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Abstract
Accurate prediction of the melting point of oral drugs is crucial for understanding their
chemical properties. Early identification of these properties aids in the screening of po-
tential drugs, thereby saving resources in the pharmaceutical industry’s discovery and
manufacturing processes. The prediction of organic molecules is a complex task due to
many factors that affect entropy and enthalpy forces within a molecule, which are depen-
dent on various factors like shape, electronegativity, flexibility, rotatability, intermolecular
bonding, etc.

In this study, we curated a combined dataset of organic molecules, extracted from the
Open Notebook Science Dataset and Cambridge Structure Database. The dataset consists
of molecules composed of carbon, oxygen, nitrogen, sulfur, phosphorous, and halogens,
exhibiting a wide range of melting point temperatures and molecules with complex struc-
tures. To gain insights into the significance of each feature and its contribution to melting
point prediction, we divided the combined dataset into four subsets based on the number
of bonds an atom can form.

We perform feature engineering on these datasets by studying the physical and chemical
properties known to impact melting points. Numerical features were derived from the
molecules, capturing relevant information. Additionally, we utilized embedding features
without any modifications.

Machine learning models were trained using both numerical and embedding features, with
the accuracy evaluated through R2 scores and root mean squared error values. We set
the model trained on embedding features as a benchmark for our model and features to
surpass. Our machine learning models exhibited good performance, outperforming the
benchmark and achieving good prediction accuracy.

Furthermore, we conducted an in-depth analysis of the results to assess the impact of
individual features on the models. We observed physical shape features and the presence
of specific substructural groups exhibited a strong correlation with melting point predic-
tion. To explore the relationship between features, we performed a principal component
analysis.

The findings of this study have important implications for drug development, formula-
tion, and optimization of manufacturing processes. Accurate prediction of melting points
enhances drug screening procedures and aids in the design of effective pharmaceutical
products.

The codes are available in github.

5

https://github.com/adiitya-dey/Melting-Prediction-organic


The page is intentionally left blank.



Contents

1 Introduction 16
1.1 Aims of this Master’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Datasets 21
2.1 Cambridge Structure Database . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Open Notebook Science Melting Point Dataset . . . . . . . . . . . . . . . . 22
2.3 Combined Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Segregation of Combined Dataset . . . . . . . . . . . . . . . . . . . . . . . 25

3 Feature Engineering 29

4 Machine Learning Theory 48
4.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Machine Learning Training 55
5.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Training, Validation and Testing . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Results 61

7 Discussion 70
7.1 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusion 85

Appendices 92

A Scatter Plots 92

B Partial Dependence Plot 96

7



The page is intentionally left blank.



List of Figures
1 An example of Crystallographic Information File (CIF) showing atom site

coordinates for JAYDUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Histogram Plot of Temperature for Cambridge Structure Database (CSD)

and Open Notebook Science (ONS) datasets . . . . . . . . . . . . . . . . . 23
3 Histogram Plot of BertzCT for CSD and ONS Datasets . . . . . . . . . . . 24
4 Bar Plot of pure hydrocarbon molecule count for CSD and ONS datasets. . 24
5 Plot of Molecular Weight(amu) vs Temperature(K) for Combined and C

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Plot of Molecular Weight(amu) vs Density(amu/Å3) and Mean Electroneg-

ativity for CX and C datasets . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Plot of Atom Count versus Temperature(°C) . . . . . . . . . . . . . . . . . 29
8 Plot of Molecular Weight(amu) versus Temperature(°C) . . . . . . . . . . . 30
9 Plot of Relative Density(ρwater = 1) versus Temperature (°C). . . . . . . . . 31
10 Plot of Haloalkanes for Molecular Weight(amu) and Relative Density(ρwater =

1) versus Temperature (°C). . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 Plot of different electronegativity calculations versus Temperature (°C) . . 34
12 Plot of Relative Density (ρwater = 1) versus Temperature (°C) for Propane

(C3H8), Propylene (C3H6) and Propyne (C3H4). . . . . . . . . . . . . . . . 35
13 Plot of Eccentricity vs versus Temperature(°C) for Propane(C3H8), Propylene(C3H6)

and Propyne(C3H4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
14 Molecular Graphs of Isomers of Hexane . . . . . . . . . . . . . . . . . . . . 37
15 Plot of Relative Density and Eccentricity versus Temperature for Isomers

of Hexane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16 Plot of Sphericity vs Temperature for Isomers of Hexane. . . . . . . . . . . 38
17 Plot of Relative Density(ρwater = 1) vs Temperature(K) for C3H6 (cyclo-

propane), C4H8 (cyclobutane), C5H10 (cyclopentane), C6H12 (cyclohexane),
C7H14 (cycloheptane), C6H6 (benzene), and C6H5CH3 (toluene). . . . . . . 39

18 Wire Frame structure of CycloAlkanes [1] . . . . . . . . . . . . . . . . . . . 39
19 Plot of organic compounds having three carbons and different functional

groups in ascending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
20 An example of Morgan Fingerprint. (a) shows an illustration of concentric

rings of radius 0, 1, and 2 formed by the Morgan fingerprint algorithm to
identify substructures within the given radius [2]. (b) shows an illustration
of the conversion of 1-Propanol to Morgan Fingerprint of a 1024-bit array
with 8 unique substructures identified. . . . . . . . . . . . . . . . . . . . . 46

21 Illustration showing conversion of 1-Propanol to Vector shape (8, 300) using
Mol2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

22 Plot of Molecular Weight(amu) vs Temperature(K) with regression lines
using linear(y = ax + b) and non-linear(y = a log(bx) + c) functions. The
non-linear function is a more approximate fit to the data points compared
to the linear function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

23 Illustration of hyperplanes in Support Vector Machines (SVM) [3]. The red
line is the decision boundary and the dashed lines are the margins based
on support vectors which are the closest point from each positive class(blue
points) and negative class(green points) to the decision boundary. . . . . . 49

9



24 Illustration of regression in SVM. using different types of linear and non-
linear kernels [4]. We observe the linear and polynomial model is unable to
give an accurate decision line but the Radial Bias Function (RBF) model
decision line follows the data points more closer than other models. . . . . 50

25 Illustration of Random Forest Regression with 600 decision trees perform-
ing prediction on test data. The prediction of each tree is averaged to get
the final predicted value [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

26 Illustration of Adaboost with 3 decision trees. The final model is a combi-
nation of the three decision trees. [6] . . . . . . . . . . . . . . . . . . . . . 52

27 Illustration of Artificial Neural Network (ANN) with input layer with 4
nodes, 2 hidden layers with 5 nodes, and an output layer with 4 nodes [7]. 54

28 Illustration of an example of Recursive Feature Elimination (RFE) plotted
against Accuracy(R2) vs a total number of features available in the dataset.
The optimum number of features is chosen as 11. . . . . . . . . . . . . . . 55

29 Illustration of Hyperparameter Selection using Grid Search Cross-Validation.
(A) represents grid search where different combinations of hyperparameter
sets are given to the pipeline. (B) represents cross-validation where each
hyperparameter set is used to train a pipeline on the training fold and
prediction is performed on the validation fold. 5 Fold cross-validation is
applied. (C) represents the average performance of cross-validation of each
hyperparameter set that results in training and validation performance scores. 57

30 Illustration of Model Training Validation and Testing. (A) The dataset is
split into 5 folds with 1 fold as test data and 4 folds as the training dataset.
(B) The training dataset is split into 5 folds with 1 fold as validation data
and the rest as train data. Prediction is performed on Validation data.
(C) Prediction is performed on Test data folds resulting from Step A. (D)
Final evaluation metrics provide the performance of train, validation, and
test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

31 Plots of Feature Importance scores for Random Forest on C, CX, CXOS,
and CXOSNP Datasets in descending order of feature importance score.
Features to the left and at the intersection of the red line are the optimum
number of features chosen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

32 Plots of Feature Importance scores for Adaptive Boosting (AdaBoost)(Decision
Tree (DT)) on C, CX, CXOS, and CXOSNP Datasets in descending order
of feature importance score. Features to the left and at the intersection of
the red line are the optimum number of features chosen. . . . . . . . . . . 76

33 Plots of Feature Importance scores for Extreme Gradient Boosting (XGBoost)
on C, CX, CXOS, and CXOSNP Datasets in descending order of feature
importance score. Features to the left and at the intersection of the red
line are the optimum number of features chosen. . . . . . . . . . . . . . . . 79

34 Principal Component Analysis (PCA) Loading Plot for the C, CX, and
CXOS Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

35 PCA Loading Plot for the CXOSNP Dataset. . . . . . . . . . . . . . . . . 82
36 Scatter plot of C Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
37 Scatter plot of CX Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
38 Scatter plot of CXOS Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 94
39 Scatter plot of CXOSNP Dataset. . . . . . . . . . . . . . . . . . . . . . . . 95

10



40 Partial Dependence Plot of Random Forest and XGBoost on the CXOSNP
Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11



List of Tables
1 Example of Ring Count for cyclobutane, cyclobutene, and cyclopentane.

A combination of features can distinguish between molecules with similar
ring counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 List of 96 Features created after Feature Engineering. . . . . . . . . . . . . 45
3 Train, Validation and Test R2 score and RMSE for C dataset . . . . . . . . 63
4 Train, Validation and Test R2 score and RMSE for CX dataset . . . . . . . 65
5 Train, Validation and Test R2 score and RMSE for CX dataset . . . . . . . 66
6 Train, Validation and Test R2 score and Root Mean Squared Error (RMSE)

for CXOSNP dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12



Abbreviations

logP log octanol-water partition coefficient

vdW Van der Waals

AdaBoost Adaptive Boosting

AI Artificial Intelligence

ANN Artificial Neural Network

CIF Crystallographic Information File

CSD Cambridge Structure Database

DT Decision Tree

GSE General Solubility Equation

ML Machine Learning

MPbAP Melting point based Adsorption potential

MSE Mean Squared Error

NLP Natural Language Processing

ONS Open Notebook Science

PCA Principal Component Analysis

QSPR Quantity Structure Property Relationship

R2 Coefficient of determination

ReLU Rectified Linear Unit

RFE Recursive Feature Elimination

RBF Radial Bias Function

RMSE Root Mean Squared Error

SDF Structure Data File

SMILES Simplified Molecular Input Line Entry System

SSE Sum of Squared Error

SST Total sum of squares

SVM Support Vector Machines

13



SVR Support Vector Regressor

XGBoost Extreme Gradient Boosting

14



The page is intentionally left blank.



1 Introduction

Melting point is an important physical property in the pharmaceutical industry in the
process of creating and manufacturing oral drugs. Oral dosage is a common method of
drug delivery route due to patient adherence, cost-effectiveness in manufacturing, ease
of taking the drug, and flexibility in the designing of the dosage. The intended effect of
taking orally is to have the drug reach different parts of the body via the bloodstream.
The effectiveness of the drug depends on the adsorption, absorption, and solubility in the
digestive system where the drug is broken down by enzymes.

The melting point has a relationship with Adsorption which refers to the capability of the
drug to attach or bound to the surface of a material(enzyme) which can then transport the
drug to the target site in the body. Melting point based Adsorption potential (MPbAP)
as shown in equation (1) states that higher adsorption is achieved for any given dose at
lower melting points and decreases with increasing melting points [8]. It means a drug
with a dose of 100 mg and a melting point of 200°C will have better adsorption compared
to a drug with the same dose but a higher melting point of 300°C. If the dose is increased
from 100 mg to 200 mg then the adsorption rate will still be better for drugs with lower
melting points. This information is required during oral drug selection of thousands of
compounds, to predict a drug’s intestinal adsorption rate allowing for rapid and efficient
drug selection. But the selection process based on MPbAP depends on identifying the
melting point of the organic compound which then allows calculation of the adsorption
rate and the dose of the drug that can be administered.

[0.5− 0.01(MP− 25)]− log(4×Dose) ≥ 0 (1)

Melting point also has a relationship with drug solubility, which is the ability of a drug
compound to dissolve in liquid to form a homogeneous solution. A drug compound that
has low solubility when administered to a patient will have poor bioavailability lead-
ing to lower potency [9] and will require high-dose administration. This will instigate
other undesirable characteristics like nausea, vomiting, and abdominal pain. The aque-
ous solubility(logSw) of a drug is given by General Solubility Equation (GSE) as shown in
equation (2) which shows the mathematical relationship to the log octanol-water partition
coefficient (logP) and its melting point [10]. A compound with a higher melting point
tends to have stronger intermolecular forces that are less resilient to breaking. These are
the same intermolecular forces that are to be overcome when the compound is consumed
orally with water. So a drug compound with a higher melting point will have stronger
intermolecular forces that can lead to lower aqueous solubility. Therefore melting point
has a strong relationship with solubility and identifying drugs with lower melting points
can assist the drug discovery and screening process.

logSw = 0.5− 0.01(MP− 25)− logP (2)
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Thus a crucial part of drug discovery is to identify the melting point that determines
a drug’s profile. This profile is called ADMET - adsorption, distribution, elimination,
and toxicity. The ADMET profile of a drug if known from the beginning allows better
investment of resources and saves time in preclinical and clinical testing. These ADMET
properties as discussed above are dependent on melting point and therefore focusing the
resources on attempting to predict the melting point of the drug in advance can highlight
a drug’s potential during the drug discovery and selection process.

The melting point is also an indicator of purity of a compound and the process of iden-
tifying the purity is called purity determination. Each compound has a different melting
point and a pure compound will sharp melting range that is less than 5°C [11]. When
the compound has impurity it has a broad melting range greater than 5°C [11]. increases
therefore allowing us to identify the purity of a compound. Impurities can deter the
product’s quality in the pharmaceutical industry.

Producing a compound involves multiple stages that begin with the sourcing of material,
synthesis of the compound in the laboratory, large-scale manufacturing, storage, and
delivery. Along these stages, the compound is exposed to variations in temperature and
pressure and other substances which can lead to the introduction of impurities in the main
compound. For example, if the quality of the starting materials, reagents, and solvents is
impure in nature, then the final compound’s quality dramatically changes [12]. Also after
the synthesis residual solvents if still present in the main compound will also add to its
impurity. Thus purity determination by identifying the melting point of the manufactured
product and validating it with the true melting point of the product during laboratory
synthesis acts as a quality control check during each stage of the manufacturing process
in pharmaceutical industries.

This shows the importance of the melting point is not bound alone to drug discovery but
every step that begins from discovery leading to the selection, pre-clinical testing, clinical
testing, manufacturing, and its effects on the patients after prolonged usage. Thus our
goal should be to attempt to identify the melting point of a compound to eliminate or
select them in the early stages of screening.

What is Melting Point?

According to the law of thermodynamics, the Gibbs free energy ∆G is determined by the
change in enthalpy(∆H) and entropy(∆S) of a reaction as shown in equation (3). When
∆G = 0 then T = Tm is given by the equation (4) where melting point temperature is
the ratio of enthalpy and entropy.

