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Abstract 

Atlantic salmon is well known as a rich source of Omega-3 fatty acids (in particular, ALA, DHA, 

and EPA), and these fatty acids are heritable, thus, the selection of parents will influence their 

levels in the offspring. The gold standard method of recording Omega-3 fatty acids in Atlantic 

salmon is costly, time-consuming, and destructive to the sample. For selective breeding purposes, 

a more affordable method is needed to measure Omega-3 fatty acids in thousands of related 

salmon. In many breeding programs, vibrational spectroscopy is primarily used with the Partial 

Least Squares Regression (PLSR) model to measure and predict phenotypes such as Omega-3 

fatty acids. However, there is a knowledge gap in estimating heritability using vibrational 

spectroscopy and finding the effect of sample selection and variable selection methods in the data 

analysis process perspective. Hence, we optimized and assessed the predicted Omega-3 fatty 

acids from the high-dimensional spectroscopy data (NIR and Raman spectroscopy data) in the 

breeding program according to the multiple scenarios combined with sample selection (Kennard-

Stone and Random Sampling) and variable selection (with or without Markov Blanket). We found 

that the PLSR model accuracy and the resulting heritability estimates generally increase with 

adopting the variable selection method. We also found that NIR spectroscopy has a good affinity 

with Kennard-Stone sampling, while Raman spectroscopy showed stable performance regardless 

of sample selection. It is possible to achieve improved PLSR model accuracy and heritability 

estimates by utilizing the Markov Blanket approach. 

 

 

  



 

 

Table of Contents 

List of Abbreviations ...................................................................................................................................... 6 

List of Figures ................................................................................................................................................. 7 

List of Tables .................................................................................................................................................. 8 

1. Introduction ............................................................................................................................................... 9 

2. Background and Theory ........................................................................................................................... 12 

2.1. Introduction to Quantitative Genetics and Animal Breeding ....................................................... 12 

2.1.1. Phenotypes and their heritability ...................................................................................... 13 

2.1.2. Linear Mixed Model to estimate variance components, predict breeding values, and 

genetic correlations ..................................................................................................................... 14 

2.1.3. Genetic correlations between traits .................................................................................. 15 

2.1.4. Predicting response to selection from genetic parameters .............................................. 15 

2.1.5. The role of alternative phenotypes ................................................................................... 16 

2.2. Vibrational Spectroscopy .............................................................................................................. 16 

2.2.1. Near-Infrared (NIR) spectroscopy ...................................................................................... 17 

2.2.2. Raman spectroscopy .......................................................................................................... 18 

2.2.3. Preprocessing of spectral data .......................................................................................... 18 

2.2.3.1. Standard Normal Variate (SNV) .............................................................................. 19 

2.2.3.2. Extended Multiplicative Scatter Correction (EMSC) ............................................... 19 

2.3. Sample selection methods – choosing the samples for model training ...................................... 19 

2.3.1. Random Sampling Selection .............................................................................................. 20 

2.3.2. Kennard-Stone Sampling Algorithm .................................................................................. 20 

2.4. Variable selection – choosing the variables used for training models ......................................... 21 

2.4.1. Markov blanket – Bayesian Network structure ................................................................. 21 

2.4.2. Constraint-based structure learning algorithm – Incremental Association Markov Blanket 

(IAMB) .......................................................................................................................................... 22 

2.5. Partial Least Squares Regression (PLSR) ....................................................................................... 23 

2.6. Model Assessment – Metrics and cross-validation ...................................................................... 24 

3. Materials and Methods ........................................................................................................................... 26 



 

 

3.1. Sample data acquisition ................................................................................................................ 26 

3.2. Acquisition of spectroscopy measurements ................................................................................ 26 

3.3 Experimental design and data partitioning ................................................................................... 27 

4. Results ...................................................................................................................................................... 30 

4.1 NIR and Raman Spectra and IAMB selection ................................................................................. 31 

4.2. Prediction of Omega-3 fatty acids across scenarios ..................................................................... 32 

4.3. Quantitative Genetic parameters ................................................................................................. 38 

5. Discussion ................................................................................................................................................ 39 

5.1. Small datasets and repetitions in PLSR models ............................................................................ 39 

5.2. Comparison of the sample selection methods ............................................................................. 40 

5.3. Variable selection effects of Markov Blanket ............................................................................... 40 

5.4. Comparison of Vibrational spectroscopy methods NIR and Raman ............................................ 41 

5.5. Genetic parameters estimation and validation of predicted phenotypes ................................... 42 

6. Conclusion ................................................................................................................................................ 43 

References ................................................................................................................................................... 44 

Appendix A ................................................................................................................................................... 48 

Appendix B ................................................................................................................................................... 48 

Appendix C ................................................................................................................................................... 49 

 

 

 

 

 

  



 

 

List of Abbreviations 

ALA: Alpha(α)-linolenic acid 

BLUE: Best Linear Unbiased Estimator 

BLUP: Best Linear Unbiased Prediction 

DNA: Deoxyribonucleic acid 

DHA: Docosahexaenoic acid 

EBV: Estimated Breeding Value 

EDA: Exploratory Data Analysis 

EMSC: Extended Multiplicative Signal Correction 

EPA: Eicosapentaenoic acid 

FT-IR: Fourier-Transform Infrared 

GC: Gas Chromatography 

IAMB: Incremental Association Markov Blanket 

MSC: Multiplicative Signal Correction 

MSE: Mean Square Error 

RS: Random Sampling (Sample) 

