

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Comparison of Pre-processing

Methods and Various Machine

Learning Models for Survival

Analysis on Cancer Data

Haris Karovic

Data Science

I

Preface

This thesis marks the end of my 8 years at the Norwegian University of Life Sciences, and my
5 year study in Data Science. I am immensely grateful for the knowledge, skills and friends I
have acquired during my study. I offer my sincerest gratitude to my supervisor Professor Oliver
Tomic and co-supervisor Professor Cecilia Maria Futsæther, both for the inspiring courses held
at the university and for the immense help and fruitful discussions about the research conducted
in this thesis.
Furthermore I would like to thank my parents and sister for always believing in me and sup-
porting me during my studies and in life. Many thanks goes towards my girlfriend who has
supported me a lot and whom I have had little time for the last 6 months. Additionally I would
like to personally thank Dr Kroepelien and his professional team at Volvat Storo for reacting
quickly and planning the surgery I had to undergo at the start of this project at a suitable time.
You managed to fix me up well just in time, so I would be able to write my thesis this semester.

Haris Karovic

Ås, June 15, 2023

II

[This page is intentionally left blank]

Abstract

Colorectal cancer and cancers in the head and neck region still pose a big problem in medicine
and in the healthcare sector. In 2021 alone 11 121 deaths could be accounted for due to various
cancers [1], with colorectal and head and neck cancer being among the more common types
[2] [3]. In today’s digital age, hospitals and researchers are collecting more data than ever
before. Many studies have patients where the follow-up or study has ended before an event of
interest occurs. Instead of discarding those patients from observed data when applying machine
learning methods and subsequently losing valuable information, survival analysis can be applied.
Survival analysis utilizes the information from the censoring variable that tells whether or not
the event of interest has taken place before the study has ended.
In this thesis several pre-processing techniques were utilized, such as removal of outliers, feature
distribution transformations and feature selection techniques. These techniques were applied
together with multiple machine learning algorithms from the scikit-learn and scikit-survival
library. The survival algorithms used were Regularized Cox model with elastic net (Coxnet),
random survival forest, tree based gradient boosting and gradient boosting with partial least
squares as base learner. These algortihms take into account the information from the censoring
variable in addition to the survival time. Other machine learning algorithms used were linear
regression, ridge regression and Partial least squares regression (PLSR), where the last three
algorithms only use the survival time as the target and do not account for the censoring variable.
Two datasets were used in this thesis, one with patients diagnosed with colorectal cancer, and
the second with patients diagnosed with various head and neck cancers. Furthermore, two ex-
periments were carried out separately and validated by the use of repeated stratified k-fold cross
validation. In the first experiment the models were fitted to different feature transformations of
the datasets in combination with feature selection techniques. The second experiment involved
hyperparameter tuning for the survival models. There was little difference in performance be-
tween the transformations, with no improvement on the head and neck dataset, however for the
high dimensional colorectal cancer dataset, powertransformation led to a very small increase of
0.02 in the concordance index. The feature selection techniques did improve the performance
of four of the models, which were Linear Regression, Ridge Regression, PLSR and Coxnet. For
the more advanced survival models which were Gradient Boosted and Random Survival Forest,
the feature selection did in general not improve metrics, as they might have benefited from
greedily selecting features and updating feature weights on their own. The best model in the
first experiment for OxyTarget was Random Forest with powertransform applied before, and
all features available. This resulted in a concordance index of 0.83. For the head and neck
dataset both Component Wise gradient boosting, Coxnet and PLSR were able to achieve the
highest concordance index with 0.77, with Coxnet able to achieve that score across all three
transformations.
In the second experiment, all the survival models were tuned for different hyperparameters to
see if the various metrics would improve. A small performance increase could be seen for several
models. However, for the dataset with colorectal cancer, a Coxnet model tuned with a low reg-
ularization strength and low l1 ratio penalty yielded a large increase in the concordance index
and resulted in the best model with a score of 0.827. For the head and neck dataset, parame-
ter tuning the Random Survival Forest algorithm for min weight fraction leaf and max depth
resulted in the best model, and a concordance of 0.787 was achieved. The research and the
framework created to conduct the aforementioned experiments show that more promising rank-
ing results while maintaining robust models can be achieved through the use of pre-processing
techniques and through the utilization of all data using repeated stratified k-fold cross valida-
tion. However, as the research conducted shows, there is no universal best algorithm or method
to conduct survival analysis for cancer data, as it depends on the data.

IV

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Aims of the master thesis . 9
1.3 Objectives . 9
1.4 Related Work . 9

2 Theory 10
2.1 Survival analysis . 10

2.1.1 Censoring . 10
2.1.2 Hazard . 13
2.1.3 Survival function . 13
2.1.4 Cox proportional hazards . 14

2.2 Outlier detection . 15
2.2.1 Z-Score . 15
2.2.2 Isolation Forest . 16

2.3 Feature selection . 16
2.3.1 Univariate Cox filter . 17
2.3.2 Random forest variable importance . 17
2.3.3 RSF minimal depth . 17
2.3.4 RSF variable hunting . 19
2.3.5 mRMR . 19

2.4 Machine Learning algorithms for survival analysis 20
2.4.1 Random survival forest . 20
2.4.2 Gradient boosting . 23
2.4.3 Penalized Cox model (Coxnet) . 24

2.5 Regression . 26
2.5.1 Linear regression . 26
2.5.2 Ridge regression . 26
2.5.3 PLS Regression (PLSR) . 27

2.6 Metrics . 28
2.6.1 Harrells C-index . 28
2.6.2 Uno´s C-statistic . 29
2.6.3 Brier score . 30
2.6.4 RMSE . 31

2.7 Data scaling and transformation techniques . 31
2.7.1 Standard scaling . 32
2.7.2 Min-max scaling . 32
2.7.3 Yeo-Johnson . 32

1

2.8 Imputation of data . 33

3 Datasets 35
3.1 Datasets . 35

3.1.1 Oxytarget . 35
3.1.2 Head-Neck . 35

3.2 Data quality issues . 35
3.3 Principal component analysis . 36

3.3.1 PCA for Oxytarget . 36
3.3.2 PCA for headneck . 37

4 Method 39
4.1 Pre-processing of the data . 39

4.1.1 Formatting missing data . 40
4.1.2 Removing samples with no event status 40
4.1.3 Calculating the survival time . 40
4.1.4 Sorting features and removing date columns 40
4.1.5 Columns with a high proportion of missing values 40
4.1.6 Formatting numerical columns . 41
4.1.7 Encoding categorical variables . 41
4.1.8 Scaling transformation of data . 41
4.1.9 Imputing missing values . 41
4.1.10 Outlier removal . 42

4.2 Methodological framework . 44
4.3 Methodology when tuning the models . 47

5 Results 48
5.1 Distribution of censorship . 48
5.2 Scaling and feature selection . 49

5.2.1 Most frequently selected features for OxyTarget dataset 50
5.2.2 Most frequent selected features for headneck dataset 51
5.2.3 Harrell’s concordance index . 53
5.2.4 UNO’s C-statistic . 55
5.2.5 UNO’s C-statistic with truncation . 56
5.2.6 Integrated Brier Score . 58
5.2.7 RMSE . 60

5.3 Parameter tuning . 62
5.3.1 Gradient boosting . 62
5.3.2 Component wise gradient boosting . 63
5.3.3 Random survival forest . 64
5.3.4 Coxnet . 66

5.4 RV values for different subsets . 67

6 Discussion 68
6.1 Different scalings and transformations . 68
6.2 Feature selection and features selected . 68

6.2.1 Feature selection and performance . 69
6.3 Hyperparameter tuning of survival models . 71

6.3.1 Coxnet . 71
6.3.2 Random Survival Forest . 71
6.3.3 Gradient boosting with regression trees as base learner 72
6.3.4 Componentwise gradient boosting with partial least squares as base learner 72

Page 2 of 111

6.4 The performance of the models used . 73
6.5 Bias due to high proportion of censoring . 74
6.6 Cross validation to evaluate feature selection techniques and method of searching

for optimal hyperparameters . 74
6.7 Issues faced and limitations . 74

6.7.1 Unstable predictions with Coxnet . 74
6.7.2 Other loss functions for gradient boosted models 75
6.7.3 Features selected by the different algorithms 75

6.8 Suggestions for future work . 75
6.8.1 Impute right censored samples . 75
6.8.2 Different or additional approach to hyperparameter tuning 75

7 Conclusion 77

A Heatmaps of metrics for feature selection methods 83
A.1 Harrells concordance index . 83

A.1.1 OxyTarget . 83
A.1.2 headneck . 84

A.2 UNO’s C-statistic . 85
A.2.1 OxyTarget . 85
A.2.2 headneck . 86

A.3 UNO’s C-statistic with truncation . 88
A.3.1 OxyTarget . 88
A.3.2 headneck . 90

A.4 IBS . 91
A.4.1 Oxytarget . 91
A.4.2 headneck . 92

A.5 RMSE . 93
A.5.1 OxyTarget . 93
A.5.2 headneck . 95

B Parameter tuning with repeated k-fold 96
B.1 Coxnet . 97

B.1.1 OxyTarget . 97
B.1.2 headneck . 98

B.2 Random survival forest . 99
B.2.1 OxyTarget . 99
B.2.2 headneck . 101

B.3 Gradient boosting with coxph as loss function . 103
B.3.1 headneck dataset . 103
B.3.2 OxyTarget . 103

B.4 Componentwise Gradient boosting with coxph as loss function 107
B.4.1 OxyTarget . 107
B.4.2 headneck dataset . 109

Page 3 of 111

List of Figures

2.1 Dataset examples with and without censoring variable 11
2.2 Examples of different censoring types for a number of samples. Green illustrates

diagnosis, blue illustrates event and red illustrates withdrawal from study. 11
2.3 Example of survival curve . 14
2.4 Example with Z-scores on a bell curve . 16
2.5 Example showing isolation of two samples, for an isolation tree. 16
2.6 Survival tree highlighting the maximal subtrees for the variable BMI and its depths. 18
2.7 Random forest variable hunting algorithm . 19
2.8 Survival tree caption write . 21
2.9 An overview of the inner workings of the Random Survival Forest algorithm from

start to end. 23
2.10 NIPALS PLS1 pseudocode, posted with permission from Ulf Geir Indahl. Used

for calculating PLSR with one target variable. [47] 28
2.11 Yeo-Johnson power transformer from scikit-learn applied on feature ’heart rate’

from the Worchester heart attack study dataset, with observed feature values on
the x-axis and actual risk scored on the y-axis. 33

3.1 X score loadings plot from principal component 1 and 2 for OxyTarget 36
3.2 Loadings plot of principal component 1 and 2 for OxyTarget 37
3.3 X score loadings plot from principal component 1 and 2 for headneck 37
3.4 Loadings plot of principal component 1 and 2 for headneck 38

4.1 An overview of the consecutive pre-processing steps from start to end. 39
4.2 Outliers detected for the min-max transformation of OxyTarget dataset using

Z-score and Isolation Forest . 42
4.3 Outliers detected for the standardscaled transformation of OxyTarget dataset

using Z-score and Isolation Forest . 43
4.4 Outliers detected for the powertransformed Oxytarget dataset using Z-score and

Isolation Forest . 43
4.5 Outliers detected using Z-score for the min max and standardscaled transforma-

tion of the headneck dataset . 44
4.6 An overview of the methodological framework for feature selection and scoring

of the models. 45
4.7 Example of repeated stratified k-fold with 4 splits and 5 repeats 46

5.1 Distribution of censoring over time in months for Oxytarget, where 72 percent
of samples are censored . 48

4

5.2 Distribution of censoring over time in months for headneck, where 62,2 percent
of samples are censored . 49

5.3 Most frequently selected features on OxyTarget dataset by each feature selection
method . 50

5.4 Most frequently selected features on OxyTarget dataset by all methods counted . 51
5.5 Most frequently selected features on headneck dataset by each feature selection

method . 51
5.6 Most frequently selected features on headneck dataset by all methods counted . . 52
5.7 Harrell’s concordance index for Oxytarget dataset with min max scaling applied. 53
5.8 Harrell’s concordance index for headneck dataset with min max scaling applied. . 54
5.9 Scores for UNO’s C-statistic for OxyTarget dataset with min max scaling applied. 55
5.10 Scores for UNO’s C-statistic for headneck dataset with min max scaling applied. 56
5.11 Scores for Uno’s C-statistic with truncation for OxyTarget dataset with min max

scaling applied . 57
5.12 Scores for Uno’s C-statistic with truncation for headneck dataset with min max

scaling applied . 58
5.13 Integrated Brier Score for OxyTarget dataset with min max scaling applied . . . 59
5.14 Integrated Brier Score for headneck dataset with min max scaling applied 60
5.15 RMSE for OxyTarget dataset with min max scaling applied 61
5.16 RMSE for headneck dataset with min max scaling applied 62
5.17 RV computation of different subsets for OxyTarget and headneck dataset. 67

A.1 Harrell’s concordance index on Oxytarget dataset with standardscaling applied. . 83
A.2 Harrell’s concordance index on Oxytarget dataset with powertransform applied. . 84
A.3 Harrell’s concordance index on headneck dataset with standardscaling applied. . 84
A.4 Harrell’s concordance index on headneck dataset with powertransform applied. . 85
A.5 Uno’s C-statistic on OxyTarget dataset with standardscaling applied 85
A.6 Uno’s C-statistic on OxyTarget dataset with powertransform applied 86
A.7 Uno’s C-statistic on headneck dataset with standardscaling applied 86
A.8 Uno’s C-statistic on headneck dataset with powertransform applied 87
A.9 Uno’s C-statistic with truncation on OxyTarget dataset with standardscaling

applied . 88
A.10 Uno’s C-statistic with truncation on OxyTarget dataset with powertransform

applied . 89
A.11 Uno’s C-statistic with truncation on headneck dataset with standardscaling applied 90
A.12 Uno’s C-statistic with truncation on headneck dataset with powertransform applied 91
A.13 Integrated Brier Score for headneck dataset with standardscaling applied 92
A.14 Integrated Brier Score for headneck dataset with powertransform applied 92
A.15 RMSE for OxyTarget dataset with standardscaling applied 93
A.16 RMSE for OxyTarget dataset with powertransform applied 94
A.17 RMSE for headneck dataset with standardscaling applied 95
A.18 RMSE for headneck dataset with powertransform applied 95

B.1 Coxnet with repeated stratified k fold tuned for alpha and l1 ratio on OxyTarget
dataset. Sorted in decreasing order by: Harrell’s concordance index, UNO’s C-
statistic and IBS . 97

B.2 Coxnet with repeated stratified k fold tuned for alpha and l1 ratio on OxyTarget
dataset. Sorted in decreasing order by: Harrell’s concordance index, UNO’s C-
statistic and IBS . 98

B.3 Random survival forest on repeated stratified k fold tuned for n trees and max depth
on OxyTarget dataset. Sorted in decreasing order by: Harrell’s concordance in-
dex, UNO’s C-statistic and IBS . 99

Page 5 of 111

B.4 Random survival forest on repeated stratified k fold tuned for min weight fraction leaf
and max depth on OxyTarget dataset. Sorted in decreasing order by: Harrell’s
concordance index, UNO’s C-statistic and IBS 100

B.5 Random survival forest on repeated stratified k fold tuned for n trees and max depth
on headneck dataset. Sorted by decreasing order by: Harrell’s concordance index,
UNO’s C-statistic and IBS . 101

B.6 Random survival forest on repeated stratified k fold tuned for min weight fraction leaf
and max depth on headneck dataset. Sorted in decreasing order by: Harrell’s
concordance index, UNO’s C-statistic and IBS 102

B.7 Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators and learning rate on OxyTarget dataset. Sorted in decreasing
order by: Harrell’s concordance index, UNO’s C-statistic and IBS 103

B.8 Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators, learning rate, min weight fraction leaf and max depth on Oxy-
Target dataset (top 20 hyperparameter combinations). Sorted in decreasing order
by: Harrell’s concordance index, UNO’s C-statistic and IBS 104

B.9 Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators and learning rate on headneck dataset. Sorted in decreasing
order by: Harrell’s concordance index, UNO’s C-statistic and IBS 105

B.10 Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators, learning rate, min weight fraction leaf and max depth on head-
neck dataset. (top 20 hyperparameter combinations). Sorted in decreasing order
by: Harrell’s concordance index, UNO’s C-statistic and IBS 106

B.11 Parameter tuning for number of estimators and learning rate for componentwise
gradient boosting using repeated stratified k-fold for OxyTarget dataset. Sorted
in decreasing order by: Harrell’s concordance index, UNO’s C-statistic and IBS . 107

B.12 Componentwise gradient boosting with coxph as loss function on repeated strat-
ified k fold tuned for n estimators, learning rate and subsample on OxyTarget
dataset. (top 20 hyperparameter combinations). Sorted in decreasing order by:
Harrell’s concordance index, UNO’s C-statistic and IBS 108

B.13 Parameter tuning for number of estimators and learning rate for componentwise
gradient boosting using repeated stratified k-fold for headneck dataset. Sorted
in decreasing order by: Harrell’s concordance index, UNO’s C-statistic and IBS . 109

B.14 Componentwise gradient boosting with coxph as loss function on repeated strat-
ified k fold tuned for n estimators, learning rate and subsample on headneck
dataset (top 20 hyperparameter combinations). Sorted in decreasing order by:
Harrell’s concordance index, UNO’s C-statistic and IBS 110

Page 6 of 111

List of Tables

4.1 Feature selection methods with corresponding packages and parameters 47

5.1 5 best models for OxyTarget dataset using tree based gradient boosting and
tuning for number of estimators and learning rate. 62

5.2 5 best models for headneck dataset using tree based gradient boosting and tuning
for number of estimators and learning rate. 63

5.3 5 best models for OxyTarget dataset using tree based gradient boosting and
tuning for number of estimators, learning rate, weight fraction and max depth. . 63

5.4 5 best models for headneck dataset using tree based gradient boosting and tuning
for number of estimators, learning rate, weight fraction and max depth. 63

5.5 5 best models for OxyTarget dataset using componentwise gradient boosting and
tuning for the number of estimators and learning rate. 64

5.6 5 best models for headneck dataset using componentwise gradient boosting and
tuning for the number of estimators and learning rate. 64

5.7 5 best models for OxyTarget dataset using componentwise gradient boosting and
tuning for number of estimators, learning rate and subsample. 64

5.8 5 best models for headneck dataset using componentwise gradient boosting and
tuning for number of estimators, learning rate and subsample. 64

5.9 5 best models for OxyTarget dataset using random survival forest and tuning for
number of estimators and max depth. 65

5.10 5 best models for headneck dataset using random survival forest and tuning for
number of estimators and max depth. 65

5.11 5 best models for OxyTarget dataset using random survival forest and tuning for
min weight fraction leaf and max depth. 65

5.12 5 best models for headneck dataset using random survival forest and tuning for
min weight fraction leaf and max depth. 66

5.13 5 best models for OxyTarget dataset using Coxnet and tuning for alpha value
and l1 ratio. 66

5.14 5 best models for headneck dataset using Coxnet and tuning for number of alphas
and l1 ratio. 66

7

Chapter 1
Introduction

1.1 Motivation

Cancer is a complex disease that continues to pose a significant health challenge globally, as
it is one of the most common sources leading to death. It can be characterized as a disease
where abnormal cells have an uncontrolled growth due to genetic mutations. These mutations
can form malignant tumors and spread to surrounding areas, potentially causing harm to tissue
and organs [4].
Only in Norway, there were 327 101 humans which have had a cancer diagnosis or are living
with cancer in 2022, and 11 121 deaths in 2021 alone are due to cancer [1]. On a global level
near 10 millions deaths in 2020 could be accounted to cancer, where colorectal cancer is one of
the most common types [2]. There are various risk factors associated with rectal cancer, such
as medical history of the family, certain gene changes, personal medical history of ulcerative
colitis or Crohns for prolonged time and alcohol and tobacco usage [5].
Cancer in the head and neck region account for around 325 000 deaths globally and is the
seventh most prevalent form of cancer with the numbers of incidents increasing within the last
decades [3]. There are various risk factors that cause cancers in the head and neck region.
Radiation exposure, occupational exposure to certain materials, HPV infection, Epstein Barr
virus, and alcohol and tobacco consumption being the most important risk factors [6].
There are various treatments for rectal, head and neck cancer, but the most common types
are often a form of surgery or therapy including medical treatments such as radiotheraphy,
chemotherapy, targeted therapy and immunotherapy. Some patients may undergo more than
one therapy, for example using a therapy method after surgery to make sure all remaining cancer
cells are removed if further or more extensive surgery can pose a great risk to the patient.
As an example, survival for patients diagnosed with rectal cancer has increased from 71.4 to
71.8 percent and 72.3 to 73.4 percent for males and females, respectively [1]. A great effort
is done globally to understand, counteract and improve the treatment of cancer. Hospitals,
the government, medical staff and researchers have put a tremendous effort into capturing,
curating and supplying clinical data to study various cancer forms. With the rise of technology
for the last two decades, artificial intelligence and machine learning can be utilized to efficiently
analyze clinical data and forecast future outcomes. The use of machine learning models in
survival analysis, can help us get a better understanding of risk factors, treatment types, clinical
recordings and potential outcomes and hopefully lead to an increase in survival for multiple
forms of cancer.
Both datasets investigated in this thesis have never been analyzed with Survival Analysis before,
therefore it is in itself of interest to apply survival analysis to these data because it takes into
account that parts of the data are censored. Previous studies have focused on whether an event
occurs or not after a certain time period through classification, not when.

