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Abstract 17 

Many quantitative traits measured in breeding programs are genetically correlated. 18 

The genetic correlations between the traits indicate that the measurement of one trait 19 

carry carries information on others. To benefit from this information, multi-trait 20 

genomic prediction (MTGP) is preferable to use. However, MTGP is more difficult to 21 

implement compared to single-trait genomic prediction (STGP), and even more 22 

challenging for the goal to exploit not only the information on other traits but also the 23 

information on ungenotyped animals. This could be accomplished by using both 24 

single and multistep methods. The single-step method was achieved by implementing 25 

a single-step genomic best linear unbiased predictionBLUP (ssGBLUP) approach 26 

using a multi-trait model. Here, we examined a multistep analysis based on an 27 

approach called “Absorption” to achieve this goal. The Absorption approach absorbed 28 
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all available information including the phenotypic information on ungenotyped 29 

animals as well as the information on other traits if applicable, into mixed model 30 

equations of genotyped animals. The multistep analysis included (1) to apply the 31 

Absorption approach that exploits all available information, and (2) to implement 32 

genomic BLUP (GBLUP) prediction on the absorbed dataset. In this study, the 33 

ssGBLUP and multistep analysis were applied to 5 traits in Duroc pigs, which were 34 

slaughter percentage (SP), feed consumption from 40 kg to 120 kg (FC40_120), days 35 

of growth from 40 kg to 120 kg (D40_120), age at 40 kg (A40) and lean meat 36 

percentage (LMP). The results showed that MTGP yielded a higher accuracy than 37 

STGP, which on average was 0.057 higher for the multistep method and 0.045 higher 38 

for ssGBLUP. The mMultistep method achieved similar prediction accuracy as 39 

ssGBLUP. However, the prediction bias of the multistep method was in general lower 40 

than that of ssGBLUP. 41 

Keywords 42 

absorption of phenotype 43 

genomic selection 44 

mMulti-trait genomic prediction 45 
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1. INTRODUCTION 47 

With the availability of high-density panels of DNA markers covering the whole 48 

genome, genomic selection (GS) (Meuwissen et al., 2001) has become feasible as an 49 

effective tool for animal and plant breeding. This method has been successfully 50 

implemented in livestock breeding programs, and most extensively in dairy cattle 51 

(Wiggans & Carrillo, 2022). Selection of elite bulls and cows based on the genomic 52 

estimated breeding value (GEBV) doubles genetic gains mainly due to a reduction of 53 

the generation intervals (Garcia-Ruiz et al., 2016). This also reduced the cost of 54 

proving bulls by more than 90% (Schaeffer, 2006). GS is also a promising procedure 55 

to increase genetic gain in the pig breeding, especially for the traits that are not easy 56 

to measure on selection candidates and/or have low heritability, such as meat quality 57 

(Lopez et al., 2020), and also on traits obtained late in pig’s life (Mote et al., 2019). 58 



This redlined PDF shows all copy edited changes made to your manuscript. They 

are for your reference only. Please make all edits in the HTML version of the 

proofs. 

 - 3 - 

Actual breeding often targets multiple traits that are genetically correlated, and the 59 

practical routine genetic evaluation of the breeding value is usually calculated using 60 

multi-trait models. Multi-trait models for GEBV prediction have been reported 61 

including Bayesian approaches (Villar-Hernandez et al., 2021) and the genomic best 62 

linear unbiased prediction (GBLUP) method (Karaman et al., 2020). Studies have 63 

shown that multi-trait genomic prediction (MTGP), which accounts for the 64 

relationships between the traits, may result in more accurate GEBV than single-trait 65 

genomic prediction (STGP) (Semagn et al., 2022; Song et al., 2020). 66 

MTGP could be implemented by a multiple- step procedure. This includes to run 67 

traditional multi-trait genetic evaluation for each individual; to create pseudo-records 68 

by adjusting the phenotypes; multi-trait estimation of allelic effects for each SNP; and 69 

to combine genomic predictions and traditional evaluations in a selection index 70 

(VanRaden, 2008). Although genomic evaluations are more accurate than the parent 71 

average, using approximations for adjusting phenotype can inflate GEBV and hence 72 

cause bias (VanRaden et al., 2009). 73 

The approach referred to as single-step GBLUP (ssGBLUP) combines the pedigree 74 

relationship matrix (A matrix) and genomic relationship matrix (G matrix) into a 75 

single relationship matrix called H matrix (Legarra et al., 2009; Misztal et al., 2009). 76 

The inverse of the H matrix has a simple form and can substitute for the inverse of the 77 

traditional relationship matrix. Compared to the multistep method, this approach 78 

makes use of all data (pedigree, genotypes and phenotypes) simultaneously to 79 

maximizemaximise the accuracy of the GEBV. 80 

With the extensive research and the development of efficient computing algorithms to 81 

solve the challenges that limit the practical implementation of ssGBLUP, for instance 82 

metafounder approach (Kudinov et al., 2020; Legarra et al., 2015) and the use of the J 83 

factor (Belay et al., 2022; Stranden et al., 2022) to improve the compatibility between 84 

genomic and pedigree information, ssGBLUP has become the most popular 85 

methodology for genetic evaluations including genotyped and ungenotyped animals 86 

and has been successfully implemented in almost all livestock populations (Bermann 87 

et al., 2022). However, even though ssGBLUP took over the multistep method as the 88 
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most chosen genetic evaluation methodology, the multistep method may show merits 89 

for instance the more straightforward extension of the method to variable selection 90 

models. 91 

Here, we examine a multistep method to achieve MTGP based on an approach called 92 