∆G = ∆H − T∆S (3)
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Tm = ∆Hm

∆Sm
(4)

Enthalpy of melting is the amount of heat required to melt 1 mole of a substance at
constant pressure and temperature to change the phase from solid to liquid. In a crystal
lattice, the neighboring molecules are held together by intermolecular forces restricting
their movement. The heat supplied to the substance breaks these intermolecular forces
allowing the molecule to move freely and thus begin the transition to a liquid state.
Therefore enthalpy of melting is associated with the amount of heat required to break all
intermolecular forces within 1 mole of a substance.

The intermolecular forces are Van der Waals (vdW) forces and hydrogen bonds. vdW are
weak intermolecular forces that occur in molecules caused by temporary shifts in electron
distribution within the molecule creating a partial negative and positive charge that can
attract atoms from nearby molecules. They include dipole-dipole, dipole-induced dipole,
and London forces [13]. Hydrogen bonds are stronger than vdW’s forces and are formed
between an electronegative atom and a hydrogen atom [13] where it is covalently bonded
to one electronegative atom within the molecule and an electrostatic force with another
electronegative atom from a different molecule.

The force contribution of these atoms and groups in a molecular crystal towards enthalpy
of melting is given by the equation (5) where ni is the number of group i in the molecule
and mi is the contribution of each group i to the enthalpy of melting [14].

∆Hm =
∑
i

nimi (5)

The entropy measures the degree of disorder or randomness in the molecules in the current
phase of the thermodynamic system. In the solid phase, the molecules have less degree
of freedom to rotation, expansion, and conformation as compared to a liquid phase [15].
The entropy of melting can be described by the Boltzmann relationship equation (6) [14]
where R is the Boltzmann Constant with a value of approximately 8.31 J mol−1 K−1 and
pm is the ratio of probabilities of the number of ways 1 mol of material can exist within
the confines of the crystal and liquid given by ΩC

ΩL .

∆Sm = −R× ln pm (6)

This entropy can be further explained using Carnelley’s Rule of Symmetry which states
that among the isomers of a molecule, the isomer with the highest rotational symmetry
number shall have a higher melting point [14]. Rotation symmetry number(σ) refers to
the number of identical images a molecule can make when rotated within 360° in any
direction. Carnelley also states that molecules that have long chains tend to have a low
melting point due to higher flexibility that creates many conformations. It is given by
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flexibility number(φ) that relates to conformations possible in crystal to that of liquid.
The compactness of a molecule refers to the arrangement of atoms in a molecule that are
closer to each other and is defined using eccentricity number(ε). Eccentricity identifies
the flatness of a molecule.

Thus according to Carnelley’s principle, we can elaborate the entropy equation (6) into
equation (7) [14] which says the total entropy of melting can be described using rotation
symmetry number(σ), flexibility number(φ) and eccentricity number(ε).

∆Sm = Const−R ln σ −R lnφ−R ln ε (7)

Hence, our aim now is to understand and describe the factors determining the shape and
intermolecular forces of a molecule that can assist to understand the effects of entropy
and enthalpy allowing the prediction of melting points.

Prediction of melting point is usually performed using Quantity Structure Property Rela-
tionship (QSPR) which is a regression method where a molecule’s physical and chemical
properties are used as predictor variables(X) to determine a regression function(f(X)).
This regression function is used to predict the response variable(Y ). The regression
function can be learned by a Machine Learning (ML) model trained on a dataset of
molecules [16].

The predictor variable can be numerical, graphical, or embedded features that can rep-
resent the molecule. Numerical features may represent a quantitative feature that may
provide a description of the molecule like molecular weight or volume. Graphical features
convert the molecule into the node and edge features [17] and Embedding features convert
the property of the molecule into an array [16].

Therefore we use the QSPR method to train ML models on features that describe the
entropy and enthalpy of a compound and perform prediction of the melting point tem-
perature of various organic compounds.
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1.1 Aims of this Master’s Thesis

ML has taken over various fields such as image processing, natural language processing,
time series analysis, etc which were earlier deemed as complex problems. Yet in the field
of chemo-informatics, determining a basic property like melting point has been a difficult
problem due to its complexity [18] that arises from various factors like intermolecular
forces, shape, chirality, etc.

Over the years, there have been many attempts in solving this problem and few researchers
have been able to provide relationships between these factors that allow for predicting the
melting point. But these relationships work only in a subset of molecules and there are
no generalized melting point prediction models that can predict for all types of molecules.
The prediction of melting point is key to understanding other physical and chemical
properties which are of importance in the pharmaceutical and chemical industries.

Thus our aim through this research is to perform feature engineering of organic molecules
that describes these properties affecting melting points and use ML to analyze and identify
its effectiveness to improve the prediction of a melting point. We attempt to build a
general purpose ML model that predicts the melting points of a larger subset of organic
molecules with a wide temperature range. Along this process, we aim to bridge the
gap between chemistry and data science by attempting to build physical and chemical
properties into mathematical features that describe the molecule and can be used by the
ML model for prediction.
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2 Datasets

In this section, we explore various datasets, the elimination methods applied to them,
and the necessity to combine them. Further, we will understand the need to segregate
our combined dataset into carbon, carbon-halogen, carbon-halogen-oxygen-sulfur, and
carbon-halogen-oxygen-sulfur-nitrogen-phosphorous datasets.

2.1 Cambridge Structure Database

The CSD is a comprehensive collection of published organic and metal-organic small
molecule crystal structures [19]. The structural information is stored in CIF that com-
prises chemical formula, volume, cell parameters, atomic coordinates, the method used
to extract the information, etc. It is the standard file format specified by the Interna-
tional Union of Crystallography to ensure the build of the structural model is the same
in all software [20]. Individual researchers or organizations deposit the CIF into the CSD
along with their scientific articles. The CSD Team performs validations and assigns a
’CCDC number’ to uniquely identify the crystal structure, which can be directly referred
to in other scientific journals using the number. As viewed on March 2023, CSD contains
1,228,093 deposited crystal structures.

Figure 1: An example of CIF showing atom site coordinates for JAYDUI

A CIF file is written in a STAR Schema format that comprises data blocks identified by
name-value pairs and tables as loops. The name is written as "_data_type" followed by
its associated value. Figure 1 shows a part of ’JAYDUI’ CIF that represents the atom’s
site coordinates.

The selection criteria to filter organic molecular crystals from Web CSD to create our
CSD dataset are:
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• Organic molecular crystals with atoms consisting of carbon, nitrogen, oxygen, phos-
phorous, sulfur, and halogens are selected.

• CIFs that do not have "_chemical_melting_point" block are removed.

• Molecular crystals with more than one type of molecule in the crystal and molecules
in conjugate acid-base form are removed to eliminate molecules whose melting points
are impacted by formal charges. Neutral-charged single-molecule crystals are only
selected.

Finally, the selection criteria resulted in 63,888 molecular crystals from the CSD dataset.
Melting point temperatures are converted into Kelvin.

2.2 Open Notebook Science Melting Point Dataset

The ONS Melting Points [21] curated under the supervision of Professor J.C. Bradley is an
open-source dataset in the form of a comma-separated value file that represents a snapshot
of melting points collected on July 30, 2011. The dataset consists of columns representing
molecules in SMILES string format, name of the molecule, melting point in (°C), source of
information, source’s link, and csid as a unique identifier to find the molecule in the source
link. Also, they have added a column "DONOTUSE" marked with "x" for molecules whose
melting points are uncertain, and it is left to the user’s choice to re-evaluate and update
them. It contains a melting point of 28,645 molecules. The Simplified Molecular Input
Line Entry System (SMILES) is a form of structure representation using ASCII string
format [22]. For example, ’CCC’ and ’CCO’ represents a SMILES string for propane and
ethanol respectively.

The selection criteria for filtering for our dataset are:

• Molecules with atoms consisting of carbon, nitrogen, oxygen, phosphorous, sulfur,
and halogens are selected.

• "DONOTUSE" column whose rows are marked as "x" is removed.

• For molecules with duplicate names, we retain the first value and remove others.

The final selection has 24,889 molecules from ONS Dataset. Melting point temperatures
are converted into Kelvin.

2.3 Combined Dataset

Since we aim to build a generalized model for melting point prediction, we need to evaluate
the dataset in use. Figure 2 shows the histogram plot of Temperature for CSD and ONS
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datasets where we observe that the melting point temperature of molecules is within the
range of 300 K to 600 K. Therefore if only CSD is used, our ML model will be able to
learn predictions for this range of temperatures but will be unable to predict the range
below 300 K as there are no molecules that represent it. The ONS has fewer molecules
comparatively, but it covers the melting point temperature range of 100 K to 600 K.
Therefore combining both will have a wide range of melting points from 100 K to 600 K.

Figure 2: Histogram Plot of Temperature for CSD and ONS datasets

We can make the argument for only using the ONS dataset since it covers the tempera-
ture range of 100 K to 600 K. Therefore we evaluate both datasets based on the Bertz
Connection Table(BertzCT) [23] that is a topological index describing the complexity of a
molecule by accounting for size, symmetry, branching, rings, bonds, and heteroatom dis-
tribution. Figure 3 shows BertzCT’s histogram plot for the CSD and ONS datasets, where
the mean values are 441.16 and 758.3 for the ONS and CSD datasets, respectively. If we
assume low complexity as 0-500, medium complexity as 500-1000, and high complexity
as 1000+ then we observe in the figure that there are more low and medium complexity
molecules in ONS than CSD that has more medium to high complexity molecules. A ML
model applied to ONS will learn complex patterns and relations for low and medium-
complexity molecules but will suffer from poor predictions for high-complexity molecules
since its representation is less. Similarly, the model trained on CSD alone will have poor
predictions for low-complexity molecules.

To further strengthen our argument for combining datasets, we extract the count of
hydrocarbon molecules from both datasets represented in Figure 4. Hydrocarbons are
molecules with carbon and hydrogen only. Even though there are more molecules in
CSD, we can see in the figure that ONS has a higher representation of hydrocarbons.
We observe that the alkanes are lower in CSD than ONS and a similar trend follows for
aliphatic non-cyclic and cyclic rings and aromatic rings. It shows that ONS has a better
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Figure 3: Histogram Plot of BertzCT for CSD and ONS Datasets

variation in molecules that if combined with CSD can form a more generalized dataset
with various types of molecules.

Figure 4: Bar Plot of pure hydrocarbon molecule count for CSD and ONS datasets.

Therefore combining ONS and CSD can create a more balanced dataset that represents
different types of molecules, ranging from low-complexity to high-complexity. Hence, the
combination now consists of 92,156 organic molecules.

We use RDKit [24] package to read the molecular structure for performing feature ex-
traction like volume requires the computation of 3-dimensional coordinates, and SMILES
strings do not have them. Even though 3D coordinates are available in CIF, RDKit cannot
read CIF format but can read MOL or Structure Data File (SDF). Due to these limita-
tions, we performed elimination in two parts - before and after combining the dataset.

Before combining the dataset, the step includes converting SMILES, or molecular crystal,
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to SDF format using openbabel [25] package. We use the openbabel option of separate
and unique to separate disconnected fragments into individual molecular records and
remove duplicate molecules. Further, the SMILES string requires to undergo generation
of random 3D coordinates. SMILES or CIF that have conversion errors are removed.

Henceforward, we combine both datasets to obtain 82,298 SDF files. Further, the selection
criteria to eliminate molecules from the combined dataset are as follows:

• Molecules with radical electrons greater than 0 are eliminated since they represent
bond conversion errors.

• Molecules with molecular fragments of more than 1 are eliminated since we do not
want multi-molecular structures.

• Molecules with a length of SDF greater than 1 are eliminated since we do not want
multi-molecular structures.

• Molecules with atoms other than C, N, O, P, S, F, Cl, Br, and I are eliminated.

• Empty or corrupt SDF files are eliminated.

• Molecules with similar SMILES are eliminated as they represent duplicates.

Thus, the final combined dataset now contains 65,466 organic molecules.

2.4 Segregation of Combined Dataset

The combined dataset represents atoms forming various types of bonds, functional groups,
and cyclic and aromatic rings. When we convert these properties into features on a
combined dataset, we will have an obscure view of each property’s contribution toward
melting point temperature and be unable to make an informed decision. For example,
Figure 5 shows molecular weight versus Temperature plots for the dataset and the C
dataset representing hydrocarbons. In Figure 5a the combined data has information
clustered for molecular weights between 0 and 1000, and we cannot determine a strong
correlation between them. Whereas Figure 5b of hydrocarbons shows a strong correlation
between molecular weight and temperature, and the blue line represents the function
f(x) = a log x+ b that shows there is a non-linear relationship. It shows that segregating
the dataset into hydrocarbons allows a better view of the correlations of physical and
chemical properties versus temperature.

We can further strengthen our statement by Figure 6a and 6b which show the plot of
Molecular Weight (amu) versus Density(amu/Å3) for CX (halogen compounds) and C
(hydrocarbons) datasets, where density is calculated using equation (9). We observe that
for halogen compounds, the density is spread across 1.0 amu/Å3 to 3.0 amu/Å3 whereas,
for hydrocarbons, it is between 0.5 amu/ Å3 to 1.5 amu/Å3.
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(a) Combined Dataset (b) C Dataset

Figure 5: Plot of Molecular Weight(amu) vs Temperature(K) for Combined and C
datasets.

The difference in their density can be further analyzed using electronegativity. This can
be viewed in Figure 6c and 6d which show the Molecular Weight(amu) versus electroneg-
ativity mean for the CX and C datasets, where electronegativity mean is calculated using
equation (11). We observe that the electronegativity mean is higher for halogen com-
pounds than hydrocarbons. Therefore, electronegativity may affect the density of the
compounds. These observations would have been obscured if we had analyzed only the
combined dataset. Thus, it is necessary to divide the combined dataset for a better
understanding of the features and their impact on the melting points.

Therefore, we divide the dataset into four segments based on the number of bonds an
atom can make.

• C Dataset - It contains 1,526 molecules with carbon and hydrogen atoms. Confin-
ing the focus on the "C Dataset" will assist in building features representing basic
properties like molecular weight, orbital hybridization, chains, and rings.

• CX Dataset - It consists of 2,825 molecules having carbon, hydrogen, and halogen
atoms. Halogen usually forms a single bond with carbon, and their study helps to
examine one of their key properties, electronegativity. This dataset acts as a quality
baseline to understand electronegativity’s effect and the features we need to capture
this information accurately.

• CXOS Dataset - This dataset has 24,265 molecules with carbon, hydrogen, halo-
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(a) CX Dataset (b) C Dataset

(c) CX Dataset (d) C Dataset

Figure 6: Plot of Molecular Weight(amu) vs Density(amu/Å3) and Mean Electronega-
tivity for CX and C datasets
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gen, oxygen, and sulfur. Oxygen and Sulfur atoms form two bonds, resulting in
various combinations of functional groups. Thus, our goal with this dataset is to
lay a foundation for studying functional groups’ effects and formulate features that
may even capture hydrogen bonding’s effects.

