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Abstract
This thesis describes an investigation into the depth-dependent effects in proton radiation,

evaluated by the use of Thermoluminescence Dosimetry (TLD) with CaSO4:Tm and LTB:Cu as
target materials. Data collected on these target materials from experiments at Aarhus University and
the University of Oslo with variable depth positions and dosages were preprocessed and inspected for
general distribution and noise. The Linear Energy Transfer (LET) dependent Thermoluminescence
(TL) response was investigated, showing a difference for intermediate energy protons between
samples irradiated in the Bragg Peak and samples positioned early in the LET curve. A glow curve
deconvolution was carried out, extracting TL parameters from the samples. Descriptive statistical
features were also extracted from the samples. Statistical features, features extracted through
deconvolution and raw glow curves were used to create predictive models of LET. Models based on
Random Forest (RF), Principal Component Analysis (PCA) and Partial Least Squares (PLS) and
Neural Networks (NN) were explored. Binary classification models gave satisfactory results between
high and low LET with a validation/test accuracy of 0.93/0.87, and between samples irradiated in
the Bragg peak and non Bragg peak with an validation/test f1-score of 0.96/1.0, while a reliable
high precision regression model was not found.

Denne avhandlingen beskriver en undersøkelse av dybdeavhengige effekter i protonstr̊aling, sett p̊a
ved bruk av termoluminescens dosimetri (TLD) med CaSO4:Tm og LTB:Cu som målematerialer.
Data samlet inn fra eksperimenter ved Aarhus Universitet (AU) og Universitetet i Oslo (UiO) med
posisjoner med varierende dybde og varierende dose ble preprosessert og inspisert for generell fordeling
og støy. Termoluminescens (TL) signalets respons ble undersøkt i forhold til Linjær energioverføring
(LET) som viste en forskjell for mellomenergi protoner for prøver som var bestr̊alt i Bragg-toppen
og prøver som var plassert tidlig i LET-kurven. En dekonvolusjon av TL kurvene ble utført, der
karakteristikker i form av TL-parametere ble ekstrahert fra prøvene. Enkel deskriptiv statistikk ble
ogs̊a brukt for å ekstrahere karakteristikker for prøvene. Statistiske karakteristikker, karakteristikker
ekstrahert gjennom dekonvolusjon, og ubehandlet TL-data ble brukt til å lage modeller for prediksjon
av LET. Modeller basert p̊a Random Forest (RF), Nevrale Netverk (NN), Prinsipalkomponent
Analyse (PCA) og Partial Least Squares (PLS) ble utprøvd med forskjellige data og karakteristikker.
Prediksjon som binær klassifisering ga tilfredstillende resultater mellom grupper av høy og lav LET
med en validerings/test nøyaktighet p̊a 0,93/0.86 og mellom prøver bestr̊alt i Bragg-toppen og utenfor
Bragg-toppen med en validerings/test f1-score p̊a 0,96/1.0, mens en p̊alitelig regresjonsmodelldet
ikke ble funnet.
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I. INTRODUCTION

Difficult to treat cancer is a major area of focus
within the contemporary medical field. One grow-
ing technology is the treatment of localized tumors
using proton beam radiation therapy [1]. To apply
this method in the most beneficial way, minimizing
the side-effects, one must have a complete under-
standing of the particle-tissue interactions present in
treatment. One part of this is the determination of
the characteristics of the deposited energy as a func-
tion of the depth of particle radiation penetration.
Studying these effects in humans is both difficult and
presents ethical dilemmas, and so model materials
are often used as an analog to living tissue.

One method for this is using Thermoluminescence
(TL), which is the phenomenon of radiation depen-
dent, heat induced photon emission in some crys-
talline materials [2]. This effect has sporadically been
discovered throughout history, with the first docu-
mented instance being an Italian shoemaker heating
up Barite (BaSO4) containing impurities of copper
trying to make gold, and instead creating a local
attraction known as the glowing Bologna Stone [3].
It was in the first half of the 1900s that the intensive
scientific study of these materials started, and where
our current understanding of its physical mechanisms
originated [4]. M. Curies doctoral dissertation in 1904
described the thermoluminescence of certain crystals
after exposure to ionizing radiation [5]. Later Ran-
dall and Wilkins’ work of 1945 laid the foundation of
TL as an energy-band phenomena, where electrons
and holes excited by radiation are trapped in imper-
fections of the crystal lattice structure, to be released
by heat and measured as light [4][6].

The irradiated material offers useful information
when heated and measured. This can be used to
create beneficial technology, especially in the field
of radiation protection and medicine. Arguably the
most influential fact about thermoluminescence is
that the emitted light is proportional to the cumu-
lative dose of radiation received by the material[7].
This became the basis for reliable dose measurement
devices for ionizing radiation which are still widely
used today [2].

Thermoluminescence Dosimetry (TLD) has long been
used for dosimetric measurements both in industry,
radiation safety, and medicine [2], but taking these
measurements further to create more comprehensive
detectors, is still a nascent field. The ability to es-
timate additional qualities of radiation like Linear
Energy Transfer (LET) based on measurements from
widely used dosimeter equipment is useful in a num-
ber of ways, among them more precise measurements
of biological damage caused by radiation treatment

and dose estimations in space applications [8][9].

One emerging method of extracting more information
from TL data is using machine learning. Machine
learning has the potential to find unexpected patterns
in data, and has recently been used to predict the
time since radiation of TLD samples fairly accurately,
as well as degradation in TL signal strength over time,
called fading [10][11]. Expanding the application of
ML techniques can be an opportunity to discover new
information that is retained in the the TL process.

In this work, TLD readings from samples irradiated
with protons will be analysed using machine learning
techniques to attempt to extract information about
depth dependent effects, focusing on LET, using
samples from two markers, LTB:Cu and CaSO4:Tm.
Firstly, relevant theory will be discussed, relating
to TL as a physical phenomena, glow curve decon-
volution and the relevant statistical and machine
learning tools used for analysis and prediction. A
description of the methodology used in analysis and
model construction will then be presented, leading
into the findings of exploring LET dependent effects
in TLD, with an accompanying discussion.
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II. THEORY

A. Thermoluminescence Dosimetry

Thermoluminescence dosimetry (TLD ) is the prac-
tice of using materials that have a memory of ionizing
radiation to estimate radiation dose and character-
istics [7]. It is used in a variety of fields including
medicine, radiation protection, geology and food pro-
duction [2].

TLD uses crystalline insulators containing flaws that
can act as traps for charge carriers that are excited
by ionizing radiation [7]. These insulators retain a
memory of incident ionizing radiation, which can be
released by heating, radio-thermoluminescence, dis-
solving in another substance, radio-lyoluminescence
or by UV irradiation, radio-photoluminescence [12].
Although the methods of releasing the information
through photon emission from the materials dif-
fer, the mechanisms of storage remains the same
[12]. This text will mainly concern itself with radio-
thermoluminescence, hereby referred to as thermolu-
minescence or TL.

The memory of the ionizing radiation is created when
the incident radiation on the materials excite some
charge carriers from the valence band, either to the
conduction band or to traps in the material, shown
in the diagram in Figure 1. The carriers in the con-
duction band are more free to roam in the material,
and have a certain probability of being trapped in
the flaws in the material [7]. The simplest models,
as the one used for the basis of dose measurement
make significant assumptions, as long as they do
not affect the dose measurements to a large degree.
Some more complex, as the ones discussed later for
deconvolution, try to approximate the real system
more closely. Most of the following section on the
physics of thermoluminescence is sourced from Hand-
book of thermoluminescence by C. Furetta , TLD
Review part 1 by T. Kron and Thermally Stimulated
Processes by R. Chen [13][2][7].

The fundamental quality of materials exhibiting ther-
moluminescence is the presence of traps and recom-
bination centers between the valence and conduction
bands of a material, illustrated in Figure 2. An elec-
tron trap is a metastable state from where an electron
can be thermally excited to the conduction band [7].
A recombination center is a state containing hole, but
which is too far from the valence band for an electron
to be thermally excited to it [7]. In this case an
electron can be excited to the conduction band and
recombine with holes in the recombination center,
but not the other way around. The mirror case is
equally as likely, with holes in a trap and electrons in

a recombination center, with the trap close enough
to the valence band for thermal excitation, and the
electrons too far from the conduction band to be
thermally excited [7]. A certain metastable state can
therefore act as both a recombination center and a
trap, depending on its distance to the valence and
conduction bands.

Excitation
Trapping

Trapping

e

e

Valence band
Conduction band
Energy Trap
Radiation

Figure 1: An energy band-gap diagram illustrating the
Braunlich Scharman model of trapping of electrons (e−)
in a TL material [14].

After being irradiated, TLD samples are heated
through a range of temperatures with a heating rate
β, sometimes as slow as 0.5K/s for scientific ap-
plications, to 10K/s or higher for some industrial
applications [2]. How much light is emitted from
the recombination centers in the heating process il-
lustrated in Figure 2, at what temperature, can be
detected and is called the Glow Curve (GC) of a sam-
ple, which is the signal that is used for dosimetric and
other applications[2]. A lower heating rate is used
in scientific applications since the glow curve of a
substance heated with a higher heat rate contains un-
wanted thermal effects making the glow curve more
difficult to analyse [2].

The mechanism that drives the TL signal is the flow
of electrons and holes in the material[7]. The elec-
trons are trapped at a certain energy depth E, which
is the difference between the energy level of the bot-
tom of the conduction band and the trap. Each
electron has a probability of escaping the trap by
thermal excitation shown in Figure 2, expressed by
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Thermal exitation
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Figure 2: An energy band-gap diagram of the Braunlich
Scharman model of heat induced excitation of electrons
from a trap and recombination of electrons and holes in
a recombination center in a TL material [14]. e− are
electrons and h+ are holes.

the Arrhenius equation,

(1)p = s× exp(− E

kT
)

where p is the probability of being excited to the
conduction band, s is an insulator material constant,
often presented as the frequency factor s−1, E is
as mentioned the trap depth, k is the Boltzmann
constant and T is the temperature of the material
[7]. When the electrons are excited to the conduction
band from the traps, they have a probability of re-
combining with holes and thus causing the emission
of a photon, illustrated in Figure 2. The places where
this occurs are the recombination centers. Each ma-
terial begins with a number of empty traps N , and
as it is irradiated, Nf traps are filled, leaving n traps
empty as

(2)Nf = N − n .

The rate of decrease in unoccupied traps when a
sample is heated can then be described as,

(3)−dn

dt
= A× n

dD

dt

where A is radiation susceptibility, which is specific
to the material of the sample and dD

dt is the dose

rate[7]. The total dose of a sample being heated from
time t = 0 to t = t, with the initial state of no filled
traps can be expressed as,

(4)
D =

∫ n

N

dn

n

=

∫ t

0

−A
dD

dt
dt

which gives the relationship between the population
of traps and accumulated dose D as

(5)n = N × exp(−AD) .

Considering the case where half the traps are filled,
ie. n/N = 0.5, we obtain A = 0.693

D1/2
where D1/2

Is the dose at which this is the case. Substituting
Equation 5 into Equation 2 and taking the deriva-
tive, and using the expression for the probability of
luminescence from Equation 1, we get an expression
for the intensity of the luminescence of the sample
at a certain temperature and dose, I(D,T ) as,

I(D,T ) = −C
dNf

dt
= −C × p×Nf

= C × s×N [1− exp(−AD)] exp(− E

kT
)

(6)

which can be simplified when approximating 1 −
exp(−AD) as AD for small values of D assuming
A×D < 1. This approximation has a maximal error
rate of 36.8%, and limits the scope of valid doses,
especially if D1/2 is small. The simplified expression
becomes

(7)I(D,T ) = C × s×N ×AD × exp(− E

kT
)

and shows that the intensity of the luminescence
at a certain temperature T is proportional to the
cumulative dose D, with proportionality constant Cp

as

(8)Cp = C × s×N ×A× exp(− E

kT
).

This is the defining property that allows these mea-
surements to be used to determine the dose of a
sample[2]. When having obtained this proportional-
ity constant experimentally or otherwise, the mea-
surement of dose to a fair degree of precision is ele-
mentary.
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However, utilizing TL to gather more extensive infor-
mation about the absorbed radiation, or the physical
process itself, has shown to require a more compre-
hensive description of the TL phenomena. What
model one chooses to use is based on what assump-
tions are most useful and necessary. For glow curve
deconvolution, the goal is to decompose the glow
curve into its underlying glow peaks [2]. For this
case it is therefore useful to assume the glow curve
as a superposition of glow peaks.

One model based on one energy trap and one recom-
bination center scheme proposed by Schon in 1956
is the Braunlich Scharman model [14], illustrated in
Figure 1 and Figure 2. It assumes that there are both
holes and electrons as charge carriers and presents a
set of four differential equations representing the flow
of holes and electrons as a TL material containing
trapped electrons is heated [13][14].