“Absorption” that approximately absorbs all available information on ungenotyped 93 

animals as well as the information on other traits, into mixed model equations of 94 

genotyped animals. This Absorption approach creates pseudo-records referred to as 95 

absorbed records. MTGP was achieved by performing genomic prediction with 96 

absorbed records. The procedure involves (1) regular genetic evaluation to predict 97 

breeding value (EBV) for each individual and the reliability of EBV prediction is 98 

calculated; (2) creation of pseudo-observations and weights by absorbing the 99 

phenotypic information of ungenotyped animals into mixed model equations for 100 

genotyped animals and; (3) GEBV prediction using pseudo-records and variable or 101 

non-variable selection methods. 102 

In this study, the accuracy and bias of MTGP was were investigated for this multistep 103 

approach using absorbed records and compared with ssGBLUP. MTGP were 104 

conducted on 5 traits of Duroc boars. STGP were also performed to compare with 105 

MTGP. The accuracy of GEBV prediction was assessed by 1 028 validation boars. 106 

2. MATERIALS AND METHODS 107 

2.1. Genotypic and phenotypic data 108 

The phenotypic data of 9 641 Duroc pigs were provided by Norsvin SA 109 

(www.norsvin.no). There were 5 traits used in the study: slaughter percentage (SP), 110 

feed consumption from 40 kg to 120 kg (FC40_120), days of growth from 40 kg to 111 

120 kg (D40_120), age at 40 kg (A40) and lean meat percentage (LMP). A 112 

description of the phenotype for these 5 traits are is shown in Table 1. All data were 113 

obtained through operational breeding procedures in Norsvin and all animals in the 114 

study were reared according to the laws and regulations for keeping pigs in Norway 115 

(Animal Welfare Act 2009-06-19-97, Regulation for the keeping of pigs in Norway 116 

2003-02-18-175).  117 

Within the Duroc pigs in the dataset, 5 045 boars born between 2010 and 2015 were 118 

http://www.norsvin.no/


This redlined PDF shows all copy edited changes made to your manuscript. They 

are for your reference only. Please make all edits in the HTML version of the 

proofs. 

 - 5 - 

genotyped at Cigene (http://www.cigene.no/), using the iScan (Illumina, San Diego, 119 

CA, USA) platform with the PorcineSNP60 array according to manufacturer’s 120 

instructions. Image intensity data processing, clustering and genotype calling was 121 

were performed using the genotyping module in the Genome Studio software 122 

(Illumina, San Diego, CA, USA). A total of 36, 551 single nucleotide polymorphisms 123 

(SNPs) remained after removing SNP with minor allele frequency (MAF) below 0.01. 124 

 125 

2.2. Genotyped animals, their ancestors and 126 

ungenotyped animals 127 

The animals used in the study are defined as two types: Genotyped animals and their 128 

ancestors (GA-set) and ungenotyped animals (D-set) that are generally descendants of 129 

the GA-set. GA-set comprised of 9 750 animals, of which 9 generations of ancestors 130 

preceded 5 045 genotyped animals (G-set). Included in the GA-set are 195 founders 131 

and 9 555 non-founders. For 4 705 ungenotyped ancestors in GA-set, their genotype 132 

probabilities were calculated using the LDMIP program (Meuwissen & Goddard, 133 

2010). Ungenotyped D-set animals are generally descendants of GA-set animals. 134 

There are in total 127, 825 ungenotyped D-set animals whose information will be 135 

absorbed into the genotyped animals. 136 

2.3. Absorption of phenotypic information of ungenotyped 137 

descendants to GA-set animals 138 

To absorb information of on ungenotyped animals (D-set) into the genotyped animals 139 

(G-set) in GA-set, the EBV of the animals and their reliabilities were required to be 140 

known. These can be obtained from, for example, a large-scale (national) pedigree-141 

based genetic evaluation. In the presented study, this pedigree-based genetic 142 

evaluation was implemented using the DMU package (Madsen & Jensen, 2013; 143 

Madsen et al., 2014). The (co)variance matrix was from Norsvin’s routine genetic 144 

evaluation of EBV. 145 

http://www.cigene.no/
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The mixed model equation (MME) for the GA-set animals absorbing D-set 146 

information, based on the numerator relationship matrix (A-matrix), may be expressed 147 

as: 148 

(𝑴 + 𝑨−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝒅 149 

where M is an information matrix resulting from the absorption; EBVGA is the vector 150 

of EBV of the GA-set animals; λ is the variance ratio as σe
2/σa

2, where σa
2 and σe

2 are 151 

additive genetic variance and error variance, respectively; and d is the right-hand-side 152 

resulting from the absorption process. Here the exact form of M and d is not defined, 153 

since they depend on fixed and random effects in the model. However, we can assume 154 

the information matrix M to be approximated by a diagonal weight matrix W to 155 

achieve the same EBVGA and reliabilities result as for the complete data set (GA  +  D 156 

set). In addition, the right-hand-side d of MME can be approximated as d  =  W ya, 157 

where ya is the vector of absorbed records yielding the complete set EBVGA. Thus, the 158 

MME for the absorbed records 𝒚𝑎 with weights 𝑑𝑖𝑎𝑔(𝑾) may be written as: 159 

(𝑾 + 𝑨−1𝜆)𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝑎 160 

The weights W that approximately give the same reliabilities as for the complete data 161 