KS: Kennard-Stone 

MB: Markov Blanket 

PCA: Principal Component Analysis 

PCR: Principal Component Regression 

PLSR: Partial Least Squares Regression 

PRESS: Prediction Residual Error Sum of Squares 

RMSE: Rooted Mean Square Error 

RMSECV: Rooted Mean Square Error Cross Validation 

RMSEP: Root Mean Squared Error of Prediction 

SNP: Single Nucleotide Polymorphism 

SNV: Standard Normal Variate 

 

  



 

 

List of Figures 

Figure 1. General Process of Data Analysis ......................................................................... 11 

Figure 2. The difference between the broad and narrow sense of heritability is whether 

using additive genetic variance or genotypic variance. .............................................. 14 

Figure 3. Harmonic oscillator and anharmonic oscillator. ................................................... 17 

Figure 4. A graphical representation of the KS algorithm. Two red points imply the 

longest distance among the given data and select as a starting point for the 

training data set. When comparing the distances of each blue dot and the red dot, 

A, the farthest distance between the two, is chosen. The process then re-iterates 

until the required number of subsamples is reached. ................................................. 21 

Figure 5. An example of a graphical sketch of MB. The bold line represents the MB of 

X6 in a given random variable X1 to X13, and it consists of its parent's node (X3, X4), 

children's node (X8, X9), and children’s other parents (X5, X7) ................................... 22 

Figure 6. A graphical representation of k-fold cross-validation. Each fold selected a 

different validation set and calculated the validation accuracy. MSE by k-fold 

cross-validation calculated the average validation accuracy of each fold. .............. 25 

Figure 7. Graphical representation of 10-fold cross-validation by the sample selection 

methods. RS iterated 10 times enables to get the range of the PLSR model 

accuracy, while KS operated only one time due to the designed algorithm. ........... 28 

Figure 8. A graphical description of the methodology of this thesis for Atlantic salmon. 

Four different colors indicate different scenarios by sample selection and variable 

selection methods. ............................................................................................................ 29 

Figure 9. The summary of the data analysis process for this thesis according to Figure 

1. .......................................................................................................................................... 30 

Figure 10. A solid vertical line indicates the selected wavelengths using the MB in NIR 

spectroscopy for each fatty acid; eicosatetraenoic acid (EPA; Red dotted line), 

docosahexaenoic acid (DHA; Blue dotted line), and α-linolenic acid (ALA; Orange 

dotted line). ........................................................................................................................ 31 

Figure 11. A solid vertical line indicates the selected wavelengths using the MB in 

RAMAN spectroscopy for each fatty acid; eicosatetraenoic acid (EPA; Red line), 

docosahexaenoic acid (DHA; Blue line), and α-linolenic acid (ALA; Orange line) . 32 

Figure 12. Comparison of KS and RS repetitions of EPA by the PLSR model using NIR 

spectroscopy. The left side of the figure shows R2 of ten times repetitions by the 

sampling method and the right side shows RMSE. In each repetition, the orange 

dot represents the value obtained by the fitted model on the dataset partition 

following the KS, and the blue asterisks denote the corresponding values on the n 

= 100 dataset partitions provided by the RS method. ................................................. 35 



 

 

Figure 13. Comparison R2 and RMSE for DHA (A-B) and ALA (C-D) using NIR spectral 

according to scenarios combining sample selection and variable selection. Each 

repetition contains random sampling (RS) or Kennard-Stone sampling (KS) with 

Markov Blanket MB variable selection or not. Note, MB was not successful for 

EPA and is not presented (See Figure 12). .................................................................. 36 

Figure 14. Comparison R2 and RMSE for EPA (A-B), DHA (C-D) and ALA (E-F) using 

Raman spectral according to scenarios combining sample selection and variable 

selection. Each repetition contains random sampling (RS) or Kennard-Stone 

sampling (KS) with Markov Blanket MB variable selection or not. In each iteration, 

the black dot represents the value from the fitted model on the data set following 

the KS and the red dot describes the value from the fitted model of the KS 

combined with MB, while the orange asterisks denote each iteration value 

corresponding on the n = 100 data set selected by the RS and the blue asterisks 

describe each fitted values by the RS combined with MB. ........................................ 38 

 

List of Tables 

Table 1. Descriptive statistics of proportional content (%) of Omega-3 fatty acids ........ 30 

Table 2. PLSR results of ten times repetition for each fatty acid across scenarios of 

sample and variable selection for NIR and Raman spectroscopy ............................ 33 

Table 3. Genetic parameter estimation results by RMDU. ................................................. 39 

 

 

  



 

 

1. Introduction 

Global fisheries and aquaculture production tend to increase continuously, and the global 

consumption of marine food has also increased in recent years. In addition, as the world 

population continues to grow, aquaculture has the potential to provide food sources and nutrients 

