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ABSTRACT

In modern agriculture, it is imperative to ensure that crops are healthy and safe for consumption.
Fusarium Head Blight (FHB) can cause significant damage to wheat grains by reducing essen-
tial components such as moisture, protein, and starch, while also introducing dangerous toxins.
Therefore, accurately distinguishing between healthy and FHB-infected wheat grains is essential
to guarantee stable and reliable wheat production while limiting financial losses and ensuring food
safety. This thesis proposes effective methods to classify healthy and FHB infected wheat grains
using Hyperspectral Imaging (HSI) and Red Green Blue (RGB) images. The approach includes
a combination of Principal Component Analysis (PCA) with morphology, in addition to dark and
white reference correction, to create masks for grains in each image. The classification for the
hyperspectral images was achieved using a Partial Least Squares Discriminant Analysis (PLS-DA)
model for hyperspectral images and a Convolutional Neural Network (CNN) model for RGB im-
ages. Both object-based and pixel-based approaches were compared for the PLS-DA model. The
results indicated that the object-based approach outperformed the pixel-based approach and other
well-known machine learning algorithms, including Random Forest (RF), linear Support Vector
Machine (SVM), Stochastic Gradient Descent (SGD) calibrated one-vs-all and DecisionTree. The
PLS-DA model using the object-based method yielded better results when tested on all wheat vari-
eties, achieving an F1-score of 99.4%. Specific wavelengths were investigated based on a loading
plot, and four effective wavelengths were identified, 953 nm, 1373 nm, 1923 nm and 2493 nm,
with classification accuracy found to be similar to the full spectral range. Moreover, the moisture
and water content in the grains were analyzed using hyperspectral images through an aquagram,
which demonstrated that healthy grains exhibited higher absorbance values than infected grains for
all Water Matrix Coordinates (WAMACS). Furthermore, the CNN model was trained on cropped
individual grains, and the classification accuracy was similar to the PLS-DA model, with an F1-
score of 98.1%. These findings suggest that HSI is suitable for identifying FHB-infected wheat
grains, while RGB images may provide a cost-effective alternative to hyperspectral images for
this specific classification task. Further research should consider to explore the potential bene-
fits of HSI for deeper investigations into how water absorption affects spectral measurements and
moisture content in grains, in addition to user-friendly interfaces for deep learning based image
classification.
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1 Introduction

1.1 The Power of Wheat - Driving Agricultural Innovation

As of today, wheat (Triticum aestivum L.) holds a prominent position in global agriculture. Human
nutrition is closely related to grain consumption; wheat is one of the basic pillars of the human
diet along with maize and rice, and about 35% of human’s calories intake comes from these crops
[4]. Production of these three grains has increased greatly over the last 6 decades [5]. In the
ensuing decades, there will likely be a significant rise in the demand for wheat due to population
growth, shifting dietary trends, and the growing use of wheat in the production of biofuels [6]. As
a result, wheat farmers will face even more pressure to increase crop production while maintaining
sustainability. Due to an increase in the frequency and severity of droughts, floods, and other
extreme weather events, climate change is likely to exacerbate the problems with wheat production.
Researchers are working to develop new wheat varieties that are more resistant to diseases and
pests, as well as more tolerant of drought and other environmental stresses [7, 8]. This could help
to improve yields and reduce losses due to factors like Fusarium Head Blight (FHB).

1.2 Impacts of FHB in Agriculture

FHB is a devastating fungal disease that poses a significant threat to wheat agriculture worldwide.
It can cause substantial reductions in both the quantity and quality of grain, leading to yield losses
of up to 40% [9]. The invasion of wheat kernels by Fusarium fungus and subsequent decomposi-
tion of storage proteins and starch within the pericarp leads to significant losses of water, protein,
and starch content, resulting in the withering and shrinkage of the grains. This ultimately leads to
high crop failure and a reduction in quality [10]. In addition, FHB can produce harmful mycotox-
ins such as deoxynivalenol (DON), which can contaminate food and make it inedible for human
or animal consumption [11]. The conventional methods of detecting FHB predominantly rely on
visual interpretation by trained personnel or employment of various chemical techniques such as
gas chromatography (GC), high-performance liquid chromatography (HPLC), enzyme-linked im-
munosorbent assay (ELISA), and polymerase chain reaction (PCR) to identify the presence of FHB
and the production of the mycotoxin DON. However, these methods are characterized by their time
and labor-intensive nature, their inability to facilitate large-scale monitoring and their destructive
effects on wheat [12, 13, 14, 15]. FHB causes economic losses of billions of dollars each year and
can have a significant impact on food security, especially in developing countries [16]. Factors such
as weather conditions, cropping systems, and fungicide use can influence the prevalence and sever-
ity of FHB outbreaks. Therefore, as previously stated, developing FHB-resistant wheat varieties is
therefore crucial for ensuring agricultural productivity and food safety.
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1.3 Machine Learning-Based Detection of Fungal Infections

To minimize crop loss due to fungal infections such as FHB, the use of Machine Learning (ML)
algorithms for easier detection of infections has been proposed. One promising approach is Hyper-
spectral Imaging (HSI), which enables the study of wavelengths outside the visible range, specifi-
cally in the Near Infrared (NIR) range. By extracting spectral information from each pixel in every
band, it is possible to spot specific spectral characteristics in the grains that indicate the presence of
infections. Hyperspectral images, which contain a large number of bands, are therefore useful for
capturing more spectral information. However, noise can affect the results when analyzing the pixel
values and differentiating the grains. To address this issue, preprocessing techniques for hyperspec-
tral images are commonly used. By applying ML algorithms to hyperspectral images, the detection
of fungal infections in grains can be automated and made more accurate. Deep learning computer
vision techniques, particularly Convolutional Neural Network (CNN), have proven to be effective
for analyzing grain images under varying field conditions and diverse plant phenotypes. This ap-
proach is considered state-of-the-art for image classification and segmentation [17]. However, the
primary challenge in training a CNN to accurately distinguish between healthy and infected grains
under different conditions lies in the extensive amount of annotated training data required. There-
fore, the data must span a wide range of natural variability, including images of both healthy and
infected kernels [18]. The manual annotation of thousands of images is a time-consuming and
costly process.

1.4 Related Works

The development of ML has already been extended to FHB detection and there exists a significant
amount of research on the topic, particularly with regards to wheat grains. Qiu et al. [19] conducted
a study utilizing a Deep Neural Network (DNN) with transfer learning, in conjunction with color
imaging, for the detection of FHB-affected wheat spikes. The method for detection and segmenta-
tion of wheat spikes employed a region growing technique, whereby a pixel is initially selected as
the seed point, and its surrounding pixels are compared and evaluated with it. Additionally, image
augmentation was applied to increase the amount of data available for training the DNN, with a
total of 2829 images utilized. Results indicated that the DNN, in addition to a Green Blue color
feature to highlight the diseased areas of each spike, achieved a mean average precision score of
92% and R2 = 80%. It is noteworthy that limitations in the study included blurred images and a
limited Field of View (FOV) to detect spikes.

Another study from Yipeng et al. [10] also represented a DNN, but with the use of monochromatic
images. The model was trained to distinguish between sound, mildly, moderately and severely
damaged wheat kernels. Effective wavelengths were chosen and the model received an accuracy of
100% and 98.31% in the training and prediction sets, respectively.

Zhao et al. [20] used metabolomics to analyze the differences in metabolic profiles between two
wheat cultivars with different levels of resistance to FHB caused by Fusarium graminearum. The re-
searchers found that specific amino acids, such as proline and alanine, increased resistance to FHB,
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while cysteine aggravated susceptibility. Partial Least Squares - Discriminant Analysis (PLS-DA)
was used to validate the data, with VIP values of greater than 1 identifying significant metabolite
differences. This research provides valuable insights into the metabolite differences of two wheat
cultivars in response to F. graminearum infection and highlights the potential of using metabolomics
and PLS-DA for exploring the mechanisms involved in FHB resistance.

In addition to the use of metabolomics and PLS-DA in exploring the mechanisms involved in FHB
resistance, there have been interesting applications of aquaphotomics in food science. For instance,
a study from Malegori et al. [21] investigated in the relationship between water activity and the
molecular structure of rice germ. The study found that the state of the rice germ is influenced by
the water activity during storage, which is defined by the structure of water within the germ matrix.
The absorbance spectral pattern at several absorbance bands was found to be descriptive of the
water structure.

Another study from Atanassova et al. [22] aimed to investigate the feasibility of using NIR and
aquaphotomics to monitor changes during the ripening of Bulgarian yellow cheese from cow milk.
The study analyzed samples at various stages of ripening and found significant changes in the
aquagram patterns, which were related to changes in titratable acidity and protein fraction. The
study suggests that NIR spectroscopy and aquaphotomics have potential as tools for monitoring
cheese ripening stages.

Although aquaphotomics has been extensively studied in fields like food science and medicine, its
application in the analysis of wheat grains has been relatively underexplored. This research gap
presents an opportunity to explore the potential for further research on the use of aquaphotomics as
a tool for detecting FHB infection and monitoring the quality of wheat grains.

1.5 Outline of Thesis Structure

This thesis aims to develop a method for automatic detection of healthy or FHB infected grains
using hyperspectral images with spectral information in the NIR range, in comparison to low-cost
and more computationally efficient RGB images. To this end, this thesis proposes unsupervised and
supervised models to classify objects and their corresponding pixel values effectively. Furthermore,
this study explores the performance of classifiers and deep learning models for binary classification
of wheat grains based on RGB and hyperspectral images using Pixel Majority (PM) and Average
Mean Spectrum (AMS) classification methods.

Moreover, this study considers the relatively new field of aquaphotomics, which focuses on the
use of infrared spectroscopy to investigate the interactions between water and biological samples.
Wheat grains contain a considerable amount of water, and aquaphotomics can provide valuable in-
formation about their quality, including moisture content. Hence, aquaphotomics offers a promising
tool for detecting FHB infection in wheat grains, as the spectral characteristics of water can reflect
changes in the grain’s chemical composition and structure caused by the disease.

To explore the potential of aquaphotomics for FHB detection, this study creates an aquagram from
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Extended Multiplicative Signal Correction (EMSC) processed spectra with Standard Normal Vari-
ate (SNV) correction to display certain wavelengths that could be affected by water content in the
grains. By incorporating aquaphotomics as a tool, this study provides a novel approach to FHB
detection in wheat grains.

The purpose of this study was to investigate the following research questions:

• How do classifiers and deep learning models perform in the classification of healthy or FHB-
infected wheat grains based on RGB and hyperspectral images using pixels-based and object-
based methods?