8

1.2 Aims of the master thesis

The primary focus of this thesis will be a comparison of performance between machine learning
algorithms used for survival analysis, where several widely used metrics for survival analysis
will be used. Additionally, conventional linear regression models which are not able to capture
information regarding censoring will be used to estimate time of survival, where ranking of
samples will be evaluated towards the survival models and accuracy will be evaluated between
the conventional regression models. Can modern machine learning algorithms achieve better
performance than classical survival models and classical regression models? Additionally, as
one performance metric only captures one side of performance, are we able to get a more com-
prehensive picture of the performance of each model by assessing several performance metrics
in survival analysis?
A secondary objective will be to assess and evaluate the effect different feature selection methods
together with different scaling and transformation methods of the data have on the selected
models. As two different datasets will be used, performance on high-dimensional vs regular-
sized data will be assessed to some extent.
Chapter 2 will explain some theory revolving around regression, survival analysis, the models
used and their methods of predicting the time of survival. Chapter 3 will give an introduction to
the datasets used for the experiments. Chapter 4 will present the methodology used before the
results are presented in Chapter 5. The results will be discussed in Chapter 6, while Chapter 7
will contain the conclusion and further work that could have been done.

1.3 Objectives

Hopefully, by identifying which models and techniques are able to perform good by assessing the
resulting metrics, several improvements can be made in the future regarding cancer treatment.
By benchmarking different machine learning models and regression techniques, researchers can
determine which models provide the most accurate predictions for cancer survival rates, to ef-
fectively predict patient outcomes and guide towards the right treatment options. With more
reliable estimates hopefully in the future, clinicians can use modern data science to better plan
and personalize treatments effectively. Survival and regression models can be used further to an-
alyze recurrence rates and progression as well. Accurate models and feature selection techniques
can assist in identifying important features and their impact on survival, and potentially help
researchers understand underlying biological mechanisms that impact the outcome of patients.
Hopefully, new biomarkers can be discovered and therapeutic targets for effectively improving
cancer treatment. Hopefully, this thesis can facilitate better interpretability of some machine
learning models and by sharing the benchmarking results and methods can lead to further col-
laboration and advancements in cancer treatment. In today’s age where many governmental
healthcare providers are facing an overload of work, machine learning can hopefully efficiently
help patients get help sooner in the future.

1.4 Related Work

As one of the clinical datasets used in this thesis, OxyTarget might be classified as high di-
mensional data, a key idea was to explore if feature selection might lead to better performing
survival models and conventional regression models on survival data. A great inspiration was
the article ”A comparison of machine learning methods for survival analysis of high-dimensional
clinical data for dementia prediction” by Spooner, et al [7]. This thesis will use some of the
same models and feature selection models implemented in this article.

Page 9 of 111

Chapter 2
Theory

2.1 Survival analysis

Survival analysis is a statistical method applied in multiple fields such as healtchare, engineering,
economics, where the goal is to analyze time-to-event data. The primary focus of survival
analysis on time-to-event data is the study of when specific events occur [8]. For example,
patients are studied from when they are diagnosed with a disease until their death. Data from
such a study will usually contain the time of survival. The key difference which is essential for
survival analysis is censoring. Censoring can for example occur when the event of interest yet
has to happen by the end of the study or simply because the sample or patient is lost to follow-
up [9]. Survival models are able to use the information of these censored samples. Through
the use of statistical survival models and survival machine learning algorithms the probability
of an event happening over time can be estimated, such as a patient dying, a mechanical part
breaking down, or the time until a loan is paid back.
Survival analysis has been an important statistical method in cancer studies for several decades.
Some methods can be tracked back to the 50’s, such as the Kaplan-Meier estimator which
was developed by Kaplan and Meier [10] and the infamous Cox Proportional Hazards Model
developed in 1972 by D.R. Cox [11]. Around the millennia and up until today new methods have
emerged with machine learning algorithms that have been adapted for use in survival analysis.
Both nonlinear tree based models and new linear models have been adapted, such as random
survival forest [12] and gradient boosted models [13].

2.1.1 Censoring

One of the key differences between survival analysis from conventional regression is the event
indicator. The target values for the model to train on consists of both the length of survival
and the event indicator, telling whether an event has occurred or not. In survival analysis a
crucial analytical element which has to be considered is censoring, which is when there is no
specific known time to event for a sample, illustrated in figure 2.1.

10

Figure 2.1: Dataset examples with and without censoring variable

This thesis will utilize data which is right censored, meaning the data contains samples which
had not yet experienced an event when the data observation period ended, but will experience it
afterwards. In general there are three main types of censoring, which are left censoring, interval
censoring and right censoring. Each censoring type is not exclusive to each sample either, a
sample can for example be both left and right censored. Typically censoring occurs because a
sample has yet to experience the event before the observational period for the study ends, is
lost to follow up or simply withdraws from the study [9].

Figure 2.2: Examples of different censoring types for a number of samples. Green illustrates
diagnosis, blue illustrates event and red illustrates withdrawal from study.

Figure 2.2 illustrates a variety of different occurrences of censoring for nine different samples. As
this thesis revolves around healthcare data, we can explain the figure using patients diagnosed
with a medical condition and let death be the event indicator. Sample 1 is in fact not censored,
both the medical condition was diagnosed and the patient died within the observation period.

Page 11 of 111

Sample 2 was diagnosed within the observational period and experienced the event after the
observation period, therefore the patient is right censored. Right censoring as illustrated with
sample 2 is the most common form of censoring for a lot of popular and conventional datasets
available to the public wanting to learn survival analysis. Sample 3 is right censored, as the
patient has withdrawn from the study, consequently leading the sample to be right censored
at the time of withdrawal. Sample 4 is left censored which means the time of origin for the
medical condition is unknown, it is only known that it happened sometime before the study
started. Interestingly for sample 5, the time of origin for the medical condition is unknown as
it happened before the observational period and the patient was alive during the full length of
the observation period, leading to the sample being both left and right censored. Sample 6 is
fully left censored, while sample 7 is fully right censored. Fully left censored implies that the
time of origin is unknown and both origin and event take place before the observations have
started. Similarly, for a fully right censored sample, the time of origin and event takes place
after the observation period has ended. Fully right and left censored samples will not impact or
have any effect on analysis when conducted, but it might have a negative impact on how well a
model will generalize [14]. Sample 8 is interval censored, a typical example is when it is known a
patient has endured an event in the observational period, but the exact time is not known. For
example, it is known that the patient died between the last checkup at the hospital and when
the patient was found dead, which is a time interval. The interval for sample 8 is the timeframe
between the blue line and the blue dot. Sample 9 is commonly referred to as a double interval
censoring. As the figure illustrates, there is an orange dot and a blue dot highlighting two
different events. The final event, which is death is the blue dot and has occurred as a possible
effect of the initial event which is the orange dot.

Censoring assumptions

Additionally, there are three main assumptions which have to be taken into consideration about
censoring. Censoring is independent, non informative and random.
Basic notation needs to be introduced, where T is a random variable for the survival time for
a sample and ”t = specific value for T [9]” To give an example, assessing five year survival can
noted as: T > t = 5 [9]. Random censoring implies that all samples censored at time t should
be representative of all samples still at risk at time t within the same risk set. Furthermore,
this implies that the failure rates for both a sample censored at time t and a sample still at risk
at time t are equal within the same risk set [9]. A risk set is a group of samples which have
survived for at least a specific value of time t(f). For example considering a study of 10 patients,
and the risk set containing 5 patients that have survived for at least 4 weeks. Considering this
risk set, a patient from this subgroup is censored after 11 weeks of survival. At time 11 weeks,
the failure rate for this patient is equal to the ones still alive in the risk set.
The second assumption, Independent censoring, is in essence that censoring and likelihood of
experiencing the event of interest are independent [9]. To give an example, a study containing
a group of 20 patients diagnosed with cancer studying the rate of survival after 1 year can be
considered. After 1 year 10 of the patients are still alive. The researchers want to continue
the study for another year to study the rate of survival at 2 years, but 5 of the samples have
withdrawn. Of the 10 patients in the risk set that has survived for 1 year, we can divide the
withdrawn patients into subgroup A and the 5 patients still a part of the study into subgroup
B. After 2 years when the study has ended, of the 5 patients remaining in the study, 4 survived.
Assuming censoring is independent and random, the researchers estimate that 4 out of 5 patients
in subgroup A also survived after 2 years time. To further add to the first assumption, even
if the patients did not withdraw at random from the risk set of patients alive after 1 year, the
survival rate can be expected to be the same for subgroups A and B as if the patients did
withdraw at random from the study at year 1 (t(1)).
The third assumption regarding censoring is non-informative censoring. There are two depen-

Page 12 of 111

dencies that have to be taken into account before it is determined whether the censoring is
informative or non-informative. The dependencies are the distribution of time-to-event and
time-to-censorship [9].
When the distribution of survival times for the data reveals no information about the distribu-
tion of times of censoring, then censoring is non-informative. Opposite, if the distribution of
survival times reveals information about the distribution of times of censoring, then censoring
is informative. Simplified, this means that non-informative censoring is when the probability of
a sample being censored is not related to the samples survival time, after taking into account
other observed features [15]. The importance of this assumption is highlighted in the fact that
informative censoring can lead to a bias in the estimation of the hazard and survival of samples
[16]. To ensure non-informative censoring for the data analyzed, the risk can be mitigated by
including all relevant features in the analysis during observation which can be associated with
either censoring or the event of interest.

2.1.2 Hazard

The hazard function is a fundamental concept in survival analysis which is known as the condi-
tional failure rate and ”gives the instantaneous potential per unit time for the event to occur,
given that the individual has survived up to time t” [9]. The function is very useful in survival
analysis as it captures the dynamic and instantaneous nature of an event of interest occurring
over time. Hazard can as well help with explaining the relationship between covariates in the
dataset in relation to the survival time. A comprehensive understanding of the time-to-event
outcomes for subgroups and samples can be provided by examining the shape of the hazard
function. Further on, risk factors which influence survival can be studied, and the impact treat-
ments have becomes quantifiable. More simply Hazard can be said to be the intensity of failure
at a given time, per unit time and can be compared to the speedometer of a train. The train
can speed up and can speed down, but if the same speed is kept, it tells how far the train will
travel. Essentially what the speedometer tells is how fast the train is going at any given time,
which is the instantaneous potential, which is similar to the hazard function which tells the
instantaneous event rate. The hazard function is expressed as [9]:

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T ≥ t)

∆t
(2.1)

As can be seen Equation 2.1, it is a limit of the probability of an event taking place within
a time interval as the interval approaches 0, divided by the length of the time interval. The
limit operator provides the instantaneous potential, as the change in time approaches 0 [9]. The
numerator in the fraction is the probability of an event occurring in the time interval [t, t+∆t],
given that the event has not taken place before time t. Therefore as mentioned the hazard is
a conditional failure rate. What is important to note, is that the hazard function can never
be negative. To give an example, clinical data containing cancer recurrence can be considered.
In turn defining the hazard function as the instantaneous recurrence of cancer at a given point
in time. As known, cancer recurrence can never be negative, which means that in theory the
hazard function can go to infinity.

2.1.3 Survival function

The hazard function is closely related to the survival function, which is crucial for survival
analysis. The survival function can be obtained with the hazard function, and vice versa. The
most simple way of expressing the survival function is in the form of [9]:

S(t) = P (T > t) (2.2)

Page 13 of 111

Where T is a continuous random variable representing the time-to-event [9], hence the expression
can be described as the probability that the event of interest has yet to occur by time t.
Considering a clinical dataset containing cancer patients, to asses the probability of survival by
year 3, the expression can be written as S(t) = P (T > 3). As the time variable goes from 0
to infinity, the probability goes from 1 to 0. To further explain the relationship between the
hazard function and survival function, the survival function can be obtained by integrating the
hazard function in Equation 2.1 from time 0 to t, which is shown in equation 2.3 [9].

S(t) = exp[−
∫ t

0
h(x) dx (2.3)

The probability of that sample surviving beyond time t is the product of all the probabilities
of surviving all the smaller time intervals given by Equation 2.3. The integral of the hazard
function from time 0 to t is commonly known as the cumulative hazard function [9], which
essentially represents the total risk of experiencing the event of interest before time t. The
survival function is the exponential of the negative cumulative hazard function.

Figure 2.3: Example of survival curve

2.1.4 Cox proportional hazards

In a paper from 1972 David Cox suggested a new hazards model which is widely used for survival
analysis [11]. An assumption made by the model is that the hazard function can be defined
as the product of a time independent baseline hazard function H0(t), and a set of independent
time varying covariates X [11]:

h(t|X) = h0(t)e
(βX) (2.4)

X is a vector consisting of multiple covariates X1, ..., Xn. The baseline hazard function H0(t)
represents the hazard at time t when all of the covariates in vector X equals 0. Whereas the
beta β represents the effect of every covariate on the hazard function. In machine learning
language it is the same as what is referred to as feature weights. The dot product of X and

Page 14 of 111

regression coefficients beta is the total effect of all the covariates on the hazard function. As the
last term containing the dot product is exponential the hazard function is positive at all times.
Simplified, eβ can be considered the relative risk of the covariate on the hazard, for example an
indication of ”the relative risk of adverse event given by smoking over not smoking [17]” for a
patient.
When it comes to applied data science, one has to figure out how to fit a model with the correct
parameters. In order to estimate the correct regression coefficients beta, Cox´s proposition was
to fit the model using maximum likelihood estimation. This is done by minimizing the negative
log partial likelihood function. As can be seen from equation 2.5, the partial likelihood can
be written as the product of the conditional probabilities of observed events given they have
occurred and the probabilities of censoring for samples that have yet to experience said event.

L(β) =
n∏

i=1

exp(βTXi)∑
j∈R(ti)

exp(βTXj)
(2.5)

[11] [18]
In equation 2.5, n is the number of samples. Xi is the covariate vector for sample i, R(ti) is the
individuals at risk at time ti [18]. Further, using the partial likelihood function it is possible to
derive the negative log partial likelihood 2.6, which is the objective function needed to optimize.

−l(β) = −
n∑

i=1

δi

βTXi − log
(∑
j∈Ri

exp(βTXj)
) (2.6)

[11] [18]
For the negative log likelihood function 2.6 sigma (σ) indicates whether and event has taken
place or not. Negative log partial likelihood is then used to find the values for the regression
coefficients beta that minimizes the negative log partial likelihood. As the function is convex,
gradient based methods can be used in order to find the correct values for the coefficient vector
beta that minimizes the negative log likelihood [19].

2.2 Outlier detection

2.2.1 Z-Score

Z-score outlier detection is a statistical method which can be used to identify outliers in the
dataset. The Z-score for a data point tells how many standard deviations the data point is away
from the mean [20].
To calculate the Z-score, the mean and the standard deviation for the features have to be
calculated. Next the Z-score for each sample has to be calculated with the formula in equation
2.7 which will tell the distance from the mean for the sample [20].

Zi =
|X − µ|

σ
(2.7)

Further, a threshold value defining how far away from the mean an outlier is has to be specified.
For example 3 or 4 standard deviations away from the mean. Then each sample which is further
away than the threshold will be identified.

Page 15 of 111

Figure 2.4: Example with Z-scores on a bell curve

Outlier detection with Z-score assumes the data is normally distributed [20]. This thesis uses
Z-score outlier detection to remove samples with extreme values for continuous explanatory
variables.

2.2.2 Isolation Forest

Isolation forest is an algorithm that detects anomalies by isolating the outlier samples. It works
in a similar fashion to random forest and consist of an ensemble of isolations trees (iTrees) [21].
The iTrees randomly selects a feature for each split and selects a random value between the
maximum and minimum observed value to make a split [22]. On the ensemble of the iTrees the
anomalies are the samples which have a short average path length on the trees [21].

Figure 2.5: Example showing isolation of two samples, for an isolation tree.

As can be seen in Figure 2.5 the path length for a particular iTree is greater for sample A than
sample B, which in this case is an outlier. As can be seen, outliers like sample B are more
susceptible to become isolated as it requires fewer partitions to become isolated [21].

2.3 Feature selection

As data collection techniques have improved vastly over the last decades due to digitalization,
more features are recorded and high dimensional data has gotten more accessible. Berkeley
Statistics defines datasets used in high dimensional statistics as when ”the number of features
is of comparable size or larger than the number of observations” [23]. There are certain risks
associated with working with high dimensional data in regards to predictive performance. To

Page 16 of 111

counteract some of the risks associated with a large number of features, feature selection can
be utilized. There are multiple possible benefits of reducing the feature space with feature
selection. A smaller feature space can lead to noise reduction as high dimensional data can
contain irrelevant or noisy features, which might reduce the overall performance of the analysis.
Another factor to consider by including irrelevant or noisy features is the risk of poor gener-
alization of the model on new data, as irrelevant or noisy features can lead to overfitting. An
added benefit with a reduced feature space is also improved interpretability as it can be easier
for the models to interpret relationships between the features in the subset.

2.3.1 Univariate Cox filter

The univariate Cox filter uses the Cox proportional hazards model to select features. By turn
each feature is fitted to the model [24] and the resulting performance from the models is mea-
sured using Harrell’s concordance index. The features are then ranked based on the concordance
index [7]. The idea is to explore how well each feature univariately explains the survival out-
come, and the better the score, the better the feature is at predicting the outcome. After the
features are ranked, the user specifies how many of the top performing covariates to keep as a
subset.

2.3.2 Random forest variable importance

One of the filter methods used to select features is the random forest variable importance. The
features are selected by randomly permuting features, which in essence means that noise is
added to a random feature. The error in prediction is measured before and after the noise is
added [25]. If a noised up feature leads to a significant increase in prediction error, it might
indicate that a feature is highly predictive.

2.3.3 RSF minimal depth

The feature selection method RSF minimal depth is in fact the minimal depth of a maximal
subtree in a survival tree [26]. A maximal subtree for a variable is the greatest subtree where the
variable was used for splitting at the root node. In other words the parent nodes of a maximal
subtree for a variable is not split using the particular variable [26].

Page 17 of 111

Figure 2.6: Survival tree highlighting the maximal subtrees for the variable BMI and its depths.

As can be seen from the illustration 2.6, a variable can have more than one maximal subtree
(subtrees marked in red colour). To find the minimal depth of the maximal subtree for a
particular variable, one has to start looking at the maximal subtrees root nodes. The node
distance from the maximal subtree(s) root node(s) to the root node of the survival tree is the
depth of the maximal subtrees [26]. To find the minimal depth for a variable, one has to look
at the aforementioned distance and find the maximal subtree with the smallest distance from
the maximal subtree root node to the root node of the survival tree [26]. In Figure 2.6 the
feature BMI has two maximal subtrees with a depth of 3 and 2, therefore the minimal depth
for BMI is 2, whereas for the feature height, the minimal depth of its maximal subtree is 0, as
the maximal subtree is the whole survival tree. The minimal depth will give an indication of
how great the impact a feature has on prediction. In general, the smaller the minimal depth is,
the more considerable the effect the feature has on predictions [26].

Page 18 of 111

2.3.4 RSF variable hunting

[26]

Figure 2.7: Random forest variable hunting algorithm

Random forest variable hunting is a regularized algorithm which uses the maximal subtrees of
of the random forest algorithm in order to efficiently find the best subset of features [26]. The
algorithm starts by randomly splitting the data given as input into a train and test set (line
2). Following the algorithm will subsample a set of features, resulting in a lower dimensionality
(line 3). The subsampling of variables is done at random. In Figure 2.7 genes are used instead
of features. The subsample will act as an initial model and features are subsequently added in
order of minimal depth, meaning the feature with the smallest minimal depth is added to the
initial subset first (line 8). The addition of features continues while the added joint variable
importance (VIMP) for the nested models is greater than 0 (line 7) [27], resulting in a final set
of features. Then this is repeated numerous times where a new initial set is selected at random
and features are added until joint variable importance for the models reaches 0 or under (line
12). When the loop has finished the most important features are determined based on how
many times they appear in the final subset in the loop.

