arx dataset. 48

4.15 The model configuration used for the GradientBoostingClassifier model for text
classification on the Arx dataset. 48

vi

4.16 The model configuration used for the NB-BERT model for text classification on
the Multi-Label Dataset. 49

4.17 The configuration used for the NorBERT2 model for text classification on the
Multi-Label Dataset. 50

4.18 The model configuration used for the Random Forest model for text classification
on the Multi-Label Dataset. 51

4.19 The model configuration used for the LinearSVC model for text classification on
the Multi-Label Dataset. 51

4.20 The model configuration used for the AdaBoost model for text classification on
the Multi-Label Dataset. 52

4.21 The model configuration used for the Multilayer Perceptron model for text clas-
sification on the Multi-Label Dataset. 53

4.22 The model configuration used for the KNeighborsClassifier model for text classi-
fication on the Multi-Label Dataset. 54

4.23 The model configuration used for the GradientBoosting model for text classifica-
tion on the Multi-Label Dataset. 54

4.24 PC Specifications . 55

4.25 Google Colab Pro + Specifications . 55

5.1 The accuracy and training runtime of the multi-class classification models tested
on the Arx dataset. 56

5.2 The accuracy and training runtime of the multi-label classification models tested
on the Multi-Label Dataset. 57

5.3 Classwise F1-scoring for each model on multi-class classification. Macro-average
and weighted-average F1-scores for each model. The number of instances in each
label. 59

5.4 Classwise precision-scoring for each model on multi-class classification. 60

5.5 Classwise recall-scoring for each model on multi-class classification. 61

5.6 Classwise F1-scoring for each model on multi-label classification. Macro-average
and weighted-average F1-scores for each model. The number of instances in each
label. 63

5.7 Classwise precision-scoring for each model on multi-label classification. 65

5.8 Classwise recall-scoring for each model on multi-label classification. 66

A.1 The Python-packages used during various stages of the data science workflow,
including data exploration, data processing and machine learning, along with
their respective versions and their purpose of use. A

vii

Nomenclature

AI Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

GELU Gaussian Error Linear Unit

GPT Generative Pre-Trained Transformer

GRU Gated Recurrent Unit

GUI Graphical User Interface

KNN K-Nearest Neighbors

LAMB Layer-Wise Adaptive Moments

LSTM Long Short-Term Memory

LSVC Linear Support Vector Machine

MLM Masked Language Modelling

MLP Multilayer Perceptron

NER Named Entity Recognition

NLP Natural Language Processing

NoReC Norwegian Review Corpus

NSP Next Sentence Prediction

POS Part Of Speech

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

viii

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

VAR Video Assistant Referee

ix

Chapter 1
Introduction

In today’s data-driven world, the capability to process vast quantities of textual information is
crucial for making informed decisions and unlocking valuable insights across various industries
and sectors. As a result of the ever-growing textual information available, Natural Language
Processing (NLP) has emerged to make sense of unstructured data, facilitating advancements in
fields such as sentiment analysis, machine translation, and information extraction, among others
[1–3]. These advancements have primarily been introduced to solve English NLP problems.
Still, there have recently been efforts to extend state-of-art techniques to languages such as
Norwegian, which have significantly fewer language resources available. Norwegian is defined as
a lower-resource language in this thesis as Norway has a population of only 5.5 million people
and even fewer native speakers, and the language approximately only makes up 0.1 % of the
content on the internet, compared to the English language making up an estimate of 55.6% [4,
5].

This thesis explores the potential of Norwegian pre-trained Transformer models in tackling text
classification on paragraphs from Norwegian football articles. By investigating and comparing
the performance of these Transformer models with traditional machine learning techniques,
this research seeks to demonstrate the effectiveness of Transformer models for lower-resource
languages on a domain-specific task and contribute to the growing body of knowledge in the
field.

1.1 Motivation

NLP is an interdisciplinary field in computer and data science focusing on the interaction
between human language and machines. In recent years, NLP has gained immense popularity
and importance due to its ability to process and understand large amounts of text, opening up
new opportunities for governments, businesses, and individuals alike. The recent popularity in
the field of NLP can be credited to the emergence of powerful Transformer models. The most
known of these models is ChatGPT, which recently set the record for being the fastest-growing
consumer application in history [6].

Transformer architectures, such as Bidirectional Encoder Representations from Transformers
(BERT), Generative Pre-Trained Transformers (GPT), and T5, have revolutionized the field of
NLP by achieving state-of-art performance on a variety of language tasks. These tasks include

1

sentiment analysis, text classification, text summarization, and machine translation, among
others [7–9]. Pre-training these models on large-scale corpora enables them to learn complex
linguistic features and relationships. Initially, these models were predominantly pre-trained on
English corpora, leading to superior performance in English NLP tasks. However, recent efforts
have also been directed towards training Transformer models for lower-resource languages, such
as Norwegian [10, 11].

The importance of Transformer models for lower-resource languages boils down to their abil-
ity to improve performance and efficiency in NLP tasks for languages with limited available
data for modeling. Transformer-based models can learn from unannotated data by training on
self-supervised learning tasks such as Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP) [7]. These tasks ensure that the model acquires a general understanding of
a language and its context. Pre-trained models can be further fine-tuned on smaller labeled
datasets to perform specific language tasks.

Paragraph classification of Norwegian sports articles is a specific task that involves a general
understanding of the Norwegian language and its context to be achieved efficiently. A model
capable of accurately classifying the different types of information found in football article
paragraphs can impact the writer, editor, and reader of such articles. These impacts range
from enhanced content personalization and improved search functionality for the reader to
streamlined content curation and advanced analytics and insights for the news outlet. The
application of Transformer models has the potential to unlock these benefits by optimizing
performance in the paragraph classification task.

Figure 1.1: Illustration of paragraphs from news articles and their suggested labels.

Page 2 of 84

Paragraph- or text classification, in the context of classifying information types, can be catego-
rized in two ways:

• Multi-class classification: In multi-class classification, each text can be classified as
multiple different output classes, but each text can only be assigned precisely one class.
Multi-class classification is optimal when all labels are mutually exclusive.

• Multi-label classification: In multi-label classification, there are multiple possible out-
put classes for each text. Each text can be assigned to one or multiple output classes
simultaneously. Multi-label classification is particularly suitable when categorizing a text
into a single label is difficult. In these situations, multiple labels can more accurately
represent the diverse aspects of the text content.

Figure 1.1 illustrates football article paragraphs labeled with multiple labels as in multi-label
classification. Reducing labels to only one for each paragraph results in multi-class classification.
This study will include both the tasks of multi-class classification and multi-label classification
of the different types of information that can be retrieved from a paragraph in a football article.
The multi-class classification will be carried out on the Arx dataset introduced by Nordskog
et al. [12], comprising of football article paragraphs from TV2.no and VG.no [13, 14]. For
the multi-label classification, a new dataset, referred to as the Multi-Label Dataset, will be
annotated and introduced, containing football article paragraphs from VG.no [14].

The use of Transformer models on lower-resource languages is in its early stages. This thesis aims
to explore and demonstrate the use of different BERT models pre-trained on Norwegian data at
various text classification tasks. The objective is to showcase the versatility and effectiveness of
Transformer models for a lower-resource language, such as Norwegian, using datasets comprising
paragraphs from online football articles. This research will further validate the progress made
in NLP in recent years and provide substance to Transformers as the solution to solving natural
language tasks for lower-resource languages.

1.2 Related Work

Natural Language Processing, as a field, has had significant advancements in recent years,
primarily driven by the introduction and development of Transformer-based models. The in-
troduction of the Transformer by Vaswani et al. [15] has paved the way for multiple new model
architectures such as BERT, GPT, and T5 [7, 9, 16]. These models have all achieved state-of-
art performance on various NLP tasks. The application of these Transformer models has been
explored at multiple tasks, including sentiment analysis, text classification, text summarization,
and machine translation [17–20]. These models have been successful at learning the complex
linguistic relationships in texts from large corpora, applying the generally learned language
representations to downstream tasks in NLP, and improving the accuracy of those tasks in the
process.

Recent efforts have been made to improve the results of NLP tasks in lower-resource languages,
such as Finnish, Sundanese, Swedish, and Norwegian, with the help of large Transformer models
trained in the respected languages [10, 11, 21–23]. These models are often tested on token
classification tasks such as PoS tagging and NER in their introduction. Still, fewer models
are tested on other NLP tasks, such as text classification. There are some exceptions, such
as the effort by Holmer and Jönsson [24] to test the Swedish BERT models at Swedish text
classification and the actions of Virtanen et al. [21] to test the Finish model for Finnish text
classification.

Page 3 of 84

https://www.tv2.no/
https://www.vg.no/
https://www.vg.no/

The Norwegian BERT models NB-BERT and NorBERT, introduced by Kummervold et al. [10]
and Kutuzov et al. [11], respectively, have presented a new solution to tackle Norwegian NLP
problems. The models have been tested, among others, on sentiment analysis using a subset
of the Norwegian Review Corpus (NoReC) called NoReCFINE [25]. The models performed
significantly better than the multilingual trained BERT model by Devlin et al. [7] on that
specific task.

Various studies have explored the potential of machine learning for text classification in the
context of news articles, especially in the sports category. Research has demonstrated the effec-
tiveness of different machine learning algorithms for classifying news articles in specific languages
like Uzbek and Bengali [26, 27]. Other tasks have also been targeted, such as classifying sports
bloggers’ entries into appropriate sports categories [28]. A machine learning-based sport-athlete
evaluation model has also been proposed, combining game statistics and qualitative analyses
from news articles [29]. These studies underline the growing significance of machine learning
techniques in the news article and sports domain.

This thesis tackles text classification of information types found in Norwegian football news
articles. The topic has been explored by Nordskog et al. [12], who made a comparison between
the deep learning architectures, Recurrent Neural Networks (RNNs), and Convolutional Neural
Networks (CNNs), versus traditional machine learning algorithms, such as Naive Bayes and
Support Vector Machine (SVM). The deep learning algorithms achieved slightly better scores
at the evaluation metrics, but the training times of the models were significantly longer, and
the setup was more complex, making the results more of a mixed blessing.

The work mentioned in this section makes up the foundation of this thesis. The Transformer
architecture and the BERT iteration of the architecture, applied in the large Norwegian pre-
trained models, will be utilized in this thesis. The task is to train and compare traditional
machine learning models and the Transformer-based deep learning model, BERT, on the task
of text classification of Norwegian football articles. The aim is to provide results that can be
more definite in the performance gained by harnessing the power of the latest introduced models
in deep learning, especially for a lower-resource language such as Norwegian.

1.3 Objectives

The primary goal of this thesis is to demonstrate the potential of Norwegian pre-trained BERT
models for text classification on paragraphs from Norwegian football articles. The performance
of Norwegian pre-trained BERT models and traditional machine learning models will be com-
pared at multi-class and multi-label classification to explore the potential. The multi-class clas-
sification performance will be evaluated on an existing dataset of football article paragraphs,
called Arx, introduced by Nordskog et al. [12]. To evaluate the models on multi-label classifica-
tion, a new dataset containing paragraphs from football articles will be multi-label annotated
and presented as the Multi-Label Dataset.

The overall objective is to evaluate the ability of the Transformer-based BERT model to accu-
rately and efficiently process natural language for text classification in a lower-resource language
setting where there is limited data available. To achieve the objective, the performance of Nor-
wegian pre-trained BERT models will be compared to traditional machine learning models. The
product of this thesis will be an analysis of the model training results at two different football
paragraph classification tasks, including evaluation metric scores, resource utilization, and ease
of implementation.

Page 4 of 84

1.3.1 Research Question

Given the objectives, the core research question of this thesis is:

”How can Norwegian pre-trained BERT models be utilized for effective text classifica-
tion on paragraphs from Norwegian football articles, and how does their performance
compare to traditional machine learning models?”

This question primarily addresses two aspects. First, it aims to evaluate the effectiveness of
Norwegian pre-trained BERT models in the specific task of text classification, focusing on
paragraphs from Norwegian football articles. Given the success of BERT models in English
NLP tasks, exploring their potential in a lower-resource language like Norwegian can shed light
on their universal applicability and versatility.

The second part of the question compares the performance of these models with traditional
machine learning models. This comparative analysis can provide valuable insights into whether
the cutting-edge BERT models offer significant improvements over established methods in a
lower-resource language context.

To answer this question, Norwegian pre-trained BERT models will be fine-tuned to datasets
of Norwegian football articles, and their performance will be evaluated in classifying the text.
The results will be compared with those from traditional machine learning models applied to
the same task.

1.3.2 Scope and Limitations

The scope of the research is limited to paragraph classification within the domain of football
articles. Although the findings may have implications for other domains, the specific focus on
football articles allows for a targeted investigation into the effectiveness of Norwegian pre-trained
BERT models for this particular task.

The research is conducted on limited datasets for both the multi-class and the multi-label clas-
sification. The Arx dataset, consisting of approximately 5,500 football article paragraphs, is
utilized for multi-class classification evaluation, while the newly annotated Multi-Label Dataset
comprising just over 2,000 samples is introduced for the multi-label classification assessment.
The datasets’ relatively small size may impact the results’ generalizability to larger-scale appli-
cations.

The research assumes the availability of pre-trained Norwegian BERT models and does not
delve into the difficulties in the training process of these models. The pre-trained models are
utilized as a starting point for fine-tuning and evaluating these BERT models at the paragraph
classification tasks.

A semester-long master thesis inherently carries certain limitations due to its constrained time
frame. The short duration limits extensive data collection and thorough model selection and
experimentation, necessitating a focus on a narrow research question. The set time frame con-
strains the possibility of delving into too many additional experiments. Despite these constricts,
there are great opportunities to contribute to exploring the potential of Norwegian pre-trained
BERT models.

Page 5 of 84

1.3.3 Contributions

This thesis aims to contribute to the small body of research on Norwegian pre-trained BERT
models. By exploring the effectiveness of BERT models for lower-resource languages, it will
be possible to determine if NLP has reached a satisfactory level for sustainable solutions to
comprehensive text processing problems. Hopefully, the efforts of this thesis will inspire further
research in the field of NLP for lower-resource languages and further encourage the development
of pre-trained Transformer models for multiple other languages.

The specific contributions of this thesis are:

• A demonstration of the potential of Norwegian pre-trained BERT models at text classifi-
cation of football articles.

• The annotation and introduction of a multi-label dataset containing paragraphs from
football articles to present a more challenging and relevant domain-specific NLP problem
for the Norwegian pre-trained BERT models.

• An analysis of the performance of Norwegian pre-trained BERT models compared to tra-
ditional machine learning models for the tasks of multi-class and multi-label classification
of football articles.

Page 6 of 84

Chapter 2
Theory

The theoretical foundation of this thesis provides the essential background knowledge to navigate
the research presented in subsequent chapters. By offering an overview of relevant development
in the field, models, preprocessing steps, and evaluation metrics, this chapter seeks to create
a theoretical framework for this thesis, ensuring the reader is equipped to contextualize the
research findings and their significance.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a subfield of computer science and artificial intelligence
that concerns the interaction between computers and human language. The goal of NLP is
to enable machines to process, understand and generate human language. NLP involves a
range of techniques, including rule-based systems, statistical methods, and deep learning, each
representing different ways to tackle natural language tasks [30]. NLP is applied to many
problems, such as text classification, chatbots, machine translation, and speech recognition [31–
34].

The development of NLP can be divided into three waves. The first is the rational wave,
which relies on expert domain knowledge and rule-based systems in traditional computer science
fashion [35]. Weizenbaum introduced ELIZA, the first chatbot, in the 1960s, a great example
of a rule-based system for processing natural language [36]. ELIZA simulates a psychotherapist
that tries to engage a patient by reflecting their statements back at them. ELIZA knows nothing
of the real world, but by searching for ranked keywords and utilizing pattern transformation,
ELIZA can formulate human-like responses to statements.

7

Figure 2.1: A snippet of dialogue with ELIZA, the first rule-based chatbot, simulating a psy-
chotherapist, demonstrated by Weizenbaum [36].

The second wave of development in NLP, the empiric wave, is characterized by the use of
machine learning and the statistical analysis of natural language to discover patterns in texts
[37]. The idea of representing text documents as unordered collections of words became a part of
the NLP field, and methods such as Bag-of-Words (BoW) became fundamental concepts, which,
in short, is a way to represent texts as frequency distributions of words [38]. Maron introduced
the Naive Bayes algorithm in 1961 to use the occurrence of cue words in text documents to
classify the subject categories of each text [39]. The advent of Naive Bayes exemplifies the
empiric approach to NLP, where the statistical properties of words in texts are leveraged. This
methodology was state-of-art in NLP until very recently [35]. Still, it has limitations in handling
complex linguistic structures and large-scale data, which has prompted further development of
more advanced techniques.

The third and current wave in NLP is the application of deep learning. Deep learning has made
an impact on NLP by mimicking biological neural networks. Deep learning models such as
Recurrent Neural Networks (RNNs) and, more recently, Transformers, can handle a language’s
complex linguistic structures by capturing more contextual information [38]. Their approach
goes beyond the shallow treatment of words as numbers, as in techniques such as BoW. Instead,
deep learning models learn a representation of words and phrases from large corpora, which
allows them to capture the semantics of sentences and long-range dependencies of words [38].
This provides properties of generalization that can result in significant advances in NLP for
lower-resource languages such as Norwegian. Deep learning is used to train models to understand
the contextual properties of words, similar to how a person would learn them from reading a
corpus. Deep learning models have become more common to use as the availability of large
datasets has risen and high-resource computational units have become more obtainable [35].

Page 8 of 84

The first breakthrough during the third wave came with the introduction of the Word2Vec
model, which significantly reduced the resources needed to train deep learning models [40, 41].
Word2Vec was able to capture syntactic and semantic relationships between words using word
embeddings. These embeddings are short, dense vectors that enable classifiers to learn fewer
weights than earlier. These dense vectors proved to work better at a large variety of NLP tasks
thrown at them [42].

Word embedding models proved very powerful, but it was the introduction of Transformer
models, such as BERT [7] and GPT [16] that represents a significant advance in NLP in recent
times. Transformer models allow for modeling longer sequences of texts and capturing their
contextual information into word representations. Transformer models utilize a self-attention
mechanism that weighs the importance of different words in context, allowing the model to
capture long-range dependencies and complex relationships within the text effectively.

This third wave of development has made the use of NLP models mainstream. The popular
chatbot, ChatGPT [43] has spectacularly entered the market. ChatGPT, by reaching 100 million
monthly active users in two months, has become the fastest-growing consumer application
throughout history [6]. This further states the importance of Natural Language Processing
and the continued research in the field.

2.1.1 Common challenges in NLP

NLP has been rapidly evolving, and the most recent models in the field seem to understand and
generate human language easily. Despite the achievements accomplished in recent years, NLP
still faces several challenges that must be overcome to make these models better, especially for
lower-resource languages.

One of the significant challenges in NLP is handling large, unstructured datasets. NLP models
require vast amounts of data to learn linguistic patterns and capture the context of human
communication. The data used to train NLP models often comes from books, web pages, or
speeches. These unstructured collections of texts can be inconsistent, lack context, or be multi-
lingual, to name some challenges. All of these challenges can impact the model, as they are
hard to discover and fix.

Another major challenge in NLP is the high dimensionality of language data. To represent
text numerically, the only way a machine learning model can understand it, the text is usually
represented as a high-dimensional vector [38]. The text can be defined as a fixed-length vector
where each of the dimensions of the vector corresponds to a word in the corpora of texts. A
short sequenced text would have the same length vector as a longer text, but all words from
the vocabulary which are not used will be represented as 0. This makes the vector space large,
making learning and generalizing from the data much more complex for models.

2.2 Machine Learning

Machine learning refers to computer programs designed to learn from experience to complete
specific tasks. Their performance is measured by their ability to do so. In the context of
machine learning, the ”experience” an machine learning model learns from is represented by
a training dataset, which includes input and output pairs. By analyzing these examples, the
model learns to recognize patterns and generalize the patterns to new, unseen data. Machine

Page 9 of 84

learning can be compared to how people learn and adapt to new situations. Some typical
machine learning applications include self-driving cars, fraud detection, and personalized ads
and recommendations [44–47].

Key differences distinguish the abilities of humans and machines to learn. Machines require
specific training data to perform different tasks. The higher quality examples it uses to learn,
the more adept the machine learning model will be at handling the task. Machine learning is
exceptionally proficient in situations where hindsight is valuable, as it can identify patterns that
indicate potential outcomes far earlier than humans, resulting in greater predictive performance
[48].

2.2.1 Statistical Methods in NLP

Statistical methods have been widely used in the field of NLP. Some common techniques used
are Naive Bayes, Support Vector Machines, Logistic Regression, and Hidden Markov Models.
These models are all based on mathematical models that use statistical interference to learn
patterns in the language data.

Figure 2.2: A dataset partitioned into a training and testing split.

The models are trained on a large amount of labeled data, which are input and output pairs,
split into training data and testing data as seen in Figure 2.2. This is called the train-test-split
and is a fundamental technique in machine learning. Typically 70/80 % of the data is used for
training, with the remaining data being used for testing. The training data is fed to the model,
and each model’s parameters are adjusted to minimize prediction errors. Afterward, the model
is assessed by making predictions on the test set, which helps evaluate its performance on data
it has not encountered before. This is the process for both text data and other types of data,
but text data must be represented in a format that the statistical models can receive. This is
where text vectorization comes into play.