[1]. Aquatic foods are considered an important element of healthy diets because they are not only 

valued as a rich source of animal protein but also contain Omega-3 fatty acids and micronutrients 

essential for improving nutrition and health outcomes. Research shows that fish consumption 

helps to reduce the risk of cardiovascular disease because of the high quantities of Omega-3 fatty 

acids in some fish species [2]. It is well-known that Atlantic salmon is a rich source of Omega-3 

fatty acids. Atlantic salmon farming began with the first breeding program used in the late 1960s 

in Norway, and it is the dominant species in aquaculture production with the fact that Norway is 

the biggest producer of farmed Atlantic salmon [1,3]. The primary feed ingredients of Atlantic 

salmon were traditionally marine-based oils and protein sources until around the 1990s; where 

concerns over environmental impacts and supply-demand linked with the aquafeed industry using 

wild fish as feed sources, most feed resources were replaced to some extent with plant-based 

materials over the past 30 years [1,4]. This change in feed ingredients and feed composition has 

resulted in a reduction in levels of Omega-3 content in the diets of Atlantic salmon, and therefore, 

also in their fillets. Of particular importance is eicosatetraenoic acid (EPA; C20-5n3) and 

docosahexaenoic acid (DHA; C22-6n3) which are reduced, but a concurrent increase in α-

linolenic acid (ALA; 18:3n-3) commonly found in plant-based ingredients [5]. This has also led to 

increasing concerns related to lower fish growth rates, and impaired fish health alongside the 

decreasing nutritional benefit to the human consumer. Hence, research into ways to maintain 

healthy fish husbandry and provide high-level Omega-3 content as a method of ensuring 

sustainable production has gained impetus in recent years. 

 

Selective breeding is one such approach that can be used to alter the characteristics of plants 

and animals, including fish, in a desired way. Provided a trait or characteristic is heritable, 

artificially selecting individuals with the most desirable characteristics from parents to the next 

generation results in permanent and cumulative changes over generations [6]. Currently, Atlantic 

salmon selection programs in Norway include increased growth rate, increased survival (or 

resistance to particular diseases), fillet yield, fillet fat percentage, and fillet color as selection 

criteria [7,8]. In order to select traits, it is necessary to employ statistical methodologies which 

estimate the genetic parameters of the population. These include estimating heritability, the 

genetic correlations among traits, and estimated breeding values (see Section 2 below). These 

statistical models combine two sources of information: namely the phenotypes recorded for 

thousands of related individuals under the conditions they are expected to perform and how these 

individuals are related through a pedigree [7,8]. 

Despite evidence that Omega-3 fatty acids like ALA, EPA, and DHA content in the fillet of Atlantic 

salmon are significantly heritable (h2 ranging from 0.09 – 0.26), no breeding programs currently 

include these in their breeding objectives. The primary barrier to including Omega-3 fatty acids in 

a breeding program is the prohibitive cost of recording the phenotypes on large numbers of 

Atlantic salmon. In instances where the phenotypes are expensive or difficult to measure, 

researchers investigate the use of easier or cheaper alternatives of measurement. In the case of 

quantitative genetics, an alternative phenotype which is cheaper or easier can replace the 

expensive gold standard or “true” phenotype, if their heritability estimates are approximately equal 



 

 

and their genetic correlation is above 0.80 [9]. The alternative phenotype can also be employed 

as an “indicator trait” provided it is still heritable and genetically correlated to the true phenotype 

below 0.80.   

Fatty acids are quantified using several biochemical steps, which include extracting all lipids from 

the tissues by hydrolysis using acids and organic solvents, then the fatty acids from triglycerides 

or free fatty acid forms are converted to methyl esters. Gas chromatography (GC) is then used to 

separate the methyl esters on the basis of molecular weights and then identified and quantified 

using analytical tools (e.g., flame ionization detectors, mass spectrometry) [10]. Results show that 

one measurement of all fatty acids in an Atlantic salmon fillet costs more than 1500 Norwegian 

Kroner (~150 United States Dollars). Apart from the high cost, the disadvantages of this method 

are that it is destructive to both fish and the fillet because they are sacrificed in the measurement 

process, and it is time-consuming since samples must be transported to laboratories for 

measurement [11]. Sampling and extraction steps are also always prone to errors, contributing to 

the overall measurement uncertainties. But still, as the gold standard method is the most accurate 

and precise method, it is used to benchmark and compare with other methods such as 

spectroscopy. Non-destructive, affordable, and rapid alternative measurements are therefore 

needed to measure phenotypic ALA, EPA, and DHA for selection purposes. 

 

Vibrational spectroscopy is a collection of techniques used to measure the chemical bonds or 

functional groups in molecules to determine their chemical composition. It is the techniques are 

based on how chemical bonds interact with sources of electromagnetic radiation such as light or 

lasers. Near-infrared (NIR) and Raman spectroscopy are two types of vibrational spectroscopy 

currently used in food research, including the analysis of Atlantic Salmon fillets [12]. Vibrational 

spectroscopy techniques have powerful benefits when used, including non-destructive, fast 

analysis, reasonable cost, and minimal sample preparation requirements [12,13]. The techniques 

are widely applied to measure the chemical components in the food industry due to these 

characteristics. Furthermore, the use of vibrational spectroscopy data heavily relies on various 

statistical analyses, such as Exploratory Data Analysis (EDA), regression analysis for chemical 

content prediction, and classification [14]. The vibrational spectroscopic dataset is usually high-

dimensional, consisting of many often-collinear variables. In addition, in order to obtain 

quantitative information from a spectrum, a subset of samples is always required to predict the 

chemistry of new samples through calibration/training on a reference sample. To overcome these 

challenges, Partial Least Squares Regression (PLSR) is frequently used to create new latent 

variables from the existing data and employ them to build a regression model. Some papers have 

already shown the successful application for the prediction of Omega-3 fatty acids using PLSR 

with vibrational spectroscopic measurement. For example, Afseth et al., 2022, [15] applied PLSR 

on vibrational spectroscopy data to predict a wide selection of fatty acids in Atlantic salmon and 

evaluated the potential usages. Interestingly, there are few studies that deal with how PLSR can 

be used to effectively predict fatty acid features from vibrational spectroscopic data for breeding 

purposes and in breeding programs.  