2.3.5 mRMR

mRMR is a feature selection algorithm, which stands for minimum Redundancy Maximum
Relevance [28]. It is a highly efficient algorithm where the goal is to remove the most redundant
features and reduce the dimensionality to find the smallest set of relevant features [28]. The
aim of the relevance criterion is to measure how much information a feature can provide about
the target. Features with high correlation to the target are selected through the use of mutual
information which measures the information given by a feature for a certain target [28]. The
redundancy criterion is an evaluation of collinearity between features, which is overlapping
information. Redundancy is calculated using mutual information [28]. The mutual information
in this instance is simply how much one feature tells about the other feature. The goal is
to select features with minimum redundancy, hence telling the least about each other. The
mRMR algorithms score each feature by taking the difference between the average redundancy
and relevance, and selecting the features with the highest score [28]. This is iteratively done

Page 19 of 111

until the final number of features are reached. To give an example, the mutual information
between two categorical features can be calculated using equation 2.8 [28].

I(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xip(yj)
(2.8)

The redundancy and relevance criterions are then applied as constraints to equation 2.8 to find
the minimum redundancy and maximum relevance for a subset. For continuous variables the
calculation is slightly different using F-tests [28]. The calculation for continuous variables and
mathematical constraints can be found in the original paper ”Minimum redundancy feature
selection from microarray gene expression data” by Chris Ding and Hanchuan Peng, where
mRMR was discovered [28].

2.4 Machine Learning algorithms for survival analysis

Machine learning is a subcategory of artificial intelligence (AI) [29]. Applied machine learning
consists of computational self-learning algorithms that can capture complex relationships and
patterns in data. Learning from the data, algorithms can build models with the ability to make
decisions or predict on new observations. Machine learning can be divided into three main
subcategories, supervised learning, unsupervised learning and reinforcement learning [29]. This
thesis will use supervised learning which contains labelled data [29]. Supervised learning learns
from data inputs where the outcome is known, and will be used to predict the outcome for
observations where the outcome label is missing or not known using explanatory variables [30].

2.4.1 Random survival forest

Random Survival Forest builds on the random forest algorithm known from sci-kit learn. Ran-
dom survival forest is a meta estimator that instead of decision trees utilizes multiple survival
trees. The algorithm takes multiple bootstrap samples with replacement and fits a number of
survival trees on each subset in order to maximize performance [31].
The goal of each survival tree is to have as pure nodes as possible when performing a split. In
order to understand how the splits work, it is necessary to look at the splitting rule used. This
thesis will use the default splitting rule, which is the log rank split. The formula for the log
rank split can be seen below in formula 2.9.

L(x, c) =

∑N
i=1(di,1 − Yi,1

di
Yi
)∑N

i=1
Yi,1

Yi
(1− Yi,1

Yi
)(Yi−di

Yi−1)di
(2.9)

[32]
Within a node there are a number of patients, denoted by l, and their survival times can be
denoted by [t1 < t2 < ... < tN]. As a result of the split at value c for feature x, the two daughter
nodes j=1,2 will contain a number of patients at risk at time ti, which is represented by Yi,j .
Following, the number of deaths at time ti in a daughter node j is represented by di,j . Hence
the the two daugther nodes can be expressed as Yi,1 = Tl ≥ ti, xl ≤ c and Yi,2 = Tl ≥ ti, xl > c
[32]. Considering a feature like ”BMI”, and setting the split value c to a value of 30, means
that patients in the first node will have BMI equal to or less than 30, and the other node will
have patients with BMI above 30.
L(x,c) is a measure of node separation, as the value for L(x,c) increases, the purer the node
separation is [32]. To further simplify, it can be said that the survival curve at the two given
daughter nodes and their respective subsets are compared, the greater the difference is between
the two daughter nodes survival curves, the better the separation.

Page 20 of 111

Figure 2.8: Survival tree caption write

For each bootstrap sample drawn a survival tree is grown on the subset. Then recursively at
each node, a set number of features are tried for splits using log rank splitting. Of the number
of features tried, the feature maximising the difference in survival between the daughter nodes
is chosen, hence resulting in as pure nodes as possible. As mentioned, this process is recursively
calculated until the tree is grown to full size, which means the terminal node does not contain
more unique deaths than the nodesize or the maximum depth is reached. The model will grow
a number of survival trees specified by the hyperparameter n estimators, which has 100 survival
trees as default and can be altered by the user. When all the trees are fully grown the model
will ”calculate an ensemble cumulative hazard estimator [32]” where the information from all
the survival trees are assessed together, which results in one estimate for each sample in the
original dataset. More specifically each terminal node in a survival tree will have a hazard
estimate, which means that each survival tree will provide a sequence of hazard estimates for
all its terminal nodes. The cumulative hazard estimate for a specific node (h) can be written
as:

Ĥh(t) =

∞∑
tl,h≤t

dl,h
Ylh

(2.10)

[32]
Similar to when explaining the logrank split, dl,h and Yl,j respectively accounts for events at
node h and patients at risk in node h at the time point tl,h when calculating the cumulative
hazard estimate at node h. The cumulative hazard function at node h will be the same for
all samples at node h, as the goal is to create homogenous groups at the terminal nodes. If
we consider a sample, noted as i and the corresponding predictor, noted as xi, the cumulative
hazard estimated at the terminal node for sample i is:

Page 21 of 111

Ĥ(t|xi) = Ĥh(t), if xi ∈ h (2.11)

[32]
This is done by simply dropping the predictor xi downwards and towards the terminal node.
An estimate is calculated for all samples in each tree in equation 2.11. These values will then be
used in order to yield the average for the whole ensemble, in other words, the whole ensemble
of survival trees. The result is the ensemble cumulative hazard estimate, which is shown in
equation 2.12.

Ĥe(t|xi) =
1

n estimators

n estimators∑
b=1

Ĥb(t|xi) (2.12)

[32]
In equation 2.12, b is the range of number of estimators, also known as the number of survival
trees, hence Ĥb stands for the cumulative hazard estimator for tree b. This ensemble cumulative
hazard is calculated using the bootstrap subsets, also known as the in bag samples [12]. The last
step for the model is to calculate an OOB (out of bag) error rate for the ensemble of estimators.
In order for the model to do this, an OOB ensemble cumulative hazard has to be calculated
using formula 2.13:

Ĥ∗
e (t|xi) =

∑n estimators
b=1 Ii,bĤb(t|xi)∑n estimators

b=1 Ii,b
(2.13)

[32]
Ii,b determines whether the patient i is part of the OOB sample for estimator b. Ii,b = 1 means
patient i is part of OOB sample for estimator b, while Ii,b = 0 means patient i is not part of
OOB sample for estimator b. The error rate is calculated using Harells concordance index, as
it does not have to calculate for a specific set time point chosen by the user of the model and
takes censoring into account. The full overview of how the model works can be seen in Figure
2.9

Page 22 of 111

Figure 2.9: An overview of the inner workings of the Random Survival Forest algorithm from
start to end.

2.4.2 Gradient boosting

Similar to Random Survival Forest, gradient boosting is an ensemble learner. The ensemble
consists of multiple weak learners, and combining them will likely yield an acceptable result.
What characterizes gradient boosting is the implementation of a functional gradient descent
approach, which is a benefactor in minimizing the empirical risk[33]. In simple terms, this
means that the model generalizes on the data domain we have for training as we do not know
the true distribution of the data the model will predict on. Empirical risk will tell us how well
the predicted values approximate the actual values in our dataset, and hence ”is the average
loss over the data points” [34]. The gradient boosting algorithm achieves this by sequentially
fitting new weak learners to the residual errors of the preceding learner.
The base learner in gradient boosting from scikit-survival consists of multiple regression trees
with the cox proportional hazards as its loss function [31], which means optimizing for the
partial likelihood. As the negative log likelihood is a convex function, gradient based methods
can be used [19], such as gradient boosting.
Survival gradient boosting using Cox proportional hazards is a modification of Friedman’s Gra-
dient boosting algorithm using regression trees, which was published in a paper in 2001 [35].
The modification was published in a paper by Greg Ridgeway in 2001 [36]. The goal for the
function estimation is to find the regression function F̂ (x) which will minimize a loss function
ψ(y, F) [36].
The gradient boosting algorithm will be explained followingly in a simplified fashion using an
article from Greg Ridgeway [37]:
1. The model will start by initializing the terminal node predictions of the regression trees to
0, and step size p = 0 [37].

Page 23 of 111

2. As the loss function ψ(y, F) is set to the negative log likelihood, the model will then compute
the gradient of the negative log likelihood and set that as the working response.
3. Next, the model randomly selects samples from the dataset, the number selected is the
number of samples multiplied by the subsampling rate, which is a bag fraction.
4. The model then fits a regression tree on the residuals, with resulting K terminal nodes. The
step size is then calculated for the algorithm in order to minimize the loss function which is the
negative log partial likelihood.
5. The model then computes the predictions for the coefficients for all terminal nodes (p1...pk)
[37].
6. Then the boosted estimate in step 1 is updated with the new estimate which is computed
by taking the initial estimate and adding the new one multiplied by the learning rate. The
algorithm then repeats from step 2 iteratively computing the gradient and fitting the regression
trees on the new residuals until the model converges or a stopping criterion is met.
The concept is that each new weak learner, learns from the previous one and hence the goal is
that the residuals (or working response) of the negative gradient direction will optimize for each
step. The resulting output from the model is a risk score for each sample used for predictions.
Further extending the gradient boosting algorithm, there is a model called component wise
gradient boosting [33], where the base learner is component wise least squares. Similar to the
regular gradient boosted Cox model explained above, the negative log likelihood will be used
as the loss function for this model as well. The use of least squares as the base learner results
in a linear model, in contrast to the previously discussed model which is tree based. For each
boosting iteration the base learners are fitted onto the working response of the previous model
where the working response is component wise gradient of the negative log likelihood function
[33]. The model its the base learners onto one feature at a time [38][39]. Within each boosting
iteration the best update for a feature is selected, Which in essence leads to the update of only
one of the elements for coefficients β [40]. This means that based on the number of iterations
will determine the dimensionality of features used to predict, as the model initializes by setting
all coefficients to zero, hence the result is a model which can prove to be highly efficient for
high-dimensional data [33].

2.4.3 Penalized Cox model (Coxnet)

The Cox proportional hazards model has already been discussed in section 2.1.4. The coxnet
algorithm is an extension of this model with the addition of the regularization technique known
as elastic net. Elastic net consists of the two penalties known as ridge (L2) and lasso (L1).
Although strictly not a machine learning algorithm, it uses concepts taught in a lot of machine
learning courses at universities.
When working with high dimensional data where the number of features is close to or exceeds
the number of samples, which often implies estimating many coefficients, the Cox proportional
hazards model might not be the best suited model [31]. This is due to either unstable coefficient
estimates or because the model fails to converge. In high dimensional data, the coefficients may
as well go towards negative or positive infinity, because the models overfit due to fitting on
the noise of the data. When the Cox proportional hazards model is fitting, the coefficients
are calculated using maximum likelihood estimation. This step involves inverting a matrix,
the Hessian matrix, which is a second partial derivative of the negative log likelihood function
mentioned in section 2.1.4. This calculation step can be computationally expensive, especially
when the number of features are large. A risk is the collinearity of features as well, which can
lead to highly correlated estimates in the hessian matrix, which in turn might lead to the matrix
becoming singular or ill-conditioned. As the Cox proportional hazard model uses this matrix
to compute the variance and covariance among the regression estimates of the coefficients, a
singular non-invertible matrix leads to problems in the computation. Therefore a non-desirable
result might be poor regression coefficients.

Page 24 of 111

Ridge (L2)

To deal with the potential problems in high dimensional clinical data, several researchers have
addressed the problem with the implementation of elastic net [41]. One of the penalties in
elastic net is called ridge (L1), which shrinks the coefficients towards zero [31]. Adding the
L1-penalty to the likelihood function 2.5, the resulting objective function becomes:

argmax
β

log L(β)− α

2

p∑
j=1

β2j (2.14)

[32]
Features are noted as p and shrinkage is controlled with the hyperparameter α, which is a
non-negative value. The L2 penalty in the optimization 2.14 is the sum of squared coefficients
multiplied by the shrinkage parameter. Usually as the shrinkage parameter increases, the coef-
ficient values in the vector βj , ..., βp decreases. Dampening large coefficient estimates with the
penalty can lead to less overfitting due to extreme coefficient estimates. The penalty will never
set coefficient weights to 0, meaning the solution is not becoming sparse. It is rather an encour-
agement to keep the features which will lead to the features sharing information among them.
This can be explained as ridge regression deals with highly correlated predictors by assigning
them an equal weight [42]. Plotting the coefficient values against the shrinkage parameter it
is easier to observe deviating paths for certain features, which might indicate the feature is of
great importance. ”The resulting objective is often referred to as ridge regression[31]”.

LASSO (L1)

The second regularization technique is the L1-penalty known as LASSO penalty, which stands
for Least Absolute Shrinkage and Selection Operator. In contrast to Ridge, lasso creates sparse
solutions by setting several coefficients to 0 instead of shrinking them, which effectively implies
excluding the particular features. similar to Ridge, LASSO can be applied to the likelihood
function:

argmax
β

log PL(β)− α

p∑
j=1

|βj |. (2.15)

[31]
In 2.15, alpha (α) is the regularization hyperparameter, and hence mathematically, the penalty
consists of the regularization parameter multiplied with the sum of absolute values of the co-
efficients. The model optimizes the beta coefficients using coordinate descent [42], in essence,
a form of log likelihood optimization discussed in section 2.1.4. In the coordinate descent, the
coefficient estimates are updated one by one. The model utilizes a soft threshold operator which
will shrink the coefficient estimate for a variable βj to 0 based on the weighted sum of the predic-
tor variable and the associated residuals, simply removing the feature. The coordinate descent
continues until the number of coefficients either are small enough or a number of maximum
iterations are reached. In essence, what Lasso does is ”a type of continuous subset selection
[31]”. The number of features selected in the end depends a lot on the alpha hyperparameter,
as it is a value between 1 and zero, the larger the parameter, the fewer features end up getting
selected.

Elastic net

The Elastic Net penalty combines the best from both regularization techniques, Ridge and
LASSO. As discussed the ridge penalty is good when dealing with collinear features, and as

Page 25 of 111

such helps stabilize the Lasso penalty in some cases. The optimization problem when applying
the elastic net penalty to Cox likelihood becomes:

argmax
β

log PL(β)− α

r p∑
j=1

|βj |+
1− r

2

p∑
j=1

β2j

 , (2.16)

[31]
Equation 2.16 is a combination of equation 2.14 and 2.15 with the addition of a relative weight,
noted as r. The relative weight is a value between 0 and 1, and With alpha constant, as r moves
from 0 to 1, the optimization problem is relatively weighed greater as an optimization with the
lasso penalty rather than with the ridge penalty [13]. And only with a small relative weight
between to ridge, such as 0.05 or 0.1, will help Lasso with removing very extreme correlations.

2.5 Regression

Regression analysis is a statistical method used for investigating the relationship between a
dependent variable (the outcome) and independent features (explanatory variables) [43]. In
this thesis more specifically referred to as the set of features and the length of survival as the
dependent variable. By fitting a mathematical model the relationship between the variables
can be explained, providing us with the ability to predict the outcome based on feature values.
There are multiple types of regression, such as linear, logistic and polynomial regression, this
thesis will look at linear regression models. The main difference from the survival models is
that there is one target variable in the regression analysis performed in this thesis (the length
of survival), whereas with survival models the target additionally consists of an event variable
as well (is the patient deceased or censored).

2.5.1 Linear regression

Sci-kit learns linear regression model is ordinary least squares linear regression, also known as
OLS. The aim of the linear regression model is to minimize the residual sum of squares when
fitting the model to the coefficient vector w = [w1, w2, ..., wp]
Simply explained, the model assumes that there is a linear relationship between the feature
variables X and target Y [44]. OLS can be denoted as Y = a + βX + e. Where β represents
the coefficients (also known as feature weights in machine learning language), a is the intercept
and e is residuals (also known as error) [44]. When dealing with multiple features, the model is
called multiple OLS regression, and a regression coefficient is estimated for each feature.

2.5.2 Ridge regression

Ridge regression is linear least squares regression which is L2 regularized [22], similar to the
Coxnet model discussed previously. It is an extension of the ordinary least squares regression
(OLS), where the penalty term is added to the objective function to regularize the complexity
of the model. The squared sum of coefficients are multiplied with a tuning parameter (α).

||y −Xw||22 + α ∗ ||w||22, (2.17)

[22]
The objective function can be seen in Figure 2.17, where w is the vector of coefficients calculated
to minimize the squared sum of residuals. The α parameter controls how much the coefficient
values are shrunk, where a higher value penalizes the coefficients more. As discussed previously
the L2 penalty is great at shrinking highly correlated variables, which might lead to better
generalisation of the model itself when predicting on unseen data.

Page 26 of 111

To further explain how the coefficients are estimated with the penalty constraint, Figure 2.18
shows the objective function above written in matrix form.

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ (2.18)

[30]
The goal is to minimize RSS(λ) where RSS is the residual sum of squares and lambda is the
shrinkage parameter [30] instead of α. Deriving the objective function in matrix form yields the
ridge regression estimator which can be seen in Figure 2.19

β̂ridge = (XTX + λI)−1XTY (2.19)

[30]
Where the identity matrix I is of size p*p, where p is the number of features [30]. (XTX+λI)−1

is often referred to as the shrinkage matrix, where the coefficients β are shrunk.

2.5.3 PLS Regression (PLSR)

PLS Regressions stands for Partial least squares regression. Partial least squares regression is
a multivariate statistical method which models the relationships between a number of indepen-
dent features (X) and a target variable (Y). Through a linear combination of the independent
variables or features, a set of orthogonal components are computed which maximize covariance
between X and Y , which are components that are best at predicting the target [45].
PLSR starts by centering the data around the mean value and scale it, hence transforming
the variables to Z-scores [45]. This first step is optional. Sci-kit learns PLS regression uses
the NIPALS algorithm to compute the components. To explain NIPALS in matrix form, the
features and target can be considered as X variables and the target Y, as two matrices which
are mean centered and scaled. Y is a matrix which can consist of multiple target variables,
however as this thesis uses PLSR only one target variable (time of survival), PLSR with only
one target variable will be explained.
NIPALS stands for Nonlinear iterative partial least squares and finds and calculates the compo-
nents through an iterative process [46]. Some NIPALS algorithms initialize by setting a vector
with random numbers ua with the same length as number of samples [45]. In some cases the
target column is set to ua, or one of them, if there are multiple target variables. The algorithm
proceeds with calculating weights w for the current component by a weighted linear regression
between X and Y . The weights are normalized to have unit length in order to prevent relatively
extreme values and are organized into matrix W = [w1, w2..., wA]. Proceedingly the orthonor-
mal scores are calculated by projecting the input features onto the weights, where the scores are
a representation of new variables that capture the maximum covariance towards target Y. The
orthonormal scores can be denoted as score matrix T containing the orthonormal score vectors
for each component, such that T = [t1, t2..., tA], where A represents the number of computed
components with A = 1, ..., A. Each orthonormal score vector contain the scores for each input
variable.
Next, each and every feature or column is regressed with ordinary least squares regression (OLS)
onto ta, the orthonormal score vector in the current iteration [46]. OLS can simply be denoted as
y = βX, where ta replaces X such that the OLS regression becomes y = βta [46]. The regression
coefficients for each column in X are then stored in matrix P which are the projection loadings
of X onto ta [47]. P is also often referred to as the matrix of X-loadings. Then the deflation
step proceeds by removing the component influence of the component from X. The last step
in the iteration loop involves calculating the Y-loadings [47], which is found by projecting the
orthonormal scores ta onto ua. The scores are then stored in matrix qt. This iteration will stop
until the desired numbered of components are reached or the model converges to a criteria in
the iterative steps.

Page 27 of 111

Finally, the regression coefficients are computed using the organized matrices of weights and
score loadings (see equation 2.20) [47]. This enables the model to predict on unseen and new
data.

β =W (P TW)−1q (2.20)

[31]

Figure 2.10: NIPALS PLS1 pseudocode, posted with permission from Ulf Geir Indahl. Used for
calculating PLSR with one target variable. [47]

There are various added benefits of using PLS for regression. The model is able to handle
multicollinearity effectively, which is when multiple features are highly correlated. The latent
variables or components which were introduced above capture the mutual information between
features leading to a reduction in collinearity. Additionally, as the components which explain
maximum covariance between X and Y are constructed, dimensionality is reduced, which might
lead to more stable models when dealing with data of high dimensions.