Page 10 of 84

Text Vectorization

Text vectorization is a processing step that converts textual data to numerical vectors that can
be used as input for machine learning algorithms. These vectors are usually high-dimensional,
where each dimension represents a feature from the text dependent on which text vectorization
technique is used. The most common techniques in NLP have been the Bag-of-Words (BoW)
technique and the Term Frequency-Inverse Document Frequency (TF-IDF) technique.

Figure 2.3: A demonstration of the Bag-of-Words technique. Figure showing how a text goes
from ordered to scramble, like in a bag, to a list of word frequencies. Figure inspired by Jurafsky
and Martin [49].

BoW is a simple vectorization technique that involves representing each text as a vector of word
frequencies [38]. As Figure 2.3 illustrates, BoW shuffles a structured text as though placing the
words into a bag and then stores the word occurrences in a vector. The vector dimension is
equal to the vocabulary size, and each value in the vector represents the number of occurrences
of each word in the text.

TF-IDF is similar to BoW, but it captures the importance of a word in a document relative to
its frequency of occurrence in other documents [38]. The TF-IDF score is the product of how
often a word appears and the rarity of the word across the whole document collection. The
higher the TF-IDF score of a word in a text, the more likely the word is to be essential and
informative.

Page 11 of 84

Overfitting

Overfitting is a general issue in machine learning, characterized by the model learning the
training data so thoroughly that it struggles to generalize to new, unseen data [38]. This results
in the model not learning underlying patterns in the data but adapting to learning the noise
and obscurities of the specific training data instead. In the case of overfitting, the model has
become too complex, which means it will not generalize to new data. This is why the dataset
used for training a machine learning model is split into a training and a testing set.

A less common but problematic issue is when the model overfits the testing data. This can
happen due to excessive parameter tuning, leading to a set of parameters and a model that
performs extraordinarily well at evaluating the specific test split. These parameters might
translate poorly to performance on other unseen data.

The best way to prevent overfitting is to employ cross-validation [38]. A good choice of cross-
validation is k-fold cross-validation, which evaluates the model using different subsets of the
data. K-fold cross-validation limits the use of the test data for finding the best model param-
eters. This method divides data into training-, validation-, and testing data. The testing split
is set aside for the ultimate testing of the model. The other two divisions are chosen from the
remaining data in a user-specified number of iterations where the validation and training splits
differ. Models are trained using the different training- and validation splits and the average per-
formance of the various models is used to find parameters. Using k-fold cross-validation ensures
that the parameters are not overfitting the model to a specific data split. The best parameters
found are used to train a model on the combination of the training- and validation data. The
resulting model is evaluated on the testing data to check if the model can be generalized to
unseen data.

The Sparsity Problem

Another challenge that arises for statistical machine learning methods is the sparsity problem
[38]. The sparsity problem, which is frequent in NLP, occurs because the feature space is large,
but the data is typically sparse. This can be explained as some words in a text dataset occurring
so infrequently that the model cannot learn the patterns they form. This causes many words
to have low frequency and, therefore, an insignificant impact on the model. This can cause
the model to overfit the training data, learning the noise in the data instead of the patterns,
resulting in poor performance on new, unseen data. The sparsity in the vector space, which
is the numerical representation of the text data, also makes the model more computationally
expensive to train and evaluate, mainly when dealing with many features.

Addressing the sparsity problem in traditional machine learning is done by carefully modifying
the features inputted into the model. Stemming, lemmatization, and stop word removal are
all methods that can help reduce the dimensions of features. Stemming reduces words to their
base form by removing suffixes and prefixes. Lemmatization reduces words to their dictionary
form (lemma) rather than the simple root form produced by stemming. For example, given
the word ”babies”, stemming might produce ”babi” as the root, whereas lemmatization would
produce ”baby”. Stop word removal removes commonly used words that do not contribute
to understanding the context, such as ”but”, ”if” and ”or”. All these methods help reduce
the dimensionality of the feature space and aim to improve the quality of the features. These
methods are only suited for statistical machine learning models that do not consider word order.

Page 12 of 84

2.2.2 Deep Learning

Deep learning is a technique that enables models to identify patterns in raw data by using
non-linear modules to transform the data at multiple levels of abstraction [50]. This can be
interpreted as deep learning models finding and learning different data features without hu-
man intervention. This provides universal learning, robustness, generalization capabilities, and
scalability benefits, making it suitable for multiple domains without requiring precise feature
engineering [51].

Figure 2.4: Raw data is processed through the different levels of a two-layer neural network.
Figure inspired by Dinov [52].

A deep neural network, as depicted in Figure 2.4, is a computational model that consists of
multiple layers of artificial neurons or nodes, inspired by the biological brain’s functionality
[52]. These layers process input data and generate an output, mimicking the brain’s response
to various stimuli and its ability for parallel processing.

The fundamental processing unit in this network is the artificial neuron [53]. The neuron is
responsible for receiving inputs, processing them, and generating output. The inputs to a
neuron are multiplied by corresponding weights, which are parameters within the network that
define the strength of the connections between neurons. Weights are initially set to random
values and are adjusted during the training process to reduce prediction errors [38].

Each neuron also has a bias, a scalar value that allows the activation function’s output to be
shifted. This bias plays a crucial role in improving model accuracy, as it allows the neuron to
make better predictions.

The weighted inputs and bias are summed up and passed through an activation function. This
function introduces non-linearity into the network, which helps the network learn complex
patterns in the data [38]. The output of the activation function is given by:

a = f
(∑

(weights× inputs) + bias
)

(2.1)

Page 13 of 84

where a is the activation, f is the activation function, the sum is over all inputs to the neuron,
weights is the weight parameters, and bias is the bias parameter.

Training a deep neural network involves repeatedly feeding data through the network for a
specified number of iterations, commonly referred to as epochs [38]. At each epoch, the network’s
current output is compared to the targeted output, and the variation, quantified by a loss
function, is utilized to update the network’s parameters. The loss function L, which measures
the difference between the network’s predictions ypred and the true labels ytrue, in this case
cross-entropy loss, is given as follows:

L = − 1

N

N∑
i=1

ytruei log(ypredi) + (1− ytruei) log(1− ypredi) (2.2)

where N is the number of samples, ytruei is the true label, and ypredi is the predicted probability
of the positive class.

An optimization algorithm that adjusts the weights and biases in the network is used to min-
imize this loss [38]. One of the key algorithms used in this optimization process is called
backpropagation. Backpropagation calculates the gradient of the loss function with respect to
each weight and bias in the network. The gradient, denoted by ∇, gives the direction in which
the weights and biases should be adjusted to decrease the loss. The term ”backpropagation”
refers to how the adjustments are propagated across all the layers of the network, starting from
the output layer and moving backward to the input layer [38]. This method ensures that each
layer contributes to the adjustments relative to its contribution to the total error.

The general update rule for a weight vector w in the network using a learning rate α is:

wnew = wold − α∇L (2.3)

where ∇L is the gradient of the loss function with respect to the weights in w. The learning
rate α is a hyperparameter that controls the step size during each iteration in the gradient
descent process. A suitable learning rate allows the network to converge to a minimum of the
loss function efficiently [38].

An optimizer uses these gradients to perform the actual updates to the weights and biases.
Different optimizers have different ways of applying these updates, often to achieve faster con-
vergence or better generalization [38].

The Activation Function

The activation function is a crucial part of a neural network. The activation function acti-
vates the neurons in the network if the input is large enough and transforms the weighted and
aggregated inputs to a new output, making the neural network capable of learning non-linear
relations and complex tasks [52].

The simplest activation function is called the threshold function. The threshold function, rep-
resented by f(x), operates based on the value of the input x, which is the aggregated weighted
input to a neuron. The function is defined as follows:

f(x) =

{
0, if x ≤ 0

1, if x > 0
(2.4)

Page 14 of 84

In the context of the neural network, this function is applied to the input of each neuron, and
it outputs a binary result based on whether the input is less than or equal to zero, or greater
than zero. The threshold function’s basic binary decision serves as an essential foundation for
comprehending more intricate activation functions.

The sigmoid function, represented by f(x), smoothly transitions its output from 0 to 1 as the
input x increases. This function is expressed as follows:

f(x) =
1

1 + e−x
(2.5)

The sigmoid function is utilized to manage the neuron’s output in a way that keeps values
between 0 and 1, facilitating the interpretation of the output as a probability [38]. The smooth
gradient of the sigmoid function also assists in the effective training of the neural network via
backpropagation, as it provides a clear direction for the update of the weights.

−4 −2 2 4 6

−0.5

0.5

1

1.5

x

f(x)

(a) Threshold Activation Function

−4 −2 2 4 6

−0.5

0.5

1

1.5

x

f(x)

(b) Sigmoid Activation Function

Figure 2.5: Activation Functions

Equation 2.4 displays the simplest form of an activation function: The threshold function. While
the threshold function does activate a neuron once a certain threshold is met, its binary nature
limits its usefulness in many machine learning scenarios. This limitation arises from its inability
to differentiate between input values that are far from or near the threshold, which can be critical
in complex problems that require nuanced interpretations of the input data. More commonly
used are continuous functions such as the sigmoid function (Equation 2.5), the tanh function,
and the rectified linear unit (ReLU) function. These functions provide smoother changes to the
inputs, causing smoother decision boundaries in classification and improved nonlinear mapping
[54]. The difference between the binary step function and the sigmoid function is demonstrated
in Figure 2.5.

The Optimizer

The optimizer is a numerical algorithm used to adjust the weights and biases of the model,
to minimize the loss function. The optimizer utilizes the gradients to determine how to opti-
mally update the weights and biases. An appropriate optimizer can significantly impact the
performance and convergence speed achieved during training, gaining both model accuracy and
efficiency.

Page 15 of 84

The most basic optimizer is Stochastic Gradient Descent (SGD) which updates weights and
biases by stepping proportional to the negative of the calculated gradient. The learning rate
of the SGD optimizer, which is set before training, scales the negative gradient to control the
step size. The chosen learning rate substantially impacts the convergence of the model and may
hinder the optimization by getting stuck in local minima. Convergence means that the model
has found a set of parameters that minimizes the loss functions.

More advanced optimizers, such as the Adaptive Moment Estimation (Adam) optimizer, reduce
the risk of non-convergence by applying an adaptive learning rate [55]. The Adam optimizer
also calculates a moving average of previous gradients that can be utilized to give momentum to
the model that can help it pass through local minima and arrive at convergence faster. Another
feature of Adam is using a moving average of the squared gradient to adjust weights and biases
adaptively. This causes the Adam optimizer to be more efficient at finding the optimal weights
and biases for the model. The Adam optimizer can also be more robust if a non-optimal learning
rate is chosen from the start [55].

Even though Adam is the more robust choice of optimizer compared to SGD, it is still essential
to choose an appropriate learning rate for the problem at hand and the model architecture.
Choosing poorly can still lead to slow convergence or divergence. However, in general, the
Adam optimizer provides better performance and faster convergence than the SGD optimizer.

The Vanishing Gradient Problem

The vanishing gradient problem is an issue that may occur in deep learning during training.
The gradients calculated during backpropagation indicate how to adjust the weights and biases
to achieve optimal performance. The vanishing gradient problem occurs when the gradient
becomes very small as it passes through the network layers. The early layers of the network
receive too small gradients to effectively update its weights and biases, leading to inefficient
training and poor model performance [38].

One approach to address the vanishing gradient problem is using advanced activation functions,
such as ReLU and its variants [38]. Careful weight initialization strategies, like Xavier or He
initialization, and batch normalization can also help maintain stable gradients during training.
Another solution is incorporating residual or skip connections that mitigates the problem by
allowing gradients to flow directly to earlier layers. The Transformer architecture also addresses
the vanishing gradient issue by employing the self-attention mechanism and layer normalization.
This is further explained in Section 2.2.3.

Transfer Learning

Transfer learning is a method in machine learning which allows a model to be pre-trained on
a large dataset to be able to be later adapted to related but different problems [56]. The idea
is to leverage general knowledge about a domain during pre-training, improving performance
when learning a new task where less data is available.

Transfer learning is most commonly associated with deep learning, where the lower layers of a
network can learn to extract many valuable features from the data. This results in a pre-trained
model, which often generalizes well when fine-tuning the models with new data for other tasks.
Using pre-trained models can save significant time and computational resources, often leading
to better generalization ability, especially when labeled data is limited [57].

Page 16 of 84

Recurrent Neural Network

Recurrent Neural Network (RNN) is a neural network specialized in processing data sequences,
such as time series or text data [38]. It can be characterized as a predecessor to the Transformer
architecture for NLP tasks. It can capture sequential relationships and dependencies within
sentences and paragraphs, but it also possesses some limitations. The contextual ability of RNNs
is achieved by having hidden states, which are updated. At the same time, the network processes
each element in the sequence in its original order, implementing a memory-like functionality.
The name ”Recurrent Neural Network” highlights that the information in the network is passed
through several times in the memory of the hidden states, giving the model a sense of recurrence.

The major limitation of RNNs is the difficulty of capturing long-term dependencies due to the
vanishing gradient problem [58]. The result is that the model forgets context from earlier parts
of the text, which might be essential. The other limitation is that RNNs depend on processing
the input data sequentially, which is computationally expensive and not parallelizable, resulting
in an increased runtime [59].

The limitations of RNNs have been addressed with variants of RNNs such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks. LSTM introduces a memory
cell structure allowing more extended access to previously processed information [60]. This
structure enables the LSTM network to selectively remember essential details and forget irrel-
evant information. GRU is a simplification of LSTM, which with fewer computations, achieves
the same goal of remembering only the critical information [61]. These architectures provide
RNNs with better tools for solving NLP problems, but the Transformer architecture has several
advantages compared to LSTM and GRU [62].

2.2.3 Transformers

The Transformer architecture was introduced by Vaswani et al. [15] and has been groundbreak-
ing due to its excellent performance and ability to process sequential data non-sequentially
with the help of the attention mechanism. The attention mechanism was initially developed to
enhance the performance of RNNs, by addressing the vanishing gradient problem by helping
the model to focus on specific, relevant parts of the text sequence when generating output.
It was introduced by Bahdanau, Cho, and Bengio [2]. The attention mechanism weights the
importance of each token in a text in the context of the word being generated as output. The
paper by Vaswani et al. [15] was called ”Attention is all you need” and proposed to abandon
the recurrent connections and only rely on the attention mechanism, with a few modifications.
The Transformer models proved capable of being trained on vast amounts of textual data and
learning general contextual representations of word sequences from almost any text before being
fine-tuned to specific NLP tasks.

Page 17 of 84

Figure 2.6: The general architecture of a Transformer as presented by Vaswani et al. [15].

The Transformer architecture comprises a series of Encoder and Decoder layers forming a struc-
ture as seen in Figure 2.6. The stack of Encoders and Decoders can comprise an arbitrary
amount of each. Still, the original architecture by Vaswani et al. [15] utilizes six Encoders and
six Decoders instead of the pair of two seen in Figure 2.6. Optimizing the numbers of Encoders
and Decoders is done through hyperparameter tuning. Figure 2.6 also shows how the input
of both the Encoder stack and the Decoder stack has its own Embedding and Encoding layer,
which converts the inputted sequence of text into a vector space of a fixed length and adds
positional information using positional encoding. The general task of the Encoder stack is to
generate a sequence of hidden representations that encapsulates the contextual information of
the input sequence. In the original Transformer architecture, the output of the Encoders is
passed to the Decoder stack, generating an output sequence that aims to be contextually ap-
propriate based on the information in the passed sequence. In short, the Transformer utilizes
the Encoder and Decoder structure for the Encoder to ingest the inputted text and the Decoder
to generate new text using the Encoder output.

Page 18 of 84

Figure 2.7: The layers and connections that make up the Encoder.

Each Encoder contains multiple layers responsible for processing the sequence and generating the
contextual representations, as seen in Figure 2.7. The main components are the self-attention
mechanism and a feed-forward neural network. The self-attention mechanism adapts the at-
tention mechanism created by Bahdanau, Cho, and Bengio [2]. The self-attention mechanism
works by computing a weighted representation of the inputted elements for each element in
the sequence. It means that all elements get a numeric representation of the relationship be-
tween itself and all other elements in the sequence. This enables both parallel processing and
contextual modeling.

The self-attention mechanism computes the weighted representation of the query (Q), the key
(K), and the value (V) vectors, which are high-dimensional numeric representations derived
from the input data. The function is expressed as follows:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V (2.6)

The query contains the token in focus, the key comprises representations of the remaining
token of the context, and the value vector carries the information to be extracted based on the
similarity between the query and the key vectors. The dot-product is calculated between Q and
the transposed K (KT) to find the similarity between them, with a higher value indicating a
higher similarity. The dot-product is divided by the square root of the dimensionality of K (dk)
to prevent it from being too large, which could lead to the vanishing gradient problem. The
product of the computations until now is normalized using the softmax function, keeping the
sum of similarity scores adding up to 1. This ensures that the self-attention mechanism focuses
on the critical keys. The last step is multiplying the V vector with the normalized similarity
scores from the previous steps. This is the self-attention mechanism’s output, a relevance-
weighted value vector. In practice, the vectors Q, K, and V are matrices with differently
weighted versions of the vector. This enables the model to simultaneously calculate multiple
attention scores that weigh different aspects of the input. This helps the model learn more
complex patterns and relationships in the input sequence.

Page 19 of 84

The feed-forward neural network in the Encoder further processes the attention weights created
in the self-attention layer by applying non-linear transformations to the representations, which
allows for capturing complex patterns and relationships in the input sequence. The architecture
of the Encoder also contains a residual connection between the self-attention layer and the feed-
forward layer, followed by a normalization layer. The residual connection is a layer bypass that
allows the model to learn residual information and retain the input information better. The
normalization layer is applied to improve the training and generalization performance of the
model.

Figure 2.8: The sequential computations of an RNN model versus the parallel computations of
a Transformer model showcased with the example sequence; ”Never give up”.

Transformers can perform parallel processing as opposed to RNNs, due to the application of the
self-attention mechanism, eliminating the need for recurrent connections. This is beneficial, as
seen in Figure 2.8, as it can reduce the training time of the model by utilizing multiple processing
units by avoiding the recurrent connections [15]. Using multiple processing units means that the
model can take advantage of modern hardware, such as Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs), significantly speeding up computation times. The Transformer
architecture is also better at capturing long-range dependencies than the LSTM and GRU
architectures because it does not lose information over longer sequences [15]. Transformers are
also easier to train than RNNs because they require less hyperparameter tuning or changes to
the model architecture to achieve good results, compared to RNN architectures such as LSTM
and GRU. All of these factors make Transformers a good choice for transfer learning. By pre-
training the model on large corpora and learning general contextual language understanding,
the Transformer models can easily be fine-tuned for more specific NLP tasks. These are all
reasons why the NLP research field now considers Transformer models as the new de facto
solution to many NLP problems [7, 15, 16].

Page 20 of 84

2.2.4 BERT

Figure 2.9: The general architecture of a BERT model. The number of Encoder layers can be
changed.

The BERT model, short for the Bidirectional Encoder Representations from Transformers
model, introduced by Devlin et al. [7] takes the concept of the Transformer and its archi-
tecture into their implementation of only the Encoder stack, as seen in Figure 2.9, in a new
pre-trained deep learning model. The BERT model stands out from the original Transformer
model by training to capture the bidirectional context of the sequence, thus evaluating the se-
quence in both directions. The bidirectional context understanding is learned through Masked
Language Modeling (MLM). MLM is a self-supervised task where some tokens in a sequence are
randomly masked before the model tries to predict the hidden token based on the surrounding
tokens and the contextual information they present. The MLM task also makes the pre-trained
BERT model easier to fine-tune for many NLP tasks that involve token classification, such as
Named Entity Recognition (NER) and Part-of-Speech (POS) Tagging. The BERT model is also
trained at Next Sentence Prediction, which involves learning the relationship between sentences
by trying to predict if two given sentences are proceeded by each other. This makes the model
achieve a better understanding of sentence-level semantics and coherence of text, which also
provides benefits to different downstream tasks that the model can be fine-tuned for.

The BERT model presented by Devlin et al. [7] comes in two versions. The BERTBASE com-
prises 12 Encoder layers with a hidden size of 768 and a total of 110 million parameters. The
BERTLARGE , on the other hand, comprises 24 Encoder layers with a hidden size of 1,024,
meaning there is a total of 1,024 neurons in each hidden layer. The model contains a total of
340 million parameters. The more significant number of layers and hidden size can increase
the model’s capacity and allow it to learn more intricate patterns at the cost of more com-
putational resources. Both the original BERT model was trained on English text from books
and the English Wikipedia [63]. Devlin et al. [7] also introduced a model named mBERT,
which was trained on a multilingual corpus of 104 languages, including Norwegian. The exact
size of the Norwegian portion of the dataset is unknown, but it corresponds to the size of the
Norwegian Wikipedia pages. The Norwegian Wikipedia is relatively small compared to other
high-resource languages causing a disadvantage when fine-tuning the mBERT model for Nor-

Page 21 of 84

https://en.wikipedia.org/

wegian NLP tasks. The mBERT also comes in two versions, mBERTBASE and mBERTLARGE ,
with the same configurations as the original models.

NB-BERT

The Norwegian National Library embarked on a project to develop a BERT model trained on
Norwegian text. The Norwegian National Library has a massive Norwegian corpus for training
such a model called The Colossal Norwegian Corpus [64]. The corpus includes Norwegian
newspapers, journals, and books spanning the last 200 years, which makes it a perfect subject
for being the basis of a pre-trained BERT model that represents general contextual information
about the Norwegian language. The distribution of the texts between the two language variants
in Norwegian, ”Bokm̊al” and ”Nynorsk”, is estimated to be about 83 % Norwegian Bokm̊al and
12 % Norwegian Nynorsk, with the remaining 5% being English or other Nordic languages. The
corpus contains over 18 billion words.