• Can RGB images replace hyperspectral images for binary classification of wheat grains, and
what is their accuracy compared to hyperspectral images?

• How is the moisture and water content of healthy and infected grains, represented through
aquagram?

4



2 Theory

2.1 Visual Data Analysis

Visual data analysis is a field that aims to allow machines to have the ability to analyze and interpret
image data in a similar manner to human beings [23]. A data analysis system compromises images
and videos to extract information along with additional data like timestamps, camera settings, or
sensor readings [23]. The system’s output may take different forms, such as an enhanced repre-
sentation of the input image, or a ”decision” based on the image content, such as identifying or
counting objects, like seeds or grains. The primary goal of data analysis is to replace human vision
in various challenging tasks, such as medical image analysis, autonomous driving, and quality con-
trol in industrial production. However, these tasks pose significant challenges for computers, which
are better suited to processing static concepts and forms rather than abstract concepts that can take
on multiple forms [18]. Visual data analysis can be classified into four main types of tasks: image
classification, semantic segmentation, object detection, and instance segmentation [1]. These tasks
involve identifying the content of an image, categorizing pixels into various classes, locating ob-
jects within an image, and determining the boundaries of individual objects, see Fig. 2.1. The key
point of segmentation is to identify the most essential and valuable data by categorizing a larger set
of data into smaller and more manageable segments based on specific criteria. While this process
may involve excluding redundant data, the main focus is on grouping the data according to their
relevant characteristics [24].

Fig. 2.1: Classification, semantic segmentation, object detection, instance segmentation.
Source: [1].
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2.2 Hyperspectral Sensing

Hyperspectral sensing is a powerful technique that involves using hyperspectral sensors to capture
images with high spectral resolution. These images, referred to as hyperspectral images, are com-
posed of hundreds of contiguous narrow wavelength bands, providing an abundance of spectral and
spatial information about the imaged object [24]. Hyperspectral Imaging (HSI) has numerous ap-
plications in different fields, including agriculture, environmental monitoring, mineral exploration,
and biomedical imaging, among others [25]. In agriculture, for example, HSI can be used to disease
detection, monitor crop growth and yield prediction [26].

2.2.1 Electromagnetic Spectrum and Hypercube

The hyperspectral data can be represented as a hypercube, which is a three-dimensional array of
data, with the first two dimensions (x- and y-axis) representing the spatial information, and the
third dimension (z-axis) capturing the spectral information. Each pixel in the hypercube represents
the continuous spectrum of light reflected or emitted by the corresponding location in the imaged
object [27]. An example of a hypercube is shown in Fig. 2.2.

Fig. 2.2: The electromagnetic spectrum from ultraviolet to near-infrared on top, including
a monochromatic image, stacked red, green, and blue channels and a final image on the
right showcasing a hypercube of the presenting image.

Compared to conventional RGB images, hyperspectral images offer a much more extensive range
of spectral information, capturing information from the ultraviolet to the infrared range [28]. This
increased spectral resolution allows for the identification of specific features of the imaged object
that are not visible to the naked eye. In contrast, RGB images only provide three primary colors,
limiting the amount of information that can be captured [29].
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2.2.2 Properties of Molecules and Their Interaction with Light

The interaction of photons with matter is a crucial concept in HSI. This interaction is determined by
both the chemical properties of the molecules and the physical characteristics of the surface, such
as roughness and compaction level. When a photon is emitted from a light source, it has a specific
energy and trajectory that will be altered by its interaction with the sample. The energy of the
photon will decrease due to absorption by the sample’s molecules, and its trajectory will be altered
[30]. This change in trajectory can result in the photon being completely absorbed, reflected, or
transmitted through the sample (see Fig. 2.3).

Fig. 2.3: Illustration of the different interactions between photons and matter. When
incident light (I0) interacts with a sample, its trajectory and energy can be altered due to
absorption (Ia), reflection (IR), or transmission (IT ) by the sample’s molecules.

Absorption occurs when the photon’s frequency matches the vibrational frequency of the electrons
in a molecule, causing the photon to be absorbed and the energy to be converted into heat [31].
One advantage of utilizing absorbance spectra is its resistance to the interference of light-scattering
particles, such as dust or other contaminants, in contrast to reflectance spectra [32]. However, as
grains are typically sensitive to the presence of water or other solvents, the use of reflectance spec-
tra may be more appropriate for analyzing hydrated or wet samples that exhibit varying moisture
content [32]. It is worth noting that the suitability of either spectral data depends on the specific
application and sample type.

Reflection and transmission occur when the frequencies of the photon waves do not match the
natural frequencies of the molecules in the sample. Reflection occurs when the photon is reflected
off the surface of the sample, while transmission occurs when the photon is able to pass through
the sample. If the sample is opaque to the frequencies of the photon, the photon will be reflected,
allowing it to be detected.

Reflection can occur in a specular mode, where the photon is reflected at the same angle as the
incident angle, or in a scattered mode, where the photon is reflected at a different angle [33]. In
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some cases, reflection may occur after the photon has penetrated the sample to a certain depth. The
extent of penetration and the path the photon takes through the sample will depend on the photon’s
energy and the characteristics of the sample.

HSI techniques make use of the different interactions between light and matter to gather information
about the composition and properties of a sample. This information can be used in a variety of
fields, including remote sensing, medical diagnostics and agriculture. When analyzing grains as
samples, the photons can penetrate a certain depth into the grain, depending on the energy of the
photon and the grain’s properties [33]. This information can provide insight into the chemical and
physical properties of the grain.

2.2.3 Imaging Spectroscopy - Principle of Operation

Since hyperspectral images can obtain the individual color signature for each distinct object, HSI
enables the ability to distinguish the full color spectrum in each pixel [27]. As a result, it consist
of spectral information in addition to regular 2D RGB images. A feasible approach for acquiring a
2D image for each spectral channel when dealing with hyperspectral images involves scanning the
scene in a sequential, line-by-line manner, with the aid of a pushbroom scanner, also referred to as
a line-by-line scanner [34]. This type of hyperspectral camera captures incident light through a lens
and uses a dispersive element, either a prism or diffraction grating, to split the light into different
wavelengths. The camera operates by imaging the scene onto a slit that only allows light from
a narrow line in the scene to pass through. After collimation, the transmission grating separates
the different spectral lengths, and the light is focused onto a detector array [Hyspex.com]. The
diffracted light will be captured by the detector array to read the information. The process is shown
in Fig. 2.4. Each pixel interval along the slit corresponds to a spectrum that is projected on a
column of detectors on the array, resulting in a hypercube with two spatial dimensions and one
spectral dimension.

Fig. 2.4: Priciple of HySpex camera. From electromagnetic waves to hyper-
cube. Figure inspired by HySpex. [Hyspex.com]
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2.3 Machine Learning Algorithms

Machine Learning (ML) is a field of study that focuses on creating algorithms that can automatically
learn from data and make predictions or decisions without being explicitly programmed [35]. These
algorithms run on computers and are designed to process large amounts of data, making it possible
to derive patterns and knowledge that would be difficult or impossible to discover through manual
analysis [35]. The significance of ML has grown substantially in the modern era, as it finds wide-
ranging applications in diverse fields like email filtering, voice recognition, computer vision, and
several others [36].

ML is a vast field that involves a diverse range of algorithms and techniques. Among the dif-
ferent types of ML algorithms, supervised, unsupervised, and reinforcement learning [35] are the
most commonly used. Supervised learning involves training a model using labeled data, where the
desired output signals (labels) are already known. This allows the algorithm to learn to predict
outcomes on new, unseen data. In contrast, unsupervised learning works with unlabeled data and
tries to identify meaningful structure or patterns within the data. This can involve grouping the data
into clusters or performing dimensionality reduction for data compression. Reinforcement learning
focuses on developing models that improve their performance through interactions with the sur-
roundings. In this type of learning, the model receives feedback in the form of rewards or penalties
based on its actions, allowing it to learn a series of actions that will lead to the desired outcome
[35].

To illustrate how a general ML operates, Fig. 2.5 demonstrates how training data, either labeled
or unlabeled, is fed into a model to predict certain outcome of unseen data [2]. Each type of
algorithm has its unique characteristics and applications, making them suitable for different types
of problems.

Fig. 2.5: General workflow of machine learning algorithms. Training data is
fed into the model to make a prediction on new data. Figure inspired by [2].
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2.3.1 Chemometrics

The following sections will provide a detailed exposition of various ML algorithms used in this
thesis, including Partial Least Squares - Discriminant Analysis (PLS-DA), Principal Component
Analysis (PCA) and Convolutional Neural Network (CNN). The goal of this exposition is to en-
hance the reader’s comprehension of the operational mechanics and their ability to address various
problems.

2.3.2 Partial Least Squares

To provide some background information, it is worth noting that Partial Least Squares (PLS) is a
technique that is closely related to Ordinary Least Squares (OLS), which is the traditional mathe-
matical method used to fit a Linear Regression model [37].

Linear Regression is a statistical technique that aims to establish the relationship between a depen-
dent variable and multiple independent variables [35]. To achieve this, OLS is commonly used,
provided that the assumptions of Linear Regression are met. However, in some cases, the model
may contain a large number of independent variables that are highly correlated with each other,
resulting in multicollinearity and violation of the assumptions of Linear Regression [35].

On the other hand, PLS offers a potential solution to this problem by reducing the dimensionality
of correlated variables and capturing the shared information among the variables, including the de-
pendent and independent variables [37]. Additionally, PLS can model multiple outcome variables,
which is a significant advantage compared to other statistical and ML models that are restricted to
one outcome variable.

While alternative methods, such as building a model per variable, can be used for modelling multi-
ple outcome variables, PLS is preferable in many analytical use cases because it enables the inter-
pretation of a multivariate model, which differs from the interpretation of many univariate models.
Therefore, PLS can be considered a powerful tool for dealing with complex datasets that contain
multiple correlated variables and multiple outcome variables [38].

To address the issues of collinearity and dimensionality, multivariate methods like PCA and PLS-
DA can be used. These methods work by extracting latent variables through linear combinations
of the existing variables in the dataset, resulting in orthogonal variables that are less collinear
[39]. These extracted variables can then be used in place of the original variables, significantly
reducing the number of variables in the dataset. As shown in Fig. 2.6, the scatter plot illustrates the
relationship between the variables extracted through PCA and PLS-DA.
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Fig. 2.6: Scatter plot showing the relationship between the variables extracted through
PCA and PLS-DA using the Iris dataset [link to dataset], demonstrating the reduction of
dimensionality and correlation among variables.