The first differential equation, Equation 9, governs
the change of the concentration of electrons in the
conduction band nc

(9)
dnc

dt
= npn − ncAn(N − n)− ncmAmn

where n is the concentration of trapped electrons
and N is the concentration of electron traps, with pn
being the probability of the excitation of an electron
from a trap to the conduction band. Amn is the
probability of an electron in the conduction band
recombining in the recombination center, while An

is the probability of the electron instead being re-
trapped in the electron trap. The equation

(10)
dnv

dt
= mpp − nvAn(M − n)− nvnAnp

governs the change in concentration of holes in the
valence band nv, where m is the concentration of
trapped holes and M is the concentration of traps,
with pp as the probability of a hole being excited from
a trap to the valence band and Anp is the probability
of a hole recombining in an electron trap [7]. The
final two equations

(11)
dn

dt
= −npn − ncAn(N − n)− nvnAnp

and

(12)
dm

dt
= −mpp − nvAp(M −m)− ncmAmn

describe the change in concentrations of trapped
electrons and trapped holes, respectively [7]. In the

case that both recombination and transitions are
radiative, the equation

(13)I = −dnc

dt
− dn

dt
= ncmAmn + nvnAnp

describes the intensity I of the radiation during heat-
ing. Different assumptions of this model lead to
different analytical equations for the intensity. Most
of these assumptions are based on the the ratios de-
scribing the relationship between recombination and
trapping probabilities are defined as

(14)Rn =
An

Amn

for electrons and

(15)Rm =
Ap

Anp

for holes [13]. There are five cases to consider that
result in different models of the system[13]:

1) Rn and Rm ≈ 0.

In this case retrapping is assumed to negligible for
both holes and electrons, with the additional assump-
tion that immobile trapped holes lead to the first
order Randall-Wilkings model[6].

2) Rn and Rm >> 1.

Making assumption of immobile trapped holes, and
assuming that recombination is negligible and retrap-
ping is dominant leads to second order Garlick and
Gibson equation[15] when assuming that there are
no transitions of electrons to the valence band [13].

3) Rn ≈ 0 and Rm >> 1.

In this case we assume negligible retrapping for elec-
trons, while it is dominant for holes . This assump-
tion also leads to the Randall-Wilkins model when
assuming no transition of holes to the valence band
[13].

4) Rn >> 1 and Rm ≈ 0.

Assuming that holes are mostly retrapped and elec-
trons are mostly recombined also leads to the first
order Randall-Wilkings equation when assuming no
electrons are excited to the valence band [13].

5) Rn and Rm are any number larger or equal to 0.

This is equivalent to not making any assumptions of
the proportion, and so doses not lead to a simplified
model.
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From the preceeding differential equations, with the
assumptions nc << n and |ṅc|<< |ṅ|, the intensity,
I is given as

(16)I = −dm

dt

= snexp(− E

kT
)Am

m

Amm+An(N − n)

which was formulated by R. Chen as the basis for
first and further order equations [7], but has also
been presented by V. Maxia in an analysis of thermo-
luminescence using non-equilibrium thermodynamics
[16].

These equations of thermoluminescence can then be
applied with some assumptions to create models of
the emitted intensity I of a TLD sample. A common
assumption, that will be accepted for the proceed-
ing models is the assumption of charge neutrality,
m(T ) = n(T ), that there are equal number of trapped
holes and electrons in the material at any tempera-
ture. This stems from the assumption that before
heating, the number of trapped holes and electrons
in the material are approximately the same, and that
under heating, their rates of release are equivalent [7].
Additionally, these models assume discrete, singular
energy traps. This is a simplification of the real case
of bands of energy levels [17].

Firstly, the first order kinetics model concerns itself
with case (1) of negligible retrapping, meaning Rn

and Rm approximately 0. From this assumption
Equation 16 becomes,

(17)I = sn× exp(− E

kT
)

which with a constant heating rate β is solved as

I(T )

= sn0exp(−
E

kT
)exp

[
−s

β

∫ T

T0

exp(− E

kT ′ )dT
′

]
[7].

(18)

This expression consists of two competing exponen-
tial factors, resulting in an early rise in intensity
when the integral is small, and a rapid decrease in
intensity when it grows sufficiently large. These two
effects are attributed to the initial release of electrons
from traps and the exhaustion of electrons/holes for
recombination respectively [7].

Second order kinetics assumes case (2), where charge
carriers are mostly re-trapped and only sometimes

manage to escape the cycle through recombination
meaning Rn and Rm >> 1 [7]. Assuming that the
material’s traps are far from saturation, we get the
expression

(19)I =
sRn

N
n2exp(− E

kT
)

with Rn along with other factors being identical as
defined above. Although making the assumption of
M. Curie, that retrapping and recombination are
equally likely, the expression simplifies to

(20)I =
s

N
n2exp(− E

kT
)

[5], showing that with this assumption, if re-trapping
is radiative, we observe a higher intensity, due to any
electron on average re-trapping many times. Equa-
tion 19 is solved for a constant heating rate as

(21)
I(T ) = s′n2

0exp

(
−E

kT

)
×[

s′n0

β

∫ T

T0

exp

(
−E

kT ′

)
dT ′ + 1

]−2

[7]. There are also models assuming a ”mixed” be-
haviour between first and second order[7], where the
assumption of m(T ) = n(T ) is dropped, instead as-
suming

(22)m = n+ nc + c

where c is a constant and as before nc and n are the
electrons in the conduction band and traps respec-
tively, along with m being the number of trapped
holes. nc is most commonly neglected, but with a
real material, with defects and variations, c = 0 is
dubious assumption since it is unlikely that the num-
ber of electrons and holes are precisely the same. In
the case that c ̸= 0, the equation

(23)I = s′n(n+ c)exp(− E

kT
)

arises from Equation 16, where s′ is a constant with
units cm3sec−1 [7].

Attempting to account for TL cases where the order
of n proportionality is not ∝ n or ∝ n2, a general
order equation

(24)I = s′nbexp(− E

kT
)
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was introduced in the early 1970, introducing the
kinetic parameter b, with s′ being a constant with
units cm3(b− 1)[7]. The solution to this equation as
a function of T is

(25)
I(T ) = sn0exp

(
−E

kT

)
×[

(b− 1)s

β

∫ T

T0

exp

(
−E

kT ′

)
dT ′ + 1

] −b
b−1

for a constant heating rate β and is valid for b ̸= 1
and b ̸= 2 [7].

Although these equations are not expected to
represent the physical reality of the system per-
fectly, as that depends on many more parameters
(n,m,Am,An, n, s and E from Equation 16), they
have been shown to be at least mathematically suffi-
cient to approximate a number of situations [7][12]
[13].

B. Glow Curve Deconvolution

Glow curve deconvolution is the practice of decon-
structing the signal TLD curves into its subcompo-
nents to study the physical properties of the energy
traps of the material. The intensity models presented
in Equation 18, Equation 21 and Equation 25, are
based on different assumptions, but share an impor-
tant commonality, they cannot be solved analytically
[18] [2]. This creates the challenge of applying the
models to real data, and the opportunity for a variety
of suggested numerical solutions and/or assumptions.
One common way is to use numerical optimization
to fit the intensity models to experimental data, to
attempt to extract the unknown parameters of the
model [2].

One set of equations, based on the descriptions of R.
Chen [7], are the equations proposed by G. Kitis et.
al. in 1998 [18]. The three suggested equations corre-
spond to the first, second and general order kinetics,
and aim to describe a glow peak corresponding to a
single energy trap, of which a glow curve can consist
of many. The first order equation is given as

(26)
I(T ) = Imexp

[
1 +

E

kT

T − Tm

Tm
− T 2

T 2
m

× exp

(
E

kT

T − Tm

Tm

)
(1−∆)−∆m

]
with ∆ = 2kT/E and ∆m = 2kTm/E, where Im is
the peak intensity, Tm its corresponding temperature,

E is the energy gap from the valence band to the
trap, T is the temperature and k is the Boltzmann
constant. Intensity for kinetics of the general order
are described as

I(T ) = Imb
b

b−1 exp

(
E

kT

T − Tm

Tm

)
×

[
(b− 1)(1

−∆)
T 2

T 2
m

exp

(
E

kT

T − Tm

Tm
+ Zm

)]− b
b−1

(27)

where Zm = 1 + (b − 1)∆m and b is the kinetic
parameter [18]. Kinetics of order 2 is described as,

(28)
I(T ) = 4Imexp

(
E

kT

T − Tm

Tm

)
×
[
(1

−∆)
T 2

T 2
m

exp

(
E

kT

T − Tm

Tm
+Zm

)]−2

which can be reached by substituting 2 for b in Equa-
tion 27. Knowing the unknowns in these equations
for a substance, one can simulate the glow curve,
or having glow curves, one can try to estimate the
unknowns to learn something about the material or
how it has been irradiated [2].

Most glow curves consists of multiple peaks. It is
therefore often necessary to combine the equations
as a superposition

(29)I(T ) = I1(T ) + I2(T ) + ...+ IN (T ) .

There are also ways to estimate parameters using a
variation in heating rates and the Arrhenius equa-
tion (Hoogenstraads method), although it is deemed
somewhat unreliable, is constrained to first order
peaks and requires data with varying heating rates
[19]. It is also possible to calculate E and b using
the integral of the curves (Three point method), but
this require a curve that starts and ends at 0 and
has a singular or isolated peak [20].

Since measured glow curves often lack the require-
ments of these simpler methods, a common and gen-
eral method of estimating the parameters of a glow
curve is using curve fitting using an objective function
[2]. An objective that is often used is the minimiza-
tion of the squared difference between the analytic
expression and the experimental datapoints known
as the residual sum of squares (RSS),

(30)RSS =

N∑
i

[yi − ŷi,p]
2



9

or the RSS weighted by the measurement uncertainty
at each point σyi , giving the chi-squared error crite-
rion,

(31)χ2 =

N∑
i

[
yi − ŷi,p

σyi

]2

where in both cases N is the number of datapoints,
yi is each experimental intensity at a certain temper-
ature, ŷi,p is the intensity calculated with the current
glow curve parameters p using the intensity function
of the glow curve. For a measure of the error of the
fit that has the same units as the original function,
the Root Mean Squared Error (RMSE) is given as

(32)RMSE =

√∑N
i [yi − ŷi,p]

2

N
.

Another common metric often used in the fitting of
spectral data is the Figure Of Merit(FOM), given as

(33)FOM =

∑N
i=1|yi − ŷi|∑N

i=1|yi|
[21].

Another metric often used for curve fitting is the
coefficient of determination, know as R2, expressed
as

(34)R2 =
RSS∑N

i=1(yi − y)2

[22]. For RSS, RMSE and FOM, the value is min-
imized, for the R2 the value is maximized up to a
value of 1, while for the chi-squared criterion the
object is to approach as close as possible to 1, where
a lower value signifies overfitting [23]. FOM, made by
Balian, H. G. et al. as an improved metric for fitting
curves in gamma ray spectroscopy, tandard practice
requires an FOM of below 0.025 to consider at curve
fit as good, and below 0.035 to be considered flawed
but decent [21] . In more recent studies applying glow
curve deconvolutions, a value lower than 0.05 can
sometimes be considered an acceptable fit [18]. Once
one has found a fitting objecting function for the
problem, there are many algorithms to choose from
to attempt to fit the curve with the right parameters.

C. Levenberg-Marquardt

One algorithm often used for curve fitting Levenberg-
Marquardt (LM) is a numerical algorithm developed
in the 1960’s for approximation of non-linear least

squares problems. The LM algorithm consists of two
subroutines: Gradient descent and the Gauss-Newton
method. When the parameters are far from the opti-
mum, the objective function has a large loss, the LM
algorithm is most like gradient descent [24]. When
it approaches the optimal solution, it acts most like
the Gauss-Newton method[24]. An overview of the
method will be given below, for a more detailed math-
ematical description of the Levenberg Marquardt
method see H.P Gavin [24] or A. Björck’s book on
numerical least squares problems[25] .

Gradient descent works by calculating the gradient
of loss in a parameter space. By calculating the
way to increment the parameters that is worst at
decreasing the chosen loss function, the algorithm can
increment the parameters in the opposite direction,
aiming to gradually improve the fit. The update of
the parameters δgd are calculated as

(35)δgd = αJTW(y − ŷ)

where α is the step length, y is the experimental value
and ŷ is the current estimate, W is the weighting
matrix, which can be adjusted for specific goals, but
is commonly diagonal with

(36)Wii =
1

σ2
yi

where JT is the transpose of the Jacobian, where

J = ∂ŷ(p)
∂p . The new parameters are then updated to

(37)βk+1 = βk + δgd,k

where k is the iteration step.