The NB-BERT is developed by Kummervold et al. [10] using the same architecture as the
original BERT model [7]. The goal of the model was to create a robust model that excelled in
all Norwegian NLP tasks. The NB-BERT model is initialized using the weights derived from the
mBERT model to harness the cross-lingual capabilities of the mBERT model and give the NB-
BERT model a better starting point than random weights would accomplish. This is theorized to
improve the robustness of the model when coming across new, unseen words [10]. The model was
enhanced beyond the initial training of the mBERT model by employing techniques introduced
by You et al. [65], which involved increasing the batch size during pre-training and using a layer-
wise adaptive moments base (LAMB) optimizer. The LAMB optimizer addressed problems
associated with large learning rates with the standard Adam optimizer, such as instability and
divergence. NB-BERT comes in two versions, NB-BERTBASE and NB-BERTLARGE , where
the base version has a total of 177 million parameters and the larger version has a total of 355
million parameters.

NorBERT

The NorBERT model was developed simultaneously as the NB-BERT by Kutuzov et al. [11]
at the University of Oslo in the NorLM initiative. The model had the same goals as the NB-
BERT model but utilized different training data. The NorBERT model was trained using the
”Norwegian News Paper Corpus” from Spr̊akbanken containing 160 million words [66]. The
model was also trained on a dump of the Norwegian Wikipedia of 40 million words. The
architecture used for NorBERT was the same as the original BERT model with 12 Encoder
layers and a hidden size of 768. The NorBERT model contains in total 111 million parameters.

The NorLM initiative later introduced a new version of this model called NorBERT2 at Huggin-
face.co. The new model is trained on the Norwegian Colossal Corpus as the NB-BERT model
[64]. The NorBERT2 also has 12 Encoder layers and a hidden size of 768 but contains 124
million parameters.

Page 22 of 84

https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://huggingface.co/ltg/norbert2
https://huggingface.co/ltg/norbert2

2.3 Evaluation Metrics

Metrics are used to evaluate the performance of a machine learning model. They are used to
assess the quality of the resulting predictions, to compare different models, and to tune models
for optimal performance. There are various metrics for different types of machine learning
problems. The choice of metrics can impact the optimization process, the model selection, and
the general interpretation of the model’s capabilities. Choosing the wrong metrics can also lead
to a biased model, which aligns differently with the goals of the modeling project.

2.3.1 Accuracy

Accuracy is a widely used evaluation metric for classification problems. It measures the pro-
portion of correctly classified samples out of the total number of samples in the prediction.
Accuracy can be expressed as follows:

Accuracy =
Number of correctly classified instances

Total number of instances
(2.7)

Accuracy is suitable for balanced datasets as it gives a realistic impression of the model’s
capabilities and performance. In the case of imbalanced datasets, accuracy can be misleading
and harder to interpret [67]. This can be caused by one label in the dataset accounting for most
of the samples; thus, predicting all samples to the dominant label can still give a reasonable
accuracy. This does not mean it is a good model because it does not consider the lesser common
but still important labels. In the case of multi-label classification, accuracy only considers the
samples where all labels are correctly classified. This makes the application of accuracy as
a metric for multi-label classification strict, less informative, and less preferred to assess the
performance of multi-label models.

2.3.2 Precision

Precision is another evaluation metric utilized in classification problems. Precision is better
at evaluating imbalanced datasets where it is essential to avoid false positives [67]. Precision
measures the proportion of true positive prediction out of all the actual positive samples in the
dataset as illustrated in the equation as follows:

Precision =
Number of true positives

Number of true positives + Number of false positives
(2.8)

A high precision indicates that the model is good at predicting positive instances correctly
[67]. Precision can be formulated as how many of the samples predicted as positives are indeed
positive. Precision is important, but it should not be interpreted alone as it is closely related
to recall.

2.3.3 Recall

The recall is the measure of the proportion of correct positive instances out of all samples
predicted as positive, as seen in the equation as follows:

Recall =
Number of true positives

Number of true positives + Number of false negatives
(2.9)

Page 23 of 84

The recall can be considered as how many relevant samples are actually in the positive predic-
tions. A high recall score indicates that the model can identify positive samples and minimize
false negative samples [67]. To quickly identify the trade-off between precision and recall, F1-
score is introduced.

2.3.4 F1-score

The F1-score is an evaluation metric used especially for imbalanced datasets when both false
positives and false negatives must be considered. The F1-score is the harmonic mean of the pre-
cision and recall score, which means that it weights both metrics equally to evaluate the balance
between them [38]. The calculation of the F1-score is illustrated in the following equation:

F1 score = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(2.10)

The F1-score, as a result of being a product of precision and recall, is high when both precision
and recall are high. This is a valuable metric for tuning a model if the balance between precision
and recall is more important than getting the best accuracy, which is often the case in real-life
scenarios.

While the F1-score efficiently balances precision and recall, it doesn’t account for true negatives,
which could be a limitation in scenarios where both classes in a binary classification problem
are equally vital. Therefore, depending on the situation, accuracy might be more suitable.

2.3.5 Precision, Recall and F1-score in Multi-Class Problems

To utilize metrics such as precision, recall, and F1-score to evaluate multi-class and multi-label
classification models, the metrics must be calculated by class and then averaged to give a general
model score. This is achieved by multiple means, two of which are given by the micro-average
and the macro-average.

The following equations depict the different micro-average methods for the precision, recall, and
F1-score:

Micro-average precision =

∑
TP∑

TP +
∑

FP
(2.11)

Micro-average recall =

∑
TP∑

TP +
∑

FN
(2.12)

Micro-average F1-score = 2× Micro-average precision×Micro-average recall

Micro-average precision +Micro-average recall
(2.13)

In these equations, TP stands for the total true positives, FP for the total false positives, and
FN for the total false negatives across all classes. The metric is computed globally by counting
the total true positives, false negatives, and false positives.

The micro-average method can be used to score the overall performance of a multi-class or multi-
label classifier [38]. This is achieved by aggregating all instances where the model predicted a
sample to either belong or not belong to each class, as seen in Equation 2.11, Equation 2.12,
and Equation 2.13. The micro-average assigns equal importance to all predictions, which can
be crucial in imbalanced datasets.

Page 24 of 84

The equations for the macro-average methods for the same metrics are given as follows:

Macro-average precision =

∑n
i=1 Precisioni

n
(2.14)

Macro-average recall =

∑n
i=1Recalli

n
(2.15)

Macro-average F1-score =

∑n
i=1 F1-scorei

n
(2.16)

Here, n is the total number of classes, and Precisioni, Recalli, and F1-scorei are the precision,
recall, and F1-score for each individual class i, respectively.

The macro-average method calculates the different metrics independently for each label. Then
it takes the average as seen in Equation 2.14, Equation 2.15, and Equation 2.16. This results in
the evaluation treating all classes equally, not considering the class size [38]. This ensures that
larger classes do not overshadow smaller classes, but it can also give too much importance to
classes that are so rare that they should instead be removed from the model.

Weighted-average can also be used to evaluate classifiers. The weighted-average considers the
size of each class and weights the impact of the calculated scores according to their occurrences
in the data. This is useful to account for imbalanced datasets and still evaluate the classwise
performance of the model [38]. The equations for the weighted-average methods are as follows:

Weighted-average precision =
n∑

i=1

wi × Precisioni (2.17)

Weighted-average recall =

n∑
i=1

wi × Recalli (2.18)

Weighted-average F1-score =
n∑

i=1

wi × F1-scorei (2.19)

In these equations, wi is the weight for each class i, which can be calculated as the propor-
tion of instances in the class i out of all instances in the dataset, n is the number of classes,
and Precisioni, Recalli, and F1-scorei are the precision, recall, and F1-score for the class i,
respectively.

Page 25 of 84

Chapter 3
Data Exploration

This chapter introduces the football article datasets used to train and evaluate the models
presented in this thesis. This chapter also includes assumptions and limitations made during
the exploratory data analysis. All data exploration is carried out in Python and published to
GitHub.

Dataset Classification Task Samples No. of Labels Data Source

Arx Multi-Class 5526 12 Simula.no
Multi-Label Dataset Multi-Label 2009 22 Github.com

Table 3.1: Dataset Information

The data used for this thesis is based on the two datasets displayed in Table 3.1. The first
and original Arx dataset [12] was collected by Aanund Nordskog, which inspired this thesis and
the further collection of the supplementary dataset presented in this thesis. The new dataset
is meant to tackle and solve apparent problems with the first dataset and give the task of
classifying paragraphs from football articles a new and more complete approach. Both datasets
contain annotated paragraphs tagged as football articles from Norwegian online news providers.

3.1 The Arx Dataset

The Arx dataset is a collection of paragraphs from football articles fetched from VG.no, a major
Norwegian newspaper, and TV2.no, a Norwegian commercial TV channel and news provider,
introduced by Nordskog et al. [12]. The data was collected using the built-in Python library
Requests [68] to fetch the HTML code from all articles tagged with ”football”. The relevant
paragraphs from each article were extracted using the library Beautiful Soup [69] in Python
and stored in a database. The Arx dataset comprises articles published in the interval between
22.07.18 and 17.09.18. Note that the short period of the publications included in the dataset can
impact models trained with the data. Events such as international cups and transfer markets
are seasonal and do not appear consistently throughout a year of football. Some events might
not be represented realistically in a model trained with the Arx dataset.

The Arx dataset is labeled through the Arx web app, a graphical user interface (GUI), also
created by Nordskog et al. [12]. The GUI made the filtering and labeling of the dataset easier.

26

https://github.com/hellund/sports-article-classification
https://datasets.simula.no/Arx/
https://github.com/hellund/sports-article-classification
https://www.vg.no/
https://TV2.no/

The dataset consists of 5,526 labeled paragraphs and is available online at Simula.no [70]. The
labeling is stated at Simula as being performed by a single person who is familiar with football
[70]. Each paragraph is labeled as one of the following 12 classes;

• Goal/Assist

• Quotes

• Transfer

• Irrelevant

• Ignore

• Player Detail

• Club Detail

• Chances

• Injuries

• Red/Yellow Card

• Club Drama

• Personal Drama

Figure 3.1: Three examples of paragraphs and classes from the Arx dataset by Nordskog et al.
[12].

The difference between paragraphs can be seen in Figure 3.1. Some paragraphs are short and
concise, such as those labeled with the transfer class. Other paragraphs are descriptive and
long, such as the paragraph labeled quote in Figure 3.1, painting a picture of the match and the
surrounding atmosphere. The total variation of paragraphs is vast and makes labeling difficult.

The Arx dataset offers a diverse range of paragraphs, providing valuable data for training mod-
els to recognize different information types in football articles. However, a limitation is the
assignment of only one label per paragraph, even though a paragraph could contain informa-
tion relevant to multiple classes. This single-label approach could oversimplify complex texts
and potentially limit the model’s ability to accurately understand and classify multi-topical
paragraphs. Moreover, the fact that a single individual performed the labeling might introduce
bias and inconsistency in the dataset. Lastly, the dataset’s relatively short timeframe might
only represent some football events realistically, affecting the model’s generalizability.

Page 27 of 84

https://datasets.simula.no/arx/

3.1.1 Label Distribution in The Arx Dataset

A challenge with labeling an inhomogeneous dataset is the imbalance in the labels used. To
catch the essence of each paragraph into a single class, the person labeling must be very decisive
and obedient to the labeling guidelines, which in many cases, causes some labels to be more
frequent than others.

The Arx dataset contains a total of 12 different mutually exclusive classes. Each paragraph is
labeled with one class, and the total sum of labeled paragraphs is 5,526.

Figure 3.2: Distribution of labels in the Arx dataset.

Page 28 of 84

Figure 3.3: Cumulative sum of labels in the Arx dataset ordered by the number of samples the
label supplies the sum in decreasing order. The labels that compose 80.3 % of the data are
displayed in blue. The remainder of the data is displayed in red.

Figure 3.2 shows the distribution of the different classes. Figure 3.3 indicates the imbalance in
the distribution in the Arx dataset in a cumulative percentage graph. The five most extensive
classes, Goal/Assist, Quote, Transfer, Irrelevant, and Ignore, make up a total of 80.3 % of all the
classes in the dataset. The remaining seven classes only make up 19.7 % of the labels causing a
significant challenge to the classification problem with the introduction of low-sampled classes.

3.2 The Multi-Label Dataset

The new data is collected to create a more challenging classification task for assessing the models
in this thesis. The dataset consists of paragraphs from football articles at VG.no published
between 01.01.2022 and 01.01.2023 and is referred to as the Multi-Label Dataset. The total
data collected is 10,147 paragraphs; of these, 2,005 have been annotated. The paragraphs have
been annotated in a random order to prevent seasonal football events from being too prevalent
in the data. The data have been annotated with multiple labels, making the task associated
with the dataset multi-label classification instead of multi-class classification, in contrast to the
Arx dataset.

A new set of labels has been chosen for the Multi-Label Dataset compared to the Arx dataset.
This decision is primarily motivated by a desire to capture the multi-dimensional nature of the
football articles more accurately. The original Arx labels were somewhat restrictive, limiting
their ability to represent these articles’ complexity adequately. A more comprehensive labeling
schema allows for more nuanced classification, acknowledging the multifaceted elements within
the paragraphs. Consequently, this enhances the understanding of the articles and broadens
the potential applications of the dataset. The possible labels for each paragraph are as follows:

Page 29 of 84

• Booking: Instances when a player receives a yellow or red card during a football match.

• Chance: Potential goal-scoring opportunities or significant plays during a game.

• Commentary: Play-by-play narrations or remarks that describe the events happening
in a game.

• Description: Detailed accounts or explanations about events, scenarios, or subjects re-
lated to football.

• Garbage: Irrelevant or nonsensical text that does not contribute to the context of the
dataset.

• Goal: Instances when a goal is scored during a football match.

• Injury: Situations where a player gets hurt during a match or describe a scenario affected
by an injury.

• Link: Instances where a URL or hyperlink is present in the text.

• Next game: Text that discusses or mentions upcoming football matches.

• Odds: Predicted probability of specific outcomes in a game, commonly used in betting
contexts.

• Opinion: Personal views, feelings, or attitudes towards a particular subject.

• Quote: Text that contains a direct citation from a person involved in football, such as a
player or a coach.

• Rumour: Unverified information or speculation, typically about player transfers or up-
coming matches.

• Set-piece: Controlled restarts during a football match, such as free kicks, corner kicks,
or penalty kicks.

• Statement: Formal or unofficial announcements made by clubs, players, or expert com-
mentators.

• Statistics: Numerical data providing information about various aspects of football, such
as player performance, team performance, or match outcomes.

• Storytelling: Text that provides a narrative or descriptive account of events.

• Substitution: Instances when one player is replaced by another during a football match.

• Summary: Condensed reports or overviews of match events or other football-related
topics.

• Table: Instances where league standings, match results, or other tabulated data are
discussed.

• Transfer: Discussions about the movement of players between different clubs.

• VAR: Video Assistant Referee, a technology used in football to review decisions made by
the head referee with the help of video footage.

Page 30 of 84

Figure 3.4: The different levels of information the labels aims to capture.

There are a total of 22 different labels that each paragraph can be assigned to. The labels
are split into different levels of information types. The levels are paragraph type (level 1),
communication type (level 2), paragraph content (level 3), and paragraph action (level 4), and
together they form a hierarchy, as seen in Figure 3.4. The annotated labels only include the
communication type, paragraph content, and paragraph action labels, as they are the ones that
can be distilled from a paragraph. The hierarchy of the labels is not utilized to restrict the
annotation in this thesis, as paragraphs can be labeled with multiple labels from the same level.
Still, it shows that the paragraphs are more likely to be annotated with lower-level labels as
they are more important for the composition of a paragraph. Note that all of the labels in level
4 can be aggregated to ”Game action” in level 3, and therefore ”Game action” is not included in
the labels. None of the labels are mutually exclusive because the paragraphs sometimes contain
multiple levels of information.

The Multi-Label Dataset differs from the original Arx dataset in two crucial aspects. Firstly, it
encompasses an additional period, precisely, articles published from 01.01.2022 to 01.01.2023,
broadening the temporal scope of the data. Secondly, it introduces a distinct set of 22 labels
that capture varied levels of information types as depicted in Figure 3.4. With these labels, the
annotated samples have been multi-labeled, accommodating the multi-dimensional nature of
the paragraphs, which often encapsulate more than one type of information. Thus, the Multi-
Label Dataset offers an expanded and more nuanced understanding of football articles’ content
from VG.no.

3.2.1 Label Distribution in The Multi-Label Dataset

The Multi-Label Dataset contains 2,005 annotated samples. Each of those samples is at least
annotated with one of 22 labels that vary from broader concepts to more specific events in
football matches.

The distribution of the Multi-Label Dataset can be viewed in two different ways. The distri-
bution can be considered as the count of each combination of labels, known as label sets. A
label set is a specific combination of the labels assigned to a paragraph. For instance, one
paragraph might have the labels ”Goal”, ”Description”, and ”Commentary”, which would form
one distinct label set. Another paragraph might be labeled with ”Injury”, ”Statement”, and
”Summary”, making up another unique label set. The distribution referred to here is a count

Page 31 of 84

of how often each unique label set appears across the dataset. Alternatively, the distribution
can be understood as the cumulative count of each individual label across the entire dataset,
regardless of the label combinations in which they appear.

Figure 3.5: The 15 most common label sets in the Multi-Label Dataset. Some label sets include
only one label, as the paragraphs are only annotated with one label.

Page 32 of 84

Figure 3.6: Label distribution for paragraphs from the Multi-Label Dataset. The y-axis differs
from Figure 3.5 as this includes both solo labels and labels annotated in a co-occurrence with
other labels.

There are a total of 226 different label sets in the Multi-Label Dataset. Figure 3.5 shows the 15
most common label sets in the 2005 samples. Figure 3.6 shows the distribution of all individual
labels used in annotating the Multi-Label Dataset. The total number of labels surpasses the
number of samples because each sample can have multiple labels.

The most frequent label is ”Storytelling”, as it is one of the broadest terms, and most para-
graphs, if not all, are there to broadcast a story in some way. The labels ”Quote” and ”State-
ment” occur often and are usually inclusive of each other. It can be noticed that ”Goal/Assist”
occurs far more often in the Arx dataset than in the Multi-Label Dataset. This can be caused
by the difference in seasonality in the data. The Multi-Label Dataset contains samples that are
randomly sampled throughout the year, as opposed to the Arx dataset, which is annotated over
a shorter period.

Page 33 of 84

Figure 3.7: Co-occurrence matrix of labels in the Multi-Label Dataset. Each cell shows the
number of times a pair of labels co-occurs in the dataset. Brighter colors represent higher
co-occurrence frequencies.

A co-occurrence matrix represents the number of times two labels occurs together in a label
set in a dataset. Figure 3.7 shows the co-occurrence matrix for the Multi-Label Dataset. The
co-occurrence matrix displays that ”Statement” and ”Quote” has the highest co-occurrence in
the dataset by occurring 194 times together. The ”Storytelling” label has a high co-occurrence
with several labels, such as ”Description” (95 times), ”Statement” (93 times), and ”Table”
(46 times). The ”Storytelling” label also co-occurs with all labels except the ”Odds” label.
The ”Goal” and ”Summary” labels also have high co-occurrence, labeled together 25 times,
indicating that summaries often mention goals. ”Garbage” and ”Link” co-occur 25 times. This
suggests that many of the links are considered irrelevant in the context of this dataset. Some
labels, such as ”Booking”, ”Chance”, ”Injury”, and ”Odds”, have low co-occurrence with other
labels. This can indicate that the labels are distinct, non-overlapping categories or simply occur
infrequently in the dataset.

Page 34 of 84

Chapter 4
Method

This chapter outlines the steps taken to address the research questions posed in this thesis. This
chapter aims to provide a comprehensive description of the data collection, annotation, prepro-
cessing, and model tuning to achieve the results to be presented. This section should explain
the procedures to ensure reproducibility and give the reader a fair foundation for assessing the
use of Norwegian pre-trained BERT models on text classification tasks.

4.1 Data Collection

Data collection is the most critical step in all research projects and is the foundation of machine
learning. The quality of the data obtained impacts the overall findings of the thesis. The data
used in this paper is also the source of the research question that this paper seeks to address;
whether Norwegian pre-trained BERT models outperform traditional machine learning models
at text classification on Norwegian texts. The question calls for a Norwegian dataset labeled
for text classification in a diverse topic. This is where the Arx dataset [12] and the Multi-Label
Dataset is introduced.

4.1.1 Arx Dataset Collection

The collection of the Arx dataset is described in Section 3.1. To summarize the collection, the
Arx dataset was collected from the Norwegian news sources VG.no and TV2.no, comprising
football articles published between 22.07.18 and 17.09.18. The data, fetched using Python
libraries Requests and Beautiful Soup , consists of 5,526 labeled paragraphs.

The Arx dataset proved to be a perfect match to test out Norwegian pre-trained BERT models
at multi-class text classification. Nordskog et al. [12] tested the Arx dataset similarly as in this
thesis, by comparing CNNs and RNNs with traditional machine learning models with minimal
text preprocessing but with some label manipulation. The 12 original labels were merged into
five bigger labels. Initial attempts at replicating the label manipulation by Nordskog et al.
[12] proved unsuccessful. This makes the work in this thesis not based on a comparison with
the models and results from Nordskog et al. [12]. Benchmarks from the Norwegian pre-trained
BERT models were instead compared with new traditional machine learning models trained on
all the initial 12 labels not to compromise the results of this thesis.