(𝐺𝐴 + 𝐷 set), from (national) genetic evaluations, are calculated following the 162 

approach of Ricard et al., (Ricard et al., (2012). The absorbed records 𝒚𝑎 are 163 

calculated by multiplying (I  +  W −-1A−-1λ) with the known EBVGA, where I is the 164 

identity matrix and EBVGA is the vector of EBVs of genotyped animals from large-165 

scale genetic evaluation. 166 

When considering genomic relationships for the GA-set animals, the absorbed 167 

genomic mixed model equation (MME) may be expressed as: 168 

(𝑾 + 𝑮−1𝜆)𝑮𝑬𝑩𝑽𝐺𝐴 = 𝑾𝒚𝑎 169 

where 𝑾 and 𝒚𝑎 are the same as for the A matrix- based equations; G is the genomic 170 

relationship matrix; and GEBVGA is the vector of GEBV of the genotyped animals. 171 

The absorption of D-set animals is not affected by the known marker genotypes since 172 

the D-set animals have no marker information, nor have their descendants 173 

(Meuwissen & Goddard, 1999). The absorbed MME model was implemented by 174 

using the package ASReml (Gilmour et al., 2006). 175 
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The absorption relied on the EBV and reliability obtained by a large-scale genetic 176 

evaluation based on A matrix relationships. If there were multiple traits that were 177 

genetically correlated, the genetic evaluation could be implemented either one by one 178 

on each trait through a single-trait model, or simultaneously on all traits through a 179 

multi-trait model. For the absorption based on the EBV and reliability from single-180 

trait genetic evaluation, it is referred to as single-trait absorption, and single-trait 181 

absorbed records are obtained. For the absorption based on multi-trait EBV and 182 

reliability, it is referred to as multi-trait absorption and multi-trait absorbed records 183 

are obtained. 184 

2.4. Single-trait multistep genomic prediction 185 

Single-trait multistep (ST-multistep) genomic prediction with absorbed records could 186 

be implemented using the GBLUP model expressed as: 187 

𝐲𝑎 = 𝟏𝜇 + 𝐙𝐚 + 𝐞 188 

where ya is a vector of absorbed pseudo-phenotypes for a trait; μ is the overall mean; 189 

Z is a design matrix linking the animals to the absorbed records; a is a vector of 190 

additive genetic effects of the animals and e is the vector of random residuals. It is 191 

assumed that a  ~  N (0, Gσg
2) where G is the genomic relationship matrix and σg

2 is 192 

the genetic variance associated with G, and e  ~  N (0, W−-1σe
2) where W is the 193 

diagonal weight matrix obtained from the absorption. 194 

There are various methods for calculating the G matrix. Here, we used the G matrix 195 

referred to as the GLDLA matrix constructed by the method of Meuwissen et al. 196 

Meuwissen et al. (2015). GLDLA matrix was a relationship matrix that combined 197 

linkage disequilibrium (LD) and linkage analysis (LA) relationship information as: 198 

GLDLA  =  Δ*Ĝ*Δ  +  D*Â*D, where Ĝ  =  XX'’/Nm, as Nm is the number of markers 199 

and X is a matrix of the standardized marker genotypes, 𝑋𝑖𝑗 =200 

(𝑔𝑖𝑗 − 2𝑝𝑗) √2𝑝𝑗(1 − 𝑝𝑗)⁄ , where gij is the genotype of animal i for SNP j, with 201 

gij  =  0, 1 or 2 for genotypes “0 0,”, “1 0” or “1 1”, respectively, and pj is the 202 

frequency of allele 1 of SNP j. Standardization is such that the mean and the variance 203 

of Xij are 0 and 1, respectively (Iversen et al., 2017); Δ is a diagonal matrix as Δii = 204 

1 √𝐺𝑖𝑖⁄  if Gii  ≥≥ 1 or Δii  =  1 if Gii  << 1; Â is a pedigree- based gametic 205 
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relationship matrix and; D is a diagonal matrix as Dii = √1 − 𝐺𝑖𝑖 if Gii  ≤≤ 1 or 206 

Dii  =  0 if Gii  >> 1. 207 

2.5. Multi-trait multistep genomic prediction 208 

Multi-trait multistep (MT-multistep) genomic prediction must be implemented using 209 

multi-trait absorbed records. To perform the absorption of information of 210 

ungenotyped animals into genotyped animals for multiple traits, the first multi-trait 211 

pedigree- based genetic evaluation on a complete data set was executed using the 212 

MiX99 package (Stranden & Lidauer, 1999; Vuori et al., 2006) to predict EBVs of the 213 

traits, EBV. 214 

For trait i in the multi-trait genetic model, the phenotype yi can be expressed as 215 

yi  =  ai  +  ei, where ai and ei are additive effect and residual for trait i, and 216 

Var(ai)  =  G and Var(ei)  =  R. Canonical transformation can be applied to trait i so 217 

that the transformed trait X’yi can be independently evaluated with a single trait 218 

model, and Var(X’ai)  =  L and Var(X’ei)  =  I. Genetic variance matrix L is diagonal 219 

and the residual variance matrix is an identity matrix I, as L  =  X’GX and 220 

I  =  X’RX. 221 

Canonical transformed EBVs, EBV*, are given by EBV*  =  X’EBV. The reliabilities 222 

of predicting transformed EBVs were calculated using ApaX in the MiX99 package. 223 

