
Master’s Thesis 2023    30 ECTS
Faculty of Science and Technology

Deciphering Transcriptional 
Regulation using Deep Neural 
Networks

Julie Wollebæk Førrisdal
Data Science



Julie Wollebæk Førrisdal

Author

Torgeir Rhoden Hvidsten

Supervisor

Co-supervisors

Lars Grønvold
Kristian Hovde Liland
Simen Rød Sandve



PREFACE

This thesis completes my data science studies at the Norwegian University of Life Sciences
(NMBU). I want to thank my supervisor, Dean of the Faculty of Chemistry, Biotechnology
and Food Science Togeir R Hvidsten, for providing a challenging and fascinating research topic.
Further, I thank my co-supervisors, Researcher Lars Grønvold and Professor Simen Rød Sandve
at the Faculty of Biosciences, for making their data and biological knowledge available. I thank
Professor Kristian Hovde Liland at the Faculty of Science and Technology, for his data science
expertise. I thank you all collectively for the great guidance and feedback, and consider myself
lucky to have had such engaged, positive and witty supervisors this semester.

Thanks to all my friends and family for keeping up the support and interest in my work,
even when I consequently failed to explain any of it in lay man’s terms. A special thanks to my
classmates at Studentenes Hus (TF6-206), it was perhaps a little too much fun studying together.
Lastly, I would like to thank my dearest mother and beloved partner for their unconditional
love and support that helped me through all of this.

May 15, 2023, Ås

i





ABSTRACT

The DNA holds the recipe of all life functions. To decipher the instructions, one has to learn
and understand its complex syntax. The non-coding DNA contains regulatory elements, that
are essential to control and activate gene expression in the right place at the right time. Previ-
ous studies have applied deep learning for gene expression prediction, directly from non-coding
sequences, successfully. Almeida et al. [1] showed that a Convolutional Neural Network could
learn regulatory syntax from long same-length fragments from the fruit fly. In this thesis, we
tested how well deep neural networks could predict gene expression from short DNA fragments
of varying lengths from the Atlantic salmon. Furthermore, we extracted what the models had
learned, and tested if the sequence features corresponded to known regulatory sequence patterns
(motifs).

Two deep neural network architectures were built, a Convolutional Neural Network (CNN)
and a hybrid Convolutional and Long Short-Term Memory Neural Network (CNN-LSTM). We
trained the models to predict the gene expression effect of DNA fragments from open chro-
matin of liver cells. The two model architectures performed equally well, and the performances
depended on the amount of noise in the validation data, reaching a correlation of 0.68 on the
sequences of top 10% base mean.

We extracted motifs both from the first convolutional filters and from sequence importance
scores, and we compared the motifs to the JASPAR database of known vertebrate transcription
factor binding site motifs. Among the significant matches to JASPAR, we found some general
transcription factors like the TFCP2, HSF and AP-1, as well as some liver-specific transcription
factors like the KLF15 and HNF6. Most motifs did not match any JASPAR motif. We explained
the tendency of CNNs to distribute partial motifs across several filters, and that other sequence
features might be important for prediction as well. Our results suggest that the models learned
regulatory DNA syntax equally well, despite their different architectures, and we compared the
motif findings in light of these differences.

This thesis demonstrates the potential of deep neural networks for analysis of ATAC-STARR-
seq data, and suggests improvements worth exploring further to possibly increase performance.
We also stress the need for more robust model interpretation techniques, which could unlock
valuable knowledge in the future of genomics.

iii



ABBREVIATIONS

ANN Artificial Neural Network.

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing.

BRNN Bidirectional Recurrent Neural Network.

CNN Convolutional Neural Network.

CRE Cis-Regulatory Element.

DNA Deoxyribonucleic Acid.

GRU Gated Recurrent Unit.

LSTM Long Short-Term Memory.

MLP Multilayer Perceptron.

MPRA Massively Parallel Reporter Assay.

RNA Ribonucleic Acid.

RNN Recurrent Neural Network.

STARR-seq Self-Transcribing Active Regulatory Region sequencing.

TSS Transcription Start Site.

iv



CONTENTS

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Gene regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Transcriptional regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Chromatin accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 ATAC-STARR-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Machine Learning and Artificial Neural Networks . . . . . . . . . . . . . . . . . . 6
2.2.1 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 Pearson Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Deep neural network interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Materials and Methods 19
3.1 ATAC-STARR-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 One-Hot encoding and zero padding . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Training, testing, and validation split . . . . . . . . . . . . . . . . . . . . 22

3.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



CONTENTS CONTENTS

3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Hybrid Convolutional and Long Short-Term Memory Neural Network . . . . . . 24
3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Motif extraction from first convolution layer . . . . . . . . . . . . . . . . . . . . . 25
3.6 Motif extraction with deepExplainer and TF-MoDISco . . . . . . . . . . . . . . . 25
3.7 Motif matching to JASPAR with Tomtom . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 27
4.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Motif discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Hybrid Convolutional and Long Short-Term Memory Neural Network . . . . . . 32
4.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Motif discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Discussion 38
5.1 Performance and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Deep neural network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Motif extraction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Motif relevance for hepatocyte gene regulation . . . . . . . . . . . . . . . . . . . 39
5.5 Remaining Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 42

A Software and hardware 47
A.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Source code and trained models 48

C CNN motifs 49

D Hybrid CNN-LSTM motifs 50

vi



LIST OF FIGURES

2.1 Deoxyribonucleic Acid (DNA) is a long chain of nucleotide pairs coiled together
into the double helix shape. The nucleotides pair with each other through hy-
drogen bonds, and are supported by the sugar-phosphate backbone. Courtesy:
National Human Genome Research Institute [15] (public domain). . . . . . . . . 4

2.2 The central dogma of molecular biology explains the flow of information from
DNA to RNA to protein, mediated by transcription and translation of sequences.
Courtesy: National Human Genome Research Institute [16] (public domain). . . 4

2.3 Transcriptional regulation. Transcription factors bind to cis-regulatory elements
like enhancers and promoters and control the initiation of transcription. . . . . . 5

2.4 The genome is densely packed into chromatin. Courtesy: National Human
Genome Research Institute [17] (public domain). . . . . . . . . . . . . . . . . . . 6

2.5 The three basic learning approaches of machine learning (ML) algorithms. . . . . 7
2.6 Schematic representation of the perceptron. It takes the inputs (x1, . . . , xn) and

computes a weighted sum (w1, . . . , wn) and adds a bias (b). Then the activation
function (f) computes the output (y). . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Schematic representation of a multilayer perceptron (MLP) network. It consists
of an input layer, two hidden layers, and an output layer. The biases are shown
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Flowchart of the training process of a neural network. The network processes

inputs through forward propagation and updates its trainable parameters through
backpropagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.10 Splitting data into sets for training, testing, and validation is important in ma-
chine learning. The testing and validation samples can be randomly selected or,
for genomic data, from specific chromosomes. . . . . . . . . . . . . . . . . . . . . 11

2.11 Illustration of the three model fitting situations for classification and regression. . 12
2.12 A convolution involves applying the same filter weights to multiple positions over

the input data to produce an output feature map. In this example, a border of
padding is added to the input data (padding = 1). The output values are the dot
products of the input and the filter at each position, here with a stride of one.
Figure inspired by Zhang et al. [29]. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.13 Max pooling illustrated. In this example, the maximum value is extracted from a
local area with pool size 2 by 2, and the region moves with a stride of 2 positions,
which effectively reduces the input feature map by a factor of 2. . . . . . . . . . . 14

vii



LIST OF FIGURES LIST OF FIGURES

2.14 Sketch of a simple Recurrent Neural Network with a single node. The node
processes an input xi, and produces an output value yi that is also sent to the
node itself for subsequent inputs (blue arrow). When unfolded, the network
resembles stacked perceptrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.15 An LSTM cell maintains a selective memory (cell state) by processing inputs
through a forget gate, input gate, and an output gate. Yellow circles are ele-
ment wise operations. Green boxes are activation functions. Values are simply
concatenated or copied where arrows join and split, respectively. Outputs ht are
passed to both the next layer and the next step at input xt+1. . . . . . . . . . . . 16

3.1 Length distribution of all the approximately 6 million DNA fragments. . . . . . . 20
3.2 Base mean distribution of all samples in the data. Outliers are excluded. . . . . . 20
3.3 Log2 Fold Change distribution of all samples in the data. Outliers are excluded. 21
3.4 A visualization of how the data was filtered by base mean into four data sets.

A darker color and shorter arrow represents the fraction of the total number of
samples in the data, and the names of each set are written in white. The specific
number of samples in each data set can be found in Table 3.1. . . . . . . . . . . . 21

3.5 One-Hot encoding and zero padding used to represent a DNA sequence as a
matrix with dimensions (max-length, 4). . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Visualization of the Convolutional Neural Network architecture. . . . . . . . . . . 23
3.7 Visualization of the Hybrid Convolutional and Long Short-Term Memory Neural

Network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The CNNs’ learning curves plotted as loss after each epoch when trained on
different subsets of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The CNN trained and validated on different subsets of the data. The plots show
predicted versus observed values, and color indicates density of points. . . . . . . 29

4.3 CNN performance test results from cross testing the model on different training
and validation data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 JASPAR motifs extracted from the CNNs’ first convolutional layers. . . . . . . . 31
4.5 JASPAR motifs discovered using TF-MoDISco on SHAP importance scores from

the CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 The hybrid CNN-LSTMs’ learning curves plotted as loss after each epoch when

trained on different subsets of the data. . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 The hybrid CNN-LSTM trained and validated on different subsets of the data.

The plots show predicted versus observed values, and color indicates density of
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.8 Hybrid CNN-LSTM performance test results. PCC: Pearson Correlation Coeffi-
cient. MAE: Mean Absolute Error. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 JASPAR motifs extracted from the hybrid CNN-LSTMs’ first convolutional layers. 35
4.10 Various motifs of the CNN-LSTM convolution filters coincided with the AP-1

motif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Motifs discovered using TF-MoDISco on SHAP importance scores from the hy-

brid CNN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C.1 Motifs from first convolution layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

D.1 Motifs from first convolution layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



LIST OF TABLES

3.1 Detailed description of the four data sets created from the raw data. . . . . . . . 21
3.2 Nucleotides and corresponding vector representations. . . . . . . . . . . . . . . . 22
3.3 Detailed description of the four data sets created from the raw data. The testing

and validation samples are from chromosome 21 and 25, respectively. . . . . . . . 22
3.4 Convolutional Neural Network hyperparameter search space. Layern clarifies the

type and order of the hidden layers, and the set of tested values are shown in
brackets. The best hyperparameters are highlighted. . . . . . . . . . . . . . . . . 24

3.5 Hybrid Convolutional and Long Short-Term Memory Neural Network hyperpa-
rameter search space. Layern clarifies the type and order of the hidden layers,
and the set of tested values are all shown in brackets. The best hyperparameters
are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.1 Python modules used for data exploration, preprocessing and deep learning, along
with the respective versions and purpose. . . . . . . . . . . . . . . . . . . . . . . 47

A.2 Hardware specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 Table of source code with GitHub links and commit hashes. . . . . . . . . . . . . 48
B.2 Table of trained model files with GitHub links and commit hashes. . . . . . . . . 48

ix



CHAPTER 1

INTRODUCTION

Ever since it was possible to read the DNA of organisms, predicting its functions has been
a prominent goal in biology. Coding sequences (genes) consist of triplet nucleotides (codons)
that code for the chain of amino acids that make up a specific protein. Codons are known and
easy to decode since they exclusively represent one amino acid. These properties make coding
sequences recognizable, and state-of-the-art gene prediction tools have accomplished highly ac-
curate results [2–4]. However, the majority of a eukaryotic genome is non-coding, which was
previously assumed to be “junk DNA”. It is now known that the non-coding genome is essential
for regulating genes. Promoters and enhancers are non-coding sequences that can regulate the
activity of genes. They interact with both near and distal genomic regions, and are influenced
by developmental stages and cell environment. Furthermore, their sequences are complex and
vary between species, tissues, and cell types [5]. Thus, the non-coding genome is written in a
complex syntax dependent on context, comparable to natural language [6]. Regulatory syntax
and natural language are arguably similar in the way language is built on rules and gram-
mar, but still highly variable in interpretation. Promoters and enhancers can be thought of as
“sentences” that are made up of “words” (motifs) recognizable by individual regulatory pro-
teins. Recent research applying Deep Neural Networks, a type of machine learning algorithm,
to process natural language has been a success [7], and the same techniques are being explored
for analysis of DNA sequences [8]. Robust networks that understand raw DNA sequences and
predict their functions reliably under unseen conditions do not exist yet, but abundant data,
wide interest, and the will to invest in such technology is paving the way for further development.