The Gauss-Newton method works by iterating on
an initial guess of the minima of the cost function,
and then using a Taylor expansion to attempt to
converge to the true minima[24]. It does this using
the assumption that the objective function of the
parameters is locally quadratic, simplifying the at-
tempt to converge to a minima [25]. The first-order
Taylor series expansion describing the increment is

(38)ŷ(p+ δgn) ≈ ŷ(p) +

[
∂ŷ

∂p

]
= ŷ + Jδgn

and can be substituted into the objective function,
where δgn is the parameter update each iteration

step. The optimal parameter update is when ∂χ2

∂h =
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0, resulting in an expression for the update of the
parameters as[

JTWJ
]
δgn = JTW(y − ŷ) (39)

where again W is the weight matrix, and J is the
Jacobian, while y − ŷ is the residue of the fit. The
Levenberg-Marquardt algorithm is a combination of
these two routines, given as the expression

(40)
[
JTWJ+ λI

]
δlm = JTW(y − ŷ)

where δlm is the update to the parameters, I is the
identity matrix and λ is the dampening parameter
[24]. It is the left side of equation that modulates
between the Gauss-Newton and Gradient Descent.
A larger value of λ causes the update to be closer to
gradient descent in Equation 35, while decreasing the
value causes more similar update to Gauss Newton
in Equation 39. λ is initialized to be a large number,
and then decreased as the solution becomes better, re-
sulting in the convergence towards the Gauss-Newton
method as the algorithm converges to a minima. The
algorithm stops iterating when either the gradient of
the objective function is below a defined threshold,
the change in parameters is below a certain thresh-
old or when the objective function has reached its
targeted performance [24].

An excellent implementation of the Levenberg-
Marquardt algorithm is in the Python package lmfit,
developed at MIT by Matt Neville et al. [26]. This
is also the tool that will be used for glowcurve decon-
volution in this work.

D. Radiation energy and LET

When applying radiation treatment in-vivo to pa-
tients, safety is of utmost importance. One part of
this is understanding radiation quality and how much
tissue damage is caused by the treatment. With the
advent of new types of radiation treatment, like pro-
ton therapy, the methods for evaluating what dose to
administer must be reinvestigated to assure minimum
harm.

The same dose of different types of radiation can
cause different amounts of damage to the target area,
dependent on factors like particle energy, atomic
number and tissue types [27]. One measure of the
efficiency of a radiation type is the Relative Biological
Effectiveness (RBE), calculated as

(41)RBE =
DX−ray

Dtest

[27] where DX−ray is the Dose of 250KV p(KiloVolt
peak) X-rays required to produce a certain biological
effect, and Dtest is the amount of another type of
radiation required to produce the same biological
effect.

Linear Energy Transfer (LET) is a measure of the
deposited energy of a radiation beam per unit of
the beam’s path [27]. It differs between the type of
radiation and target material , as well as with depth
[REF]. Calculating LET for more complex materials
is very difficult and often requires detailed numerical
solutions in the form of simulations [28].

LET measurements can help researchers understand
the quality of radiation, leading to more precise treat-
ment for patients [29]. If it is possible to measure
LET with TLD, then that opens opportunities for
beam experimentation outside of in-vivo and in-vitro
experiments. It could also improve dosimetry, as
LET can be an important factor for estimating some
aspects of real biological damage [8][29].

To estimate the depth dependent distribution of LET,
it is possible to use openly available software like
FLUKA [28]. This method has been shown to yield
relatively precise results, finding the values for water
to be within 10% of comparable experimental data
collected with a parallel plate ionization chamber [30].
Since tissue is an inhomogenous substance consisting
of many elements with different atomic numbers,
making it harder to model, exhibiting a difference to
water that varies with radiation type [31].

E. Thermoluminescence Materials

Materials used for thermoluminescence are isolators
with the capability of containing stable traps for
charge carriers, whether intrinsically or through dop-
ing of another substance[7].

Two different materials that can be used for TLD ex-
periments are Lithium tetra borate (LTB, Li24B4O7)
doped with copper(Cu) and Calcium Sulfate (CaSO4)
doped with Thulium (Tm). This thesis uses data
collected from samples of both of these, in the form
of nanoparticles prepared in the form of pellets.

1. LTB:Cu

LTB doped with copper (LTB:Cu) is a dosimetry
material first synthesized in 1980 by M. Takenaga
et al. as a promising TLD material, with minimal
signal fading over time and high sensitivity [32][33].
LTB:Cu has an effective atomic number of 7.3, which
is similar to the average atomic number for human tis-
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sue, making it a good model for radiation absorption
[13].

From TLD and spectroscopy analysis of LTB:Cu
irradiated with gamma radiation and x-rays, LTB:Cu
has shown TLD intensity dependent on the mass of
the pellets used, likely based of heat transport and
radiation interaction [34].

An important quality of a TL material is the structure
of its glow curve [2]. The original synthesis process
by Takanaga et. al. using a sintering method, as
well as descriptions by C. Furetta indicate two peaks
in the LTB:Cu glow curve [33][13]. Later studies of
LTB:Cu has shown varying peaks in its glow curve
based on radiation, showing a superposition of four
peaks for gamma radiation and two distinct peaks
for x-rays [34]. Two peaks have also been observed
for beta radiation of single-crystal LTB, where a glow
curve deconvolution gave two peaks with an order of
kinetics of approximately 1 [35].

Another recent study of LTB:Cu synthesized with a
combustion process has also shown a more complex
glow curve exhibiting 4 peaks [36], showing that
the choice of synthesis affects the properties of the
material. This is also illustrated by Soheilan et al.
when comparing three different synthesis methods of
LTB:Cu, there was a significant variance in glow peak
distribution and sensitivity based on preparation [37].
This creates a challenge when comparing the results
of one experiment to another, since most preparations
are slightly different.

2. CaSO4:Tm

CaSO4 doped with Thulium (CaSO4:Tm) was first
developed by Yamashita et al. in 1971 in an attempt
to create a TLD material with high sensitivity, low
signal fading and a simple glow curve [38]. In its first
investigation its only drawback seemed to be that
it did not have a tissue equivalent effective atomic
number, although it was comparable to that of bone.
CaSO4:Tm is used widely and exhibits a stable glow
peak at about 220°C that is often used for dose
estimations [39].

The original synthesis of CaSO4:Tm showed similar
TLD properties as CaSO4 doped with dysprosium,
with one major glow peak at around 220 ◦C, and
two small shoulders at approximately 80 ◦and 120 ◦.
While at higher doses, around a few Gy, an additional
peak at 250 ◦was present [38].

F. Predictive modeling and machine learning

This section will briefly describe the methods ap-
plied in this thesis. More comprehensive descriptions
of predictive modeling and machine learning can
be found elsewhere, among them Python Machine
Learning by Raschka, S. et al. [40].

One way of understanding predictive modeling is
viewed as an extraction of patterns from data to
create functions that output some value of interest.
Given some input of size N × M , where there are
N samples and M features, the model aims to pre-
dict a set of variables for each sample, resulting in
an output of size N × K where K is the number
of target variables that the model is trying to pre-
dict for each sample. This is equivalent to creating
a function f(x⃗) = y⃗, where x⃗ is one sample repre-
sented by M features and y⃗ is a prediction vector
of the K variables of interest. Regression models
can be described as functions where the prediction
vector y⃗ contains continuous values that can be any
number, while classification models can be described
as functions where the prediction vector y⃗ contains
discrete values, describing the category into which
the sample is classified. Assuming that there is a
real function that describes the relationship between
the features of the samples x⃗ and the variables of
interest y⃗, the essential part of predictive modelling
is to create a function that approximates the real
function as closely as possible.

1. Principal Component Analysis and PCR

Principal Component Analysis (PCA) is a method
for analysing the variance of a dataset across fea-
tures, finding uncorrelated multidimensional latent
features that contain maximal variance[41]. These
new features are a combination of the original fea-
tures, and can often simplify the dataset by reducing
dimensionality while attempting to preserve as much
information as possible [41]. The new constructed
features are named PC1, PC2 and so forth, where
PC1 is the dimension of maximal variance and fol-
lowing dimensions are orthogonal to the original and
capture less variance. Principal Component Regres-
sion (PCR) uses PCA to reduce the dimensionality
of the dataset, and then completes a linear regression
to estimate the target variable [42].

2. PLSR

Partial Least Squares Regression (PLSR) like PCR, is
a regression method based on analysing the variance
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in the data [43]. The main difference between PCR
and PLSR is that PLSR uses the target variable
to account for the predictive power of the newly
generated latent variables [43]. This means that
PLSR often requires fewer dimensions to reach the
same predictive power[44].

3. Random Forest

The Random Forest (RF) algorithm is a shallow,
supervised, ensemble machine learning algorithm that
is used to predict a target variable from a set of data
[40]. It consists of simpler parts, called decision trees
that linearly classify the data by creating decision
boundaries along different features. Many decision
trees are then combined to create a multidimensional
decision boundary to estimate the target variable
[40]. RF algorithms exist for both classification and
regression.

4. Neural Networks

Neural Networks are deep machine learning algo-
rithms that consist of neurons connected in a network
that propagates information to attempt to complete
a multitude of tasks. First created as an attempt to
emulate how the network of neurons in the human
brain solves complex problems, neural networks have
over time been implemented to solve a wide variety
of tasks [40]. A neural networks consists of layers
of nodes, where there is one input layer and one
output layer, as illustrated in Figure 3. The input
layer has a number of nodes equal to the number of
features of each sample x⃗, and the output layer has
a number of nodes equal to the number of variables
in the target vector y⃗. The hidden layers consist of
nodes that serve as connections in the propagation
of information, denoted by arrows in Figure 3 [40].
Each node takes in information from the previous
layer, multiplied by weights that are adjusted when
the neural networks trains on data and adding a
bias term, aiming to adjust these weights until the
network can approximate a function that outputs
a certain y⃗ from a set of inputs x⃗ [40]. Neural net-
works are flexible models and can be modified and
optimized in a very large number of ways, including
their structure, learning procedure and optimization
algorithm [40]. This makes neural networks both
excellent for solving complex problems, as well as
notoriously difficult to use[45].

Figure 3: Basic illustration of a neural network
containing two hidden layers, six input nodes and one
output node in a cone shape. Illustration created in NN
SVG

5. Performance Metrics

To evaluate the prediction of a model, different met-
rics can be used depending on the target variable.
For regression problems, χ2, RMSE and FOM, given
in Equation 31, 32 and 33 respectively can be used
in the same way as for curve fitting. Classification
problems on the other hand, require their own met-
rics to evaluate predictions on discrete variables. For
classification problems where the classes contain an
equal number of members in each class, Accuracy,
calculated as,

Accuracy =
Total number of correct predictions

Total number of predictions

(42)

can be used [40]. However, when there is class imbal-
ance, meaning that the number of members of each
class is not equal, other metrics are more appropri-
ate, since accuracy can inflate the performance of a
model that is performing poorly if one class only has
a few members [46]. The f1-score is one metric that
can be used on imbalanced classes consisting of two
components, Precision, defined as

Precision

=
# of True positives

# of True Positives + # of False Positives

(43)

where True Positives (TP) are samples that were
correctly classified as positive and False Positives
(FP) are negative samples incorrectly classified as
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positive [40] [46]. The other part of the f1-score is
Precision, defined as

Precision

=
# of True Positives

# of True Positives + # of False Negatives
(44)

where False Negatives (FN) are samples classified as
negative when they belonged to the positive class.
The F1 score is a combination of these two metrics,
given by the equation

(45)F1 = 2× Precision×Recall

Precision+Recall

which gives a more balanced evaluation of imbal-
anced classification performance [46]. F1-score can
be directly compared to accuracy, since it reduces to
the same metric when the classes are balanced.
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III. MATERIALS AND METHODS

The workflow of analysis and modeling followed an it-
erative method of experimentation and improvement.
The general pipeline is depicted in Figure 4.

Figure 4: Flowchart depicting the data handling and
prediction pipeline.

The first step of the process is not depicted in Figure
4 and is the diligent work completed at the University
of Oslo (UiO) and Aarhus University (AU) to pro-
duce the required samples, irradiate them in varying
positions, measure each TLD response and compile
the results into the data that is used in the present
work.

A. Data collection

The first step in data collection was the synthesis
of the samples used in the experiments. CaSO4:Tm
and LTB:Cu was synthesized using a two-step solid
state reaction and a precipitation method respec-
tively, described in detail in the appendix in Figure
23 provided by Post. doc. R. Nattudurai . The syn-
thesis methods resulted in polycrystalline samples of
the substances, in pellet form.

Post. doc. Ravikumar Nattudurai and fellow mas-
ter student Ivar Steen then irradiated the samples
with protons and collected the TLD data at UiO.
Additionally a secondary part of the data was col-
lected from experiments conducted at AU following
Nattudurai and Steen’s directions.