PCA is an unsupervised method that extracts the latent variables based on the variation present
in the data [40]. However, there is no guarantee that the selected components are relevant to the
target variable, as the chosen components are obtained to explain the variance in the independent
variables [40].

On the other hand, PLS-DA is a supervised method that works similarly to PCA but finds latent
variables that are also relevant to the dependent variable [41]. PLS-DA performs the decomposition
of both the independent and categorical dependent variables simultaneously, with the constraint
that the selected components explain the maximum covariance between the two sets of variables
[41]. After decomposition, a classification step is performed, where the decomposition of the
independent variables is used to predict the class membership of the categorical dependent variable.

PLS-DA is particularly useful when dealing with datasets containing multiple correlated indepen-
dent variables and a categorical dependent variable. By identifying the latent variables that are
most relevant to the categorical dependent variable, PLS-DA allows for a more accurate prediction
of the categorical dependent variable [42].

The underlying model can be explained by Eqs. (1 & 2).

X = TP T + EX (1)

Y = UQT + EY (2)
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where T and U are scores matrices and P and Q are loading matrices of the target Y and data X ,
respectively. Additionally, EX and EY correspond to the error terms [42].

2.3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) have emerged as a powerful tool for solving complex classifi-
cation and regression tasks, particularly in areas such as speech and image recognition [43]. ANNs
are based on models of the human brain and are often referred to as ”deep learning,” reflecting the
fact that they have a high number of layers and nodes, which enable them to learn and solve com-
plex problems. ANNs are typically comprised of an input layer, one or more hidden layers, and an
output layer, and are designed to learn from training data consisting of explanatory variables and
response variables or labels [35].

While ANNs offer significant advantages over other algorithms in terms of their robustness and
versatility, their performance is highly dependent on the quantity and quality of training data [44,
45]. Insufficient training data can lead to overfitting, where the network learns to model the patterns
in the training data too well and performs poorly on new, unseen data [46]. As a result, it is crucial
to have sufficient high-quality training data when using ANNs for complex tasks.

The development of ANNs dates back to the 1940s [47], but it was not until modern times that they
gained widespread acceptance due to advances in computing power. ANNs are organized in layers,
with each layer consisting of multiple artificial neurons or units that are connected to neurons in the
next layer. The behavior of the network is determined by the activation functions of the individual
neurons, which enable the network to detect patterns and learn from previous experiences [47].
Multilayer Perceptron (MLP) is a type of fully connected network that is widely used in ANNs
[35], and deep ANNs are those that have two or more hidden layers. An illustration of this is shown
in Fig. 2.7.

Fig. 2.7: Demonstration of a simple, fully connected artificial neural network.

ANNs have revolutionized the field of ML, offering a powerful approach to solving complex classi-
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fication and regression tasks [48]. However, their effectiveness is highly dependent on the availabil-
ity of high-quality training data and careful consideration of the network architecture and activation
functions. Ongoing research is focused on developing new architectures and techniques for training
ANNs to further enhance their performance in a wide range of applications [49, 50, 51].

2.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANN that have gained popularity in the
field of computer vision due to their ability to extract important features from images. Similar to
traditional neural networks, CNNs are composed of multiple stacks of neurons, each with biases
and learnable weights [52]. However, in a CNN, only a small region of input layer neurons is
connected to neurons in the hidden layer, which are referred to as local receptive fields [53]. These
local receptive fields are translated across an image to create a feature map from the input layer to
the hidden layer neurons.

One notable aspect of CNNs is parameter sharing, where the weights and bias values are the same
for all hidden neurons in a given layer [35]. This means that all hidden neurons are detecting the
same feature, such as an edge or a blob, in different regions of the image, making the network
tolerant to translation of objects in an image. CNNs are typically composed of several layers [54],
including a convolution layer, activation function, pooling layer, and Fully Connected (FC) layer,
as shown in Fig. 2.8. The convolution layer extracts main features through operations using a set
of filters, while the activation function applies a non-linear transformation to the output of each
neuron. The pooling layer reduces the spatial dimensionality of the feature maps, and the FC layer
combines the extracted features from the previous layer through a set of linear transformations.

Fig. 2.8: Architecture of the CNN used for binary classification of wheat grains. The
figure shows the feature extraction process through convolutional layers, followed by
classification using fully connected layers with a sigmoid output. The figure is inspired
by Developers Breach [link to website].
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However, Deep Neural Networks (DNNs) are prone to overfitting due to their large number of pa-
rameters, which can lead to poor generalization performance. To address this issue, two popular
techniques are used in practice: Dropout and Batch Normalization [55]. Dropout is a regularization
technique that randomly drops out a certain percentage of neurons during training to prevent over-
fitting. This forces the network to learn more robust features and reduces its reliance on any one
feature. Batch normalization is a technique for improving the training of DNNs. It normalizes the
output of the previous layer by subtracting the mean and dividing by the standard deviation of the
activations in a mini-batch. This stabilizes the distribution of inputs to each layer and can accelerate
training by reducing the internal covariate shift problem [56]. A phenomenon that occurs during the
training of DNNs, where the distribution of the input to each layer changes as the network learns,
making training more difficult as each layer must constantly adapt to the changing distribution of
its input.

The behavior of the convolution layer can be controlled through several hyperparameters [54],
including kernel size, stride, padding, and number of filters. Kernel size determines the size of the
sliding window used in convolution, while stride determines how many pixels the kernel window
will slide at each step of convolution. Padding determines the amount of pixels or values to include
around the border of the image, and the number of filters controls the number of patterns or features
that a convolution layer will look for. By adjusting these hyperparameters, CNNs can be optimized
for different tasks such as object recognition, object segmentation, detection, and computer vision.

2.3.5 Activation and Loss Functions

The choice of activation functions in a neural network can greatly impact its ability to converge
during training, as well as the speed at which convergence occurs [57]. Additionally, activation
functions serve to normalize the output of the network to a restricted range, typically [0, 1] or
[−1, 1]. This is graphically demonstrated in Fig. 2.9.

Sigmoid and Rectified Linear Unit (ReLU) are two widely employed activation functions in the
domain of neural networks. Sigmoid is a non-linear activation function that transforms real-valued
inputs to a value ranging between 0 and 1 . This activation function finds common application in
the output layer of binary classification problems, where the objective is to categorize the input data
into one of the two classes [35].

In contrast, ReLU is a non-linear activation function that takes negative input values and maps them
to 0, and positive input values to themselves. The simplicity and computational efficiency of ReLU
makes it a popular choice for use in hidden layers of DNNs [58].
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Fig. 2.9: Comparison of the Sigmoid and ReLU activation functions commonly used in
neural networks. The Sigmoid function maps inputs to a smooth output range between 0
and 1, while the ReLU function maps inputs linearly to a range between 0 and positive
infinity.

Effective activation functions must meet several criteria, including differentiability over the entire
domain, the inclusion of nonlinearities, computational efficiency, and the ability to prevent the
exploding or vanishing gradient problem [59].

The vanishing gradient problem arises when the gradients of the loss function with respect to the
parameters of the network become extremely small as they propagate through the layers of the
network [35]. This problem is particularly prevalent in DNNs with many layers, especially those
using activation functions with derivatives that approach zero as the input becomes very large or
very small. Consequently, the weights of the network may be updated very slowly or not at all in
some layers, resulting in poor convergence or stagnation of the training process which in some cases
can trap the model in a local minimum [35, 60], preventing it from reaching the global minimum
of the loss function.

In the training of neural networks, the choice of loss function is also crucial. Working with binary
classification, showed in Eq. (3), binary cross-entropy is applied. The loss function is used to
evaluate the difference between the predicted output of the network and the true output, and the
goal of training is to minimize this difference [61].

H(q) = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (3)

where H(q) refers to the entropy, the measure of the uncertainty associated with a given distribution
q(y). Meanwhile, y is the true label (either 0 or 1) and ŷ is the predicted probability of the positive
class [62]. N corresponds to the number of training samples.
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2.3.6 Metrics for Binary Classification

In order to evaluate the performance of a model, various metrics may be utilized. A confusion
matrix serves to depict the model’s ability to correctly and falsely predict outcomes. Fig. 2.10
provides an illustrative example of such a matrix, which accounts for True Positive (TP), False
Negative (FN), False Positive (FP) and True Negative (TN) values. The values within the confusion
matrix may further be employed to calculate additional metrics such as precision, recall, and F-
score.

Fig. 2.10: Example of a confusion matrix for binary classifiers.

Precision and recall represent two distinct measures, wherein precision is particularly relevant when
minimizing FPs is of primary concern, and recall is a suitable metric when the focus is on minimiz-
ing FNs [63]. Precision and recall may be calculated using Eqs. (4 & 5), respectively [35]. Often,
the performance evaluation of classification problems requires the consideration of both precision
and recall metrics, since a good recall score may not guarantee a good precision score, and vice
versa. In response to this limitation, the F-score (6), also known as the F1-score, has been intro-
duced as a composite measure to express both precision and recall concerns through a single score.
The F-score is a prevalent metric utilized in the assessment of binary (or multiclass) classification
problems [35].

Precision =
TP

TP + FP
(4)

Recall =
TP

FN + TP
(5)

F1 =
2× Precision×Recall

Precision+Recall
(6)
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2.4 Breeze Software

Breeze is a HSI software developed by Prediktera AB. It enables a wide range of HSI applications,
used for research, application development, routine analysis and also real-time industrial solutions
[3]. Prediktera was established as a result of research in multivariate data analysis conducted at
Umeå University in Sweden. Specializing in HSI software, the company has dedicated its efforts
towards this field since 2015. Recently, in 2022, Prediktera was acquired by Norsk Elektro Optikk
AS (NEO), a renowned electro optics enterprise in Scandinavia, and now operates as a wholly
owned subsidiary of NEO [3].

The Breeze software follows a systematic workflow consisting of several steps for processing and
analyzing hyperspectral images. The workflow commences with the importation of data, which
includes hyperspectral images and any relevant metadata. Subsequently, the data undergoes pre-
processing, where procedures such as noisy pixel removal, normalization, and baseline correction
are applied to improve the quality of the data.

Next, Breeze utilizes image segmentation to partition hyperspectral images into smaller regions
based on their spectral similarity. Following segmentation, features are extracted from each re-
gion, which represent the characteristics of the corresponding segment. The software then employs
modelling techniques, such as PLS regression, PCA, and DA, to develop predictive models for
classification, regression and prediction of new samples.