2.6 Metrics

2.6.1 Harrells C-index

The most common metric in survival analysis when evaluating predictive accuracy of prognostic
models is Harrell’s concordance index, commonly referred to as C-index [48]. C-index assesses
how well the model correctly ranks the samples, based on their predicted length of survival,
this is done by a pairwise assessment of all observed samples. The metric ranges from 0 to 1,
where a value of 1 is desirable which tells the model is perfectly ranking the predicted samples.
A value of 0.5 indicates that the models performance is no better than a random guess.
As mentioned, a pairwise assessment is done. In order to understand how the C-index is
calculated, it is necessary to define the three different types of pairs used; concordant, discordant,
and tied. Additionally, it is necessary to define what makes a pair permissible as well. A pair
can be permissible if both samples in the pair have experienced the event of interest within the

Page 28 of 111

observational period illustrated in 2.2. A pair can also be permissible if one of the samples are
censored, then the other pair must have a longer survival time without experiencing the event,
simplified the censored sample has the shortest survival time and is the one experiencing the
event.
A pair of samples is considered concordant if it is permissible and the sample with higher
predicted survival time has the longer actual survival time, if it has not experienced the event
of interest before the other observation. A pair of samples is considered discordant if the sample
with highest predicted length of survival has the actual shortest survival time or experiences an
event before the other sample in the pair. A pair is considered tied if the pairs have the exact
same predicted survival time. When calculating the concordance, tied pairs are not taken into
consideration and are excluded as they do not contribute to the ranking quality of the samples.
In the article ”A practical perspective on the concordance index for the evaluation and selection
of prognostic time-to-event models”, In equation 2.21 Harrells estimator has been defined by
Longato, et al [49], which calculates the concordance index.

Ĉ =

N∑
i=1

∆i

N∑
j=i+1

[
I
(
T obs
i < T obs

j

)
+ (1−∆j)I

(
T obs
i = T obs

j

)][
I
(
Mi > Mj

)
+

1

2
I
(
Mi =Mj

)]
N∑
i=1

∆i

N∑
j=i+1

∆i

[
I
(
T obs
i < T obs

j

)
+ (1−∆j)I

(
T obs
i = T obs

j

)]
(2.21)

In equation 2.21 I is 1 if the argument is true and 0 if the arguments is false [49]. T is the
time for an observation and M is the predicted risk score predicted by the model. δi is a binary
variable, which equals to 0 if sample is censored before Ti and equals to 1 if event of interest
takes place at time Ti [49]. Tied times and risk scores for observation i and j are respectively
noted as T obs

i = T obs
j and Mi = Mj . As seen by the estimator, Harrells C-index computes the

C-index by computing a percentage of concordant pairs relative to permissible pairs, with the
exception of tied events which are weighted by half. The equation can be further simplified
to give a quick understanding of how popular Python packages scikit-survival and Lifelines
compute the C-index as seen in 2.22.

C − index =
#ConcordantPairs+#Tiedriskpairs ∗ 0.5

#PermissiblePairs
(2.22)

2.6.2 Uno´s C-statistic

As mentioned when introducing Harrells concordance index, it does only calculate for the pro-
portion of concordant pair within the permissible pairs of samples. As an affect of this the
concordance might have an optimistic attitude and cause an upwards bias when datasets with
a high proportion of censoring are analyzed. To deal with this upwards bias, a new method
of calculating the C-index was proposed. The method is commonly known as Uno´s estimator
and solves the problem with the concept of inverse probability of censoring weights (IPCW)
[31]. Uno´s C-statstic on the other hand does not rely on permissible pairs for computing the
score, as the proposed statistic is free of censoring, meaning it does not depend on the censoring
distribution [50]. Simply put, it can be defined as the probability that, given two randomly
selected samples at a specified time point, the sample experiencing event of interest first, also
is predicted with a higher risk score by the model. When scoring, each pair gets a weight as
some pairs might be more informative than others. The applied weights are calculated using
the concept of inverse probability of censoring weighting, which is gotten by the Kaplan-Meier
estimate of the censoring distribution [50]. In order to compute the statistic using the scikit-
survival package the range of survival times in the test portion of the data has to lie within

Page 29 of 111

the train portions range of survival times. Therefore a truncated version of the statistic was
defined, where the truncation time is selected with the hyperparameter τ [31]. In the end, when
calculating the score for the truncated C-statistic, differently to Harrells concordance index, the
weights for all concordant pairs are summed and divided by the sum of weights associated to all
pairs [50]. The statistic considers a fully censored pair, although the contribution to the score
is weighted as 0.

2.6.3 Brier score

The Brier score is another widely used metric in survival analysis to assess the predictive
accuracy of models. It functions more as a supplementary metric rather than a replacement for
Harrell’s concordance index. The Brier score is the average of the squared error at a given point
in time [31]. In the paper from 1950 where Brier introduced the score for weather forecasting,
the score was defined as an average squared difference between the forecast which consisted of
the probability of rain or no rain and the outcome, determined by a binary value [51]. As the
survival function determines the probability of not experiencing an event, the Brier score was
later amended for use in survival analysis, as the squared difference between prediction of not
experiencing the event of interest and the actual event observation, in other words the Brier
score calculates how well the model is calibrated [52]. The Brier score ranges from 0 to 1, where
a score as close to 0 is desireable. A model with perfectly accurate predictions that match the
actual observations will have a score of 0. A score close to 1 indicates that the model fails to
predict the observed outcomes.
When applied with the scikit-survival package the time dependent Brier score looks at the
predictions for survival for all sample predictions towards the relative frequency of events at
time t. The relative sample predictions should closely match the relative frequency of events
in order for a model to be well calibrated. A simple example can be described as 20 percent of
samples experiencing the event of interest at time=10 months, Then the predictions in overall
for the samples predicted should be near an overall failure rate of 20 percent. Therefore the
Brier score is useful in addition to Harrell’s concordance index, as it is a direct quantifiable
measure on the accuracy itself and not solely the measure of a models ranking capabilities. The
Brier score can as well give a better insight into how well the model will generalize. Exactly how
the Brier score can is calculated in scikit-survival can be seen in equation 2.23 where censoring
is incorporated [31].

BSc(t) =
1

n

n∑
i=1

I(yi ≤ t ∧ δi = 1)
(0− π̂(t|xi))

2

Ĝ(yi)
+ I(yi > t)

(1− π̂(t|xi))
2

Ĝ(t)
, (2.23)

The models predicted probability of a sample not experiencing the event up to a specific time
t for the feature vector is noted as π̂(t|x) [31]. The feature vector is noted as x. The article
which incorporated censoring with the Brier score described the the time dependent Brier score
with three categories 2.23.

Category 1: yi ≤ t & δi = 1

Category 2: yi > t & δi = 0 or δi = 1

Category 3: yi ≤ t & δi = 1

The first category is for observations with survival time less or equal to t, and experiencing
the event within that time frame, meaning they are uncensored. Due to the indicator function
(I(yi > t) becoming zero, the second addend is nulled and the contribution to the score of all
observations in the first category which can be seen from equation 2.23 is (0 − π̂(t|x))2 [52].

Page 30 of 111

For the second category, it is known that all observations have a greater survival time than t,
nulling the first addend, and contributing (1− π̂(t|x))2 to the score. Observations for category
3 have no known time-to-event as the observations are censored before time t, meaning the
observations cannot contribute to the score [52]. The time dependent Brier score compensates
for censoring by weighting the different categories, ”(1

Ĝ(t)
is an inverse probability of censoring

weight [31]” and is actually the Kaplan-Meier estimation of the censoring distribution [52]. All
observations will have some impact on the weights although only observations in the first two
categories have some impact on the probability of not experiencing the event of interest.

Integrated Brier Score

To assess how well the model is calibrated in general, the time dependent brier score can be
extended to the Integrated Brier Score 2.24. The Integrated Brier score is the time dependent
Brier score integrated over the time interval for all times, which is from t1 to tmax with respect
to a weighting function. Scikit-survival’s implementation of the Integrated Brier score uses the
weighting function w(t) = t

tmax
[31].

IBS =

∫ tmax

t1

BSc(t)dw(t) (2.24)

Similar to the time dependent Brier score, the estimates for the samples event free probabilities
in relation to the score contribution has to be considered based on the censoring time. As
the integrated score integrates for time, each sample’s contribution of estimated event-free
probabilities, if censored, are calculated up to the time of censoring [52].

2.6.4 RMSE

RMSE stands for root mean squared error, and is a common metric for evaluating regression
models [53]. The desired value for RMSE is 0, meaning the model’s predicted values are perfect.
the higher value the worse the predictions are.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.25)

Equation 2.25 shows how RMSE is calculated for n number of sample predictions ŷi and ob-
servations yi, where i = 1, 2, ..., n samples [53]. There are some advantages to RMSE when
evaluating regression models. RMSE measures the average difference between the observations
and predictions, which means that the number quantifies the overall prediction accuracy and
gives the user a sense of how well the model aligns with the true observations. RMSE is very
sensitive to extreme values as the errors are squared, a few outliers can increase RMSE sub-
stantially, which can prove to be valuable in both detecting and measuring the effect outliers
have on the model. And lastly RMSE has the same units as the target variable Y [53], yielding
a quantifiable measure which is easy to interpret.
By taking the square root of the mean of squared errors,

2.7 Data scaling and transformation techniques

Several standardization techniques were used in the analyses performed in this thesis. Stan-
dardization is a technique used in machine learning where the goal is to transform continuous
feature values into a standardized scale. By ensuring that all continuous features are on the
same scale, the model might have an improvement in accuracy. This is a consequence of some
machine learning algorithms requiring standardized data as input to perform well.

Page 31 of 111

2.7.1 Standard scaling

Standard scaling is a standardization technique where the mean is taken for each feature and
then divided by the standard deviation of the feature for each sample. The values are then
transformed and the new resulting distribution for each feature has a mean of 0 and with a
standard deviation of 1. The equation for standard scaling is the same as the equation 2.7 when
calculating the z-scores.

Z =
X −mean

std
(2.26)

Equation 2.26 is the equation for calculating the new transformed value for a sample for a
particular feature. x is the original value for a sample, the mean is the mean of all feature
values for that particular feature, and the standard deviation is the standard deviation for all
values in the feature. This results in the Z-score which is the new value for the sample. It
is calculated on a feature to feature basis due to the nature of different scales. Considering
the feature age in a dataset with a minimum and maximum value of 15 to 78 and heart rate
which ranges from 20 to 200, the scales are different and not directly comparable. Features of
comparable scales might ensure each feature contributes equally when fitting the model, as very
large values can have a tendency to dominate features with a smaller range of values.

2.7.2 Min-max scaling

Min-max scaling is another normalization technique which scales continuous feature values to
a specific range. The features are re-scaled to lie between 0 and 1, leading the transformed
features to have a common scale.

xnorm =
x− xmin

xmax − xmin
(2.27)

Equation 2.27 is the formula for calculating a new value for a sample within a feature. x is the
original feature value for a sample, whereas xmin and xmax are the minimum and maximum val-
ues for the particular feature. xnorm is the normalized value. Using min-max scaling can as well
help models perform better by restricting features with large values to have a dominant influ-
ence when calculating the coefficient weights. Normalization can lead to better interpretability
between features as it might be easier to compare while the data might still be robust towards
outliers as the relative distance between values are preserved.

2.7.3 Yeo-Johnson

Yeo-Johnson is not strictly a standardization technique, but can be regarded as a transformation
technique which can be used for standardization of data. Yeo-johnson is a power transformation
which is applied to continuous feature values in order to make the data distribution more
normally distributed. Unlike standard scaling and min-max scaling, values are not transformed
to a specific range or distribution but to a Gaussian like distribution. A great strength with
Yeo-Johnson power transform is its ability to transform skewed data into a more symmetric
form [54], it does also tend to perform well on data with varying levels of variance across the
range of the data.
In order to understand how the power transform transforms the values it is necessary to intro-
duce the correction parameter λ, which controls the direction and degree of correction regarding
skewness. The formula for the Yeo-Johnson can be noted as [54]:

Page 32 of 111

y
(λ)
i =

((yi + 1)λ − 1)/λ, if λ ̸= 0, yi ≥ 0

ln(yi + 1), if λ = 0, yi ≥ 0

−((−yi + 1)2−λ − 1)/(2− λ), if λ ̸= 2, yi < 0

− ln(−yi + 1), if λ = 2, yi < 0

Where yi represent the value i in the data, and the lambda parameter is a value that determines
how the value is transformed. There are four ways a value can be transformed depending on
the sign of yi and the value of λ.

(a) Before (b) After

Figure 2.11: Yeo-Johnson power transformer from scikit-learn applied on feature ’heart rate’
from the Worchester heart attack study dataset, with observed feature values on the x-axis and
actual risk scored on the y-axis.

Figure 2.11 is an example of feature values before and after the Yeo-Johnson power transformer
has been applied. As can be seen, the data is zero centered with a more even (symmetrical)
spread on both sides. The zero centering is an integral part of Yeo-Johnson transformation in
the scikit-lean package, Yeo-johnson itself does not address centering in the first place.

2.8 Imputation of data

A common problem with clinical data and in general where data is entered manually, in this
case by doctors, is missing observed values within several features. There are several reasons
as to why data can go missing, such as measurement error, data entry errors, and missing
responses from surveys. The dangers of incomplete data is that it can lead to biased, inefficient
or inaccurate analyses. When fitting models using scikit-learn it is crucial that the data of all
features are complete, as the models will not accept missing values. To solve this, a commonly
used approach is imputing the data. Imputation is the process of estimating the missing value.
Several approaches exist to impute data, such as taking the mean of features or using distance
based metrics such as the KNN-imputer.
The KNN-imputer from scikit-learn learn uses the K-nearest neighbors algorithm to impute
missing values. The missing values are imputed by taking the mean from the K closest neighbors.
The number of closest neighbors to look at is specified by the user through the hyperparameter
n neighbors. The algorithm starts by calculating the distance to all other data points in the
dataset using a metric such as euclidean distance seen in equation 2.28, this is a hyperparameter
and can be changed by the user. Consider sample A which has a missing value in the first feature,
then the KNN-imputer will look for neighbors with the closest euclidean distance for feature 2
to N (N is total number of featues) and take the mean of those neighbors feature 1 values[55].

Page 33 of 111

After K-number of data points with the smallest distance to the missing value is chosen, which
is the nearest neighbors. Then the mean of the values of these K-neighbors is calculated and set
instead of the missing value. The user can specify how the neighbors contributions are weighted,
for example inverse proportion to the distance or uniform weighting.

Euclidean distance =

√√√√nsamples∑
i=1

(xi − yi)2 (2.28)

Euclidean distance between data points x and y where xi and yi are the i-th feature value for
the data points.

Page 34 of 111

Chapter 3
Datasets

The first step, before conducting any work consisted of some initial data exploration. Data
exploration is the process to examine and understand how the data is observed and structured.
It is necessary to understand the characteristics of the data before any analysis techniques are
applied as it can help to detect critical errors or anomalies in the datasets.

3.1 Datasets

3.1.1 Oxytarget

The OxyTarget dataset has its origins from the OxyTarget study (ClinicalTrials.gov ID: NCT01816607)[56]
and consists of data from patients diagnosed with colorectal cancer. 192 patients were observed
over a five year period from 2013 to 2018. Throughout the observational period some manu-
ally has been manually entered by doctors and staff, such as observing patients recording and
looking at MRI scans. One of the inclusion criteria to enter the study is that rectal cancer
is confirmed and that the patient is scheduled for surgery. The raw data has a shape of 192
samples and 100 variables.

3.1.2 Head-Neck

The headneck data has its origins from Oslo University Hospital and consists of 197 patients
of which clinical and PET data were extracted between 2007 and 2013 [57]. ”Inclusion criteria
were: squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx and larynx treated
with curatively intended radio(chemo)therapy and available radiotherapy plans based on FDG
PET/CT. [57]”. The data was received in three seperate files, one containing the clinical data,
one containing PET data and the third containing response of disease free survival. The clinical
data combined with PET data resulted in 15 variables which will be processed and used for
evaluating models.

3.2 Data quality issues

For the OxyTarget dataset, most of the variables were incomplete. Several values were missing
from each feature. One of the target values which was the survival time had missing values for
all patients still at risk. Therefore a survival time had to be calculated for these patients by
subtracting the datetime value of last registered alive, which is the datetime value of censoring
or event with the inclusion datetime variable. This resulted in a survival time in months, as
the number is easier to comprehend than days. Additionally the missing values were marked

35

in different ways and some values had obstructing symbols such as comma, which had to be
removed.
There was a wider variety in datatypes for all the columns as well, most were of type object, and
some of float64 and datetime. Looking at the variable names and values, it was immediately
determined that some of the datatypes were wrong. In the Oxytarget data multiple of the
features also has to be removed in order to fit a survival or regression model as they are not
relevant for such analyses and will lead to error an error when fitting the model. Such features
can be comments about the patient or datetime variables. To deal with this, many of the
features were manually sorted into lists whether they were categorical, numerical or contained
dates. Pre-processing of the data will be discussed further in the methods section.

3.3 Principal component analysis

3.3.1 PCA for Oxytarget

Figure 3.1: X score loadings plot from principal component 1 and 2 for OxyTarget

Page 36 of 111

Figure 3.2: Loadings plot of principal component 1 and 2 for OxyTarget

3.3.2 PCA for headneck

Figure 3.3: X score loadings plot from principal component 1 and 2 for headneck

Page 37 of 111

Figure 3.4: Loadings plot of principal component 1 and 2 for headneck

Page 38 of 111

Chapter 4
Method

4.1 Pre-processing of the data

Figure 4.1: An overview of the consecutive pre-processing steps from start to end.

39

4.1.1 Formatting missing data

As mentioned in chapter 3, most of the columns in the OxyTarget data had missing values, and
the missing values were marked either with ”-”, ”nf” and ”NF”. In order to be able to deal with
missing values further on in the process easily, all these values were changed to np.nan which is
the way to represent undefined entries with Python NumPy package. Changing the values to
np.nan is a crucial step, as imputation methods from sci-kit learn would not work with string
values such as ”NF”.
The headneck dataset only had two variables with missing values, they were already formatted
to np.nan, and were dummy encoded later on. Therefore nothing was done in particular on the
dataset in this step.

4.1.2 Removing samples with no event status

Samples with no record of event status is not useful for survival analysis, as it is not known
whether the patient is censored or the event of interest has occurred. For OxyTarget 7 samples
with no known event indicator was removed. Some of these 7 patients were patients that had
withdrawn their consent from the study. The headneck dataset had all responses intact.

4.1.3 Calculating the survival time

The survival time was not defined for any patients that were censored in the original OxyTarget
dataset. In survival analysis the event indicator and survival time which is defined as a unit
of time, like seconds, weeks and months is necessary in order to perform the analyses and
predictions. Two of the initial features contained were the inclusion time and the date the
patients were last registered alive. Therefore the timedelta in months between inclusion time
and last registered alive was calculated and set as the target variable survival time. For the
headneck dataset, the survival time in months was already calculated for all samples.

4.1.4 Sorting features and removing date columns

In the pre-processing phase, all columns for the Oxytarget data had to be sorted due to later
processing steps. The columns were sorted based on whether they were continuous and numer-
ical, categorical or datetime columns. After the sorting all the datetime columns were removed
as they their values were irrelevant or had too revealing information. Then the target data was
seperated from the dataframe to not be affected by the later processing steps. Additionally,
irrelevant features such as doctors comments were removed as well. The headneck dataset con-
tained only categorical and numerical variables, the non-binary categorical variables were noted
down, for imputation later.

4.1.5 Columns with a high proportion of missing values

As previously mentioned, nearly all columns were to some degree incomplete as they had miss-
ing values. There are several risks to consider when there is a high proportion of missing values
within a variable. First, it can lead to a biased analysis as the variable might not be represen-
tative of the true population. A high presence of missing values might in turn lead to reduced
prediction accuracy of the model as the model might struggle to capture the true relationships
between the features. Therefore a threshold was defined and all features with a proportion
of missing values above 30 percent were removed in their entirety from the dataset. For the
headneck dataset, as there were no missing values, none of the variables were removed.

Page 40 of 111

4.1.6 Formatting numerical columns

The next step involved checking the datatype and values for columns that could be converted
to a numerical datatype. A script was made where all the values in the dataframe is looped
through. If the value is not not an np.nan value, commas are replaced with dots, as comma is
not accepted for use with datatype floats. Then the ratio of numeric entries is calculated for a
column, determining whether the column is numeric if 80 percent or above of the entries can
be converted to float. If the column passes the threshold all values are then converted to floats.
A script did also check the amount of unique numerical entries for all numerical columns, and
all features that were below the threshold of 10 unique numerical entries were categorised and
sorted as categorical features with numerical values. For the Oxytarget dataset, the feature
”Hb baseline” was a bit troublesome and were altered manually.