• CXOSNP Dataset This is the combined dataset, having 65,466 molecules con-
sisting of C, N, O, P, S, F, Cl, Br, and I. Here nitrogen and phosphorous atoms
make 3 bonds, and the combinations formed with oxygen, sulfur, hydrogen, and
carbon make numerous groups, and hetero rings generate highly complex molecular
structures to study.

Our end goal is to attempt robust prediction for the CXOSNP dataset, and segregating
as described above helps us to build features for the smaller datasets and understand its
correlation with melting points.
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3 Feature Engineering

The dataset discussed in Section 2.4 consists of molecules in the form of raw data that
cannot be used for training ML models. Therefore, we need to convert these molecules
into numerical features using feature engineering.

Feature engineering is the process of transforming raw data into useful features by ex-
tracting relevant information from the raw data. This requires knowledge of the domain
to which the dataset belongs and utilizing it to extract potential features that can assist
in improving the prediction of the training model.

Thus, in this section, we will analyze the important factors that affect melting points and
discuss the process of extracting them using a single feature or a combination of multiple
features.

Atom Count

Figure 7a shows carbon count of alkanes: C3H8, C4H10, C5H12, C6H14, C7H16, C8H18, and
C9H20. We observe the melting point increases with an increase in the number of carbons
and has an upward trend.

(a) Alkanes (b) Fluoroalkanes

Figure 7: Plot of Atom Count versus Temperature(°C)

Figure 7b shows the fluorine count for fluoroalkanes: CH3F, CH2F2, CHF3 and CF4.
Here we observe that with the same number of carbon atoms and an increasing number
of fluorine atoms, the melting point has a downward trend.

A simple observation on alkanes and fluoroalkanes shows that counting the number of
atoms in the molecule can assist in evaluating the general trend of melting point. Even
though for complex molecules the atom count alone will not be able to provide the trend,
with the combination of other features, it might assist us. Therefore, we decide to create
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a feature to calculate the atom count for each molecule, where the atoms to be counted
are C, O, S, N, P, F, Cl, Br, and I.

Molecular Weight

Molecular weight is the sum of the average atomic mass of each atom in the molecule. It
is calculated using the equation (8), where mi is the atomic mass of each atom summed
together to form m which is the mass of the molecule.

m =
i=n∑
i=1

mi (8)

(a) Alkanes (b) Haloalkanes

Figure 8: Plot of Molecular Weight(amu) versus Temperature(°C)

Figure 8b represents the plot of Molecular Weight(amu) versus Temperature(°C) for
haloalkanes: CH3F, CH3Cl, CH3Br, and CH3I. We observe that an increase in molecular
weight occurs due to the increasing weight of halogen(F < Cl < Br < I) and therefore
the melting point has an upward trend.

Figure 8a represents the plot of Molecular Weight(amu) versus Temperature(°C) for alka-
nes, which is similar to Figure7(a). We can argue that the count of carbons captures
the same information as the molecular weight of alkanes, and for complex molecules, the
count of each type of atom can collectively represent the molecular weight. The difference
lies in how the model will process the information since in molecular weight(m) calcula-
tion, we pass the weight of each atom and calculate its average weight, whereas in atom
count, the model has to assign the feature weight(w) to each atom, and this may depend
on other features too as the model evaluates feature weight or importance based on infor-
mation gain(I). Therefore, we extract both atom count and molecular weight and allow
the model to assess their importance, which is evaluated during feature selection.
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Density

Density is the ratio of molecular mass to the volume occupied by a crystal lattice (space-
filling). It is a measure of compactness that can be calculated using the ratio of molecular
weight and volume, as shown in equation (9).

ρ = m

V
(9)

(a) Alkanes (b) Fluoroalkanes

Figure 9: Plot of Relative Density(ρwater = 1) versus Temperature (°C).

Figure 9a shows the plot of relative density versus temperature for alkanes, where we
observe that the melting point has an upward trend with an increase in density. Larger
molecules tend to have a higher density, indicating better packing, which may suggest
stronger intermolecular forces might exist that may require more energy to break, which
increases the melting point [26].

But this upward trend is not observed in Figure 9b, which represents fluoroalkanes that
have an overall downward trend but a rise in the melting point from CHF3 to CH3F.
According to the equation (9), the density of CHF3 should have been higher since its
molecular weight is greater than CH3F, and the volume should also be higher due to 3
fluorine atoms. The CHF3 molecule has 3 fluorine atoms that create a partial negative
charge on themselves and can make one hydrogen bond, and the CH3F molecule has
only 1 fluorine atom that can make one hydrogen bond [27]. So even though they both
make single hydrogen bonds, in CHF3 there may be other factors that influence the
intermolecular forces which are affecting its melting point.

Therefore, density may not always have a high correlation with the melting point but can
be used as a feature that may identify the packing of atoms within the molecule.

Earlier, we defined volume as space-filling in crystal, but our dataset does not have crystal
information for all molecules. Thus, we calculate vdW volume, which is the total amount
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of space occupied by atoms and bonds of a molecule in 3D space in its specific conformation
or shape. It is calculated using Cavalieri’s Principle, available in RDKit [24], which
assumes a uniform electron density distribution for the molecule and creates a set of
overlapping spheres based on vdW radii of the atoms and computes the total volume of
the overlapping spheres. Hence the density that we calculate will be vdW density, as
shown in equation (10).

ρvdW = m

VvdW
(10)

Electronegativity

(a) Molecular Weight (amu) vs Temperature
(°C)

(b) Relative Density(ρwater = 1) versus Tem-
perature (°C)

Figure 10: Plot of Haloalkanes for Molecular Weight(amu) and Relative Density(ρwater =
1) versus Temperature (°C).

Electronegativity is a chemical property that allows a participating atom in a covalent
bond to attract the bonding electrons, creating a partial negative charge on itself and
a partial positive charge on the other participating atom, which can result in a halogen
bond or hydrogen bond with its neighboring molecules.

In the periodic table, the most electronegative atoms are halogens like fluorine, chlorine,
bromine, and iodine. Figure 10a shows the molecular weight of haloalkanes having 1
carbon and different combinations of halogens, where we can observe melting point does
not have a linear relationship with molecular weight and density. We observe that, even
though CCl2F2 has a larger molecular weight than CH2F2 the melting point is higher for
CH2F2. For the molecules with only one halogen, the melting points are in the increasing
order of CH3F < CH3Cl < CH3Br < CH3I that may be due to molecular weight in the
order of F < Cl < Br < I. But it is not in the same order in Figure 10b which shows
the order of relative density as CH3Cl <CH3F < CH3Br < CH3I.

These observations indicate that electronegativity induced in the molecule can be partially

32



captured for a few molecules using molecular weight and density trends, but not for all
complex molecules. Since we want to calculate the polarity induced in the atoms of
a molecule and represent them as a singular numerical feature to capture information
about halogen and hydrogen bonds, we use the below methods to identify electronegativity
trends.

• Equation (11) calculates the mean of electronegativity of all atoms within the
molecule, where χi is the electronegativity of an atom i and N is the total number
of atoms. If there are more electronegative atoms in the molecule, the mean will be
higher than in a molecule with only carbon atoms.

EN_mean = 1
N

N∑
i=0

χi (11)

• Equation (12) calculates the variance of electronegativity of a molecule, where χi
is the electronegativity of an atom i, µ is the mean, and N is the total number of
atoms. This will be able to represent the deviations in electronegativity when there
is a higher electronegative atom but its count is low.

EN_var = 1
N

N∑
i=0

(χi − µ) (12)

• Equation (13) calculates the mean of the electronegativity difference between two ad-
jacent atoms in a molecule. χi and χ

′
i represent electronegativity for atoms for con-

nection i, and n is the total number of connections between atoms in the molecule.
Here, the electronegativity difference will be 0 if the adjacent atoms are C-C, but the
difference will rise if they are C-F. The mean of these adjacent atoms can capture
the polarity that may be induced between the atoms.

EN_diff_mean = 1
n

n∑
i=0

(χi − χ
′

i) (13)

• Equation (14) calculates the mean of electronegativity variance between χi and χ
′
i

for connection i in a molecule. Its purpose is similar to equation (13) but we try to
capture the information between adjacent atoms using variance.

EN_var_mean = 1
n

n∑
i=0

Var(χi, χ
′

i) (14)

• Equation (15) calculates the variance of electronegativity variance between χi and
χ

′
i for connection i in a molecule. Its purpose is similar to equation (14) but captures

information using a variance.

EN_var_var = Var
(
Var(χi, χ

′

i)
)

(15)
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(a) Electronegativity Mean (b) Electronegativity Variance

(c) Electronegativity difference mean (d) Electronegativity difference variance

(e) Electronegativity variance mean (f) Electronegativity variance variance

Figure 11: Plot of different electronegativity calculations versus Temperature (°C)
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• Equation (16) calculates the variance of electronegativity difference between between
χi and χ

′
i for connection i in a molecule. It is a combination of equation (13) and

(15).

EN_diff_var = Var(χi − χ
′

i) (16)

Figure 11 shows the plot of different electronegativity calculations versus Temperature
(°C). In Figure 11a and 11b, we observe a downward trend that can capture the elec-
tronegativity in the molecule. For Figure 11d and 11f, there is no trend and the results
may not assist ML model to gain a significant amount of information from this feature.

Thus, these electronegativity functions will capture polarity-induced, and assist to identify
the presence of intermolecular bonding between the molecules.

Orbital Hybridization

Figure 12: Plot of Relative Density (ρwater = 1) versus Temperature (°C) for Propane
(C3H8), Propylene (C3H6) and Propyne (C3H4).

Hybridization is the process of redistribution of the orbital energy of individual atoms to
give rise to hybrid orbitals that have different energy, shapes, etc. for the pairing electrons
to form chemical bonds. In simple hydrocarbons, we observe three types of hybridization:
sp, sp2, and sp3. sp3 hybridization occurs when one electron from the s orbital and three
electrons from the p orbital mix together to form four hybrid orbitals in a tetrahedron
shape, making an angle of 109°28′ with one another. In sp2 hybridization, one s orbital
and two p orbitals join together to form three hybrid orbitals, forming a triangular planar
shape with an angle of 120°. In sp hybridization, the valence shell contains one unpaired
electron in the s and p orbitals, which participate in forming the sp orbitals. This mixing
of s and p orbitals produces two identical sp orbitals that form a linear shape with an
angle of 180°.
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Thus, the main effect on melting that comes from orbital hybridization is the shape factor
of the molecule. Since hybridization determines the shape of the molecule, it thus con-
tributes to the molecule packing arrangement in the crystal lattice and the intermolecular
forces that occur due to the arrangement. This is observed in Figure 12 which shows the
relative density versus melting point of C3H8, C3H6, and C3H4. We can observe that the
density has an upward trend where C3H4 being a linear shape, has the highest density due
to better packing leading to stronger intermolecular forces, thus having a higher melting
point than others. Since C3H8 has a tetragonal shape, the packing may not be sufficient
for stronger intermolecular forces, leading to a lower melting point.

Hence, from these observations, we understand that hybridization impacts the shape of the
molecule, which may influence many factors like polarity, rotation, expansion, flexibility,
etc. that impact the melting point.

Figure 13: Plot of Eccentricity vs versus Temperature(°C) for Propane(C3H8),
Propylene(C3H6) and Propyne(C3H4)

For complex molecules, density alone will not be able to capture the information of hy-
bridization. Therefore, we chose the below features to capture the hybridization and the
shapes that may arise due to it.

• We calculate the total number of bonds in a molecule and the individual types of
bonds that are single, double, triple, and aromatic. These features will be able
to describe the type of connections between the atoms, and collectively, they can
describe the hybridization.

• We attempt to capture flexibility using rotatable bonds that are single bonds not
part of a cyclic structure, and occur between two carbon or heteroatoms separated by
three or more bonds. The last condition is required to ensure the bond is relatively
flexible and not constrained by small rings or other structures around it.

• To capture flatness in the molecule, we use eccentricity. Eccentricity describes
the flatness of a geometric shape given by a number between 0 and 1, where 0
corresponds to a circle and 1 is a line segment. According to Tosdeschini and
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Consoni’s "Descriptors from Molecular Geometry" [28] eccentricity can be estimated
by the equation (17) where pm1 and pm3 represent the principal moments of inertia
1 and 3, respectively, where moments are calculated with atomic weight.

E =

√
(pm3)2 − (pm1)2)

pm3
(17)

Figure 13 shows the plot of Eccentricity versus Temperature(K) for the same molecules,
where we can capture the flatness of C3H4 as it has the highest eccentricity.

Chains

Straight chains are hydrocarbons that are connected in a continuous linear chain and
Branched chains are hydrocarbons that have groups branching out from the connected
straight chains. Fig 14 represents isomers of hexane, where n-Hexane represents a straight
chain and other isomers represent a branched chain.

Figure 14: Molecular Graphs of Isomers of Hexane

(a) Relative Density vs Temperature (b) Eccentricity vs Temperature

Figure 15: Plot of Relative Density and Eccentricity versus Temperature for Isomers of
Hexane.

Figure 15a shows the plot of relative density versus temperature for isomers of hex-
ane, where we observe that 2,2-dimethyl butane has the lowest relative density and 2,3-
dimethyl butane has a higher density. Also, we can observe that n-hexane and 3-methyl
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pentane have the same density at different melting points. Thus, density is not a strong
indicator of melting point trends for hexane isomers.

Figure 15b shows the plot of eccentricity versus temperature where we observe melting
point decreases with increasing eccentricity from 2,2-dimethyl butane to 3-methyl pentane.
From 3-methyl pentane to n-hexane, the melting point increases with eccentricity. Since
n-hexane is a straight-chain molecule and has the highest eccentricity, which means it is
a more flat molecule and will have better packing compared to its branched isomers and
therefore has the highest melting point.

2,2-dimethyl butane’s melting point is closer to n-hexane, which cannot be explained by
eccentricity. Branching creates irregular molecules that may not pack better, but when
the branching leads to a more sphere-like structure, the molecules can again pack better,
which can increase intermolecular forces. Therefore, we need to identify the shape of
2,2-dimethyl butane as spherical to explain its higher melting point compared to other
isomers.

We calculate the sphericity of a molecule according to Tosdeschini and Consoni’s "De-
scriptors from Molecular Geometry" [28], which describes how spherical or non-spherical
a geometric shape is. It represents a number between 0 and 1, where 0 corresponds to
a highly non-spherical molecule and 1 represents a highly spherical molecule. It is given
by the equation (18) where pm1, pm2, and pm3 are the principal moments of inertia 1, 2,
and 3, respectively, and moments are calculated without atomic weight.