With transformed EBVs and reliabilities, the single-trait absorption was implemented 224 

to obtain absorbed records 𝒚𝒂
∗  and weight W*. Then the absorbed MME model was 225 

executed by using the package ASReml to predict transformed GEBV, GEBV*, as 226 

(𝑾∗ + 𝑮−1𝜆)𝑮𝑬𝑩𝑽∗ = 𝑾∗𝒚𝒂
∗ . The GEBV predicted using multi-trait absorbed 227 

records is obtained as GEBV  =  (X'’)−-1GEBV*. 228 

2.6. Single-trait and multi-trait ssGBLUP 229 

The single-trait ssGBLUP (ST-ssGBLUP) is defined as: 230 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆 231 

where y is a vector of phenotypes for the traits; X and Z are the design matrices; b and 232 

a denote the fixed effects and the additive genetic effects, respectively, and e is the 233 

random residual. It is assumed that a  ~  N (0, Hσa
2) where σa

2 is additive genetic 234 
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variance, H is the pedigree-genomic relationship matrix which combines SNP marker 235 

and pedigree information. A detailed description of how H is computed can be found 236 

in Aguilar et al. (2010). 237 

The mixed model equations are: 238 

(
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝑯−𝟏𝝀

) (�̂�
�̂�
) = (

𝑿′𝒚

𝒁′𝒚
) 239 

where λ  =  σe
2/σa

2. The pedigree and genomic relationship matrices   (VanRaden, 240 

2008) were used to build the combined relationship matrices (Aguilar et al., 2010; 241 

Christensen & Lund, 2010; Legarra et al., 2009). The ST-ssGBLUP was implemented 242 

using the DMU package (Madsen & Jensen, 2013) with the G-ADJUST option to 243 

adjust elements in the genomic relationship so that the average of diagonal elements 244 

and the average of off-diagonal elements equal the same average in the additive 245 

relationship for the genotyped animals (Christensen et al., 2012). 246 

For the multi-trait ssGBLUP (MT-ssGBLUP), the solution to mix model equations 247 

can be expressed as: 248 

(
𝑿′𝑹−𝟏𝑿 𝑿′𝑹−𝟏𝒁
𝒁′𝑹−𝟏𝑿 𝒁′𝑹−𝟏𝒁 +𝑯−𝟏⨂𝑮𝟎

) (�̂�
�̂�
) = (

𝑿′𝑹−𝟏𝒚

𝒁′𝑹−𝟏𝒚
) 249 

where 𝑹 = 𝑰⨂𝑹𝟎, R0 is the residual covariance matrix across traits and G0 is the 250 

genetic covariance matrix across traits (Legarra et al., 2014). The implementation of 251 

MT-ssGBLUP was also achieved using the DMU package with the G-ADJUST 252 

option. 253 

2.7. Validation procedure 254 

A validation dataset was constructed comprising 1 028 boars born after 1 February 255 

1st, 2014. For ssGBLUP analysis, the reference data set consisted of available records 256 

in the period from January of 2008 to January of 2014. All of the 4 017 genotyped 257 

animals in the reference data had their own records. For the multistep method using 258 

absorbed GA-set, the reference data set consisted of 8 722 absorbed records. For the 259 

multistep method using absorbed G-set, the reference data set consisted of 4 017 260 

absorbed records. 261 
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The accuracy of GEBV prediction was calculated as the correlation between the 262 

predicted GEBVs and the adjusted phenotypes, divided by the square root of the 263 

heritability of the trait (Estaghvirou et al., 2013). The adjusted phenotypes were 264 

calculated as the sum of EBVs and residuals from the traditional genetic evaluation 265 

(Wang et al., 2022). 266 

The bias was measured as the coefficients of regression of the adjusted phenotypes on 267 

GEBV. For an unbiased result, the regression coefficient equals to 1. A regression 268 

coefficient  <<  1 implies that extremely high (low) values of the GEBV over- 269 

(under)predict the adjusted phenotypes, and vice versa for a regression 270 

coefficient  >> 1. The degree of bias is hence judged by comparing the regression 271 

coefficients of the adjusted phenotypes on GEBV with the value 1. 272 

3. RESULTS 273 

3.1. Accuracy of MTGP and STGP by the multistep 274 

method using absorbed GA-set records and by ssGBLUP 275 

Table 2 presents the accuracies of ST-multistep and MT-multistep using single-trait 276 

and multi-trait absorbed records, and the accuracies of ST-ssGBLUP and MT-277 

ssGBLUP analyses for comparison. The absorbed records used by multistep method 278 

were obtained by absorbing information into GA-set animals. The GEBVs were 279 

obtained for the 1 028 validation animals when 8 722 animals were in the training set. 280 

The results in Table 2 show that the multistep method performed similarly to 281 

ssGBLUP. Over the 5 traits, neither method yielded a more accurate prediction than 282 

the other. MTGP achieved higher accuracy than STGP except for trait SP where 283 

accuracies were similar. There is on average a larger difference in accuracy between 284 