In general, a data analysis procedure consists of five stages: data collection, data processing, 

exploratory data analysis, model fitting, and model evaluation. Data collection (acquisition) 

defines the research question and gathers the required data. Data processing extracts or converts 

meaningful information from the data and contains the data cleaning process in case of missing 

data. Exploratory data analysis is the process of understanding the data, and it includes 

visualization to investigate any specific patterns. Model fitting is often referred to as a modeling 



 

 

process applied to machine learning through sample selection (data partitioning) and variable 

(feature) selection, and one or more machine learning models possibly applied to find the best 

approach. Lastly, model evaluation assesses the fitted models based on the statistical criteria. 

(See Figure 1) 

 
Figure 1. General Process of Data Analysis 

 

As vibrational spectroscopy requires a subset of samples with both the expensive reference data 

and concurrent vibrational spectra, a key decision is which samples should be sent for reference 

analysis. From a modeling and prediction perspective, these data are further partitioned into the 

training and test data sets which are required to build the models in data science. The sample 

selection methods are used to split the dataset into two subsets. The training set is used to build 

the model, while the test set is used to test the prediction performance and generalization of the 

model. The most common method in the sampling technique is random sampling (RS) selection 

which is the probabilistic methodology. The other method alternatively used for sample selection 

is the Kennard-stone (KS), which chooses samples using the Euclidean distance in predictors 

space. It is difficult to say which is the better option for sample selection, and it depends on the 

characteristics of the data set and the deployed modeling processes. For example, Nawar et al., 

2018 [16] reported that the KS and RS produced similarly but it is depending on the training data 

set size in NIR data, and Ferreira et al., 2022 [17] eported that the KS method outperforms the 

RS practically in NIR data. Although these two sampling methods are widely utilized for analysis, 

they have not been directly compared in both NIR and Raman spectroscopy data. 

 

Furthermore, variable (feature) selection is a technique that chooses variables among data with 

a large number of variables and relatively few samples. It is useful in terms of data reduction and 

improving interpretability, as well as may help to increase the model prediction performance. 

There are three categories in variable selection methods: filter, wrapper, and embedded method 

[18]. T. Mehmood et al., 2012, [19] explained the variable selection methods only in PLSR based 

on loading weights, scores, and loadings. Instead of the variable selection methods introduced 

above, we would like to apply the Markov blanket (MB) as a variable selection method in PLSR. 

MB is a variable selection method in a Bayesian network to select the optimal subset of data by 



 

 

a probability distribution. The MB in the Bayesian Network gained attention to providing a flexible 

analysis tool of biological data such as Single Nucleotide Polymorphism (SNP) or gene 

expression [20]. Felipe et al., 2014 [21], and Dorea et al., 2018 [22] have both recently applied an 

MB for variable selection to predict feed intake in dairy cattle from milk Mid-Infrared (MIR) spectra 

recorded in milk and reported MB as improving prediction accuracy, although it is not a classical 

methodology. The effect of MB variable selection in combination with PLSR predictions has not 

been tested in Atlantic salmon or otherwise. 

 

In the present study, we have access to a large dataset of 613 samples with both NIR and Raman 

spectra as well as reference omega-3 fatty acid content (in particular, EPA, DHA, and ALA) in a 

pedigreed population of adult Atlantic salmon. The aim of this thesis is to optimize and evaluate 

the PLSR model predictive performance of EPA, DHA, and ALA content using NIR and Raman 

spectroscopy in Atlantic salmon fillets for measurement purposes in breeding programs. Several 

specific objectives are tested to achieve this aim; (1) The effect of random sampling versus 

Kenard-Stone sampling on model prediction, (2) The effect of PLSR predictions with or without a 

Markov-Blanket as a variable selection adoption, (3) Comparison of NIR and Raman spectra for 

prediction, and (4) Genetic evaluation of NIR and Raman predictive phenotypes against the true 

phenotypes. 

 

2. Background and Theory 

This section will introduce the theoretical background needed to understand the multidisciplinary 

concepts and experimental approaches used in this thesis. This chapter also covers topics across 

multiple research areas and lays the groundwork for the materials and methods section that 

follows thereafter. 