The developed models undergo validation using techniques such as cross-validation to evaluate
their predictive capabilities. Finally, the models are applied to new samples or images to make
predictions or classifications, and the output can be visualized using different tools such as classi-
fication tables and scatter plots.

The steps describing how the software functionate is shown in Fig. 2.11.

Fig. 2.11: General workflow of Breeze software from Prediktera AB [3].

As previously mentioned, the software exhibits versatility and can be applied in various applica-
tions, including agriculture. Its utilization in grain analysis is particularly beneficial. To this end, a
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study published by Kate Sendin, et al. from Department of Food Science, Stellenboshch University,
South Africa [64] employed the software to distinguish sound from infected maize kernels. The re-
searchers segmented a total of 2088 samples and calculated the average spectra for each seed. The
dataset were processed using the software to identify unwanted pixels such as background, outliers,
and edge effects. Subsequently, a PLS-DA model was built, which accurately classified each object
as either sound or infected with the fungus, fusarium. The model underwent validation, and upon
application to several recorded images, achieved an accuracy of 93.3%. This output model could
serve as a tool for conducting real-time quality control and detecting defective kernels.

2.5 Aquaphotomics

Aquaphotomics is an approach to analyze molecules based on their absorbance spectra in the NIR
range [65]. The study of water absorbance bands and absorbance patterns can offer valuable in-
sights into the structures of water and its inherent interactions with other matters of the aqueous
system [66]. The underlying principle of this concept is that the absorbance spectrum related to
water can be analyzed through its interaction with light, thus providing a rich source of physical
and chemical information [67]. Water molecules, owing to their hydrogen bonding, can assemble
into a layer that surrounds a solute, forming a hydration shell. The presence of a hydration shell can
significantly influence the ability to maintain information about the spectra and disturbances related
to it. The OH bonds absorption region of water that corresponds to the first overtone of OH , spans
in the range of 1300-1600 nm and are often referred to as Water Matrix Coordinates (WAMACS)
[68].The characteristic spectral pattern and composition of the WAMACS are collectively referred
to as Water Spectral Pattern (WASP). The WAMACS encompass 12 distinct bands, as illustrated in
Table 2.1. To analyze the behavior of individual WAMACS bands and their interactions, a normal-
ized absorption aquagram can be plotted to compare the absorbance values at different WAMACS
positions between healthy and infected grains.

A′
λ =

Aλ − µλ

σλ

(7)

where A′
λ corresponds to the normalized absorbance spectra showcased on the aquagram. Mean-

while, Aλ is the absorbance after EMSC. µλ is the mean, and σλ is the standard deviation, of all
spectra for the examined group of samples after correction. λ is the wavelengths related to the
chosen WAMACS.
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Table 2.1: The table presents the ranges of WAMACS in the first overtone, their correspond-
ing wavelengths, descriptions and assignment & vibration types. Including S0−4, hydration shell,
stretching and bending.

WAMACS Wavelengths [nm] Description Assignment & Vibration
C1 1336–1348 H2O asymmetric stretching

vibration
ν3 & Asymmetric Stretching

C2 1360–1366 Water solvation shell,
OH-(H2O)1,2,4

Hydration shell

C3 1370–1376 Symmetrical stretching
fundamental vibration and
H2O asymmetric stretching

vibration

ν1 + ν3 & Symmetric- and
Asymmetric Stretching

C4 1380–1388 Water solvation shell,
OH-(H2O)1,4 and

superoxide, O2 − (H2O)4

Hydration shell

C5 1398–1418 Free water and free OH- S0
C6 1421–1430 H −OH bend and O...O Bending
C7 1432–1444 One hydrogen-bonded

molecule
S1

C8 1448–1454 Water solvation shell,
OH − (H2O)4,5

Hydration shell

C9 1458–1468 Two hydrogen-bonded
molecules

S2

C10 1472–1482 Three hydrogen-bonded
molecules

S3

C11 1482–1495 Four hydrogen-bonded
molecules

S4

C12 1506–1516 Symmetrical stretching
fundamental vibration, and
doubly degenerate bending

fundamental

ν1, ν2 & Symmetric
Stretching and Bending
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3 Methodology

The experiments practiced through the thesis will be disclosed in this section. To avoid inhaling
dangerous mycotoxins from the wheat grains, certain precautions were taken into consideration.
Gloves, glasses and face masks were worn, along with an exhaust fan, through the entire lab work
process. Further, all data were analyzed using Breeze, in addition to Python 3.9.7 along with the
mentioned python packages.

All kernels included in the images were manually annotated before being captured. However,
manual annotation is not without error due to various factors, such as fatigue, external distractions,
perceptual biases, and inconsistencies while assigning annotations [69]. Therefore, it is crucial
to understand that this reference is not an absolute ground truth and that this fact must be taken
into account when interpreting the results. While the ground truth provides a valuable point of
comparison, it is subject to limitations and potential errors that may affect its accuracy. Therefore,
it is essential to approach the results with a critical eye and take into account the possibility of
discrepancies or uncertainties.

3.1 Data Collection

3.1.1 Grains

Wheat grains were gathered from Vollebekk experimental farm, located close to NMBU campus in
Ås municipality, Norway. In total, 20 different varieties of wheat grains was sorted and analyzed.
For each variety, shown in Table 3.1, a manual annotation of 20 healthy and 20 infected seeds was
done. This gives a total of 800 seeds in total as the foundation dataset. The grains were randomly
picked out from the blue bags shown in Fig. 3.1.

Fig. 3.1: Preparation and annotation of samples in the NMBU workshop.
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In order to distinguish healthy and infected grains, the chosen samples were distributed by visual
assessment at the NMBU workshop on 19th and 20th of January. Following the annotation, each
grain was carefully placed in an individual container equipped with a lid and a label indicating the
corresponding route, as well as denoting the grain’s condition as either ”H” for healthy or ”I” for
infected.

Table 3.1: Overview of the 20 different wheat varieties and their concentration of Fusarium Dam-
aged Kernels (FDK) in percentage and deoxynivalenol (DON) contamination.

Route Name FDK (%) DON
4205 Saar 30 33.4
4208 N894037 2 10.5
4217 Vinjett 5 (susceptible) 45 34.6
4222 Zebra 20 27.2
4223 MILAN/SHA7 30 40.2
4226 BCN*2//CROC 1/AE,SQUARROSA (886) 10 20.3
4228 Krabat 40 23.6
4234 Sumai #3-1 (12SRSN) 1 13.2
4302 Bjarne 30 22.3
4303 Demonstrant 40 24.5
4310 EMB16/CBRD//CBRD 40 32.9
4319 SABUF1 25 28.9
4339 Seniorita 30 16.8
4340 GUAM92//PSN/BOW 40 55.1
4423 GONDO 40 61.1
4428 CJ9403 45 31.3
4437 Mirakel 10 14.2
4505 Arabella 25 15.3
4525 Bastian 18 24.2
4532 NG8675/CBRD//SHA5/WEAVER 15 30.3

3.1.2 Image Acquisition

The imaging system used to capture the images analyzed in this thesis is HySpex SWIR-384 cam-
era, which has a wavelength range of approximately 950-2500 nm, divided into 288 bands. The
pushbroom scanning camera also had a frame period of 5000 ms and an integration time of 4800
ms. The hyperspectral camera setup comprises of several components, including a lens, a plate,
two halogen lamps powered by a 12V DC power supply, custom designed to focus the illumination
into a line that overlaps with the camera’s FOV, a mobile platform that can be adjusted to various
heights and a white reference plate (60% reflectance). The plate serves as a stable platform for the
objects being imaged, while the halogen lamps, which emits a continuous spectrum of light that

1Full name of the wheat variety: SABUF/5/BCN/4/RABI//GS/CRA/3/AE,SQUARROSA (190)
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covers a broad range of wavelengths, provide illumination to ensure clear and detailed imaging.
The mobile platform allows for the camera to be positioned at different heights to capture images
of grains at a certain focus point displayed at the monitor. This was a crucial process to get the
best possible resolution for the images. Finally, the white reference plate is used to calibrate the
hyperspectral images. The camera setup is illustrated in Fig. 3.2.

Fig. 3.2: Setup for image acquisition in laboratory.

Initially, the grains were placed in a petri dish and captured using a 30cm lens for the hyperspectral
camera on the 25th of January. However, the analysis of the images in Python revealed that the
shadows from the grains presented a challenge due to the white background. Therefore, the next
two days, 26th and 27th of January, new images were taken with a black fabric as the background
beneath the petri dish. Later, 16th and 17th of February, subsequent to the acquisition of these initial
images, a new macro lens became available and was used in the imaging process, which yielded
images with increased details and was deemed to be a superior approach for grain analysis for this
thesis. As a consequence, utilizing the macro lens led to a narrower FOV. In comparison with the
30cm lens which has a FOV ∼ 9.5cm, the macro lens displays a reduced FOV ∼ 2cm. The kernels
were aligned in two or three rows, with 20 kernels per image, to assure coverage within the FOV.
To ensure accurate alignment, the wheat kernels were manually positioned on a black fabric using
tweezers. This was done to ensure that the kernels were adequately spaced apart, as clustering could
lead to errors in the algorithm treating multiple kernels as a single entity during further analysis.
Additionally, to introduce variability in their orientations, the kernels were placed randomly before
the image scan.

RGB images were acquired using a Nikon Df camera with a color profile of sRGB IEC61966-2.1,
which is a standard color space used in digital imaging. The camera’s optical system had an f-ratio
of 6.3, representing the ratio of the system’s focal length to the diameter of the aperture. A larger
f-value indicates a smaller aperture diameter, which limits the amount of light entering the camera
and results in a wider FOV. In contrast, a smaller f-value, as used in this thesis, implies a larger
aperture diameter that allows more light to enter the camera and results in higher image resolution
and finer details. The resolution of the images based on these specifications was 300 pixels per
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inch, indicating the level of details captured within each inch of the image. Directly after the scan
of the hyperspectral image, the RGB image of the same route was acquired with Nikon camera by
covering the front of the halogen lamps with white A4 paper in order to reduce specular reflection.
At first, along with the 30cm lens, RGB images were acquired with a white background and light
source corresponding to natural sunlight. These images were not of the best resolution. Therefore,
new RGB images were also taken alongside the makro hyperspectral images, now with a black
background and light from the halogen lamps. This approach provided a closer look, elimination
of shadows and more nuanced light, enabling greater detail to be captured in the images.