MTGP and STGP for the multistep method (0.057) than for ssGBLUP (0.045). It is 285 

observed a larger difference in accuracy between MTGP and STGP for the GEBV 286 

prediction with lower accuracy. The largest difference between MTGP and STGP was 287 

observed for trait A40, which were was 0.111 for the multistep method and 0.077 for 288 

ssGBLUP analysis. The trait was also observed with the lowest GEBV accuracy. For 289 

traits SP and FC40_120 with relatively low heritability, the genomic predictions were 290 
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similarly accurate to trait LMP whose heritability was the highest among the 5 traits 291 

studied (Table 1). 292 

3.2. Bias of MTGP and STGP by the multistep method 293 

using absorbed GA-set records and by ssGBLUP 294 

Table 3 summarizes the bias as the coefficients of regression of the adjusted 295 

phenotypes on GEBV for 5 traits by ST-multistep and MT-multistep using single-trait 296 

and multi-trait absorbed GA-set records, and by ST-ssGBLUP and MT-ssGBLUP 297 

analyses. The table showed the regression coefficients were mostly lower than 1, 298 

which suggests that the variance of the GEBV was slightly too high, relative to the 299 

variance of the adjusted phenotype. However, a regression coefficient >> 1 was 300 

observed for MT-multistep for traits SP and FC40_120, indicating the variance of the 301 

GEBV was slightly too low relative to the variance of the adjusted phenotype. 302 

Table 3 shows that MT-multistep prediction for trait LMP achieved the lowest bias. 303 

The trait A40 with the lowest GEBV accuracy in Table 2 is the most biased. Results 304 

demonstrate the multistep method is less biased than ssGBLUP. Furthermore, there is 305 

on average a bigger difference in regression coefficient between MT-multistep and 306 

ST-multistep (0.12) than between MT-ssGBLUP and ST-ssGBLUP (0.04), indicating 307 

a bigger variance in bias for multistep than for ssGBLUP. 308 

3.3. Accuracy and bias of MT-multistep and ST-multistep 309 

using absorbed G-set records 310 

Accuracies and biases of MT-multistep and ST-multistep prediction using 5 045 311 

absorbed G-set records are in Table 4. The accuracies were calculated as the 312 

correlation between the predicted GEBV for the 1 028 validation animals, when the 4 313 

017 animals were in the training set, and the adjusted phenotypes, divided by the 314 

square root of the heritability of the trait. As previously observed in the accuracy of 315 

multistep using absorbed GA-set records (Table 2), MT-multistep using absorbed G-316 

set records in general achieved higher accuracy than ST-multistep. For ST-multistep, 317 

the prediction using absorbed G-set records achieved very similar accuracy to using 318 

absorbed GA-set records. However, for MT-multistep, the accuracy for the prediction 319 
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using absorbed G-set records over the 5 traits decreased by from 2.2% to 9.9% 320 

compared to using absorbed GA-set records. 321 

For the bias results in Table 4, it is observed that generally there is less bias for the 322 

prediction that is more accurate. Among the 5 traits, GEBV prediction for trait A40 323 

has the lowest accuracy, and is most biased. 324 

3.4. Accuracy and bias of ST-multistep method using 325 

multi-trait absorbed records 326 

The absorption relied on the EBV and reliability obtained by a conventional pedigree- 327 

based genetic evaluation. For the situation of implementing traditional genetic 328 

evaluation on more than one trait, the evaluation can be implemented either one by 329 

one on each trait through a single-trait model, or simultaneously on all traits through a 330 

multi-trait model, resulting in either single-trait or multi-trait absorbed records. In the 331 

study, we have implemented ST-multistep based on both single-trait and multi-trait 332 

absorbed records. 333 

Table 5 presents the accuracy and bias of ST-multistep using multi-trait absorbed GA-334 

set and G-set records that were obtained from the absorption based on multi-trait EBV 335 

and reliability. Compared to the accuracy results for ST-multistep using single-trait 336 

absorbed GA-set records (Table 2) and G-set records (Table 4), it is observed that ST-337 

multistep using multi-trait absorbed records in general achieved higher accuracy of 338 

the prediction. Over the 5 traits studied, when using multi-trait absorbed records, 339 

accuracy for ST-multistep increased by 2.2% to –17% for using absorbed GA-set 340 

records and by 1.3% to –13.1% for using absorbed G-set records. Trait D40_120 341 

achieved the highest increase in the accuracy. However, the bias was not found 342 

improved to improve for the ST-multistep using multi-trait absorbed records. 343 

3.5. Correlations of GEBV by the multistep method using 344 

absorbed GA-set records and by ssGBLUP 345 

The GEBV correlations of 1 028 validation animals were compared between MTGP 346 

and STGP, and between the multistep method and ssGBLUP. Figure 1 shows the 347 

GEBV correlations between MTGP and STGP by the multistep method using multi-348 
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trait and single-trait absorbed GA-set records (MTGP-STGP_multistep), and the 349 

GEBV correlations between MT-ssGBLUP and ST-ssGBLUP (MTGP-350 

STGP_ssGBLUP). In the figure, traits SP, FC40_120 and LMP show similar 351 

correlations between MTGP and STGP, and the difference between the multistep 352 

method and ssGBLUP are small. GEBV of MTGP and STGP are less correlated for 353 

trait D40_120. For trait A40 both the multistep method and ssGBLUP results in the 354 

lowest GEBV correlations. The difference in GEBV correlations between the 355 

multistep method and ssGBLUP are larger for trait D40_120 and A40. 356 

Figure 2 shows the GEBV correlations between MT-multistep using multi-trait GA-357 

set records and MT-ssGBLUP (multistep-ssGBLUP_MTGP), and the GEBV 358 

correlations between ST-multistep using single-trait GA-set records and ST-ssGBLUP 359 