1.1 Motivation

There are several useful research applications for a DNA-language model well-trained to pre-
dict across genomic loci. Interpreting what features and general patterns the model learned to
look for leads to discovery of novel regulatory rules and motifs [9]. As defined by Bailey and
Elkan [10], motifs are approximate statistical representations of a sequence pattern believed to
have a biological function, such as being a binding site for a regulatory protein. By training a
generative model, it is possible to design synthetic motifs with desired regulatory effects [11].
Another application is to get predictions on variant effects by passing mutated sequences to a
well-trained model [12].

This thesis aims to explore deep neural networks for analyzing non-coding sequences. In a
broader context, we study the inner workings of gene regulation in domestic Atlantic salmon.

Page 1 of 51



To improve cost efficiency and animal welfare in the salmon industry, it is important to know how
the domestic salmon responds to different conditions, including diets and medical treatments.
Overall, the knowledge of the functions and interactions of genetic elements and how they affect
transcription of genes, will be fundamental for the future of animal breeding, food science, drug
development and medicine. Interpretation of deep models is one way to unlock this knowledge.

1.1.1 Related Work

Almeida et al. [1] built a deep Convolutional Neural Network called DeepSTARR to predict
enhancer activity in fruit flies (Drosophila melanogaster) based on DNA sequence. They vali-
dated the model experimentally and extracted motifs that are predictive of enhancer activity.
These motif rules were adjusted to human enhancers, such that synthetic enhancers could be
designed with desired activity levels. Their work demonstrated that a Convolutional Neural
Network could predict enhancer activity from sequences of 249 nucleotides, obtained by UMI-
STARR-seq, a Massively Parallel Reporter Assay (MPRA) experiment.

Quang and Xie [13] proposed a hybrid neural network called DanQ to predict the function of
non-coding human DNA sequences. They used a combination of a convolutional layer and a
bidirectional recurrent layer to capture regulatory motifs and long-term dependencies between
motifs. The authors showed that a hybrid model outperformed other models in predicting the
non-coding function from sequences of 1000 nucleotides.

1.2 Objectives

Deep neural networks have shown an ability to learn regulatory grammar in some species and
for fixed DNA sequence lengths. Most previous studies have been conducted on a few widely
studied genomes, but few studies have tried the same on the domestic Atlantic salmon, an
important livestock for food production. Another interesting aspect to study is the robustness
to variable input sequence lengths. To the best of our knowledge, no studies have applied deep
neural networks to process data produced by the ATAC-STARR-seq method, a novel MPRA
producing sequences that are largely non-overlapping and of varying lengths [14]. We propose
the following objectives for this thesis:

• How does a deep neural network perform at predicting the gene regulation effect of DNA
sequences from ATAC-STARR-seq data?

• Can a deep neural network learn to recognize regulatory sequence motifs from the Atlantic
salmon?

We aim to answer these research questions by testing different deep learning approaches for
predicting to what degree sequence fragments from the salmon genome can drive transcription.
And if so, can the sequence features that drive transcription be extracted, and can they be
associated with, e.g., known transcription factor binding sites?

1.3 Structure

The remaining work is structured in the following way: Relevant theoretical concepts will firstly
be covered in Chapter 2. Chapter 3 then describes how a dataset of DNA sequences was created
from liver cells of Atlantic salmon, followed by a detailed methodology of our Deep Learning
approach to analyze this data. Next, results are presented in Chapter 4. The results are first
discussed and later concluded in the final Chapter 5 and Chapter 6. We include supplementary
information, such as detailed software specifications, as Appendices.

Page 2 of 51



CHAPTER 2

THEORY

In this chapter, theory behind gene regulation and deep learning will be explained to provide a
basis for our deep learning approach to DNA sequence and gene regulation analysis.

2.1 Gene regulation

Even though all cells in eukaryote species contain the same genome sequence in their nucleus,
cells in e.g. heart, liver, and blood are drastically different from one another. Gene regulation
is what enables cells to divide and differentiate into different cell types, carry out specialized
functions, and adapt and respond to environmental changes. Gene regulation can occur at
several levels, including enhancer and promoter activation or repression, transcription factor
binding and chromatin remodeling [5]. The paragraphs under Section 2.1 will cover these
biological concepts that are relevant for prediction of gene expression.

2.1.1 Gene expression

Gene expression is the process by which a gene product is synthesized from DNA. Deoxyri-
bonucleic Acid (DNA) is a long chain of nucleotides, and is illustrated in Figure 2.1. There are
four nucleotides, Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). A fifth nucleotide
Uracil (U) substitutes Thymine when the sequence is transcribed into Ribonucleic Acid (RNA).
The central dogma of molecular biology states that DNA is transcribed into RNA, which is
then translated into protein (see Figure 2.2). Transcription is performed by proteins called
polymerases, and the polymerase activity is regulated by other molecules such as transcription
factors (see Figure 2.3) [5].

Page 3 of 51



Figure 2.1: Deoxyribonucleic Acid (DNA) is a long chain of nucleotide pairs coiled together
into the double helix shape. The nucleotides pair with each other through hydrogen bonds, and
are supported by the sugar-phosphate backbone. Courtesy: National Human Genome Research
Institute [15] (public domain).

Figure 2.2: The central dogma of molecular biology explains the flow of information from DNA
to RNA to protein, mediated by transcription and translation of sequences. Courtesy: National
Human Genome Research Institute [16] (public domain).

Page 4 of 51



Figure 2.3: Transcriptional regulation. Transcription factors bind to cis-regulatory elements
like enhancers and promoters and control the initiation of transcription.

2.1.2 Transcriptional regulation

An important mechanism of gene regulation in eukaryotes is transcriptional regulation, which
controls the initiation of transcription in a temporal and spatial manner. Transcriptional regu-
lation can occur through various biochemical mechanisms [5]. One of these mechanisms is bind-
ing of transcription factor proteins to DNA sequences near genes, referred to as Cis-Regulatory
Elements (CREs). There are generally two types of CREs, called promoters and enhancers.
Definitions of promoters and enhancers vary, but in terms of function, promoters are sequences
where RNA-polymerases bind and initiate transcription. Promoters could more broadly also
include sequences located nearby (approximately 1000 bp) upstream of a Transcription Start
Site (TSS) that influence the binding. Promoters are therefore thought of as prerequisites for
a gene to maintain basal gene expression levels. Enhancers are, again in terms of function,
sequences that modify gene expression. They can be located nearby (100 to thousands of bp)
or far away (> 1 000 000 bp) from the start site in any direction, or even in the middle of
introns within other genes. Enhancers affect gene expression in cell- and tissue-specific ways.
An enhancer that decreases gene expression is often referred to as a repressor or silencer [5].

2.1.3 Chromatin accessibility

Illustrated in Figure 2.4 (left-most panel) is a chromosome during the metaphase of cell division,
and its unraveled components (panels towards the right). Here we see that the chromatin
organization, i.e., the DNA and associated proteins, is densely packed. The chromosome is
made up of chromatin, which consists mostly of DNA wrapped around histone proteins called
nucleosomes, that is neatly organized into chromatin fiber. The main purpose of chromatin
is to efficiently and compactly organize all the DNA within the nucleus, but it also serves a
regulatory function. The most tightly packed parts of the DNA are physically inaccessible for
gene regulatory molecules and polymerases, simply due to the chromatin density. By remodeling
the chromatin structure to be more open, rendering parts of the DNA more accessible, the
polymerase and other regulatory proteins can bind to the DNA and gene transcription can be
induced. These changes include chemical modifications to DNA and histones [5].

Page 5 of 51



Figure 2.4: The genome is densely packed into chromatin. Courtesy: National Human Genome
Research Institute [17] (public domain).

2.1.4 ATAC-STARR-seq

Massively Parallel Reporter Assays (MPRAs) are powerful molecular genetics tools used to
screen thousands of sequences for regulatory activity in a single experiment [18]. In this the-
sis, we used data from an ATAC-STARR-seq experiment conducted in liver cells from Atlantic
salmon. Here, we briefly explain the main steps in the ATAC-STARR-seq protocol.

ATAC-STARR-seq is a combination of Assay for Transposase-Accessible Chromatin using se-
quencing (ATAC-seq), and Self-Transcribing Active Regulatory Region sequencing (STARR-
seq). The main idea behind the experiment is to use the hyperactive genetically modified
Transposase (Tn5) enzyme, which cuts chromatin where it is loosely packed. Tn5 will cut
out fragments of DNA that are accessible, and therefore possibly important for transcription,
including the genomic regions that are actively being bound by transcription factors and poly-
merases. The resulting DNA fragments are enriched for CREs, both promoters and enhancers
[19]. The next step in the protocol is to amplify these DNA fragments and clone them into
self-transcribing reporter plasmids. Finally, these reporter plasmids can be transfected back
into cells, and the resulting RNA produced is then sequenced using high-throughput sequence
techniques to quantify the regulatory activity of each fragment. This experiment provides a
genome wide quantification of regulatory activity of the accessible DNA with high resolution
[14].

2.2 Machine Learning and Artificial Neural Networks

The goal of machine learning is to create algorithms that are self-taught to recognize patterns
in data and use those patterns to make predictions or decisions. Learning algorithms are based
on statistical models and trained on large datasets. During the training process, the algorithm
iteratively adjusts its internal parameters until it can accurately predict the output for a given
input. Once the algorithm has been trained, it can be used to make predictions on new, unseen
data.

There are different ways a machine learning algorithm can learn, grouped into three major

Page 6 of 51



branches: supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning algorithms learn to make predictions based on labeled data. The data labels can be ei-
ther categorical or continuous. In the case of categorical labels, the task becomes a classification
problem, whereas with continuous values, it is a regression task. In both cases, the algorithm is
trained on a set of input-label pairs, and the goal is to learn the underlying relationship between
the input and label values (see Figure 2.5a). Unsupervised learning algorithms are used to find
patterns or structures hidden in data that are not labeled. These algorithms try to group data
points based on similarity into clusters or reduce the dimensionality of the data by engineering
more descriptive features (see Figure 2.5b). Reinforcement learning algorithms learn interac-
tively by trial and error, based on feedback in the form of a reward or penalty signal and the
state of the environment. The algorithm adjusts its actions in an environment based on the
feedback it receives, with the goal of maximizing the total reward over time (see Figure 2.5c) [20].

(a) Supervised classification and regression illustrated. The Machine
Learning algorithm learns the relationship between the input and the
target labels. When it is given a new sample, it predicts a label.

(b) Unsupervised clustering illustrated. The ma-
chine learning algorithm tries to cluster similar data
points together.

(c) Reinforcement learning illustrated. The
machine learning algorithm interacts with an
environment and learns from feedback.

Figure 2.5: The three basic learning approaches of machine learning (ML) algorithms.

In this thesis, the focus is on supervised learning with labeled data. The task is a regression
problem, and we narrow down our theoretical background to cover relevant topics for this
specific task. The remaining part of this chapter will revolve around Artificial Neural Networks
(ANNs). ANNs are a type of machine learning algorithm that was inspired by biological neurons
in the brain [21, 22]. Starting with the perceptron, we will build an essential background of
artificial neural networks, and then elaborate on deep neural networks.

Page 7 of 51



2.2.1 The Perceptron

The perceptron is the smallest component of a neural network. It is also called a unit, node
or artificial neuron. A sketch of the perceptron and its inner workings is drawn in Figure
2.6. The perceptron processes inputs (x) by taking the weighted (w) sum of them, adding a
bias (b), and employing an activation function (f) to calculate the final output value (y), see
Equation 2.1. The activation function is important because it defines the range of possible
output values, and transforms the weighted sum into a signal (more on activation functions in
Section 2.2.2). This signal can be thought of as a biological neuron that fires. The weights and
bias are learnable parameters that must be adjusted to produce the desired output (see Section
2.2.3 on backpropagation).

y = f(w · x+ b) = f(w1x1 + w2x2 + · · ·+ wnxn + b) (2.1)

Figure 2.6: Schematic representation of the perceptron. It takes the inputs (x1, . . . , xn) and
computes a weighted sum (w1, . . . , wn) and adds a bias (b). Then the activation function (f)
computes the output (y).

2.2.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a type of artificial neural network that consists of multiple
layers, each consisting of multiple perceptrons. In an MLP, the output of each perceptron in
a layer serves as the input to the next layer, sending a signal forward, until the final layer
produces the network’s output. This process is called forward propagation. The layers are fully
connected, meaning every node receives the output signal from all nodes in the previous layer.
All layers between the input and the output layer are referred to as hidden layers, and more
hidden layers in the architecture is a “deeper” model. Figure 2.7 illustrates a simple multilayer
perceptron. MLPs are powerful models that can learn complex patterns in data due to their
ability to learn non-linear relationships between inputs and outputs, which allows them to model
complex functions [23].