S = 3× pm1
pm1 + pm2 + pm3

(18)

Figure 16 shows the plot of sphericity vs temperature for isomers of n-hexane, where
we observe that 2,2-dimethyl butane is the most spherical molecule among the isomers.
Sphericity also shows that n-hexane is the least spherical molecule, which relates to Fig-
ure 15b which shows it is the most flat molecule.

Figure 16: Plot of Sphericity vs Temperature for Isomers of Hexane.

Therefore, both eccentricity and sphericity combined can capture molecular information
that represents the shape as linear and spherical, respectively.
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Figure 17: Plot of Relative Density(ρwater = 1) vs Temperature(K) for C3H6 (cyclo-
propane), C4H8 (cyclobutane), C5H10 (cyclopentane), C6H12 (cyclohexane), C7H14 (cy-
cloheptane), C6H6 (benzene), and C6H5CH3 (toluene).

Rings

A ring comprises three or more atoms connected in a loop to form a ring structure.
Figure 17 shows the plot of relative density versus melting points of cycloalkanes and
aromatic compounds.

Cycloalkanes comprise carbon and hydrogen only, with carbons forming a single bond
with each other, thus creating a cyclic ring. In Figure 17, we observe that the melting
point does not have a linear relationship with density. We also observe that C5H10 has the
lowest melting point and density, and C6H12 has the highest melting point even though
its density is less than C7H14.

This may occur due to ring strain, which creates a more deformed shape for C7H14 as
seen in Figure 18 compared to C6H12 that has a chair conformation shape, which leads
to better packing. The shape of a cyclic ring is determined by the ring strain caused by
the deformation of bond angles and lengths from their ideal values, leading to an increase
in the energy of the molecule. Therefore, to reduce this strain, the molecule forms an
irregular shape that reduces the energy due to the constraints. Thus, in cyclic rings, the
ring strain affects the shape, which may influence the melting point.

(a) Cyclopentane (b) Cyclohexane (c) Cycloheptane

Figure 18: Wire Frame structure of CycloAlkanes [1]

An aromatic ring is a cyclic structure having resonances of alternating single and double
bonds with delocalized pi electrons above and below the plane of the ring, and the shape

39



is planar. We can assume the planar structure of benzene will have a higher melting point
than the chair conformation structure of cyclohexane based on shape, but in Figure 17,
we observe cyclohexane has a higher melting point of 6.4°C than benzene, with a melting
point of 5.5°C. Hence, shape alone does not influence the melting points since, in this
case, there are vdWs forces and electrostatic contributions that lead to higher melting
points.

But between benzene and toluene, benzene has a higher melting point due to the extra
methyl group in toluene, leading to weaker packing and decreasing the intermolecular
forces [26].

Heteroaromatic compounds have at least one heteroatom in the aromatic ring. Consider
C4H4O (furan), C4H4S (thiofuran), and C4H4NH (pyrrole) whose melting points are -
85.61 °C, -39.4 °C, and -24 °C, respectively that have the same number of carbons and
one heteroatom in the aromatic ring. According to Pauline’s electronegativity, oxygen
is 3.44, nitrogen is 3.04, and sulfur is 2.58 then the heteroaromatic compound’s melting
point should be in the order C4H4O < C4H4NH < C4H4S but actual observed values of
the melting points are in the order of C4H4O < C4H4S < C4H4NH.

In C4H4NH, nitrogen induces polarity with its neighboring hydrogen, creating a partial
positive charge that may form hydrogen bonding, which is a stronger intermolecular bond
compared to other molecules that may only induce vdW forces that might have resulted
in a higher melting point than others.

Hence from these observations, shape, aromaticity, electronegativity, and hydrogen bond-
ing may influence the melting point. We can capture shape using eccentricity and types
of bonds, but we need to even capture the distinction between the types of rings in the
molecule.

We capture the type of ring by representing the feature as the ring count of a molecule.
The type of ring can be determined by the number of atoms that form it, like a 3-ring,
5-ring, or 10-ring. Although this representation can capture the size, it does not provide
detail on whether it is an aromatic or cyclic ring. If we include the type of ring with a
count like 3-cyclic-ring or 5-aromatic-ring, the dataset will consist of features with many
values of zero since not all types of rings will be present in each molecule, thus creating
a sparse dataset. The problem with a sparse dataset is that the information gained in
each column is less and requires a larger combination of columns to represent the same.
Therefore, we chose the simple approach of categorizing rings into four types, as mentioned
below:

• Aliphatic Carbo Rings - Cyclic rings that only comprise carbons and at least one
non-aromatic bond.

• Aliphatic Hetero Rings - Cyclic rings that comprise carbon and at least one het-
eroatom. Also, it must contain at least one non-aromatic bond.

• Aromatic Carbo Rings - Aromatic rings that only comprise carbons, and all bonds

40



in the rings must be aromatic bonds.

• Aromatic Hetero Rings - Aromatic rings that comprise carbon and at least one
heteroatom. All bonds must be aromatic bonds.

Name Molecular Aliphatic Ring Single Double Carbon
Formula Count Bond Count Bound Count Count

cyclobutane C4H8 1 4 0 4
cyclobutene C4H6 1 3 1 4
cyclopentane C5H10 1 5 0 5

Table 1: Example of Ring Count for cyclobutane, cyclobutene, and cyclopentane. A
combination of features can distinguish between molecules with similar ring counts.

We also count the total number of rings present in the molecule as a sum of all four
types. Even though this does not contain the number of atoms that form the ring, the
information is preserved in the combination of bond, atom, and ring count, as shown in
Table 1.

Hydrogen Bonding

Figure 19: Plot of organic compounds having three carbons and different functional
groups in ascending order.

When an electronegative atom is covalently bonded to a hydrogen atom there is a differ-
ence in electronegativity that creates a partial positive charge on the hydrogen atom and
a partial negative charge on the electronegative atom and allows the hydrogen atom to
form an intermolecular hydrogen bond with an electronegative atom of another molecule.
Hydrogen bonding is weaker than covalent bonds but stronger than vdW forces.

The strength of hydrogen bonding is visible in compounds with functional groups like
carboxyl, hydroxyl, ketone, etc where the general order of melting point according to the
strength of hydrogen bonding is CONH2 > COOH > OH > NH2 > NO2 > I > Br > Cl >
F > CH3 [14]. It can be observed in Figure 19, which shows the melting points of organic
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compounds having 3 carbons with different functional groups. Propionic acid having a
carboxyl(COOH) group has the highest melting point of -21.5°C which is consistent with
the general order but 1-Propanol having hydroxyl(OH) group has a lower melting point
of -127°C than Propyl Chloride having -122.8°C which is not consistent. Also, we observe
the isomer of 1-Propanol is 2-Propanol and has a higher melting point of 90°C that may
arise from oxygen having a central position in the molecule allowing better hydrogen
bonding. So hydrogen bonding strength may depend on the type of functional group but
the melting points can vary based on its position in the molecule also.

Fragments represent a substructure present in the molecule. As discussed in Section 3,
identifying such substructure allows a better representation of functional groups involved
in hydrogen bonding. We use the RDKit’s Fragment Module [29] and attempt to identify
all types of fragments available as part of the module. The fragments are named "Nfragment"
where fragment name can be like "Al_OH" which is an aliphatic hydroxyl group, or
"Ar_OH" which is an aromatic hydroxyl group. Thus we create 64 features representing
all types of fragments.

Balaban J Index

Balaban J Index is a topological index suggested by Alexandru.T Balaban in "Topological
Indices based on Topological Distances in Molecular Graphs" [30]. The Balaban J index
in RDKit [31] is calculated using equation (19) [32], where the molecule is represented as
connected graph G havingm and n as the degrees of vertex and edge set of G, respectively.
w(u) and w(v) represent the sum of distances from vertex u and v to other vertices of G.

Jmol(G) = m

m− n+ 2
∑ 1√

w(u) · w(v)
(19)

We include this graph descriptor since it describes the shape of the molecule using graph
theory and acts as a feature to identify the complexity of the molecule’s shape.

42



Table 2 shows the list of features created.

Feature Type Feature Name
Atoms C count

N count
O count
P count
S count
F count
Cl count
Br count
I count

Molecular Weight (amu) Molecular Weight
vdW Volume (Å3) Volume

vdW Density (amu/Å3) Density
Bonds Single Bonds

Double Bonds
Triple Bonds

Aromatic Bonds
Total Bonds

Electronegativity Electronegativity mean (EN_mean)
Electronegativity variance (EN_var)

Electronegativity difference mean (EN_diff_mean)
Electronegativity difference variance (EN_diff_var)
Electronegativity variance mean (EN_var_mean)
Electronegativity variance variance (EN_var_var)

Rings Aliphatic Carbo Rings
Aromatic Carbo Rings
Aliphatic Hetero Rings
Aromatic Hetero Rings

Total Rings
Shape Eccentricity

Sphericity
Balaban J Index

Flexibility Rotatable Bonds
Functional Groups fr_Al_COO

and fr_Al_OH
Fragments (sub-structures) fr_Ar_COO

to detect fr_Ar_OH
Intermolecular forces fr_aldehyde

fr_benzene
fr_Ar_N
fr_Ar_NH
fr_Imine
fr_NH0
fr_NH1
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Feature Type Feature Name
fr_NH2
fr_N_O

fr_Ndealkylation1
fr_Ndealkylation2

fr_HOCCN
fr_Nhpyrrole

fr_C_S
fr_SH

fr_alkyl_carbamate
fr_alkyl_halide
fr_aryl_methyl

fr_amide
fr_amidine
fr_aniline
fr_azide
fr_azo

fr_barbitur
fr_bicyclic
fr_epoxide
fr_ester
fr_ether
fr_furan

fr_guanido
fr_hdrzone
fr_hdrzine
fr_imidazole
fr_isocyan
fr_ketone
fr_lactone
fr_methoxy

fr_morpholine
fr_nitrile
fr_nitro

fr_nitro_arom
fr_nitroso
fr_oxazole
fr_oxime
fr_phenol

fr_phos_acid
fr_phos_ester
fr_piperdine
fr_piperzine
fr_priamide
fr_pyridine
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Feature Type Feature Name
fr_sulfide

fr_sulfonamd
fr_sulfone

fr_term_acetylene
fr_tetrazole
fr_thiazole
fr_thiocyan
fr_thiophene

fr_urea

Table 2: List of 96 Features created after Feature Engineering.

Embedding Features

Embedding features represent molecules as an array, with each element of the array repre-
senting a substructure pattern existing in the molecule. If the substructure pattern exists,
then the element value is 1; otherwise, the value is 0. An example of a substructure pat-
tern is O-H, C-C, or C=C-C, where if the molecule has any of these structures present,
then the array element that represents the specific structure will have a value of 1.

We will discuss this in detail for the two embedding features: Morgan Fingerprint and
Mol2vec, which we will use on our dataset and test if our feature can outperform them.

Morgan Fingerprints [33] is an extended circular fingerprint using a variant of the Morgan
algorithm [34], to represent the structural information of a molecule as a binary string in
an array. It is widely used in chemoinformatics applications such as similarity search [35],
drug discovery [36], toxicity [37], and classification [38].

The algorithm initially assigns each atom an identifier, which can be its atomic number,
that forms the fingerprint set. Then the molecule is divided into a series of concentric
rings of a desired radius centered on each atom, as shown in Figure 20a. Each atom
collects its identifier and its neighbor’s identifier into an array, which is converted into a
new single-digit identifier using a hash function that represents the fragment. Once all
atoms generate their new identifiers, the old fingerprint set is replaced with these new
identifiers. This iteration is repeated a prescribed number of times to remove duplicate
identifiers in the fingerprint set. The final output is the remaining identifiers, representing
unique fragments present in the molecule.

We can understand Morgan fingerprint conversion through Figure 20b, where we convert
1-propanol into a 1024-bit array with a radius of 1 using RDKit [24], resulting in a vector
of 0s and 1s. The fingerprint set consists of 8 substructures filled with a value of 1 on
the element numbers: 26, 33, 38, 39, 80, 473, 794, and 807. Each substructure uniquely
identifies every possible pattern in the molecule. If we change the array size to 256, then
the element numbers will also change but represent the same set of 8 substructures.
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(a) Concentric rings of ra-
dius 0, 1, and 2.

(b) Conversion of Propanol to Morgan fingerprint array

Figure 20: An example of Morgan Fingerprint. (a) shows an illustration of concentric
rings of radius 0, 1, and 2 formed by the Morgan fingerprint algorithm to identify substruc-
tures within the given radius [2]. (b) shows an illustration of the conversion of 1-Propanol
to Morgan Fingerprint of a 1024-bit array with 8 unique substructures identified.
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Mol2vec is an unsupervised ML approach to representing molecule substructures into
a vector representation that is inspired by the Natural Language Processing (NLP) of
Word2Vec. Mol2Vec has been used in regression [39] and classificationc [39] tasks for
solubility and toxicity. The model is pre-trained on ZINC [40] and ChEMBL [41] databases
with atom counts between 3 and 50, which include the atoms H, B, C, N, O, F, P, S, Cl,
and Br, to identify all possible molecular substructures of radii 0 and 1. Analogous to
NLP, molecules are represented as sentences, and substructures are represented as words.

Molecule
converted to

8 words

Words converted into 
sentence vector of shape 

(8, 300)

Figure 21: Illustration showing conversion of 1-Propanol to Vector shape (8, 300) using
Mol2vec

Figure 21 shows an illustration of the conversion of propanol using the Mol2Vec algorithm.
Mol2Vec uses the Morgan fingerprint to identify the substructures present in the molecule
and compares them to the substructures present in its pre-trained model. The model
represents each substructure with a unique numerical number. This is similar to a bag of
words in NLP. Once all features are provided with their numbers, the algorithm converts
the molecule into the shape of an (8, 300) array, which is a hashing method to represent
the substructure as a molecular sentence. This can then be provided to an ML model for
regression or classification tasks.

Since we are not making modifications to these features, which are proven to perform well
on melting point prediction for organic compounds [42], we will use their performance as
benchmarks and compare their results with our descriptive features.
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4 Machine Learning Theory

ML is a branch of Artificial Intelligence (AI) that involves training algorithms to learn from
known data and utilizing the knowledge gained by the algorithm to make predictions on
unknown data. These algorithms involve statistical methods to learn from input features
and samples to identify patterns and make decisions about the target features and samples
based on the learned patterns. It is widely used in classification and regression tasks.

ML is divided into three major categories - supervised learning, unsupervised learning,
and reinforcement learning. In supervised learning, the ML model is provided both input
features and target features to predict. This enables the ML to learn by creating a function
from the input variables and prediction is performed by utilizing the learned function. In
unsupervised learning the ML model is provided the input features only and the goal is
to find patterns in the input features. In reinforcement learning, the ML model learns
by a feedback mechanism when it interacts with the data where it is penalized for wrong
actions and rewarded for correct actions.

Figure 22: Plot of Molecular Weight(amu) vs Temperature(K) with regression lines
using linear(y = ax + b) and non-linear(y = a log(bx) + c) functions. The non-linear
function is a more approximate fit to the data points compared to the linear function.