(multistep-ssGBLUP_STGP). One can see in the figure the similarly high GEBV 360 

correlations between the multistep method and ssGBLUP, varying from 0.807 for trait 361 

D40_120 to 0.874 for trait SP with an average of 0.848 in MTGP, and from 0.790 for 362 

trait D40_120 to 0.858 for trait SP with an average of 0.829 in STGP, which shows 363 

that the multistep method performed similarly to ssGBLUP. 364 

3.6. Genetic trends in genotyped animals 365 

Figure 3 shows the genetic trends in 5 traits as the average GEBV in genetic standard 366 

deviations for 5 045 genotyped animals born between 2010 and 2015. There were 367 

only 20 genotyped animals born in 2015 in Norsvin data. We plotted the genetic 368 

trends from 2014 to 2015 in dashed lines to indicate the that genetic trends may be 369 

strongly affected by the too- small data set. Figure 3 illustrates that for trait SP, 370 

FC40_120 and LMP, MTGP and STGP achieved similar genetic trends from 2010 to 371 

2014. Multistep The multistep method may yield a slightly larger improvement in 372 

genetic trends for trait SP and FC40_120 than ssGBLUP. For traits D40_120 and 373 

A40, there is a difference of approximately 0.6σg in the average GEBV between 374 

MTGP and STGP. 375 

 376 

4. DISCUSSION 377 

4.1. Calculation of accuracy of GEBV 378 
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In this study, we examined a multistep method based on the Absorption approach and 379 

evaluated the accuracy and bias of the multistep method using both single-trait and 380 

multi-trait absorbed GA-set and G-set records for 5 traits in pig breeding, by 381 

comparison with ssGBLUP analyses. The accuracy of EBV is commonly defined as 382 

the correlation between animal’s EBV and its true BV (TBV). In practice, usually the 383 

correlation between GEBV and (adjusted) phenotypes as an indicator of prediction 384 

accuracy since the TBV are unknown. Here, we used the correlation between GEBV 385 

and the adjusted phenotypes, divided by the square root of the heritability of the trait. 386 

The latter accounts for the imperfection of phenotypes as measures for TBV. 387 

Heritability The heritability of a trait measures the squared correlation between the 388 

TBV and the phenotypes. If the actual TBV of an animal can be completely predicted, 389 

i.e.that is, EBV  =  TBV, the correlation between these perfect EBV and the 390 

phenotypes equals the square root of the heritability. The square root of the 391 

heritability hence imposes an upper limit on how accurate the TBV of an animal can 392 

be predicted. In the presented study, the heritabilities ranged from 0.27 to 0.68 across 393 

the 5 traits used (Table 1), indicating the different levels of the predictability of TBV 394 

for the evaluation methods. 395 

4.2. ssGBLUP and multistep method based on Absorption 396 

approach 397 

In the study, the accuracy and bias results of ssGBLUP were used to compare with 398 

those of multistep methods using absorbed records. Both methods were able to exploit 399 

all available information. For ssGBLUP, an H-matrix was used to combine pedigree 400 

and genomic information, which enabled ssGBLUP to accommodate ungenotyped 401 

animals so that all available phenotypic information was used in the prediction. The 402 

multistep method relied on the absorption of phenotypic information of ungenotyped 403 

animals into the mixed model equations of genotyped ones to achieve the same goal 404 

of utilizing all available information. We have applied ssGBLUP and multistep 405 

methods both in STGP to explore the efficacy of the methods using only the 406 

phenotypic information of ungenotyped animals, and in MTGP to examine the 407 

methods utilizing not only the information from ungenotyped animals but also the 408 
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information from other traits. Table 2 hardly showed that one method achieved more 409 

accurate prediction than the other, suggesting that both methods may possess similar 410 

efficacy of exploiting all available information. However, the bias results in Table 3 411 

showed that the multistep method achieved less bias compared to ssGBLUP. This 412 

agrees with the findings of Iheshuilor (Iheshiulor, 2016) that genomic predictions 413 

based on the absorbed dataset were generally less biased. 414 

4.3. Single-tTrait and mMulti-tTrait gGenomic pPrediction 415 

When comparing the accuracy and bias between STGP and MTGP, it was observed in 416 

Table 2 that MTGP could generally lead to more accurate and less biased predictions. 417 

For the trait SP, MTGP achieved similar accuracy as STGP. This may indicate that 418 

records on other traits carry little information for the prediction of SP. Generally, the 419 

accuracy was a little improved by using a multi-trait instead of a single trait models. 420 

However, for the traits D40_120 and A40, we found that the use of multi-trait models 421 

yielded more accurate predictions compared to using single-trait models. D40_120 422 

and A40 had generally lower prediction accuracies and the multi-trait predictions 423 

helped to bring their prediction accuracies more in line with those of the other traits, 424 

and a multi-trait model is more recommended to use. 425 

Table 2 showed on average a bigger difference in accuracy between MTGP and STGP 426 

for multistep methods than for ssGBLUP, indicating a greater improvement in the 427 

accuracy of MTGP using absorbed records. This suggests that the Absorption 428 

approach may benefit more from accounting for the information of other traits. 429 

Furthermore, the Absorption approach may possess the following merits: (1) the 430 

absorbed dataset may also be analysed by variable selection methods such as BayesA, 431 

B, C or R (Iheshiulor, 2016), whereas the extension of ssGBLUP to variable selection 432 

models is not straightforward, although the single-step Bayesian Regression approach 433 