Page 8 of 51



Figure 2.7: Schematic representation of a multilayer perceptron (MLP) network. It consists of
an input layer, two hidden layers, and an output layer. The biases are shown in green.

Activation functions

The activation function is applied to the output of each layer during forward propagation, and
introduces nonlinearity into the model. The choice of activation function can have a significant
impact on the performance of the network. The most used activation functions are the linear,
sigmoid, hyperbolic tangent (tanh) and the Rectified Linear Unit (ReLU), we plotted them in
Figure 2.8.

−0.5 0 0.5
−1

−0.5

0

0.5

1

x

f
(x
)

(a) Linear(x) = x

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

f
(x
)

(b) Sigmoid(x) = 1
1 + e−x

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

f
(x
)

(c) Tanh(x) = ex − e−x

ex + e−x

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f
(x
)

(d) ReLU(x) = max(0, x)

Figure 2.8: Activation functions.

Page 9 of 51



2.2.3 Learning

We have so far explained how a simple neural network processes inputs and produces an output
through forward propagation. The following paragraphs will go into detail on how a neural
network then learns to produce a desired output from labeled data. A flowchart of the learning
process of an MLP is shown in Figure 2.9.

Figure 2.9: Flowchart of the training process of a neural network. The network processes inputs
through forward propagation and updates its trainable parameters through backpropagation.

After forward propagation, the learning can begin. A loss function measures the error between
the predicted output and the desired output. Then, the trainable parameters are adjusted
through backpropagation. This involves computing the gradients of the loss function with
respect to the model parameters and employing an optimizer to calculate the updates based on
these gradients. Popular optimizers are Stochastic Gradient Descent (SGD), Root Mean Square
Propagation (RMSProp), and Adaptive Moment Estimation (Adam). These optimizers are all
based on gradient descent, a mathematical algorithm that finds a local minimum by taking
steps in the opposite direction of the gradient. The learning rate is a hyperparameter of the
optimizer that decides the step size, and can heavily influence the model’s ability to minimize
its prediction errors [20].

Backpropagation

Backpropagation is an efficient way to calculate how much each of the model’s parameters needs
to change to reduce the error of the model’s predictions. Using the chain rule of calculus, it
is possible to compute the derivative of the loss function with respect to the output from each
layer, and then propagate these derivatives backwards through the network [20]. The network
is a nested function where each layer takes the previous layer’s output as input. Equation
2.2 illustrates how the derivative of a nested function is computed using the chain rule for a
network consisting of five layers (f, g, h, u, v). Modern deep learning software implements the
backpropagation algorithm extremely efficiently, such that it is possible to train complex deep
neural networks with a rich selection of different configurations, hidden layers and activation
functions.

df

dx
=

d

dx
(f(g(h(u(v(x)))))) =

df

dg
· dg
dh

· dh
du

· du
dv

· dv
dx

(2.2)

Training, testing and validating a model

A key concept in machine learning is to use different data samples to train, test and validate a
model, as demonstrated in Figure 2.10. This is an important practice to prevent information

Page 10 of 51



leakage into the model, such that it seems like it is performing well, when in reality the model
is simply remembering the training data. To ensure that the model is generalizing and learning
from the training data, it is therefore vital to hold out unseen samples to validate the model
post training. These validation samples would optimally be a representative selection of the
training data, which again would be representative of the real world.

A common practice is to randomly assign fractions of the samples for training, testing, and
validation. For DNA sequences, this often results in an unrepresentative selection due to over-
lapping fragments. To measure how well a model generalizes to unseen genomic loci, it is
therefore preferred to hold out entire chromosomes for validation. If the purpose of the model
is to be used as a predictor of unseen cell types, it is wise to go even further and train and
validate the model across both chromosome and cell type [24]. In both cases, we assume that
the patterns in the training samples are representative of the held out chromosomes.

Figure 2.10: Splitting data into sets for training, testing, and validation is important in machine
learning. The testing and validation samples can be randomly selected or, for genomic data,
from specific chromosomes.

Batches and epochs

During training, a neural network processes multiple inputs, a batch, before updating its pa-
rameters. The batch size must therefore be a subset of the total number of samples in the
training data. An epoch is when the network has processed enough batches to complete all
training samples once. The batches are randomized such that they are different every epoch. It
is useful to run the model for multiple epochs, reiterating over the data to keep updating the
model parameters and improving its performance.

Overfitting

When fitting a model to training data, we want the general patterns to be found. In Figure 2.11,
we illustrate how an underfitted model does not follow the data closely enough, and an overfitted
model follows the training data too closely. Overfitting occurs when the model memorizes the
training data, instead of generalizing and learning how to predict it. The symptom of overfitting
is that the model performs much better on the training data, than on the testing and validation
data. This can happen if the model has been training for too many epochs and has too large
capacity, i.e. too many parameters. It is a fundamental problem in machine learning, since the
model essentially becomes a perfect predictor of the training data at the expense of weakening
its ability to predict on unseen samples [25]. Therefore, there are plenty of strategies to mitigate
overfitting, like early stopping, dropout and batch normalization.

Page 11 of 51



Figure 2.11: Illustration of the three model fitting situations for classification and regression.

Early stopping

A simple way to prevent overfitting is to monitor the testing performance after each epoch
and finish training if the test error stops decreasing or starts increasing. This is called early
stopping, and its ”patience” is the pre-defined number of epochs we wish to wait for further
improvement before termination of the training. Early stopping provides a way to restore the
model parameters at their best point during training, while reducing the runtime [25].

Dropout

Dropout is another simple and effective mechanism that forces a model to generalize. Dropout
is a predefined fraction of the nodes in a layer whose outputs are multiplied by zero. Essentially,
a fraction of the nodes are randomly left out, or turned off. This makes it easier for the model
not to learn redundant noise in the data, and forces it to generalize. When different subsets
of the hidden nodes are turned off, one is effectively training lots of smaller and thinned out
networks, that share parameters [26]. This has a great effect of preventing overfitting. During
testing and validation, dropout is not applied on any nodes, and the model as a whole predicts
the output.

Batch normalization

Batch normalization is applied both to reduce overfitting, and also accelerate the training pro-
cess. To normalize the inputs of a layer, the mean and standard deviation of inputs over a batch
of training samples needs first to be calculated, and then these values are applied to normalize
the inputs. Since the distribution of the inputs to the layer is stable at zero mean and unit
standard deviation, the network can handle greater learning rates and learn faster, due to more
stable gradients [27]. A batch normalization layer also keeps track of a moving average and a
moving standard deviation, which is needed after the model is done training, such that it can
make predictions on a single sample [25].

2.3 Deep Neural Networks

In Section 2.2.2, a simple fully connected neural network, the MLP, was described. In deep
learning, multiple hidden layers are applied to increase the capacity and complexity of the model.
Deeper models have the capacity to transform inputs into higher order feature representations,
and therefore handle raw data of high dimensionality better than classical machine learning

Page 12 of 51



models, so-called “shallow” networks. The process of extracting and engineering features from
raw data is left for the deep model to learn. There are different types of deep neural networks,
the relevant ones for this thesis will be presented in the next sections 2.4-2.5. Finally, we also
delve into important concepts like evaluation, tuning, and interpretation of deep models.

2.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a different kind of network that uses shared pa-
rameters and spatial configurations to process inputs. In a CNN, filters (also called kernels)
scan the input data for local patterns (see Figure 2.12). The filter size is much smaller than
the input data, such that it can learn small components and simple patterns. The convolution
is essentially a dot-product operation between the input and the filter at each position. The
consideration of spatial context is what makes the CNN well-designed for data where the ar-
rangement of the data points matter, such that randomly shuffling them would cause a great
loss of information, like sentences, images, and DNA sequences. The filters can learn to search
for phrases in a sentence, edges in an image, or motifs in a DNA sequence. One filter of a single
convolutional layer scans the entire input like a sliding window, with the same shared param-
eters for every location. The filter can therefore detect the presence of a pattern, regardless
of where it occurs. This sharing of weights reduces the need for numerous parameters, since
it is not required to learn them for every possible location of the pattern. The output of a
filter in a convolutional layer is referred to as a feature map, since it maps out where a pattern
was discovered. CNNs are popular and especially successful in image recognition and object
detection tasks [28].

Stride

The stride is a hyperparameter of the convolutional layer that determines the amount by which
the filter shifts over the input at each step. A stride of 1 means that the filter shifts one
position at a time, while a stride of 2 means that the filter shifts two positions at a time, and
so on. Using larger strides reduces the size of the feature map and can therefore speed up
computations. However, it can also reduce the amount of information that is preserved in the
feature map, in the worst-case losing valuable information such that the overall performance of
the model is affected [28].

Padding

Another important hyperparameter of the convolutional layer is the padding. The padding is
the number of data points with a value of 0 to add as an extra border around the input, as
illustrated in Figure 2.12. The reason for doing this is to increase the output size of the feature
map. Without padding, the output size would always shrink dependent on the filter size, where
a larger filter shrinks the output by a larger factor. This would limit the number of possible
convolutional layers one could apply after one another, since the feature map would eventually
reach a size of only one value. It also impacts the choice of filter sizes, since big filters would
shrink the feature map further. Padding the input allows for more freedom of the architecture
and filter size. Including numerical padding settings, two other padding options are “valid”
and “same”. Where valid padding simply means no padding, same padding means adding the
amount of padding needed to produce an output feature map of the same size as the input [28].

Page 13 of 51



Figure 2.12: A convolution involves applying the same filter weights to multiple positions over
the input data to produce an output feature map. In this example, a border of padding is added
to the input data (padding = 1). The output values are the dot products of the input and the
filter at each position, here with a stride of one. Figure inspired by Zhang et al. [29].

2.4.1 Pooling

Applying a pooling operation after a convolution is a common way to process feature maps and
make them more robust. Pooling is compressing the convolution feature map into a smaller
output by downsampling from neighborhoods of data points (see Figure 2.13). The pool size
is the size of this local area. Average pooling is computing the average of the activations over
small regions of the feature map, while max pooling is finding the maximum activations. The
output therefore describes approximately where these activations occurred in the input using a
smaller feature map, and each value corresponds to a larger area of the input. Pooling operations
are useful for plenty of reasons: They retain the most important information from the feature
maps, increase the receptive field further into the model, remove noise, reduce the chances of
overfitting, and reduce the number of parameters in the model [28].

Figure 2.13: Max pooling illustrated. In this example, the maximum value is extracted from
a local area with pool size 2 by 2, and the region moves with a stride of 2 positions, which
effectively reduces the input feature map by a factor of 2.

2.5 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of artificial neural network that is designed to
work with sequential data, where the order of inputs is of significance, such as time series,
videos, texts, and sequences. Unlike traditional feedforward neural networks, which process
data one input at a time in one direction, RNNs retain information from previously processed

Page 14 of 51



inputs by maintaining a memory. Practically, RNNs are stacked perceptrons that use loops in
their architecture, as shown in Figure 2.14. In a simple RNN architecture, each neuron has a
feedback loop that allows it to receive information from the previous sample, process it along
with the current input sample, and then send the output both forward to the next layer and to
the next sample step. This allows RNNs to process sequential data and capture temporal depen-
dencies between inputs. A Bidirectional Recurrent Neural Network (BRNN) is essentially two
RNNs employed together in the same layer, where one processes inputs in the forward direction,
and the other processes them in the backward direction. BRNNs are useful when applied to
genomic data, since information can be found both upstream and downstream along a sequence.

Figure 2.14: Sketch of a simple Recurrent Neural Network with a single node. The node
processes an input xi, and produces an output value yi that is also sent to the node itself for
subsequent inputs (blue arrow). When unfolded, the network resembles stacked perceptrons.

However, one issue with simple RNNs is that they can suffer from the vanishing gradient prob-
lem, where the gradients used for learning become increasingly smaller when propagated back-
wards. The influence of earlier data points will decrease as more inputs are processed, making it
difficult for the network to retain information for many steps, a long-term memory. To address
this issue, more advanced processing units have been developed, such as Long Short-Term Mem-
ory (LSTM) cells and Gated Recurrent Units (GRUs), which are designed to better capture
these long-term dependencies.

2.5.1 Long Short-Term Memory

Long Short-Term Memory cells are designed to handle the vanishing gradient problem that
occurs in standard RNNs. The key feature of an LSTM is its ability to choose what information
to retain from a sample and keep this information in its cell state. The LSTM cell has three
gates: the forget gate, the input gate, and the output gate, which control the flow of information
into and out of the cell (see Figure 2.15). The input gate regulates what new information is
relevant and kept in the cell, while the forget gate controls what information should be discarded
from the cell. The output gate then processes both the input and the cell state to produce the
final output value.

Page 15 of 51



Figure 2.15: An LSTM cell maintains a selective memory (cell state) by processing inputs
through a forget gate, input gate, and an output gate. Yellow circles are element wise operations.
Green boxes are activation functions. Values are simply concatenated or copied where arrows
join and split, respectively. Outputs ht are passed to both the next layer and the next step at
input xt+1.