 

2.1. Introduction to Quantitative Genetics and Animal Breeding 

Selective breeding, also known as “artificial selection”, is a process where humans choose 

individual animals based on desired characteristics to be mated and produce offspring with those 

same desired characteristics. Selective breeding predates modern science and has been 

successfully employed by humans for thousands of years, resulting in domesticated livestock 

breeds and crops. Before the fields of genetics and statistics existed, humans had observed that 

mating the best individuals based on certain characteristics tended to increase or improve those 

characteristics in their offspring [23]. It is now known that animals pass on 50% of their DNA 

(genes) in their sperm and oocytes to the next generation. The division of 50% of the DNA into 

the oocyte or sperm follows meiosis and is a random division of DNA. After fertilization, the 

resulting offspring have half their chromosomes for each of their parents. Thus, the genetic 

relationship between offspring and each parent is expected to be 0.5 and this is called the additive 

genetic relationship [23]. Genes located on the chromosomes encode proteins and other 

transcription factors, which provide the blueprint for an organism. Some traits are termed 

qualitative traits that are controlled by the inheritance of relatively few genes, whilst some traits 

are termed quantitative traits that can be controlled by many thousands of genes, many of which 

have very small effects [24]. 

 



 

 

2.1.1. Phenotypes and their heritability 

Modern selective breeding requires the combination of two sources of information: 1) phenotypic 

information and 2) the relationship between individuals. 

 

Definition box  

• Gene: the set of instructions in DNA that codes for proteins that produce a trait 

• Genotype: the genetic code of the individual that includes all the information can be found 

inside the individual’s cells 

• Phenotype: the set of observable physical traits (i.e., eye colors) 

The question of which traits or phenotypes are desirable to improve highly varies between 

terrestrial and aquatic livestock. Examples of phenotypes in Atlantic salmon are growth rate, fillet 

fat content, disease resistance, et cetera. The phenotype is the result of the genotype and 

environment, as shown in Equation (1). Examples of environmental factors which can influence a 

phenotype include age, sex, temperature, and feed nutrition. The environmental effect can also 

interact with the genotype to determine its phenotype. In other words, phenotype refers to the 

observable physical or behavioral characteristics that are affected by both genotype and 

environmental factors [7]. The relationship among all concepts can be described as follows: 

Phenotype = Genotype + Environment  (1) 

In quantitative genetics, these effects are resolved by looking at the phenotypic differences 

between individuals as the phenotypic variance and then partitioning the phenotypic variance into 

genetic and environmental contributions. An important note is that the genotype can be divided 

into three different effects in terms of variation: additive genetic variance, dominance, and 

epistatic interaction. Assuming there is no interaction between genotype and environmental 

factors under the same environmental conditions, the formula (1) above can be expanded as 

follows: 

Phenotype = Additive Genotype + Dominance + Epistasis + Environment (2) 

Both dominance and interaction, which are called non-additive genetic variance, are less 

favorable as they require specialized breeding designs to estimate their variance components, 

while additive genetic variance is most often used in selective breeding [8]. The complete 

genotype of an individual is unobservable, but rather the expected genetic covariance between 

individuals can be estimated from pedigree relationship matrices i.e., the genetic covariance 

between full-sibs (having the same male (sire) and female (dam) parents) is 0.5, and between 

half-sibs (having one parent in common) is 0.25. Note, more recently DNA marker information 

using commercial Single Nucleotide Polymorphism (SNP) arrays has been used to better estimate 

the realized genetic relationships between individuals [7]. For the purpose of this thesis, pedigree 

relationships will be used to model additive genetics relationships. Hence, the final formula that 

we are interested in to link phenotypes and additive genetic relationships between individuals is 

as follows:   

Phenotype = Additive Genotype + Environment (3) 



 

 

Heritability is one of the major parameters in animal breeding which provides the proportion of the 

phenotypic variation caused by genetic variation. It plays a pivotal role in estimating the relative 

magnitude of variation when planning a breeding program and predicts the response to selection 

or individuals' breeding values. There are two definitions of heritability in the broad or narrow 

sense. The broad sense of heritability is defined by dividing genotypic variance by phenotype 

variance: (hb = h2 = VG/VP); however, it is not often used due to the genetic variance containing 

dominance and interaction effects. The narrow sense meaning of heritability uses only the additive 

genetic variance: (hn = h2 = VA/VP). It is commonly used to show the proportion of genetic variance 

that is possibly transmitted to the next generation. Heritability varies based on the population, 

traits, and environment. (See Figure 2 for the simple graphical division of the heritability.) 

 
Figure 2. The difference between the broad and narrow sense of heritability is whether using additive 
genetic variance or genotypic variance. 

 

2.1.2. Linear Mixed Model to estimate variance components, predict breeding values, 

and genetic correlations 

As the complete genotype of an individual is never fully known, animal breeders make use of 

specialized linear mixed models. Firstly, it includes "fixed effects", which are non-genetic factors 

or regressors that contribute to phenotyping differences in the population, and their effects must 

be estimated or taken into account to prevent unintentional confounding with the genetic effects. 

Secondly, “random effects” which are estimated using a variance-covariance structure (e.g., the 

expected relationship between individuals based on a pedigree to estimate additive genetic 

effects). As a result, linear mixed models provide variance components and random solutions for 

the random effects, while simultaneously estimating the non-genetic fixed effects. In the special 

case where the random effect is modeled using the additive genetic variance-covariance matrix, 

the random solutions are called Estimated breeding values (EBV). EBVs are used to rank 

individuals for selection purposes. If variance components have been estimated previously, it is 

also possible to predict EBVs using the Best Linear Unbiased Prediction (BLUP) is a methodology 

designed by Henderson in 1984 [8] to estimate the fixed and random effects simultaneously. The 

equation for a mixed linear model is the following equation: 

𝑦  =  𝑋𝑏  +  𝑍𝑎  +  𝑒 (4) 

, where y indicates the individual phenotype vectors, X is the design matrix that relates the 

element of y to those of b and b is the fixed effect vector corresponding to the X, Z is the design 

matrix that relates the element of y to those of a, a is the random effect solutions which represent 



 

 

the estimated breeding values (additive genetic variance) vector, and e is the residuals under a 

normal distribution [7,8]. 