35

https://www.vg.no/
https://TV2.no/

4.1.2 Multi-Label Dataset Collection

The BERT model is created to be fine-tuned for multiple downstream tasks in NLP [7]. To check
if this is applicable and effective for the Norwegian pre-trained BERT models, the pre-trained
models must also be trained on another classification task. The multi-label classification was
chosen because the original dataset labels are not mutually exclusive and, therefore, hard only
to give one label.

The Multi-Label Dataset was created with some of the challenges of fitting the Arx dataset for
machine learning in mind. The Multi-Label Dataset should solve problems such as the annotator
having to decide between multiple non-mutually exclusive labels for a paragraph and the issue
of the annotated data being poorly distributed throughout a year, causing the distribution of
events to be incorrectly represented in the dataset.

The Multi-Label Dataset was collected from VG.no, also using the Python library Requests

fetching all HTML code for articles tagged with ”football” from 01.01.2022 until 01.01.2023,
ensuring updated paragraphs. The HTML code was parsed using the Python library Beautiful

Soup [69].

Annotation

For constructing the Multi-Label Dataset, one annotator, the author of this thesis, annotated
2,009 samples using 22 non-mutually exclusive labels, ensuring consistency in the annotation
outcomes. The 2,009 samples are distributed throughout the whole time series, the collected
data, to make the distribution of events in the annotated data more realistic.

Figure 4.1: The GUI Doccano [71] used to annotate the Multi-Label Dataset with an example
paragraph and possible labels.

Page 36 of 84

The annotation was done using the Python library Doccano [71] as seen in Figure 4.1. Doccano
provides a GUI for managing annotation projects and supports the task of multi-label text
classification and data shuffling. Doccano made the process of annotating the data simple and
intuitive.

Doccano can integrate an active learning model, which was implemented during this annota-
tion process. The active learning model helps the annotator by suggesting the labels for each
paragraph. Each paragraph labeled by the active learning model must be approved by the
annotator to be marked as correctly annotated. The annotator changes the labels if necessary
before approving the labels for each annotated paragraph.

Active Learning

Active learning is a semi-supervised machine learning technique that can be utilized to stream-
line the annotation of a dataset. Instead of manually annotating a large set of samples, active
learning enables using an initial model trained on a small set of randomly chosen labeled data
to assist in the annotation. As annotators label the rest of the samples in the dataset, the model
is iteratively updated and improved. By combining human annotators and an active learning
model in the labeling process, active learning can reduce the time spent on annotating each
sample, resulting in a more efficient annotation process.

Active learning was integrated into the annotation to speed up the process. For every hundred
annotated sample, a model was trained using all the until now annotated data at multi-label
classification. The newly trained model was used to predict the labels for each new paragraph
being annotated forward from introducing a new iteration of the active learning model.

The model used for active learning was a Binary Relevance model with a LinearSVC estimator
with a radial basis function kernel as the base classifier from Scikit-Learn. Scikit-Learn is
an open-source Python library that provides tools for machine learning tasks, including data
preprocessing and classification [72]. The hyperparameters C and gamma were set to 2 and
0.55, respectively, and were not tuned during training. The classifier was chosen because of the
resource-effective results provided by Nordskog et al. [12] on the Arx dataset. The annotator
evaluated the model’s results during training, and the active learning model could be turned
off if it did not prove effective at helping the annotator. The active learning model was used
during the annotation process with careful consideration and surveillance.

4.2 Model Selection

This section describes the process of choosing among the multiple options of Norwegian pre-
trained BERT models to benchmark versus traditional machine learning models at multi-class
and multi-label classification. The goal is to get a diverse set of models and compare the
performance of the different models on the Arx Dataset and the Multi-Label Dataset.

4.2.1 Norwegian BERT Model Selection

The selection of the Norwegian BERT model is the foundation of this thesis. The two large
Norwegian BERT models released are NB-BERT and NorBERT [10, 11]. Both these models

Page 37 of 84

are relevant for the classification tasks and will be trained and tested for comparison. Both
these models come in multiple versions. The NB-BERT version utilized in this thesis is the
NB-BERTLARGE built on the digital collection at the National Library of Norway [10]. The
other BERT model in this thesis is NorBERT, introduced by the University of Oslo [11]. In the
case of NorBERT, the second iteration of the model was used; NorBERT2.

Both models are easily integrated into a machine learning pipeline through the Transformers

library from Huggingface [73]. The library is used in the thesis to load the pre-trained models
and for fine-tuning the models on downstream classification tasks with PyTorch integration.
PyTorch is an open-source Python library for deep learning developed by Facebook, which
supplies tools for building and training neural networks [74]

4.2.2 Traditional Machine Learning Model Selection

In the selection of models for comparison, a consideration of a range of machine learning al-
gorithms that are widely used for classification tasks and have demonstrated success in similar
natural language processing tasks is performed. The final set of models includes Random For-
est, AdaBoost, LinearSVC, Multilayer Perceptron, K-Nearest Neighbor Classifier, and Gradient
Boosting. Each selected model has unique strengths and weaknesses that make it suitable for
different machine learning problems.

Random Forest is a popular and common ensemble learning algorithm implemented in most
machine learning packages. The Random Forest model has the benefit of not needing much
tuning [75]. Random Forest models are also not prone to overfitting if the depth of the trees is
restricted and, therefore, make for a great model to add to the benchmark.

GradientBoosting is another popular ensemble learning algorithm that differs from Random-
Forest in incrementally adding decision trees. GradientBoosting often produces better results
than Random Forest but is more prone to overfitting [76].

AdaBoost is another ensemble method that utilizes many weaker learners with different weights
on the classification. AdaBoost also often outperforms RandomForest at making accurate clas-
sifications [76].

LinearSVC is a linear model which is highly effective at text classification with high-dimensional
data, which is the case in this thesis [77]. This makes it a great supplement to the benchmark
models.

Multilayer Perceptron (MLP) is a type of neural network that can learn complex nonlinear
relationships between the features [78]. The MLP is a straightforward approach to testing out
neural networks for text classification and is a natural algorithm to append to the benchmark
models.

K-Nearest Neighbor Classifier is a simple and intuitive algorithm. K-Nearest Neighbor Classifier
is based on clustering the data lying in a similar place in the feature space [79]. Texts with
similar structures can often be located in similar areas in the feature space.

The models that do not natively support multi-label classification are added as estimators in
either the OneVsRestClassifier or the MultiOutputClassifier. The OneVsRestClassifier trains
a separate model for each class, which in turn treats each label as the positive class and the
rest as the negative class, thereby transforming the problem into multiple binary classification
problems. The MultiOutoutClassifier fits one classifier per target, but each classifier can have

Page 38 of 84

https://huggingface.co/NbAiLab/nb-BERT-large
https://huggingface.co/ltg/norBERT2

multiple outputs, rather than binary, as opposed to OneVsRestClassifier.

All of the mentioned models are easy to implement through Scikit-Learn and are adaptable
for multi-class and multi-label classification. This is the main reason for the selection of models.
The following sections will refer to these models as the traditional machine learning models.

4.3 Data Preprocessing

This section presents the data preprocessing to ready the datasets for the text classification
task for the different machine learning models. Data preprocessing is a vital part of machine
learning and impacts the performance of any model trained. The models trained in this thesis
require different preprocessing techniques and will be explained separately.

4.3.1 Data Preprocessing for BERT Models

Transformer models, such as BERT, are in the deep learning architectures category, designed
to process sequential data effectively. The positional information found in a textual structure
is required for optimal performance. To keep the positional information in the model, minimal
data preprocessing is utilized. This approach ensures that the model does not have to transform
the raw text into a simplified representation, such as a token frequency count. The only crucial
step in data preprocessing for the BERT models is to tokenize the plain text data. Tokenization
ensures that the input text is consistent across different samples while keeping the text within
the fixed-size vocabulary of the pre-trained BERT model. Tokenization also processes words
outside the vocabulary into smaller known subwords, enabling the positional information for
each token to be stored.

Both BERT models in this thesis utilize the AutoTokenizer from the Huggingface library
Transformers [73]. The AutoTokenizer finds the correct tokenizer for the Huggingface model
the data is being prepared for. The main features of the tokenization process are input feature
generation and padding/truncation. The AutoTokenizer generates token IDs, attention masks,
and token-type IDs. The token ID is a numerical representation of the word linked to the rep-
resentation of the model vocabulary. The attention mask indicates which tokens that should be
paid more attention to by the model. The token type IDs help the model distinguish between
the different segments in the input sequence. Padding/truncation is making the sequence of
tokens into the desired length required as the input of the model. The AutoTokenizer makes
no distinction between capitalized and non-capitalized words by default.

4.3.2 Data Preprocessing for Traditional Machine Learning Models

The traditional machine learning models often need more specific preprocessing to achieve
optimal results. These models do not consider the positional information when extracting
information from the text being processed. The lack of an attention mechanism makes them
prone to being polluted with noise which can reduce the model’s effectiveness. A few steps
in the data preprocessing are usually introduced to tackle this problem and to ensure optimal
performance: These steps are stopword (words that are too common to add value to the class
of the text) and special character removal, stemming (word reduction to the root form) and
tokenization.

Page 39 of 84

To compare the BERT models and the traditional machine learning models as fair as possible,
the same amount of preprocessing was applied to the data used in training both models. The
data fed to the traditional machine learning models were tokenized using the TfidVectorizer
(TF-IDF) from the Scikit-Learn library. The TfidVectorizer makes no distinction between
capitalized and non-capitalized words by default.

4.3.3 Train/Test Split

To evaluate the models fairly, the datasets must be split into training and testing data. Splitting
the data allows the model performance to be assessed on unseen data, indicating if the model is
overfitting or generalizing well. The ultimate goal of the model is to predict new data accurately,
so this step is essential.

Different methods were used to split the datasets for the different classification tasks because of
the different nature of the multi-class and multi-label datasets. To keep the benchmark as fair
and replicable as possible, each dataset was only split once, and all models were trained and
tuned using the same split.

The Arx dataset was split using the Scikit-Learn train/test split. The Arx dataset was
distributed into 80 % training data and 20 % testing data. The data were stratified by class,
meaning the class proportion is maintained in both the training and testing data.

The Multi-Label Dataset was split using IterativeStratification from the Scikit-Multilearn

library [80–82]. This was used instead of the Scikit-Learn train/test split due to its ability
to handle class imbalance in multi-label data. The Scikit-Learn train/test split would have
treated each of the 226 label sets as a class during stratification, causing many label sets to be
unique, which would ruin the possibility of maintaining the class proportion in both training
and testing data. IterativeStratification fixes this by ensuring that the imbalance ratio is kept
in each split. The Multi-Label Dataset was also split into 80 % training data and 20 % testing
data.

4.4 Model Tuning

Model tuning is an essential step in the development of machine learning models. Model tun-
ing involves optimizing the hyperparameters of each model to achieve the best results for the
problem at hand. Appropriate hyperparameters are crucial for the model’s performance and
generalization abilities.

The hyperparameter tuning process was designed to maximize the weighted-average F1 score, a
metric that effectively balances precision and recall while considering label imbalances. In the
process of hyperparameter tuning for the traditional machine learning models implemented via
Scikit-Learn, two-fold cross-validation was performed on the training set. Subsequently, the
models were evaluated on the testing set. In the case of the BERT models, the entire training
set was employed for hyperparameter tuning, followed by an evaluation using the testing set.
The Multi-Label Dataset proved challenging to split into multiple folds due to some labels only
occurring a few times. This is the reason for excluding cross-validation from the tuning of the
BERT models.

Hyperparameter tuning involves training the models multiple times using different hyperparam-

Page 40 of 84

eters while logging the different results for comparison. Weights & Biases [83] is a popular
tool for experiment tracking and hyperparameter optimization with the ability to store, monitor
and visualize the training process of each of these models. Weights and Biases was utilized
in this thesis to track the different models’ hyperparameter tuning and log the resources used
for training the different models.

4.4.1 Bayesian Search

Bayesian search is an efficient method to utilize while tuning hyperparameters [84]. It leverages
the information from previous evaluations to guide the search process. Bayesian search can
result in quicker convergence to optimal hyperparameter settings and relieves resources used for
tuning by being effective.

The alternatives to Bayesian Search are grid search and random search. Grid search tries
all possible combinations of specified hyperparameters, which is computationally expensive for
high-dimensional search spans. Random search is more efficient but chooses the hyperparame-
ters randomly for a selected number of iterations. Compared to the other methods, the benefit of
Bayesian search is its ability to learn from past evaluations, directing the search into promising
regions.

The Bayesian search was used in tuning each of the models presented in this paper. All models
were trained using 30 combinations of hyperparameters from spans defined specifically for each
model. The spans utilized for the Bayesian search can be found in the subsequent tables.

NB-BERT and NorBERT2

Hyperparameter Range/Search Space

epoch {3, 4, 5}
learning rate uniform(1e-6, 1e-4)
per device train batch size {16, 32}
warmup ratio uniform(0, 0.5)
weight decay uniform(0, 0.3)

Table 4.1: Hyperparameter search space for the NB-BERT model and the NorBERT2 model

The hyperparameter span for the NB-BERT and NorBERT2 models, as shown in Table 4.1,
was chosen based on the fine-tuning hyperparameters suggested by Devlin et al. [7].

Random Forest

Hyperparameter Range

n estimators [50, 500]
max depth [5, 30]
min samples split [2, 10]
min samples leaf [1, 5]
max features [0.1, 0.5]

Table 4.2: Hyperparameter search space for RandomForestClassifier

Page 41 of 84

The hyperparameter span for the Random Forest models is shown in Table 4.2. All the hyper-
parameters in the span can range between the two set values for each hyperparameter.

Linear SVC

Hyperparameter Range/Search Space

C log-uniform(1e-6, 1e+6)
tol log-uniform(1e-6, 1e-1)
class weight {balanced, None}

Table 4.3: Hyperparameter search space for LinearSVC

The hyperparameter span used for tuning the Linear SVC model is shown in Table 4.3. The
log-uniform distribution is used because the optimal hyperparameters might span several orders
of magnitude.

AdaBoost

Hyperparameter Range/Search Space

n estimators [10, 1000]
learning rate log-uniform(0.001, 10)
algorithm {SAMME, SAMME.R}

Table 4.4: Hyperparameter search space for AdaBoostClassifier

The hyperparameter span used for tuning the AdaBoostClassifier is shown in Table 4.4.

Multilayer Perceptron

Hyperparameter Range/Search Space

hidden layer sizes log-uniform(10, 200)
activation {relu, logistic, tanh}
solver {adam, sgd}
alpha log-uniform(1e-6, 1e-2)
learning rate {constant, invscaling, adaptive}
learning rate init log-uniform(1e-4, 1e-2)
max iter [100, 1000]
tol log-uniform(1e-6, 1e-2)

Table 4.5: Hyperparameter search space for MLPClassifier

The hyperparameter span used for tuning the MLPClassifier is shown in Table 4.5.

Page 42 of 84

KNeighbors

Hyperparameter Range/Search Space

n neighbors [3, 20]
weights {uniform, distance}
algorithm {auto, kd tree}
leaf size [10, 50]
p [1, 3]

Table 4.6: Hyperparameter search space for KNeighborsClassifier

The hyperparameter span used for tuning the KNeighborsClassifier is shown in Table 4.6.

GradientBoosting

Hyperparameter Range/Search Space

n estimators [100, 1000]
max depth [3, 10]
min samples split [2, 10]
min samples leaf [1, 10]
max features {sqrt, log2}
learning rate log-uniform(0.001, 0.1)

Table 4.7: Hyperparameter search space for GradientBoostingClassifier

The hyperparameter span used for tuning the GradientBoostingClassifier is shown in Table 4.7.

4.5 Model Configurations

The hyperparameter search only optimizes some of the hyperparameters available for the models.
The rest have the default value set for the different implementations of each model. This
section presents the complete model configurations after the hyperparameter search for each
classification task. The final configuration for each model leads to the results presented in
Chapter 5. The explanation of all the features introduced in this section precedes the scope
of this thesis. Still, it can be explored more thoroughly in the documentation of the packages
presented in Appendix A.

All models are trained using either the packages from Huggingface or the Scikit-Learn package.
Values not explicitly mentioned are all set to the default values from the affiliated package, and
the packages’ version can be found in Appendix A.

Page 43 of 84

4.5.1 Model Configurations for the Multi-Class Classification

NB-BERT

Parameter Value

Model NbAiLab/nb-BERT-large
Training epochs 3.0
Learning rate 8.969444903069361e-05
Weight decay 0.038330404806479645
Warm-up ratio 0.32604822325361665
Per device train batch size 32
Evaluation strategy epoch
Hidden size 1024
Number of attention heads 16
Number of hidden layers 24
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1.0e-08
Seed 100
Transformer architecture BERT
Position embedding type absolute
Hidden activation function GELU
Hidden dropout probability 0.1
Attention probabilities dropout probability 0.1
Maximum position embeddings 512
Vocabulary size 50,000

Table 4.8: The model configuration used for the NB-BERT model for text classification on the
Arx dataset.

The Nb-BERT configuration for the model trained on multi-class classification using the Arx
dataset is given in Table 4.8. The key setting includes three training epochs, a learning rate of
∼ 8.97e-05, and a weight decay of ∼ 0.038. The NB-BERT model has 1,024 hidden units, 16
attention heads, 24 hidden layers, and a vocabulary of 50,000 words. Other settings include a
training batch size of 32, the GELU activation function, and maximum position embeddings at
512.

Page 44 of 84

NorBERT2

Parameter Value

Model ltg/norBERT2
Training epochs 3.0
Learning rate 4.140603251643812e-05
Weight decay 0.25327001499496754
Warm-up ratio 0.140475173723635
Per device train batch size 32
Evaluation strategy Per epoch
Hidden size 768
Number of attention heads 12
Number of hidden layers 12
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1.0e-08
Seed 100
Transformer architecture BERT
Position embedding type absolute
Hidden activation function GELU
Hidden dropout probability 0.1
Attention probabilities dropout probability 0.1
Maximum position embeddings 512
Vocabulary size 50,104

Table 4.9: The configure of the NorBERT2 model for text classification on the Arx dataset.

Table 4.9 shows the configurations of the NorBERT2 model used for multi-class text classifica-
tion on the Arx dataset. The model includes 12 hidden layers, 12 attention heads, and a hidden
size of 768. The model was trained for three epochs with a learning rate of ∼ 4.141e-05 and a
weight decay of ∼ 0.253. The warm-up rate was set to ∼ 0.140. The model used the GELU
activation function and utilized 512 as maximum position embeddings and a vocabulary size of
50,104. The training batch size was set to 32.

Page 45 of 84

Random Forest

Parameter Value

bootstrap true
ccp alpha 0.0
criterion gini
max features sqrt
min impurity decrease 0.0
min weight fraction leaf 0.0
max depth 30
max features 0.1177403669337236
min samples leaf 1
min samples split 9
n estimators 498
random state 100
warm start false

Table 4.10: The configuration used for the Random Forest model for text classification on the
Arx dataset.

The Random Forest model configuration for multi-class classification is displayed in Table 4.10.
The model was trained using bootstrap sampling and the Gini criterion. When splitting nodes,
the maximum number of features was set to the square root of the total number of features.
The maximum depth of the tree was set to 30, and the maximum features in each split were set
to ∼ 0.118. The number of trees in the forest was set to 498.

Linear SVC

Parameter Value

dual true
fit intercept true
intercept scaling 1
loss squared hinge
max iter 1000
C 0.3764727960989543
class weight balanced
tol 0.1
multi class ovr
penalty l2
random state 100

Table 4.11: The model configuration used for the LinearSVC model for text classification on
the Arx dataset.

Table 4.11 shows the configuration of the LinearSVC model for multi-class text classification on
the Arx dataset. The model was trained with the dual parameter set to true. The loss function
utilized was squared hinge, and the maximum iterations were set to 1,000. The regularization
strength indicated by C was set to ∼ 0.376, and the class weights were balanced. The tolerance

Page 46 of 84

was set to 0.1, and the multi-class strategy used was one-vs-rest (ovr). The penalty used for
regularization was L2.

AdaBoost

Parameter Value

base estimator deprecated
algorithm SAMME
learning rate 0.09456593019309933
n estimators 1000
random state 100

Table 4.12: The model configuration used for the AdaBoost model for text classification on the
Arx dataset.

The Adaboost model configuration for multi-class text classification is presented in Table 4.12.
The algorithm used in AdaBoost is SAMME. The learning rate was set to ∼ 0.095, and the
number of estimators was set to 1,000.

Multilayer Perceptron

Parameter Value

batch size auto
beta 1 0.9
beta 2 0.999
early stopping false
epsilon 1.0e-08
max fun 15000
activation logistic
alpha 0.01
hidden layer sizes 200
learning rate constant
learning rate init 0.001019551167116848
max iter 1000
solver adam
tol 1.0e-06
momentum 0.9
n iter no change 10
nesterovs momentum true
power t 0.5
random state 100
shuffle true
validation fraction 0.1
warm start false

Table 4.13: The model configuration used for the Multilayer Perceptron model for text classifi-
cation on the Arx dataset.

Page 47 of 84

Table 4.13 includes the model configuration for the Multilayer Perceptron model for multi-class
text classification on the Arx dataset. The model was trained using the Adam optimizer. The
epsilon used was 1.0e-08. The maximum number of function evaluations was set to 15,000, and
the activation function used was logistic. The regularization parameter alpha was set to 0.01,
and the hidden layer size was set to 200. The learning rate was constant with a value of ∼ 0.001,
and the maximum number of iterations was 1,000. The tolerance was set to 1.0e-06.