2.6 Evaluation metrics

To assess the performance of a deep neural network, evaluation metrics are needed. The choice
of evaluation metric depends on the problem. For example, if the problem is classification, one
can measure accuracy, precision, and recall of the model. If it is a regression problem, one can
measure Mean Squared Error, Mean Absolute Error, and correlation. Here, the definitions of
some relevant metrics for this thesis are presented.

2.6.1 Mean Absolute Error

The Mean Absolute Error is a common metric to measure errors of a regression model. Specifi-
cally, it measures the average absolute difference between the predicted and actual values. The
calculation is shown in Equation 2.3, where n is the number of samples in the dataset, xi is the
predicted value of sample i, and yi is the observed value of sample i.

MAE =
1

n

n∑
i=1

|xi − yi| (2.3)

The MAE metric is always positive, and the value is on the same number scale as the target
values. This means that the MAE number must be interpreted in light of the values that are
predicted. An example is if a model tries to predict tomorrow’s weather in degrees Celsius and
has an MAE of 20, it means the predictions are on average 20 degrees Celsius off, which to many
would be considered a bad weather forecaster. On the other hand, if the model is predicting
the monthly income of a local store in dollars, an MAE of 20 can be highly accurate. The MAE
is thus a metric that is not intuitive on its own, due to this problem specificity [30].

2.6.2 Mean Squared Error

Mean Squared Error (MSE) measures the average squared difference between the predicted and
observed values. The formula is presented in Equation 2.4 where xi is the predicted value of

Page 16 of 51



sample i, yi is the observed value of sample i, and n is the total number of samples in the
validation set.

MSE =
1

n

n∑
i=1

(xi − yi)
2 (2.4)

The MSE is a useful metric for evaluating regression models because the squaring operation
causes larger errors to be penalized more than smaller errors. However, it can therefore also be
sensitive to outliers. In general, a lower MSE value indicates better performance of the model.
The interpretation depends on the specific problem and the scale of the target variable, and can
be unintuitive since it is the square of a measurement [20].

2.6.3 Pearson Correlation Coefficient

Equation 2.5 defines the Pearson Correlation Coefficient, where n is the number of observations
in the dataset, xi and yi are the predicted and observed values of sample i, and x̄ and ȳ are the
means of the two variables.

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.5)

The Pearson correlation coefficient ranges from -1 to +1, where a value of +1 indicates a
perfect positive correlation, a value of -1 indicates a perfect negative correlation, and a value of
0 indicates no correlation between the variables. The correlation is always on the same scale,
and thus more intuitive [20].

2.7 Hyperparameter Tuning

The performance of models is limited by the architecture and configurations of the model
itself. These model configurations are called hyperparameters, to avoid confusion with the
trainable parameters within the model. Essentially, they are settings decided prior to training,
for example the number of nodes in a layer, or even the number of layers in total. Finding an
optimal combination of hyperparameters can improve the performance of the model significantly,
and this process is termed hyperparameter tuning. The range and set of values make up the
search space, and is defined prior to tuning. It is exponentially time-consuming to test additional
hyperparameter values due to the increased amount of hyperparameter combinations. Educated
guesses and some trial and error are needed to narrow down the search space, but tools are in
development to assist and automate this process [31].

2.8 Deep neural network interpretation

Interpreting deep neural networks is an active area of research. It can be a challenging task,
as these models are highly complex and often have thousands of parameters. Deep models are
good at understanding underlying patterns in real-world data, but they hide their insight be-
hind complex computations. They are, in this regard, ”black boxes”. In research applications,
having a good predictor is not the only goal of training a model. It can be more valuable to get
a hold of the knowledge that the model learned.

There are several techniques that can be used to gain insight into how a model is making its
predictions. A common approach is to analyze the activations of different neurons in the net-
work. This involves identifying which neurons are firing most strongly in response to particular

Page 17 of 51



inputs, and then examining the patterns of activation [32]. This can provide insight into which
features or combinations of features are most important for the model’s predictions [33].
With CNNs, it can be valuable to visualize the individual filter activations from convolution
layers. This can reveal what patterns from the input data are good predictors. In the field
of image processing, many tools have been made to visualize what patterns, textures, edges,
or shapes the model is focusing on [34]. The same can be done for CNNs trained on DNA
sequences, where the filters of convolutional layers reveal DNA motifs [35].

Page 18 of 51



CHAPTER 3

MATERIALS AND METHODS

To answer the research questions from Chapter 1, we obtained a dataset of DNA sequences
including their observed gene expression values. Two deep neural networks appropriate for
sequential data were built, and two model interpretation methods were applied to the trained
models. In this chapter, we present how DNA sequences from open chromatin were collected,
and the regulatory activity was quantified for each sequence. Furthermore, we detail the ap-
proach to analyze the data using the deep neural networks.

3.1 ATAC-STARR-seq

The sequence data used in this thesis is a result of an ATAC-STARR-seq experiment conducted
by Sandve et al. (unpublished results) at the Norwegian University of Life Sciences (NMBU).
The experiment largely followed the method described by Wang et al. [14], with the exception
that the mean fragment length was shorter. In brief, a modified Transposase Tn5 enzyme was
used to induce double-stranded DNA breaks in accessible chromatin in primary liver cells from
Atlantic salmon (Salmo salar L.). Next, very long fragments were discarded from the pool of
resulting DNA fragments, to ensure only fragments originating from the open chromatin re-
mained. Note that the Tn5 enzyme also appended adapters onto each end of the fragments
when cutting, which provided a target for sequencing later on in the process. The next step was
to create a library of circular DNA vectors, each including one of the DNA fragments from open
chromatin in liver cells. These random fragments were cloned into reporter vectors at the 3’
end of a truncated GFP reporter gene with a basal promoter driving transcription. This vector
construct would then self-transcribe the cloned fragment upon transcription in the cell, enabling
identification and quantification of the number of RNA transcripts with different fragment types.

After an amplification step in E. coli, these vectors were then inserted back into liver cells, en-
suring a relevant cell environment, using transfection by electroporation. After approximately
48 hours, RNA was isolated and sent for mRNA sequencing using Illumina paired-end sequenc-
ing, targeting the adapters added by the Tn5 enzyme in the initial ATAC reaction.

Finally, the regulatory activity of each fragment was quantified by comparing the count of RNA
with specific ATAC-fragments to the original fragment count following E. coli amplification.
We calculated the ratio of RNA to DNA to account for variations in copy number of the
unique fragments in the original vector library. The final dataset contained the raw DNA
sequence fragments, as well as statistics from a differential expression analysis using the R
package DESeq2 [36]. These include the mean of normalized counts for all samples (base mean)

Page 19 of 51



and the log2 fold change. The log2 fold change measured the difference in RNA count, where a
value of 1 means a doubling, 2 a quadrupling, and a value of -1 indicates a halving.

3.2 Data Preprocessing

Deep networks have the ability to learn higher order data representation. This advantage omits
the task of feature extraction and feature engineering. Still, preprocessing of the raw sequences
is needed for the network to read the raw data. To avoid information leakage, it is also essential
to split the dataset into training, testing, and validation sets. In this section we present how
the raw data was filtered, one-hot encoded, padded and split before modeling.

3.2.1 Raw data

The raw data contained 5 832 889 sequences varying in lengths, as shown in Figure 3.1, and base
mean, as shown in Figure 3.2. The distribution of observed log2 fold change for all sequences
is shown in Figure 3.3. Five sequences contained the ambiguous symbol ”N” and these were
discarded.

50 100 150 200 250 300
Bases

0

100000

200000

300000

400000

500000

600000
Fragment length distribution

Figure 3.1: Length distribution of all the approximately 6 million DNA fragments.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Base mean

Base mean distribution

Figure 3.2: Base mean distribution of all samples in the data. Outliers are excluded.

Page 20 of 51



1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
log2 Fold Change

Log2 Fold Change distribution

Figure 3.3: Log2 Fold Change distribution of all samples in the data. Outliers are excluded.

3.2.2 Data Sets

From the raw data, four different data sets were created by filtering out sequences based on
different base mean thresholds. Table 3.1 gives a detailed description of the data sets, and they
are visualized in Figure 3.4. Each set was later split for training purposes (see Section 3.2.4).

Table 3.1: Detailed description of the four data sets created from the raw data.

Name Base mean threshold Fraction of samples Number of samples

10bm > 62 10% 583 287
25bm > 41 25% 1 458 219
50bm > 22 50% 2 916 439
100bm None 100% 5 832 879

Figure 3.4: A visualization of how the data was filtered by base mean into four data sets. A
darker color and shorter arrow represents the fraction of the total number of samples in the
data, and the names of each set are written in white. The specific number of samples in each
data set can be found in Table 3.1.

3.2.3 One-Hot encoding and zero padding

The sequences were one-hot encoded such that each nucleotide A, C, G and T were represented
by a vector, see Table 3.2. Each sequence was therefore converted to a matrix with four columns,

Page 21 of 51



as illustrated in Figure 3.5. A maximum length of 200 was chosen, and longer sequences were
trimmed by discarding nucleotides at the beginning of the sequence. Shorter sequences were
padded with vectors of only zeros at the end, to fill the sequence representation matrix such
that all input samples had size (200, 4).

Table 3.2: Nucleotides and corresponding vector representations.

Nucleotide Vector

A [1, 0, 0, 0]

C [0, 1, 0, 0]

G [0, 0, 1, 0]

T [0, 0, 0, 1]

Figure 3.5: One-Hot encoding and zero padding used to represent a DNA sequence as a matrix
with dimensions (max-length, 4).

3.2.4 Training, testing, and validation split

The data was split into three data sets for training, testing, and validation purposes. Chromo-
some 21 was held out for testing, and chromosome 25 was held out for validation. Table 3.3
shows the resulting number of samples in each split, for each of the four data sets.

Table 3.3: Detailed description of the four data sets created from the raw data. The testing
and validation samples are from chromosome 21 and 25, respectively.

Name Number of training samples Number of testing samples Number of validation samples

10bm 559 844 12 256 11 187

25bm 1 397 939 31 397 28 883

50bm 2 798 974 61 127 56 338

100bm 5 625 910 106 057 100 912

Page 22 of 51



3.3 Convolutional Neural Network

General theory of Convolutional Neural Networks is explained in Chapter 2, Section 2.4. This
section describes how the CNN architecture was built, implemented and tuned.

3.3.1 Architecture

The CNN architecture was heavily inspired by the DeepSTARR model proposed by Almeida
et al. [1]. We modified the DeepSTARR model by removing the multitask output mechanism
such that the model could predict only one output value, see Figure 3.6 for a visualization. To
enable motif extraction, we also modified the first convolutional layer to have valid padding.
The network takes in a one-hot encoded sequence, and predicts one log2 fold change value.
The hidden layers consist of four convolution ”blocks” followed by two fully connected layers.
Each convolution block is constructed as follows: A one-dimensional convolution layer, batch
normalization, ReLU activation, and a one-dimensional maxpooling layer. After the first layer,
all the following convolutional layers have ”same” padding. All maxpooling layers have pool size
2. A flatten layer links the convolutional blocks with the fully connected part of the network.
The two fully connected layers are both followed by batch normalization, ReLU activation, and
have a dropout probability of 40%. The output layer has one output node with linear activation,
and thus the prediction range of log2 Fold Change values is unrestricted.

Figure 3.6: Visualization of the Convolutional Neural Network architecture.

The CNN was compiled with the Adam optimizer, Mean Squared Error loss function, and early
stopping monitoring the validation loss with patience of 10 epochs.

3.3.2 Tuning

In an effort to improve the performance of the CNN, we used GridSearch Tuner [37] to search for
the best model configuration among several relevant hyperparameters. The models were trained
on the 10bm data set, and the objective was to find the model with minimal Mean Absolute
Error on the validation samples. An initial search tested different numbers of convolution blocks,
ranging from 4 to 7. The search revealed that 4 convolution blocks were sufficient. Follow-up
searches each tested different model configurations and compared CNNs with varying number
of nodes, filters, and kernel sizes, as detailed in Table 3.4. All possible combinations of the
hyperparameters were not tested due to time constraints. We applied some strategies to reduce
the search space and runtime, like keeping some hyperparameters identical. This way, we were
able to test a wider variety of model configurations. The best model had 468 105 trainable
parameters, and its hyperparameters are highlighted in Table 3.4.

Page 23 of 51



Table 3.4: Convolutional Neural Network hyperparameter search space. Layern clarifies the
type and order of the hidden layers, and the set of tested values are shown in brackets. The
best hyperparameters are highlighted.