3.2 Calibration and Preprocessing Techniques

All the hyperspectral images, both taken with the 30cm- and macro lens were post-processed in
order to mitigate from external interference. This was done by carrying out a white- and dark
current correction. Background radiation may disturb the sensors in the camera and thereby give
unwanted results. Therefore, applying dark current correction for each image is desirable. This
was done by using a software called RadV2 provided by the producer of the hyperspectral camera
[Hyspex.com].

ICalibrated = IRaw − ID (8)

where ICalibrated is the calibrated image for the dark current, IRaw is the original raw hyperspectral
image and ID is the dark current image.

In addition, to correct for the differences in light source, it is possible to calibrate the image with
Eq. (9)

ICalibrated =
IRaw

IW
(9)

where ICalibrated is the corrected image, IRaw is the original image, while IW is considered as the
white reference containing the mean values for each column in each band in the image.

When combining Eq. (8) with Eq. (9), we can obtain the following

ICalibrated =
IRaw − ID
IW − ID

(10)

where ICalibrated now corresponds to the normalized raw hyperspectral image.
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When analyzing properties of grains, such as in aquaphotomic analysis, there is often a requirement
to transition from reflectance- to absorbance spectrum. This transition facilitates the examination
of various characteristics and can be accomplished by using Eq. (11).

A = log10

(
1

R

)
(11)

where A is the absorbance and R is the reflectance. The reflectance and absorbance spectra for
healthy and infected grains after calibration is shown in Fig. 3.3.

Fig. 3.3: Mean spectra with shaded areas representing the standard deviation for re-
flectance and absorbance of all healthy and infected grains in the dataset.

Prior to analyzing the images in breeze and python, various preprocessing techniques were applied
to the images in order to reduce noises and disturbances, with the goal of ensuring accurate and
reliable spectral measurements.

Standard Normal Variate (SNV) is a preprocessing technique widely used in spectroscopy to correct
for multiplicative variations between spectra that can arise due to differences in sample path length
or physical properties, sample preparation, and spectrometer optics [70]. These variations can con-
found with the signal from changes in component concentrations, making quantitative applications
difficult.

SNV correction involves subtracting the mean intensity from each variable intensity in a spectrum
and dividing the resulting values by the standard deviation, so that the resulting intensities have
a mean of zero and a standard deviation of one. This normalization process is performed on a
single spectrum, and no reference spectrum is required for the correction [71]. Different surface
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roughness, incident angle of the light and distinct geometries can greatly affect the type of scattering
[72]. Hence, SNV correction (Eq. 12) is particularly useful to to minimize scattering effects when
working with uneven objects like grains. Fig. 3.4 depicts a hyperspectral image of healthy grains
and its corresponding SNV-corrected (absorbance) spectrum.

Fig. 3.4: Hyperspectral image of healthy grains. Showing a 2-dimensional image with
the corresponding (SNV corrected) mean absorbance spectra for each of the 20 grains in
the hyperspectral image.

XSNV
i =

Xi − X̄i

σi

(12)

where XSNV
i is the corrected spectrum for each pixel i, Xi is the original spectrum, while X̄i and

σi corresponds to the mean and standard deviation, respectively.

Another method which is similar to SNV is Multiplicative Signal Correction (MSC). This method
also aims to reduce scattering effects based on particle distribution and particle size [73]. A more
advanced version of MSC, known as Extended Multiplicative Signal Correction (EMSC), is based
on the fundamental principle of Lambert-Beer’s law [74]. The approach involves fitting a regression
model to each spectrum in an image based on a reference spectrum, and subsequently using the
derived coefficients to perform the necessary correction.

The absorbance spectrum A of a given pixel i can be represented mathematically using the Eq.
(13).

Ai = ai + b1,i ∗ x̄+ b2,i ∗ w + b3,i ∗ w2 + Ei (13)
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This equation incorporates the EMSC approach, which is distinct from the commonly used MSC
method, as it includes the effects of both linear and quadratic baseline variations (w and w2, respec-
tively) [75]. Additionally, the equation includes an additive baseline variation term (ai) and scaling
parameters (bi,1,2,3) that approximate the spectrum through least square estimation. Meanwhile, x̄
is the reference spectrum which is usually gathered by taking the mean of all spectrum. The term
Ei accounts for unmodeled variations that arise from both chemical variations and measurement
noise.

The corrected spectra can be calculated by using Eq. (14)

Ai,corr =
Ai − ai − b2,i ∗ w − b3,i ∗ w2

b1,i
(14)

One important take of EMSC is that the approach allows for the correction of baseline variations,
which are often a confounding factor in spectroscopic analyses, and improves the accuracy of the
measured spectra [74].

Hyperspectral image data acquired from grains can also be analyzed through the use of first and
second derivative spectra, to identify and investigate specific spectral features of interest [76]. The
first derivative spectrum can be calculated using Eq. (15)

dy

dλ
=

yi+1 − yi−1

2∆λ
(15)

where yi denotes the spectral intensity at wavelength λi, ∆λ represents the spacing between neigh-
boring wavelengths, and the derivative dy

dλ
is evaluated at the central wavelength λ0. By taking the

difference between neighboring data points and dividing by the spacing between the data points,
the resulting first derivative spectrum highlights the locations of zero-crossings in the data, which
can be indicative of the locations of peaks and valleys in the original spectrum. [77].

To compute the second derivative spectrum, the difference between the neighboring points of the
first derivative spectrum is taken and divided by the spacing between the data points. Eq. (16)
represents the calculation of the second derivative spectrum d2y

dλ2 taken at the central wavelength λ0.

d2y

dλ2
=

yi+1 − 2y0 + yi−1

∆λ2
(16)

The resulting second derivative spectrum highlights inflection points in the data [77], which can be
instrumental in identifying subtle spectral features that may not be apparent in the raw data or first
derivative spectrum.
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3.3 Breeze Workflow for Spectral Imaging

Before doing any computations with breeze, the raw hyperspectral images were imported into the
software along with their corresponding HDR files, which contain important metadata about the
images. Once the images were imported, they were then categorized into two groups, healthy
and infected, to be used as labeled data in later classification tasks. After this, a PCA model was
established to segment out the grains for further analysis. The workflow process is illustrated in
Fig. 3.5.

Fig. 3.5: Analysis tree of the workflow in Breeze. From segmentation to classification.
The first PLS-DA model contains four PC’s based on an object-based evaluation, whereas
the other PLS-DA model contains four PC’s based on a pixel-based classification.

3.3.1 PCA - Feature Extraction and Segmentation

Six representative images were selected from the dataset to use as input for segmentation. In
order to minimize noise and disturbances, specific wavelengths were chosen and pretreatments
were applied. To begin with, the 10 first and last bands were dropped in order to reduce noise.
Consequently, SNV pretreatment was mostly utilized, but later on, different pretreatments such as
first- and second derivative was tested as well.

After preprocessing, cluster regions were cropped out by marking an eclipse around the Region of
Interest (ROI) in the scatter plot. This was done to remove all background pixels and only include
pixels related to grains. The process is shown in Fig. 3.6.

Next, a critical distance model was used to segment the remaining pixels based on their similarity
or dissimilarity to neighboring pixels. The critical distance was adjusted by dragging the Dcrit
line horizontally to include additional pixels that may have been missed in the initial segmenta-
tion. However, this approach occasionally resulted in grouping multiple grains together, requiring
manual segmentation to separate them later on.
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In the end, a minimum area size threshold of 1000 pixels was applied to the segmented regions,
filtering out any regions that were smaller than the defined threshold. This ensured that only large
enough regions, corresponding to individual grains, were included in the analysis.

Fig. 3.6: Process of pixel segmentation based on a scatter plot. After selecting a wave-
length interval and applying pretreatment, the top image displays six raw images includ-
ing background pixels, while the middle image shows the ROI. The last image shows the
six resulting images after background removal, along with their correlated scatter plot.

3.3.2 PLS-DA - Classification

Two distinct methods were employed for classification in this study, including a pixel-based ap-
proach using Pixel Majority (PM), and an object-based approach using Average Mean Spectrum
(AMS). The PM approach involved classification of individual pixels based on the majority of
its neighboring pixels, while the AMS approach classifies each object based on its average spec-
trum. For both approaches, the final PLS-DA model attained for this study consisted of using four
principal components with SNV correction. As previously mentioned, first- and second-derivative
pre-treatments were also applied to the data, but no improvement in classification results was ob-
served. Therefore, SNV was ultimately selected as the preferred pretreatment method. The model
was trained on a total of 640 samples, while 160 samples were assigned for testing purposes. Ini-
tially, all bands were included in the model, given the high importance value of the first and last
bands. Later, the model was also tested to determine if it could achieve similar results using only a
few effective wavelengths.
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3.3.3 Effective Wavelengths

Based on a loading plot from the PLS-DA model, four wavelength seemed to be of significant
importance when doing prediction with the model. As Fig. 3.7 shows, these wavelength were 953
nm, 1373 nm, 1923 nm and 2493 nm. After completing the training, these loadings were exported
from the model and imported into a dataframe in python for visualization and interpretation. It
was observed that these four wavelengths exhibited a strong negative correlation between their
components. By using only these four wavelengths, the model’s efficiency and cost-effectiveness
could potentially be improved significantly.

Fig. 3.7: Loading plot from the PLS-DA model showing the corresponding wavelengths
and their importance for binary classification of the grains. The four specific wavelengths
highlighted in red indicates a strong negative correlation between the two classes.

3.4 Predicting Grain Condition using CNN with RGB Images

3.4.1 Mask Generation and Preparation of Dataset

Based on the findings from the effective wavelengths using hyperspectral images, it became inter-
esting to investigate if comparable results could be achieved using RGB images. Thus, a simple
CNN was developed to analyze individual grains, requiring the creation of a mask for each grain
in an image using the ”rgb2lab” package from the scikit-image library in python. Although both
color information channels (a and b) were attempted for this purpose, the resulting mask still had
some undefined spots. However, the L-channel, which represents the image’s lightness, was found
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to be more suitable for mask creation, and applying Otsu thresholding to it improved the mask
quality. Another effective approach for generating the mask was to use PCA based on the spectral
python package and retaining 99% of the image’s variance. To further eliminate any remaining
noise in the image, the morphology was used, employing the ”remove small objects” and ”re-
move small holes” packages to avoid the misidentification of small objects as grains. The final
binary mask was then generated, as illustrated in Fig. 3.8.

Fig. 3.8: Process of generating binary mask using a combination of LAB color space and
PCA, followed by thresholding and morphology operations.

To extract the bounding box of the individual grains from the binary mask, each grain were assigned
a unique label through the use of ”label” and ”regionprops” packages from the scikit-image library,
as shown in Fig. 3.9. These bounding boxes were subsequently utilized to crop out and store the
800 grains as data images for the CNN model.