 

2.1.3. Genetic correlations between traits 

Multiple different phenotypes can be measured in individuals or their relatives. In the case that 

multiple phenotypes are recorded on the same individuals, it is possible to estimate Pearson’s 

correlation, which is referred to as the phenotypic correlation in animal breeding and genetics. It 

is the identical concept of Pearson's correlation (r), which measures the linear correlation between 

the two data sets; however, in quantitative genetics, it includes both the additive genetic effects, 

as well as the non-genetic fixed effects, and the residual error. Breeders are interested in the 

additive genetic covariance shared between different phenotypes, as it can inform on shared 

genetic effects between the two phenotypes and how selection for one of the phenotypes will 

result in a change in the other. In the case of two phenotypes x and y, their genetic correlation (rG) 

is given by: 

𝑟𝐺   =  
𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

 (5) 

, where 𝜎𝑥𝑦 represents the covariance between the phenotypes 𝑥 and 𝑦 , 𝜎𝑥 and 𝜎𝑦 represent the 

additive genetic standard deviations. In order to estimate the genetic correlation between two or 

more traits, substantial amounts of individuals with phenotypes are required 102-104 [25]. 

 

2.1.4. Predicting response to selection from genetic parameters 

Animal breeding is centered around achieving desired genetic gain in the following generations. 

A key equation called the “Breeders Equation” is used to predict genetic gain or response to 

selection for a given population. Artificial selection is the selection of individuals for transmitting 

or improving the economically or socially desirable traits by generation. Assuming there is no 

change in environmental conditions, the effect appears as a change in the population average, 

which is called a response to selection. The response to selection refers to the difference between 

the average of the selected parent generation and the average of its offspring, and it plays a 

pivotal role in animal and plant breeding. It can represent as a formula as follows: 

𝑅  =  𝑆  × ℎ2 (6) 

, where 𝑆  is called selection differential, which shows the magnitude of selection. S can be divided 

into phenotypic standard deviation (𝜎𝑃   =  √𝑉𝑃), and selection intensity denoted by 𝑖 , the above 

formula can be described as follows: 

𝑅  =  𝑖  × 𝜎𝑃   × ℎ2 (7) 

The response to selection shows the genetic improvement by one generation, and it accumulates 

as the generation number increases since the average increases by the generation. 

 



 

 

2.1.5. The role of alternative phenotypes 

When the traditional or “true phenotypes” are expensive or difficult to measure, it is important to 

evaluate potential alternative methods of recording or predicting phenotypes. Assuming one case 

of artificial selection, animal breeders want to gauge the relative response of the true phenotype 

y when selection is based on the alternative phenotype x. In this case, researchers need to 

estimate the heritability of both phenotypes and their genetic correlation. Traditionally, if the 

heritability estimates are of a similar magnitude and the genetic correlation is >= 0.80, the 

alternative phenotype can replace the “true” phenotype [9]. Importantly, even if the alternative 

phenotype is less genetically correlated to the “true” phenotype < 0.80 it can still be used as an 

indicator trait to increase the accuracy of the EBVs for the “true” phenotype, particularly if the 

alternative phenotype can be more readily recorded on large numbers of related individuals under 

commercial conditions [26]. 

 

2.2. Vibrational Spectroscopy 

Vibrational spectroscopy is known as one class of spectroscopic techniques that utilizes the 

interactions between matter (i.e., molecules) and electromagnetic radiation. This class of 

techniques includes near-infrared (NIR) and Raman spectroscopy. According to Sultanbawa et 

al., 2021 [27] and Cozzolino, 2021 [28], there are several main characteristics of vibrational 

spectroscopy; 1) they are non-destructive techniques that require minimal sample pretreatment 

[29], 2) they provide information on chemical components as a vibrational "fingerprint" (see 

vibrational spectroscopy Table 1.1 in [29] ), and 3) the spectral data available is usually used in 

combination with multivariate analysis or machine learning techniques to extract useful qualitative 

or quantitative information of the sample. However, a pre-processing step is usually required to 

remove non-relevant physical information in the spectra.  

Three parameters are important to understand the basic principles of Spectroscopy; wavelength, 

frequency, and wavenumbers. The wavelength is defined as the distance between the peak point, 

and it is represented as lambda (𝜆). The frequency (𝑣 ) is the cycle of waves that represents how 

many times repeating per unit of time. Lastly, the wavenumbers (𝑣) are defined as the number of 

waves per unit distance, typically centimeters (cm-1). The relationship between parameters is 

followed by the expression: 

𝑣  =  
𝑣

(
𝑐
𝑛)

  =  
1

𝜆
 (8) 

, where 𝑐 is the speed of light and 𝑛 is the refractive index of the medium it is passing through. 