Layern Filters or nodes Kernel sizes

Conv1D1 [224, 256] [7, 9]

Conv1D2 [30, 60] [5, 7]

Conv1D3 [30, 60] [3, 5]

Conv1D4 [60, 80, 120] [5, 7]

Dense5 [128, 256] -

Dense6 [128, 256] -

3.4 Hybrid Convolutional and Long Short-Term Memory Neu-
ral Network

The Hybrid CNN-LSTM architecture was inspired by the DanQ model presented by Quang and
Xie [13]. General theory of Recurrent Neural Networks is described in Chapter 2, Section 2.5.
This section describes how the hybrid model architecture was built, implemented and tuned.

3.4.1 Architecture

The hybrid model consists of three parts: a convolutional part, a recurrent part and a fully
connected part at the end, as visualized in Figure 3.7. The first part has only one convolutional
layer with ReLU activation, and we modified it to match exactly the first layer of the CNN,
such that motif extraction would be identical. Maxpooling with pool size 2, and dropout with
30% probability is added after the convolution. Next follows a bidirectional recurrent layer with
equal number of LSTM units in both directions, and another dropout of 30% probability. The
final hidden layer is a dense layer, fully connected to the output layer, that has one output node
with linear activation. The hybrid model was compiled in the same way as the CNN, using
Adam optimizer, Mean Squared Error loss, and early stopping.

Figure 3.7: Visualization of the Hybrid Convolutional and Long Short-Term Memory Neural
Network architecture.

Page 24 of 51



3.4.2 Tuning

We tuned the hybrid model with GridSearch Tuner [37] exploring the hyperparameters in Table
3.5. All combinations of hyperparameters were not tested, but all values were covered through
multiple tuning tests with overlapping smaller search spaces. The best hyperparameters discov-
ered are highlighted in Table 3.5. Initial tuner searches quickly revealed that the default DanQ
[13] model was too complex. The final best architecture resulted in a model with only 130 319
trainable parameters, compared to the approximately 10 million parameters of DanQ.

Table 3.5: Hybrid Convolutional and Long Short-Term Memory Neural Network hyperparame-
ter search space. Layern clarifies the type and order of the hidden layers, and the set of tested
values are all shown in brackets. The best hyperparameters are highlighted.

Hyperparameter Values

Nodes in Bidirectional LSTM2 [10, 15, 25, 50, 100]

Nodes in Dense3 [10, 15, 25, 50, 100]

Learning rate [0.0001, 0.001, 0.002, 0.1]

3.5 Motif extraction from first convolution layer

We extracted motifs from the first convolutional layer of all the trained models. The method
and code was obtained from Quang and Xie [38]. A position frequency matrix was created for
each of the 224 filters in the convolutional layer, by passing batches of 100 sequences from the
10bm validation samples through this layer. The layer had a kernel size 9, meaning it scanned
the sequence with a window of 9 nucleotides. The subsequences at which the maximum positive
activation occurred were recorded into a position frequency matrix. This was later converted
to a position weight matrix by dividing each nucleotide frequency by the sum of all frequencies
at that position. The result was 224 DNA motifs, all 9 in width, for each of the 8 models that
were trained.

3.6 Motif extraction with deepExplainer and TF-MoDISco

To further interpret the deep models, we also used deepExplainer (Deep SHAP implementation
of DeepLIFT [39]) on one CNN and one hybrid model, the ones that were trained on the 10bm
data. DeepExplainer calculated importance scores along the sequences from the 10bm validation
samples, using Shapley additive explanations (SHAP) [33] for every nucleotide in the sequence.
The scores indicate how much each position contributes to the output prediction. We then
applied TF-MoDISco (Transcription-Factor Motif Discovery from Importance Scores [40]) to
find repeated patterns and create motifs. We filtered out sequences that were shorter than 100
in length. Following the method of Almeida et al. [1], we also used 100 dinucleotide-shuffled
versions of each input sequence as reference sequences, and instructed TF-MoDISco to create
motifs of length 16.

3.7 Motif matching to JASPAR with Tomtom

The Tomtom algorithm by Gupta et al. [41] was used to compare the extracted motifs with
known motifs in the JASPAR CORE Vertebrates database. We used the MEME Suite version
5.5.1 [42] to run Tomtom with default settings. All Tomtom matches with a q-value < 0.05
were regarded significant.

Page 25 of 51



3.8 Reproducibility

In an effort to make this master’s thesis project reproducible, we made the source code publicly
available on GitHub, see Table B.1 in Appendix B for permanent links and commit hashes.
TensorFlow seeds were used to set the sequence of pseudo-random number generators at the
beginning of the deep learning scripts. However, since the code was run on a GPU, reproducibil-
ity cannot be guaranteed due to parallelization, optimization and nondeterminism in software
compiled for GPU usage (e.g., TensorFlow, cuDNN) [43, 44]. Therefore, we also publish all
trained models, see Table B.2 in Appendix B. Everything is available at the GitHub repository
github.com/juforris/datasci-thesis23 . See Appendix A for software (Table A.1) and hardware
(Table A.2) specifications.

Page 26 of 51

https://github.com/juforris/datasci-thesis23


CHAPTER 4

RESULTS

In Chapter 3, we defined four data subsets referred to as 10bm, 25bm, 50bm, and 100bm (see
Table 3.1). We also presented two model architectures—the CNN and the hybrid CNN-LSTM.
The datasets were used to test the effect of noisy data on the models’ ability to predict gene
expression levels from sequence. This chapter presents and discusses performance results and
motif findings from the two deep neural networks. These results aid in answering the research
questions formulated in Chapter 1, Section 1.2. We discuss our findings as a whole in Chapter
5.

4.1 Convolutional Neural Network

The CNN was based on DeepSTARR [1], and tuned on our 10bm dataset. The tuning only
slightly improved its performance, possibly because DeepSTARR already is a well-tuned model
on similar data (UMI-STARR-seq), which is why our hyperparameters closely resemble the
DeepSTARR’s. We wanted to investigate the effect of noisy data on the model predictions, and
trained the CNN on samples with different ranges of base means. We then cross tested the
CNN by training and validating it on all combinations of the four datasets. The performance
results are presented in Section 4.1.1. After training, we extracted motifs to investigate what
the model had learned, and we report the findings in Section 4.1.2.

4.1.1 Performance

In Figure 4.1 we have plotted the learning curves of the CNN when trained on different subsets
of the data. The plots show how training loss and validation loss changed over time when
training the CNN for multiple epochs. The validation loss is the MSE of the predictions of test
samples (chromosome 21). During the first 10 epochs in all the plots, the validation loss was
lower than the training loss, which means that the model had a lower error when predicting
on the test samples than the training samples. Then, during the following epochs, the model
learned to predict the training samples better (training loss decreased), but in Figure 4.1a, 4.1b
and 4.1c the validation loss started to increase and become greater than the training loss. In
Figure 4.1d, the validation loss did not exceed the training loss, but it stopped improving after
only 4 epochs. The improvements were minimal—validation loss stayed between 0.19 and 0.185.
We can clearly see that the more noisy data results in a greater loss overall from the different
ranges on the y-axis’ of all the four plots. The CNN trained for approximately 20 epochs on
all data sets except the 100bm. The learning curve when training on the 100bm data in Figure
4.1d shows the least improvement in validation loss, the greatest loss values, and the fewest

Page 27 of 51



epochs. Overall, we can clearly see that more noise in the data was making it harder for the
CNN to improve its predictions.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.08

0.09

0.10

0.11

0.12

Training and validation loss
Training loss
Validation loss

(a) CNN trained on the 10bm dataset.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130
Training and validation loss

Training loss
Validation loss

(b) CNN trained on the 25bm dataset.

0 5 10 15 20
Epochs

0.130

0.135

0.140

0.145

0.150

0.155
Training and validation loss

Training loss
Validation loss

(c) CNN trained on the 50bm dataset.

2 4 6 8 10 12 14
Epochs

0.185

0.190

0.195

0.200

0.205

Training and validation loss
Training loss
Validation loss

(d) CNN trained on the 100bm dataset.

Figure 4.1: The CNNs’ learning curves plotted as loss after each epoch when trained on different
subsets of the data.

After training the CNN, the model parameters from the best epoch were restored. Then the
model was evaluated on the held out chromosome 25 with samples filtered on the same base
mean range as the training data. In Figure 4.2, the predicted values versus the observed values
are shown for each training and validation set, along with their correlation. The correlation
was greatest on the 10bm dataset with a score of 0.68 (Figure 4.2a), and it decreased when
we included samples of lower base mean, ending up with a correlation of 0.48 when training
and validating on all data (Figure 4.2d). The model struggled to predict the negative observed
values in all datasets. In Figure 4.2c and Figure 4.2d, some points form horizontal lines. This
indicates that the CNN predicted identical values for sequences where the observed values varied
slightly. These could be sequences that are identical or nearly identical, but have variation in
observed log2 fold change. This is likely due to randomness, considering that these samples
appear only in the data sets that include the lowest base mean ranges, meaning they have the
most noise, which explains why the CNN’s performance on these data sets is significantly worse.

Page 28 of 51



4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6
Pr

ed
ict

ed
 L

og
2 

Fo
ld

 C
ha

ng
e

Pearson Correlation Coefficient = 0.68

(a) CNN trained on the 10bm dataset.

4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e

Pearson Correlation Coefficient = 0.62

(b) CNN trained on the 25bm dataset.

4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e

Pearson Correlation Coefficient = 0.57

(c) CNN trained on the 50bm dataset.

4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e
Pearson Correlation Coefficient = 0.48

(d) CNN trained on the 100bm dataset.

Figure 4.2: The CNN trained and validated on different subsets of the data. The plots show
predicted versus observed values, and color indicates density of points.

To further test performance, we cross tested the trained models on all validation sets. Results
from validating the trained CNNs on different validation data are shown in Figure 4.3. Figure
4.3b shows the Mean Absolute Errors of the predicted log2 fold change by the CNNs on each
validation data set. A low MAE indicates a smaller error and hence, a better performing model.
In Figure 4.3a the same results are shown using a different metric, the Pearson Correlation
Coefficient, where a higher value means that the CNN’s predicted values are more correlated
with the observed values. Interestingly, the results clearly show how the CNN’s performance
is only dependent on the validation data, and not affected by more noise in the training data.
Furthermore, training on all samples does not increase the performance of the model, despite
that the 100bm dataset contains 10 times the number of DNA samples than the 10bm data set.
This means that the same information could be learned by the CNN only by training on a tenth
of the entire raw data, by selecting the sequences with high base mean.

Page 29 of 51



10bm 25bm 50bm 100bm
Training and test set

10
bm

25
bm

50
bm

10
0b

m
Va

lid
at

io
n 

se
t

0.68 0.67 0.68 0.68

0.62 0.62 0.63 0.63

0.55 0.56 0.57 0.57

0.47 0.47 0.48 0.48

PCC predicted vs observed

(a) Cross test results showing Pearson correlation
of predicted versus observed values.

10bm 25bm 50bm 100bm
Training and test set

10
bm

25
bm

50
bm

10
0b

m
Va

lid
at

io
n 

se
t

0.22 0.22 0.22 0.22

0.24 0.24 0.24 0.24

0.28 0.28 0.28 0.28

0.33 0.33 0.33 0.33

Mean Absolute Error

(b) Cross test results showing mean absolute error
of observed log2 fold change values.

Figure 4.3: CNN performance test results from cross testing the model on different training and
validation data.

4.1.2 Motif discovery

Convolution filter motifs

All extracted motifs from the CNNs’ first convolution filters were matched with the JASPAR
database. In total, 33 motifs were significant matches. We used JASPAR matrix clusters to
group the matches by similarity, and present a summary of the best representative motif from
each cluster in Figure 4.4. All motifs are included in Appendix C. The TFCP2 was the most
occurring match. Most of the filter motifs did not have any significant JASPAR motif match.
These motifs in general had less information content and were patchy, which is why they did
not resemble any full JASPAR motif. Nonetheless, these filters might account for partial motifs
or other features of the sequences.

Page 30 of 51



Figure 4.4: JASPAR motifs extracted from the CNNs’ first convolutional layers.

Importance score motifs

TF-MoDISco found 29 motifs of the CNN model. Figure 4.5 presents the 7 motifs that had
a significant match with JASPAR. These results were different from those of the convolution
filters. The TF-MoDISco method aligned subsequences from the calculated importance scores,
which came from the collective effects of all convolutional layers in the network. This brought
out the most distinct motif pattern: the combination of FOS and JUN, commonly referred to as
AP-1. The AP-1 motif was present in the convolutional filters as well, but TF-MoDISco helped
reveal the full motif. The TFCP2 motif was found as well.

Figure 4.5: JASPAR motifs discovered using TF-MoDISco on SHAP importance scores from
the CNN.