Nattudurai and Steen then employed a TLDcube
system (Freiberg Instruments GmbH, Freiberg, Ger-
many) to measure the thermoluminescence of each
sample. The TLDcube contains a thermocouple
heater that heats the sample through the desired
range, and a detector to register emitted photons
with a reported system accuracy of ± 1 SD for mul-
tiple readings. When heating the sample, they used
a linear heating rate of 5K/s, up to a maximum
temperature of 350◦C depicted in Figure 5. The
deviation between the set and measured temperature
apparent in the tail end of the curve is the result of
insufficient cooling, but for most purposes including
ours, the glow curve is cut off at the peak of the
curve, excluding the cooling stage. Since the heating
rate is constant, the temperature and time are in-
terchangeable variables with respect to the intensity
of the glow curve, with a constant conversion factor
of the heating rate (5K/s). The TLDcube system
had a sampling rate of 10Hz, which resulted in the
measurement reaching the peak temperature after
660 points, defining the number of discrete points in
each glow curve.
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Figure 5: The employed heating curve, showing the
setpoint of the heater, the measured temperature and the
cutoff between heating and cooling.

B. Data Structure

Two datasets were available, one from AU and one
from UiO. The dataset from UiO consisted of 145
samples, where 67 are CaSO4:Tm and 78 are LTB:Cu.
The samples were irradiated at different doses ranging
from 0.34 Gy to 3.2 Gy. Most importantly, the
samples were irradiated with protons at two positions
in the proton beam. For CaSO4:Tm, 35 samples
irradiated in position 1 (P1) and 32 in position 2
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(P2). For LTB:Cu, 29 samples were irradiated in P1,
and 39 in P2.

The dataset from AU consisted of 48 samples where
24 were of LTB:Cu and 24 were of CaSO4:Tm. Of
the 24 samples of each substance, there was an even
distribution over four positions (2a, 1a+3a, 1b, 1c),
resulting in 6 samples in each position for each sub-
stance.

Each position for both datasets had an associated
LET value that can be found in Table I. The LET
values of the positions recorded in the experiments
at AU were calculated from Monte Carlo simulations
completed at AU, while the values of the positions
at UiO were estimates provided by E. Malinen from
Monte Carlo simulation results presented in a paper
using equivalent positions and proton energies by J.
Dahle , E. Malinen et al. [30]. Figure 6 shows an
illustrations of the positions in the dose distribution
of the proton beam. The proton energies from the
UiO experiment are presented in the table, while the
AU energies are not determined for each position,
but lie in the range of 70− 220MeV .

Dose

Depth

BP
P2
1c
1b
1a+3a
P1
2a

Figure 6: Illustration of approximate positions in Table I
in relation to the Bragg Peak (BP), without scale and
with arbitrary units. Blue markers signify positions
irradiated at AU and maroon markers signify positions
irradiated at UiO.

The data consisted of the glow curves depicted in
Figure 7. Each line in each plot represents a sample,
where each subplot shows glow curves from a single
substance and a single source. The experiment at
the University of Oslo varied the dose given to the
samples, which can be seen in the plots as a greater
variation in the amplitude of the glow curves. In
contrast, the AU samples were all irradiated at the
same target peak dose of 1.0 Gy, resulting in similar
amplitudes.

Table I: Positions and corresponding LET. Proton
energy and LET values for P1 and P2 were estimated
from equivalent positions used in the paper by J. Dahle
et al.[30], and the LET values for 2a, 1a, 1b and 1c were
provided by Niels Bassler from simulations conducted in
connection to the experiments at Aarhus University.

University Position Samples
LET
[MeV/cm]

Energy
[MeV]

UiO P1 74 ≈ 50 9
UiO P2 71 ≈ 270 2
AU 2a 12 47.15 70-220
AU 1a+3a 12 53.23 70-220
AU 1b 12 94.72 70-220
AU 1c 12 121.1 70-220
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Figure 7: Plot of glow curves used in the current work,
cut off at 350◦C as illustrated in Figure 5. The two
bottom plots are of glow curves from Aarhus University
(AU), while the two top plots are glow curves collected
from the University of Oslo (UiO).

C. Statistical feature extraction

From the glow curves in Figure 7, statistical features
were extracted for further use. The simplest features
consisted of the integral of the curve known as the TL
response, the maximum amplitude, the temperature
of the maximum amplitude and the temperature
width of the half-height, as well as the kurtosis and
skew. Additional features were extracted using the
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discrete derivative of the glow curves, among them
the maximal amplitude, the minimal amplitude, with
corresponding temperatures, as well as the integral
of the differentiated curve. The features along with
their corresponding label are pictured in Figure 8.
The derivative of the glow curve was calculated on
glow curves filtered using a Savitzky-Golay filter to
reduce the noise [47]. The filter used a polynomial of
order 2 and a window size of 31, found by altering the
window until the high frequency noise was reduced to
a reasonable level, without simplifying the underlying
shape of the curve. The features illustrated in Figure
8 in addition to kurtosis and skew resulted in a total
of 11 statistical features.
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Figure 8: A sample glow curve (top), its derivative
(bottom), along with markers for the extracted statistical
features.

D. Glow curve deconvolution

Glow curve deconvolutions were performed using con-
strained Levenberg-Marquard optimization for first,
second and general orders using Equations 26, 28 and
27. For each fit consisting of N peaks, a compound
equation was constructed using the superposition de-
scribed in Equation 29. This resulted in an equation
with N × 3 parameters for first and second order

equations, and N × 4 parameters for the general
order equation. For the first and second order equa-
tions, the parameters for each peak were Tmi, Imi

and Ei, where Imi is the maximal intensity of the
glow peak, Tmi is the temperature of the maximal
intensity, and Ei is the energy gap from the corre-
sponding trap to the valence band in the material.
For the general order, the additional parameter bi
was extracted for each peak, which is the order of ki-
netics of the peak. Once this equation describing the
entire glow curve had been constructed, reasonable
constraints were found, to limit the search space of
the LM algorithm. These constraints were very wide,
only excluding negative intensities, negative energy
gaps, intensities that exceeded the maximum of the
glow curve, as well as peak temperatures below the
starting temperature and higher than 1000 K.

Using existing literature describing the peaks pre-
sented in the theory section, as well as the residue,
RMSE from Equation 32 and FOM from Equation
33 as metrics, the most reasonable peak was chosen
from a fitting of the mean curve of all the samples of
a certain substance. The mean curve was constructed
from the UiO dataset to use as a guide. Each inten-
sity of these curves corresponded to the mean of all
samples in that position, with the aim of reducing
overfitting to a certain sample. As presented ear-
lier, the literature would indicate 2 or 4 peaks for
LTB:Cu [33][34][37]. Using the mean curve, a brute
force search of first, second and general order models
with the number of peaks ranging from one to five
was completed. Out of all of the fits for LTB:Cu, the
second order model with three peaks was selected
due to having the lowest RMSE, as well as looking
reasonable from a visual inspection.

The model choice for CasO4:Tm was based more on
literature and inspection of the glow curves, as the
brute force search resulted in many fits with compara-
ble fit metrics. CaSO4:Tm showed a main dominant
peak at approximately 190◦C, slightly lower than
suggested in the literature [38][39]. An additional
higher temperature shoulder was also indicated, espe-
cially for higher doses, agreeing with literature [38].
A rise in intensity was also seen clearly in the highest
temperature region of the CaSO4:Tm glow curves
in Figure 7, and although it may possibly be caused
by black body radiation, as will be discussed, it was
deemed safest to fit a third peak to this rise. This
was done to investigate its properties and isolate it
as a component of the deconvolution, avoiding the
algorithm shifting the lower temperature peaks to fit
this rise. A three peak model was then also chosen
for CaSO4:Tm, where second order peaks gave the
best fit of the mean curve, especially of the main
peak.
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A model of 9 parameters as a superposition of three
peaks described by Equation 28 was then selected for
both substances, where each of the three peaks had
three corresponding parameters Ei, Tmi and Imi.

When a suitable order and number of peaks had
been found for the deconvolution of the mean, all
samples were deconvolved. Tighter constraint were
also applied before deconvolving all samples. The
main constraint was on the temperature of the max-
imum of each peak Tmi, where a constraint was
placed around ±20% of what had been found for
the mean curve. The constraints for Ei and Imi

were looser, especially considering the UiO dataset,
where the maximal intensity varied widely due to
the different doses given to the samples, resulting in
a wide variation in the maximum intensity of each
peak Imi.

The resulting dataset was inspected for outliers, as
well as fits where the algorithm had reached the max-
imum or minimum values of its constraints. The
parameter space indicated that it contained many lo-
cal minima, varying its solutions based on both initial
conditions and values of the constraints. This insta-
bility made it necessary to adjust these values until
a reasonable fit within the constraints and supported
by the literature was reached.

E. Data analysis and preprocessing

Once statistical features had been extracted and glow
curve deconvolutions were completed, the resulting
data was analysed for noise, outliers and correlations.
An important job of outlier detection was in find-
ing errors in the extraction of statistical features or
deconvolution. Outisde of this, removing outliers
from data is a delicate operation, especially from
data that you have not collected, in a field with
which you are unfamiliar. Therefore, no samples
were removed, and instead the outliers were kept in
mind when completing further analysis and predic-
tion. The distributions of the samples were studied
using visualizations, some of which will be presented
in the results. These visualizations were important
both for error detection and to get an intuition for
the distribution of features, especially in relation to
the different positions.

The Pearson correlation [48] was also investigated
for both statistical and deconvolution features, both
with other features and the target variable LET. A
high absolute correlation with the target variable
can be an indicator of predictive power, and a low
correlation with other features can indicate unique
information. The lack of any of these two qualities
can signify that a feature is not useful for prediction.

Still, the variations of the correlations were large
between the substances and the two datasets, and
so there was no clear feature that was conclusively
without value based on this analysis.

Once a satisfactory understanding of the feature dis-
tributions and correlations had been achieved, the
data was preprocessed. For some methods, prepro-
cessing was a critical element, as for PLS and PCA
analysis where the data was shifted to zero-mean or
standardized, or for Neural Networks where it was
scaled to a 0 to 1 range, whereas for other methods
it was entirely left out, or used as an additional step
in attempting to improve performance.

F. Sample, feature and algorithm selection

After the extraction of different features, the main
method of exploration was the selection procedure of
samples, features and algorithms. Table II shows the
available features after extraction. The simplest and
largest set of features are the raw glow curves of the
samples, where each temperature was treated as a
feature, with the TL intensity as its value. This set of
features by definition contains all the information of
the TLD measurement. The statistical features are
a set of descriptive features, aiming to concentrate
the information of the data using descriptions that
are quick and simple to calculate. The parameters
extracted from glow curve deconvolution, and the
dose, are descriptions of the data tying to physical
models of the system, based on solid state physics
and medical science. Each of these descriptions re-
sult in a different number of features for each sample,
described in Table I, containing different representa-
tions of the information stored in the glow curves.

The AU dataset contains an equal amount of samples
in the same positions for both substances, allowing
a stacking of the features. For each set of features
available for the AU data, one can create a new set
of features that is twice the size. Each ”sample” be-
comes a combination of two targets, LTB:Cu and
CaSO4:Tm, where two samples that are from the
same position but different substance are concate-
nated as a representation of that position.

The available samples from the six positions described
in Table I were initially modelled with regression,
treating the samples as a selection from a continu-
ous LET distribution. After experimentation with
regression, the data was modelled as a classification..

As a classification the positions were treated as dis-
crete categories, and the grouping of these categories
was important to investigate what split would cap-
ture differences in the samples. As the dataset from
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Table II: Features available for models, where N is the
number of features. Additionally, for the AU dataset,
each feature can be ”Stacked”, resulting in a set of
features of size N × 2.

Features N Valid for Substances

Glow curve 660
UiO and
AU

LTB:Cu
or
CaSO4:Tm

Deconvolution 9
UiO and
AU

LTB:Cu
or
CaSO4:Tm

Statistical 11
UiO and
AU

LTB:Cu
or
CaSO4:Tm

Dose 1 UiO

LTB:Cu
or
CaSO4:Tm

Stacked N ×2 AU

LTB:Cu
and
CaSO4:Tm

UiO consisted of two positions, it was naturally a
binary classification, while the dataset from Aarhus
was on its own a multiclass classification with its
four positions. The positions of the Aarhus and
UiO datasets were also combined as categories in
the same space. This meant assuming that the ex-
perimental conditions of the two experiments were
similar enough to say that their positions could be
considered classes in the same classification. This
assumption allowed the samples from positions across
the dataset to be grouped in different ways, opening
up for an additional layer of experimentation.