4.1.7 Encoding categorical variables

The categorical variables had to be encoded as the models used are not able to interpret string
entries for a feature. The solution which was used was sci-kit learns dummy encoding tool
get Dummies. Dummy encoding is a process where categorical variables are converted into
binary variables. Each category is represented by a column, where 1 indicates the presence of
the category for a sample, and 0 indicates and absence. 14 categorical columns were encoded
as dummy variables, such as ”Cancer classification type”, ”MSI” and ”Type of surgery”. As a
last step column names were cleaned, by replacing and blank spaces such that all column names
had a uniform format.
The headneck dataset had 2 non-binary categorical variables that needed to be dummy encoded,
”hpv related” and ”uicc8 III IV”. As ’NaN’ means ”oropharyngeal tumors with unknown hpv
status” for both of these variables, and the same set of patients did have ’NaN’ for both variables,
the ’NaN’ values from both variables were encoded into a single column.

4.1.8 Scaling transformation of data

The datasets were scaled using 3 techniques, Yeo-Johnson Power Transform, standardscaling,
and min-max scaling. The purpose of using three different scaling and transformation tech-
niques is to check whether one of the three aforementioned techniques leads to any significant
improvement in predictive performance over the other two. The second reason to implement
scaling in general is that the KNN-imputer find the nearest neighbours by euclidean distance.
Unscaled data where some variables have values that tend to be very large relative to the other
variables might dominate and have a large influence on which neighbours that are chosen. Scal-
ing and transformation techniques can solve this problem as the variables will have a common
scale. It is also worth mentioning that the Yeo-Johnson Power Transform from sci-kit learn will
center the data as well.

4.1.9 Imputing missing values

As the models are not able to handle missing values, as they would simply fail to fit and return
an error, the missing values have to be handled. One approach is to simply remove samples
containing missing values. For OxyTarget this would mean that all samples have to be removed
and quite a lot for the headneck data as well, which is not feasible in this case. Additionally, the
goal is to keep as much of the raw data as possible. The reason behind the high occurrence of
missing values is due to a lot of the variables being related to individual treatments for patients
and treatment types. Therefore as some treatments or medical examination might have been
done on some patients, some might not have any value recorded. Some of the values might also
not have been entered manually by the medical personnel at the hospital as well.

Page 41 of 111

The missing values where imputed using sci-kit learns KNN-imputer and was applied on the
whole OxyTarget dataset. The distance was to neighbors was chosen to be measured in euclidean
distance and the number of neigbours was set to 5. The weighting was set to uniform as well,
meaning that all the 5 neighbors contribute equally as much, and are not weighted relative to
the distance. Each of the scaled datasets were imputed by the KNN-imputer. As there were no
missing variables after dummy-encoding for the headneck dataset, there was no need to use the
KNN-imputer.

4.1.10 Outlier removal

As the datasets have few patients partaking in the study, the goal is to maintain as much data
for training and scoring as possible, only removing the worst samples which can influence the
models poorly. Therefore both Z-score and Isolation forest was utilized on all three scalings
(standard scaling, min max scaling, and powertransform) for OxyTarget, removing only those
samples which were classified as an outlier by the Isolation forest and Z-score for at least two
of the three scaled datasets. Then the same samples were removed from all three variations of
the scaled sets, in order for the different datasets to have the same dimensionality.
For the headneck dataset outliers were removed only using Z-score for the numerical values.
Isolation forest suggested removing too many samples, even with the contamination parameter
lowered drastically. Removing more than 15 samples would imply loss of too much information.

Oxytarget

Below are the figures displaying whether the samples are classified as an outlier by the Z-score
or Isolation Forest. The threshold was set to four standard deviations for Z-score, in order to
only remove the samples with the most extreme values.

Figure 4.2: Outliers detected for the min-max transformation of OxyTarget dataset using Z-
score and Isolation Forest

Page 42 of 111

Figure 4.3: Outliers detected for the standardscaled transformation of OxyTarget dataset using
Z-score and Isolation Forest

Figure 4.4: Outliers detected for the powertransformed Oxytarget dataset using Z-score and
Isolation Forest

The samples removed are OxyTarget 030, 039 and 178, as each of these samples are classified
as outliers by both methods on at least two sets. This results in 182 samples which will be
retained for model training and testing.

head and neck cancer dataset

Z-score outlier detection was applied on all three transformed subsets for the head and neck
dataset (headneck). The threshold was set to four standard deviations, in order to only remove
the samples with the most extreme values. The min max scaled dataset and standardscaled
dataset both detected the same four patients which can be seen in Figure 4.5. No outliers were
detected on the powertransformed dataset. All four samples were removed for all three sets
to keep the same dimensions. The outliers detected are to some degree consistent with the
observations from the X scores plot when performing PCA in Figure 3.3, where it can be seen
that patient id 157 and 142 and 157 deviate a lot from the rest of the samples.

Page 43 of 111

Figure 4.5: Outliers detected using Z-score for the min max and standardscaled transformation
of the headneck dataset

4.2 Methodological framework

As one of the goals of this thesis is to explore to what extent scaling, transformation and feature
selection have on survival and regression metrics on clinical data a methodogical framework had
to be built to efficiently extract results. There are many widely known feature selection methods
in scikit-learn for Python, however most of the methods are not compatible with right censored
survival data with the target consisting of both a censoring variable and a time variable. Due
to the ease of use of several feature selection techniques in R for survival data, the idea was to
incorporate these feature selection methods from known R libraries. A database-like structure
was adapted such that relating different scripts from R and Python could be executed easily,
the overview of the framework can be seen in Figure 4.6.

Page 44 of 111

Figure 4.6: An overview of the methodological framework for feature selection and scoring of
the models.

After pre-processing (step A), the differently scaled datasets are stored and structured into
folders based on their main dataset (steps C and D). In step H a script is run to split the
data for training and testing of models using repeated stratified k-fold cross validation. It
is an improvement over the traditional k-fold and stratification ensures there is a near equal
proportion of censored and uncensored data within each fold and split. Each fold will have
a proportion of censored and uncensored samples which will be representative of the training
data [29]. The added benefits of using a repeated stratified k-fold is that it reduces bias in
performance estimation and indicates the robustness of a model against variability of within
the data, as metrics from different repeats will indicate the performance across a variety of
splits [29], which is essential when assessing and comparing different models.

Page 45 of 111

Figure 4.7: Example of repeated stratified k-fold with 4 splits and 5 repeats

The repeated stratified k-fold splits the data into a number of folds repeated for a number
of times, in this case split into four folds, and repeated five times which results in 20 splits
the data can train and test on. For each repeat and each split the model is fitted to three of
the folds where the remaining fold is used for testing and scoring, this is done until all folds
within the repeat has been used as a test set. Hence for the configuration illustrated in Figure
4.7, there will be 20 predictions for the 20 test folds, of which the average performance can
be taken. In step H in Figure 4.6 the indexes for all the folds are saved to a CSV file, which
will be used in steps G and J, meaning all models will be scored on the exact same folds. Step
G is a script for feature selection, which will utilize the folds CSV file from step H and use
these with the differently scaled datasets in order to perform feature selection. The script in
step G executes two scripts in R and Python respectively in step I, where the R script contains
the feature selection methods ”Univariate Cox filter”, ”Random Forest variable importance”,
”Random Forest minimal depth” and ”Random forest variable hunting”. The Python script
in step I contains the feature selection method ”mRMR”. The parameters and packages used
when feature selecting in step I can be seen in table 4.1. The same hyperparameters used by

Page 46 of 111

Spooner et al (2020) were used for the feature selection methods [7].

Table 4.1: Feature selection methods with corresponding packages and parameters

Feature selection method package Hyper-parameters
Univariate Cox filter R: mlr and survival predict.type=”response”

method = ”univariate.model.score”

Random Forest R: randomForestSRC importance=”permute”, block.size=1
variable importance

Random Forest R: randomForestSRC.var.select method=”vh” nstep = 1,
variable hunting ntree=1000, nodesize=3

nsplit=10, splitrule=”logrank”

Random forest R: randomForestSRC.var.select method=”md”, ntree=1000, nsplit=10,
minimal depth nodesize=3, splitrule=”logrank”

mRMR Python: mrmr selection: -
mrmr regression

After step G finishes running the scripts in step I, it saves the features selected for each fold
and each dataset, and concatenates them into a CSV file for every transformed dataset for the
two main datasets (step J). The result might be a different feature set for each fold, but it
ensures there is no information leakage to other folds or the test fold when selecting features.
Simply applying feature selection on the full dataset would reveal information for test samples
and would not provide valid metrics when scoring.
Lastly, in step K, the features selected for each fold for the various datasets from step J and
the folds file in step H containing indexes are used when fitting and scoring models. The
various metrics Harrell’s Concordance, UNOs concordance, truncated UNO concordance, IBS
and RMSE are stored in a nested dictionary, such that the scores for various models and feature
selection methods can be extracted easily. In step K all the models used are baseline models
without any parameter tuning.

4.3 Methodology when tuning the models

To further explore how well the models compare performance wise, it is interesting to see how
much better each model can perform when tuned. The machine used for running all the code
is a 2020 macbook pro with an 8th generation Intel i5 processor which has four cores of 2 GHz
base speed. The computer has 16 GB of RAM. To conserve time usage in regards to this thesis
and due to system limitations the parameter tuning was only performed for subsets where all
features were available.
Repeated stratified k-fold cross validation was used as well, similar to the example in Figure 4.7,
only with 4 splits and 4 repeats, meaning the test proportion is 25 percent each time fitting the
models. As there were few samples, a train test split was not made before fitting, all parameter
combinations were fitted on all splits on all repeats. Repeated stratified k-fold is beneficial when
parameter tuning as repeating the estimation enables the selection of parameters that perform
consistently across a variety of splits. This ensures confidence in the results and evaluation
across the different models.
The metrics on all folds were grouped and averaged for each parameter combinations. Scores for
parameter combinations were sorted by Harrell’s concordance index, then by UNOs concordance
and Integrated Brier Score and will be discussed in results. The full tables can be found in
Appendix B.

Page 47 of 111

Chapter 5
Results

This chapter will present the discoveries and relevant results of the various metrics when as-
sessing scaling, transformation, feature selection methods, base models and hyperparameters
for the different models from this analysis.

5.1 Distribution of censorship

After outliers are removed, the distribution over time in months for censoring was plotted. The
datasets share similar characteristics in when in comes to censoring, although the OxyTarget
dataset has a higher proportion of censoring later on in the observational period. In the Oxy-
target dataset 72% of samples are censored, whereas for the headneck dataset 62,2% of samples
are censored.

Figure 5.1: Distribution of censoring over time in months for Oxytarget, where 72 percent of
samples are censored

48

Figure 5.2: Distribution of censoring over time in months for headneck, where 62,2 percent of
samples are censored

5.2 Scaling and feature selection

Three scaling or transformations techniques were applied, standardscaling, min max scaling and
the Yeo-Johnson powertransform. These scaling techniques were combined with several feature
selection techniques and were assessed using various algorithms.

Page 49 of 111

5.2.1 Most frequently selected features for OxyTarget dataset

Figure 5.3: Most frequently selected features on OxyTarget dataset by each feature selection
method

Page 50 of 111

Figure 5.4: Most frequently selected features on OxyTarget dataset by all methods counted

5.2.2 Most frequent selected features for headneck dataset

Figure 5.5: Most frequently selected features on headneck dataset by each feature selection
method

Page 51 of 111

Figure 5.6: Most frequently selected features on headneck dataset by all methods counted

Page 52 of 111

5.2.3 Harrell’s concordance index

Figure 5.7: Harrell’s concordance index for Oxytarget dataset with min max scaling applied.

The heatmaps for standardscaled and powertransformed concordance index for OxyTarget can
be found in Appendix A in Figure A.1 and A.2. All of the models fitted, are base models
with default parameter settings. Taking the mean of all the results for each scaling there is
little difference, the mean concordance index for min max is 0.75, for standardscaled data it is
0.76 and for powertransformed it is 0.77. The same trend can be seen across all three figures,
with random forest variable hunting performing poorly for all models. Linear regression and
Ridge regression performs the worst in terms of ranking with all features available and Coxnet
performing the worst out of all the machine learning models. In general feature selection helps
with performance for linear regression and some for ridge regression. In terms of ranking
Random survival forest is performing the best across all three subsets for OxyTarget, with
some performance loss due to some feature selection techniques.

Page 53 of 111

Figure 5.8: Harrell’s concordance index for headneck dataset with min max scaling applied.

The heatmaps for standardscaled and powertransformed concordance index for headneck subset
can be found in Appendix A in Figure A.3 and A.4. All of the models fitted, are base models with
default parameter settings. The mean concordance between scalings, similarly to OxyTarget
show very little difference. The mean concordance for the whole table is 0,74 for min max scaled
and powertransformed subsets, and 0,73 for standardscaled subset. For headneck Random
Survival Forest, Coxnet and PLSR are strong performers. For Linear Regression and Rigdge
regression the increase in performance is not as strong as it was for OxyTarget.

Page 54 of 111

5.2.4 UNO’s C-statistic

Figure 5.9: Scores for UNO’s C-statistic for OxyTarget dataset with min max scaling applied.

the heatmaps containing UNO’s C-statistic for the standardscaled and powertransformed sub-
sets for OxyTarget can be found in Appendix A in Figure A.5 and A.6. UNO’s C-statistic is only
calculated for the survival models as it is not possible to calculate the statistic for regression
models. There is little difference across the different subsets with the min max scaled subset
having a mean score of 0.75 while the powertransformed and standardscaled have a score of
0.76.

Page 55 of 111

Figure 5.10: Scores for UNO’s C-statistic for headneck dataset with min max scaling applied.

the heatmaps containing UNO’s C-statistic for the standardscaled and powertransformed sub-
sets for headneck can be found in Appendix A in Figure A.7 and A.8. There is little difference
across the different subsets with all three having a mean score of 0.72.

5.2.5 UNO’s C-statistic with truncation

The heatmaps containing UNO’s C-statistic with truncation for the standardscaled and power-
transformed subsets can be found in Appendix A in Figure A.9 and A.10. The standardscaled
subset had a slightly higher mean score of 0.78 while the min max scaled and powertransformed
respectively have a score of 0.76 and 0.77.

Page 56 of 111

Figure 5.11: Scores for Uno’s C-statistic with truncation for OxyTarget dataset with min max
scaling applied

The heatmaps containing UNO’s C-statistic with truncation for the standardscaled and pow-
ertransformed subsets can be found in Appendix A in Figure A.11 and A.12. There was no
significant difference across the subsets, as all had a mean score of 0.71.

Page 57 of 111

Figure 5.12: Scores for Uno’s C-statistic with truncation for headneck dataset with min max
scaling applied

5.2.6 Integrated Brier Score

The heatmaps containing Integrated Brier Score for the standardscaled and powertransformed
subsets were not able to be retrieved fort OxyTarget as certain combinations of folds, subsets,
feature selection methods, and models led to an error in the prediction of the survival curve.
Only metrics for min max subset was retrieved for OxyTarget. IBS was truncated at month
52 for OxyTarget. As can be seen from Figure 5.13 the best calibrated models overall are the
Component wise gradient boosted model and Survival Random Forest. Random forest variable
hunting yields worse IBS scores for all models, except for Coxnet, which has a very high IBS
score when it has access to all features.

Page 58 of 111

Figure 5.13: Integrated Brier Score for OxyTarget dataset with min max scaling applied

The heatmaps containing Integrated Brier Score for the standardscaled and powertransformed
subsets for headneck dataset can be found in Appendix A in Figure A.13 and A.12. IBS was
truncated at month 60 for headneck. There was no difference across the subsets, as all had
a mean score of 0.16. The same trend applies to all subsets, where the gradient boosted tree
based model and Random Forest variable hunting feature selection yielded the worst scores.

Page 59 of 111

Figure 5.14: Integrated Brier Score for headneck dataset with min max scaling applied

5.2.7 RMSE

The heatmaps containing RMSE for the standardscaled and powertransformed subsets for Oxy-
Target can be found in Appendix A in Figure A.15 and A.16. Feature selection has a great effect
for Ridge regression and Linear regression in general except for Random Forest min depth for
the min max scaled and standardscaled subsets, where RMSE is very large. Feature selection
has a very slight effect for the better on PLSR. The best scores are achieved by powertransform-
ing the data where all RMSE scores are below 20, except for linear regression with all features
available. From the results, both PLSR and Ridge perform very close and better than Linear
Regression.

Page 60 of 111

Figure 5.15: RMSE for OxyTarget dataset with min max scaling applied

The heatmaps containing RMSE for the standardscaled and powertransformed subsets for head-
neck can be found in Appendix A in Figure A.17 and A.18. RMSE metrics were worse for the
headneck dataset compared to OxyTarget the difference between the subsets were miniscule.
Interestingly enough Ridge regressions seems to be the model with best RMSE scores, although
the difference is so small compared to Linear regression and PLSR that it is negligible.

Page 61 of 111

Figure 5.16: RMSE for headneck dataset with min max scaling applied

5.3 Parameter tuning

5.3.1 Gradient boosting

Parameter tuning was done in two rounds for the tree based gradient boosting. First the number
of estimators tuned was between 100 and 500, with increments of 100, whereas learning rate was
tuned between 0.1 and 1 with an incremental increase of 0.1. The second round of tuning was
for parameters number of estimators, learning rate, min weight fraction leaf and max depth.
Loss was set to cox proportional hazards.

Tuning for number of estimators and learning rate

The full tables can found in Appendix B and Figures B.7 and B.9.

estimators learning rate Harrell-C UNO-C IBS

300 1.0 0.769 0.757 0.175
400 1.0 0.769 0.756 0.176
200 1.0 0.769 0.755 0.174
500 1.0 0.766 0.754 invalid score
100 1.0 0.766 0.749 0.168

Table 5.1: 5 best models for OxyTarget dataset using tree based gradient boosting and tuning
for number of estimators and learning rate.

Page 62 of 111

estimators learning rate Harrell-C UNO-C IBS

100 0.1 0.742 0.733 0.173
100 0.2 0.734 0.728 0.189
200 0.1 0.730 0.724 0.190
300 0.1 0.726 0.721 0.200
100 0.4 0.724 0.722 0.209

Table 5.2: 5 best models for headneck dataset using tree based gradient boosting and tuning
for number of estimators and learning rate.

Tuning for number of estimators, learning rate, weight fraction and max depth

The full tables can found in Appendix B and Figures B.8 and B.10.

estimators learning rate weight fraction max depth Harrell-C UNO-C IBS

100 0.4 0.4 2 0.775 0.784 0.124
100 0.4 0.4 3 0.775 0.784 0.124
100 0.4 0.4 4 0.775 0.784 0.124
100 0.4 0.4 5 0.775 0.784 0.124
100 0.4 0.4 10 0.775 0.784 0.124

Table 5.3: 5 best models for OxyTarget dataset using tree based gradient boosting and tuning
for number of estimators, learning rate, weight fraction and max depth.

estimators learning rate weight fraction max depth Harrell-C UNO-C IBS

100 0.1 0.3 2 0.768 0.747 0.148
100 0.1 0.3 3 0.768 0.747 0.148
100 0.1 0.3 4 0.768 0.747 0.148
100 0.1 0.3 5 0.768 0.747 0.148
100 0.1 0.3 10 0.768 0.747 0.148

Table 5.4: 5 best models for headneck dataset using tree based gradient boosting and tuning
for number of estimators, learning rate, weight fraction and max depth.

5.3.2 Component wise gradient boosting

Parameter tuning was done in two rounds for componentwise gradient boosting. First the
number of estimators tuned was between 100 and 500, with increments of 100, whereas the
learning rate was tuned between 0.1 and 1 with an incremental increase of 0.1. The second
round of tuning was for parameters learning rate and subsample, where the values for subsample
ranged from 0.1 to 1 with an incremental increase of 0.1

Tuning for number of estimators and learning rate

The full tables can be found in Appendix B and Figures B.11 and B.13.

Page 63 of 111

estimators learning rate Harrell-C UNO-C IBS

200 0.6 0.813 0.809 0.121
500 0.3 0.812 0.813 0.122
300 0.5 0.812 0.812 0.123
200 0.8 0.812 0.811 0.123
100 0.6 0.812 0.808 0.119

Table 5.5: 5 best models for OxyTarget dataset using componentwise gradient boosting and
tuning for the number of estimators and learning rate.

estimators learning rate Harrell-C UNO-C IBS

100 0.9 0.769 0.750 0.149
200 0.5 0.768 0.749 0.149
500 0.2 0.768 0.750 0.149
100 0.8 0.768 0.750 0.149
200 0.3 0.768 0.749 0.149

Table 5.6: 5 best models for headneck dataset using componentwise gradient boosting and
tuning for the number of estimators and learning rate.