(Fernando et al., 2014) could achieve this and; (2) genomic prediction with absorbed 434 

data may avoid inversion of the G-matrix, for example by implementing SNP-BLUP, 435 

which would be computationally advantageous if the number of genotyped animals is 436 

high and thus the G matrix becomes very large. 437 
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4.4. Pseudo-phenotypic data set from Absorption 438 

approach 439 

The multistep method we examined here was able to exploit all available information 440 

by using absorbed records of the GA or G animals. These absorbed records were 441 

pseudo-phenotypes of the GA or G animals corrected for information of all related 442 

ungenotyped animals in the complete data (GA  +  D set) as well as the information 443 

on other traits if applicable, and weight-adjusted to achieve the same EBVs and 444 

reliabilities of the GA or G animals. Pseudo-phenotypes have been used as response 445 

variables in genetic evaluation. A typical example is deregressed proofs (DRP) in 446 

dairy cattle breeding. Calus et al. (2016) have compared the performance of different 447 

methods to compute DRP and weights for simultaneous deregression of cow and bull 448 

EBV. 449 

In this study, two absorbed records were produced, i.e.that is, absorbed G-set records 450 

and absorbed GA-set records, by applying the Absorption approach to G-set and GA-451 

set. The G-set was a subset of GA-set. Comparison of the accuracy of multistep 452 

prediction using absorbed GA-set records (Table 2) and using absorbed G-set records 453 

(Table 4) showed that for MT-multistep, the prediction using multi-trait absorbed GA-454 

set records achieved a higher accuracy than using multi-trait absorbed G-set. For ST-455 

multistep the employment of single-trait absorbed GA-set records did not improve 456 

accuracy using a larger reference data set. A possible explanation is that for ST-457 

multistep, the single-trait absorbed records used by the method only absorbed 458 

information on ungenotyped animals into genotyped animals. Although the size of the 459 

reference data set was different in predictions using absorbed GA-set and G-set 460 

records, the amount of available information on ungenotyped animals to absorb was 461 

about the same, i.e.that is, the 5 045 genotyped animals in G-set have already obtained 462 

all available information from all ungenotyped animals, hence including 4 705 463 

ancestral animals in GA-set did not improve accuracies. It was about the same 464 

reference information used to predict validation animals between ST-multistep using 465 

absorbed G-set records and that using absorbed GA-set records, which resulted in 466 

very similar accuracy of the prediction. However, for MT-multistep, the ancestors in 467 
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GA-set may get better imputed by the absorption of information from other traits. 468 

This may lead to the reference dataset in MT-multistep using absorbed GA-set records 469 

more informative than using absorbed G-set records, and hence an increase in the 470 

accuracy of the prediction. Furthermore, less bias was observed in MT-multistep 471 

using absorbed GA-set records (Table 3) than using absorbed G-set records (Table 4) 472 

which may also support a higher information content from the reference dataset in 473 

MT-multistep prediction using absorbed GA-set records. 474 

A strategy to enable ST-multistep to accommodate the information from not only 475 

ungenotyped animals but also the other traits is to implement ST-multistep using 476 

multi-trait absorbed records. The accuracy results in Table 5 demonstrated the 477 

advantage of this method by an increase in accuracy on average by 7.2% (GA-set) and 478 

by 5% (G-set) compared to using single-trait absorbed records. Furthermore, ST-479 

multistep using multi-trait absorbed records, which is more flexible than MT-480 

multistep, allows to focus on only the traits of interest rather than predicting all the 481 

involved traits, and would effectively reduce the computational cost. 482 

4.5. Practical implementation of the multistep method 483 

based on Absorption approach 484 

For conventional multistep genetic evaluations, the drawbacks for instance of biased 485 

or inaccurate predictions for genotyped animals, the absence of gain in accuracy for 486 

ungenotyped animals, and incompatibility between EBVs for genotyped and 487 

ungenotyped animals (Bermann et al., 2022), undermine the prediction performance 488 

of the multiple-step method and may yield lower accuracy compared with ssGBLUP 489 

that includes both genotyped and ungenotyped animals simultaneously in a single 490 

genetic evaluation. In this study, we improved the prediction performance of the 491 

multistep method with Absorption approach, which achieved similar accuracy as 492 

ssGBLUP and in general lower bias. 493 

Compared to raw phenotypes, EBVs may form a response variable data set of a higher 494 

quality to the prediction. This is because, for example in an animal model, all records 495 

that are available on an animal and its relatives are optimally used, while 496 

simultaneously adjusting for systematic environmental effects. For the breeders 497 
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involved in a long-term breeding program, they may have collected many 498 

conventional EBV and reliability data through traditional genetic evaluation. The 499 

implementation of multistep methods using absorbed records may be especially 500 

beneficial for these breeders since the absorption of information of on ancestral 501 

animals predicted in historical breeding practice may enable the breeders to 502 

rediscover the value of their previous traditional EBV assets in the genomic era. 503 

With more and more genotyped animals, datasets used for genomic prediction might 504 

become huge. For example, the US dairy industry has now genotyped more than 3 505 

million animals and the American Angus Association has more than 750,000 animals 506 

genotyped (Garcia et al., 2020). This requires a genomic prediction method that can 507 

handle huge datasets, with G-matrices that are computationally impossible to invert. 508 