The main algorithms of focus were Partial Least
Squares (PLS) and Random Forests (RF), and so
the selection of parameters mainly consisted of find-
ing the optimal number of PLS components or RF
trees, done through validation on a distribution of
the available parameters. Additionally, investiga-
tions into PCR, Neural Networks, Support Vector
Machines and clustering algorithms were conducted.
For neural networks, the main exploration was on
the number of layers an its architecture, as well as
the learning rate and the number of training epochs.
Although the investigations into these other models
yielded understanding of the dataset, the full ex-
tent of the search through these algorithms will not
be included for brevity, but a selection of these are
included in tables in the appendix.

The metrics for the evaluation of each rmodel con-
sisted of the RMSE, accuracy and f1-score. RMSE
was used for regression predictions, accuracy was
used for classification evaluation in the case where
the classes were completely balanced and the f1-score

was used for classification with imbalanced classes.

G. Validation, Iteration and Evaluation

Since one part of the exploration of models in-
cluded different groupings of the samples, a balanced
train/test splitting had to occur after the groups
had been divided to ensure equal representation in
both sets. The train/test splitting was done strat-
ified based on the target parameter, aiming for a
split where the test set was 15% the size of the total
data. This proportion is on the low end, but since
the dataset is small, the risk of saving too much of
data for testing is that the algorithm is not able to
generalize on the training data. When investigating
the AU dataset on its own, the test proportion was
16%, and only consisting of a single sample of each
group resulting in a test set of 4 samples. The use
of such a small test set is debatable, as it could com-
pletely consist of outliers or edge cases, but it still
has the advantage of being unseen data, offering a
less biased test of each algorithm.

The selection process leads to the validation step
as seen in Figure 4. Since the number of samples
was small, the performance on each combination of
features and dataset of the training set was validated
using Leave One Out (LOO) cross validation [49].
LOO consists of leaving one sample out of the training
set, and then using it for a trial prediction. This
procedure is then done for all samples, creating a
prediction of all samples where none of the samples
have been used for training in its own prediction.
This removes any bias in train-validation splitting.

As seen in Figure 4, the variation and validation
of parameters constitutes one of two loops in the
workflow, where the other is the selection of features
and samples. The process of selecting and validating
different models is through the iterative variation of
these two steps. All combinations of sample groups,
features, groupings, algorithms and hyper-parameters
can quickly become an unmanageable space of op-
tions that is difficult to evaluate. The exploration
therefore used the analysis of the statistical and de-
convolution features as a backbone, focusing in the
beginning on complete sets of features (deconvolu-
tion feature/statistical features/raw curves) and later
narrowing the search to models and features with
high predictive performance.

Finally, after exploring the space of possible models,
the ones with best performance were evaluated. Since
the datasets were split between training and testing
before any models were created, the best models can
in the end be evaluated on unseen data, avoiding any
overfitting caused by the iterative exploration itself.
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H. Software Tools

Analysis, deconvolution, model construction and
evaluation was done in Python 3.7.9 . For the
data management and analysis, the packages pandas,
scipy, and tensorflow were used [50][51][52]. Glow
curve deconvolution was completed with the use
of lmfit, a package specialized for non-linear op-
timization problems [26]. For the building of Neural
Networks and Random Forest models, keras and
scikit were used respectively [53][54]. Addition-
ally, the packages scikit and hoggorm were used
to carry out PCA and PLS analysis and predictive
modeling[55].
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IV. RESULTS

The glow curves depicted in Figure 7 show the TLD
measurement of CaSO4:Tm and LTB:Cu from the
datasets gathered from UiO and AU. Firstly, an
analysis of the raw data was carried out to look for
patterns in noise or correlations that were present
without any further processing. Thereafter, statis-
tical features were extracted and the glow curves
were deconvoluted. Finally machine learning algo-
rithms were built and trained to predict LET from
raw curves, statistical features and deconvolution pa-
rameters, both as a regression and as a classification.

A. Statistical analysis and feature extraction

1. Dose response

Since the dataset from UiO contained samples irradi-
ated with different doses, it gave the opportunity to
look at the dose response of the samples. Figure 9
shows the relationship between the dose and the TL
response, calculated as the area under the glow curve.
The difference in TL response of LTB:Cu between
the two positions is clear in the upper plot and quan-
tified in Table III, where the TL response was lower
for P2, the position with higher LET (See Table I.
The difference between these two position also in-
creased proportionally with the dosage. In contrast,
the dose response of CaSO4:Tm did not exhibit a
clear difference between the positions, although the
linear regression of P2 was slightly lower than P1.
A commonality between the substances is that they
had a linear dose response with some noise, which
makes them functional dosimeters in this dose range.
The TL response given in Table III is the basis for
dose estimation as the proportionality constant Cp

in Equation 8.

Table III: The TL response coefficients for LTB:Cu and
CaSO4:Tm from the UiO dataset as slopes of the linear
regressions in Figure 9. The given R2 is of the linear
regression fit in Figure 9 calculated with Equation 34.

Substance Position
TL-response
[Counts/Gy] R2

LTB:Cu P1 6.2× 107 0.99
LTB:Cu P2 2.6× 107 0.72
CaSO4:Tm P1 5.6× 107 0.97
CaSO4:Tm P2 4.7× 107 0.88
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Figure 9: Dose responses of LTB:Cu and CaSO4:Tm for
P1 marked with crosses and P2 marked with triangles,
corresponding to positions described in Table I. For each
position a linear regression was made, demarkated with
dashed lines. The TL response is calculated as the area
under the glow curve.

2. Noise and signals

One clear variation in the glow curves, which can be
seen in the plot of the curves Figure 7, was the tem-
perature at which the curves reach their peak. Figure
10 shows the distributions of peak temperatures for
the glow curves with CaSO4:Tm in the upper plot,
and LTB:Cu in the lower plot. The distribution of
peak temperatures appears to be largely composed
of noise, although in the lower plot of LTB:Cu the
distribution of peaks for the position with a higher
LET (P2) was skewed towards higher temperatures
than the position with lower LET (P2). This was
reversed for CaSO4:Tm, where the distribution of
maximums was more skewed towards higher tem-
peratures for P1 than for P2. No clear relationship
between dose and peak temperature was observed.
Looking at the distribution of peak temperatures and
intensities in Figure 11, the peak temperatures were
clearly separable by substance as expected. The the
distribution of LTB:Cu peak intensities exhibit more
spread, as was also indicated in the plotting of the
glow curves in Figure 7. There was not observed any
clear relationship between LET and peak tempera-
ture. The left hand plot includes data from both
UiO and AU, while in the right hand plot, data from
UiO was excluded due to its varying dose, causing
differences in peak intensity. All samples from AU
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Figure 10: The distribution of the temperatures of the
maxima against the received dose from the UiO data.
The upper plot is of CaSO4:Tm, and the lower plot is of
LTB:Cu, with triangles indicating P1 and crosses P2, see
Table I. On the right side is a histogram, binning the
scatterplot across the y-axis, with each position
maintaining its representative color.

were irradiated with the same target dose, and so
as seen in the plot of the peak intensities, the two
substances showed around the same sensitivity, with
peak amplitudes in the same range, but still exhibit-
ing variations of around 10− 15% for all positions,
except for the clear low outlier in the 121Mev/cm
group of CaSO:Tm. The samples of both substances
show a pattern where the peak intensity rises with
LET for the three lowest groups, while the highest
LET group exhibits a lower peak intensity.

Since high-temperature TLD measurements can heat
materials to the range of temperatures where they
exhibit black body radiation, inspecting the high
temperature region can be a way of quantifying this
type of noise. Figure 12 shows the response in the
highest temperature region of the glow curve for
the UiO data, as the sum of the intensity of the
10 highest temperature points. There was still a
positive dose response shown in Table IV, although
the response coefficients were lower and the noise
was amplified shown in the higher R2 coefficients
in comparison to the responses in Figure 9. The
response for this region was also higher for P1 in
the case of both CaSO4:Tm and LTB:Cu, weakly
indicating a difference in response based on position.

47 53 94 121
LET [Mev/cm]

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

In
te

ns
ity

 [C
ou

nt
s]

1e5 Peak intensity

substance
CaSO4
LTB

47 50 53 94 121 270
LET [Mev/cm]

460

480

500

520

540

560

Te
m

pe
ra

tu
re

 [K
]

Peak temperature

substance
CaSO4
LTB

Figure 11: The distribution of maximal intensity (right)
and corresponding temperature (left). The x-axis
represents discrete categories corresponding to the
positions of the samples in order of increasing LET (See
Table I).
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Figure 12: Sum of the intensity of the 10 highest
temperature points for LTB:Cu (marked with crosses)
and CaSO4:Tm (marked with triangles) samples from
the UiO dataset. For each position (See Table I) and
substance, a linear regression is shown as the lines of
varying style.

3. Statistical feature extraction

Statistical features presented extracted from the glow
curves shown in Figure 8 were extracted for all sam-
ples from both dataset. Figure 13 and Figure 14 show
the absolute Pearson correlation of the extracted fea-
tures with each other and LET. The most striking
difference between the two datasets is the large differ-
ence in the number of highly correlated features. This
points to the key difference between the datasets, that
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Table IV: The TL response coefficients for the 10 highest
temperature points of the UiO dataset as slopes of the
linear regressions in Figure 12. The given R2 is of the
linear regression fit calculated with Equation 34.

Substance Position
TL-response
[Counts/Gy] R2

LTB:Cu P1 4.4× 105 0.84
LTB:Cu P2 2.8× 105 0.51
CaSO4:Tm P1 4.6× 105 0.77
CaSO4:Tm P2 3.2× 105 0.42

the UiO samples were irradiated at different doses
and the AU samples were not. The UiO dataset
has many features that are highly correlated with
each other, especially features that are highly corre-
lated with dose. This high correlation that is seen
is most likely explained by the confounding variable
dose alone, since when dose increases, they all in-
crease. One important commonality between the two
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Figure 13: Absolute Pearson correlation matrix of
extracted features shown in Figure 8, from the UiO
samples. Additionally, the recieved dose is also added to
the matrix.

datasets is that the extracted features of LTB:Cu,
shown in the upper matrix of Figure 14 and Figure
13, had a higher correlation with LET, hinting at
a difference in predictive power. The sample num-
ber (sample nr) is, on the other hand, an indicator
of noise. Since the sample number varies between
samples of the same substance that are irradiated
in the same position, with the same dose, it should
ideally not have any correlation to other variables.
The main difference of the correlation of this feature
is between the datasets, where the dataset from AU
had a higher correlation between sample number and
the other extracted features, indicating sample de-
pendent noise, with CaSO4:Tm exhibiting a higher
sample number correlation than LTB:Cu. However,
the CaSO4:Tm samples from the UiO experiments
had the highest correlation between sample number
and the target variable LET.
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Figure 14: Absolute Pearson correlation matrix of
extracted features shown in Figure 8, from the AU
samples.

For the different sets and substances there are a
number of features that could be discarded as they
are highly correlated with each other and have low
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correlation with the target. However, what fea-
tures these are differs between samples and datasets.
For example, looking at Figure 14 and Figure 13,
the peak intensity of the first derivative of the
glow curve(peak intensity 1diff) had a relatively
high correlation with LET for LTB:Cu features for
both datasets, but not for features extracted from
CaSO4:Tm. It also had a high correlations with
the sum of intensities (sum intensity) and the min-
ima of the first derivative of the glow curve (min-
ima intensity 1diff) for both substances in the UiO
dataset, while it lacked this strong correlation in the
AU dataset. Since there was variation in indicated
usefulness of the features between substances and
dataset, none of the features were discarded before
models were built, to better assess their influence.

B. Glow curve deconvolution

Figure 15 shows the deconvolution of the LTB:Cu
glow curve, with the residue of the fit in a complimen-
tary plot. The model for LTB:Cu was found through
a brute-force exploration of first, second and general
order models with the number of peaks ranging from
one to five. A model of three second order peaks
exhibited the lowest RMSE given in Table V, and
showed three well separated peaks, corresponding to
distinct regions of the glow curve. The exploration of
these models is attached in Figure 24 in the appendix.

The deconvolution of CaSO4:Tm shown in Figure 16
exhibited a slightly higher error for the guiding mean
curve, described in Table V. For the deconvolution of
CaSO4:Tm, there is an especially large uncertainty
attributed to the fit of the third peak due to this
peak mostly being out of the temperature range
of the measurement. The residue for both of these
deconvolutions did not seem to be completely random
which could indicate some lack of precision in the fit,
but appeared in all reasonable deconvolutions and so
is assumed to be noise.