The prediction of melting point can be solved using supervised learning where the input
feature is the molecular structural information, the target variable is the true melting point
of the molecule and the relationship between input and target is given by a regression
function.

Regression functions can be linear or non-linear functions. Figure 22 shows the plot
of Molecular Weight versus Temperature for hydrocarbons where linear and non-linear
function represents the equation y = ax + b and y = a log(bx) + c respectively. In these
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equations, a,b, and c are constants, x is the molecular weight and y is the Temperature.
We observe the non-linear function is able to approximately fit the data and capture the
relationship between molecular weight and temperature compared to the linear function.

This non-linear function is certainly not the perfect fit for the data and can be improved
using supervised learning algorithms that can implement non-linear models. Therefore in
this section, we will discuss the non-linear models that we can apply to our dataset.

4.1 Support Vector Machines

SVM is a type of supervised learning algorithm that is used for classification or regression
analysis as a linear or non-linear model. The steps performed in SVM consist of the
separation of the hyperplane, maximizing margins between hyperplane, choosing soft
margin, and the kernel function. [43].

Figure 23: Illustration of hyperplanes in SVM [3]. The red line is the decision boundary
and the dashed lines are the margins based on support vectors which are the closest point
from each positive class(blue points) and negative class(green points) to the decision
boundary.

Suppose we have a training dataset with n samples, input features x1 and x2, and the
target as a positive and negative class that we want to predict based on the input features.
Then the SVM first identifies the decision boundary that can create separation between
the positive targets in blue and negative targets in green by creating as shown with a red
line in Figure 23. Further, the best decision boundary is chosen based on the maximum
separation distance between the positive and negative hyperplanes by selecting the closest
support vector points which are the dashed lines representing the margins in the figure.
Thus our goal is to maximize the margin. For a dataset with linear separability [44], the
margin is given by the equation (20) where w is weight vector, xpos, and xneg is x points
represented as a vector for positive and negative class. 2

||w|| is the margin that we need to
maximize.

wT(xpos − xneg)
||w||

= 2
||w||

(20)
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For non-linear datasets, we perform soft margin classification [44] by including the slack
variable ξ and control it using the regularization parameter C as shown in equation (21).
Decreasing the value for C will allow for misclassification errors which means x points
that lie beyond the support vectors will be allowed.

1
2 ||w||

2 + C

(∑
i

ξ(i)
)

(21)

K(x(i),x(j)) = exp
(
−γ||x(i) − x(j)||2

)
(22)

The non-linear datasets can gain further advantage from the use of the RBF function
which projects the existing features onto a higher dimensional plane using the function
and then performs the linear separation on the higher dimension and then uses the same
function to transform unseen data. The RBF function is given by the equation (22) where
γ = 1

2σ2 and σ is the free parameter.

Figure 24: Illustration of regression in SVM. using different types of linear and non-
linear kernels [4]. We observe the linear and polynomial model is unable to give an accurate
decision line but the RBF model decision line follows the data points more closer than
other models.

For a regression problem, the underlying concept is similar to classification but instead of
using a decision boundary for positive and negative class separation, the decision boundary
is the best-fit regression line that has the maximum number of points as shown in Figure 24
and the output is a continuous variable. Thus the use of soft margin with RBF allows
us to create SVM models for non-linear datasets. There are other kernel functions like
polynomial kernels but we utilize RBF for its better performance over non-linear data. [45].
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Figure 25: Illustration of Random Forest Regression with 600 decision trees performing
prediction on test data. The prediction of each tree is averaged to get the final predicted
value [5].

4.2 Random Forests

Random forest is an ensemble learning method for classification and regression problems
that create a set of decision trees. For classification, the output is the class selected by
the majority voting between trees and for regression, the output is the average prediction
of individual trees.

A decision tree creates a tree-like model as shown in Figure 25 where each split is based on
maximum information gain. The information gain is calculated based on equation (23) [44]
where I is the impurity measure, f is the feature to perform split, Dp and Dj are datasets
of parent and jth child node, and Np and Nj are the total number of samples at the parent
and jth child node. The impurity measure is calculated using the equation (24) [44] where
I(t) is the impurity measure at node t equal to the mean squared error MSE(t) at node
t, Nt is the number of training samples at node t, yi is the true target value and ŷt is the
predicted target value given by 1

Nt

∑
i∈Dt

(yi).

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj

Np

(Dj) (23)

I(t) = MSE(t) = 1
Nt

∑
i∈Dt

(
yi − ŷt

)2
(24)
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ŷ = 1
N

N∑
i=1

ŷi (25)

Once a set of decision trees are formed, the random forest calculates the predicted target
value by the mean or average prediction value of all decision trees given by equation (25)
where ŷ is the final predicted value, N is the number of trees and ŷi is the predicted value
of each decision tree.

The predicted target value will be the same if all decision trees are given the same data.
Thus to avoid overfitting, random forest performs bootstrap aggregating or bagging that
selects a random sample with replacement of the training set and fits into the decision
trees [46]. This will reduce variance in the model without increasing bias [44].

4.3 AdaBoost

Figure 26: Illustration of Adaboost with 3 decision trees. The final model is a combi-
nation of the three decision trees. [6]

AdaBoost [47] is an ensemble ML algorithm that combines several weak learners to make
a single strong learner [48]. The algorithm begins with a base estimator model Cj =
train(X,y,w) [44] which can be a decision tree or SVR that trains on the dataset. Here
the weight w is distributed uniformly which is equal to 1/N where N is the number of
samples. Prediction is performed using this weak learner and the weighted error rate is
computed as ε = w · (y 6= ŷ). This is performed to ensure misclassified data gets a higher
weight and correctly classified data gets a lower weight so that the next weak learner
focuses on correctly classifying the misclassified data. The weights are updated based on
the exponential loss function as shown in equation (26) where αj = 0.5 log(1−ε

ε
).

w := w× exp(−αj × y× ŷ) (26)

The weights are normalized and re-updated as w := w/∑i=N
i=0 wi and the process is again

repeated for the next weak learner. The final model combines the output of all weak
learners with each weak learner’s output weighted according to its performance on training
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data given by the equation (27) where m is the total number of weak learners.

ŷ =
 m∑
j=1

(αj × predict(Cj,X))
 (27)

AdaBoost is less prone to overfitting than other non-linear regression algorithms because
it focuses on misclassified data points and tries to improve their predictions in subsequent
iterations, hence creating a more generalized model.

4.4 XGBoost

XGBoost is an ensemble ML algorithm similar to AdaBoost that combines multiple weak
learners to create a strong learner and introduces regularization terms to penalize complex
models and create more simple models that assist in generalization [49].

In XGBoost the goal is to find the best parameter θ that fits the training data xi and target
yi where the objective function for θ is given by the equation (28) [49] having L(θ) as the
training loss function and Ω(θ) is the regularization function. The Loss function can be
given by a Mean Squared Error (MSE) ∑i(yi− ŷi)2 and the regularization function given
by ∑t

i=1 ω(fi) having ω(fk) as the complexity of tree fk that helps to avoid overfitting
thus penalizing complex trees and encouraging simpler models. Therefore, the objective
equation can be updated to equation (29).

obj(θ) = L(θ) + Ω(θ) (28)

obj =
n∑
i=1

l(yi, ŷ(t)
i ) +

t∑
i=1

ω(fi) (29)

We use L2 regularization as Ω(θ) and MSE as L(θ) and base estimator as DT for training
our models.

4.5 Artificial Neural Network

ANN is a type of ML algorithm that mimics the neurons in the human brain. It is
widely used in applications like image recognition, speech recognition, natural language
processing, etc.

An ANN is composed of an input layer, one or more hidden layers, and an output layer.
Each layer is made up of interconnected nodes that are connected to the adjacent layer
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Figure 27: Illustration of ANN with input layer with 4 nodes, 2 hidden layers with 5
nodes, and an output layer with 4 nodes [7].

through weighted connections as shown in Figure 27. The weighted connections enable
the network to recognize patterns in the data. The output of each node is calculated by
applying a non-linear activation function to the weighted sum of the inputs represented by
the equation (30) where w ·x represents the dot product of the weight and input vectors,
and b is the bias. For regression, the output layer consists of one node to represent the
output as a continuous value.

y = f(w · x + b) (30)

Starting from the input layer, the output of each node is propagated forward to the
next layer, where the network detects and recognizes patterns in the data. Based on the
network’s output, we calculate the error and define a cost function to minimize the error
by backpropagating it to the initial layers. Backpropagation allows the network to adjust
its weights based on the calculated error, allowing the network to learn from the data and
improve its performance over time.

f(x) = max(0, x) (31)

For our ANN models we choose Rectified Linear Unit (ReLU) activation function which
is a non-linear function as shown in equation (31) where x represents the input to a node.
This function outputs the input value x if it is positive, and 0 if negative. This helps us
to make the model identify non-linear relationships in the data.
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5 Machine Learning Training

In this section, we discuss the steps performed for feature selection, hyperparameter se-
lection, and final model training and testing evaluation method.

5.1 Feature Selection

Feature Selection is the process of selecting a subset of features from a larger set of features
available in the dataset. It is performed to prevent overfitting and poor generalization
performance of ML models. Overfitting occurs due to excess information making the
model more complex, and the parameters keep readjusting to fit the trained model with
higher accuracy, leading to lower accuracy in testing. Also, it needs to be taken into
consideration that fitting all features is a computationally expensive task.

Scikit-learn provides a range of feature selection methods, out of which we choose the
RFE. As stated in scikit-learn [4], "Recursive Feature Elimination is to select features
by recursively considering smaller and smaller sets of features." The method trains a
base estimator model on the training dataset and ranks each feature according to its
importance or coefficients. Feature importance refers to the value assigned to a feature
that determines its influence over the predicted target variable. In a tree-based model,
the feature importance is calculated based on the feature that has the highest decrease
in impurity when it is used for splitting. Based on the feature importance calculated, the
least important feature from the training dataset is removed, and the model is retrained
on the remaining. These steps are repeated until the stopping criteria are met.

Figure 28: Illustration of an example of RFE plotted against Accuracy(R2) vs a total
number of features available in the dataset. The optimum number of features is chosen
as 11.

We use RFE to train the ML model on the training data and perform predictions on
validation data. Figure 28 shows an example of RFE applied to the C dataset, which
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plots the R2 accuracy score versus the total number of features available. We observe that
validation accuracy does not improve after reaching approximately 0.85 with 11 features,
and training accuracy is similar for all feature sizes. Therefore, the optimum number of
features selected using RFE is 11 for this case. The optimum number of features is chosen
based on the first occurrence of the minimum difference between training and validation
accuracy.

5.2 Hyperparameter Selection

Hyperparameter selection is the process of choosing optimal hyperparameters for a ML
model by providing a set of values and training the model on each set of hyperparameters.
The model is evaluated based on its performance on the validation dataset. The set of
hyperparameters that give the best performance on the validation dataset is chosen for
the final training model. Hyperparameter selection is performed using Grid Search Cross-
Validation, which performs a search over specified parameter values on the estimator using
cross-validation. Figure 29 shows an illustration of grid search cross-validation.

The Grid Search is performed on the estimator built using a pipeline that follows the order:
Standardization, PCA, and the base estimator. Standardization brings all variables to
the same scale by having a mean of 0 and a standard deviation of 1 for a feature. PCA is a
dimensionality reduction method that transforms the data onto a new coordinate system
having each coordinate orthogonal to the other, the first coordinate having the highest
variance, the second having the second-highest variance, and so on. The base estimators
are classical machine learning algorithms like Support Vector Regressor (SVR), Random-
Forests, AdaBoost, and XGBoost. The pipeline is provided with different combinations of
hyperparameters set as shown in Figure 29 represented by Step A. Each hyperparameter
set undergoes cross-validation to evaluate its performance.

Cross-validation splits the datasets into multiple parts or folds where 1 fold is the valida-
tion dataset and the rest is the training dataset. The ML model is trained on the training
fold, and its performance is validated on the validation fold, as shown in Figure 29 with
Step B. This process is repeated multiple times and the average performance of training
and validation results is evaluated as shown in Step C. It helps to present an accurate
representation of the model that is evaluated from the mean and standard deviation of
the performance of training and validation, which allows us to view the overfitting and
underfitting of the data by the model. Here, cross-validation is performed using a 5 split
KFold that divides the dataset into 5 equally sized folds, where one fold acts as the vali-
dation set and 4 folds as the training set, thus having the train-to-validation ratio equal
to 80 : 20. The R2 score is used to evaluate the performance.

The best parameters reported by grid search cross-validation are not always the best
results since it reports the highest-scoring model, which can also be an overfit model.
Therefore, we define the below criteria to choose the best parameters:
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Figure 29: Illustration of Hyperparameter Selection using Grid Search Cross-Validation.
(A) represents grid search where different combinations of hyperparameter sets are given
to the pipeline. (B) represents cross-validation where each hyperparameter set is used
to train a pipeline on the training fold and prediction is performed on the validation
fold. 5 Fold cross-validation is applied. (C) represents the average performance of cross-
validation of each hyperparameter set that results in training and validation performance
scores.
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• We select the model parameters with the highest mean validation score.

• We check for other model parameters that have ±0.03 deviations from the highest
mean validation score.

• We choose the model parameters having the lowest difference between the mean
train score and the mean validation score.

5.3 Training, Validation and Testing

Figure 30 represents the process used for model training, validation, and testing. The
steps are as follows:

• The dataset is split into 5 folds, with 1 fold representing test data and 4 folds
representing the training dataset. This is represented as Step A.

• Each training dataset from the previous split, is further split into 5 folds, where
1 fold represents validation data and 4 folds represent train data. The pipeline
is trained on train data, and prediction is performed on validation data. This is
represented as Step B.

• The pipeline is retrained on both train and validation data, and prediction is per-
formed on test data. It is represented as Step C.

• Steps B and C are repeated for all splits from Step A.

• The final result is the average performance score of training, validation, and test
data.

Steps A and C involve splitting data into train and test and validating on different test
data, which is a necessary step because each split shuffles the data, which results in
imbalanced train and test data. It means there can be a split where test data may have
all the high temperatures and the model learns from the low-temperature molecules only,
which will result in poor performance in the prediction of the test. Thus, a good evaluation
of the ML model will be based on the average score of multiple test folds.

5.4 Performance Metrics

Coefficient of determination (R2) and RMSE are used as metrics to evaluate the perfor-
mance of models. R2 is used in feature selection and hyperparameter selection and as the
evaluation index for comparing train, validation, and test accuracy in terms of regression.
RMSE is only used in the final evaluation of train, validation, and test data discussed in
Section 5.3.
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Figure 30: Illustration of Model Training Validation and Testing. (A) The dataset is
split into 5 folds with 1 fold as test data and 4 folds as the training dataset. (B) The
training dataset is split into 5 folds with 1 fold as validation data and the rest as train
data. Prediction is performed on Validation data. (C) Prediction is performed on Test
data folds resulting from Step A. (D) Final evaluation metrics provide the performance
of train, validation, and test data.
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RMSE

RMSE is the square root of the mean value of Sum of Squared Error (SSE) where the
error is the difference between a true value and a predicted value. RMSE is calculated
using the equation (32) [44] where yi is the true value, ŷi is the predicted value, and n is
the total number of samples. It measures the average distance of a predicted value from
a true value.