When light interacts with materials, photons (a particle of light that carry energy proportional to 

the radiation frequency) may be absorbed, dispersed or passed through the sample without 

interaction. In vibrational spectroscopy, the molecule is exposed to an external energy source, 

such as infrared (IR) radiation or visible or near-infrared light (Raman scattering). Each molecule 

has a unique level of vibrational energy that depends on the molecular chemical bonds and the 

geometrical arrangement. Both NIR and Raman spectroscopy identify specific molecules through 

the interaction with light, but each has a different way of photon energy transfer (i.e., NIR is 

absorption, Raman is scattering) that changes its vibrational state [29,30]. 



 

 

Molecular vibrations can be explained by using quantum theory (harmonic oscillator model) 

[29,31]. Molecular vibrations can be explained by using quantum theory (harmonic oscillator 

model). The molecules can only exist in a quantized energy state in quantum mechanics, and the 

vibrational energy has certain discrete values in quantum mechanics. The potential energy can 

be described as a harmonic oscillator model that has a probability distribution by each state, and 

the differences between the states are constant. The molecules can only change between the 

adjacent level in the harmonic oscillator model (i.e., fundamental transitions). However, the 

anharmonic oscillator is a more realistic approach because it provides different energy distances 

as the vibrational quantum number increases. The distance between each level becomes smaller 

as the level increases until dissociation is reached. Thus, the transitions in a harmonic oscillator 

model result in △ 𝑣  =   ± 1, while the anharmonic oscillator model results in overtones (energy 

transition such as v = 0 to v = 2 or v = 0 to v = 3) and combination bands (when two or more 

fundamental vibrations occur simultaneously). A simple graphic description of the harmonic 

oscillator and anharmonic oscillator model is as in Figure 3. 

 
Figure 3. Harmonic oscillator and anharmonic oscillator. 

 

2.2.1. Near-Infrared (NIR) spectroscopy 

NIR spectroscopy is one type of vibrational spectroscopy that uses light in the electromagnetic 

spectrum region that corresponds to the wavelength approximately in the range of 750-2500 nm 

(wavenumbers: 13,300-4,000 cm−1) [30,31]. NIR absorption empirically follows the Lambert-Beer 

law [14], which indicates there is a linear relationship between the spectrum absorbance and a 

particular analyte concentration. 

The absorption process in NIR spectroscopy requires molecular vibrations that result in changes 

in the vibrational energy level by dipole moments. The molecular vibration changes the dipole 

moment of the molecule to transfer the energy from the NIR light. The dipole moments generate 

the forces from the separation of positive and negative electrical charges in the opposite direction 

during the vibration [29]. The absorption intensity differs from the sample or matter and is also 

related to the magnitude of the dipole change during the vibration [30,31]. With these 

characteristics, NIR spectroscopy is related to the combination between molecular functional 

groups consisting of e.g., C (carbon), N (nitrogen), O(oxygen), and S (sulfur) [29].    



 

 

NIR spectroscopy has a wide range of applications within the food and agricultural area; for 

example, Pizarro et al., 2007 [32], predicted the caffeine content and roasting color using NIR 

spectroscopy, Holroyd, 2013 [33], showed the applications on milk and milk products by using 

NIR spectroscopy, Cozzolino et at., 2005 [28], applied to identification of fish species used to 

make the fishmeal. These examples show that NIR spectroscopy is suitable to use for predicting 

or classifying food quality and production. 

 

2.2.2. Raman spectroscopy 

Raman scattering was first observed by two Indian scientists, Raman and Krishnan, in 1928, but 

Raman spectroscopy was established as an analytical technology much later due to a lack of 

technical solutions to deal with this weak scattering phenomenon [34]. According to Orlando et 

al., 2018 [35] and Lohumi et al., 2014 [36], Raman spectroscopy has several benefits over infrared 

spectroscopy, such as less influence from water and the use of fiber optic probes. 

The basic theory of Raman spectroscopy is described in [29]. Like NIR spectroscopy, Raman 

spectroscopy also provides chemical information (e.g., chemical structure, spectral patterns) by 

detecting vibrations in molecules based on Raman scattering. Raman spectroscopy is a scattering 

technique, and both Rayleigh scattering and Raman scattering can occur when photons reach a 

molecule. Scattering occurs when light deviates from the path and proceeds in different directions. 

Rayleigh scattering is when the scattered light holds the original energy, and Raman scattering is 

when it loses or gains energy. Rayleigh scattering is the most dominant event, while Raman 

scattering is much less likely to occur. Both events create a virtual state that causes the molecule 

to distort (polarizes) from its transient status, which is instantaneously absorbed because of the 

transition from the bottom state to the virtual state, resulting in the creation and scattering of new 

photons. Raman scattering can be divided into two: Stokes scattering and Anti-Stokes scattering. 

Stokes Raman scattering occurs when the energy of the scattered light is lower than that of the 

incident light, and it is more commonly observed than Anti-Strokes Raman scattering. On the 

other hand, Anti-Stokes Raman is the opposite and less common. Anti-Stokes scattering is a 

transition from the virtual state to the ground state and involves energy transfer to the scattered 

light. Raman scattering, such as Stokes scattering, is related to a molecule vibration that changes 

the polarizability of a chemical bond or functional group. Therefore, Raman spectroscopy 

measures how much energy light has decreased or increased compared to Rayleigh scattering. 

The difference is expressed as Raman shift, which means the frequency of the molecule's 

vibration [29,34]. 