Page 31 of 51



4.2 Hybrid Convolutional and Long Short-Term Memory Neu-
ral Network

The CNN-LSTM was based on DanQ [13], and tuned on our 10bm dataset. The tuning dras-
tically improved its performance, possibly because the data and our prediction task was very
different from that of Quang and Xie [13], and required a less complex model with fewer pa-
rameters. In the same way as we did with the CNN, we investigated the effect of noisy data on
the model’s predictions by training and cross testing it on all combinations of the four datasets.
The performance results are presented in Section 4.2.1. After training, we also extracted motifs
to compare to the CNN and interpret what the model had learned, and we report the findings
in Section 4.2.2.

4.2.1 Performance

The plots in Figure 4.6 show how training and validation loss changed over time when training
the model for multiple epochs on different data sets. We used early stopping to terminate the
training when no further improvement of validation loss was seen over the last 10 epochs. We
can clearly see that the more noisy data results in a greater loss overall from the different ranges
on the y-axis’ of the four plots. The CNN-LSTM spent many more epochs training than the
CNN. Interestingly, the number of epochs decreases when training on more noisy data, except
when training on the full 100bm data set, on which the model spent over 80 epochs training.
All the learning curves show a healthy downward trend that stabilizes and converges with time.
As with the CNN, the least improvement in validation loss and greatest loss values are seen
when training on the full 100bm data (Figure 4.6d). Overall, we can clearly see that more noise
in the data is making it harder for the model to improve its predictions.

Page 32 of 51



0 10 20 30 40 50 60
Epochs

0.085

0.090

0.095

0.100

0.105

0.110

0.115

Training and validation loss
Training loss
Validation loss

(a) Hybrid model trained on the 10bm dataset.

0 10 20 30 40 50
Epochs

0.105

0.110

0.115

0.120

0.125
Training and validation loss

Training loss
Validation loss

(b) Hybrid model trained on the 25bm dataset.

0 5 10 15 20 25 30 35
Epochs

0.135

0.140

0.145

0.150

Training and validation loss
Training loss
Validation loss

(c) Hybrid model trained on the 50bm dataset.

0 20 40 60 80
Epochs

0.185

0.190

0.195

0.200

0.205

0.210
Training and validation loss

Training loss
Validation loss

(d) Hybrid model trained on the 100bm dataset.

Figure 4.6: The hybrid CNN-LSTMs’ learning curves plotted as loss after each epoch when
trained on different subsets of the data.

After training the hybrid model on each data set, we evaluated it on the held out chromosome
25 with samples filtered correspondingly as the training data. In Figure 4.7, the predicted
values versus the observed values are shown for each training and validation set, along with
their correlation. The correlation is greatest on the 10bm dataset with a score of 0.67 (Figure
4.7a), and it decreased when we included more noisy samples, ending up with a correlation of
0.48 when training and validating on all data (Figure 4.2d). The predictions are remarkably
similar to those of the CNN. The hybrid model also predicts identical values for sequences where
the observed values vary slightly in the data sets that include the lowest base mean ranges. The
model struggles to predict the negative observed values in all datasets.

Page 33 of 51



4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6
Pr

ed
ict

ed
 L

og
2 

Fo
ld

 C
ha

ng
e

Pearson Correlation Coefficient = 0.67

(a) Hybrid CNN-LSTM trained on the 10bm
dataset.

4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e

Pearson Correlation Coefficient = 0.63

(b) Hybrid CNN-LSTM trained on the 25bm
dataset.

4 2 0 2 4
Observed Log2 Fold Change

2

0

2

4

6

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e

Pearson Correlation Coefficient = 0.57

(c) Hybrid CNN-LSTM trained on the 50bm
dataset.

4 2 0 2 4
Observed Log2 Fold Change

4

2

0

2

4

Pr
ed

ict
ed

 L
og

2 
Fo

ld
 C

ha
ng

e
Pearson Correlation Coefficient = 0.48

(d) Hybrid CNN-LSTM trained on the 100bm
dataset.

Figure 4.7: The hybrid CNN-LSTM trained and validated on different subsets of the data. The
plots show predicted versus observed values, and color indicates density of points.

To further test performance, we cross tested the trained hybrid models on all validation sets.
Results from validating the trained CNN-LSTMs on different validation data are shown in
Figure 4.8. Figure 4.8b shows the mean absolute errors of the predicted log2 fold change by the
CNN-LSTMs on each validation data set. In Figure 4.8a the same results are shown using the
Pearson correlation coefficient. As with the CNN, our results again clearly show how the hybrid
model’s performance is only dependent on the validation data, and not affected by more noise in
the training data, and that the sequences of top most base mean include the most information
to be learned by the models.

Page 34 of 51



10bm 25bm 50bm 100bm
Training and test set

10
bm

25
bm

50
bm

10
0b

m
Va

lid
at

io
n 

se
t

0.67 0.68 0.68 0.68

0.62 0.63 0.63 0.63

0.55 0.56 0.57 0.57

0.46 0.47 0.48 0.48

PCC predicted vs observed

(a) Cross test results showing Pearson correlation
of predicted versus observed values.

10bm 25bm 50bm 100bm
Training and test set

10
bm

25
bm

50
bm

10
0b

m
Va

lid
at

io
n 

se
t

0.22 0.21 0.21 0.21

0.24 0.24 0.24 0.24

0.28 0.28 0.28 0.28

0.33 0.33 0.33 0.33

Mean Absolute Error

(b) Cross test results showing mean absolute error
of observed log2 fold change values.

Figure 4.8: Hybrid CNN-LSTM performance test results. PCC: Pearson Correlation Coefficient.
MAE: Mean Absolute Error.

4.2.2 Motif discovery

Convolution filter motifs

All extracted motifs from the CNN-LSTMs’ first convolution filters were matched with the
JASPAR database. In total, 45 motifs had at least one significant match, all included in
Appendix D. We used JASPAR matrix clusters to group the matches by similarity, and present
a summary of the best representative motif from each cluster in Figure 4.9. A striking result
was that plenty of the CNN-LSTM filters showed variations of the AP-1 motif. We show a
selection of them in Figure 4.10.

Figure 4.9: JASPAR motifs extracted from the hybrid CNN-LSTMs’ first convolutional layers.

Page 35 of 51



Figure 4.10: Various motifs of the CNN-LSTM convolution filters coincided with the AP-1
motif.

Importance score motifs

TF-MoDISco found 34 motifs of the Hybrid model. Figure 4.11 presents the 9 motifs that had
a significant match with JASPAR. The TF-MoDISco results again differed from those of the
convolution filters. The THAP1 motif is clearly of importance to the hybrid model, and we can
see two versions of it that emphasize different parts of the motif, but it was not encountered when
only looking at the first convolution filters. The AP-1 motif, here represented by the MAFK
motif, has less information content and is very different from the AP-1 motifs we found among
the convolution filters. This might be due to the numerous filters that had variations of the
AP-1 motif, which are all aligned into the more watered-down MAFK result with TF-MoDISco
(lower-right corner, Figure 4.11). The KLF15 motif was found with both methods.

Page 36 of 51



Figure 4.11: Motifs discovered using TF-MoDISco on SHAP importance scores from the hybrid
CNN-LSTM.

Page 37 of 51



CHAPTER 5

DISCUSSION

5.1 Performance and data

The convolutional model (CNN) and the hybrid convolutional recurrent model (CNN-LSTM)
learned to predict gene expression from sequence with varying success. The performance de-
pended on the base mean of the validation samples, where fragments with a clear ability to
drive transcription (high base mean) were easier to predict. We also saw that different levels
of noise (base mean) in the training data had no effect on predictions, which suggests that the
models were robust to noise. No model could predict negative values well, indicating that they
were unable to find patterns or features related to repressing gene expression effects. Both of
the tested models’ predictions reached a Pearson correlation coefficient (PCC) of 0.68 on the
samples with base mean greater than 62, which was the highest range tested. The DeepSTARR
model created by Almeida et al. [1] predicted log2 fold change values from UMI-STARR-seq frag-
ments. UMI-STARR-seq applies unique molecular identifiers (UMIs) to accurately count RNA,
which is primarily used for STARR-seq libraries of low complexity [45]. Additionally, only frag-
ments of length 249bp were used. DeepSTARR’s predictions on housekeeping enhancers agreed
with the observed values with a PCC of 0.74, and a PCC of 0.68 for developmental enhancers.
In this thesis, we used ATAC-STARR-seq fragments that were much shorter (see Figure 3.1).
We did not select lengths, but trimmed longer fragments to a maximum of 200bp and added
zero padding to the shorter fragments. The ATAC-STARR-seq fragments were also largely
non-overlapping, resulting in a highly complex library. The ability of any machine learning
model to learn relationships in data is limited by the quality of the data. We showed that the
models learned the same patterns regardless of noise in the data, but the short fragments and
complex library might stall further performance. Both models reached the same performance
levels, which also suggests a data quality limit. It would be interesting to see if the predictions
improved further by using longer, more overlapping fragments, and a stronger promoter in the
ATAC-STARR-seq experiment to drive more transcription and increase the overall base mean
of all fragments. This might provide a richer foundation for deep models to learn regulatory
syntax. Further research could also look into the more specific effects of fragment lengths and
overlap on prediction.

5.2 Deep neural network architectures

The convolutional neural network architecture consisted of 4 convolution and pooling parts
(illustrated in Figure 3.6), each pooling halving the feature map of the convolution. The network
could thus learn features and patterns of the DNA sequences and their constellations and

Page 38 of 51



positions. The hybrid convolutional long short-term memory neural network only had one
convolution and pooling layer. The two architectures had identical first layers, but the motifs
found in the first layers were different. Motifs from the CNN’s first layer often had only one
or a few positions with strong information in bits, while the motifs from the CNN-LSTM’s
first layers were fuller and more composite. This might be the reason the CNN-LSTM got
more significant matches to known JASPAR motifs. In light of the differences in architecture,
it is plausible that the CNN utilizes its four convolution parts to model motif patterns and
locations, such that each filter of the first convolution need only portray sub-patterns, like
pieces of a puzzle. This partial motif modelling is supported by the findings in a study by
Koo and Eddy [46]. The CNN-LSTM on the other hand, only has one convolution layer, and
then a few LSTM cells that could account for the order and positions of the patterns found in
its convolution filters; therefore the convolutional filters would represent bigger puzzle pieces
of the DNA sequence patterns. The two architectures performed equally at predicting gene
expression, despite their different modeling approach. It is worth noting that the CNN-LSTM
had fewer trainable parameters, but spent more epochs training. Overall, both architectures
were appropriate for the ATAC-STARR-seq DNA sequences because they found local patterns
and accounted for spatial relationships between them.

5.3 Motif extraction methods

Motifs were extracted from the filters of the very first convolution layer and also from importance
scores of sequences based on the models’ predictions with TF-MoDISco. The first method only
considers one layer of the model, while the importance scores result from additively propagating
scores through the whole network. In this regard, the TF-MoDISco method provides insight
into a model’s attention on the DNA sequence during the entire prediction process. The CNN-
LSTM had more consistent results between the two motif extraction methods than the CNN.
The first method, using only one layer to explain a model’s predictions, was perhaps too simple
for a complex model of repeated convolution layers like the CNN, but appropriate for the CNN-
LSTM that only modelled sequence patterns in the one convolution layer. Moreover, due to a
limited number of validation sequences, there might be patterns and features we did not discover
or completely reveal from the models. The variable motif results suggest that neither of the
two methods exposed exactly how the models utilized sequence features, and that the motifs
are part of a more complex decision process leading to the final prediction.

5.4 Motif relevance for hepatocyte gene regulation

The most recurring and significant JASPAR motif we found were FOS/JUN transcription fac-
tors (Figure 4.10), collectively called Activator Protein-1 (AP-1). AP-1 mediates gene regulation
in response to growth factors, stresses, and other cell signals during cell growth, differentiation
and programmed cell death or transformation [47]. AP-1 members also include Atf1 and Maf
variants like Mafg, Mafb, and Mafk, which we also found among the convolution filter motifs.
AP-1 is known to regulate genes in liver cells [48]. In addition, there were some interesting
findings among the significant motif matches regarding hepatocyte (liver cell) regulation specif-
ically. For example, KLF15 and DBP are known liver-specific transcription factors [49] and
ONECUT1 is a hepatocyte nuclear factor also known as HNF6 [50].

A study by Reed et al. [51] found that SP1 and SREBP1 coordinate complex transcriptional
responses in the liver together with another transcription factor NFY. We did not find NFY, but
paralogs of SP1 and SREBP1 (SP4 and SREBP2, respectively) occurred in our results. This
might be due to their role in hepatocyte regulation, but validation of these motifs is needed to

Page 39 of 51



conclude.