Table V: Fit metrics for glow curve deconvolutions of
CaSO4:Tm and LTB:Cu mean guide curves, showing the
FOM and RMSE for each substance calculated with
Equation 33 and Equation 32 respectively

Substance Peaks Order
RMSE
[MeV/cm] FOM

LTB:Cu
mean 3 Second 142 0.00731
CaSO4:Tm
mean 3 Second 208 0.0111

The fit metrics for the deconvolution of all the sam-
ples, described in Table VI, show that most of the de-

convolutions reached a high precision. The standard
metric used to evaluating a fit as good is an FOM
lower than 0.025, or in some cases lower than 0.05
[21][18]. Out of all the deconvolutions of CaSO4:Tm,
five samples had a higher FOM than 0.05, as well
as many samples that fall above the 0.025margin.
Other than the deconvolutions for CaSO4:Tm sam-
ples from the UiO experiment, deconvolutions largely
fall below the 0.025 FOM criterion with good margin,
including all the deconvolutions of LTB:Cu samples.

Table VI: FOM for glow curve deconvolutions of
CaSO4:Tm and LTB:Cu curves, showing the mean FOM
for each substance as well as the maximum FOM. FOM
calculated with Equation 33.

Substance FOM Mean FOM Max

UiO CaSO4:Tm 0.027 0.062
UiO LTB:Cu 0.00036 0.0012
AU CaSO4:Tm 0.0134 0.0277
AU LTB:Cu 0.00835 0.00978
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Figure 15: Deconvolution of LTB:Cu mean curve for
P1(see Table I) with three second order peaks. The
difference between the experimental curve and the model
fit, the residue, is shown below the deconvolution.
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Figure 16: Deconvolution of CaSO4:Tm mean glow
curve of P2 (See Table I) with three second order peaks.
The error between the model curve and the experimental
curve is shown in the lowest plot.

Inspecting the distributions of the energy gap E
extracted from glow curve deconvolution in Figure
17 and Figure 18, one can see that for CaSO4:Tm,
the energy gap attributed to the first peak, E1, is
fairly similar for all positions, while for the energy
gap attributed to the second and third peak, E2 and
E3, respectively, the distributions are broader which
indicates the uncertainty of the fit of those peaks.
In general, LTB:Cu, shows more narrow grouping
of extracted parameters for each position. Looking
at Figure 18, there is also a clear difference in the
extracted energy gap for the first peak (E1) for the
positions measured at UiO (P1 and P2 in Table I) in
comparison to the other positions.

C. Prediction of LET

The prediction of LET from the glow curves was first
approached as a regression problem, focusing on the
data collected at Aarhus due to the higher number
of positions.

The investigations into regression models shown in
Table VIII paints a picture of the performance of
different algorithms. The best performing neural
network was a cone structured network of 9 layers,
with a decreasing number of nodes in each hidden
layer, starting at 600 and decreasing for each layer
to 1 in the output layer. This neural network, after
hyperparameter optimization of the learning rate,
only yielded an RMSE of 26.26MeV/cm on the AU
dataset glow curves. Random Forest Regression gave
better results and consistency than a NN, performing
especially well on the extracted statistical features.
RF algorithms performed comparably at their best,
but was still outperformed by PCR and PLSR in most
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Figure 17: Distribution of parameters from
deconvolution fitting of Equation 28 for three peaks
showing parameters CaSO4:Cu glow curves from
positions described in Table I. The UiO positions were
left out of the boxplot of peak intensities Imi, as they
were measured with variable doses.

cases. PCR and PLSR gave similar performance, but
PLSR needed equal or fewer components to reach
the peak performance in all cases. From this it was
concluded that PLS was an appropriate algorithm,
eclipsing PCA based models for the problem, and
so PCA based methods were dropped for further
explorations.

Although many combinations and methods were
tried, a reliable regression model was not achieved,
with the lowest RMSE of the best model reaching
23.35MeV/cm, a mean relative error of 29%. The
best model was built using features from the decon-
volution of LTB:Cu described in Table II with a PLS
regression, shown in Figure 19.

From this result it was clear that the regression model
was unable to generalize the relationship between the
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Figure 18: Distribution of parameters from
deconvolution fitting of Equation 28 for three peaks
showing LTB:Cu glow curves from positions described in
Table I. The UiO positions were left out of the boxplot of
peak intensities Imi as in Figure 17, since they were
measured with variable doses.

data and LET. There was an especially large overlap
between the two lowest LET groups of points, but a
tendency for higher precision at higher LET as seen
in Figure 19.

Table VII: The regression models for each algorithm with
the highest performance on the AU data. RMSE was
evaluated for the training set with LOO validation.

Method Features Marker
RMSE
[MeV/cm]

NN Glow curves LTB:Cu 26.26
RF Statistical LTB:Cu 23.37
PCR Deconvolution LTB:Cu 23.35
PLSR Deconvolution LTB:Cu 23.35

Changing the approach to a classification prob-
lem yielded models with higher performance. The
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Figure 19: Regression model with the lowest RMSE of
23.35MeV/cm, using AU LTB:Cu samples. The red
dashed line shows a perfect prediction. The PLSR model
used all available components, in this case 9 which
corresponds to the total number of features extracted in
the deconvolution ( See Table II)

first classifications were done on samples from each
dataset individually. The models with the highest
performance on the prediction of the four AU posi-
tions described in Table I had a validation accuracy
of 0.8 and a test accuracy of 1.0, although the test
set for this model only consisted of 4 samples, and
so is likely not a representative selection. Two mod-
els performed equally well on this data, both using
PLS classification. The first used samples of LTB:Cu,
with the extracted statistical features shown in Fig-
ure 8 in conjunction with the features obtained from
deconvolution. The second was a concatenation of
the samples from CaSO4:Tm and LTB:Cu, using
only the features extracted from the deconvolution.
The second of these two predictions are shown in
Figure 20. The performance on the three highest
LET classes were highest, while the lowest LET po-
sition (2a) was most often misclassified as well as
the class where most samples from other classes were
misclassified. The highest performing NN, with 7
layers, each with 200 neurons performed worse than
the PLS classification, reaching an accuracy of 0.55
using the standardized glow curves as input. A RF of
250 trees had a performance between the two, with
an accurayc of 0.65.

For the dataset gathered at UiO, approaching the
problem as a binary classification between P1 and P2
gave a satisfactory validation accuracy of 93% using
the features extracted from deconvolution and the
dose of each sample for LTB:Cu, shown in Table IX.
The confusion matrix for this classification is shown
in Figure 21, where the accuracy on the two classes
are relatively equal. The evaluation of the model on
the test set gave a lower accuracy of 87%, indicating
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Table VIII: Classification models of each algorithm with
the highest performance on multiclass classification of
the AU positions described in Table I. The accuracy was
calculated on the training data using LOO validation.
The PLS classification contains both validation and test
accuracy as validation/test.

Method Features Substance Accuracy

NN Glow curves LTB:Cu 0.55

RF
Statistical and
Deconvolution LTB:Cu 0.65

PLS Deconvolution
LTB:Cu and
CaSO4:Tm 0.8/1.0

2a 1a 1b 1c

2a
1a

1b
1c

4 1 1 1

0 5 0 0

2 0 5 0

0 0 0 5

0

1

2

3

4

5

Figure 20: Confusion matrix of multiclass classification
with an accuracy of 80% of the AU glow curves where
each position described in Table I was defined as a class.
This prediction used stacked deconvolution features from
both substances (See Table II).

some overfitting.

Table IX: Results for PLS binary classification on
different groupings of positions described in Table I.
Models were constructed using LTB:Cu with features
extracted from glow curve deconvolution and dose
received by each sample (See Table II). Validation
performance is using LOO validation and test
performance is on the reserved test set, using the whole
training set for training. The test set for P1 vs P2
consisted of 8 samples, while the size of the second test
set was 11 samples.

Classes Validation Test Metric

P1 vs. P2 0.93 0.87 Accuracy
P1, 1a, 1b, 1c, 2a
vs. P2 0.96 1.0 f1-score

Combining the AU and UiO datsets and predicting
a classification of P2 against all other positions de-
scribed in Table I gave a validation f1-score of 0.96,
showing that the samples irradiated in the Bragg
peak (P2) could be classified with high precision.
The same model on the same classes, training on the
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Figure 21: Confusion matrix of binary classification on
UiO positions described in Table I using deconvolution
features (See Table II) of LTB:Cu in addition to the
dose, yielding a classification accuracy of 92.9%.

full training set and evaluating on the reserved test
set gave a perfect classification, as shown in Table
IX. This model used the deconvolution features in
addition to the dose of the sample, removing the
dose from the features significantly reduced the per-
formance of the model to an f1-score of 0.79. Since
these classes were unbalanced, with P2 having 35
member, while the combined class had 56 members,
the f1 score of Equation 45 was used for evaluation.
F1-score can be directly compared to accuracy, since
it reduces to the same metric for balanced classes.
The high performance on this classification indicates
a clear difference between the glow curves irradiated
in the P2 position, in comparison to the others.
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Figure 22: Confusion matrix of binary classification on
UiO and AU positions described in Table I using
deconvolution features (See Table II) of LTB:Cu in
addition to the dose, yielding a classification f1-score of
0.96.
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V. DISCUSSION

A. Overview

The core of this thesis is investigating the transfer of
information from radiation to prediction. Starting
with TLD readings, what information is present from
irradiation and how can it be preserved? The major
concern is to discern what is a relevant signal, and
what is noise. Secondly, what is the optimal way of
compressing the information, without losing impor-
tant signals? Finally, can qualities of the original
irradiation be reliably predicted from the compressed
set of features?

B. Noise and Signals

One important step in the data analysis is the char-
acterisation of clear patterns and noise in the data
that will affect later feature extraction and predictive
modeling. Thermoluminescence is highly dependent
on material properties, where even slight changes in
concentration, crystal structure or purity can have
effects on the outcome [56]. This causes an inherent
noise in TLD measurements, making it challenging to
investigate subtle effects. Another potential source
of noise stems from the fact that glow curves con-
taining high temperature peaks may be affected by
noise from black body radiation from the material
or measurement system itself. As seen in Figure
12 and described in Table IV, although lower, there
is still a dose dependent TL signal at the highest
temperatures of the samples, but there is more noise
present, making analysis of this part of the spectra
difficult. There are some ways to control for this
radiation, including TLD reading of two identical
samples, where one is unirradiated to measure the
black body radiation on its own and then subtract
it from the signal of the other [57]. But such meth-
ods are unlikely to be adopted outside of scientific
enquiry due to the additional equipment and work
required. The temperature at which the glow curves
reach their peak also exhibits a large spread with-
out any clear pattern, as can be seen in Figure 10.
This noise could be caused by many factors, and is
also a critical value for the analysis of glow curves,
since it is strongly connected to the energy gap vari-
able of physical models [7]. Additionally, since the
peak temperature is a parameter of the deconvolution
model, the noise of each sample is propagated into
the extracted parameters of the TL sample. Finding
efficient ways of controlling for noise in TLD samples
and eliminating the effects of black body radiation
without extensive changes to the established exper-
imental routine would be optimal, but is a difficult

task.

As the current major area of use for these materials
is dose estimation [2], the precision in this respect is
the quality that has been optimized for when search-
ing for new TL materials. It might therefore not be
surprising that it is when investigating dose depen-
dent effects that we get one of the easiest to find and
clearest signals. Figure 9 depicting the dose response
shows a linear response for both materials, where the
sensitivity is comparable between the two subtances
as seen in Table III, where the dose response coef-
ficients are both on the order of 107. In this signal
is also where we find the clearest difference between
the positions of the UiO dataset (See Table I). The
dose response shows a clear difference between the
low LET position (P1) and the high LET position
(P2). This is an important finding in itself, as it
shows that TLD measurement devices irradiated in
different depths of the beam, give different TL read-
ings for the same dose. It also shows that an increase
of LET is connected to a decrease in response, which
is slightly counter intuitive. This difference is not
seen in the dose response of CaSO4:Tm, which indi-
cates that less information is transferred to the TL
reading about the beam placement of the sample for
this substance. For standard dosimetry application,
this difference in TL response based on measurement
depth found in LTB:Cu, which has not been found
in the reviewed literature, is an unwanted quality for
simple dose measurements since it creates an addi-
tional factor that has to be taken into consideration.

C. Feature extraction

The task of feature extraction is to compress the infor-
mation present in the data into a smaller number of
features, while retaining the important information.
The key to a successful feature extraction is determin-
ing what information is important to extract. This is
again dependent on what task one wants to complete.
It is therefore often tricky to evaluate whether the
extracted features are a sufficient representation of
the dataset without evaluating them in the specific
task one has chosen them for.

For the statistical features shown in Figure 8, the
main evaluation outside of model testing was the
Pearson correlations shown in Figure 14 and Figure
13. The most important correlation, pointing to pre-
dictive power, was the correlation with the target
variable, LET. The higher correlation between the
statistical features of LTB:Cu and LET gave an indi-
cation that the samples of LTB:Cu would be a better
predictor of LET, before any models were built. The
high correlation between features correlated with
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dose and LET in LTB:Cu, also hinted at the relation-
ship between position and dose response shown so
clearly in Figure 9. This extraction not only served
the purpose of creating a set of features to be used
for constructing predictive models, but gave a deeper
understanding of how the different expressions of the
glow curve were connected.