RMSE =
√
MSE =

√
SSE
n

=
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (32)

RMSE with value 0 represents that the predicted values are equal to the true values for
n samples and the model is 100% accurate. When the value is large it means predicted
values are not closer to the true values and the model is not accurate. Also if RMSE of
train and validation is smaller and the test data is larger, then the model is overfit and if
train and validation are larger and the test data is smaller, then the model is underfit.

R2

R2 score measures how well the model fits the data. It measures if the proportion of
variability in the true value is being accounted for by the regression model. R2 is calcu-
lated using the equation (33) [44] where Total sum of squares (SST) is ∑i(yi − µ) which
represents the variance of the response.

R2 = 1− SSE
SST = 1− MSE

Var(y) (33)

R2 score ranges from 0 to 1, where 0 represents that the model does not explain any
variability in the data and 1 represents that the model explains all variability in the data.
A high R2 for train and validation data but a low for test data represents overfitting. A
low R2 for train and validation data but a high for test data represents underfitting.
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6 Results

The results comprise of the ML model discussed in Section 4 trained on the C, CX,
CXOS, and CXOSNP datasets discussed in Section 2.4. The datasets are split into the
ratio train-to-validation-to-test = 60 : 20 : 20. Cross-validation is performed using KFold
with 5 splits, as discussed in Section 5.3. The descriptive features discussed in Table 2
comprise 97 features that are extracted from each dataset. In each dataset, the descriptive
feature with a value of zero in all rows is eliminated. The remaining features are trained
on ANN, SVR, Random Forest, XGBoost, and AdaBoost which use base estimators such
as DT and SVR.

Morgan Fingerprint and Mol2Vec embedding features are trained on ANN. We attempted
to train them on Random Forest, SVR, AdaBoost but the R2 scores were negative and
their performance was poor. We also attempted on XGBoost whose performance was
good but not as superior as ANN. The shape of Morgan Fingerprint is created using a
radius of 1 and an array size of 256. The Mol2Vec algorithm creates a feature with a fixed
array size of 300.

The results of Morgan Fingerprint and Mol2Vec are used for comparison with our de-
scriptive features, and we attempt to achieve lower RMSE for the descriptive features
compared to them.

For training and validation data, we compare using R2 score, and test data comparison
is performed using RMSE score. With the increasing size of the dataset, the variance in
temperature is increasing, and the test R2 score is decreasing. The test RMSE gives the
absolute error value of the melting point temperature in Kelvin.

C Dataset

The C Dataset has 22 features, 1526 molecules, and their melting point temperature
in Kelvin. The data is split into train, validation, and test sizes of 977, 244, and 305
respectively. All descriptive features undergo standardization.

Below are the ML model hyperparameters used for training and prediction.

• Random Forest uses RFE with a base estimator of Random Forest with 50 estimators
and other default values for feature selection, and we select 11 features. PCA is not
performed since it reduces the final test accuracy. The hyperparameters for Random
Forest are 30 estimators, 10 max depth, and other default values.

• AdaBoost(DT) uses RFE with a base estimator of AdaBoost with 50 DT and other
default values for feature selection, and we select 13 features. PCA is not performed
since it reduces the final test accuracy. The hyperparameters of AdaBoost(DT) are

61



30 estimators, exponential loss, 0.1 learning rate, and the base estimator is a DT
with a max depth of 8.

• SVR does not use RFE and performs feature selection using PCA, and we select 11
PCA components. The hyperparameters are RBF kernel, C = 100.0, and gamma
= 0.01.

• AdaBoost(SVR) does not uses RFE, and performs feature selection using PCA, and
we select 11 PCA components. The hyperparameters of AdaBoost are 20 estimators,
exponential loss, 0.1 learning rate, and the base estimator is a SVR with C = 100.0
and gamma = 0.1.

• XGBoost uses RFE with a base estimator of XGBRegressor with objective as
squared error and booster as gradient boost tree and other default values. We se-
lected 8 features. The hyperparameters are objective as squared error and booster
as gradient boost tree, 0.2 learning rate, lambda of 1.2 as L2 regularization, 7 max
depth, 30 estimators, and evaluation metrics as RMSE.

• ANN does not use RFE but performs feature selection using PCA and we select 12
PCA components. The ANN has an input layer of shape 12, the first hidden layer
with 256 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 100 with 20 epochs.

• Morgan FingerPrint’s ANN model has an input layer of shape 256, the first hidden
layer with 1024 nodes, the second hidden layer with 64 nodes, and the output layer
with 1 node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The
batch size is 100 with 20 epochs.

• Mol2Vec’s ANN model has an input layer of shape 300, the first hidden layer with
1024 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 100 with 20 epochs.

Table 3 shows the R2 score and RMSE for ML models applied to descriptive features,
Morgan Fingerprint, and Mol2Vec. We observe in descriptive features, Random Forest
has the highest R2 of 0.81 and the lowest RMSE of 51.00 among all other models. It also
performed better than the ANN model with Morgan Fingerprint and Mol2Vec. For the
C dataset, our descriptive features can perform better than the embedding features.

Even though Random Forest has the best test scores, it is not the most generalized
model since the train and validation R2 are 0.96 and 0.90 which is slightly overfitting.
We observe AdaBoost(SVR) has a train and validation R2 of 0.81 and 0.80, which is a
more generalized model compared to Random Forest even though its test RMSE is 53.34,
which is +2 higher than RandomForest.Also, SVR has a generalized model with train and
validation R2 of 0.80 and 0.79 respectively, and test RMSE of 53.87. XGBoost and ANN
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Type of Model Train Validation Test
Feature R2 RMSE R2 RMSE R2 RMSE

Random Forest 0.96± 0.00 23.98± 0.72 0.90± 0.03 37.11± 5.58 0.81± 0.02 51.00± 3.03

AdaBoost(DT) 0.96± 0.00 23.84± 0.74 0.90± 0.03 37.96± 5.59 0.81± 0.02 51.46± 3.09

SVR 0.80± 0.00 51.97± 1.08 0.79± 0.03 53.96± 4.67 0.79± 0.03 53.87± 3.76
Descriptive
Features AdaBoost(SVR) 0.81± 0.00 51.01± 1.08 0.80± 0.03 53.13± 4.51 0.79± 0.03 53.34± 3.98

XGBoost 0.94± 0.01 28.49± 3.21 0.88± 0.03 40.31± 6.08 0.80± 0.02 52.27± 3.30

ANN 0.93± 0.01 31.11± 2.54 0.89± 0.02 40.62± 4.10 0.80± 0.01 56.11± 3.71

Morgan ANN 0.93± 0.01 31.91± 3.70 0.89± 0.02 41.22± 7.73 0.80± 0.01 59.60± 15.25
Fingerprint

Mol2Vec ANN 0.83± 0.06 50.80± 12.87 0.80± 0.08 56.66± 14.77 0.77± 0.05 58.33± 8.30

Table 3: Train, Validation and Test R2 score and RMSE for C dataset

models are also overfitting due to high train and validation R2 scores, and test RMSE of
52.27 and 56.11 respectively.

From these observations, AdaBoost(SVR) is the most generalized model, and Random
Forest has the highest test RMSE.

CX Dataset

The CX Dataset has 32 features, 2825 molecules, and their melting point temperature in
Kelvin. The data is split into a train, validation, and test sizes of 1808, 452, and 565,
respectively. All features undergo standardization.

Below are the ML model hyperparameters used for training and prediction.

• Random Forest uses RFE with a base estimator of Random Forest with 50 estimators
and other default values for feature selection, and we select 12 features. PCA is not
performed since it reduces the final test accuracy. The hyperparameters for Random
Forest are 30 estimators, 15 max depth, and other default values.

• AdaBoost(DT) uses RFE with a base estimator of AdaBoost with 50 DT and other
default values for feature selection, and we select 14 features. PCA is not performed
since it reduces the final test accuracy. The hyperparameters of AdaBoost(DT) are
30 estimators, exponential loss, 0.1 learning rate, and the base estimator is an DT
with a max depth of 8.

• SVR does not use RFE and performs feature selection using PCA and we select 15
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PCA components. The hyperparameters are RBF kernel, C = 1000.0, and gamma
= 0.01.

• AdaBoost(SVR) does not use RFE and performs feature selection using PCA and
we select 15 PCA components. The hyperparameters of AdaBoost are 20 estimators,
exponential loss, 0.1 learning rate, and the base estimator is a SVR with C = 1000.0
and gamma = 0.1.

• XGBoost uses RFE with a base estimator of XGBRegressor with objective as
squared error and booster as gradient boost tree and other default values. We se-
lected 8 features. The hyperparameters are objective as squared error and booster
as gradient boost tree, 0.2 learning rate, lambda of 1.5 as L2 regularization, 7 max
depth, 30 estimators, and evaluation metrics as RMSE.

• ANN does not use RFE but performs feature selection using PCA and we select 15
PCA components. The ANN has an input layer of shape 15, the first hidden layer
with 256 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 200 with 30 epochs.

• Morgan FingerPrint’s ANN model has an input layer of shape 256, the first hidden
layer with 1024 nodes, the second hidden layer with 64 nodes, and the output layer
with 1 node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The
batch size is 200 with 30 epochs.

• Mol2Vec’s ANN model has an input layer of shape 300, the first hidden layer with
1024 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 200 with 30 epochs.

Table 4 shows the R2 score and RMSE for ML models applied on descriptive features,
Morgan Fingerprint, and Mol2Vec. We observe in descriptive features, Random Forest
has the highest R2 of 0.81 and the lowest RMSE of 47.80 among all other models. It also
performed lower than the ANN model trained with Morgan Fingerprint which has R2 of
0.88 and the lowest RMSE of 39.42. For the CX dataset, our descriptive features are not
able to perform better than the Morgan Fingerprint.

Random Forest has the best test scores among descriptive features with train and valida-
tion R2 of 0.96 and 0.91, which is overfitting. SVR and AdaBoost(SVR) are generalized
models with train and test R2 scores of 0.84 and 0.80, respectively, and AdaBoost(SVR)
has a better test RMSE of 49.59. XGBoost is trained with only 8 features and is an overfit
model, but the test RMSE is closer to other models. ANN model also performed train
and test R2 score of 0.86 and 0.81 which is overfitting but the RMSE value is 49.25 which
is closer to other models

From these observations, SVR and AdaBoost(SVR) are the most generalized models, and
Random Forest has the highest test RMSE but the descriptive features were not able to
surpass the Morgan Fingerprint ANN model in test RMSE.
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Type of Model Train Validation Test
Feature R2 RMSE R2 RMSE R2 RMSE

Random Forest 0.96± 0.00 20.25± 0.53 0.91± 0.03 33.91± 5.44 0.81± 0.03 47.80± 2.12

AdaBoost(DT) 0.91± 0.00 32.51± 0.68 0.87± 0.02 40.47± 3.94 0.79± 0.02 49.79± 2.32

SVR 0.84± 0.00 45.02± 0.98 0.82± 0.02 48.24± 3.31 0.80± 0.02 50.37± 2.10
Descriptive
Features AdaBoost(SVR) 0.84± 0.00 43.71± 0.93 0.83± 0.02 47.07± 3.18 0.80± 0.02 49.59± 2.03

XGBoost 0.91± 0.00 32.82± 1.23 0.86± 0.02 41.37± 4.15 0.78± 0.03 51.66± 2.77

ANN 0.86± 0.02 41.37± 2.55 0.84± 0.04 45.11± 3.62 0.81± 0.02 49.25± 2.37

Morgan ANN 0.94± 0.00 27.29± 1.77 0.92± 0.01 31.66± 2.63 0.88± 0.01 39.42± 3.15
Fingerprint

Mol2Vec ANN 0.76± 0.12 52.86± 10.06 0.75± 0.11 54.97± 10.46 0.80± 0.01 49.14± 1.40

Table 4: Train, Validation and Test R2 score and RMSE for CX dataset

CXOS Dataset

The CXOS Dataset has 53 features, 24265 molecules, and their melting point temperature
in Kelvin. The data is split into a train, validation, and test sizes of 15529, 4853, and
3883, respectively. All features undergo standardization.

Below are the ML model hyperparameters used for training and prediction.

• Random Forest uses RFE with a base estimator of Random Forest with 50 estimators
and other default values for feature selection, and we select 26 features. PCA is not
performed since it reduces the final test accuracy. The hyperparameters for Random
Forest are 30 estimators, 20 max depth, and other default values.

• AdaBoost(DT) uses RFE with a base estimator as AdaBoost with 50 Decision Trees
and other default values for feature selection, and we select 21 features. PCA is
not performed since it reduces the final test accuracy. The hyperparameters of
AdaBoost(DT) are 30 estimators, exponential loss, 1.0 learning rate, and the base
estimator is a DT with a max depth of 15.

• SVR does not use RFE and performs feature selection using PCA and we select 31
PCA components. The hyperparameters are RBF kernel, C = 1000.0, and gamma
= 0.01.

• AdaBoost(SVR) does not use RFE and performs feature selection using PCA and
we select 31 PCA components. The hyperparameters of AdaBoost are 20 estimators,
exponential loss, 1.0 learning rate, and the base estimator is a SVR with C = 1000.0
and gamma = 0.01.
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• XGBoost uses RFE with a base estimator of XGBRegressor with objective as
squared error and booster as gradient boost tree and other default values. We
selected 22 features. The hyperparameters are objective as "reg: squarederror",
booster as "gbtree", 0.2 learning rate, lambda 1.5 as L2 regularization, 7 max depth,
30 estimators, and evaluation metrics as RMSE.

• ANN does not use RFE but performs feature selection using PCA, and we select 31
PCA components. The ANN has an input layer of shape 31, the first hidden layer
with 256 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 200 with 40 epochs.

• Morgan FingerPrint’s ANN model has an input layer of shape 256, the first hidden
layer with 1024 nodes, the second hidden layer with 64 nodes, and the output layer
with 1 node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The
batch size is 500 with 30 epochs.

• Mol2Vec’s ANN model has an input layer of shape 300, the first hidden layer with
1024 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 500 with 30 epochs.