Tuning for estimators, learning rate and subsample

The full tables can found in Appendix B and Figures B.12 and B.14.

estimators learning rate subsample Harrell-C UNO-C IBS

300 0.4 0.1 0.815 0.814 0.121
300 0.4 0.4 0.814 0.809 0.121
300 0.4 0.8 0.814 0.811 0.121
300 0.4 0.6 0.813 0.811 0.121
300 0.4 0.2 0.813 0.810 0.120

Table 5.7: 5 best models for OxyTarget dataset using componentwise gradient boosting and
tuning for number of estimators, learning rate and subsample.

estimators learning rate subsample Harrell-C UNO-C IBS

300 0.4 0.1 0.771 0.752 0.148
300 0.3 0.1 0.768 0.751 0.148
300 0.3 0.2 0.768 0.752 0.149
300 0.3 0.8 0.768 0.750 0.149
200 0.4 0.6 0.768 0.751 0.149

Table 5.8: 5 best models for headneck dataset using componentwise gradient boosting and
tuning for number of estimators, learning rate and subsample.

5.3.3 Random survival forest

Parameter tuning was done in two rounds for random survival forest. First the number of
estimators (trees) tuned was between 100 and 500, with increments of 100, whereas max depth

Page 64 of 111

was tuned between 5 and 25 with an incremental increase of 5. The second round of tuning
was for parameters min weight fraction leaf and max depth. The weight fraction ranging from
0.005 to 0.5 and max depth ranging 3 to 25.

Tuning for number of estimators (trees) and max depth

The full tables can found in Appendix B and Figures B.3 and B.5.

estimators max depth Harrell-C UNO-C IBS

300 5 0.807 0.788 0.116
400 5 0.807 0.787 0.117
500 5 0.806 0.786 0.117
500 10 0.804 0.779 0.116
300 10 0.804 0.779 0.116

Table 5.9: 5 best models for OxyTarget dataset using random survival forest and tuning for
number of estimators and max depth.

estimators max depth Harrell-C UNO-C IBS

400 3 0.766 0.766 0.149
500 3 0.765 0.765 0.150
300 3 0.764 0.764 0.149
200 3 0.763 0.763 0.150
100 3 0.762 0.762 0.150

Table 5.10: 5 best models for headneck dataset using random survival forest and tuning for
number of estimators and max depth.

Tuning for min weight fraction leaf and max depth

The full tables can found in Appendix B and Figures B.4 and B.6.

min weight fraction leaf max depth Harrell-C UNO-C IBS

0.005 7 0.800 0.776 0.117
0.01 7 0.800 0.776 0.117
0.005 5 0.799 0.776 0.117
0.01 5 0.799 0.776 0.117
0.1 7 0.798 0.800 0.124

Table 5.11: 5 best models for OxyTarget dataset using random survival forest and tuning for
min weight fraction leaf and max depth.

Page 65 of 111

min weight fraction leaf max depth Harrell-C UNO-C IBS

0.3 10 0.787 0.769 0.158
0.3 20 0.783 0.768 0.159
0.3 5 0.780 0.763 0.158
0.3 25 0.780 0.763 0.158
0.3 15 0.778 0.763 0.159

Table 5.12: 5 best models for headneck dataset using random survival forest and tuning for
min weight fraction leaf and max depth.

5.3.4 Coxnet

For the Coxnet algorithm, the most essential hyperparameters for the elastic net penalty were
used to hyperparameter tune the models, which is the alpha value and l1 ratio. For OxyTarget
the value for alpha when performing hyperparameter tuning was between 20 and 0.005 and for
l1 ratio it was between 0.01 and 0.9. The same values for alpha were used when tuning on the
headneck dataset, but for l1 ratio the values were between 0.01 and 0.95.

Tuning for alpha value and l1 ratio

The full tables can found in Appendix B and Figures B.1 and B.2.

alpha l1 ratio Harrell-C UNO-C IBS

0.01 0.1 0.827 0.818 0.114
0.01 0.05 0.827 0.817 0.115
0.01 0.01 0.826 0.817 0.115
0.01 0.2 0.825 0.811 0.113
0.01 0.3 0.823 0.811 0.112

Table 5.13: 5 best models for OxyTarget dataset using Coxnet and tuning for alpha value and
l1 ratio.

alpha l1 ratio Harrell-C UNO-C IBS

0.005 0.01 0.771 0.752 0.149
0.005 0.05 0.770 0.752 0.149
0.005 0.2 0.770 0.752 0.149
0.01 0.1 0.770 0.749 0.148
0.005 0.1 0.770 0.752 0.149

Table 5.14: 5 best models for headneck dataset using Coxnet and tuning for number of alphas
and l1 ratio.

Page 66 of 111

5.4 RV values for different subsets

(a) OxyTarget

(b) headneck

Figure 5.17: RV computation of different subsets for OxyTarget and headneck dataset.

Figure 5.17, present the computation of RV values between the different subsets of datasets
OxyTarget and headneck. RV values give an indication of the similarity in the information
given by the matrix [58].

Page 67 of 111

Chapter 6
Discussion

This chapter provides a discussion about the methodology, the results of the models together
with the implications faced. Relevant literature using similar feature selection techniques, cross
validation techniques and models will be used comparatively to asses the feature selection tech-
niques, scaling, methods and various metrics.

6.1 Different scalings and transformations

The different scaling and transformation methods were used on both datasets, standardscaling,
min max scaling and the Yeo-Johnson Powertransform. This resulted in three transformed
datasets for each dataset. As seen from the results there was not a significant improvement
between any of the subsets on a general level, the biggest difference was seen for Harrell’s
concordance index where the powertransformed subset had a mean concordance score of 0.77
and the min max scaled subset has a mean score of 0.75 for the OxyTarget dataset.
There might be various reasons as to why the subsets perform similarly in terms of the metrics
used. The first is inherent robustness. Survival algorithms like random survival forest, cox
proportional hazards and gradient boosting are designed to handle a variety of scales and
various distributions in the input data provided. Models which are based on non-parametric
or semi-parametric methods are usually not greatly affected by either scale or distribution.
Non-parametric models do not have any distributional assumptions from the input data [8].
For example, the tree based models make decisions based on relative feature values and split
values, instead of absolute values, which leads to less impact from distributions and scales on
performance [30].
Looking at the RV-values which comparatively asses the information similarity between the
different transformations in Figure 5.17, it is apparent that the different transformations provide
similar information.

6.2 Feature selection and features selected

The most frequently selected features for OxyTarget are the categorical features telling whether
patients had suspected metastasized lesions and whether it was a stage 4 cancer (Figure 5.4).
These are medical conditions that are critical to be diagnosed with. Metastasis in colon cancer
is found to extremely reduce the survival probability [59]. Looking at the thesis by Engesæth
(2021) [60], where repeated elastic net (RENT) was used for feature selection on OxyTarget,
some similar discoveries where made. In Engesæth’s thesis the best performing model to clas-
sify 5 year survival, cea baseline and metastasized lesions were the top selected features [60].
Cea baseline was the fourth most selected feature overall, and the most selected for coxfilter

68

and min depth selection techniques in the experiments conducted in this thesis. CEA stands
for carcinoembryonic antigen, which is mostly produced before birth, but often higher levels of
CEA are prevalent in colorectal cancers [61]. A study by Hall et al (2019), found higher levels
of CEA can often be linked to advanced cancer. Additionally it was discovered that higher
levels of CEA combined with stage one to three cancer before operation led to a 62 percent
probability increase of death comparative to normal CEA levels [61]. However as concluded in
the study, CEA levels alone are not sufficient to predict survival for patients [61]. Additionally,
ALP was the third most selected feature. ALP stands for alkaline phosphatase elevation, and
elevated levels was found to significantly reduce survival over time compared to normal levels
for colorectal cancer patients [62].
The most frequently selected features for headneck are pack years, hpv related 0 and uicc8 III IV 1
(Figure 5.6). Pack years is a measure of how many years the patient has smoked a pack of
cigarettes each day, hpv related 0 indicates that the cancer is not hpv related and uicc8 III IV 1
indicates it is a stage three or four cancer. Some of the same factors which were declared to be
some of the largest risk factors by the National Cancer Institute of the United States govern-
ment [6]. Of the location based features, oropharynx was the most frequently selected, followed
by cavum oris. This is interesting, since 39 out of the 73 deceased patients had oropharyngal
cancer (53.4 %). Although considering that 144 patients were classified as having oropharyngal
cancer, 39 were confirmed to be deceased (27.1 %). Considering that 10 out of 12 patients
(83.3 %) with oral cavity cancer (cavum oris), 9 out of 15 (60 %) with hypopharyngeal cancer
(hypopharynx) and 15 out of 21 (71.4 %) with laryengeal cancer (larynx) were confirmed de-
ceased, the number for patients with oropharyngal cancer that are confirmed deceased are in
comparison proportionally not as high. On the contrary, in a study conducted by Leonici et al
(2018) [63], the conditional 5-year survival rate for oropharyngal cancer was the second lowest
with hypopharynx having the worst conditional survival rate. Laryngeal cancer had the best
5-year conditional survival rate, followed by oral cavity [63].
In common for both datasets, was that random forest variable hunting had a significantly worse
performance than the other feature selection methods. For OxyTarget, the three top selected
features by variable hunting, only one was selected in the top 10 features by one of the other
selection methods. For headneck we can see some features ranked highly by variable hunting
which is not that frequently selected in total by all methods. With the performance loss in mind,
it might indicate these features are not as important as other features which were selected more
frequently by the other selection methods.

6.2.1 Feature selection and performance

As seen from the results, feature selection in general did not improve any of the metrics of
the survival models in most instances, except for Coxnet. An improvement was mostly seen
for the regression models with only time as the target variable, especially linear regression and
ridge regression. As most of the survival models used and PLSR already have built in feature
selection capabilities.
Coxnet selects features and shrinks coefficient weights through the use of l1 and l2 penalization.
As the default model with an l1 ratio of 0.5 was used, l1 and l2 was penalized equally. Ranking
performance with Harells concordance index was better with three of the feature selection meth-
ods on OxyTarget (Figure 5.7) whereas for headneck there was no improvement with feature
selection (Figure 5.8), although results were near equal for three feature selection techniques
and the model having all features available. The same pattern was seen when evaluating ranking
using UNO’s C-statistic, feature selection drastically improved performance on OxyTarget (Fig-
ure 5.9). For headneck there was a slight improvement with random forest variable importance
feature selection (Figure 5.10). For UNO’s C-statistic with truncation, random forest minimal
depth slightly improved the performance on the headneck dataset (Figure 5.12). Especially
when evaluating how well the model is calibrated, having all features available on OxyTarget

Page 69 of 111

led to a massive drop in the Integrated Brier Score for Coxnet (Figure 5.13). Looking at the
results mentioned, the feature selection techniques used except for random forest variable hunt-
ing, might lead to equal or overall better performance for the Coxnet algorithm. Similarly in
the findings by Spooner et al (2020) [7], the elastic net model did perform better with most
external feature selection techniques for one of the datasets, whereas for the other dataset used,
the feature selection techniques performed near equally as good.
Feature selection did not improve the performance of random survival forest. In the article from
Spooner et.al(2020) [7], similar characteristics are found for the feature selection methods for
Harrell’s concordance index. The scores are very close for multiple of the methods, although
there is a miniscule increase in performance when using random forest variable importance to
select features beforehand. There are multiple possible reasons that can account for the lack of
performance increase when applying feature selection. Random survival forest perform feature
selection by selecting a random subset of features at each split within the trees. Randomization
prevents correlation between the survival trees [64], which in result counteracts overfitting. The
diverse set of subsets containing features for each split, reduces the need for external feature
selection methods [64]. To further assess the lack of added performance with feature selection for
random survival forest, one can look towards the splitting criterion used for each survival tree,
which is the log-rank splitting criterion. Log-rank considers both the time-to-event information
as well as the survival distribution when it determines what the best possible split is [65]. This
means that applying external feature selection methods before fitting the random survival forest
algorithm might not be necessary, as the survival aspects relevant to each feature already are
incorporated when the splits are calculated.
The tree based gradient boosting algorithm did not have any increase in ranking performance
with external feature selection, except for random forest variable importance which slightly
increased Harrell’s concordance index and UNO’s C-statistic on the headneck dataset. The in-
crease using random forest variable importance in the aforementioned scenarios was only 0.01.
Similarly Spooner et al (2020) [7] did not observe any improvement for a gradient boosted cox
model by adding feature selection, except for a slight increase with random forest minimum
depth feature selection. Some of the same reasoning when evaluating feature selection perfor-
mance with random forest can be used to explain the lack of performance increase with added
feature selection methods for the tree based gradient boosting algorithm. The regression trees
also select a random subset of features for each tree, increasing the model robustness [66]. Tree
based models are capable of capturing complex interactions between features automatically, and
many external feature selection methods may not consider these interactions. Relevant features
or features having combined effects might have been removed. Tree based gradient boosted
models are good at handling noisy features, and therefore external feature selection methods
are oftentimes not needed. Although not survival data was used, in a study by Chen et al.(2016)
[67], it was shown that tree based boosting models benefited from greedily using information
from the full dataset rather than fitting subsets of smaller dimensions.
Similarly there is no performance increase seen by combining feature selection methods with the
componentwise gradient boosted model using partial least squares as the base learner. There
is one exception, where the truncated UNO C-statistic is increased by 0.01 using the headneck
data with random forest minimal depth selection. This is such a small increase for only one
metric, meaning it can be considered to perform near equally as good. The componentwise
gradient boosted model already has feature selection as an integral part of the algorithm, as
mentioned in section 2.4.2, for each boosting iteration the coefficient for one feature gets its
weights updated. This implies that irrelevant features and noisy features might get very low
weights or might not be weighted at all.

Page 70 of 111

6.3 Hyperparameter tuning of survival models

All of the survival models were tuned with different hyperparameters to check whether it could
increase the performance. As the feature selection methods used in the first experiment yielded
no or marginal increase in performance, the models were tuned with all features available on the
min max scaled subsets. Similar to the first experiment, the models were tuned with repeated
stratified k-fold cross validation, where the average performance metrics were computed across
all splits. When performing hyperparameter tuning each split contained 4 folds and was repeated
4 times, meaning the test proportion was set to 25 percent of the full dataset for each split.
A similar configuration to when feature selection techniques were applied, only with one less
repeat.

6.3.1 Coxnet

For Coxnet, the elastic net hyperparameters alpha and l1 ratio were tuned. l1 ratio is the
mixing parameter for the elastic net penalties Ridge (L2) and Lasso (L1), the smaller the
l1 ratio, the smaller the influence of the L1 penalty is compared to L2 penalty. Hence, the
smaller the l1 ratio is, there is a stronger tendency for feature shrinkage and less tendency
for dimensionality reduction. Alpha on the other hand is the penalization or regularization
strength, a greater value for alpha results in greater shrinkage of feature weights and leads to a
more sparse set of features fitted onto the model. The regularization strength alpha is the same
as r in equation 2.16. Before the search for the optimal combination of hyperparameter values,
the value of alpha that would set all feature weights to zero was unknown. Therefore multiple
increasing alpha values were tried until the value of alpha that would set all feature weights to
zero, independently of the l1 ratio. Then the final list of alpha values to tune for was set by
choosing the alpha value which resulted in complete shrinkage of weights and adding more values
in decreasing order until feature weights would be too large for the algorithm to handle. From
the results in Appendix B and Figure B.1 and B.2, alpha values of 1 and above tend to score
0.5 for concordance which means the model guesses randomly. This is can possibly be an effect
due to the L1 penalty setting all feature weights to 0. Furthermore, hyperparameter tuning
for lower values of alpha and l1 ratio resulted in a large increase in performance for OxyTarget
compared to the base model without tuning. With all features available, the performance for
Harrell’s concordance index increased from 0.73 to 0.827 (Figure 5.7 & Table 5.13), a large
increase was seen for UNO’s C-statistic as well and the Integrated Brier Score. For OxyTarget
the best hyperparameter combination is a small alpha value of 0.01 and an l1 ratio of 0.1. This
indicates that the penalization strength is not very high and that the Ridge penalty has highest
influence, which might indicate that shrinkage of a few feature weights is able to remove the
most degenerate behaviour leading to the performance increase.
With regards to the hyperparameters, the same trend was seen on the headneck dataset, where
a small value for alpha and l1 ratio yielded the best performance. With the best hyperparam-
eter combination being 0.005 for alpha and 0.01 for l1 ratio. However, compared to the default
models when feature selection was tested, from the results it is clear that the tuned model have
very similar performance to the model having all features available and for some of the models
with external feature selection applied beforehand. The best performance after hyperparameter
tuning for Coxnet was 0.771 for Harrell’s concordance index (Table 5.14). Compared to Oxy-
Target, the headneck dataset is much more sparse, and shrinking feature weights might not be
as effective as for some high-dimensional datasets.

6.3.2 Random Survival Forest

Hyperparameter tuning for number of estimators and maximum depth yielded a very small
increase in terms of ranking when looking at Harrell’s concordance index. For OxyTarget UNO’s

Page 71 of 111

C-statistic was slightly worse for the model with the highest Harrell concordance index. For
headneck UNO’s C-statistic was slightly increased. Tuning for these parameters no significant
change in terms of Integrated Brier Score was observed. The best hyperparameter combinations
for both dataset were with over 300 estimators and a small maximum depth.
Tuning for min weight fraction leaf and maximum depth yielded no better performance for
OxyTarget, but lead to an increase in ranking performance for the headneck dataset. Integrated
Brier Score was slightly worse for the best hyperparameters in terms of ranking for headneck.
For OxyTarget the best hyperparameter combinations consisted of a small weight fraction and
a small maximum depth. Whereas for headneck the best combinations consisted of a weight
fraction of 0.3, where the best model had a maximum depth of 10. With hyperparameter tuning,
Random Survival Forest ended up as the best performing model for the headneck dataset overall.
Scikit-survival documentation explains min weight fraction leaf as ”The minimum weighted
fraction of the sum total of weights (of all the input samples) required to be at a leaf node.
[31]”. In other words, a threshold for minimum cumulative sample weight to be present at each
leaf node. A lower value will in turn lead to deeper tree growth, imposing a risk of overfitting.
Although as can be seen from the best hyperparameter combinations, a small maximum depth
is favoured. Despite yielding slightly better ranking performance for the headneck dataset, The
Integrated Brier Score increased slightly as well, resulting in a model which is slightly worse at
generalizing.

6.3.3 Gradient boosting with regression trees as base learner

Hyperparameter tuning for the number of estimators and learning rate did not yield any signif-
icant increase in performance on OxyTarget. The best combination of hyperparameters is with
300 estimators and a learning rate of 1. The best hyperparameter combinations when tuned for
Harrell’s concordance index had a learning rate of 1. While it increases ranking performance,
the Integrated Brier Score gets larger. Looking at Figure B.7 in Appendix B, it is evident that
a better Integrated Brier Score can be achieved by setting the learning rate lower.
On the headneck dataset, the hyperparameter tuning yielded a significant increase in terms of
ranking metrics. Where the best hyperparameter combinations consisted of a small learning
rate and a small number of estimators. The best hyperparameter combination of 100 estimators
and a learning rate of 0.1 achieved a slightly better Integrated Brier Score.
Hyperparameter tuning was additionally extended by adding to more parameters, hence tuning
for number of estimators, learning rate, min weight fraction leaf and maximum depth. This
increased the performance slightly further. For OxyTarget the ranking metrics did not improve
when compared to the first experiment, but the Integrated Brier Score did. The best parameter
combinations consisted of 100 estimators, a learning rate of 0.4, a min weight fraction leaf of
0.4 and max depth between 2 and 10.
On the headneck dataset tuning for the same four parameters resulted in a significant increase
in ranking metrics compared to the first experiment and the previous tuning attempt. The
model performed slighty worse in terms of Integreated Brier Score with a minuscule increase of
the score. The best hyperparameters consisted of a small number of estimators, a small learning
rate, a min weight fraction leaf of 0.3 and a max depth between 2 and 10. What is apparent
from the results, is that introducing a min weight fraction leaf of 0.3 improves the performance
a lot.