The second method to distill the information in the
TLD reading was glow curve deconvolution. The
basis for this method lies in the understanding of
the physical mechanics of thermoluminescence. This
offers some assurance of the ability to extract impor-
tant information relating to the TL sample, as there
is a large volume of literature underlying the models.
The major evaluation is then how this physical un-
derstanding is used to build TL models, how these
models are applied through fitting to the glow curves,
how accurate the TL models are on the relevant TLD
data and how well they propagate the most relevant
information for the construction of predictive models.

Perhaps the critical point of a glow curve deconvo-
lution is the selection of TL model. This consists
of selecting the number of underlying peaks of the
glow curve, as well as what equations to use, which
determine the parameters of a single peak [18]. As de-
scribed earlier, there are a number of models making
different assumptions, each with their own benefits
and drawbacks. The difference between them lies in
the necessary simplification into a model that can
be practically applied. Most of them are based on
the same underlying physics of the Braunlich Schar-
man model, described most completely by the four
differential Equations 9, 10, 11 and 12. Selecting a
model to use based on these equations constitutes
determining or assuming something about the pro-
portion of electrons and holes in the conduction and
valence band, their rates of change, if both retrapping
and recombination is radiative, as well as whether re-
trapping or recombination is dominant when the TL
material is heated [7]. These qualities can be difficult
to determine with a high certainty for TLD samples,
even for materials that have a long history in TLD, as
they depend on the method of synthesis, distribution
of flaws in the material and doping concentrations
[37] [56][7]. Without a complete knowledge of the
nature of these mechanics in the investigated TL ma-
terial, model selection is based on earlier literature
as well as intuition gained through exploration.

The initial exploration of models, staring with a
brute force search of different peaks and orders based
on the mean curve of the samples from the UiO
data gave a single model for LTB:Cu, that had both
the lowest RMSE as well as clearly separated peaks.
The situation of one large peak being interpreted
as a superposition of smaller peaks risks an overly

complicated deconvolution, and so clearly separated
peaks are preferable, since it simplifies the model.
That the initial search gave one model that had clear
advantages over the other made the choice of model
for deconvolution of samples of LTB:Cu relatively
simple, while the choice for CaSO4:Tm required more
consideration.

Since the search for models through brute force did
not yield one clear preference, the choice of model
for CaSO4:Tm was based mostly on a combination
of earlier literature and judgement through visual
inspection. The dominant peak of CaSO4:Tm had a
very good fit to the second order model, as seen in
Figure 16, which combined with the clear presence
of a shoulder, which was also supported by the liter-
ature, led to the choice of a second order model with
three peaks [38]. For CaSO4:Tm in particular, the
choice of three peaks lead to a high temperature peak
that was largely outside the range of measurement.
This led to a larger uncertainty in the deconvolution
parameters extracted, as can be seen i Figure 17,
as well as an increased uncertainty in drawing any
conclusions about the physical qualities of the trap
associated with this peak, considering the increased
noise, likely from black body radiation seen in Fig-
ure 12. However, a deconvolution without this peak
would risk the LM algorithm reducing its precision of
the other peaks in the glow curve to fit the intensity
of the high temperature rise, it was then seen as
preferable to fit a third peak, keeping its uncertainty
in mind. Another method that could have been used
was to cut out the high temperature region entirely,
although that would create a challenging judgement
of where this border is best put, as well as risk the
loss of important information that could be of later
use to the predictive models.

One exploration that could have been considered
more closely, was the option of a different model
for each peak. The dominant CaSO4:Tm peak fits
very well to a second order model, indicating the
dominance of retrapping, but this is difficult to claim
for the second and third peaks. Ending up with
a model of the same order with an equal number
of peaks for both materials was coincidental, but
convenient in further analysis, as it offered a more
similar comparison between the substances through
an equal number of features.

Glow curve deconvolution seems like a useful way
of analysing dosimetry samples, but there is signif-
icant uncertainty connected to the accuracy of the
parameters that are extracted. It is simple to find
a deconvolution that fits a single sample, but when
studying distributions of samples it is clear that the
noise involved in TLD measurements is affecting the
result, or the methods used are not as physically pre-
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cise as one might assume. There are, for each sample
and position, multiple deconvolutions that would be
considered by many as a valid fit of the curve. How
one chooses a fit must then be based on literature
and a certain amount of intuition. Removing this
subjective part of the deconvolution would be opti-
mal, and finding ways to support the deconvolution
with additional analysis or measurements would be
helpful in increasing the precision of determining
these parameters.

As presented earlier, methods like the initial rise
method, triple point method and Hoogenstraads
method, attempt to simplify the calculation of the
energy gap, but these also have drawbacks and spe-
cific requirements of the data [19][20]. Models that
use more complex physical interpretations, making
fewer assumptions can also be applied, but when
increasing the number of parameters in the equation,
both computational requirements and the space of
local minima increases.

D. LET predictions

As seen in Figure 20, the classification of the four
groups of samples in the AU dataset was possible to
a certain degree, giving an overall LOO validation
accuracy of 80 %. The low LET groups were espe-
cially hard to discern in the classification, this can
also be seen in the regression, where the groups with
the lowest LET have a larger overlap with the other
groups. The classification of the four AU groups
in Figure 20 is also the only model that performed
best using samples from CaSO4:Tm in addition to
LTB:Cu. The prediction on the test set gave a perfect
prediction, but since the test set only consisted of 4
positions, it is likely that this is not a representative
performance of unseen data. Since LOO validation
is unbiased in its split and the training set consisted
of 24 samples, the validation performance is likely a
better description of the of the model’s capability.

The results of the binary classification models in Ta-
ble IX shows that separating groups of points that
have a wide contrast of LET values can be done with
fair precision, while points that have comparable
LET values are harder for the model to differentiate.
This might be caused by the inherent noisiness of
the data, limiting the detection of small differences
that might be present. The high performance of the
algorithms on separating the position located in the
Bragg peak (P2), as well as the tendency for higher
regression precision towards higher LET seen in the
regression predictions, might also indicate that there
are some LET dependent effects that are more visible
as the LET grows. The binary classification of P2

against the rest, shown in Figure 22 demonstrates
that the samples irradiated in position P2 contain
some uniqueness that can be modeled. This is es-
pecially promising since there are samples from the
UiO dataset in both classes, which excludes the op-
tion that the algorithm is simply separating datasets.
Combining positions in the low LET class also im-
proves the classification accuracy on the high LET
class (P2), in comparison to the P1 vs. P2 binary
classification. Combining the two datasets also in-
creased the prediction performance on unseen data
to a perfect prediction. This indicates that more
samples could improve the model further, since it
not only improved performance, but also decreased
overfitting to the training set.

Out of the different features that were extracted,
the features of the glow curve deconvolution resulted
in the models with highest performance for most
applications, although the statistical features often
performed comparably. Glow curves generally per-
formed worse, which is likely due to the high number
of redundant features. Since each point in the glow
curve is very highly correlated with its neighbouring
points, most of the information stored in each feature
is not unique. Additionally, the computational time
of using glow curves is much larger than the two
smaller set of features, especially for the RF and NN
algorithms. This result shows that feature extraction
for models built on TLD data not only simplifies the
problem, but improves the performance.

The other aspect of the model exploration, the choice
of algorithm, showed that the balance between com-
plexity and simplification was essential. Neural net-
works, the most complex and computationally de-
manding algorithm, gave the worst results. Although
it is likely that with enough fine tuning, one could
find a neural network architecture that would per-
form as well as PLS or RF, the work required to
explore the search space of possible models, and to
tune them, is unlikely to be worth the effort, at least
for datasets of the size used in this work.

Reviewing the literature concerning the prediction
of LET using glow curves shows varying degrees of
success. Most studies attempt to find regression mod-
els to estimate the LET, as that is the most direct
practical use. One attempt to find a correlation be-
tween peak temperature and LET with Caso4:Dy
and CaF2:Tm found an increased response of the
high temperature peaks to high LET radiation, but
no change in peak position [58]. Another study, in-
vestigating the incidence of intermediate energy ions
on TLD-100 (LiF:Mg,Ti), found a dependence on
LET, but concluded that the parameter was not
estimable from the glow curve [59]. One paper de-
scribing LET estimations from TLD-600 (Li:Mg, Ti)
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on space stations using the Peak Height Ratio (PHR)
was able to deduce LET within a 10% margin [9],
this is a significantly higher performance than the
mean relative error of 29% of the best regression
model produced in the current work. No examples
in the reviewed literature was found approaching the
problem as a classification, and so no comparative
result is available. Some researchers, among them Y.
Horowitz, even condemn the practice of investigating
LET phenomena using TLD [60], claiming that TL
is a rigorous physical phenomenon and that LET is
not. Though quite a bombastic statement, there is
a point to be made that (from the reviewed litera-
ture) there is not much research looking rigorously
at the physical mechanisms that must be in place for
a connection between TLD and LET to be present.

Although a reliable regression model was not found,
the high accuracy of classification indicates that there
is a depth dependent effect that can be predicted.
As classification in the case of PLS is a regression
followed by threshold, improving classification on
more groups with higher precision is the same as
building a regression model. One key point is that
the choice of substance is paramount in being able
to create predictive models. All the models with
the highest performance in this work used data from
samples of LTB:Cu. For the models to work, there
has to be a physical mechanism in the material that
is dependent on the variable that is being predicted.

E. The physics of LET dependence

From the results in this work, the samples of LTB:Cu
were the best predictors of LET. From the reviewed
literature, materials showing a significant LET de-
pendence are lithium compounds. Materials contain-
ing 6Li have a significant cross section to thermal
neutrons, where the 6Li atoms absorb a neutron
and emit α particles [61]. This reaction is present
in materials which include TLD-100, TLD-600 and
TLD-700 [61]. LTB also containts some part 6Li, and
has even been used to construct a neutron detector
[62]. Thermal neutrons have been shown to produce
high temperature glow peaks in TLD-600 and TLD-
700[63]. Proton beam therapy is known to produce
secondary neutrons as an additional source of irradi-
ation [64]. The production of secondary neutrons is
a phenomoenon dependent on many factors, energy
and LET among them [64]. This relationship is not
one seen clearly stated in the reviewed literature,
but it seems likely that a factor of LET dependence
seen in TLD materials containing 6Li is caused by
secondary neutrons. This mechanism could affect
the dose efficiency by changing the distribution of
excited electrons in the traps of the material, leading

to different peaks being exhibited in the glow curve,
as has been shown in TLD-600 and TLD-700 [63].
It could also cause local saturation along the track
of the primary and secondary particles, as will be
discussed. The α particles produced by the absorp-
tion of neutrons by 6Li could also affect the glow
curve as they could be a secondary source of elec-
tron excitation. In contrast, CaSO4:Tm does not
contain isotopes exhibiting a high sensitivity to ther-
mal neutrons, which could be an explanation for the
difference between the materials [61].

If correct, this LET dependence in these materials
would only be present when irradiated with sufficient
energy to produce secondary neutrons. As only pho-
ton radiation with an energy higher than 10MeV
produces a considerable amount of neutrons[64], this
effect would could be present in very high energy pho-
ton irradiation, but would not be seen in lower energy
photon irradiation. Studying this phenomenon more
closely could be done by investigating the extent
of the production of secondary neutrons in proton
therapy, its dependence on LET and the effect of
secondary neutrons on the glow curves of TLD ma-
terials. Extending the temperature range to higher
temperatures would also be practical, to measure any
high temperature peaks that are above 350◦C.

Another potential LET dependent effect is the satu-
ration of the energy track by high LET irradiation.
Increased LET has in TLD-700 shown to decrease
the dose relative TL response due to the saturation
of energized electrons along the particle track[65].
By exciting more electrons along the particle track
than there are traps within the range of the excited
electrons, energy is deposited without being mea-
sured as TL when heated, causing a lower TL signal
efficiency. This fits for the dose response of LTB:Cu
in Figure 9, where the high LET position(P2), shows
a lower dose measurement efficiency. However, for
CaSO4:Tm there is no significant difference, pointing
to a difference in the two materials, which could be
the density of available traps. If CaSO4:Tm has a
higher density of available traps, to the point where
it does not reach local saturation along the beam
track, then it would not exhibit a lowered response to
high LET irradiation due to beam track saturation.
This would only be true up to a limit, as the material
must reach saturation at some finite level, and so
could be tested by experimenting with higher doses..