Fig. 3.9: Mask for RGB images with one label for each grain color-coded and their
corresponding bounding boxes highlighted in red.
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3.4.2 Parameter Optimization

In order to obtain the most accurate and robust results from a CNN model, hyperparameter opti-
mization is a crucial step. In this thesis, the GridsearchCV method from the scikit-learn library
were implemented to perform an exhaustive search over a specified parameter grid. The parameter
grid, presented in table 3.2 included various combinations of hyperparameters, such as the number
of filters in the convolutional layer, kernel size, number of units in the dense layer, and learning
rate.

Table 3.2: Table representing the hyperparameters used for optimization when building
the CNN, with a total of 96 possible combinations.

Hyperparameter Values
Filters [3, 6, 9, 12]

Kernel size [2, 3, 5]
Dense units [3, 6, 18, 24]

Learning rate [0.0001, 0.001]

This approach helped to avoid the tedious and time-consuming process of manual guessing, ulti-
mately leading to a significant improvement in the accuracy and performance of the model.

3.4.3 Data Augmentation

To enhance the generalization ability and increase the amount of training data in the study on
wheat grains, data augmentation techniques were employed. The ImageDataGenerator class from
the Keras library was used to generate new training images by applying various transformations
to the existing dataset, including a rotation range of 45 degrees, width and height shift ranges
of 0.2, horizontal and vertical flips, zoom range of 0.3, and nearest neighbor fill mode. These
transformations introduced variability to the images, making the model more robust and less prone
to overfitting. Additionally, the use of data augmentation increased the size of the training dataset,
which is particularly useful in cases where the amount of available data is limited. This, in turn,
enabled the development of a comprehensive model capable of effectively capturing the features of
wheat grains and accurately predicting their condition.

3.4.4 Data Distribution

The dataset used in this study was split into train, validation, and test sets, and the pixel values were
normalized to the range [0, 1]. To ensure adequate data for model training and validation, the train
and validation sets were further divided into smaller sets. The dataset consists of 512 images in the
train set, 128 images in the validation set, and 160 images in the test set. Each image has a width
and height of 128 pixels and three channels corresponding to the RGB color space. The distribution
and shape of the dataset are shown in Fig. 3.10 and Table 3.3, respectively.
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Table 3.3: Shape of the train-, validation- and test data

Images Width Height Channels
Train Data 512 128 128 3
Validation Data 128 128 128 3
Test Data 160 128 128 3

Fig. 3.10: Distribution of the training, validation- and test set.

3.4.5 CNN Architecture

In order to construct an effective model architecture, a CNN was designed, consisting of convolu-
tional and pooling layers, followed by a flatten layer, two dense layers, and a batch normalization
and dropout layer to prevent overfitting. As previously stated, augmented data generated by the
ImageDataGenerator function in the Keras library was used to train the model to ensure that the
model could generalize well to new data.

Moreover, hyperparameter tuning was performed to identify the optimal model configuration. A
grid search was conducted to explore various combinations of hyperparameters, as listed in Table
3.2, with the best performing configuration selected based on cross-validation performance. The
optimal hyperparameters were found to be 12 filters in the first convolution layer with a stride of
one and valid padding, followed by six filters in the second convolution layer with the same stride
and padding configuration. Valid padding means that the convolution operation is applied only to
the valid positions of the input, resulting in an output feature map that is smaller than the input.
This was used in both convolutional layers, along with a 3x3 kernel size. Additionally, the model
included 18 dense units and was trained with a learning rate of 0.001.

The model was compiled using binary cross-entropy loss and Adam optimizer with the optimal
learning rate, and subsequently trained with a batch size of 32 over 50 epochs. Performance eval-
uation was performed using the validation set. The architecture of the model is illustrated in Fig.
3.11.
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Fig. 3.11: A schematic representation of the CNN architecture used for the binary classi-
fication task. The model consists of two convolutional layers with max pooling and batch
normalization, followed by a fully connected layer with dropout and a sigmoid output
layer.
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3.5 Exploring Alternative Machine Learning Approaches

Alternative ML methods were explored to identify wheat grains using hyperspectral data. Four
well-known algorithms, including Random Forest (RF), a linear Support Vector Machine (SVM),
DecisionTree using the Light Gradient Boosting Machine (LGBM) implementation and a one-vs-
all calibrated Stochastic Gradient Descent (SGD) classifier, were trained using all bands from the
hyperspectral data.

DecisionTree (LGBM) is a tree-based model that finds the leaves which will reduce the loss the
most, and split only that leaf without considering the rest of the leaves in the same level. While
RF is an ensemble-based method that constructs multiple decision trees and outputs the class by
aggregating the results of each individual tree and selecting the most commonly predicted class
as the final output. The linear SVM is a discriminative model that tries to find the best separat-
ing hyperplane between two classes. The one-vs-all calibrated SGD classifier is a gradient-based
optimization algorithm that updates the model parameters with a small batch of data at a time. It
is designed to handle multiclass classification problems by training a separate binary classifier for
each class and calibrating the output probabilities. However, for this thesis, the binary version of
the one-vs-all calibrated SGD classifier was used, which only considers the healthy class versus the
infected class.

The trained models were tested, and their performance was evaluated in terms of precision, recall,
and F1-score. This was done to determine whether any of the alternative models could achieve
better results than the PLS-DA model.

3.6 Aquaphotomics Analysis of Wheat Grains

Samples of wheat grains were prepared and analyzed using the aquaphotomics approach to inves-
tigate their molecular composition. Prior to analysis, all samples underwent an EMSC to account
for baseline drift and other sources of spectral variation. Following the EMSC procedure, the ab-
sorbance spectra of healthy and infected grains were normalized using Eq. (7). The corresponding
EMSC absorbance spectra, calculated prior to normalization for visualization in the aquagram, are
presented in Fig. 3.12.
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Fig. 3.12: EMSC absorbance spectra applied before normalizing the values to be plotted
in aquagram.

The aquagram was used to compare the absorbance values at different WAMACS positions between
healthy and infected grains. In particular, second derivative spectra was used, which allows for the
identification and highlighting of specific points of interest within these regions. These points of
interest may correspond to transitions or features that may indicate differences in the chemical
or structural composition of the grains. Through this approach, specific spectral markers could be
identified that offer a more detailed characterization of the differences between healthy and infected
grains. The aquagram was generated by plotting the mean normalized absorbance spectra of all
samples at each wavelength associated with the 12 distinct WAMACS bands in the first overtone,
as listed in Table 2.1.
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4 Results

4.1 Classification of the Hyperspectral Data

This subsection focuses on the classification of hyperspectral data using various techniques. It
includes an analysis of score variance plot, a comparison between object-based and pixel-based
classification methods, and an exploration of the cost-effectiveness of using effective wavelengths
for classification.

4.1.1 Score Variance Plot Analysis

Based on the PLS-DA model, the relationship between healthy and infected grains was investigated.
To visualize the distribution of the data and detect potential outliers, a score variance plot was
generated and presented in Fig. 4.1. The score variance plot is a valuable tool for identifying
clusters of data points and extreme values. Consequently, a T2 ellipse was plotted to provide
a measure of the confidence interval for the scores. The data points located around the origin
represent the region where most of the model’s scores are expected to cluster, indicating a high
degree of similarity among these samples. This is expected since the origin represents the average
of the data used for model training, and the samples that cluster around it have a high level of
agreement with the model. Conversely, samples that are located far away from the origin are
dissimilar to the model and may indicate potential outliers or samples that do not fit well with the
model.

Fig. 4.1: Score variance plot to visualize the distribution of data points in the PLS-DA
model for healthy and infected grains, and to identify potential outliers.

Fig. 4.1 reveals that all healthy grain variables are well within the T2 ellipse, indicating a higher
level of confidence in the PLS model’s ability to classify them correctly. However, there are several
infected grain data points that fall outside the T2 ellipse, implying that these data points may be
considered outliers. Furthermore, the score variance plot depicts that the first latent component
explains 97.6% of the total variance in the score plot, indicating that it is a significant contributor
to the overall relationship between healthy and infected grains.
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4.1.2 Object-Based vs. Pixel-Based Classification

Two classification methods were evaluated using a test set, using the last eight images in data set,
of 160 grains (80 healthy, 80 infected) and a training set of 640 samples. Both PCA and SNV
correction were applied to the data during training. The classification accuracy of the AMS and
PM methods was assessed using two confusion matrices (Fig. 4.2 and 4.3). All 288 bands were
used for the model, including the first and last bands despite it being common to remove them due
to noise. This decision was made based on the loading plot in Fig. 3.7, which showed a significant
negative correlation between the principal components of the model. Additionally, breeze has an
importance feature for each band during the training process which amplified this statement.

Fig. 4.2: Confusion matrix for object-based classification using AMS on test data.

Fig. 4.3: Confusion matrix for pixel-based classification using PM on test data.

The AMS method exhibited a lower FP rate, with two misclassifications where infected grains were
detected as healthy. In contrast, the PM method had a higher FP rate, with five misclassifications
where infected grains were falsely identified as healthy. These results suggest that the AMS method
may be more effective at identifying infected grains with a lower rate of FPs. Appendix A contains
the classification report that compares the performance of the PLS-DA model for object-based
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and pixel-based classification, including pixel-wise prediction. The classification report reveals
discrepancies between object-based and pixel-based classification. Fig. 4.4 highlights examples of
these discrepancies, showing that the PM classifier wrongly classified some grains, while the AMS
classifier made correct classifications.

Fig. 4.4: Classification examples of infected grains using object-based and pixel-based
methods. The PM classifier made incorrect classifications, while the AMS classifier cor-
rectly classified the chosen grains.

4.1.3 All Wavelengths vs. Effective Wavelengths

The comparison between the object-based classification method using the AMS approach and a
model trained on four effective wavelengths was conducted to assess the potential of reducing the
number of bands for training and its impact on accuracy. The effectiveness of both methods was
evaluated by including all wheat varieties in the analysis. To increase the robustness of the model,
four samples were selected from each wheat variety, rather than using only the last eight images
as the test set. The images associated with the four effective wavelengths selected based on the
loading plot in Fig. 3.7 are depicted in Fig. 4.5.
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Fig. 4.5: The presented images are composed of various spectral bands, wherein each
image corresponds to a specific wavelength within four distinct intervals in addition to
the RGB channels. The images on the left represent healthy grains, while those on the
right show infected grains.