KNeighbors

Parameter Value

metric euclidean
metric params null
algorithm kd tree
leaf size 50
n neighbors 17
p 1
weights distance

Table 4.14: The model configuration used for the KNeighborsClassifier model for text classifi-
cation on the Arx dataset.

The KNeighborsClassifier model configuration for the multi-class classification is given in Table
4.14. The configurations include utilizing the Euclidean distance metric, the algorithm kd tree,
and a leaf size of 50. The number of neighbors used was 17, and the distance metric parameter
p was set to 1. The weighting- scheme used was distance-based.

GradientBoosting

Parameter Value

ccp alpha 0.0
criterion friedman mse
loss log loss
min impurity decrease 0.0
min weight fraction leaf 0.0
learning rate 0.020194194038099945
max depth 10
max features sqrt
min samples leaf 10
min samples split 10
n estimators 544
random state 100
subsample 1.0
tol 0.0001
validation fraction 0.1
warm start false

Table 4.15: The model configuration used for the GradientBoostingClassifier model for text
classification on the Arx dataset.

Page 48 of 84

Table 4.15 shows the model configuration for the GradientBoosting model for the multi-class
text classification on the Arx dataset. The model was trained using the Friedman mean squared
error criterion, using a loss function of log loss. The minimum impurity decrease required for
a split was set to 0, and the minimum fraction of the samples needed to be at a leaf node.
The learning rate used was ∼ 0.020, and the maximum depth of the tree was set to 10. The
maximum number of features to consider when splitting nodes were assigned to the square root
of the total number of features. The minimum number of samples required to be at a leaf node
was set to 10. The number of estimators was set to 544, and the tolerance was set to 0.0001.

4.5.2 Model Configurations for the Multi-Label Dataset

NB-BERT

Parameter Value

Model NbAiLab/nb-BERT-large
Fine-tuning task Multi-label classification
Training epochs 3
Learning rate 7.470003153100673e-05
Weight decay 0.06450301502111656
Warm-up ratio 0.4721188986762204
Per device train batch size 16
Evaluation strategy Per epoch
Hidden size 1024
Number of attention heads 16
Number of hidden layers 24
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1.0e-08
Seed 100
Transformer architecture BERT
Position embedding type absolute
Hidden activation function GELU
Hidden dropout probability 0.1
Attention probabilities dropout probability 0.1
Maximum position embeddings 512
Vocabulary size 50,000

Table 4.16: The model configuration used for the NB-BERT model for text classification on the
Multi-Label Dataset.

The model configuration for the NB-BERT model for multi-label text classification is presented
in Table 4.16. The model was trained for three epochs using a learning rate of ∼ 7.470e-05 and
a weight decay of ∼ 0.065. The warm-up ratio was set to ∼ 0.472, and the model used absolute
position embedding and the GELU activation function. The maximum position embeddings
were 512, and the vocabulary size was 50,000. The training batch size was 16, and the model
included 24 hidden layers, with a hidden size of 1,024 and 16 attention heads.

Page 49 of 84

NorBERT2

Parameter Value

Model ltg/norBERT2
Fine-tuning task multi-label classification
Training epochs 3.0
Learning rate 8.900593382516312e-05
Weight decay 0.06534504506200942
Warm-up ratio 0.050168004828590906
Per device train batch size 16
Evaluation strategy epoch
Hidden size 768
Number of attention heads 12
Number of hidden layers 12
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1.0e-08
Seed 100
Transformer architecture BERT
Position embedding type absolute
Hidden activation function GELU
Hidden dropout probability 0.1
Attention probabilities dropout probability 0.1
Maximum position embeddings 512
Vocabulary size 50,104

Table 4.17: The configuration used for the NorBERT2 model for text classification on the Multi-
Label Dataset.

Table 4.17 shows the configuration of the NorBERT2 model used for multi-label text classifi-
cation on the Multi-Label Dataset. The model was trained for three epochs with a learning
rate of ∼ 8.901e-05. The weight decay was set to ∼ 0.065, and the warmup ratio was set to
∼ 0.050. The model used the GELU activation function and had 512 as the maximum position
embeddings. The vocabulary size was 50,104, and the batch size was set to 16. The model
included 12 hidden layers, with a hidden size of 768 and 12 attention heads.

Page 50 of 84

Random Forest

Parameter Value

bootstrap true
ccp alpha 0.0
criterion gini
min impurity decrease 0.0
min weight fraction leaf 0.0
max depth 22
max features 0.4763
min samples leaf 1
min samples split 2
n estimators 50
random state 100
warm start false

Table 4.18: The model configuration used for the Random Forest model for text classification
on the Multi-Label Dataset.

The configuration of the Random Fores model used on multi-label classification on the Multi-
Label Dataset is given in Table 4.18. The model was trained using bootstrap sampling and a
criterion of Gini. The maximum number of features was set to ∼ 0.476, and the maximum tree
depth was set to 22. The minimum number of samples to split an internal node was two 2. The
number of trees in the forest was set to 50.

Linear SVC

Parameter Value

model type OneVsRestClassifier
estimator LinearSVC
estimator dual true
estimator fit intercept true
estimator intercept scaling 1
estimator loss squared hinge
estimator max iter 1000
estimator multi class ovr
estimator penalty l2
estimator random state 100
estimator C 0.2629
estimator class weight balanced
estimator tol 1.0e-06

Table 4.19: The model configuration used for the LinearSVC model for text classification on
the Multi-Label Dataset.

Table 4.19 gives the configuration of the LinearSVCmodel used for multi-label text classification.
The model was trained using the OneVsRestClassifier as a wrapper. The model used a squared
hinge loss function, and the maximum iterations were set to 1,000. The regularization penalty

Page 51 of 84

was L2, and the regularization parameter C was set to ∼ 0.263. The class weights were balanced,
and the tolerance was set to 1.0e-06.

AdaBoost

Parameter Value

model type MultiOutputClassifier
estimator AdaBoostClassifier
estimator base estimator deprecated
estimator random state 100
estimator algorithm SAMME.R
estimator learning rate 0.0432
estimator n estimators 817

Table 4.20: The model configuration used for the AdaBoost model for text classification on the
Multi-Label Dataset.

The AdaBoost model configuration for multi-label text classification on the Multi-Label Dataset
is presented in Table 4.20. The model was trained with the MultiOutputClassifier wrapper. The
algorithm used in AdaBoost was SAMME.R, and the learning rate applied was ∼ 0.043. The
number of estimators used was 817.

Page 52 of 84

Multilayer Perceptron

Parameter Value

model type MLPClassifier
batch size auto
beta 1 0.9
beta 2 0.999
early stopping false
epsilon 1.0e-08
max fun 15000
activation relu
alpha 0.01
hidden layer sizes 200
learning rate adaptive
learning rate init 0.0022
max iter 518
solver adam
tol 1.0e-06
momentum 0.9
n iter no change 10
nesterovs momentum true
power t 0.5
random state 100
shuffle true
validation fraction 0.1
warm start false

Table 4.21: The model configuration used for the Multilayer Perceptron model for text classifi-
cation on the Multi-Label Dataset.

Table 4.21 shows the configuration of the MultiLayer Perceptron model for multi-label classifi-
cation on the Multi-Label Dataset. The batch size of the model was set to auto. The maximum
number of function evaluations was set to 15,000, and the activation function used was RELU.
The L2 regularization parameter alpha was set to 0.01. The hidden layer size was 200, and the
learning rate was set to adaptive, with an initial rate of ∼ 0.002. The maximum number of
iterations was 518, and the optimizer used was Adam. The tolerance was set to 1.0e-06. The
power t parameter for the learning rate schedule was set to 0.5

Page 53 of 84

KNeighbors

Parameter Value

metric euclidean
metric params null
algorithm kd tree
leaf size 27
n neighbors 3
p 1
weights uniform

Table 4.22: The model configuration used for the KNeighborsClassifier model for text classifi-
cation on the Multi-Label Dataset.

The KNeighborsClassifier model used for multi-label classification is displayed in Table 4.22.
The model used the Euclidean distance metric. The algorithm used was kd-tree, and the leaf
size was set to 27. The number of neighbors was set to 3, and the weights were assigned to
uniform. The parameter p was set to 1.

GradientBoosting

Parameter Value

model type MultiOutputClassifier
estimator GradientBoostingClassifier
estimator ccp alpha 0.0
estimator criterion friedman mse
estimator loss log loss
estimator min impurity decrease 0.0
estimator min weight fraction leaf 0.0
estimator learning rate 0.05386130750443591
estimator max depth 5
estimator max features sqrt
estimator min samples leaf 6
estimator min samples split 9
estimator n estimators 753
estimator random state 100
estimator subsample 1.0
estimator tol 0.0001
estimator validation fraction 0.1
estimator warm start false

Table 4.23: The model configuration used for the GradientBoosting model for text classification
on the Multi-Label Dataset.

Table 4.23 presents the configuration parameters for the GradientBoosting model for multi-
label classification. The model is wrapped in the MultiOutputClassifier. The criterion used was
Friedman’s mean squared error, and the loss function was log loss. The learning rate was set to
∼ 0.054, and the maximum depth of the trees was set to 5. The maximum features considered

Page 54 of 84

were assigned to the square root of the total number of features, and the minimum sample for a
leaf node was 6. The number of trees in the forest was 753, and the tolerance was set to 0.0001.

4.6 Hardware Specifications

The hardware and software used to train a machine learning model impact the runtime and the
possible size of the model. This section will state the hardware and software specifications used
to train the machine learning models in this thesis.

Component Specification

Processor (CPU) Intel Core i7-1165G7 @ 2.80GHz
Memory (RAM) 16 GB DDR4
GPU Intel Iris Xe Graphics
Operating System Windows 11 (64-bit)
Programming Language Python 3.9.7

Table 4.24: PC Specifications

Table 4.24 presents the specification for the local machine used for training the traditional
machine learning models. The setup includes a powerful enough CPU and sufficient RAM to
train and evaluate the traditional machine learning models. The programming language used for
implementing the models is Python. All the traditional machine learning models were trained
using the Scikit-Learn package, and none of the implementations support GPU acceleration.
This eliminated the need for a dedicated GPU in the local machine setup.

Component Specification

Processor (CPU) Intel Xeon @ 2.20 GHz
Memory (RAM) 52 GB
GPU NVIDIA A100-SXM4-40GB
Operating System Linux (64-bit)
Programming Language Python 3.9.16

Table 4.25: Google Colab Pro + Specifications

The local machine setup does not include a powerful GPU that can accelerate the training of a
deep neural network. To enable GPU acceleration, Google Colab Pro + was utilized in the model
training of the BERT models [85]. The specifications for the Google Colab Pro + environment
used to train the BERT models are given in Table 4.25. Google Colab Pro + provides access to
powerful GPUs, which are applicable to accelerate the training of the BERT models and ensure
enough memory to load and fine-tune a large model such as pre-trained Transformers often are.
The GPU was exploited in training all the BERT models and significantly reduced the training
times for these models at the cost of drawing more resources to the training task.

Page 55 of 84

Chapter 5
Results

This chapter presents a comprehensive examination of the results derived from the traditional
machine learning models applied to the Arx dataset for multi-class classification and the BERT
models to the Multi-Label Dataset for multi-label classification. The results are further dis-
cussed in depth in Chapter 6. The results include the accuracy, precision, recall, and F1-score
performance metrics, as well as training runtimes, for each model. The F1-score provides a more
holistic view of the model’s performance. However, for a more comprehensive understanding of
the model’s advantages and shortcomings, each metric is also individually examined in detail.

5.1 Accuracy

Accuracy is one of the most common measures to evaluate a machine learning model for clas-
sification problems, as it is easy to understand and interpret, as mentioned in Section 2.3.1.

Model NB-BERT NorBERT2 RF ABoost LSVC MLP KNN GB

Accuracy 0.875 0.863 0.685 0.301 0.757 0.744 0.630 0.706
Runtime (s) 485.009 164.936 38.690 20.776 0.081 1126.448 0.005 45.321

Table 5.1: The accuracy and training runtime of the multi-class classification models tested on
the Arx dataset.

Table 5.1 shows the performance of the various machine learning models tested on the multi-
class classification of the Arx dataset. The models included are NB-BERT, NorBERT2, Random
Forest (RF), AdaBoost (AB), Linear SVC (LSVC), Multilayer Perceptron (MLP), KNeigh-
borsClassifier (KNN), and GradientBoosting (GB). The performance is measured in accuracy
and runtime.

NB-BERT achieves the highest accuracy (0.875) among all the tested models, but it also uses
a significantly longer time to run (485.009 seconds). NorBERT2, the other BERT model, has
the second highest accuracy (0.863), but it has a runtime that is only a third of the runtime of
NB-BERT (164.936).

The Random Forest model has an accuracy of 0.685 and a runtime of 38.690 seconds. The
AdaBoost model performs the worst at the multi-class classification with an accuracy of 0.301

56

and a runtime of 20.776 seconds.

The Linear SVC model has the best performance of the non-BERT models, with an accuracy
of 0.757 and one of the lowest runtimes (0.081). The Multilayer Perceptron has an accuracy of
0.744 and the longest runtime with a time of 1126.448 seconds.

The KNeighborsClassifier has the second lowest accuracy (0.630), though still over double as
accurate as the one with the most insufficient accuracy (AdaBoost; 0.301). The runtime of
the KNeighborsClassifier has the fastest runtime (0.005). The GradientBoosting model has an
accuracy of 0.706 and a runtime of 45.321 seconds.

In summary, the BERT models achieved the highest accuracies in this multi-class text clas-
sification task. However, the runtimes of the BERT model are also longer than most of the
traditional machine learning methods by quite a margin.

Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB

Accuracy 0.404 0.373 0.316 0.283 0.276 0.228 0.226 0.213
Runtime (s) 194.396 74.106 9.968 156.257 0.277 141.924 0.004 33.552

Table 5.2: The accuracy and training runtime of the multi-label classification models tested on
the Multi-Label Dataset.

Table 5.2 displays the performance of the various models trained for multi-label classification
on the Multi-Label Dataset. The model types presented are the same as in the case of the
multi-class classification, but all models have been modified to have a multi-label output.

The NB-BERT model achieves the highest accuracy with an accuracy of 0.404, followed by
NorBERT2, achieving 0.373. The runtimes of these models are 194.396 seconds and 74.106
seconds, respectively.

The two models with the shortest runtimes are the KNeighborsClassifer model (0.004 sec-
onds) and the LinearSVC model (0.277) seconds. Still, the accuracies are less impressive, with
KNeighborsClassifier having an accuracy of 0.226 and LinearSVC having an accuracy of 0.276.

The Random Forest model and the AdaBoost model achieve the best accuracies of the traditional
machine learning models with accuracies of 0.316 and 0.283, respectively. Random Forest has a
short runtime of 9.968 seconds, while AdaBoost has a relatively long runtime of 156.257 seconds.

The Multilayer Perceptron has a runtime of 141.924 seconds and a low accuracy of 0.228. The
GradientBoosting model has a runtime of 33.552 seconds and has the lowest accuracy of the
test, with accuracy of 0.213.

To summarize the multi-label classification models, the BERT models significantly outperform
the traditional machine learning models, especially when only comparing accuracies. The best
BERT model, NB-BERT achieves an accuracy of ∼ 0.40 compared to the best traditional
machine learning method, Random Forest, which achieves an accuracy of ∼ 0.32.

Page 57 of 84

5.2 Precision, Recall and F1-scores

Accuracy is a suitable metric for balanced datasets, but other metrics should also be included,
especially in the case of imbalanced datasets, which is the case in this thesis. This section
presents the other metrics recorded while evaluating the classification models. The metrics are
precision, recall, and F1-score.

5.2.1 Multi-Class Classification Performance on Arx

Figure 5.1: The macro-average of each model’s precision, recall, and F1-score at multi-class
classification on the Arx dataset.

Figure 5.1 gives an overview of the results presented in this section. The macro-average of each
model’s precision, recall, and F1-scores are showcased.

Page 58 of 84

F1-score Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Chances 0.845 0.804 0.232 0.000 0.566 0.615 0.441 0.517 60
Club Detail 0.776 0.787 0.419 0.000 0.574 0.557 0.444 0.388 63
Club Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Goal/Assist 0.907 0.899 0.747 0.384 0.820 0.782 0.665 0.802 224
Ignore 0.947 0.939 0.875 0.686 0.924 0.905 0.753 0.884 133
Injuries 0.800 0.833 0.000 0.000 0.737 0.588 0.250 0.692 12
Irrelevant 0.720 0.692 0.450 0.000 0.503 0.510 0.315 0.480 162
Personal Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Player Detail 0.690 0.662 0.177 0.000 0.448 0.431 0.441 0.286 68
Quote 0.985 0.980 0.842 0.039 0.882 0.883 0.804 0.835 195
Red/Yellow Card 0.857 0.900 0.182 0.600 0.842 0.889 0.706 0.727 10
Transfer 0.921 0.911 0.782 0.225 0.840 0.836 0.715 0.839 177

macro avg 0.704 0.701 0.392 0.161 0.595 0.583 0.461 0.537 1106
weighted avg 0.873 0.861 0.645 0.209 0.747 0.737 0.613 0.702 1106

Table 5.3: Classwise F1-scoring for each model on multi-class classification. Macro-average and
weighted-average F1-scores for each model. The number of instances in each label.

Table 5.3 gives the individual F1-scores each model achieves for each label. The combined
macro-average F1-score and the weighted-average F1-score are also displayed. It is important
to note that labels that score 0 are excluded from the averaged F1-scores. The number of
instances of each label in the test data is stated in the ”Count” column.

For most of the labels, NB-BERT and NorBERT2 have the highest F1-scores, indicating that
the models perform better at the multi-class classification task on the Arx Dataset. Some labels,
such as ”Club Drama” and ”Personal Drama”, have very few instances in the training and test
data making it difficult for the models to learn and classify them correctly. The result is that
all models have an F1-score of 0 for these labels. The traditional machine learning algorithms
do not beat the F1-score of NB-BERT and NorBERT2 when compared to the highest of the
two, but the NB-BERT model is beaten once on the label ”Red/Yellow Card” by the Multilayer
Perceptron.

The weighted-average F1-score for each model is interesting as it considers the label imbalance.
The model with the highest weighted-average F1-score is NB-BERT (0.873). The NorBERT2
model achieves a lower score of 0.861. Both still beat the traditional machine learning models
with the best, LinearSVC, achieving a weighted-average F1-score of 0.747.

Page 59 of 84

Precision Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Chances 0.875 0.915 0.889 0.000 0.652 0.727 0.448 0.793 60
Club Detail 0.849 0.814 0.783 0.000 0.635 0.615 0.417 0.543 63
Club Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Goal/Assist 0.882 0.864 0.627 0.240 0.772 0.738 0.633 0.760 224
Ignore 0.961 0.953 0.836 0.935 0.938 0.915 0.650 0.948 133
Injuries 1.000 0.833 0.000 0.000 1.000 1.000 0.500 0.643 12
Irrelevant 0.752 0.705 0.439 0.000 0.527 0.534 0.435 0.392 162
Personal Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Player Detail 0.662 0.662 0.636 0.000 0.542 0.452 0.520 0.467 68
Quote 0.975 0.965 0.801 0.500 0.866 0.874 0.779 0.839 195
Red/Yellow Card 0.818 0.900 1.000 0.450 0.889 1.000 0.857 0.667 10
Transfer 0.889 0.901 0.739 0.333 0.773 0.777 0.701 0.854 177

macro avg 0.722 0.709 0.562 0.205 0.633 0.636 0.495 0.575 1106
weighted avg 0.873 0.861 0.692 0.307 0.746 0.738 0.613 0.726 1106

Table 5.4: Classwise precision-scoring for each model on multi-class classification.

It is important to remember that the F1-score is the harmonic mean of the precision and recall
and that to understand the F1-score more comprehensively, both precision and recall should be
studied separately. Table 5.4 shows the classwise precision scores and the macro-average and
weighted-average precision scores. Note that the labels with a score of 0 are still excluded from
the averaged precision scores.

NB-BERT demonstrated the highest precision scores for most labels, followed by NorBERT2.
The Random Forest model and the MLP surpasses the NB-BERT model and the NorBERT2
model at precision scoring at one label, the ”Red/Yellow Card” label. Note that the Random
Forest model stands out distinctly with its significantly higher macro-average precision score
than its macro-average recall score, as clearly illustrated in Figure 5.1.

The weighted-average precision score of NB-BERT is the highest, with a score of 0.873, followed
by NorBERT2, with a score of 0.861. The best of the traditional machine learning models,
LinearSVC, has a precision score of 0.746, closely followed by Multilayer Perceptron (0.738)
and GradientBoosting (0.726). The AdaBoost model scores the lowest at precision, with a
score of 0.307.

Page 60 of 84

Recall Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Chances 0.817 0.717 0.133 0.000 0.500 0.533 0.433 0.383 60
Club Detail 0.714 0.762 0.286 0.000 0.524 0.508 0.476 0.302 63
Club Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Goal/Assist 0.933 0.938 0.924 0.973 0.875 0.830 0.701 0.848 224
Ignore 0.932 0.925 0.917 0.541 0.910 0.895 0.895 0.827 133
Injuries 0.667 0.833 0.000 0.000 0.583 0.417 0.167 0.750 12
Irrelevant 0.691 0.679 0.463 0.000 0.481 0.488 0.247 0.617 162
Personal Drama 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Player Detail 0.721 0.662 0.103 0.000 0.382 0.412 0.382 0.206 68
Quote 0.995 0.995 0.887 0.021 0.897 0.892 0.831 0.831 195
Red/Yellow Card 0.900 0.900 0.100 0.900 0.800 0.800 0.600 0.800 10
Transfer 0.955 0.921 0.831 0.169 0.921 0.904 0.729 0.825 177

macro avg 0.694 0.694 0.387 0.217 0.573 0.557 0.455 0.532 1106
weighted avg 0.875 0.863 0.685 0.301 0.757 0.744 0.630 0.706 1106

Table 5.5: Classwise recall-scoring for each model on multi-class classification.