The ssSNP-BLUP was developed to avoid the inversion of the G matrix. For the 509 

Absorption approach, one can simply calculate marker effects with absorbed records 510 

and predict GEBV with marker effects. In this way, the Absorption approach is able 511 

to handle huge datasets with millions of animals. 512 

The multistep methods using absorbed records also have drawbacks. The absorbed 513 

records are pseudo records that may be complicated, and the weighting of the records 514 

requires approximations in complex models. Errors in EBVs due to poor conventional 515 

genetic evaluation may affect absorbed records and cause biased and inaccurate 516 

predictions. Furthermore, variance components cannot be estimated with the multistep 517 

approach. 518 

5. CONCLUSION 519 

The study shows that the multistep method using an absorbed dataset could achieve 520 

similarly accurate multi-trait prediction to the ssGBLUP method. But the multistep 521 

prediction showed in general less bias. For the genomic prediction where many traits 522 

are genetically correlated and may have different heritabilities, multi-trait models 523 

could yield higher accuracy than single-trait models, and hence are preferred. The 524 

implementation of the Absorption approach in multistep methods may be promising 525 

for the breeders to rediscover the value of previous traditional EBV estimation in 526 

historical breeding practices. 527 
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 706 

 707 

TABLE 1. Heritabilities (h2), genetic standard deviations (σg) and number of 708 

phenotypic records for the traits. 709 

Trait h2  σg 

Total number 

of records 

Number of 

reference records 

for ssGBLUP Comment 

SP 0.27 1.00 8 661 7 633 Slaughter percentage 

FC40_120 0.32 6.43 9 086 8 058 
Feed consumption 

from 40 kg to 120 kg 

D40_120 0.48 4.85 9 248 8 220 
Days from 40 kg to 

120 kg 

A40 0.50 4.40 9 641 8 613 Age at 40 kg (days) 

LMP 0.68 2.26 8 661 7 633 Lean meat percentage 

 710 

 711 

TABLE 2. Accuracy of GEBV prediction using single-trait (ST-) and multi-trait 712 

(MT-) ssGBLUP and multistep method using absorbed GA-set records. 713 

Trait ST-ssGBLUP MT-ssGBLUP ST-multistep MT-multistep 

SP 0.657 0.667 0.669 0.665 

FC40_120 0.637 0.673 0.649 0.698 

D40_120 0.503 0.571 0.496 0.559 

A40 0.414 0.491 0.391 0.502 

LMP 0.627 0.661 0.616 0.675 

 714 
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 715 

TABLE 3. Regression coefficient of GEBV prediction using single-trait (ST-) 716 

and multi-trait (MT-) ssGBLUP and multistep method using absorbed GA-set 717 

records.  718 

Trait ST-ssGBLUP MT-ssGBLUP ST-multistep MT-multistep 

SP 0.89 0.91 0.96 1.09 

FC40_120 0.87 0.88 0.97 1.09 

D40_120 0.71 0.79 0.79 0.91 

A40 0.59 0.64 0.62 0.80 

LMP 0.85 0.90 0.94 1.01 

 719 

 720 

TABLE 4. Accuracy and regression coefficient of GEBV prediction for single-721 

trait (ST-) and multi-trait (MT-) multistep method using absorbed G-set 722 

records.  723 

Trait Accuracy Bias  

ST-multistep MT-multistep ST-multistep MT-multistep 

SP 0.667 0.650 0.95 0.98 

FC40_120 0.641 0.657 0.97 0.95 

D40_120 0.496 0.530 0.77 0.81 

A40 0.394 0.452 0.60 0.67 

LMP 0.621 0.640 0.89 0.78 

 724 

 725 

TABLE 5. Accuracy and regression coefficient of GEBV prediction for single-726 

trait multistep method using multi-trait absorbed GA-set and G-set records. 727 

Trait Accuracy Bias 

GA-set G-set GA-set G-set 

SP 0.684 0.676 1.21 0.91 

FC40_120 0.668 0.657 1.12 0.89 
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D40_120 0.581 0.561 0.94 0.93 

A40 0.413 0.403 0.64 0.72 

LMP 0.666 0.655 1.09 0.96 

 728 

 729 

FIGURE 1. GEBV correlations between MTGP and STGP by the multistep 730 

method using multi-trait and single-trait absorbed GA-set records (MTGP-731 

STGP_multistep), and the GEBV correlations between MT-ssGBLUP and ST-732 

ssGBLUP (MTGP-STGP_ssGBLUP). 733 

 734 

FIGURE 2. GEBV correlations between MT-multistep using multi-trait GA-set 735 

records and MT-ssGBLUP (multistep-ssGBLUP_MTGP), and the GEBV 736 

correlations between ST-multistep using single-trait GA-set records and ST-737 

ssGBLUP (multistep-ssGBLUP_STGP). 738 

 739 

FIGURE 3. Genetic trends of trait SP, FC40_120, D40_120, A40 and LMP in 740 

genotyped animals; the y-axis shows average GEBV in genetic standard 741 

deviations. ssGBLUP_STGP and ssGBLUP_MTGP represents the average 742 

GEBV of ST-ssGBLUP   and MT-ssGBLUP; multistep_STGP and 743 

multistep_MTGP represents the average GEBV of MT-multistep using multi-744 

trait GA-set records and ST-multistep using single-trait GA-set records. The 745 

genetic trends from 2014 to 2015 were plotted in dashed lines since there 746 

were only 20 genotyped animals born in 2015 in Norsvin data and the genetic 747 

trends from 2014 to 2015 may be strongly affected by the too- small data set 748 

for 2015. 749 

 750 

 751 
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