Another common hit was the TFCP2 and paralog motifs like GRHL1, GRHL2 and Tfcp2l1
motifs. They are members of the Grainyhead family of proteins that are involved in many
biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthe-
sis and cell survival. The TFCP2 is a general transcription factor with low tissue specificity.
Studies have shown that overexpression of TFCP2 plays a key role in human liver cancer cells
(hepatocyte carcinoma) [52]. This indicates that the basal TFCP2 activity is vital for normal
liver cell health. We also found other general factors, such as the heat shock factors (HSF),
which are common regulators of stress response in many eukaryotic cell types [53].

Overall, many JASPAR motifs were found, but the results varied between models and motif
extraction methods. Some motifs were relevant for hepatocyte regulation specifically, and many
motifs were not. There are also many commonly known liver-specific motifs that we did not
find in our JASPAR comparison, most notably many of the HNF motifs.

5.5 Remaining Challenges

The genome naturally has repeating sequences, because of transposable elements for instance,
which is hard to account for when training a deep learning model. In the worst-case scenario, it
may give rise to a deceivingly high performance. The salmon chromosomes 21 and 25 are very
similar; therefore we did not include them in the training data, but used them for testing and
validation. Even so, the effect of sequence repeats, as well as fragment overlap, is an important
question for further research.

Determining reliability of results gets complicated in analysis pipelines of many stages, as each
stage has some level of uncertainty associated with it. In our case, there is some uncertainty in-
troduced in all steps, including DNA sequencing, differential expression analysis, deep learning,
and model interpretation. Discussion of results is based on an assumption that our data and
results are representative of real events. A remaining challenge of this work is to thoroughly
address confidence behind the experiment and analysis.

We would like to mention that the JASPAR database contains curated motifs validated by
previous studies, and is continuously being updated with new motif discoveries. Comparing
extracted features to JASPAR therefore introduces a historical bias to our interpretation of the
results. The deep neural networks are not restricted and could learn novel motifs that would
not be detected when compared to JASPAR.

5.6 Future Work

A deep learning framework always has a multitude of hyperparameters, which opens up a range
of possibilities for optimization. We only explored a few hyperparameters of each model, and
there are more architectures to test. For example, we used LSTM cells in our recurrent model,
where Gated Recurrent Units are another option. Additionally, further tests of motif extraction
methods include applying deepExplainer and TF-MoDISco on all trained models, and testing
the impact of different sizes of mini batches when searching for convolution filter motifs. In
further work, validation of these motif results would be needed to confidently answer whether
the models learned to recognize regulatory sequences.

An interesting idea would be to flip the task of training a model on DNA to extract motifs,
by hard-coding known motifs into the model’s filter parameters before training. Quang and

Page 40 of 51



Xie [13] initialized half of the filters with known motifs from JASPAR and saw an improved
performance of DanQ, but they simultaneously increased the number of filters; It would there-
fore be interesting to test the sole effect of the custom JASPAR parameter initialization. The
model might abandon these parameters and adjust them into different values, or it might find
them useful for prediction and improve performance. Another way is to restrict the possible
values of the convolution filters and design the CNN such that it cannot learn partial filters, but
inherently model whole motifs in each filter [46]. This might limit the model’s learning ability,
but it could lead to a more easily interpretable model.

Training multiple models to become experts on subsets of the problem (ensemble method)
could out-perform one single model [20]. In our case, the models could, for example, each
cover a small range of fragment lengths. Further, transformer models would be natural next
candidates for DNA language modelling, given their recent success [8]. Future work holds plenty
of potential approaches for modelling DNA language more accurately. The development of more
understandable models and tools to extract insight from neural networks, will be an important
field of study in the imminent future, following the widespread and increasing application of
artificial intelligence. It is essential to explain a model’s decision process to establish trust and
consider it valuable both in practical use as a predictor, and in research.

Page 41 of 51



CHAPTER 6

CONCLUSION

In this thesis, we asked whether deep neural networks could predict gene regulation effects from
ATAC-STARR-seq fragments of the Atlantic salmon. The main objectives were to test predic-
tion performance, and to explore whether the models learned to recognize regulatory syntax.

Regarding performance, we revealed that the base mean was an important measurement of noise
in the data, and saw that the sequences of greatest base mean were predicted with the highest
correlation to the observed values. The models’ performances were similar to the DeepSTARR
model [1] and we discussed that data quality might limit prediction performance. We therefore
suggest that longer and more overlapping fragments, decreased STARR-seq library complexity,
and increased base mean overall, might provide better data for training deep neural networks.

Further, we extracted motifs from the trained models to assess what they had learned. The
performances indicate that the models were able to find predictive features in the DNA se-
quences, and some extracted motifs did match known vertebrate transcription factors binding
site motifs. We conclude that the models learned to read regulatory syntax, and that there is
a potential to extract more knowledge from deep neural networks. In the future, deep model
interpretation may become an important approach for regolomics analysis.

The motif findings of the two network architectures were different, which posed an interesting
discussion about how different deep neural networks learn to represent sequence features. We
point out the historical bias of comparing our motifs to known curated JASPAR motifs, and
see a potential for deep models to discover novel enhancers and promotors in future work. To
fully understand our deep models, more sophisticated and robust methods are needed, as well as
systematic ways to validate the motif findings. This will be an important area of research in the
future of genomics specifically, but also for deep learning in general. Future work may uncover
alternative approaches and deep learning architectures fitting for DNA language modelling, the
transformer being a suggested candidate based on recent studies.

Page 42 of 51



BIBLIOGRAPHY

[1] Bernardo P. de Almeida et al. “DeepSTARR predicts enhancer activity from DNA se-
quence and enables the de novo design of synthetic enhancers”. In: Nature Genetics 54.5
(May 2022), pp. 613–624. doi: 10.1038/s41588-022-01048-5.

[2] Duc-Hau Le. “Machine learning-based approaches for disease gene prediction”. In: Brief-
ings in Functional Genomics 19.5-6 (Dec. 2020), pp. 350–363. doi: 10 . 1093 / bfgp /
elaa013.

[3] Amani Al-Ajlan and Achraf El Allali. “CNN-MGP: Convolutional Neural Networks for
Metagenomics Gene Prediction”. In: Interdisciplinary Sciences: Computational Life Sci-
ences 11.4 (Dec. 2019), pp. 628–635. doi: 10.1007/s12539-018-0313-4.

[4] Ráıssa Silva et al. “geneRFinder: gene finding in distinct metagenomic data complexities”.
In: BMC Bioinformatics 22.1 (Feb. 2021), p. 87. doi: 10.1186/s12859-021-03997-w.

[5] William S. Klug et al. Essentials of Genetics, Global Edition. Pearson Education, May
2016. isbn: 978-1-292-10893-3.

[6] Granton A. Jindal and Emma K. Farley. “Enhancer grammar in development, evolu-
tion, and disease: dependencies and interplay”. In: Developmental Cell 56.5 (Mar. 2021),
pp. 575–587. doi: 10.1016/j.devcel.2021.02.016.

[7] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. May 2019. doi: 10.48550/arXiv.1810.04805.

[8] Yanrong Ji et al. “DNABERT: pre-trained Bidirectional Encoder Representations from
Transformers model for DNA-language in genome”. In: Bioinformatics 37.15 (Aug. 2021),
pp. 2112–2120. doi: 10.1093/bioinformatics/btab083.

[9] “Base-resolution models of transcription-factor binding reveal soft motif syntax”. In: Na-
ture Genetics 53.3 (Mar. 2021), pp. 354–366. doi: 10.1038/s41588-021-00782-6.

[10] Timothy L. Bailey and Charles Elkan. “Unsupervised learning of multiple motifs in
biopolymers using expectation maximization”. In: Machine Learning 21.1 (Oct. 1995),
pp. 51–80. doi: 10.1007/BF00993379.

[11] Jan Zrimec et al. “Controlling gene expression with deep generative design of regulatory
DNA”. In: Nature Communications 13.1 (Aug. 2022), p. 5099. doi: 10.1038/s41467-
022-32818-8.

[12] Babak Alipanahi et al. “Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning”. In: Nature Biotechnology 33.8 (Aug. 2015), pp. 831–838. doi:
10.1038/nbt.3300.

Page 43 of 51

https://doi.org/10.1038/s41588-022-01048-5
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.1007/s12539-018-0313-4
https://doi.org/10.1186/s12859-021-03997-w
https://doi.org/10.1016/j.devcel.2021.02.016
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1038/s41588-021-00782-6
https://doi.org/10.1007/BF00993379
https://doi.org/10.1038/s41467-022-32818-8
https://doi.org/10.1038/s41467-022-32818-8
https://doi.org/10.1038/nbt.3300


[13] Daniel Quang and Xiaohui Xie. “DanQ: a hybrid convolutional and recurrent deep neural
network for quantifying the function of DNA sequences”. In: Nucleic Acids Research 44.11
(June 2016), e107. doi: 10.1093/nar/gkw226.

[14] Xinchen Wang et al. “High-resolution genome-wide functional dissection of transcrip-
tional regulatory regions and nucleotides in human”. In: Nature Communications 9.1
(Dec. 2018), p. 5380. doi: 10.1038/s41467-018-07746-1.

[15] National Human Genome Research Institute. Deoxyribonucleic acid (DNA). url: https:
//www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid (visited on 03/28/2023).

[16] National Human Genome Research Institute. Central dogma. url: https://www.genome.
gov/genetics-glossary/Central-Dogma (visited on 04/20/2023).

[17] National Human Genome Research Institute. Chromatin. url: https://www.genome.
gov/genetics-glossary/Chromatin (visited on 03/28/2023).

[18] Jason C. Klein et al. “A systematic evaluation of the design and context dependencies of
massively parallel reporter assays”. In: Nature Methods 17.11 (Nov. 2020), pp. 1083–1091.
doi: 10.1038/s41592-020-0965-y.

[19] Tyler J Hansen and Emily Hodges. “ATAC-STARR-seq reveals transcription factor–bound
activators and silencers within chromatin-accessible regions of the human genome”. In:
Genome Research 32.8 (2022), pp. 1529–1541.

[20] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning - Second Edition: Ma-
chine Learning and Deep Learning with Python, scikit-learn, and TensorFlow. 2nd edition.
Packt Publishing, Sept. 2017. isbn: 978-1-78712-593-3.

[21] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–
133. doi: 10.1007/BF02478259.

[22] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton. Cornell Aero-
nautical Laboratory, 1957.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Chapter 6: Deep Feedforward
Networks”. In: Deep Learning. Vol. 1. MIT Press, 2016, pp. 164–223. url: http://www.
deeplearningbook.org.

[24] Jacob Schreiber et al. “A pitfall for machine learning methods aiming to predict across
cell types”. In: Genome Biology 21.1 (Nov. 2020), p. 282. doi: 10.1186/s13059-020-
02177-y.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Chapter 7: Regularization for
Deep Learning”. In: Deep Learning. Vol. 1. MIT Press, 2016, pp. 224–270. url: http:
//www.deeplearningbook.org.

[26] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. url:
http://jmlr.org/papers/v15/srivastava14a.html.

[27] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Pro-
ceedings of Machine Learning Research. PMLR, July 2015, pp. 448–456. url: https:
//proceedings.mlr.press/v37/ioffe15.html.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Chapter 9: Convolutional Net-
works”. In: Deep Learning. Vol. 1. MIT Press, 2016, pp. 326–366. url: http://www.
deeplearningbook.org.

Page 44 of 51

https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1038/s41467-018-07746-1
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Central-Dogma
https://www.genome.gov/genetics-glossary/Central-Dogma
https://www.genome.gov/genetics-glossary/Chromatin
https://www.genome.gov/genetics-glossary/Chromatin
https://doi.org/10.1038/s41592-020-0965-y
https://doi.org/10.1007/BF02478259
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1186/s13059-020-02177-y
https://doi.org/10.1186/s13059-020-02177-y
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[29] Aston Zhang et al. Dive into Deep Learning. 2023. arXiv: 2106.11342 [cs.LG].

[30] Cort J. Willmott and Kenji Matsuura. “Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance”. In:
Climate Research 30.1 (2005), pp. 79–82. doi: 10.3354/cr030079.

[31] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, eds. Automated Machine Learning:
Methods, Systems, Challenges. The Springer Series on Challenges in Machine Learning.
Springer International Publishing, 2019. doi: 10.1007/978-3-030-05318-5.

[32] Longwei Wang et al. “Explaining the Behavior of Neuron Activations in Deep Neural
Networks”. In: Ad Hoc Networks 111 (Feb. 2021), p. 102346. doi: 10.1016/j.adhoc.
2020.102346.

[33] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al.
Curran Associates, Inc., 2017, pp. 4765–4774. url: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[34] Zhuwei Qin et al. “How convolutional neural networks see the world — A survey of
convolutional neural network visualization methods”. In: Mathematical Foundations of
Computing 1.2 (May 2018). Publisher: Mathematical Foundations of Computing, pp. 149–
180. doi: 10.3934/mfc.2018008.