6.3.4 Componentwise gradient boosting with partial least squares as base
learner

Hyperparameter tuning the number of estimators and learning rate resulted in better ranking
performance for both datasets. Both Harrell’s concordance index and UNO’s C-statistic is
higher while Integrated Brier Score is equally good when compared to the first experiment. The

Page 72 of 111

best parameter combination for OxyTarget consisted of 200 estimators and a learning rate of
0.6, while for headneck it was 100 estimators and a learning rate of 0.9. There is no clear trend
among the best hyperparameter combinations. Additionally tuning the subsample proportion,
yielded a very small increase in performance as well, in terms of ranking. The best tuned models
for both datasets contained a subsample value of 0.1. In general, for both experiments and all
models, hyperparameter tuning the componentwise gradient boosted model resulted in overall
best performance for OxyTarget.
Setting the subsample parameter to a low value means that each base learner is trained on
a small proportion of the data. Introducing this diversity of samples to the base learner can
help with better performance. The base learner might be able to capture different aspects and
patterns within the data when the subsampling is low. The effect can tend to reduce variability
in the final boosted model [66]

6.4 The performance of the models used

Of the boosted models the best performing model observed Spooner et al (2020) [7] was like-
lihood based boosting with cox models as the base learner. Although for one of the datasets,
she observed near identical performance using gradient boosting with linear models as base
learners. In the experiments conducted in this thesis, a better performance was overall achieved
using gradient boosting with partial least squares as the base learner. Spooner et al (2020) [7]
did observe a greater performance relative to the other models using elastic net, whereas the
experiments in this thesis showed that an elastic net penalized cox model turned out to be the
worst performer among the survival models. What is clear from the results achieved in this
thesis, is that there is no clear best algorithm to use. The best performers for the headneck
dataset is hyperparameter tuned Random Survival Forest models or Coxnet models, which both
achieved a concordance of 0.771. For the OxyTarget dataset when hyperparameter tuning on
the min max scaled subset the best performing model was with the Coxnet algorithm tuned for
l1 ratio and regularization strength parameter alpha, which achieved a concordance of 0.827.
The second best was a componentwise gradient boosted model using partial least squares, which
resulted in a concordance index of 0.815. Based on these results the component wise gradient
boosting algorithm with partial least squares or the Coxnet algorithm are preferred for the high-
dimensional OxyTarget data, whereas random survival forest is preferred for the more sparse
headneck dataset as it was able to score 0.787 for Harrell’s concordance index. Although if we
look at the other subsets for OxyTarget without any hyperparameter tuning, the best perform-
ing model is Random Survival Forest on the powertransformed subset with a concordance index
of 0.83 (Figure A.2). This yielded the overall highest concordance index for OxyTarget together
with Coxnet. Although considering UNO’s C-statistic and UNO’s truncated C-statistic for the
powertransformed subset, there is a slight drop to 0.81 for Random Survival Forest, which might
indicate that there is a slight overestimation of Harrell’s concordance index for Random Survival
forest on the powertransformed subset.
In general, from the first experiment, it is apparent that some survival machine learning models
which are able to handle censored data are better at ranking the survival times of samples better
than the linear regression and Ridge regression. Nevertheless, Root mean square error (RMSE),
show that Linear regression is imprecise in its prediction with all features available and with
random forest minimal depth on OxyTarget data. The difference in RMSE for headneck and
between PLSR and Ridge on OxyTarget is so small it is, negligible. In the findings of Spooner
et al (2020) [7], there was a lack of added performance for many models in many instances when
utilizing feature selection techniques. Similarly in this thesis, feature selection did not increase
performance for most of the machine learning models.

Page 73 of 111

6.5 Bias due to high proportion of censoring

Both UNO’s C-statistic and UNO’s C-statistic with truncation were used to assess all the
survival models. With a high proportion of censoring in the test data, Harell’s concordance
index is known to be biased upwards [50], resulting in higher scores for the concordance index.
When calculating Harrell’s concordance index, all pairs where the sample with the shortest
survival time is censored are ignored [68]. This might lead to an upwards bias when the censoring
proportion is high in the test set. To counteract this bias to some extent UNO’s C-statistic
and truncated C-statistic can be used. The last part of the survival function can tend to be
unstable [50], and therefore the truncated statistic was truncated to the last confirmed failure
time. The last observed death for OxyTarget is at 68 months, whereas for the headneck dataset
it is observed at 87.97 months. Truncation time τ should be set such that P (D > τ) > 0, which
implies that the probability to be censored after truncation is nonzero [50][31].
Both UNO’s C-statistic with and without truncation is very close to the score for Harrells’s
concordance index for the OxyTarget dataset. However for the headneck dataset there is a
slight drop in performance when looking at UNO’s C-statistic. What is interesting is that the
censoring proportion is higher for OxyTarget with 72 percent, compared to 62.2 percent for
headneck.

6.6 Cross validation to evaluate feature selection techniques
and method of searching for optimal hyperparameters

Repeated stratified K-fold cross validation (RSKF) was used when both assessing different
feature selections techniques and when searching for optimal hyperparameters. One of the
reasons to use RSKF is robustness against data variability as it reduces the impact of random
data variations by repeating the cross validations [69]. It ensures that each data point has
been in the training and test folds, hence making sure that all data is used and utilised to the
largest possible extent. The robustness is important when searching for hyperparameters as it
minimizes the influence a random data split can have. The optimal hyperparameters found will
generalize better to unseen data as it mitigates the risk of overfitting for a particular train and
test fold or subset of the data used [69]. As the hyperparameters are averaged from multiple
splits the hyperparameter combinations provide a more representative estimate of the impact
on the model used. When evaluating the feature selection techniques the RSKF was set up with
5 splits and 5 repeats, which is exactly the same configuration used by Spooner et al (2020) [7].
It is important to mention that when searching for the optimal hyperparameters, RSKF was
configured with 4 splits and 4 repeats. This is the same configuration as illustrated for the first
experiment in Figure 4.7, but one less repeat. The reason to use one less repeat was due to
computation time and that Coxnet became very unstable for particular splits. As the number
of splits was increased and due to more repeats, there were more splits which created problems
for survival estimates from the Coxnet model. This further created difficulties when survival
estimates were predicted in order to calculate the Integrated Brier Score.

6.7 Issues faced and limitations

6.7.1 Unstable predictions with Coxnet

Mostly the issues faced were with the Coxnet model providing very unstable survival estimates
for OxyTarget at specific splits from the repeated stratified k-fold. The survival estimates for
certain samples in certain splits would be estimated as infinitely low or infinitely large values
as time increased. Therefore in order to have comparable Integrated Brier Scores, the scores
were calculated between 12 and 48 months, which corresponds to between 1 year and 4 years.

Page 74 of 111

Predictions were stable for the headneck dataset, therefore the Brier score was truncated to
between 1 and 5 years, as 5-year survival is common to assess in clinical studies.

6.7.2 Other loss functions for gradient boosted models

The gradient boosted models and Coxnet all use cox proportional hazards as its loss function.
The gradient boosted models from sci-kit survival do have the ability to use other loss functions
such as squared loss or inverse probability of censoring weighted least squares (ipcwls). It
would be interesting to investigate if performance could be improved using one of the other
loss functions. The limitation with the gradient boosted models from scikit-survival is that the
models are not able to predict a survival curve with loss set to squared or ipcwls. Therefore
the Integrated Brier Score can not be calculated, to asses the calibration error compared to the
other models used.

6.7.3 Features selected by the different algorithms

The most important features of the different algorithms were not assessed in this thesis due
to limitations with scikit-survival. For the gradient boosted models in addition to coxnet it is
possible to extract the feature weights, however for random survival forest implementation from
scikit-survival it is not possible to do so.

6.8 Suggestions for future work

6.8.1 Impute right censored samples

As the regression models Linear Regression, Ridge Regression and PLSR do not take into
account censoring, which might lead to an underestimation in the response (since the censored
patients live longer than the response says). One approach could be to use conditional survival
distributions (CondiS) which is a method derived from Kaplan-Meier [70], to impute the time of
survival for right censored patients. This method allows the application of ML-models which do
not handle censoring on the imputed data, without losing all the information from the censoring
variable. In the article by Wang et al (2022) [70], where the method was discovered, the use of
CondiS to impute time variables showed improvement in prediction error and concordance.

6.8.2 Different or additional approach to hyperparameter tuning

On the condition that there would be more samples, hyperparameter tuning could have been
done differently, for example by splitting the full dataset into a training portion, validation
portion and a test portion. For gradient boosting and random survival forest, different values
for various hyperparameters over the number of estimators or trees could have been plotted
for various metrics on the training data with stratified k-fold cross validation. And for the
gradient boosted methods, an early stopping monitor could be implemented, assessing the
average improvement across the boosting iterations. This means that after a number of boosting
iterations, for example 20, if there was no improvement on average, the most suitable number
of iterations could be determined.
For the Coxnet model, utilizing a pipeline and stratified k-fold cross validation on the train and
validation portion of the data, values for alpha potentially could have been estimated more pre-
cisely by visualising the regularization path for various metrics. This can be achieved by using
the hyperparameters alpha min ratio and setting a high number of alphas to be calculated, in
order to find the maximum score for alpha. By using alpha min ratio the alpha needed to set
all coefficients to zero is calculated first (maximum alpha) and then gradually decreased until
until a percentage value of the inital alpha value where all coefficients are nulled is reached,

Page 75 of 111

the percentage value is controlled by the hyperparameter. Alpha min ratio multiplied with the
maximum number of alphas will determine the minimum number of alphas and the algorithm
will compute for a number of equally spaced alphas in between the maximum and minimum
alphas [31]. Alpha is the regularization parameter, and by visualising the regularization path,
the strength of the regularization can be thoroughly assessed along the path between maximum
and minimum alpha [31]. Additionally feature weights could be extracted improving the inter-
pretability of the model for clinical use to researchers and doctors, which can further assess the
feature weights.

Page 76 of 111

Chapter 7
Conclusion

The goals of this thesis consisted of comparing various machine learning algorithms for various
metrics on cancer data and testing several pre-processing tools such as different transformations
and feature selection techniques. From the results and additional analysis done in this thesis,
it can be concluded that there is no universal best approach for performing survival analysis
on cancer data. However, the results indicate that some models have better predictive ability,
both in terms of ranking performance and were better calibrated, indicating a higher ability to
generalize to unseen data. The different trasformations yielded no increase in results for the
headneck datasets, but a small increase in performance was seen with Yeo-Johnson powertrans-
form on OxyTarget. For the models with default parameters, feature selection did not improve
the performance of the survival models except for Coxnet. However feature selection did in most
instances improve performance of Linear regression and Ridge regression significantly. Despite
the lack of performance for several of the survival models, some of the most frequently selected
features can be supported by published studies and articles. However, also backed by published
literature and the findings of this thesis, is that advanced machine learning algorithms possibly
can benefit from greedily selecting features rather than using feature selection techniques as
part of pre-processing.
Random survival forest scored well for both datasets, the high dimensional OxyTarget dataset
and the more sparse headneck dataset. For Harrell’s concordance index the algorithm scored
0.83 with powertransform applied beforehand on OxyTarget and 0.787 for the headneck dataset
with hyperparameter tuning. Secondly Coxnet performed as well for OxyTarget with a slightly
higher score for UNO’s C-statistic compare to Random Survival Forest, whereas for headneck
the concordance index was 0.771. Thirdly the component wise gradient boosted model with
partial least squares as base learner performed relatively well for both datasets with concordance
index scores of 0.813 for OxyTarget and 0.769 for OxyTarget. Of the regression models with
only time as the target variable, PLSR performed better than Ridge regression and Linear
regression. Hyperparameter tuning the survival models did in most instances not change the
Integrated Brier Score significantly, for the models with the best ranking performance.

77

Bibliography

[1] Cancer Registry of Norway, May 2022. url: https : / / www . kreftregisteret . no /

globalassets/cancer-in-norway/2022/cin_report-2022.pdf.

[2] url: https://www.who.int/news-room/fact-sheets/detail/cancer.

[3] Mark Gormley et al. “Reviewing the epidemiology of head and neck cancer: definitions,
trends and risk factors”. In: British Dental Journal 233.9 (Nov. 2022), pp. 780–786. issn:
1476-5373. doi: 10.1038/s41415-022-5166-x.

[4] Geoffrey M. Cooper. The Cell: A Molecular Approach. 2nd edition. eng. Sinauer Asso-
ciates 2000, 2000. isbn: 0-87893-106-6. url: https://www.ncbi.nlm.nih.gov/books/
NBK9963/.

[5] PDQ Adult Treatment Editorial Board. “Rectal Cancer Treatment (PDQ®): Health Pro-
fessional Version”. en. In: PDQ Cancer Information Summaries. Bethesda (MD): National
Cancer Institute (US), 2002.

[6] url: https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet.

[7] Annette Spooner et al. “A comparison of machine learning methods for survival analysis
of high-dimensional clinical data for dementia prediction”. en. In: Scientific Reports 10.1
(Nov. 2020), p. 20410. issn: 2045-2322. doi: 10.1038/s41598-020-77220-w.

[8] Christiana Kartsonaki. “Survival analysis”. In: Diagnostic Histopathology 22.7 (2016).
Mini-Symposium: Medical Statistics, pp. 263–270. issn: 1756-2317. doi: https://doi.
org/10.1016/j.mpdhp.2016.06.005. url: https://www.sciencedirect.com/
science/article/pii/S1756231716300639.

[9] David G. Kleinbaum and Mitchel Klein. Survival Analysis: A Self-Learning Text, Third
Edition (Statistics for Biology and Health). Springer, 2012, pp. 5–18. isbn: 978-1-4939-
5018-8. url: https://link.springer.com/book/10.1007/978-1-4419-6646-9.

[10] E. L. Kaplan and Paul Meier. “Nonparametric Estimation from Incomplete Observations”.
In: Journal of the American Statistical Association 53.282 (1958), pp. 457–481. issn:
01621459. url: http://www.jstor.org/stable/2281868 (visited on 05/20/2023).

[11] D. R. Cox. “Regression Models and Life-Tables”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 34.2 (1972), pp. 187–220. issn: 00359246. url: http:
//www.jstor.org/stable/2985181 (visited on 04/11/2023).

[12] H. Ishwaran et al. “Random survival forests”. In: Ann. Appl. Statist. 2.3 (2008), pp. 841–
860. url: https://arXiv.org/abs/0811.1645v1.

[13] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. “Regularization Paths for Gen-
eralized Linear Models via Coordinate Descent”. In: Journal of Statistical Software 33.1
(2010), pp. 1–22. doi: 10.18637/jss.v033.i01. url: https://www.jstatsoft.org/
index.php/jss/article/view/v033i01.

78

https://www.kreftregisteret.no/globalassets/cancer-in-norway/2022/cin_report-2022.pdf
https://www.kreftregisteret.no/globalassets/cancer-in-norway/2022/cin_report-2022.pdf
https://www.who.int/news-room/fact-sheets/detail/cancer
https://doi.org/10.1038/s41415-022-5166-x
https://www.ncbi.nlm.nih.gov/books/NBK9963/
https://www.ncbi.nlm.nih.gov/books/NBK9963/
https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/https://doi.org/10.1016/j.mpdhp.2016.06.005
https://doi.org/https://doi.org/10.1016/j.mpdhp.2016.06.005
https://www.sciencedirect.com/science/article/pii/S1756231716300639
https://www.sciencedirect.com/science/article/pii/S1756231716300639
https://link.springer.com/book/10.1007/978-1-4419-6646-9
http://www.jstor.org/stable/2281868
http://www.jstor.org/stable/2985181
http://www.jstor.org/stable/2985181
https://arXiv.org/abs/0811.1645v1
https://doi.org/10.18637/jss.v033.i01
https://www.jstatsoft.org/index.php/jss/article/view/v033i01
https://www.jstatsoft.org/index.php/jss/article/view/v033i01

[14] Kwan-Moon Leung, Robert M. Elashoff, and Abdelmonem A. Afifi. “CENSORING IS-
SUES IN SURVIVAL ANALYSIS”. In: Annual Review of Public Health 18.1 (1997).
PMID: 9143713, pp. 83–104. doi: 10.1146/annurev.publhealth.18.1.83. eprint:
https://doi.org/10.1146/annurev.publhealth.18.1.83. url: https://doi.org/
10.1146/annurev.publhealth.18.1.83.

[15] J. D. Kalbfleisch and Ross L. Prentice. The statistical analysis of Failure Time Data.
2nd ed. John Wiley, 2002.

[16] Terry M. Therneau and Patricia M. Grambsch. “The Cox Model”. In: Modeling Survival
Data: Extending the Cox Model. New York, NY: Springer New York, 2000, pp. 39–77.
isbn: 978-1-4757-3294-8. doi: 10.1007/978-1-4757-3294-8_3. url: https://doi.org/
10.1007/978-1-4757-3294-8_3.

[17] Nicolo Cosimo Albanese. Survival Analysis: Optimize the Partial Likelihood of the Cox
Model. en. Dec. 2022. url: https://towardsdatascience.com/survival-analysis-
optimize-the-partial-likelihood-of-the-cox-model-b56b8f112401.

[18] Christopher M Wilson et al. “Fenchel duality of Cox partial likelihood with an application
in survival kernel learning”. en. In: Artif Intell Med 116 (Apr. 2021), p. 102077.

[19] Christopher M. Wilson et al. “Fenchel duality of Cox partial likelihood with an application
in survival kernel learning”. In: Artificial Intelligence in Medicine 116 (2021), p. 102077.
issn: 0933-3657. doi: https : / / doi . org / 10 . 1016 / j . artmed . 2021 . 102077. url:
https://www.sciencedirect.com/science/article/pii/S0933365721000701.

[20] Charu C. Aggarwal. Outlier Analysis. 2nd. Springer Publishing Company, Incorporated,
2016. isbn: 3319475770.

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation-based anomaly detection”.
English. In: ACM Transactions on Knowledge Discovery from Data 6.1 (2012), pp. 1–39.
issn: 1556-4681. doi: 10.1145/2133360.2133363.

[22] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[23] url: https : / / statistics . berkeley . edu / research / high - dimensional - data -

analysis.

[24] Takeshi Emura and Yi-Hau Chen. “Gene selection for survival data under dependent
censoring: A copula-based approach”. en. In: Stat Methods Med Res 25.6 (May 2014),
pp. 2840–2857.

[25] Hemant Ishwaran. “Variable importance in binary regression trees and forests”. In: Elec-
tronic Journal of Statistics 1.none (2007), pp. 519–537. doi: 10.1214/07-EJS039. url:
https://doi.org/10.1214/07-EJS039.

[26] Hemant Ishwaran et al. “High-Dimensional Variable Selection for Survival Data”. In:
Journal of the American Statistical Association 105.489 (2010), pp. 205–217. doi: 10.
1198/jasa.2009.tm08622. eprint: https://doi.org/10.1198/jasa.2009.tm08622.
url: https://doi.org/10.1198/jasa.2009.tm08622.

[27] Hong Wang and Gang Li. “A Selective Review on Random Survival Forests for High
Dimensional Data”. In: Quantitative bio-science 36.2 (2017), pp. 85–96. issn: 2288-1344.
doi: 10.22283/qbs.2017.36.2.85.

[28] Chris Ding and Hanchuan Peng. “Minimum redundancy feature selection from microarray
gene expression data”. en. In: J Bioinform Comput Biol 3.2 (Apr. 2005), pp. 185–205.

[29] Sebastian Raschka and Vahid Mirjalili. Python machine learning: Machine learning and
deep learning with python, scikit-learn, and TensorFlow 2. 3rd ed. Birmingham, England:
Packt Publishing, 2019. isbn: 9781789955750.

Page 79 of 111

https://doi.org/10.1146/annurev.publhealth.18.1.83
https://doi.org/10.1146/annurev.publhealth.18.1.83
https://doi.org/10.1146/annurev.publhealth.18.1.83
https://doi.org/10.1146/annurev.publhealth.18.1.83
https://doi.org/10.1007/978-1-4757-3294-8_3
https://doi.org/10.1007/978-1-4757-3294-8_3
https://doi.org/10.1007/978-1-4757-3294-8_3
https://towardsdatascience.com/survival-analysis-optimize-the-partial-likelihood-of-the-cox-model-b56b8f112401
https://towardsdatascience.com/survival-analysis-optimize-the-partial-likelihood-of-the-cox-model-b56b8f112401
https://doi.org/https://doi.org/10.1016/j.artmed.2021.102077
https://www.sciencedirect.com/science/article/pii/S0933365721000701
https://doi.org/10.1145/2133360.2133363
https://statistics.berkeley.edu/research/high-dimensional-data-analysis
https://statistics.berkeley.edu/research/high-dimensional-data-analysis
https://doi.org/10.1214/07-EJS039
https://doi.org/10.1214/07-EJS039
https://doi.org/10.1198/jasa.2009.tm08622
https://doi.org/10.1198/jasa.2009.tm08622
https://doi.org/10.1198/jasa.2009.tm08622
https://doi.org/10.1198/jasa.2009.tm08622
https://doi.org/10.22283/qbs.2017.36.2.85

[30] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. The elements of Statistical
Learning: Data Mining, Inference, and prediction, second edition. 2nd ed. Springer, 2009.
url: https://link.springer.com/book/10.1007/978-0-387-84858-7.