Type of Model Train Validation Test
Feature R2 RMSE R2 RMSE R2 RMSE

Random Forest 0.93± 0.00 19.54± 0.28 0.79± 0.04 29.73± 3.01 0.64± 0.01 41.71± 0.63

AdaBoost(DT) 0.95± 0.00 16.64± 0.88 0.81± 0.05 29.08± 3.61 0.63± 0.02 42.45± 0.55

SVR 0.76± 0.00 36.26± 0.18 0.67± 0.02 38.39± 1.05 0.67± 0.01 41.99± 0.47
Descriptive
Features AdaBoost(SVR) 0.70± 0.01 38.19± 0.52 0.59± 0.02 40.92± 0.94 0.55± 0.00 46.70± 0.23

XGBoost 0.74± 0.00 35.71± 0.56 0.64± 0.02 38.09± 0.98 0.64± 0.01 41.60± 0.54

ANN 0.72± 0.03 37.94± 1.60 0.63± 0.04 39.84± 2.01 0.64± 3.25 44.59± 3.25

Morgan ANN 0.96± 0.02 15.45± 3.70 0.89± 0.08 22.42± 8.40 0.70± 0.18 40.93± 11.64
Fingerprint

Mol2Vec ANN 0.43± 0.24 49.70± 5.41 0.31± 0.30 49.16± 5.64 0.55± 0.04 46.24± 0.89

Table 5: Train, Validation and Test R2 score and RMSE for CX dataset

Table 5 shows the R2 score and RMSE for ML models applied on descriptive features,
Morgan Fingerprint, and Mol2Vec. We observe in descriptive features, XGBoost has a test
R2 of 0.64 and the lowest RMSE of 41.60 among all other models, and its performance is
the best. At first glance, ANN model trained with Morgan Fingerprint seems to have the
lowest test RMSE of 40.94, but the standard deviation is ±11.64 which means the model
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performance is poor with different train and test folds. Mol2Vec performed better with
a test RMSE of 46.24 with a standard deviation of ±0.89 which is better than Morgan
Fingerprint. For the CXOS dataset, XGBoost performance is superior to Mol2Vec’s ANN
model, and we can perform better than embedding features.

Random Forest, SVR, and XGBoost have similar test RMSE values, but SVR, and
XGBoost are more generalized models compared to Random Forest, with a high train R2

and very low RMSE of 0.93 and 19.54, respectively. Among all descriptive feature models
AdaBoost performed worst with a test RMSE of 41.60, which is the highest RMSE among
all models.

From these observations, SVR and XGBoost are the most generalized models and can
surpass the Mol2Vec ANN model’s performance.

CXOSNP Dataset

The CXOSNP Dataset has 97 features, 65466 molecules, and their melting point temper-
ature in Kelvin. The data is split into train, validation, and test sizes of 41897, 10475,
and 13094 respectively. All features undergo standardization. Below are the ML model
hyperparameters used for training and prediction.

• Random Forest uses RFE with a base estimator of Random Forest with 50 estimators
and other default values for feature selection and we select 31 features. PCA is not
performed since it reduces the final test accuracy. The hyperparameters for Random
forest are 40 estimators, 20 max depth, and other default values.

• AdaBoost(DT) uses RFE with base estimator as AdaBoost with 50 DT and other
default values for feature selection and we select 27 features. PCA is not performed
since it reduces the final test accuracy. The hyperparameters of AdaBoost(DT) are
30 estimators, exponential loss, 0.1 learning rate, and the base estimator is a DT
with a max depth of 20.

• SVR does not uses RFE and performs feature selection using PCA and we select 61
PCA components. The hyperparameters are RBF kernel, C = 1000.0, and gamma
= 0.01.

• AdaBoost(SVR) does not uses RFE and performs feature selection using PCA and
we select 61 PCA components. The hyperparameters of AdaBoost are 20 estimators,
exponential loss, 0.1 learning rate, and the base estimator is a SVR with C=100.0
and gamma=0.1.

• XGBoost uses RFE with base estimator as XGBRegressor with objective as squared
error and booster as gradient boost tree and other default values. We select 31
features. The hyperparameters are objective as squared error, booster as gradient
boost tree, 0.2 learning rate, lambda 1.0 as L2 regularization, 15 max depth, 30
estimators, and evaluation metrics as RMSE.
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• ANN does not use RFE but performs feature selection using PCA and we select 68
PCA components. The ANN has an input layer of shape 15, the first hidden layer
with 256 nodes, the second hidden layer with 64 nodes, and the output layer with
1 node. It uses MSE loss and Adam optimizer with a 0.1 learning rate. The batch
size is 1000 with 30 epochs.

• Morgan FingerPrint’s ANN model has an input layer of shape 256, the first hidden
layer with 1024 nodes, the second hidden layer with 64 nodes, and the output layer
with 1 node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The
batch size is 2000 with 35 epochs.

• Mol2Vec’s ANN model has an input layer of shape 300, the first hidden layer with
1024 nodes, the second hidden layer with 64 nodes, and the output layer with 1
node. It uses MSE loss and an Adam optimizer with a 0.1 learning rate. The batch
size is 2000 with 40 epochs.

Type of Model Train Validation Test
Feature R2 RMSE R2 RMSE R2 RMSE

Random Forest 0.88± 0.00 21.56± 0.10 0.66± 0.05 30.60± 2.41 0.42± 0.05 42.66± 2.73

AdaBoost(DT) 0.96± 0.00 13.63± 0.93 0.42± 0.03 44.85± 2.83 0.40± 0.08 44.27± 2.62

SVR 0.73± 0.01 33.30± 1.05 0.51± 0.03 44.62± 1.28 0.43± 0.05 43.08± 2.89
Descriptive
Features AdaBoost(SVR) 0.76± 0.01 31.45± 0.27 0.51± 0.02 42.83± 0.61 0.43± 0.07 43.70± 2.57

XGBoost 0.87± 0.01 22.45± 1.18 0.68± 0.05 31.03± 2.58 0.48± 0.06 42.63± 2.36

ANN 0.59± 0.05 38.88± 2.33 0.44± 0.06 40.28± 2.38 0.41± 0.08 46.11± 1.20

Morgan ANN 0.94± 0.06 15.56± 5.95 0.82± 0.15 24.72± 0.30 0.59± 0.19 44.96± 10.53
Fingerprint

Mol2Vec ANN 0.40± 0.10 43.86± 2.18 0.24± 0.13 43.28± 1.96 0.37± 0.04 45.56± 1.47

Table 6: Train, Validation and Test R2 score and RMSE for CXOSNP dataset

Table 6 shows the R2 score and RMSE for ML models applied on descriptive features,
Morgan Fingerprint, and Mol2Vec for the CXOSNP dataset. We observe in descriptive
features, XGBoost has the lowest RMSE of 42.63 among all other models, and its test
performance is the best. But the train R2 score is 0.87, which is an overfit model since
the validation and test R2 scores are 0.68 and 0.48, respectively.

Among the ANN models for Morgan Fingerprint and Mol2Vec, Morgan Fingerprint has a
lower test RMSE of 44.96, but the standard deviation is pm10.53, which is a wide range.
It means the model does not perform well with different test folds. But the Mol2Vec has a
test RMSE of 45.65 with a standard deviation of pm1.47 which is lower than the Morgan
Fingerprint. The Mol2Vec model can generalize better since the train and test R2 scores
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are 0.40 and 0.37, respectively. Therefore, among embedding features, Mol2Vec performs
better.

All models exceptANN perform relatively similarly for descriptive features, and all of
them are overfitting. ANN model’s performance test RMSE is the highest at 46.11, but
the model is more generalized since train and test R2 have a difference of 0.10, which is
less compared to other descriptive models.

From the observations of all datasets, we can conclude XGBoost and Random Forest
usually overfit, but their test RMSE values are the lowest. ANN and SVR are the most
generalized models that can be used, even though their test RMSE values are not the
lowest. Among embedding features, the Mol2Vec ANN model is more generalized and
gives a stable output compared to Morgan Fingerprint.

Also, we can conclude that our descriptive features can perform better than embedding
features, but they are not superior to them, as seen in the results of the CXOSNP dataset.
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7 Discussion

ML models can be analyzed using model-specific strategy and model-agnostic strategy.
In model-specific strategy, we analyze the reasons for the performance of the models us-
ing feature selection and principal component analysis. We attempted a model-agnostic
strategy using partial dependence plots but these plots consider each feature independent
of each other, which cannot be considered for molecules since the features are depen-
dent. Therefore, we only analyze based on a model-specific strategy which provides us
the goodness of the features we create and helps us to understand which features have
importance.

Further, we discuss about the improvement that can be made in feature engineering.

7.1 Model Analysis

Random Forest

Figure 31 shows the feature importance scores of each feature in all the datasets for the
Random Forest. We select 11, 12, 26, and 31 features for the C, CX, CXOS, and CXOSNP
datasets respectively.

In the C dataset shown in Figure 31a, the Random Forest gives the highest importance
to total bonds and rings. It is followed by density representing compactness, eccentricity
representing flatness, sphericity representing the spherical shape, and rotatable bonds
representing flexibility. Balaban J Index which describes the structural topology of a
molecule represented as a graphical index number, is also of importance. Further, the
selection includes volume, molecular weight, and single bonds.

Therefore, we observe that the model chooses the shape of the molecule using bonds and
rings and further requires physical features like density, eccentricity, sphericity, rotatable
bonds, and volume to predict the melting point. It does not need electronegativity since
all atoms are carbon and have the same electronegativity values. It does not select double
and triple bonds because the information is available in Total Bonds. We also observe
that it is trying to identify aromaticity using total bonds, total rings, and aromatic bonds,
which are the top three features.

In the CX dataset shown in Figure 31b, the highest feature importance score is for volume.
All features selected in the C dataset are also selected in the CX dataset. Further, the
electronegativity difference mean is also included. Since the model chooses volume as the
most important feature, we can infer that the information about halogens is captured by
the increase in the size of the molecule and is represented through volume. Therefore,
it does not include the count of halogen atoms. Compared to the C dataset, molecular
weight has higher importance since this feature can capture information about halogens.
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The electronegativity difference mean is also selected, even though its feature importance
score is lower. It means that among the electronegativity features we created, the dif-
ference in electronegativity between the adjacent atoms captures information better than
other equations for this dataset.

In the CXOS dataset, as shown in Figure 31c, total bonds and rings have again become
the most important feature, similar to Figure 31a for C Dataset. It can be explained by
the fact that the ratio of hydrocarbons to halogen compounds to halogen, oxygen, and
sulfur compounds is 6 : 5 : 89 in the CXOS dataset, due to which the model does not
consider volume as an important feature since the data has a higher ratio of oxygen and
sulfur compounds.

The model selects four types of electronegativity equations: electronegativity mean, elec-
tronegativity variance, electronegativity variance mean, electronegativity variance vari-
ance, and electronegativity difference variance. Since the halogen atom count has not
been selected, it is assumed that information about halogens is captured through these
features. And it may also capture the effects of oxygen’s and sulfur’s electronegativity.

Further functional groups containing oxygen, like aliphatic and aromatic carboxyl, aliphatic
and aromatic hydroxyl, and ether are selected. It means the model can capture informa-
tion on hydrogen bonding through these functional groups. If we are to state that the
model chooses only oxygen-related functional groups over sulfur since carboxyl and hy-
droxyl groups have stronger hydrogen bonds compared to sulfur compounds then we can
observe that the ratio of compounds containing at least one oxygen to that of compounds
containing at least one sulfur in the CXOS dataset is 85 : 15. It means there are fewer
compounds to represent sulfur information, and therefore its feature importance score is
lower.

In the CXOSNP dataset shown in Figure 31d, total rings have the highest feature impor-
tance score. The model chooses the nitrogen count since there are 40,156 molecules with
at least one nitrogen, which represents 61% of the molecules in the CXOSNP dataset.
Therefore, it has a high feature importance score.

Similar to the results in Figure 31a, the model chooses density, total bonds, Balaban
J Index, eccentricity, sphericity, molecular weight, and rotatable bonds to identify the
features that can describe the shape of the molecule. It shows that the melting point has
a stronger correlation with the shape of the molecule. Hence, these features are getting
higher feature importance scores.

We also observe that many functional groups like amine, aliphatic and aromatic carboxyl,
aliphatic and aromatic hydroxyl, ether, and ketone are selected. These features are built
for identifying hydrogen bonding, which shows the model finds a correlation between
hydrogen bonding and melting point and requires these features to identify their presence
in the molecule for prediction.

Based on the analysis, we can conclude that the Random Forest model considers physical
shape descriptive features to be the most important feature for predicting melting points.
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(a) Plot of Feature Importance Scores on C Dataset for Random Forest. 11
features are chosen.

(b) Plot of Feature Importance Scores on CX Dataset for Random Forest.
12 features are chosen.
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(c) Plot of Feature Importance Scores on CXOS Dataset for Random Forest.
26 features are chosen.

(d) Plot of Feature Importance Scores on CXOSNP Dataset for Random
Forest. Only the first 38 features are shown in descending order of feature
score. 31 features are chosen.

Figure 31: Plots of Feature Importance scores for Random Forest on C, CX, CXOS,
and CXOSNP Datasets in descending order of feature importance score. Features to the
left and at the intersection of the red line are the optimum number of features chosen.
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The presence of functional groups and electronegativity also significantly contribute to
identifying the presence of intermolecular forces.

AdaBoost with Decision Tree

Figure 32 shows feature importance scores of AdaBoost(DT) where we select 13, 14, 21,
and 27 for the C, CX, CXOS, and CXOSNP datasets. The feature selection in this model
is similar to Random Forest with few extra additional features selected.

In the C dataset as shown in Figure 32a the highest feature importance score are for
density, total bonds, and total rings. Similar to Random Forest the model chooses all
features that describe the physical shape of the molecule using the Balaban J Index,
eccentricity, sphericity, molecular weight, volume, and rotatable bonds. Carbon count
has also been included in the selected features.

Also, triple bonds have a higher feature importance score than single bonds which was
not expected since there are only 125 molecules with triple bonds greater than zero.

In the CX Dataset as shown in Figure 32b, the highest feature importance scores are for
volume and total rings. It means the model finds a higher correlation between volume
and total rings with melting points. It may be due to higher volume molecules having
more rings and that may increase the melting point. Also, it may be due to halogen
information being captured through the volume of the molecule since no atom count for
halogen is selected.

This model also chooses two electronegativity equations which are electronegativity dif-
ference mean and variance mean which may capture the polarity induced in the molecule.

In the CXOS dataset as shown in Figure 32c, Total Rings has the highest feature impor-
tance score. It is followed by density, total bonds, sphericity, single bonds, and aromatic
bonds. It shows the model is capturing aromaticity using a combination of total rings,
total bonds, and single and aromatic bonds.

Hydrogen bonding features are also selected like ester, aromatic carboxyl, and aromatic
hydroxyl groups. Since the model also selects aromatic carbon rings, it may be considering
aromatic molecules with oxygen functional groups as important for the prediction of
melting points.

In the CXOSNP dataset shown in Figure 32d the highest feature score is for total rings,
followed by Total Bonds, and density. There are many fragments like amine, thiazole,
bicyclic, benzene, ether, and aliphatic and aromatic carboxyl chosen which shows the
model is dependent on predicting melting points by identifying the rings and the groups
around it.