[35] Jack Lanchantin et al. “Deep motif dashboard: visualizing and understanding genomic
sequences using deep neural networks”. In: Biocomputing 2017. World Scientific, Nov.
2016, pp. 254–265. doi: 10.1142/9789813207813_0025.

[36] Michael Love et al. DESeq2: Differential gene expression analysis based on the nega-
tive binomial distribution. 2023. doi: 10 . 18129 / B9 . bioc . DESeq2. url: https : / /

bioconductor.org/packages/DESeq2/.

[37] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras-tuner.
2019.

[38] Daniel Quang and Xiaohui Xie. “FactorNet: A deep learning framework for predicting cell
type specific transcription factor binding from nucleotide-resolution sequential data”. In:
Methods. Deep Learning in Bioinformatics 166 (Aug. 2019), pp. 40–47. doi: 10.1016/j.
ymeth.2019.03.020.

[39] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features
Through Propagating Activation Differences. Oct. 2019. doi: 10.48550/arXiv.1704.
02685.

[40] Avanti Shrikumar et al. Technical Note on Transcription Factor Motif Discovery from
Importance Scores (TF-MoDISco) version 0.5.6.5. Apr. 2020. doi: 10.48550/arXiv.
1811.00416.

[41] Shobhit Gupta et al. “Quantifying similarity between motifs”. In: Genome Biology 8.2
(Feb. 2007), R24. doi: 10.1186/gb-2007-8-2-r24.

[42] Timothy L. Bailey et al. “The MEME Suite”. In: Nucleic Acids Research 43.W1 (July
2015), W39–W49. doi: 10.1093/nar/gkv416.

[43] Hung Viet Pham et al. “Problems and opportunities in training deep learning software
systems: an analysis of variance”. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ASE ’20. Association for Computing
Machinery, Jan. 2021, pp. 771–783. doi: 10.1145/3324884.3416545.

[44] Benjamin J. Heil et al. “Reproducibility standards for machine learning in the life sci-
ences”. In: Nature Methods 18.10 (Oct. 2021), pp. 1132–1135. doi: 10.1038/s41592-
021-01256-7.

Page 45 of 51

https://arxiv.org/abs/2106.11342
https://doi.org/10.3354/cr030079
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1016/j.adhoc.2020.102346
https://doi.org/10.1016/j.adhoc.2020.102346
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.3934/mfc.2018008
https://doi.org/10.1142/9789813207813_0025
https://doi.org/10.18129/B9.bioc.DESeq2
https://bioconductor.org/packages/DESeq2/
https://bioconductor.org/packages/DESeq2/
https://github.com/keras-team/keras-tuner
https://doi.org/10.1016/j.ymeth.2019.03.020
https://doi.org/10.1016/j.ymeth.2019.03.020
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.48550/arXiv.1811.00416
https://doi.org/10.48550/arXiv.1811.00416
https://doi.org/10.1186/gb-2007-8-2-r24
https://doi.org/10.1093/nar/gkv416
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1038/s41592-021-01256-7
https://doi.org/10.1038/s41592-021-01256-7


[45] Christoph Neumayr et al. “STARR-seq and UMI-STARR-seq: Assessing Enhancer Activ-
ities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries”. In: Current
Protocols in Molecular Biology 128 (2019). doi: 10.1002/cpmb.105.

[46] Peter K. Koo and Sean R. Eddy. “Representation learning of genomic sequence motifs
with convolutional neural networks”. In: PLoS Computational Biology 15.12 (Dec. 2019),
e1007560. doi: 10.1371/journal.pcbi.1007560.

[47] Peter Angel and Marina Schorpp-Kistner. “Jun/Fos”. In: Encyclopedic Reference of Ge-
nomics and Proteomics in Molecular Medicine. Springer, 2006, pp. 928–935. doi: 10.
1007/3-540-29623-9_4560.

[48] Julia I. Leu et al. “Interleukin-6-Induced STAT3 and AP-1 Amplify Hepatocyte Nuclear
Factor 1-Mediated Transactivation of Hepatic Genes, an Adaptive Response to Liver In-
jury”. In: Molecular and Cellular Biology 21.2 (Jan. 2001), pp. 414–424. doi: 10.1128/
MCB.21.2.414-424.2001.

[49] Y Hayashi et al. “Liver enriched transcription factors and differentiation of hepatocellular
carcinoma.” In: Molecular Pathology 52.1 (Feb. 1999), pp. 19–24. issn: 1366-8714.

[50] Hwee Hui Lau et al. “The molecular functions of hepatocyte nuclear factors – In and
beyond the liver”. In: Journal of Hepatology 68.5 (May 2018), pp. 1033–1048. doi: 10.
1016/j.jhep.2017.11.026.

[51] Brian D. Reed et al. “Genome-Wide Occupancy of SREBP1 and Its Partners NFY and
SP1 Reveals Novel Functional Roles and Combinatorial Regulation of Distinct Classes of
Genes”. In: PLOS Genetics 4.7 (July 2008), e1000133. doi: 10.1371/journal.pgen.
1000133.

[52] Prasanna K Santhekadur et al. “The transcription factor LSF: a novel oncogene for hepa-
tocellular carcinoma”. In: American Journal of Cancer Research 2.3 (Apr. 2012), pp. 269–
285. issn: 2156-6976.

[53] Kevin A. Morano and Dennis J. Thiele. “Heat Shock Factor Function and Regulation in
Response to Cellular Stress, Growth, and Differentiation Signals”. In: Gene Expression
7.4-5-6 (Sept. 2018), pp. 271–282. issn: 1052-2166.

[54] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[55] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[56] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open Source
Software 6.60 (2021), p. 3021. doi: 10.21105/joss.03021.

[57] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.
1038/s41586-020-2649-2.

[58] The pandas development team. pandas-dev/pandas: Pandas. Version 1.5.2. Feb. 2022. doi:
10.5281/zenodo.7344967.

[59] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-
2.

[60] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[61] Avanti Shrikumar et al. kundajelab/tfmodisco: Bringing down Leiden memory use - patch
1. Jan. 2022. doi: 10.5281/zenodo.5909083.

Page 46 of 51

https://doi.org/10.1002/cpmb.105
https://doi.org/10.1371/journal.pcbi.1007560
https://doi.org/10.1007/3-540-29623-9_4560
https://doi.org/10.1007/3-540-29623-9_4560
https://doi.org/10.1128/MCB.21.2.414-424.2001
https://doi.org/10.1128/MCB.21.2.414-424.2001
https://doi.org/10.1016/j.jhep.2017.11.026
https://doi.org/10.1016/j.jhep.2017.11.026
https://doi.org/10.1371/journal.pgen.1000133
https://doi.org/10.1371/journal.pgen.1000133
https://www.tensorflow.org/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.7344967
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.5909083


APPENDIX A

SOFTWARE AND HARDWARE

A.1 Software

Table A.1: Python modules used for data exploration, preprocessing and deep learning, along
with the respective versions and purpose.

Module name Version Purpose of use Reference

TensorFlow 2.5.0 Deep learning backend [54]

KerasTuner 1.2.0 Hyperparameter tuning [37]

Matplotlib 3.3.4 Data visualization [55]

Seaborn 0.12.2 Data visualization [56]

NumPy 1.19.5 Scientific computing [57]

Pandas 1.1.5 Data wrangling [58]

SciPy 1.5.4 Statistics [59]

Scikit-learn 0.24.2 Model metrics and train test split function [60]

SHAP 0.40.0 DeepExplainer for importance scores [39]

TF-MoDISco 0.5.16.0 Motif discovery from importance scores [61]

A.2 Hardware

The authors acknowledge the Orion High Performance Computing Center (OHPCC) at the Nor-
wegian University of Life Sciences (NMBU) for providing computational resources that have con-
tributed to the research results reported within this paper. URL (internal): https://orion.nmbu.no

Table A.2: Hardware specifications.

GPU RAM CPU type Clock rate

NVIDIA Quadro RTX 8000 64 GB EPYC 7302 16-Core 3.0 GHz

Page 47 of 51

https://orion.nmbu.no


APPENDIX B

SOURCE CODE AND TRAINED MODELS

Table B.1: Table of source code with GitHub links and commit hashes.

Source Code Link Commit Hash

CNN training.py GitHub ® 48abd76

CNN tuner.py GitHub ® f34416f

CNN deepExplainer.py GitHub ® 5f8368c

CNN modisco.ipynb GitHub ® 2293a27

CNN conv motifs.py GitHub ® 5343d9a

Hybrid training.py GitHub ® 48abd76

Hybrid tuner.py GitHub ® 514d9d0

Hybrid deepExplainer.py GitHub ® 4a51f87

Hybrid modisco.ipynb GitHub ® 1f54089

Hybrid conv motifs.py GitHub ® 5343d9a

Table B.2: Table of trained model files with GitHub links and commit hashes.

File name Link Commit Hash

CNN10bm.h5 GitHub ® 0a2798a

CNN25bm.h5 GitHub ® 0a2798a

CNN50bm.h5 GitHub ® 0a2798a

CNN100bm.h5 GitHub ® 0a2798a

Hybrid10bm.h5 GitHub ® 6495eea

Hybrid25bm.h5 GitHub ® 6495eea

Hybrid50bm.h5 GitHub ® 6495eea

Hybrid100bm.h5 GitHub ® 6495eea

Page 48 of 51

https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/CNN/CNN_training.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/CNN/CNN_tuner.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/CNN/CNN_deepExplainer.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/modisco/CNN_modisco.ipynb
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/CNN/CNN_conv_motifs.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/Hybrid/Hybrid_training.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/Hybrid/Hybrid_tuner.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/Hybrid/Hybrid_deepExplainer.py
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/modisco/Hybrid_modisco.ipynb
https://github.com/juforris/datasci-thesis23/blob/48abd76c2b2a47db36985e0673be2d455e68adcc/Hybrid/Hybrid_conv_motifs.py
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/CNN/CNN10bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/CNN/CNN25bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/CNN/CNN50bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/CNN/CNN100bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/Hybrid/Hybrid10bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/Hybrid/Hybrid25bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/Hybrid/Hybrid50bm.h5
https://github.com/juforris/datasci-thesis23/blob/d6e895f2bf4ca87e3172841634748770c41b565b/Hybrid/Hybrid100bm.h5


APPENDIX C

CNN MOTIFS

The 33 motifs extracted from the first convolution filters of the CNNs and their best match
(q-value < 0.05) with the JASPAR 2022 CORE non-redundant vertebrates motifs are shown.
All 224 motifs for each of the CNNs are available on GitHub ®.

Figure C.1: Motifs from first convolution layer.

Page 49 of 51

https://github.com/juforris/datasci-thesis23/tree/main/CNN/CNNConvMotifs


APPENDIXD

HYBRID CNN-LSTM MOTIFS

The 45 motifs extracted from the first convolution filters of the CNN-LSTMs and their best
match (q-value < 0.05) with the JASPAR 2022 CORE non-redundant vertebrates motifs are
shown. All 224 motifs for each of the CNN-LSTMs are available on GitHub ®.

Figure D.1: Motifs from first convolution layer.

Page 50 of 51

https://github.com/juforris/datasci-thesis23/tree/main/Hybrid/HybridConvMotifs


 

 

 


	Introduction
	Motivation
	Related Work

	Objectives
	Structure

	Theory
	Gene regulation
	Gene expression
	Transcriptional regulation
	Chromatin accessibility
	ATAC-STARR-seq

	Machine Learning and Artificial Neural Networks
	The Perceptron
	Multilayer Perceptron
	Learning

	Deep Neural Networks
	Convolutional Neural Networks
	Pooling

	Recurrent Neural Networks
	Long Short-Term Memory

	Evaluation metrics
	Mean Absolute Error
	Mean Squared Error
	Pearson Correlation Coefficient

	Hyperparameter Tuning
	Deep neural network interpretation

	Materials and Methods
	ATAC-STARR-seq
	Data Preprocessing
	Raw data
	Data Sets
	One-Hot encoding and zero padding
	Training, testing, and validation split

	Convolutional Neural Network
	Architecture
	Tuning

	Hybrid Convolutional and Long Short-Term Memory Neural Network
	Architecture
	Tuning

	Motif extraction from first convolution layer
	Motif extraction with deepExplainer and TF-MoDISco
	Motif matching to JASPAR with Tomtom
	Reproducibility

	Results
	Convolutional Neural Network
	Performance
	Motif discovery

	Hybrid Convolutional and Long Short-Term Memory Neural Network
	Performance
	Motif discovery


	Discussion
	Performance and data
	Deep neural network architectures
	Motif extraction methods
	Motif relevance for hepatocyte gene regulation
	Remaining Challenges
	Future Work

	Conclusion
	Software and hardware
	Software
	Hardware

	Source code and trained models
	CNN motifs
	Hybrid CNN-LSTM motifs