For the peak intensity of the four positions of the
AU dataset in the right plot of Figure 11, peak in-
tensity increased with LET, up until the highest
LET group. This could fit with saturation along the
particle track, if local saturation starts somewhere
between 94MeV/cm and 121MeV/cm. However, in
contrast to the difference in dose response seen in the
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UiO data of Figure 9, this pattern was present for
both LTB:Cu and CaSO4:Tm. This could possibly
be caused by the higher energy of the protons in the
AU experiment..

F. Limitations

The main challenges of the dataset were the number
of samples, distribution of positions and heating rate.
As the dataset was small, many of the solutions, es-
pecially using neural networks and random forests,
were unstable and exhibited a significant amount of
variation. This could be somewhat limited by in-
creasing the number of trees in the case of random
forests, but would likely be decreased more effectively
by increasing the number of samples. An increased
amount of samples is also likely to improve the per-
formance of the models, indicated by the highest
performing models being the ones with the largest
amount of samples, utilizing a combination of the
AU and UiO datasets. The second challenge was
the irradiation position of the samples. If one wants
to construct a regression model, positions that are
spread over the entire distribution of LET values,
instead of distinct categories, offer a more diverse
source of information to construct the models from.
The last challenge connected to the dataset was the
heating rate used to measure the samples, 5K/s,
which was a constraint of the equipment used to mea-
sure the TL signal. Most scientific analysis of glow
curves prefer a lower heating rate, as a high heating
rate can cause increased overlap between the peaks
and shift the temperature of the peaks to a higher
range [2]. A lower heating rate would then create
more precise deconvolutions, leading to more repre-
sentative features for the construction of models, as
well as more precise parameters for the TL materials
in question. An important challenge not connected
to the data was the search for comparable work on
glow curve analysis and parameter extraction in the
literature. Since experiments of TLD materials vary
in a myriad of ways, including material, material
synthesis, radiation type, measurement methodology
it is difficult to find examples for comparison. An
idealistic solution to this would be a common open
database of glow curves and deconvolutions, offering
a lexicon of data for comparison and investigation.

G. Further Work

For the further work of creating models to predict
radiation qualities using TLD reading, there are may
avenues to explore. As the building block for any
good model is good data, an important path is the

completion of further experiments exploring different
positions, materials and energies. Another interest-
ing possibility is a wider exploration of the processing
of the glow curves, including different explorations of
curve scaling, extraction of further statistical features
or using machine learning techniques like autoencod-
ing to extract reduced dimensions containing the
important information. Another path is exploring
the underlying physical phenomena, especially the
connection between secondary neutron generation
and 6Li is worthy of interest. One option could be to
test how different proportions of 6Li in the material
affect the glow curve and whether this can be seen to
directly connect to the LET dependence of the mate-
rial. Another path could be to study the secondary
neutron production of proton radiation in TLD ma-
terials, this could contribute to the understanding of
LET dependence, as well as the effect of secondary
neutrons as a source of irradiation in patients. Since
a physical mechanism must be present that propa-
gates the necessary information to the data for the
models to be able to make predictions, the most es-
sential work is perhaps identifying and investigating
what this physical mechanism is, and how to most
efficiently use it to create better models.

VI. CONCLUSION

Based on the findings in this thesis, using TLD ma-
terials to predict LET with these methods in a way
that is practical in the day-to-day operation of proton
therapy facilities or space applications is still imprac-
tical at best. However, the effect of variance in LET
on the response of TLD materials is important in
accurately understanding the TLD readings from ma-
terials already widely in use. The significantly lower
dose response of samples of LTB:Cu irradiated in the
Bragg Peak in comparison to before it, has impacts
for the interpretation of TL readings of dosimeters
based on this material. That a classification model
can separate samples irradiated in four different re-
gions with a validation/test accuracy of 0.8/1.00, and
differentiate between samples irradiated in and out-
side of the Bragg Peak with a validation/test f1 score
of 0.96/1.00 shows that there is a difference that can
be modeled in the readings of these positions, and
a promising indication that future models can be
built to determine these parameters more finely. It
is however clear that there has to be an underlying
physical mechanism that transfers the information
about the LET in a way that is stored in the material
and can be predicted by the models. It might there-
fore be most beneficial to investigate the physical
mechanism that underlie the LET dependence seen
in these results, to gain information about how to
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gather data to construct high performing models.
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[9] W. Schöner, Norbert Vana, Manfred Fugger, and
E. Pohn. The peak-height ratio (htr)method for
let-determination with tlds and an attempt for a
microdosimetric interpretation. 01 1997.
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VIII. APPENDIX

Table X: Regression results for AU data different
combinations of algorithms, features and
substances.RMSE was computed with LOO [49] on the
four groups of the AU data (See Table I).

markers features RMSE algorithm

LTB raw curves 26.41 PLSR
CaSO4 raw curves 24.95 PLSR
LTB and CaSO4 raw curves 30.23 PLSR
LTB decon + stat 24.71 PLSR
CaSO4 decon + stat 32.56 PLSR
LTB and CaSO4 decon + stat 29.70 PLSR
LTB decon 23.35 PLSR
CaSO4 decon 29.73 PLSR
LTB and CaSO4 decon 27.89 PLSR
LTB stat 29.37 PLSR
CaSO4 stat 33.02 PLSR
LTB and CaSO4 stat 30.31 PLSR
LTB raw curves 26.94 PCR
CaSO4 raw curves 24.45 PCR
LTB and CaSO4 raw curves 28.99 PCR
LTB decon + stat 24.62 PCR
CaSO4 decon + stat 31.34 PCR
LTB and CaSO4 decon + stat 28.99 PCR
LTB decon 23.35 PCR
CaSO4 decon 29.14 PCR
LTB and CaSO4 decon 27.24 PCR
LTB stat 29.72 PCR
CaSO4 stat 32.14 PCR
LTB and CaSO4 stat 29.44 PCR
LTB raw curves 31.31 RF
CaSO4 raw curves 28.91 RF
LTB and CaSO4 raw curves 30.42 RF
LTB decon + stat 24.86 RF
CaSO4 decon + stat 33.65 RF
LTB and CaSO4 decon + stat 26.55 RF
LTB decon 30.73 RF
CaSO4 decon 28.93 RF
LTB and CaSO4 decon 30.09 RF
LTB stat 23.73 RF
CaSO4 stat 34.12 RF
LTB and CaSO4 stat 24.31 RF

Table XI: Classification results for different combinations
of algorithms, features and substances. Accuracy was
computed with LOO [49], binary classifications were
between the two groups of the UiO data, while the
muliclass classifications were on the four groups of the
AU data (See Table I).

markers features Accuracy algorithm

LTB raw curves 0.6500 PLS bin UiO
CaSO4 raw curves 0.7000 PLS bin UiO
LTB and CaSO4 raw curves 0.7000 PLS bin UiO
LTB decon + stat 0.8000 PLS bin UiO
CaSO4 decon + stat 0.6000 PLS bin UiO
LTB and CaSO4 decon + stat 0.8500 PLS bin UiO
LTB decon 0.8500 PLS bin UiO
CaSO4 decon 0.5500 PLS bin UiO
LTB and CaSO4 decon 0.6500 PLS bin UiO
LTB decon - HTP 0.7500 PLS bin UiO
CaSO4 decon - HTP 0.7500 PLS bin UiO
LTB and CaSO4 decon - HTP 0.6500 PLS bin UiO
LTB raw curves 0.6500 RF bin UiO
CaSO4 raw curves 0.6000 RF bin UiO
LTB and CaSO4 raw curves 0.6500 RF bin UiO
LTB decon + stat 0.6500 RF bin UiO
CaSO4 decon + stat 0.5000 RF bin UiO
LTB and CaSO4 decon + stat 0.5000 RF bin UiO
LTB decon 0.6000 RF bin UiO
CaSO4 decon 0.5000 RF bin UiO
LTB and CaSO4 decon 0.4000 RF bin UiO
LTB decon - HTP 0.6000 RF bin UiO
CaSO4 decon - HTP 0.4500 RF bin UiO
LTB and CaSO4 decon - HTP 0.4500 RF bin UiO
LTB raw curves 0.5800 PLS multi AU
CaSO4 raw curves 0.5000 PLS multi AU
LTB and CaSO4 raw curves 0.7083 PLS multi AU
LTB decon + stat 0.7900 PLS multi AU
CaSO4 decon + stat 0.5500 PLS multi AU
LTB and CaSO4 decon + stat 0.6500 PLS multi AU
LTB decon 0.6000 PLS multi AU
CaSO4 decon 0.6000 PLS multi AU
LTB and CaSO4 decon 0.8000 PLS multi AU
LTB decon - HTP 0.6000 PLS multi AU
CaSO4 decon - HTP 0.3500 PLS multi AU
LTB and CaSO4 decon - HTP 0.4500 PLS multi AU
LTB raw curves 0.6000 RF multi AU
CaSO4 raw curves 0.2000 RF multi AU
LTB and CaSO4 raw curves 0.5500 RF multi AU
LTB decon + stat 0.6500 RF multi AU
CaSO4 decon + stat 0.5500 RF multi AU
LTB and CaSO4 decon + stat 0.5500 RF multi AU
LTB decon 0.5000 RF multi AU
CaSO4 decon 0.2500 RF multi AU
LTB and CaSO4 decon 0.4000 RF multi AU
LTB decon - HTP 0.5000 RF multi AU
CaSO4 decon - HTP 0.3000 RF multi AU
LTB and CaSO4 decon - HTP 0.3500 RF multi AU
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Synthesis of Li2B4O7: Cu polycrystalline material 

The polycrystalline material of 0.05 mol% copper doped lithium tetraborate was synthesized 

using standard two step solid-state reaction method. The reactants were taken in a 

stoichiometric composition ratio of 0.95 mol% of lithium carbonate (99.99% pure, Sigma-

Aldrich Chemical company, USA), 0.05 mol% of copper oxide (purity 99.99%, Sigma-Aldrich 

Chemical company, USA) and 4 mol% of boric acid (purity 99.9%, Sigma-Aldrich Chemical 

company, USA). In the first step, the stoichiometric mixture was taken in a porcelain crucible 

and was kept at a temperature of 400 °C for 6 h to eliminate the absorbed water content present 

in the mixture. After cooling to room temperature, the mixture was once again well-grounded 

using an agate mortar. In the second step, the product was sintered at 750 °C for 3 h to eliminate 

carbon-di-oxide present in the mixture and for the formation of Li2B4O7: Cu compound. The 

synthesis chemical reaction is given by the following equation, 

𝐿𝑖2𝐶𝑂3 + 4𝐻3𝐵𝑂3 + 0.05𝐶𝑢𝑂 →  𝐶𝑢0.05 ∶ 𝐿𝑖2𝐵4𝑂7 + 6𝐻2𝑂 ↑ +𝐶𝑂2.05 ↑ 

Synthesis of CaSO4: Tm polycrystalline material 

Calcium sulfate doped with thulium (Tm3+) was prepared by the co-precipitation method. This 

method is a classic and simple approach for the synthesis of nanophosphor substances. The 

process involves the precipitation of salt (such as sulfates, nitrates and chlorides) in aqueous 

solutions by adding a base such as (NH4)2SO4, NaOH, or similar. Here, CaCl2, (NH4)2SO4 and 

TmCl3 were used as the starting ingredients. CaSO4: Tm was prepared by dissolving CaCl2 

(99.9% trace metals basis, Sigma-Aldrich Chemical company, USA) with TmCl3 (99.99% 

trace metals basis, Sigma-Aldrich Chemical company, USA) and (NH4)2SO4 (≥99.0% purity, 

Sigma-Aldrich Chemical company, USA) in deionized water. When the two solutions were 

mixed together, the CaSO4: Tm nanophosphors co-precipitated. The clear liquid with chlorine 

content on the top of the precipitates was removed. The precipitates were allowed to settle 

Figure 23: Procedure for TLD sample synthezis.
Provideed by Post. Doc Ravikumar Nattudurai at the
University of Oslo.
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Figure 24: Squared RMSE for the exploration of
deconvolution fits of LTB:Cu with models of different
order and with a different number of peaks.
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Figure 25: Squared RMSE for the exploration of
deconvolution fits of CaSO4:Tm with models of different
order and with a different number of peaks.
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Figure 26: Classification performance of explored models
described in Table XI using different markers and
different features, each combination of these two
variables contain points for two algorithms, RF
regression and PLS classification.
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Figure 27: Regression performance of explored models
described in Table X using different markers and
different features, each combination of these two
variables contain points for three algorithms, RF
classification, PLSR and PCR.

Table XII: Investigation into neural network
classification and regression on the AU dataset using
samples of LTB:Cu.

layers Task Performance Architecture

9 Classification
Accuracy
0.50 Cone

7 Classification
Accuracy
0.55 Linear

6 Regression

RMSE
34.57
MeV/cm Cone

8 Regression

RMSE
33.18
MeV/cm Linear

8 Regression

RMSE
26.26
MeV/cm Cone
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