From the observation of feature analysis of AdaBoost(DT), we can assume the model
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(a) Plot of Feature Importance Scores on C Dataset for AdaBoost(DT). 13
features are chosen.

(b) Plot of Feature Importance Scores on CX Dataset for AdaBoost(DT).
14 features are chosen.
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(c) Plot of Feature Importance Scores on CXOS Dataset for AdaBoost(DT).
21 features are chosen.

(d) Plot of Feature Importance Scores on CXOSNP Dataset for AdaBoost
(DT). Only the first 38 features are shown in descending order of feature
score. 31 features are chosen.

Figure 32: Plots of Feature Importance scores for AdaBoost(DT) on C, CX, CXOS, and
CXOSNP Datasets in descending order of feature importance score. Features to the left
and at the intersection of the red line are the optimum number of features chosen.
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considers physical shape, rings, and functional groups as features that have a correlation
with predicting melting point.

XGBoost

XGBoost performance for all models has been good, even though they were overfitting.
When we analyze the feature selection, this is the only model that chose the lowest number
of features to reach the same level of test RMSE. Further, the features chosen are very
distinct from Random Forest and AdaBoost(DT).

In the C dataset shown in Figure 33a, the highest importance scores are for total bonds
and rings, which is similar to previous models. But this model does not choose a volume or
molecular weight as important features since the score is lower for these features. Rather,
it chose carbon count as the third important feature, followed by aromatic bonds, benzene
fragments, and aromatic carbon rings. This shows the model is choosing features that can
help distinguish aromatic rings and cyclic rings, and it is trying to identify the presence
of benzene in the molecule, which may have a higher correlation with the prediction of
melting point. It also chooses rotatable bonds and density.

In the CX dataset shown in Figure 33b, the highest importance is for volume. This is
similar to previous models and confirms the fact that models can identify halogen atoms in
the molecule using volume alone. Further, the inclusion of the electronegativity difference
mean allows the model to identify the halogen much better and may indicate that polarity
also has some correlation with the melting point.

In the CXOS dataset shown in Figure 33c, the highest feature importance score is given
to total bonds and total rings, which is similar to previous models. Beyond this, the
XGBoost chooses substructures as more important features. We observe that functional
groups like aromatic carboxyl, aliphatic and aromatic hydroxyl, ether, and ester are being
chosen. Also, it chose phenol, furan, and lactone, which shows the model tries to predict
melting points by identifying the presence of certain substructures in the molecule. Unlike
previous models, the XGBoost does not give high importance to physical shape features.

In the CXOSNP dataset shown in Figure 33d, we can observe the trend of higher impor-
tance scores for substructures and functional groups compared to physical shape features.
Since the model has higher nitrogen compounds, amine functional groups are also in-
cluded in the feature selection. We observe that the substructures and functional groups
selected are aliphatic and aromatic carboxyl, aliphatic and aromatic hydroxyl, ether, ni-
tro, alkyl halide, isocyanate, phenol, nitrile, alkyl carbamate, ester, benzene, bicyclic,
phosphoric acid, and piramide. It also chooses atom counts for nitrogen, oxygen, fluorine,
and bromine.

In XGBoost, the highest importance is given to total Rings and bonds. Among atom
counts, it includes oxygen, fluorine, and sulfur. The model gives more importance to
many functional groups like ether, aliphatic carboxyl, aromatic hydroxyl, phenol, lactone,
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(a) Plot of Feature Importance Scores on C Dataset for XGBoost. 8 features
are chosen.

(b) Plot of Feature Importance Scores on CX Dataset for XGBoost. 8 fea-
tures are chosen.
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(c) Plot of Feature Importance Scores on CXOS Dataset for XGBoost. 22
features are chosen.

(d) Plot of Feature Importance Scores on CXOSNP Dataset for XGBoost.
Only the first 38 features are shown in descending order of feature score. 31
features are chosen.

Figure 33: Plots of Feature Importance scores for XGBoost on C, CX, CXOS, and
CXOSNP Datasets in descending order of feature importance score. Features to the left
and at the intersection of the red line are the optimum number of features chosen.
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furan, and ester. It is observed that XGBoost prioritizes functional group features more
than others.

Observations for XGBoost on all these datasets show this model learns better from the
substructural group’s presence than the physical shape description of the molecule. This
proves that melting points can also be identified by describing the substructures, which
are very similar to Morgan Fingerprint and Mol2Vec’s models. Also, the XGBoost model
can accurately perform with the least features compared to all other models making it
faster than others due to lesser data size requirements.

Principal Component Analysis

SVR, AdaBoost(SVR) and ANN models for descriptive features use PCA for feature
selection.

Figure 34a shows the PCA loadings plot for the C dataset. We observe total rings,
density, volume, molecular weight, carbon count and total bonds are highly correlated to
each other. Total Bonds have the strongest correlation. Even the bicyclic substructure is
in the same direction as others which may be due to the bicyclic structure having many
bonds that increase the total number of bonds in the molecule. Balaban J Index is highly
negatively correlated to total bonds and others which shows the component’s relation
cannot be explained by those features. This can be explained by the fact that Balaban J
Index is a graphical descriptor and is not related to bonds and rings.

Eccentricity and sphericity are on opposite ends to each other which is accurate since
spherical shapes will have sphericity as 1 and eccentricity as 0. It is also observed that
sphericity is in the same direction as single bonds and aliphatic carbon rings which shows
it has some positive correlation with these features. This may indicate that there are
molecules that may be in the cage structure or maybe the shape due to branching being
closer to spherical. Similarly, aromatic bonds and aromatic carbon rings are positively
correlated with each other.

Figure 34b shows PCA loadings for the CX Dataset. We observe that fluorine and alkyl
halides have a positive correlation with electronegativity features, which is related to
the fact that fluorine is the most electronegative atom and its presence will impact the
electronegativity equations. Further, we observe that total rings and aromatic carbon
rings have a strong positive correlation, which may indicate there are many aromatic ring
molecules in the dataset.

In the PCA loadings plot for the CXOS dataset shown in Figure 34c, apart from the
previous relationships, we observe a strong correlation between oxygen and its functional
groups like ether and ester. Since there are more oxygen compounds, it may influence the
principal components. All other fragments are clustered around the center and do not
have strong correlations.
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(a) Plot of PCA Loadings for the C Dataset.

(b) Plot of PCA Loadings for the CX Dataset

(c) Plot of PCA Loadings for the CXOS Dataset.

Figure 34: PCA Loading Plot for the C, CX, and CXOS Datasets.
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Figure 35: PCA Loading Plot for the CXOSNP Dataset.
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We see similar results in Figure 35 which shows PCA loadings plot for the CXOSNP
dataset. There is a very weak correlation for the fragments except for oxygen functional
groups like ether, ester, and methoxy groups. There is a strong correlation between
nitrogen count and its functional group and is in the same direction as aromatic hetero
rings. This may indicate that there are many nitrogen molecules that may be part of
hetero aromatic rings and can explain the variance in PCA components.

There is a correlation between the secondary amine group and eccentricity which may
indicate the shape of the molecule being flatter for molecules with the presence of a
secondary amine group.

From the observations of the PCA loadings plot, we can conclude that the first few PCA
components are explained by molecular weight, total volume, total rings, carbon count,
electronegativity, oxygen count, aromaticity, and other physical shape descriptive features.
Also, functional groups and fragments for oxygen and nitrogen compounds explain the
other PCA components. This indicates for a dataset that comprises a specific heteroatom
in more molecules will have a stronger correlation in assisting the prediction of melting
points. The other fragments have a weak correlation and therefore do not explain the
variance in the dataset.

7.2 Future Improvements

Our models demonstrated good performance on the datasets; however, we noticed that the
feature importance scores for electronegativity features were not high. This suggests that
these features may not contribute significantly to the prediction of melting point. There-
fore, our attempt to capture polarity induced in the molecule and detect intermolecular
interactions based on differences in electronegativity may not be effective.

To address this, we explored the use of Gasteiger charges, which calculate partial charges
assigned to individual atoms in a molecule based on electronegativity and electron dis-
tribution [50]. By employing RDKit, we found that the charges assigned to each atom
provided a better representation of polarity induced in the molecule compared to our
electronegativity features. However, unlike models that utilize the charges as an array
representation for each atom [16]), we encountered a challenge in incorporating Gasteiger
charges due to the need to calculate the mean or variance of partial charges. This approach
might diminish the quality of information as it fails to capture the positional information
of atom charges, such as distinguishing between edge and central atom charges. The
precise position of an atom’s charge is crucial in identifying intermolecular interactions
between molecules. As a result, further analysis is required to effectively incorporate
Gasteiger charges into our feature set.

In our feature set, we encountered difficulty in capturing information about stereoiso-
merism. Stereoisomerism refers to compounds that share the same molecular formula and
connectivity of atoms but differ in the spatial arrangement of atoms or groups, leading
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to distinct melting points. Although stereoisomerism can be represented by the coordi-
nate positional information of atoms in a distance matrix, incorporating this information
would complicate our goal of using simple numerical features. Some models have ad-
dressed stereoisomerism by encoding the chirality of atoms in an array representation [16],
enabling the identification of molecules with stereoisomers.

We explored various methods available in RDKit; however, solving this problem using
our numerical feature-based approach proved challenging. It would require comparing
each stereoisomer to all other molecules in the dataset, making it impractical to repre-
sent stereoisomerism as a single feature denoting true or false. One possible solution is
to employ unsupervised methods, such as clustering, to screen the dataset and identify
molecules that are stereoisomers of each other. Subsequently, similarity index numbers
could be assigned to these molecules, facilitating the capture of stereoisomerism. However,
implementing this method would necessitate in-depth analysis and constitute a separate
research problem to be addressed.

Our approach in identifying hydrogen bonding by counting the presence of functional
groups has proven partially helpful but does not fully address the broader problem. One
limitation of our approach is that we capture the presence of hydrogen bonding but not
its location. The strength of hydrogen bonding can be influenced by factors such as the
location of electronegative atoms and the proximity of hydrogen atoms to other molecules.
To properly analyze hydrogen bonding strength, it is necessary to study molecular crystals
rather than individual molecules. Unfortunately, due to the limitations of working with
molecules in SMILES format, we were unable to convert them into their crystal structures.
As a result, our model can only capture the presence of hydrogen bonding but cannot
explain its strength accurately. However, we did observe that our models selected amine,
carboxyl, and hydroxyl groups and found a correlation between these groups and the
melting point temperature.

To study hydrogen bonding and its strength more effectively, it is advisable to analyze
molecular crystals, which provide distance information between two molecules. This dis-
tance information can be used to compute the distances between an electronegative atom
of one molecule and a hydrogen atom of another molecule within their proximity, en-
abling the determination of hydrogen bonding strength and assigning it an index number.
Additionally, it would be possible to rank the hydrogen bonding strength according to
the atom or functional group in the molecule. However, this approach requires a dataset
comprising molecular crystals and necessitates a comprehensive dataset, combining the
ONS and CSD datasets, to achieve the desired richness of data.

Addressing these challenges will significantly enhance our ability to predict melting points
with greater confidence. We should also explore alternative formats that can capture the
relevant characteristics of molecules more effectively. As we have observed, algorithms
like Morgan Fingerprint and Mol2Vec have demonstrated good accuracy in predicting
melting points by effectively identifying substructural patterns. Therefore, we can draw
inspiration from these approaches and explore new methods that go beyond numerical
features to capture the intricate details of molecules and their interactions.
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8 Conclusion

The final goal of the research was to perform feature engineering and create a general-
ized model for the prediction of melting points for unseen organic molecules. We create
segregated datasets: C, CX, CXOS, and CXOSNP datasets from a combination of CSD
and ONS datasets by only selecting organic molecules. For each molecule, we create fea-
tures to describe its shape, size, electronegativity, flexibility, and substructure patterns to
identify intermolecular interactions.

We trained Random Forests, AdaBoost with base estimators as DT and SVR, XGBoost
and ANN models on all four datasets. We observe that Random Forest and XGBoost
have the lowest test RMSE. These models have the best performance on the test set,
but they also show evidence of overfitting the training data. SVR and ANN are the most
generalized models with the least difference between train and test R2 scores and RMSE
values, but their RMSE values are higher than Random Forest and XGBoost.

For the CXOSNP dataset, we achieved a test RMSE of 42.63±2.36 K for XGBoost which
was able to outperform the Morgan Fingerprint and Mol2vec algorithm with test RMSE
of 44.96± 10.53 K and 45.56± 1.47 K, respectively. Also, we were able to achieve these
values for XGBoost with a lower feature size of 31 features per molecule, compared to
Morgan Fingerprint and Mol2Vec algorithms that require 256 and 300 array sizes per
molecule, respectively. This shows that our features have selective information that helps
in achieving data compression, thus reducing the amount of storage data required per
molecule.

Further, during model analysis using feature selection, we identified that Random Forest
and XGBoost have the highest feature importance scores for total rings. Random Forest
learns about physical shape features like total bonds, density, molecular weight, volume,
sphericity, and eccentricity to predict the melting point temperature. It gives lower scores
for substructures, therefore does not depend on intermolecular interaction features. On
the contrary, XGBoost learns more from substructures and gives lower importance to
physical shape features. It finds a higher correlation with melting point temperature by
identifying the presence of a substructure in the molecule that may indicate it learns more
from intermolecular interaction features.

From the analysis of PCA, we were able to understand the relationships between the
features created. We identified that total rings, total bonds, molecular weight, and volume
have a positive correlation with each other and explain the variance in the first few
components. Electronegativity equations and fluorine atom count also have a positive
correlation with each other, showing that fluorine’s electronegativity is the highest. Since
the dataset has a large number of molecules with oxygen and nitrogen, we observed a
positive correlation between oxygen and nitrogen with their functional groups, where
oxygen has a stronger relationship with ether and ester groups and nitrogen with amine
groups.

85



From these observations, we can conclude that the melting point of a molecule can be
determined either by describing the shape of the molecule with more refinement for a
model trained on Random Forest, or by identifying all substructural patterns in the
molecule for a model trained on XGBoost. Although we had limitations in identifying
stereoisomerism and polarity with confidence, our features, and models performed well
and achieved a low RMSE value of 42.63 K for a large subset of organic molecules with
highly complex structures and a large variance in melting points.
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A Scatter Plots

Scatter plots for the C, CX, CXOS, and CXOSNP datasets.

Figure 36: Scatter plot of C Dataset.
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Figure 37: Scatter plot of CX Dataset.
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Figure 38: Scatter plot of CXOS Dataset.
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Figure 39: Scatter plot of CXOSNP Dataset.
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B Partial Dependence Plot

Partial Dependence Plot for XGBoost and Random Forest on the CXOSNP Dataset that
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(a) Random Forest

(b) XGBoost

Figure 40: Partial Dependence Plot of Random Forest and XGBoost on the CXOSNP
Dataset.
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