The results presented in Fig. 4.6 and Fig. 4.7 show that the AMS method achieved near perfect
classification accuracy, with only one instance of misclassification, where an infected grain was
identified as healthy. In contrast, the model trained on four effective wavelengths had two in-
stances of misclassification, where healthy grains were identified as infected. To further illustrate
the differences between the two models, specific grains were selected and are presented in Fig.
4.8, highlighting instances where the classification results differ from the confusion matrices. A
classification report for the PLS-DA model predicting all grains in test set, including pixel-wise
prediction, is shown in Appendix B for the model trained on effective wavelengths and Appendix
C for the model using all wavelengths.

Fig. 4.6: Confusion matrix for object-based classification using AMS with all bands on
every wheat variety as test data.
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Fig. 4.7: Confusion matrix for object-based classification using AMS with EWs on every
wheat variety as test data.

Although the accuracy of the model trained on effective wavelengths was slightly lower than that of
the AMS method, the difference was not significant. Therefore, the model trained on four effective
wavelengths is a cost-effective and viable alternative to using all bands, which can significantly
improve the model’s cost-effectiveness and efficiency without compromising accuracy.

Fig. 4.8: Examples of grain classification using EWs and all bands for every wheat vari-
ety. The ”Healthy or Infected” column represents the ground truth, while the last column
displays the prediction.
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4.2 Deep Learning and Non-Deep Learning Classification

This subsection shows the classification results based on deep learning methods such as CNN for
RGB images and multiple ML models for the hyperspectral images.

4.2.1 CNN-based Analysis with RGB Images

Following the successful implementation of effective wavelengths for identifying wheat grains us-
ing hyperspectral images, the possibility of using RGB images was explored as a potential alterna-
tive approach. The CNN model was implemented and optimized using the scikit-learn and Keras
libraries, respectively. The model architecture consisted of two convolutional layers, each followed
by a max-pooling layer and batch normalization, and a fully connected dense layer with dropout
included. The number of filters in the convolutional layers, kernel size, number of units in the dense
layer, and learning rate were optimized using the GridsearchCV method. The best hyperparameters
were found to be: Filters=12, kernel size=3, dense units=18, and learning rate=0.001. The accuracy
and loss curves across 50 epochs can be seen in Fig. 4.9.

Fig. 4.9: Accuracy and loss curves of the CNN model for training and validation datasets.

Data augmentation improved the generalization performance of the developed CNN model, as evi-
denced by table 4.1 with a F1 score of 98,1% on the test set. The ImageDataGenerator class from
Keras generated new training images, resulting in a larger and more diverse dataset for the model to
learn from. The dataset was divided into three subsets, including the train, validation, and test sets,
consisting of 512, 128, and 160 images, respectively. Each image had a resolution of 128x128 pix-
els and consisted of three channels representing the RGB color space, with pixel values normalized
to the range [0, 1]. The classification performance of the developed CNN model can be visualized
through the confusion matrix in Fig. 4.10. The model achieved an F1-score of 98.1% on the test set,
indicating that it was able to accurately classify wheat grains into their respective categories, with
only two healthy grains misclassified as infected and one infected grain misclassified as healthy.
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Fig. 4.10: Confusion matrix predicted by the CNN model for binary classification of
wheat grains.

Table 4.1: Precision, recall, and F1 score for the CNN model based on the confusion
matrix Fig. 4.10.

Condition Precision Recall F1-score
Healthy 0.975 0.988 0.981
Infected 0.987 0.975 0.981

4.2.2 Alternative Machine Learning Algorithms

Although the object-based AMS classifier yielded good results in identifying wheat grains with
hyperspectral data, other ML models were investigated to determine whether better results could
be achieved. To this end, four commonly used ML models, namely DecisionTree, RF, linear SVM
and a SGD calibrated one-vs-all classifier, were evaluated. All models were trained using all bands
from the hyperspectral data. The confusion matrices for these models are presented in Fig. 4.11.
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Fig. 4.11: Comparison of DecisionTree (LGBM), RF, one-vs-all SGD, and linear SVM
models. Confusion matrices depict the test set results with corresponding precision, re-
call, and F1-score.

Both the DecisionTree and RF models exhibited two misclassifications of healthy seeds as infected
and four misclassifications of infected seeds as healthy, resulting in similar performance. Addition-
ally, SGD and SVM models were tested, but neither model yielded any better results than the AMS
approach. The SGD model presented four misclassifications of infected seeds as healthy, while the
SVM model had seven such misclassifications.

4.3 Moisture and Water Content with Aquaphotomics Analysis

The analysis related to water and moisture content using aquaphotomics revealed distinct differ-
ences between healthy and FHB infected wheat grains. Fig. 4.12 shows the mean and correspond-
ing second derivative spectra for healthy and infected grains, indicating that the spectra exhibit
similar patterns, except for the 1300-1450 nm region, where more variability was observed. The
plot also highlights each WAMAC region with a distinct color-coding. The vertical dashed line
shows the specific wavelength extracted for plotting in the aquagram Fig. 4.13.
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Fig. 4.12: Second derivative spectra for healthy and infected grains with their correspond-
ing WAMACS in each region. The dashed vertical line shows the chosen wavelength in
each region.

Fig. 4.13: Aquagram with WASPs for each WAMAC and pure water.

Descriptive statistics for each of the 12 WAMACS are presented in Table 2.1. The aquagram plot
displays the WASPs of each WAMAC ranging from C1 to C12 for both the healthy and infected
grains, as well as pure water used as a reference spectrum. The plot highlights that, although
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both the infected and healthy grains show a similar pattern, the healthy grains exhibit considerably
higher absorbance values, particularly in the C6 to C12 range (hydrogen-bonded molecules and
hydration shell), which are responsible for the bending and symmetric stretching modes observed
in this range, compared to the infected grains. Furthermore, the absorbance spectra of the healthy
grains intersect with pure water at C1 (asymmetrical stretching), while for both the infected and
healthy grains, the absorbance values gradually increase from C2 to C5, which differ from C6 to
C12, with asymmetrical stretching and no hydrogen-bonded molecules. The error bars in Fig. 4.13
represent the fluctuation range of absorbance values for the grains, corresponding to the standard
deviation of the spectra for each grain in the selected WAMAC.
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5 Discussion

5.1 Image Acquisition and Preprocessing

Achieving accurate disease recognition using image-based techniques heavily relies on the quality
of the images used [78]. In this regard, the resolution of the images is a crucial factor that plays
a significant role in the success of classification methods. However, even after calibration (Eq.
10), the dataset still suffered from significant noise, particularly with regards to the 30 cm lens.
One possible reason for this is the incorrect camera alignment onto the mobile platform shown in
Fig. 3.2 during setup, leading to a mismatch between the focal point and the distance between the
camera lens and the grains. Additionally, another potential issue that may have contributed to this
noise could be the camera’s focus on the petri dish’s higher edges, rather than the grains. This, in
turn, negatively impacts the clarity and resolution of the images. In an attempt to address this issue,
a macro lens was utilized, which resulted in improved image quality and resolution. Although the
use of a macro lens was associated with a narrower FOV, the petri dish was switched with a black
fabric and the overall improvements in image quality were beneficial in terms of their potential to
distinguish between FHB infected and healthy wheat grains.

Before switching to a black fabric as the background for the hyperspectral images, the scanned
images suffered from the presence of shadows. In an effort to mitigate this issue, various pre-
processing techniques were employed, including SNV transformation (Eq. 12), EMSC (Eq. 14),
and first (Eq. 15) and second (Eq. 16) derivatives. Despite the implementation of these methods,
as well as other image processing packages such as morphology and color space conversion from
RGB to LAB, the images still contained shadows which made it difficult to properly segment out
the grains. However, the use of a black fabric as the background effectively eliminated the presence
of shadows in the images.

Specular- and scattering reflection of the grains were also a significant challenge. In Fig. 3.3, it can
be observed that the reflectance spectra of infected grains were considerably higher than those of the
healthy grains. This observation is in line with the findings of previous studies [79, 80], which also
reported higher spectral reflectance of fusarium-infected grains compared to healthy ones. These
studies utilized non-invasive and non-destructive techniques such as NIR reflectance spectroscopy
and HSI to detect fusarium infection in grains. As a result, the infected grains were exposed to
higher levels of saturation in the images, making it harder to differentiate between healthy and
infected regions.

5.2 Classification of Spectral Data

The choice of classification method can significantly impact accuracy in image analysis. Two
studies [81, 82] have compared commonly used classification methods, such as RF and SVM, in
different landscapes, including pixel-based and object-based classification methods. In this thesis
on classifying grains with spectral data, the main model used was PLS-DA. From the results shown
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in Fig. 4.2 and 4.3 for the object-based and pixel-based methods, respectively, it can be seen that
the AMS classifier yielded better results with fewer infected grains misclassified as healthy. This is
consistent with the findings of the previous studies, which have also reported higher accuracy with
object-based methods [81].

Although the pixel-based method is quick and easy to use and preserves the spatial details of the
image, it may not be as fast as the object-based method. However, the pixel-based method is
well-suited for regions with uniform characteristics, but may be more sensitive to noise and image
variations, which can lead to incorrect classification. On the other hand, the object-based approach
takes into account the spectral characteristics, including shape and texture, is more resilient to
noise and variations. However, this method requires more computing power. This difference in
methodology may explain why the pixel-based method had difficulty classifying the first grain in
Fig. 4.4, as it heavily relies on the dominant color and does not consider the average spectrum. In
contrast, the object-based classifier was able to correctly classify the infected grain by considering
the average spectrum along with pixel-wise predictions.

5.2.1 Loadings

The loadings of the PLS-DA model were examined to identify the wavelengths that contributed the
most to the classification of the different classes. As shown in Fig. 3.7, the loadings of the PLS-
DA model vary across the spectral region, indicating that certain wavelengths are more important
than others for discriminating between the different classes. Fig. 4.5 shows the wavelengths 953
nm, 1373 nm, 1923 nm, and 2493 nm, which appears to be the most important for predicting the
classes of grains based on the loadings. The negative correlation between the components of these
wavelengths indicates that they are likely capturing distinct characteristics of the grains. Using only
these four wavelengths could potentially enhance the efficiency and cost-effectiveness of the model.
However, it is important to note that the removal of other wavelengths could also lead to loss of
information and potentially reduce the accuracy of the model. Furthermore, it is essential to notice
that the presence of noise can impact the loadings of the PLS-DA model and their contribution to
the classification process. To investigate this, the initial and final ten bands were removed during the
PLS-DA model training process. The outcomes demonstrated no improvement compared to using
all bands, indicating that the first and last wavelength in the loading plot may have contributed to
enhancing the classification results.