Table 5.5 introduces the detailed recall scores. NB-BERT continues to be the best performer
with most of the best scores at the classwise recall scores and the best scores for macro-average
recall (0.694) and weighted-average recall (0.875). NorBERT2 follows a little step behind with
the same score for macro-average recall (0.694) and a score of 0.875 for the weighted-average
recall. AdaBoost is the only model that manages to beat both the NB-BERT and NorBERT2
model at recall scoring on a label, the ”Goal/Assist” label with a score of 0.973. That is
compared to NB-BERT with a recall score of 0.933 and NorBERT2 with a score of 0.938.

NB-BERT and NorBERT2 continue to be dominant in performance compared to the other
traditional machine learning models by demonstrating high recall scores at most labels. They
also have the highest averaged recall scores.

Page 61 of 84

5.2.2 Multi-Label Classification Performance on the Multi-Label Dataset

Figure 5.2: The macro-average of each model’s precision, recall, and F1-score at multi-label
classification on the Multi-Label Dataset.

The multi-label classification task is a more challenging problem. Figure 5.2 displays an overview
of macro-average recall, precision, and F1-scores for each model. Compared to the results in
Figure 5.1 for the multi-class classification, it is clear that the results are lower for most of the
models, with an exception for the AdaBoost model, which seems to perform better at multi-label
classification than multi-class classification at first glance.

Page 62 of 84

F1-score Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Booking 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 3
Chance 0.000 0.000 0.000 0.182 0.000 0.000 0.000 0.182 8
Commentary 0.000 0.000 0.000 0.133 0.091 0.160 0.160 0.077 21
Description 0.000 0.000 0.000 0.069 0.000 0.047 0.000 0.047 42
Garbage 0.857 0.867 0.824 0.824 0.667 0.531 0.381 0.492 45
Goal 0.656 0.464 0.000 0.538 0.348 0.279 0.304 0.360 35
Injury 0.000 0.000 0.000 0.462 0.000 0.000 0.000 0.714 9
Link 0.727 0.667 0.600 0.600 0.600 0.600 0.545 0.600 6
Next game 0.000 0.000 0.000 0.143 0.000 0.000 0.154 0.250 11
Odds 0.667 0.000 0.667 0.857 0.857 0.857 0.800 0.400 4
Opinion 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.286 16
Quote 1.000 0.989 0.810 0.824 0.884 0.831 0.851 0.862 90
Rumour 0.000 0.000 0.000 0.154 0.000 0.000 0.000 0.000 6
Set-piece 0.000 0.000 0.000 0.300 0.000 0.154 0.000 0.556 12
Statement 0.267 0.372 0.000 0.428 0.443 0.333 0.479 0.278 78
Statistics 0.000 0.000 0.000 0.111 0.154 0.154 0.000 0.000 12
Storytelling 0.827 0.840 0.741 0.655 0.707 0.649 0.571 0.656 175
Substitution 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400 3
Summary 0.682 0.651 0.000 0.468 0.241 0.237 0.479 0.381 46
Table 0.880 0.000 0.000 0.444 0.696 0.400 0.667 0.519 14
Transfer 0.533 0.000 0.000 0.300 0.000 0.000 0.000 0.333 11
VAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 2

macro avg 0.323 0.220 0.166 0.401 0.258 0.238 0.245 0.404 649
micro avg 0.667 0.646 0.508 0.549 0.550 0.491 0.496 0.517 649
samples avg 0.666 0.663 0.504 0.521 0.506 0.433 0.435 0.448 649
weighted avg 0.576 0.546 0.379 0.529 0.480 0.432 0.439 0.483 649

Table 5.6: Classwise F1-scoring for each model on multi-label classification. Macro-average and
weighted-average F1-scores for each model. The number of instances in each label.

Table 5.6 presents the F1-scores for the models trained for the multi-label classification task
using the Multi-Label Dataset. The models being compared are, as in the case of the multi-
class classification as well, the NB-BERT, NorBERT2, Random Forest (RF), AdaBoost (AB),
LinearSVC (LSVC), Multilayer Perceptron (MLP), KNeighborsClassifier and GradientBoosting
(GB). Table 5.6 includes the count of instances in the test data for each label, the classwise
F1-scores, and the macro and weighted-average F1-scores as the F1-score table (Table 5.3)
in Section 5.2.1. Table 5.6 also includes the micro-average F1-score and the samples average
F1-score.

The first thing to note is that while the BERT models dominate at multi-class classification
F1-scores, the spread of the highest classwise F1-scores is more extensive at the multi-label
classification task. Another thing to be aware of is that the sample size of each label is smaller
in the test data of the Multi-Label Dataset.

AdaBoost achieves the highest score in the same amount of labels as the NB-BERT model, but
many of the labels have a low sample count except for the ”Description” label. The AdaBoost
resulting F1-score on the ”Description” label is low, with a score of 0.069, but still the highest
of all.

Page 63 of 84

There are no labels that have no F1-score by all the models. Still, some are only scored by
a few models such as ”Booking”, ”Chance”, ”Commentary”, ”Description”, ”Injury”, ”Next
game”, ”Opinion”, ”Rumour”, ”Set-piece”, Substitution” and ”VAR”. These label adds up to
being half the labels, but only 14 % of the labels in the test samples. The labels ”Garbage” and
”Quote” have relatively high F1-scores for all models, meaning all models can recognize these
labels, but the BERT models still have the highest F1-scores for both.

Table 5.6 presents the first upset, with GradientBoosting having the best macro-average F1-
score with a score of 0.404. This is compared to NB-BERT having a macro-average F1-score of
0.323 and NorBERT2 scoring of 0.220. The Random Forest model has the lowest macro-average
F1-score of 0.166.

When comparing the micro-average, samples-average, and the weighted-average F1-scores, the
NB-BERT model is back on top, with both BERT models scoring better than all the traditional
machine learning models. The NB-BERT model scores 0.667 on the micro-average F1-score
compared to GradientBoosting with a score of 0.517. The best micro-average F1-scoring tra-
ditional machine learning model is AdaBoost, with a score of 0.549. For the sample-average
F1-score, NB-BERT scores 0.666 compared to the GradientBoosting score of 0.448. NB-BERT
achieves a score of 0.576

To summarize, Table 5.6 indicates that the performance of the models depends on the label, and
no single model consistently outperforms the other models across all labels. However, NB-BERT
is still on top of the weighted-average that considers the label imbalance.

Page 64 of 84

Precision Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Booking 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 3
Chance 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.333 8
Commentary 0.000 0.000 0.000 0.222 1.000 0.500 0.500 0.200 21
Description 0.000 0.000 0.000 0.125 0.000 1.000 0.000 1.000 42
Garbage 0.923 0.947 0.875 0.875 0.958 0.895 0.667 0.938 45
Goal 0.769 0.619 0.000 0.824 0.727 0.750 0.636 0.600 35
Injury 0.000 0.000 0.000 0.750 0.000 0.000 0.000 1.000 9
Link 0.800 1.000 0.750 0.750 0.750 0.750 0.600 0.750 6
Next game 0.000 0.000 0.000 0.333 0.000 0.000 0.500 0.400 11
Odds 1.000 0.000 1.000 1.000 1.000 1.000 0.667 0.333 4
Opinion 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.600 16
Quote 1.000 0.989 0.984 0.875 0.927 0.908 0.846 0.935 90
Rumour 0.000 0.000 0.000 0.143 0.000 0.000 0.000 0.000 6
Set-piece 0.000 0.000 0.000 0.375 0.000 1.000 0.000 0.833 12
Statement 0.519 0.600 0.000 0.463 0.500 0.476 0.531 0.432 78
Statistics 0.000 0.000 0.000 0.167 1.000 1.000 0.000 0.000 12
Storytelling 0.795 0.789 0.667 0.677 0.705 0.677 0.662 0.709 175
Substitution 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.286 3
Summary 0.714 0.700 0.000 0.581 0.583 0.538 0.680 0.706 46
Table 1.000 0.000 0.000 0.462 0.889 0.667 0.800 0.538 14
Transfer 1.000 0.000 0.000 0.333 0.000 0.000 0.000 0.429 11
VAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 2

macro avg 0.387 0.257 0.194 0.490 0.411 0.462 0.322 0.569 649
micro avg 0.830 0.815 0.756 0.633 0.735 0.713 0.682 0.682 649
samples avg 0.779 0.799 0.608 0.572 0.585 0.511 0.516 0.517 649
weighted avg 0.623 0.580 0.390 0.598 0.609 0.652 0.540 0.682 649

Table 5.7: Classwise precision-scoring for each model on multi-label classification.

Table 5.7 displays the precision scores for the models trained on multi-label classification with
the Multi-Label Dataset. It includes the same classwise scoring, averaged scores, and label
counts as the previous table in this section. The trend with more spread in the best-achieving
models, as seen in Table 5.6, also occurs in the precision scores.

The highest macro-average precision is again achieved by Gradient Boosting (0.569) as in the
macro-average F1-score. Gradient Boosting also has the best weighted-average score (0.682),
with NB-BERT having the second best (0.623). NB-BERT has the highest micro-average pre-
cision score of 0.830, and NorBERT2 has the best samples-average precision score of 0.799.

Page 65 of 84

Recall Count
Model NB-BERT NorBERT2 RF AB LSVC MLP KNN GB
Label

Booking 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 3
Chance 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.125 8
Commentary 0.000 0.000 0.000 0.095 0.048 0.095 0.095 0.048 21
Description 0.000 0.000 0.000 0.048 0.000 0.024 0.000 0.024 42
Garbage 0.800 0.800 0.778 0.778 0.511 0.378 0.267 0.333 45
Goal 0.571 0.371 0.000 0.400 0.229 0.171 0.200 0.257 35
Injury 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.556 9
Link 0.667 0.500 0.500 0.500 0.500 0.500 0.500 0.500 6
Next game 0.000 0.000 0.000 0.091 0.000 0.000 0.091 0.182 11
Odds 0.500 0.000 0.500 0.750 0.750 0.750 1.000 0.500 4
Opinion 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.188 16
Quote 1.000 0.989 0.689 0.778 0.844 0.767 0.856 0.800 90
Rumour 0.000 0.000 0.000 0.167 0.000 0.000 0.000 0.000 6
Set-piece 0.000 0.000 0.000 0.250 0.000 0.083 0.000 0.417 12
Statement 0.179 0.269 0.000 0.397 0.397 0.256 0.436 0.205 78
Statistics 0.000 0.000 0.000 0.083 0.083 0.083 0.000 0.000 12
Storytelling 0.863 0.897 0.834 0.634 0.709 0.623 0.503 0.611 175
Substitution 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 3
Summary 0.652 0.609 0.000 0.391 0.152 0.152 0.370 0.261 46
Table 0.786 0.000 0.000 0.429 0.571 0.286 0.571 0.500 14
Transfer 0.364 0.000 0.000 0.273 0.000 0.000 0.000 0.273 11
VAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 2

macro avg 0.290 0.202 0.150 0.353 0.218 0.189 0.222 0.361 649
micro avg 0.558 0.535 0.382 0.485 0.439 0.374 0.390 0.416 649
samples avg 0.619 0.604 0.456 0.522 0.485 0.408 0.409 0.433 649
weighted avg 0.558 0.535 0.382 0.485 0.439 0.374 0.390 0.416 649

Table 5.8: Classwise recall-scoring for each model on multi-label classification.

Table 5.8 presents the recall scores of various models in the multi-label classification task. It
includes the same classwise scores and averages as the previous models of this section: Macro-
average, micro-average, samples-average, and weighted-average recall score.

The macro-average recall score is highest for GradientBoosting (0.361), followed by AdaBoost
(0.353). The NB-BERT model achieves a macro-average recall score of 0.290, and NorBERT2
has a score of 0.202. NB-BERT has the best results for the rest of the averaged recall scores, with
0.558 on the micro-average, 0.619 on the samples-average, and 0.558 on the weighted-average.

In summary, the best classwise scores vary across models. Still, NB-BERT achieves the best
score on the metrics that consider the imbalance of the Multi-Label Dataset, such as micro-
average, samples-average, and weighted-average recall.

Page 66 of 84

Chapter 6
Discussion

This thesis explores the application of Norwegian pre-trained BERT models and other tra-
ditional machine learning models for text classification on Norwegian football articles. The
effectiveness of Norwegian pre-trained BERT models’ ability to process and understand natural
language in a context with limited data availability has been showcased.

The discussion chapter will interpret the results obtained from the machine learning experiment,
compare the results of the different approaches by examining the evaluation metrics, and further
share views and thoughts about the data, the models, and the choices made in this thesis. The
discussion will also delve into general questions related to NLP and the future use of large
language models.

6.1 Analysis of the Results

The following sections delve deeper into the results obtained, analyzing them from various
perspectives. This includes an examination of the performance and training runtime of the
models, how the models dealt with dataset imbalance, and how different factors could have
influenced the models’ performance. Additionally, the ease of implementing these models is
considered. It’s noteworthy that understanding these elements is key to interpreting the results
and their implications effectively.

6.1.1 Model Performance on Multi-Class Classification

Table 5.1 showcases the performance of the models in multi-class classification. The NB-BERT
and NorBERT2 models outperform the other models, with accuracies of 0.875 and 0.863, respec-
tively. However, these models also have longer runtimes than the traditional machine learning
models. LSVC is the best traditional machine learning model, with an accuracy of 0.757 and a
low runtime of 0.081 seconds. The accuracy difference between the best BERT model and the
best traditional model is over 10 %, favoring BERT.

When dealing with an imbalanced dataset, it is crucial to use appropriate evaluation metrics
to assess the model’s performance and ensure the model is aligned with the goal of being a
simplified representation of a real-world problem. Precision, recall, and F1-score are essential

67

metrics in this context, as they provide a deeper understanding of the model’s performance,
giving more substance to a possible application of the model.

The results presented in Table 5.3 show the NB-BERT model achieved the highest weighted-
average F1-score of 0.873, indicating that it is striking a good balance between the precision and
recall. NorBERT2 closely follows with a weighted-average F1-score of 0.861. The LinearSVC
model is a close competitor of the traditional machine learning models with a weighted-average
F1-score of 0.747. The gap between the BERT models and the rest indicates a significant
difference in their performance. The gap in F1-scores shows that the Norwegian-trained BERT
models are more effective at handling the multi-class classification task on the Arx Dataset,
with better balancing of precision and recall, resulting in better handling of the imbalanced
dataset.

The NB-BERT and NorBERT2 also achieve the highest classwise F1-scores at all classes in 5.3,
indicating that the traditional machine learning models can not keep up with results achieved
by the high number of parameters, and performance boost, acquired by the pre-training of the
BERT models.

Examining Table 5.4, which gives the precision score for the multi-class classification on the
Arx Dataset, the NB-BERT and NorBERT2 models maintain the dominance, achieving the
highest scores on most labels. However, some of the traditional machine learning models, such
as Random Forest and Multilayer Perceptron, challenge the BERT models’ dominance for some
specific labels. For the ”Red/Yellow Card” label, both Random Forest and Multilayer Percep-
tron models achieve a precision score of 1.0, which surpass both NB-BERT and NorBERT2,
with precision scores of 0.879 and 0.887, respectively. Speculating on the reason, the better
scores achieved by the traditional machine learning models might be rooted in the simpler fea-
ture representations they retain, which might reduce potential noise interfering with the model.
Another reason might be randomness as a product of too few labels in the training or testing
data. The difference can come down to only one or two misclassified samples.

The recall, presented in Table 5.5, is still led by NB-BERT, followed by NorBERT2. The
most exciting score, apart from the BERT models still performing at a high level, is AdaBoost
achieving the best recall score for the ”Goal/Assist” label. A theory is that AdaBoost, an
ensemble learning algorithm with a combination of multiple weaker learners, might be able
to focus on a label that is especially hard to classify and concentrate its effort on a good
performance for that specific label.

6.1.2 Model Performance on Multi-Label Classification

Table 5.2 demonstrates the performance of the models in multi-label classification. The BERT
models, NB-BERT and NorBERT2, continue to lead in accuracy with 0.404 and 0.373, re-
spectively. Their runtimes are also longer than most traditional models. Random Forest and
AdaBoost have the best accuracies at 0.316 and 0.283 of the traditional machine learning mod-
els. However, AdaBoost has a longer runtime of 156.257 seconds, making Random Forest a
better choice based on accuracy and runtime of 9.968. The difference in accuracy between the
best BERT model and the best traditional model is 8.8 %, still favoring BERT.

The multi-label classification task presents a more challenging problem, as demonstrated by the
results in Figure 5.2. The figure displays an overview of macro-average recall, precision, and F1-
scores for each model. The results are generally lower compared to the multi-class classification
results in Figure 5.1.

Page 68 of 84

Table 5.6 shows the classwise F1-scores for each model on the multi-label classification task
using the Multi-Label Dataset. Unlike the multi-class classification, there is a broader spread
of the highest classwise F1-scores for the multi-label classification task. AdaBoost achieves the
highest score in the same number of labels as the NB-BERT model, but many of these labels
have a low sample count.

GradientBoosting has the best macro-average F1-score (0.404) among the models, while NB-
BERT and NorBERT2 have macro-average F1-scores of 0.323 and 0.220, respectively. Nev-
ertheless, NB-BERT returns to the top when comparing micro-average, samples-average, and
weighted-average F1-scores. In this case, it could be argued that the weighted-average F1-score
is more important as it considers the label performance and the label imbalance. This results
in the model performance being evaluated on its ability to classify across all labels while also
maintaining an account for the fact that some labels are more common than others. This is
more realistic when considering the model’s applicability in a real-world scenario.

The precision and recall, given in Table 5.7 and Table 5.8, provide further insight into the per-
formance of the classification on the Multi-Label Dataset. The Gradient Boosting achieves the
best macro-average precision (0.569) and the best weighted-average precision (0.682), showing
that the model is best at correctly classifying without generating too many false positives. NB-
BERT has the second-best score of 0.623 and the highest micro-average precision (0.830), while
NorBERT2 achieves the best samples-average precision score of 0.799.

GradientBoosting has the best macro-average recall score of the models but has a more signif-
icant drop in weighted-average recall score with a score of 0.416. NB-BERT achieves the best
weighted-average recall with a score of 0.558. Table 5.8 generally displays lower recall scores
than previously seen precision scores, suggesting that the models are missing some true positive
samples for most labels.

The scores presented show that, in most cases, the precision score is higher than the recall
score for most methods. This suggests that the models are careful in their predictions, valuing
correct classification at the cost of missing some instances. In other words, the models are quite
conservative, avoiding false positives instead of false negatives. This behavior might be due to
the class imbalance or just a result of the classes chosen for the datasets.

Achieving the correct balance between precision and recall is essential to ensure effective recog-
nition and classification across all labels. The highest weighted-average F1-score achieved by
NB-BERT indicates that the NB-BERT model strikes the best balance between these metrics
for the multi-label classification task.

6.1.3 Runtime Considerations

KNeighborsClassifier consistently shows the shortest runtime across both classification tasks
but does not offer competitive accuracies. The Multilayer Perceptron model has the longest
runtime in the multi-class classification task but provides poor accuracies in both tasks.

BERT models, such as NB-BERT and NorBERT2, outperform traditional models in multi-class
and multi-label text classification tasks but with longer runtimes. The longer runtimes can
be attributed to the more substantial computational resources required for fine-tuning BERT
models. Reducing the number of epochs to 2 in the fine-tuning of BERT models can lead to
great results and significantly reduce the training time, with a small cost in accuracy.

Page 69 of 84

The longer runtimes for the BERT models can be attributed to their model size, as the BERT
models have more parameters than the traditional machine learning model. This is also con-
sistent with the difference in runtimes for the different BERT models and their difference in
parameters compared to each other. This makes them more resource-intensive during training
by a long shot. The BERT models must optimize a more significant number of weights during
training than traditional models, such as Random Forest and LSVC.

The BERT models are trained using GPUs, which speed up the training by parallelization. It
is positive that they can be trained using GPUs, but it requires access to GPUs which may be
costly or limited. The traditional machine learning models can typically only be trained using a
CPU, which cannot achieve the same level of parallelization, which can be less resource-straining
but also computationally slower.

The large number of parameters in the BERT models also demands higher memory resources
during training and interference. This requirement can pose challenges when deploying the
models on low-resource devices. The traditional machine learning models usually require little
memory, making them more suitable in those restricted circumstances.

The duration of the runtime is also to be considered relative. In the results presented in Tables
5.1 and 5.2, the longest runtime for multi-class classification is observed for the Multilayer
Perceptron (MLP) model, with a runtime of 1126.448 seconds (approx. 18.77 minutes), while
the longest runtime for multi-label classification is found in the NB-BERT model, with a runtime
of 194.396 seconds (approx. 3.24 minutes). For some tasks, this might be considered a long
training time, but for creating a model that will have a greater purpose, such as a model being
used as a tool for an analyst or as a feature on a website, it is not long at all. It would be
very justifiable to say that the longest runtimes are relatively short to train a text classification
model and that the only thing that should be considered is the accuracy and access to GPUs.