[31] Sebastian Pölsterl. “scikit-survival: A Library for Time-to-Event Analysis Built on Top
of scikit-learn”. In: Journal of Machine Learning Research 21.212 (2020), pp. 1–6. url:
http://jmlr.org/papers/v21/20-729.html.

[32] H. Ishwaran and U.B. Kogalur. “Random survival forests for R”. In: R News 7.2 (Oct.
2007), pp. 25–31. url: https://journal.r-project.org/articles/RN-2007-015/RN-
2007-015.pdf.

[33] Torsten Hothorn et al. “Survival ensembles”. In: Biostatistics 7.3 (July 2006), pp. 355–
373. issn: 1465-4644. doi: 10.1093/biostatistics/kxj011.

[34] Sanjay Lall and Stephen Boyd. EE104 Empirical Risk Minimization. Apr. 2023. url:
https://ee104.stanford.edu/lectures/erm.pdf.

[35] Jerome H. Friedman. “Greedy function approximation: A gradient boosting machine.”
In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. doi: 10.1214/aos/1013203451.
url: https://doi.org/10.1214/aos/1013203451.

[36] Greg Ridgeway. “The State of Boosting”. In: Comp Sci Stat 31 (Dec. 2001).

[37] Greg Ridgeway. “Generalized Boosted Models: A guide to the gbm package”. In: (2020).
url: https://cran.rproject.org/web/packages/gbm/vignettes/gbm.pdf (visited on
04/11/2023).

[38] Nam Phuong Nguyen. “The Paradox of OverfittingGradient Boosting for Survival Anal-
ysis with Applications in Oncology”. MA thesis. University of South Florida, 2019. url:
https://digitalcommons.usf.edu/etd/8062/.

[39] Peter Bühlmann. “Boosting for high-dimensional linear models”. In: The Annals of Statis-
tics 34.2 (2006), pp. 559–583. doi: 10.1214/009053606000000092. url: https://doi.
org/10.1214/009053606000000092.

[40] Harald Binder and Martin Schumacher. “Allowing for mandatory covariates in boosting
estimation of sparse high-dimensional survival models”. In: BMC Bioinformatics 9.1 (Jan.
2008), p. 14. issn: 1471-2105. doi: 10.1186/1471-2105-9-14.

[41] Noah Simon et al. “Regularization Paths for Cox’s Proportional Hazards Model via Co-
ordinate Descent”. en. In: J Stat Softw 39.5 (Mar. 2011), pp. 1–13.

[42] Noah Simon et al. “Regularization Paths for Cox’s Proportional Hazards Model via Co-
ordinate Descent”. en. In: J Stat Softw 39.5 (Mar. 2011), pp. 1–13.

[43] David G. Kleinbaum et al. Applied regression analysis and other multivariable methods,
3rd ed. Applied regression analysis and other multivariable methods, 3rd ed. Belmont,
CA, US: Thomson Brooks/Cole Publishing Co, 1998, pp. xviii, 798. isbn: 0-534-20910-6.

[44] Bozena Zdaniuk. “Ordinary Least-Squares (OLS) Model”. In: Encyclopedia of Quality of
Life and Well-Being Research. Ed. by Alex C. Michalos. Dordrecht: Springer Netherlands,
2014, pp. 4515–4517. isbn: 978-94-007-0753-5. doi: 10.1007/978-94-007-0753-5_2008.
url: https://doi.org/10.1007/978-94-007-0753-5_2008.

[45] Hervé Abdi. “Partial least squares regression and projection on latent structure regression
(PLS Regression)”. In: Wiley Interdisciplinary Reviews: Computational Statistics 2 (Jan.
2010), pp. 97–106. doi: 10.1002/wics.51.

[46] Kevin Dunn. url: https://learnche.org/pid/PID.pdf?10d109.

[47] Ulf Indahl. “The geometry of PLS1 explained properly: 10 key notes on mathematical
properties of and some alternative algorithmic approaches to PLS1 modelling”. In: Journal
of Chemometrics 28 (Mar. 2014). doi: 10.1002/cem.2589.

Page 80 of 111

https://link.springer.com/book/10.1007/978-0-387-84858-7
http://jmlr.org/papers/v21/20-729.html
https://journal.r-project.org/articles/RN-2007-015/RN-2007-015.pdf
https://journal.r-project.org/articles/RN-2007-015/RN-2007-015.pdf
https://doi.org/10.1093/biostatistics/kxj011
https://ee104.stanford.edu/lectures/erm.pdf
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://cran.rproject.org/web/packages/gbm/vignettes/gbm.pdf
https://digitalcommons.usf.edu/etd/8062/
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1186/1471-2105-9-14
https://doi.org/10.1007/978-94-007-0753-5_2008
https://doi.org/10.1007/978-94-007-0753-5_2008
https://doi.org/10.1002/wics.51
https://learnche.org/pid/PID.pdf?10d109
https://doi.org/10.1002/cem.2589

[48] F E Harrell Jr, K L Lee, and D B Mark. “Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and measuring and reducing
errors”. en. In: Stat Med 15.4 (Feb. 1996), pp. 361–387.

[49] Enrico Longato, Martina Vettoretti, and Barbara Di Camillo. “A practical perspective on
the concordance index for the evaluation and selection of prognostic time-to-event mod-
els”. In: Journal of Biomedical Informatics 108 (2020), p. 103496. issn: 1532-0464. doi:
https://doi.org/10.1016/j.jbi.2020.103496. url: https://www.sciencedirect.
com/science/article/pii/S1532046420301246.

[50] Hajime Uno et al. “On the C-statistics for evaluating overall adequacy of risk prediction
procedures with censored survival data”. en. In: Stat Med 30.10 (Jan. 2011), pp. 1105–
1117.

[51] GLENN W. BRIER. “VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF
PROBABILITY”. en. In: Monthly Weather Review 78.1 (Jan. 1950), pp. 1–3. doi: 10.
1175/1520-0493(1950)078<0001:vofeit>2.0.co;2. url: https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=feee6551179612b9691f021b583d8a99b81b9b86.

[52] E Graf et al. “Assessment and comparison of prognostic classification schemes for survival
data”. en. In: Stat Med 18.17-18 (1999), pp. 2529–2545.

[53] Timothy O. Hodson. “Root-mean-square error (RMSE) or mean absolute error (MAE):
when to use them or not”. en. In: Geoscientific Model Development 15.14 (July 2022),
pp. 5481–5487. issn: 1991-9603. doi: 10.5194/gmd-15-5481-2022.

[54] In-Kwon Yeo and Richard A. Johnson. “A New Family of Power Transformations to Im-
prove Normality or Symmetry”. In: Biometrika 87.4 (2000), pp. 954–959. issn: 00063444.
url: http://www.jstor.org/stable/2673623 (visited on 04/23/2023).

[55] Olga Troyanskaya et al. “Missing value estimation methods for DNA microarrays”. In:
Bioinformatics 17.6 (June 2001), pp. 520–525. issn: 1367-4803. doi: 10.1093/bioinformatics/
17.6.520.

[56] Kathrine Røe Redalen. The oxytarget study – merging functional MRI and circulating
biomarkers for biopsy-free detection of chemoradiotherapy resistant rectal cancer. url:
https://forskningsprosjekter.ihelse.net/prosjekt/2013002.

[57] Jon Magne Moan et al. “The prognostic role of 18F-fluorodeoxyglucose PET in head and
neck cancer depends on HPV status”. en. In: Radiother Oncol 140 (June 2019), pp. 54–61.

[58] Oliver Tomic et al. “hoggorm: a python library for explorative multivariate statistics”.
In: The Journal of Open Source Software 4.39 (2019). doi: 10.21105/joss.00980. url:
http://joss.theoj.org/papers/10.21105/joss.00980.

[59] Weixing Dai et al. “Prognostic and predictive value of radiomics signatures in stage I-III
colon cancer”. en. In: Clin Transl Med 10.1 (Jan. 2020), pp. 288–293.

[60] Lars Jetmund Svartis Engesæth. “Predicting Patient Outcome Using Radioclinical Fea-
tures Selected With RENT for Patients With Colorectal Cancer”. Elizabeth Stephansens
v. 15, 1430 Ås: Norwegian University of Life Sciences, 2022. url: https://nmbu.brage.
unit.no/nmbu-xmlui/bitstream/handle/11250/3036071/Engesaeth2022_merged.

pdf?sequence=1&isAllowed=y.

[61] Claire Hall et al. “A Review of the Role of Carcinoembryonic Antigen in Clinical Practice”.
en. In: Ann Coloproctol 35.6 (Dec. 2019), pp. 294–305.

[62] Hsin-Yuan Hung et al. “Preoperative alkaline phosphatase elevation was associated with
poor survival in colorectal cancer patients”. en. In: Int J Colorectal Dis 32.12 (Oct. 2017),
pp. 1775–1778.

Page 81 of 111

https://doi.org/https://doi.org/10.1016/j.jbi.2020.103496
https://www.sciencedirect.com/science/article/pii/S1532046420301246
https://www.sciencedirect.com/science/article/pii/S1532046420301246
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=feee6551179612b9691f021b583d8a99b81b9b86
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=feee6551179612b9691f021b583d8a99b81b9b86
https://doi.org/10.5194/gmd-15-5481-2022
http://www.jstor.org/stable/2673623
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://forskningsprosjekter.ihelse.net/prosjekt/2013002
https://doi.org/10.21105/joss.00980
http://joss.theoj.org/papers/10.21105/joss.00980
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/3036071/Engesaeth2022_merged.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/3036071/Engesaeth2022_merged.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/3036071/Engesaeth2022_merged.pdf?sequence=1&isAllowed=y

[63] Emanuele Leoncini et al. “Tumour stage and gender predict recurrence and second pri-
mary malignancies in head and neck cancer: a multicentre study within the INHANCE
consortium”. In: European Journal of Epidemiology 33.12 (Dec. 2018), pp. 1205–1218.

[64] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32. issn:
1573-0565. doi: 10.1023/A:1010933404324.

[65] Michael LeBlanc and John Crowley. “Survival Trees by Goodness of Split”. In: Journal
of the American Statistical Association 88.422 (1993), pp. 457–467. issn: 01621459. url:
http://www.jstor.org/stable/2290325 (visited on 05/24/2023).

[66] Jerome H. Friedman. “Stochastic gradient boosting”. In: Computational Statistics Data
Analysis 38.4 (2002). Nonlinear Methods and Data Mining, pp. 367–378. issn: 0167-9473.
doi: https://doi.org/10.1016/S0167- 9473(01)00065- 2. url: https://www.
sciencedirect.com/science/article/pii/S0167947301000652.

[67] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, Aug. 2016.
doi: 10.1145/2939672.2939785. url: https://arxiv.org/abs/1603.02754.

[68] M Shafiqur Rahman et al. “Review and evaluation of performance measures for survival
prediction models in external validation settings”. en. In: BMC Med Res Methodol 17.1
(Apr. 2017), p. 60.

[69] Sebastian Raschka. Model Evaluation, Model Selection, and Algorithm Selection in Ma-
chine Learning. 2020. arXiv: 1811.12808 [cs.LG].

[70] Yizhuo Wang et al. “CondiS: A conditional survival distribution-based method for cen-
sored data imputation overcoming the hurdle in machine learning-based survival analy-
sis”. In: Journal of Biomedical Informatics 131 (2022), p. 104117. issn: 1532-0464. doi:
https://doi.org/10.1016/j.jbi.2022.104117. url: https://www.sciencedirect.
com/science/article/pii/S1532046422001332.

Page 82 of 111

https://doi.org/10.1023/A:1010933404324
http://www.jstor.org/stable/2290325
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1811.12808
https://doi.org/https://doi.org/10.1016/j.jbi.2022.104117
https://www.sciencedirect.com/science/article/pii/S1532046422001332
https://www.sciencedirect.com/science/article/pii/S1532046422001332

Appendix A
Heatmaps of metrics for feature selection
methods

A.1 Harrells concordance index

A.1.1 OxyTarget

Figure A.1: Harrell’s concordance index on Oxytarget dataset with standardscaling applied.

83

Figure A.2: Harrell’s concordance index on Oxytarget dataset with powertransform applied.

A.1.2 headneck

Figure A.3: Harrell’s concordance index on headneck dataset with standardscaling applied.

Page 84 of 111

Figure A.4: Harrell’s concordance index on headneck dataset with powertransform applied.

A.2 UNO’s C-statistic

A.2.1 OxyTarget

Figure A.5: Uno’s C-statistic on OxyTarget dataset with standardscaling applied

Page 85 of 111

Figure A.6: Uno’s C-statistic on OxyTarget dataset with powertransform applied

A.2.2 headneck

Figure A.7: Uno’s C-statistic on headneck dataset with standardscaling applied

Page 86 of 111

Figure A.8: Uno’s C-statistic on headneck dataset with powertransform applied

Page 87 of 111

A.3 UNO’s C-statistic with truncation

A.3.1 OxyTarget

Figure A.9: Uno’s C-statistic with truncation on OxyTarget dataset with standardscaling ap-
plied

Page 88 of 111

Figure A.10: Uno’s C-statistic with truncation on OxyTarget dataset with powertransform
applied

Page 89 of 111

A.3.2 headneck

Figure A.11: Uno’s C-statistic with truncation on headneck dataset with standardscaling applied

Page 90 of 111

Figure A.12: Uno’s C-statistic with truncation on headneck dataset with powertransform ap-
plied

A.4 IBS

A.4.1 Oxytarget

Heatmap with IBS metric for standardscaled and powertransformed data was not obtainable
due to unstability in some models.

Page 91 of 111

A.4.2 headneck

Figure A.13: Integrated Brier Score for headneck dataset with standardscaling applied

Figure A.14: Integrated Brier Score for headneck dataset with powertransform applied

Page 92 of 111

A.5 RMSE

A.5.1 OxyTarget

Figure A.15: RMSE for OxyTarget dataset with standardscaling applied

Page 93 of 111

Figure A.16: RMSE for OxyTarget dataset with powertransform applied

Page 94 of 111

A.5.2 headneck

Figure A.17: RMSE for headneck dataset with standardscaling applied

Figure A.18: RMSE for headneck dataset with powertransform applied

Page 95 of 111

Appendix B

96

Parameter tuning with repeated k-fold

B.1 Coxnet

B.1.1 OxyTarget

Figure B.1: Coxnet with repeated stratified k fold tuned for alpha and l1 ratio on OxyTarget
dataset. Sorted in decreasing order by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 97 of 111

B.1.2 headneck

Figure B.2: Coxnet with repeated stratified k fold tuned for alpha and l1 ratio on OxyTarget
dataset. Sorted in decreasing order by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 98 of 111

B.2 Random survival forest

B.2.1 OxyTarget

Figure B.3: Random survival forest on repeated stratified k fold tuned for n trees and
max depth on OxyTarget dataset. Sorted in decreasing order by: Harrell’s concordance in-
dex, UNO’s C-statistic and IBS

Page 99 of 111

Figure B.4: Random survival forest on repeated stratified k fold tuned for
min weight fraction leaf and max depth on OxyTarget dataset. Sorted in decreasing or-
der by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 100 of 111

B.2.2 headneck

Figure B.5: Random survival forest on repeated stratified k fold tuned for n trees and
max depth on headneck dataset. Sorted by decreasing order by: Harrell’s concordance in-
dex, UNO’s C-statistic and IBS

Page 101 of 111

Figure B.6: Random survival forest on repeated stratified k fold tuned for
min weight fraction leaf and max depth on headneck dataset. Sorted in decreasing order
by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 102 of 111

B.3 Gradient boosting with coxph as loss function

B.3.1 headneck dataset

B.3.2 OxyTarget

Figure B.7: Gradient boosting with coxph as loss function on repeated stratified k fold tuned for
n estimators and learning rate on OxyTarget dataset. Sorted in decreasing order by: Harrell’s
concordance index, UNO’s C-statistic and IBS

Page 103 of 111

Figure B.8: Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators, learning rate, min weight fraction leaf and max depth on OxyTarget dataset
(top 20 hyperparameter combinations). Sorted in decreasing order by: Harrell’s concordance
index, UNO’s C-statistic and IBS

Page 104 of 111

Figure B.9: Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators and learning rate on headneck dataset. Sorted in decreasing order by: Harrell’s
concordance index, UNO’s C-statistic and IBS

Page 105 of 111

Figure B.10: Gradient boosting with coxph as loss function on repeated stratified k fold tuned
for n estimators, learning rate, min weight fraction leaf and max depth on headneck dataset.
(top 20 hyperparameter combinations). Sorted in decreasing order by: Harrell’s concordance
index, UNO’s C-statistic and IBS

Page 106 of 111

B.4 Componentwise Gradient boosting with coxph as loss func-
tion

B.4.1 OxyTarget

Figure B.11: Parameter tuning for number of estimators and learning rate for componentwise
gradient boosting using repeated stratified k-fold for OxyTarget dataset. Sorted in decreasing
order by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 107 of 111

Figure B.12: Componentwise gradient boosting with coxph as loss function on repeated stratified
k fold tuned for n estimators, learning rate and subsample on OxyTarget dataset. (top 20
hyperparameter combinations). Sorted in decreasing order by: Harrell’s concordance index,
UNO’s C-statistic and IBS

Page 108 of 111

B.4.2 headneck dataset

Figure B.13: Parameter tuning for number of estimators and learning rate for componentwise
gradient boosting using repeated stratified k-fold for headneck dataset. Sorted in decreasing
order by: Harrell’s concordance index, UNO’s C-statistic and IBS

Page 109 of 111

Figure B.14: Componentwise gradient boosting with coxph as loss function on repeated strat-
ified k fold tuned for n estimators, learning rate and subsample on headneck dataset (top 20
hyperparameter combinations). Sorted in decreasing order by: Harrell’s concordance index,
UNO’s C-statistic and IBS

Page 110 of 111

	Introduction
	Motivation
	Aims of the master thesis
	Objectives
	Related Work

	Theory
	Survival analysis
	Censoring
	Hazard
	Survival function
	Cox proportional hazards

	Outlier detection
	Z-Score
	Isolation Forest

	Feature selection
	Univariate Cox filter
	Random forest variable importance
	RSF minimal depth
	RSF variable hunting
	mRMR

	Machine Learning algorithms for survival analysis
	Random survival forest
	Gradient boosting
	Penalized Cox model (Coxnet)

	Regression
	Linear regression
	Ridge regression
	PLS Regression (PLSR)

	Metrics
	Harrells C-index
	Uno´s C-statistic
	Brier score
	RMSE

	Data scaling and transformation techniques
	Standard scaling
	Min-max scaling
	Yeo-Johnson

	Imputation of data

	Datasets
	Datasets
	Oxytarget
	Head-Neck

	Data quality issues
	Principal component analysis
	PCA for Oxytarget
	PCA for headneck

	Method
	Pre-processing of the data
	Formatting missing data
	Removing samples with no event status
	Calculating the survival time
	Sorting features and removing date columns
	Columns with a high proportion of missing values
	Formatting numerical columns
	Encoding categorical variables
	Scaling transformation of data
	Imputing missing values
	Outlier removal

	Methodological framework
	Methodology when tuning the models

	Results
	Distribution of censorship
	Scaling and feature selection
	Most frequently selected features for OxyTarget dataset
	Most frequent selected features for headneck dataset
	Harrell's concordance index
	UNO's C-statistic
	UNO's C-statistic with truncation
	Integrated Brier Score
	RMSE

	Parameter tuning
	Gradient boosting
	Component wise gradient boosting
	Random survival forest
	Coxnet

	RV values for different subsets

	Discussion
	Different scalings and transformations
	Feature selection and features selected
	Feature selection and performance

	Hyperparameter tuning of survival models
	Coxnet
	Random Survival Forest
	Gradient boosting with regression trees as base learner
	Componentwise gradient boosting with partial least squares as base learner

	The performance of the models used
	Bias due to high proportion of censoring
	Cross validation to evaluate feature selection techniques and method of searching for optimal hyperparameters
	Issues faced and limitations
	Unstable predictions with Coxnet
	Other loss functions for gradient boosted models
	Features selected by the different algorithms

	Suggestions for future work
	Impute right censored samples
	Different or additional approach to hyperparameter tuning

	Conclusion
	Heatmaps of metrics for feature selection methods
	Harrells concordance index
	OxyTarget
	headneck

	UNO's C-statistic
	OxyTarget
	headneck

	UNO's C-statistic with truncation
	OxyTarget
	headneck

	IBS
	Oxytarget
	headneck

	RMSE
	OxyTarget
	headneck

	Parameter tuning with repeated k-fold
	Coxnet
	OxyTarget
	headneck

	Random survival forest
	OxyTarget
	headneck

	Gradient boosting with coxph as loss function
	headneck dataset
	OxyTarget

	Componentwise Gradient boosting with coxph as loss function
	OxyTarget
	headneck dataset