5.2.2 Effect of Wheat Varieties on Grain Classification

The thesis also investigated the robustness of the PLS-DA model in the context of classification
within using every variety of wheat, presented in Table 3.1. Fig. 4.6 and 4.7 shows the results
using every wheat variety as test data. The inclusion of every variety in the test set accounted for
variations within each type, thereby increasing the reliability of the model. It is worth noting that
one of the wheat varieties, namely route 4223, contained white-seeded healthy grains that may have
posed difficulties in distinguishing them from infected grains based on color alone. However, this
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did not appear to be a problem in the hyperspectral images as the grains appeared darker and were
easily distinguishable after preprocessing.

In addition, various commonly used ML algorithms, including DecisonTree, RF, linear SVM, and
a one-vs-all calibrated SGD classifier, were applied to the dataset containing all wheat varieties, as
illustrated in Fig. 4.11. A recent study on corn seed classification using combined spectral and ap-
pearance characteristics reported promising results with SVM outperforming PLS-DA [83]. How-
ever, in this particular thesis, the PLS-DA model outperformed the other ML algorithms, suggesting
that it is a robust and effective approach for grain classification, particularly when accounting for
variations within each wheat variety. The PLS-DA model is particularly well-suited for small sam-
ple sizes, due to its ability to handle multicollinearity and to effectively extract relevant information
from a limited number of samples [42].

5.3 Classification of RGB Images

In the case of RGB images used with a CNN model, the classification accuracy results shown in
Fig. 4.10 and Table 4.1 were acceptable. Notably, two healthy grains were misclassified as infected,
which is a different pattern from what is observed earlier with the hyperspectral images in Fig. 4.2
and 4.3, where infected grains were misclassified as healthy. This is also consistent with Fig. 4.7
for the PLS-DA model trained on effective wavelengths. The results suggest that the model might
have difficulty accurately classifying healthy grains without the additional spectral information,
using only three channels for RGB and four bands for effective wavelengths. A potential factor
contributing to the misclassification is the white-seeded wheat variety present in the test set. Also,
the data for the RGB images only underwent simple normalization techniques, such as scaling the
pixel values within the range 0 to 1. While this can help with scaling and centering image data, it
may not be sufficient for handling complex variations in lighting like SNV method. Consequently,
the model may be more sensitive to brightness variations and wrongly classify healthy grains based
on their bright color.

After segmenting the grains, the dataset contained 800 samples. This size is significantly smaller
than the datasets used in similar studies. For example, Picon et al. [84] studied wheat diseases using
8178 images, while Lu et al. [85] collected a wheat disease database consisting of 9320 images. The
difference in dataset size highlights the advantage of having a larger volume of images for achieving
more reliable results when evaluating classification models. Even though data augmentation was
used in the training process for the CNN with RGB images, it remains uncertain whether this
resulted in an increased robustness of the model, given the limited variations in shape and color
observed among the 800 grains.

5.4 Moisture and Water Content

The moisture content in seeds is deeply related to their quality and storage life [86]. The WASPs
displayed on the aquagram in Fig. 4.13 revealed a noteworthy difference in the absorbance values
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between C1 and C3, where C1 (asymmetric stretching) demonstrated lower absorbance values com-
pared to C3 (asymmetric and symmetrical stretching). It also implies that the error bar is the lowest
for C1, indicating that the values is more reliable due to the relatively lower variation observed
among all grains. These variations in absorbance values could be influenced by several factors,
including the concentration or orientation of water molecules, or the presence of other substances
that may interact differently with the different modes of vibration [87].

Another important factor determining the WASPs is the temperature, as seen in several other studies
[88, 89, 90]. As temperature increases, the thermal energy of the system also increases, which can
cause hydrogen bonds between water molecules and other molecules to break [91]. This can have
a direct impact on the WASPs. Healthy grains may have stronger hydrogen bonds with the water
molecules, which may make them less affected by changes in temperature compared to the infected
grains. Consequently, differences in WASPs are observed in the aquagram plot for healthy and
infected grains, particularly in the C6 to C12 range, which is responsible for bending and symmetric
stretching modes. Thus, the effect of temperature changes can provide valuable information about
the physical and chemical properties of grains based on their WASPs.

Although this thesis focused solely on analyzing the first overtone of the absorbance spectra related
to water in the NIR range, it would be valuable for future studies to consider examining the second
overtone as well. The second overtone, spanning the range of 800-1100 nm [92, 93], provides
additional information about the water structure and its interactions with solutes. Therefore, inves-
tigating in both the first and second overtone regions of water absorbance spectra could provide a
more comprehensive understanding of the aqueous system related to each WAMAC.

5.5 Limitations and Uncertainties

This thesis assess the classification performance of both hyperspectral and RGB images for the task
of distinguishing between healthy and infected wheat grains. Interestingly, both types of images
were found to yield similar classification results. This finding raises the question of whether HSI
provides any additional information beyond what is already achieved with RGB images.

There are several potential reasons why both hyperspectral and RGB images produced compara-
ble results in distinguishing between healthy and infected wheat grains. Firstly, the RGB channels
can provide valuable information about the color, texture, and shape of objects, which is relevant
for this classification task. Secondly, the spectral variability of healthy and infected wheat grains
in the hyperspectral data may be limited, meaning that the hyperspectral data may not provide any
additional information beyond what is already present in the RGB channels. Additionally, the com-
plexity and noise in hyperspectral data may limit its ability to provide useful information. Lastly,
as the training set used in this thesis consisted of a limited number of samples (800 grains), the
additional spectral bands in the hyperspectral data may not have added any significant information
beyond what is already present in the RGB channels. The restricted dataset size may have resulted
in insufficient variation in spectral information, limiting the ability to detect meaningful differences
between healthy and infected grains based on spectral signatures.
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It is worth noting that the classification task of healthy vs infected wheat grains was accomplished
using a supervised learning approach for the PLS-DA model, which has the limitation of being
bounded within the training set. This means that the accuracy of the model is heavily dependent
on the quality and size of the training dataset. It is unclear how much variation was present in
the training dataset and how much of this variation was captured by the model. This factor could
potentially impact the generalization performance of the model to new, unseen samples.

Moreover, as previously mentioned, the classification of the wheat grains was achieved through
manual annotation, which is a labor-intensive and subjective process that is prone to human error.
This limitation may have introduced some degree of bias or inconsistency in the interpretation of
the results. Additionally, it is possible that some features or characteristics of the wheat grains may
have been overlooked or misinterpreted during the annotation process, which could have affected
the accuracy of the classification results. Therefore, it is important to acknowledge the potential
impact of the limitations of the manual annotation process on the interpretation of the results.
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6 Conclusion

The main objective of this thesis was to distinguish between healthy and FHB infected wheat grains
using HSI and RGB images. The classification was achieved through the development of a PLS-
DA model for hyperspectral images and a CNN model for RGB images. To compare the success of
the object-based and pixel-based approaches for classification, the PLS-DA model was developed
using both approaches. The results showed that the object-based method was superior in terms of
classification accuracy. Other well-known ML algorithms was also evaluated, including RF, linear
SVM, SGD calibrated one-vs-all and DecisionTree, and compared their performance with PLS-
DA. The PLS-DA model using an object-based approach outperformed the other ML algorithms.
Moreover, the water and moisture content in the grains was examined using hyperspectral images
in the region of the first overtone of water, represented through an aquagram. The plot highlighted
that although both the infected and healthy grains show a similar pattern, the healthy grains exhibit
considerably higher absorbance values for all WAMACS.

The performance of the hyperspectral images was compared to that of RGB images, with a test set
that did not include every wheat variety. The results showed a minimal difference in classification
accuracy between the CNN model and the PLS-DA model, with F1-scores of 98.1% and 98.8%,
respectively. To achieve a more cost-effective approach using hyperspectral images, effective wave-
lengths were tested using four wavelengths corresponding to 953 nm, 1373 nm, 1923 nm and 2493
nm. The results showed that the classification accuracy was similar to the full spectral range, with
an F1-score of 98.7%. The PLS-DA model using the object-based method yielded better results
when tested on all wheat varieties, with an F1-score of 99.4%.

Based on the findings presented in this thesis, it appears that in the specific classification task
of distinguishing healthy from FHB infected wheat grains, RGB images may provide a suitable
alternative to hyperspectral images. However, it should be emphasized that further experimentation
and investigation may be necessary to confirm these results and explore the potential benefits of
HSI for other applications. While this study mainly focuses on the chromatic properties of the
grains, further studies should also consider to categorize wheat kernels into multiple classes based
on factors such as their shapes, textures or even different stages of FHB-infection severity, which
could provide more detailed insights into the characteristics of different varieties of grains. These
additional features could benefit the CNN model if used with hyperspectral images as more data
is available to differentiate between healthy and FHB infected wheat grains. Additionally, deeper
investigations into how water absorption affects spectral measurements and moisture content in
grains require further research. Supplementary to this, future studies could also consider exploring
the development of a python graphical user interface for a mobile app that allows users to interact
with a saved CNN model for image classification. Such an interface could make the implementation
of image classification using deep learning models more efficient and user-friendly.

51



References

[1] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, and et al., “A review on deep
learning techniques applied to semantic segmentation,” arXiv preprint arXiv:1704.06857,
2017.

[2] H. Bansal, B. Balusamy, T. Poongodi, and F.K. KP, Machine Learning and Analytics in
Healthcare Systems: Principles and Applications, Green Engineering and Technology. CRC
Press, 2021.

[3] Andreas Vidman and Oskar Jonsson, “Breeze - hyperpectral imaging software,” Prediktera,
2015, downloaded 6th march, 2023.

[4] John C. Avise and Francisco J. Ayala, In the Light of Evolution: Volume I: Adaptation and
Complex Design, The National Academies Press, Washington, DC, 2007.
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A Appendix 1 - Limited Wheat Varieties in Test Set

Fig. A.1: Object-based vs. Pixel-based classification with test set containing only a few wheat
varieties. Page 1/16
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B Appendix 2 - Every Variety - Effective Wavelengths

Fig. B.1: Object-based classification using EWs with test set containing every wheat variety. The
third column ”Healthy or Infected” is the true label, while the predicted label is under the fourth
column ”EWs-PLSDA varieties”. Page 1/13
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C Appendix 3 - Every Variety - All Bands

Fig. C.1: Object-based classification using all bands with test set containing every wheat variety.
The third column ”Healthy or Infected” is the true label, while the predicted label is under the
fourth column ”PLSDA varieties”. Page 1/13
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