6.1.4 Recommendations Based on Model Performance

Based on the analysis of the model performance and training runtimes, the following recom-
mendations can be derived:

For high-accuracy applications: If the primary objective is to achieve the highest accuracy in
multi-class and multi-label text classification tasks, BERT models (NB-BERT and NorBERT2)
are the only valid option. These models consistently outperform traditional machine learning
models regarding the accuracy and weighted-average F1-score.

For heavily resource-constrained applications: If computational resources, such as processing
power, memory, or budget, are limited, opt for the traditional machine learning model LSVC.
While the accuracy and weighted-average F1-score of the LSVC model is lower than the BERT
models, it provides shorter runtimes and lower resource consumption.

6.1.5 Possible Factors Affecting Model Results

There are multiple things to consider when evaluating a model and its results on a specific task.
This section will reflect on different factors that could affect the models’ performance.

Page 70 of 84

The train/test split

Several challenges associated with the train/test split of the data can occur in the splits created
for both the Arx Dataset and the Multi-Label Dataset. Some of these challenges will be pointed
out and discussed.

Sections 3.1.1 and 3.2.1 showcase the imbalance of labels in the datasets the models are trained
on, which can cause biased models. This occurs because the model fails to generalize to the
underrepresented labels. The train/test split might be unfair for certain labels by including only
poorly annotated samples in the training or testing data or just mismatching the proportions
of labels in each entirely. Stratification can mitigate the problem to a certain extent but not
remove it altogether. In future work, several techniques could be considered to further address
this problem such as oversampling or data augmentation [38, 67].

As opposed to random sampling from the complete set of data samples, stratification is employed
to maintain the proportion of labels in both the training and testing data [38]. Stratification
can lead to too small sample sizes in specific labels, resulting in less reliable model evaluation,
especially for the underrepresented labels. There is stratification in the split of the Arx Dataset
and the Multi-Label Dataset. Some classes can be considered too small to be evaluated, such
as ”Club Drama” and ”Personal Drama” in the Arx Dataset, with 1 sample each in the test
split, and ”Booking”, ”Substitution”, and ”VAR” in the Multi-Label Dataset. These can be
considered removed from the data, as they do not occur often enough, but there is also a reason
to keep them, as they are interesting subjects in football articles. Removing interesting subjects
because they need to occur more would withdraw from the purpose of building a model that
reflects texts from the real world.

There is a potential risk of overfitting the models to the specific data partition when only utilizing
one train/test split. This would lead to poor generalization of new unseen data. Techniques such
as cross-validation can be implemented to prevent this. In k-fold cross-validation, the model
trains multiple times with different data splits (folds) to find good hyperparameters before
testing the model on an unseen data partition, as presented in Section 2.2.1. Implementing
k-fold cross-validation in the experiment would have increased the reliability of the results but
was not included due to the datasets not being more balanced. Some labels in the Multi-
Label Dataset needed more samples to be distributed evenly across multiple folds. Including
k-fold cross-validation would have produced unreliable results for the Multi-Label Dataset. One
train/test split was used for each dataset to keep the experiment the same for both models.
The problem that can occur when using one split for all models is that the split is favorable for
one of the models, making it achieve better results by chance.

Hyperparameter tuning

Hyperparameter tuning is one of the essential steps in the creation of machine learning mod-
els. The choice of hyperparameters usually dictates the performance of a model, and each
model needs different hyperparameters for distinct tasks and different data. The tuning process
experiments to find the best hyperparameters for the job.

The weighted-average F1-score was used as the metric to optimize during the hyperparameter
tuning of the models. This metric was chosen as it effectively handles the class imbalance by
weighting the classes by the number of instances. If the datasets had been less imbalanced, the
accuracy could have been considered as the metric to be optimized.

Page 71 of 84

Keeping in mind that the hyperparameter tuning can significantly impact the performance of
the models in the thesis, the number of combinations tried for each model before choosing
the best was set to the same for each task, at 30 combinations. This ensured that the time
spent tuning each model was kept the same. The challenge still, seen in the tuning, is that
some models are easier tuned than others, such as the BERT models, which means that more
combinations of hyperparameters work well. The result can be that some models do not achieve
optimal hyperparameters with the chosen hyperparameter span during the 30 different iterations
of models. This challenge is hard to tackle, which is the reason for keeping the number of
iterations of hyperparameter tuning the same, as it is possible to evaluate the models using the
same effort at tuning each model. Based on the results, a suggestion is that the BERT models
are easier to tune into good-performing models.

6.1.6 Ease of Implementation

When evaluating and comparing models, it is crucial to consider their performance and ease
of implementation. If a model needs to be better documented and easier to integrate into a
machine learning pipeline, it may deter practitioners from adopting it, regardless of its potential
effectiveness. Therefore, the practical aspects of the deployment and maintenance of these
models should be considered. Models impractical to deploy have a lower chance of being applied
in real-world projects.

This thesis’s models were well documented and easy to implement in a machine learning pipeline,
as recorded in the Github repository of this thesis. The traditional machine learning models were
all included in the Scikit-Learn machine learning library for Python, and the BERT models
were all included in the Transformers package provided by Huggingface. Overall, the ease of
implementation can be considered similar, and all differences in difficulty can be distinguished
by the hyperparameter tuning.

6.2 The Annotation Process

Despite efforts to streamline the annotation process and maintain quality, several challenges
are associated with the annotation of both the Arx and Multi-Label datasets. This section will
mainly discuss the annotation process of the Multi-Label Dataset presented in this thesis.

The Multi-Label Dataset was annotated by a single annotator, which in all of reality, has intro-
duced subjectivity and bias into the annotations. Other inconsistencies, such as errors caused
by fatigue or misclassification, most likely occurred during the annotation. The ideal scenario
would introduce multiple annotators, cross-verifying the labels, causing improved dataset reli-
ability.

The Multi-Label Dataset comprises 22 non-mutually exclusive labels, which might not be suf-
ficient to capture all the nuances in the dataset. Adding more would prove difficult, though,
as the annotator requires extensive knowledge of each label to classify correctly. Non-mutual
exclusiveness, or overlap in classes, is common in NLP, as language is inherently complex and
ambiguous. One single text can touch upon multiple topics; for instance, a football article might
present a summary of a game but also include an injury and a goal. Regarding the Multi-Label
Dataset, the non-mutual exclusiveness of labels reflects the complexity of the texts, therefore
presenting the challenge of defining the correct level of granularity for the annotations. Adding
more specific label can capture even more nuances but requires more extensive knowledge to

Page 72 of 84

https://github.com/hellund/sports-article-classification

annotate and leads to more sparse and imbalanced data. More general labels can be easier
to annotate but might not capture enough details to provide a relevant model. The balance
between these levels of annotation requires domain knowledge and multiple iterations of anno-
tations. The number of classes should also be affected by the intended application of the model,
which in the case of this thesis, is to test out the models on a challenging classification task
with few labeled instances relative for an NLP model.

The aid of an active learning model was implemented in annotating the Multi-Label Dataset.
The job of the active learning model is to assist the annotator by suggesting labels, but it is only
as efficient as the training data. Some limitations may occur if the initial annotations follow a
different standard than intended for the annotation process. This can happen if the annotator
uses some time to familiarize with the labels available for the task. This can result in the active
learning model suggesting poor labels, making the annotator unsure or biased when setting
their label. Another constraint involves the specific algorithm employed for active learning.
The BinaryRelevance model with a LinearSVC estimator is utilized with a predetermined set of
hyperparameters. The model was chosen because of efficient and accurate results in multi-class
classification on the Arx Dataset by Nordskog et al. [12]. However, that is no guarantee that
the model will be optimal for the multi-label annotation of the Multi-Label Dataset. The only
way to evaluate the aid provided by the active learning model at the annotation of the Multi-
Label Dataset is to assess if the model provided more help than confusion, which is objectively
hard to judge. Regarding the annotation of the Multi-Label Dataset, the annotator states that
the model helped by pre-annotating the most manageable paragraphs to label, making them
faster to confirm. The model also pre-annotated some paragraphs wrongly, providing the need
for extra correction by the annotator. Overall, the active learning model provided motivation,
making the annotation process more fun and interactive. Still, the inclusion of it did probably
not affect the quality of annotations. To address the challenges that have come up during
annotation, future annotation on the topic could include multiple annotators, multiple tests of
annotation models, and revisiting the labels to ensure it adequately represents the data.

6.3 Reflective Analysis

This section will discuss the various aspects of the experiment that could have been changed
or included, which might have led to more comprehensive results in comparing the models
presented in this thesis. The reflection aims to provide valuable insight into future research on
the topic.

The traditional machine learning algorithms used a TF-IDF representation of the datasets, as
explained in Section 4.3.2. The TF-IDF, presented in Section 2.2.1, is a vectorization of the texts
that primarily focuses on the frequency of the terms. Newer representations, such as Word2Vec,
mentioned in Section 2.1, can capture semantic relationships between words, as well. The change
to Word2Vec could possibly lead to noticeable improvements for the traditional machine learning
models, but to determine the exact effect, a new experiment should be conducted with Word2Vec
as the text vectorizer.

The hyperparameters of all models were tuned to get the best performance on the test split
defined before the experiment. This setup could lead to the models becoming overfit to the
test data if being tuned an excessive amount. The tuning was kept at 30 iterations to prevent
this, but a better approach would be to exclude the test split from the hyperparameter tuning.
This would have led to a more accurate evaluation of the performance of the models on unseen
data. The positive thing is that most of the BERT models, trained during the hyperparameter

Page 73 of 84

tuning, achieved better results than all the traditional machine learning models. This indicates
that the BERT model does not perform better just because it was more able to overfit the test
data than the traditional machine learning algorithms.

The annotation process in this thesis could have been improved by having multiple annotators
cross-validate each other’s work to ensure the objectivity of the annotations. It would be
worthwhile to explore multiple annotators in future research, in addition to incorporating a
larger number of annotated samples. Increasing the sample size could potentially enhance the
performance of the models by providing more instances of the infrequently occurring labels,
thus enabling more efficient modeling.

To conclude, there are some changes to the text vectorization, applied in the preprocessing, the
train/test split, and the annotation process that would have further improved the quality of
the experiment in this thesis. However, the results presented in the thesis have contributed to
the field of Norwegian pre-trained NLP models with a new comparison of the Norwegian pre-
trained BERT models versus traditional machine learning models on Norwegian sports article
classification.

6.4 Impact on Sports Article Classification

The top-performing models in this study achieve notable results for the multi-class classification
of football articles. Most of the labels are also relevant to other sports, meaning that the
models could be trained on a dataset containing paragraphs from multiple sports article domains
with minor adjustments to the set of labels. This could improve the generalizability of the
models and expand the use case. The best model trained for multi-class classification of football
articles could be implemented today to assist search engines in filtering relevant paragraphs or
personalizing content for people with specific reading tastes. The model could also provide the
online news outlet with greater insights into what the composition of popular articles looks like.
Information, such as the impact of having many non-informative ads for betting opportunities,
as an example, can be valuable to evaluate. The potential repercussions of including them too
often can be measured by tagging the paragraphs containing the odds information and collecting
the amount of time the reader spends on the article.

The multi-label classification models achieve a lower accuracy, and a more thorough evaluation is
recommended before applying them to real-life use cases. The positive of the multi-label model
is that the lower accuracy is mostly caused by failure to predict at all, instead of predicting
wrongly, which is not a critical mistake for a sports article classification model. Most use cases
can still be implemented, but things that can decrease the user experience should be refrained
from implementation, such as content personalization.

6.5 The Benefits and Limitations of BERT

Some aspects of the BERT models are beneficial for NLP tasks compared to the other models
tested in this thesis and to other Transformer models in general. This section will reflect upon
those aspects and explain why the BERT models are relevant for the sports article classification
task. The possible drawbacks of the BERT models will also be discussed.

BERT has an unfair advantage against the traditional machine learning models as it is already

Page 74 of 84

pre-trained and contains 355 million parameters, in the case of NB-BERTLARGE , as presented
in Section 2.2.4. One could suggest that this makes the comparison between the traditional
machine learning models and the BERT models unfair. A different take on it is that the
experiment just showcases the new way of tackling NLP problems and that large pre-trained
language models are seemingly the future. The number of parameters the pre-trained model
contains, which is the inherent characteristic of Transformer-based models, is what allows the
BERT model to learn more complex patterns, contributing to its superior performance. This
is simply a benefit inherent to the BERT model. Another advantage related to the size of
the pre-trained BERT model is that it makes the need for large amounts of task-specific data
much smaller. Fine-tuned BERT models manage well with small amounts of training data
compared to other NLP models, as showcased in this thesis. The drawback of the BERT
models containing millions of parameters before being fine-tuned is, as mentioned earlier, that
the models are computationally expensive. They require powerful GPUs and significant time
to train, especially if fine-tuned with a large dataset.

The BERT model is one of several recent Transformer-based architectures introduced. The other
includes GPT and T5, as mentioned in Section 1.2. These models have also achieved state-of-
art performance on various NLP tasks, but the models have some key differences. One of the
primary benefits of the BERT model is that it is open-source. Everyone can see the source code
and the data used to create it. This is true for the T5 model as well. This is not the case with
the latest GPT models, as they must be accessed through an API (application programming
interface) due to concerns of misuse and the size of the model. Being open-source is a benefit as
it provides accessibility and customization and ensures continuous improvement of the model.
The other benefit of the BERT model and the T5 model is that they are trained to understand
context bidirectionally, as explained in Section 2.2.4, unlike GPT, which is unidirectional. Being
a bidirectional model can be more effective for some NLP tasks as it can capture context from
both the left and the right side of a relevant part of an input. The last key difference is that
BERT models are specifically trained for tasks requiring deep language understanding, which
allows them to capture language patterns and relationships, making them a suitable choice for
tasks like sports article classification. T5 uses both the Encoder and Decoder, shown in Figure
2.6, which makes it built for solving text-to-text problems. This can be versatile but requires
some specific formulation to solve a text classification task. The GPT model focuses on language
generation tasks. Overall, the choice of BERT is the most natural for the text classification
task.

Transformer models, such as BERT, are achieving state-of-art performance in NLP, as show-
cased in Chapter 5 of this thesis, but there are some drawbacks to these large-scale language
models. They are computationally expensive to pre-train, resulting in a larger negative im-
pact on the environment than traditional machine learning algorithms. The defense for the
continued training and development of Transformer models, excluding the presented improve-
ment in performance, is that these pre-trained models are reusable. One large BERT model,
for instance, can be fine-tuned for a wide range of tasks, reducing the need to train separate
models for every problem out there. The fine-tuning of these models is relatively inexpensive
computational-wise, and the resulting models achieve excellent performance.

6.6 Future Work

This thesis has demonstrated the potential of Norwegian pre-trained BERT models for text clas-
sification, specifically on multi-class and multi-label classification of football article paragraphs.
The results have demonstrated the potential of Transformer models for low-resource languages,

Page 75 of 84

but there are still several areas in which future research could expand upon the findings of this
thesis:

• More Transformer architectures: Evaluating the performance of other Transformer
models, such as GPT and T5, on the same datasets. This would supply a more compre-
hensive dive into the utilization of Transformer models and their efficiency in the context
of NLP in low-resource languages.

• Additional NLP tasks: The current work has focused on text classification tasks.
However, Transformer models have shown promise in various NLP tasks such as question
answering, text summarization, and machine translation. Future research could investi-
gate the application of Norwegian pre-trained BERT models to these tasks, which would
further explore their versatility in handling different language challenges.

• Other low-resource languages: This thesis examined the potential of Transformer
models for the Norwegian language, which is considered a low-resource language. It
would be interesting to replicate this research for other low-resource languages, to fur-
ther demonstrate the performance of Transformer models at NLP tasks across languages
with more challenging initial conditions.

With the research conducted in this thesis and further pursuit into these avenues of research, it
is hoped that the field of NLP for lower-resource languages will continue to advance. Further
research will hopefully lead to more utilization and development of large language models,
providing better language understanding and more chances to process the vast array of different
human languages.

Page 76 of 84

Chapter 7
Conclusion

The primary goal of this thesis was to explore the potential of Norwegian pre-trained BERT
models for text classification tasks in the context of lower-resource languages. The goal was to
be achieved by doing paragraph classification of Norwegian sports articles using both Norwegian
pre-trained BERT models and traditional machine learning models. The thesis demonstrated
the effectiveness of Norwegian pre-trained BERT models in accurately and efficiently classifying
multi-class paragraphs from football articles, showcasing their potential.

The thesis also introduced a new multi-label dataset of paragraphs from football articles, which
served as a valuable resource in evaluating the BERT models. Including a multi-label classifica-
tion task allowed the Norwegian pre-trained BERT models to prove their versatility and provide
a more comprehensive exhibition of their ability at text classification.

In the multi-class and the multi-label classification tasks, the Norwegian pre-trained BERT
models achieved notable results, with accuracies of ∼ 0.88 and ∼ 0.40 and weighted-average
F1-scores of ∼ 0.87 and ∼ 0.58, respectively. These results significantly outperformed the
traditional machine learning models such as; Random Forest, AdaBoost, Linear Support Vec-
tor Machine, Multilayer Perceptron, KNeighbors Classifier, and Gradient Boosting. The out-
performance highlighted the advantages of using Transformer-based models for lower-resource
languages.

The research question posed at the beginning of this thesis was: ”How can Norwegian pre-
trained BERT models be utilized for effective text classification on paragraphs from Norwegian
football articles, and how does their performance compare to traditional machine learning mod-
els?”. In response, the findings of this thesis suggest that Norwegian pre-trained BERT models
can be effectively utilized for text classification on paragraphs from Norwegian football articles
by employing them in both multi-class and multi-label classification tasks. The BERT models
demonstrated superior performance in accuracy and F1-score over traditional machine learning
models, providing compelling evidence of the viability of Transformer-based models, particu-
larly BERT, for lower-resource languages like Norwegian. However, for real-world applications,
especially for more challenging tasks such as multi-label classification, further improvements,
and better dataset annotation may be required. The precise influence of each factor, namely
the model capabilities and the dataset quality, on the current performance levels is still unclear
and needs more research.

In conclusion, this thesis contributes to the growing body of research on Transformer models

77

for lower-resource languages by demonstrating the potential of Norwegian pre-trained BERT
models in text classification tasks. The promising results achieved in this study indicate that
NLP is reaching a satisfactory level for providing sustainable solutions to some comprehensive
text processing problems, such as multi-class classification. For other tasks, such as multi-label
classification, Norwegian pre-trained BERT models have achieved the best results of the models
tested. However, there is still some way to go before it can be concluded that the solutions are
adequate for real-life multi-label problems. It remains inconclusive whether the results are due
to the model not handling the more challenging classification task or the Multi-Label Dataset
needing better annotations.

Overall, the progress in Natural Language Processing holds great promise for the future of the
field. The improvements posed by utilizing Transformer models, particularly for lower-resource
languages, are actively driving further progress in the ability to process text. The possibility
of performing text processing with limited data resources is now very much real. Hopefully,
the future will hold even more development in NLP, pushing for more effective solutions and
widespread availability.

Page 78 of 84

Bibliography

[1] Pinkesh Badjatiya et al. “Deep Learning for Hate Speech Detection in Tweets”. In: Pro-
ceedings of the 26th International Conference on World Wide Web Companion - WWW
’17 Companion. ACM Press, 2017. doi: 10.1145/3041021.3054223. url: https://doi.
org/10.1145%2F3041021.3054223.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation
by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473 (2014).

[3] Dongfang Lou et al. “MLBiNet: A Cross-Sentence Collective Event Detection Network”.
In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers). Online: Association for Computational Linguistics, Aug. 2021, pp. 4829–
4839. doi: 10.18653/v1/2021.acl-long.373. url: https://aclanthology.org/2021.
acl-long.373.

[4] Statistics Norway. Population in Norway. Retrieved from Statistics Norway (SSB) on May
6, 2023. 2023. url: https://www.ssb.no/en/befolkning/statistikker/folkemengde.

[5] W3Techs. Usage of content languages for websites. Retrieved on May 6, 2023. 2023. url:
https://w3techs.com/technologies/overview/content_language.

[6] Krystal Hu. CHATGPT sets record for fastest-growing user base - analyst note. Feb.
2023. url: https://www.reuters.com/technology/chatgpt-sets-record-fastest-
growing-user-base-analyst-note-2023-02-01/.

[7] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://aclanthology.org/N19-1423.

[8] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: (2020). arXiv: 2005.
14165 [cs.CL].

[9] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: Journal of Machine Learning Research 21.140 (2020), pp. 1–67. url:
http://jmlr.org/papers/v21/20-074.html.

[10] Per E Kummervold et al. “Operationalizing a National Digital Library: The Case for a
Norwegian Transformer Model”. In: Proceedings of the 23rd Nordic Conference on Com-
putational Linguistics (NoDaLiDa). Reykjavik, Iceland (Online): Linköping University
Electronic Press, Sweden, June 2021, pp. 20–29. url: https://aclanthology.org/
2021.nodalida-main.3.

79

https://doi.org/10.1145/3041021.3054223
https://doi.org/10.1145%2F3041021.3054223
https://doi.org/10.1145%2F3041021.3054223
https://doi.org/10.18653/v1/2021.acl-long.373
https://aclanthology.org/2021.acl-long.373
https://aclanthology.org/2021.acl-long.373
https://www.ssb.no/en/befolkning/statistikker/folkemengde
https://w3techs.com/technologies/overview/content_language
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3

[11] Andrey Kutuzov et al. “Large-Scale Contextualised Language Modelling for Norwegian”.
In: Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa).
Reykjavik, Iceland (Online): Linköping University Electronic Press, Sweden, June 2021,
pp. 30–40. url: https://aclanthology.org/2021.nodalida-main.4.

[12] Aanund Jupsk̊as Nordskog et al. “Semantic Analysis of Soccer News for AutomaticGame
Event Classification”. In: CBMI’19. Dublin, Ireland, 2019.

[13] TV 2. TV 2 - Nyheter, sport, vær og underholdning. 2023. url: https://www.tv2.no/.

[14] Verdens Gang. VG - Verdens Gang. 2023. url: https://www.vg.no/.

[15] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).
arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[16] Alec Radford and Karthik Narasimhan. “Improving Language Understanding by Gener-
ative Pre-Training”. In: 2018.

[17] Chi Sun, Luyao Huang, and Xipeng Qiu. “Utilizing BERT for Aspect-Based Sentiment
Analysis via Constructing Auxiliary Sentence”. In: CoRR abs/1903.09588 (2019). arXiv:
1903.09588. url: http://arxiv.org/abs/1903.09588.

[18] Murat Tezgider, Beytullah Yildiz, and Galip Aydin. “Text classification using improved
bidirectional transformer”. In: Concurrency and Computation: Practice and Experience
34.9 (2022), e6486. doi: https://doi.org/10.1002/cpe.6486. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6486. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.6486.

[19] Yang Liu and Mirella Lapata. “Text Summarization with Pretrained Encoders”. In: CoRR
abs/1908.08345 (2019). arXiv: 1908.08345. url: http://arxiv.org/abs/1908.08345.

[20] Myle Ott et al. “fairseq: A Fast, Extensible Toolkit for Sequence Modeling”. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 48–53. doi: 10.18653/v1/N19-4009. url:
https://aclanthology.org/N19-4009.

[21] Antti Virtanen et al. “Multilingual is not enough: BERT for Finnish”. In: ArXiv abs/1912.07076
(2019).

[22] Wilson Wongso, Henry Lucky, and Derwin Suhartono. Pre-Trained Transformer-Based
Language Models for Sundanese. Sept. 2021. doi: 10.21203/rs.3.rs-907893/v1.

[23] Martin Malmsten, Love Börjeson, and Chris Haffenden. Playing with Words at the Na-
tional Library of Sweden – Making a Swedish BERT. 2020. arXiv: 2007.01658 [cs.CL].

[24] Daniel Holmer and Arne Jönsson. “Comparing the performance of various Swedish BERT
models for classification”. In: : 2020.

[25] Lilja Øvrelid et al. “A Fine-grained Sentiment Dataset for Norwegian”. English. In: Pro-
ceedings of the Twelfth Language Resources and Evaluation Conference. Marseille, France:
European Language Resources Association, May 2020, pp. 5025–5033. isbn: 979-10-95546-
34-4. url: https://aclanthology.org/2020.lrec-1.618.

[26] I M Rabbimov and S S Kobilov. “Multi-Class Text Classification of Uzbek News Articles
using Machine Learning”. In: Journal of Physics: Conference Series 1546.1 (May 2020),
p. 012097. doi: 10.1088/1742-6596/1546/1/012097. url: https://dx.doi.org/10.
1088/1742-6596/1546/1/012097.

Page 80 of 84

https://aclanthology.org/2021.nodalida-main.4
https://www.tv2.no/
https://www.vg.no/
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1903.09588
http://arxiv.org/abs/1903.09588
https://doi.org/https://doi.org/10.1002/cpe.6486
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6486
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6486
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6486
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6486
https://arxiv.org/abs/1908.08345
http://arxiv.org/abs/1908.08345
https://doi.org/10.18653/v1/N19-4009
https://aclanthology.org/N19-4009
https://doi.org/10.21203/rs.3.rs-907893/v1
https://arxiv.org/abs/2007.01658
https://aclanthology.org/2020.lrec-1.618
https://doi.org/10.1088/1742-6596/1546/1/012097
https://dx.doi.org/10.1088/1742-6596/1546/1/012097
https://dx.doi.org/10.1088/1742-6596/1546/1/012097

[27] Adrita Barua, Omar Sharif, and Mohammed Moshiul Hoque. “Multi-class Sports News
Categorization using Machine Learning Techniques: Resource Creation and Evaluation”.
In: Procedia Computer Science 193 (2021). 10th International Young Scientists Conference
in Computational Science, YSC2021, 28 June – 2 July, 2021, pp. 112–121. issn: 1877-
0509. doi: https://doi.org/10.1016/j.procs.2021.11.002. url: https://www.
sciencedirect.com/science/article/pii/S1877050921021268.

[28] Mita K. Dalal and Mukesh A. Zaveri. “Automatic Text Classification of sports blog data”.
In: 2012 Computing, Communications and Applications Conference. 2012, pp. 219–222.
doi: 10.1109/ComComAp.2012.6154802.

[29] Young Joon Park et al. “A deep learning-based sports player evaluation model based on
game statistics and news articles”. In: Knowledge-Based Systems 138 (2017), pp. 15–26.
issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2017.09.028. url:
https://www.sciencedirect.com/science/article/pii/S095070511730446X.

[30] Julia Hirschberg and Christopher D. Manning. “Advances in natural language processing”.
In: Science 349.6245 (2015), pp. 261–266. doi: 10.1126/science.aaa8685. eprint: https:
//www.science.org/doi/pdf/10.1126/science.aaa8685. url: https://www.
science.org/doi/abs/10.1126/science.aaa8685.

[31] Siwei Lai et al. “Recurrent Convolutional Neural Networks for Text Classification”. In:
AAAI Conference on Artificial Intelligence. 2015.

[32] Tarun Lalwani et al. “Implementation of a Chat Bot System using AI and NLP”. In:
International Journal of Innovative Research in Computer Science & Technology 6 (May
2018), pp. 26–30. doi: 10.21276/ijircst.2018.6.3.2.

[33] Kai Jiang and Xi Lu. “Natural Language Processing and Its Applications in Machine
Translation: A Diachronic Review”. In: 2020 IEEE 3rd International Conference of Safe
Production and Informatization (IICSPI). 2020, pp. 210–214. doi: 10.1109/IICSPI51290.
2020.9332458.

[34] Uday Kamath, John Liu, and James Whitaker. “Introduction”. In: Deep Learning for
NLP and Speech Recognition. Cham: Springer International Publishing, 2019, pp. 3–38.
isbn: 978-3-030-14596-5. doi: 10.1007/978-3-030-14596-5_1. url: https://doi.org/
10.1007/978-3-030-14596-5_1.

[35] Ming Zhou et al. “Progress in Neural NLP: Modeling, Learning, and Reasoning”. In:
Engineering 6.3 (2020), pp. 275–290. issn: 2095-8099. doi: https://doi.org/10.1016/
j.eng.2019.12.014. url: https://www.sciencedirect.com/science/article/pii/
S2095809919304928.

[36] Joseph Weizenbaum. “ELIZA—a Computer Program for the Study of Natural Language
Communication between Man and Machine”. In: Commun. ACM 9.1 (Jan. 1966), pp. 36–
45. issn: 0001-0782. doi: 10.1145/365153.365168. url: https://doi.org/10.1145/
365153.365168.

[37] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. Cambridge, MA, USA: MIT Press, 1999. isbn: 0262133601.

[38] Sebastian Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Machine Learning with Py-
Torch and Scikit-Learn. Birmingham, UK: Packt Publishing, 2022. isbn: 978-1801819312.

[39] M. E. Maron. “Automatic Indexing: An Experimental Inquiry”. In: J. ACM 8.3 (July
1961), pp. 404–417. issn: 0004-5411. doi: 10.1145/321075.321084. url: https://doi.
org/10.1145/321075.321084.

[40] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In:
International Conference on Learning Representations. 2013.

Page 81 of 84

https://doi.org/https://doi.org/10.1016/j.procs.2021.11.002
https://www.sciencedirect.com/science/article/pii/S1877050921021268
https://www.sciencedirect.com/science/article/pii/S1877050921021268
https://doi.org/10.1109/ComComAp.2012.6154802
https://doi.org/https://doi.org/10.1016/j.knosys.2017.09.028
https://www.sciencedirect.com/science/article/pii/S095070511730446X
https://doi.org/10.1126/science.aaa8685
https://www.science.org/doi/pdf/10.1126/science.aaa8685
https://www.science.org/doi/pdf/10.1126/science.aaa8685
https://www.science.org/doi/abs/10.1126/science.aaa8685
https://www.science.org/doi/abs/10.1126/science.aaa8685
https://doi.org/10.21276/ijircst.2018.6.3.2
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/10.1007/978-3-030-14596-5_1
https://doi.org/10.1007/978-3-030-14596-5_1
https://doi.org/10.1007/978-3-030-14596-5_1
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.014
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.014
https://www.sciencedirect.com/science/article/pii/S2095809919304928
https://www.sciencedirect.com/science/article/pii/S2095809919304928
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/321075.321084
https://doi.org/10.1145/321075.321084
https://doi.org/10.1145/321075.321084

[41] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their Com-
positionality”. In: ArXiv abs/1310.4546 (2013).

[42] Daniel Jurafsky and James H. Martin. “Chapter 6.8 - Word2Vec”. In: Speech and lan-
guage processing - an introduction to natural language processing, computational linguis-
tics, and speech recognition. Prentice Hall series in artificial intelligence. Prentice Hall,
2000, pp. 119–125. isbn: 978-0-13-095069-7.

[43] Chat.openai.com. url: https://chat.openai.com/.

[44] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In:ArXiv abs/1604.07316
(2016).

[45] Yiheng Wei et al. “Fraud Detection by Machine Learning”. In: 2020 2nd International
Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (2020),
pp. 101–115.

[46] Taekeun Hong et al. “Enhancing Personalized Ads Using Interest Category Classification
of SNS Users Based on Deep Neural Networks”. In: Sensors (Basel, Switzerland) 21 (2020).

[47] Christina Christakou, Spyros Vrettos, and Andreas Stafylopatis. “A hybrid movie recom-
mender system based on neural networks”. In: 5th International Conference on Intelligent
Systems Design and Applications (ISDA’05) (2005), pp. 500–505.

[48] Tom M Mitchell. “Introduction”. In: Machine learning. Vol. 1. 9. McGraw-hill New York,
1997.

[49] Daniel Jurafsky and James H. Martin. “Chapter 4.1 - Naive Bayes Classifiers”. In: Speech
and language processing - an introduction to natural language processing, computational
linguistics, and speech recognition. Prentice Hall series in artificial intelligence. Prentice
Hall, 2000, pp. 59–62. isbn: 978-0-13-095069-7.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444. issn: 1476-4687. doi: 10.1038/nature14539. url: https://doi.
org/10.1038/nature14539.

[51] Laith Alzubaidi et al. “Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions”. In: Journal of Big Data 8 (2021).

[52] Ivo D. Dinov. “Black Box Machine-Learning Methods: Neural Networks and Support
Vector Machines”. In: Data Science and Predictive Analytics: Biomedical and Health Ap-
plications using R. Cham: Springer International Publishing, 2018, pp. 383–422. isbn:
978-3-319-72347-1. doi: 10.1007/978-3-319-72347-1_11. url: https://doi.org/10.
1007/978-3-319-72347-1_11.

[53] Frank Emmert-Streib et al. “An Introductory Review of Deep Learning for Prediction
Models With Big Data”. In: Frontiers in Artificial Intelligence 3 (2020).

[54] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. “ACTIVATION FUNCTIONS
IN NEURAL NETWORKS”. In: International Journal of Engineering Applied Sciences
and Technology 04 (May 2020), pp. 310–316. doi: 10.33564/IJEAST.2020.v04i12.054.

[55] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
CoRR abs/1412.6980 (2014).

[56] Jindong Wang and Yiqiang Chen. “Pre-Training and Fine-Tuning”. In: Introduction to
Transfer Learning: Algorithms and Practice. Singapore: Springer Nature Singapore, 2023,
pp. 125–140. isbn: 978-981-19-7584-4. doi: 10.1007/978- 981- 19- 7584- 4_8. url:
https://doi.org/10.1007/978-981-19-7584-4_8.

Page 82 of 84

https://chat.openai.com/
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-72347-1_11
https://doi.org/10.1007/978-3-319-72347-1_11
https://doi.org/10.1007/978-3-319-72347-1_11
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.1007/978-981-19-7584-4_8
https://doi.org/10.1007/978-981-19-7584-4_8

[57] Jindong Wang and Yiqiang Chen. “Introduction”. In: Introduction to Transfer Learning:
Algorithms and Practice. Singapore: Springer Nature Singapore, 2023, pp. 3–38. isbn:
978-981-19-7584-4. doi: 10.1007/978-981-19-7584-4_1. url: https://doi.org/10.
1007/978-981-19-7584-4_1.

[58] Y. Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE transactions on neural networks / a publication of
the IEEE Neural Networks Council 5 (Feb. 1994), pp. 157–66. doi: 10.1109/72.279181.

[59] Jinmian Ye et al. “Learning Compact Recurrent Neural Networks with Block-Term Ten-
sor Decomposition”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2017), pp. 9378–9387.

[60] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural com-
putation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[61] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078.
url: http://arxiv.org/abs/1406.1078.

[62] Albert Zeyer et al. “A Comparison of Transformer and LSTM Encoder Decoder Models
for ASR”. In: 2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU). 2019, pp. 8–15. doi: 10.1109/ASRU46091.2019.9004025.

[63] Wikipedia. url: https://en.wikipedia.org/.

[64] Per Kummervold, Freddy Wetjen, and Javier de la Rosa. “The Norwegian Colossal Cor-
pus: A Text Corpus for Training Large Norwegian Language Models”. In: Proceedings of
the Thirteenth Language Resources and Evaluation Conference. Marseille, France: Eu-
ropean Language Resources Association, June 2022, pp. 3852–3860. url: https : / /

aclanthology.org/2022.lrec-1.410.

[65] Yang You et al. “Reducing BERT Pre-Training Time from 3 Days to 76 Minutes”. In:
CoRR abs/1904.00962 (2019). arXiv: 1904.00962. url: http://arxiv.org/abs/1904.
00962.

[66] Norsk aviskorpus. https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-
sbr-4/. Dataset. 2020.

[67] Peter Harrington. Machine Learning in Action. USA: Manning Publications Co., 2012.
isbn: 1617290181.

[68] Kenneth Reitz. Requests: HTTP for Humans. Accessed: 2023-03-12. 2023. url: https:
//requests.readthedocs.io.

[69] Leonard Richardson. “Beautiful soup documentation”. In: (Apr. 2007). url: https://
beautiful-soup-4.readthedocs.io/en/latest/.

[70] ARX. url: https://datasets.simula.no/arx/.

[71] Hiroki Nakayama et al. doccano: Text Annotation Tool for Human. Software available
from https://github.com/doccano/doccano. 2018. url: https://github.com/doccano/
doccano.

[72] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[73] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language Pro-
cessing. 2020. arXiv: 1910.03771 [cs.CL].

[74] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS 2017 Workshop on
Autodiff. Long Beach, California, USA, 2017.

Page 83 of 84

https://doi.org/10.1007/978-981-19-7584-4_1
https://doi.org/10.1007/978-981-19-7584-4_1
https://doi.org/10.1007/978-981-19-7584-4_1
https://doi.org/10.1109/72.279181
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1109/ASRU46091.2019.9004025
https://en.wikipedia.org/
https://aclanthology.org/2022.lrec-1.410
https://aclanthology.org/2022.lrec-1.410
https://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://requests.readthedocs.io
https://requests.readthedocs.io
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://datasets.simula.no/arx/
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://arxiv.org/abs/1910.03771

[75] T. Hastie, R. Tibshirani, and J.H. Friedman. “Chapter 15 - Random Forests”. In: The
Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series
in statistics. Springer, 2009, pp. 587–604. isbn: 9780387848846.

[76] T. Hastie, R. Tibshirani, and J.H. Friedman. “Chapter 10 - Boosting and Additive Trees”.
In: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer
series in statistics. Springer, 2009, pp. 337–389. isbn: 9780387848846.

[77] Thorsten Joachims. “Text categorization with Support Vector Machines: Learning with
many relevant features”. In: Machine Learning: ECML-98. Ed. by Claire Nédellec and
Céline Rouveirol. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 137–142. isbn:
978-3-540-69781-7.

[78] Andreas Wichert and Luis Sa-Couto. “Chapter 6 - Multilayer Perceptron”. In: Machine
Learning: A Journey to Deep Learning : with Exercises and Answers. World Scientific,
2021, pp. 262–291. isbn: 9789811234057.

[79] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE Transactions
on Information Theory 13.1 (1967), pp. 21–27. doi: 10.1109/TIT.1967.1053964.

[80] P. Szymański and T. Kajdanowicz. “A scikit-based Python environment for performing
multi-label classification”. In: ArXiv e-prints (Feb. 2017). arXiv: 1702.01460 [cs.LG].

[81] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. “On the stratification
of multi-label data”. In: Machine Learning and Knowledge Discovery in Databases (2011),
pp. 145–158.

[82] Piotr Szymański and Tomasz Kajdanowicz. “A Network Perspective on Stratification
of Multi-Label Data”. In: Proceedings of the First International Workshop on Learning
with Imbalanced Domains: Theory and Applications. Ed. by Lúıs Torgo et al. Vol. 74.
Proceedings of Machine Learning Research. ECML-PKDD, Skopje, Macedonia: PMLR,
2017, pp. 22–35.

[83] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. url: https://www.wandb.com/.

[84] Ryan Turner et al. “Bayesian Optimization is Superior to Random Search for Machine
Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge
2020”. In: CoRR abs/2104.10201 (2021). arXiv: 2104.10201. url: https://arxiv.
org/abs/2104.10201.

[85] Ekaba Bisong. “Google Colaboratory”. In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform: A Comprehensive Guide for Beginners. Berkeley, CA:
Apress, 2019, pp. 59–64. isbn: 978-1-4842-4470-8. doi: 10.1007/978-1-4842-4470-8_7.
url: https://doi.org/10.1007/978-1-4842-4470-8_7.

[86] Daniel Jurafsky and James H. Martin. Speech and language processing - an introduction
to natural language processing, computational linguistics, and speech recognition. Prentice
Hall series in artificial intelligence. Prentice Hall, 2000. isbn: 978-0-13-095069-7.

[87] T. Hastie, R. Tibshirani, and J.H. Friedman. Springer series in statistics. Springer, 2009.
isbn: 9780387848846.

Page 84 of 84

https://doi.org/10.1109/TIT.1967.1053964
https://arxiv.org/abs/1702.01460
https://www.wandb.com/
https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/2104.10201
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7

Appendix A
Table of Python-packages

Package name Version Purpose of use

Beautiful Soup 4.10.0 Web scraping tools for pulling data out of
HTML

Datasets 2.10.1 A lightweight and extensible library to easily
share and access datasets

Doccano 1.8.3 Open source text annotation tool

Doccano Client 1.2.7 Python client for Doccano’s API

Flask 2.2.2 A micro web framework written in Python

HuggingFace Hub 0.13.2 A repository of trained machine learning mod-
els, contributed by the wide AI community

NumPy 1.24.2 A package for scientific computing with Python

Pandas 1.5.3 Data exploration and manipulation

Plotly 5.13.0 A Python graphing library

PyTorch 1.13.1 An open source machine learning framework

Requests 2.28.2 A library for making HTTP requests in Python

Scikit-Learn 1.2.2 Tools for predictive data analysis

Scikit-Multilearn 0.2.0 A Python library for performing multi-label
classification

Transformers 4.26.0 State-of-the-art Natural Language Processing
tools from HuggingFace for PyTorch

Wandb 0.14.0 Weights and Biases, a tool for machine learning
experiment tracking and model management.

Table A.1: The Python-packages used during various stages of the data science workflow, in-
cluding data exploration, data processing and machine learning, along with their respective
versions and their purpose of use.

A

	Introduction
	Motivation
	Related Work
	Objectives
	Research Question
	Scope and Limitations
	Contributions

	Theory
	Natural Language Processing
	Common challenges in NLP

	Machine Learning
	Statistical Methods in NLP
	Deep Learning
	Transformers
	BERT

	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1-score
	Precision, Recall and F1-score in Multi-Class Problems

	Data Exploration
	The Arx Dataset
	Label Distribution in The Arx Dataset

	The Multi-Label Dataset
	Label Distribution in The Multi-Label Dataset

	Method
	Data Collection
	Arx Dataset Collection
	Multi-Label Dataset Collection

	Model Selection
	Norwegian BERT Model Selection
	Traditional Machine Learning Model Selection

	Data Preprocessing
	Data Preprocessing for BERT Models
	Data Preprocessing for Traditional Machine Learning Models
	Train/Test Split

	Model Tuning
	Bayesian Search

	Model Configurations
	Model Configurations for the Multi-Class Classification
	Model Configurations for the Multi-Label Dataset

	Hardware Specifications

	Results
	Accuracy
	Precision, Recall and F1-scores
	Multi-Class Classification Performance on Arx
	Multi-Label Classification Performance on the Multi-Label Dataset

	Discussion
	Analysis of the Results
	Model Performance on Multi-Class Classification
	Model Performance on Multi-Label Classification
	Runtime Considerations
	Recommendations Based on Model Performance
	Possible Factors Affecting Model Results
	Ease of Implementation

	The Annotation Process
	Reflective Analysis
	Impact on Sports Article Classification
	The Benefits and Limitations of BERT
	Future Work

	Conclusion
	Table of Python-packages