Raman spectroscopy is also widely used in pharmaceuticals/biological applications such as 

detecting drugs and distinguishing cancerous [36], and it is also used in aquaculture, such as 

measuring and predicting the fatty acids of Atlantic salmon [15]. Like NIR spectroscopy, pre-

processing is an important part of the analysis of Raman spectroscopy data.  

 

2.2.3. Preprocessing of spectral data 

Pre-processing is commonly performed to remove unwanted physical information and noise from 

the raw spectra, obscuring the actual chemical information. It is carried out before applying the 

modeling process, and it affects the following analysis process, including the modeling and model 

assessment, depending on the proper choice of pre-processing. According to Rinnan et al., 2009 

[37], the pre-processing techniques have two broad categories: scatter corrections and spectral 



 

 

derivatives. The former techniques are suggested to decrease the variability due to scattering by 

adjusting baseline shifts and intensity variations between samples, and the latter is used to avoid 

noise inflation by applying a derivative or smoothing. In this thesis, pre-processing methods based 

on scatter correction, including Standard Normal Variate (SNV) and Extended Multiplicative 

Scatter Correction (EMSC), have been used. 

 

2.2.3.1. Standard Normal Variate (SNV) 

SNV is a widely applied method in NIR, and it is designed to reduce the effects of baseline shift 

and intensity variations between spectra. It is obtained by subtracting the overall mean from the 

spectrum and dividing the value by the standard deviation. It transforms the original spectrum into 

an adjusted spectrum to have a similar effect to normalization by making the mean close to zero 

and the standard deviation close to one. However, as already pointed out by Rinnan et al., 2009 

[37] SNV has a disadvantage in that it is sensitive to outliers. Guo et al., 1999 [38] proposed a 

robust method that uses the percentile median or means as an alternative method to get 

reasonable results. 

 

2.2.3.2. Extended Multiplicative Scatter Correction (EMSC) 

Another spectroscopy preprocessing technique is called Multiplicative Scatter Correction (MSC). 

This approach aims to remove the undesirable scatter effect in the observed spectra. Extended 

MSC (EMSC) is an expanded version of MSC to account for additional variability in the spectra. 

Like MSC, it aims to correct the scattering effect in the measured spectra. However, it is more 

flexible in dealing with the individual variations of baseline and considers a priori knowledge from 

an analyte of interest [37]. EMSC models are flexible and can be extended by polynomial 

extensions, configuration spectra, and orthogonal subspaces. EMSC with a polynomial model 

estimates the parameters, including an arbitrary slope, a quadratic term, or terms of higher 

polynomial order, and is used to correct the additive or multiplicative effects. The full rank of the 

spectrum matrix is required to consider the linear independence between spectra in the 

polynomial EMSC model. The parameter estimation from the polynomial model provides many 

quantitative features from the spectrum. The polynomial extension model of EMSC helps to get 

better the correction of spectra and to prevent over-fitting problems in the EMSC modeling. The 

EMSC model under constituent spectra reduces the disturbance challenge by adding the 

configuration spectrum around the mean spectrum to the model, which is required to make the 

least squares estimation of the parameters. The EMSC model by orthogonal subspace extension 

takes a general approach, like adding a physical model that estimates undesirable features from 

the spectra [39]. 

 

2.3. Sample selection methods – choosing the samples for model training 

Sampling is a statistical process to obtain a subset (pre-determined number of observations) from 

a large population, and it is utilized to estimate an unknown population through a well-

representative sample dataset. For prediction purposes, sampling is used as a fundamental step 

to split data into training and test data sets. It allows us to work with a subset of the dataset instead 

of the entire dataset. This can be helpful in several ways: for instance, increasing speed and 

computational efficiency of model building and validation. In this step, we decide how many 

samples are assigned to training data and select which sampling technique is used. There are 

several diverse types of sampling methods, including simple random sampling, stratified sampling, 



 

 

and cluster sampling, among others. There is no golden rule on which sampling method should 

be used, rather it depends on the requirements and goals of the analysis and the data's 

characteristics. In this thesis, we chose Random Sampling (RS) and Kennard-Stone (KS; often 

referred to as Computer-Aided Design of Experiment; CADEX) algorithms as sampling methods 

to assess the differences between the selected sampling methods. 

 

2.3.1. Random Sampling Selection 

Random Sampling (RS, which is often referred to as Simple Random Sampling; SRS) is one of 

the probability-based sampling methods, and it is the most used sampling technique because of 

its easier implementation by computer software. It randomly selects the observations without 

replacement from a finite list of samples, so that each observation has an equal chance of being 

selected. 

 

2.3.2. Kennard-Stone Sampling Algorithm 

The KS algorithm was proposed by Kennard and Stone [40] and it is a commonly used sampling 

method in the Chemometric fields. It is based on the distance over the 𝑋 variable space to capture 

as much diversity in the original data set. To select a representative subset of 𝑛 samples from a 

given set of 𝑁samples (𝑛  <  𝑁), the KS algorithm follows stepwise three procedures; [41] 

1. Find two samples that have the farthest distance between data points, assign them to 

the training dataset  

2. Find the next sample that has the longest distance from the already selected samples.  

3. Repeat step 2 until it reaches the desired number of samples 

By repeating step 2, the training dataset is filled with the minimum distance to all already included 

samples. A graphical representation of the KS algorithm is depicted in Figure 4, which elucidates 

the first and second procedures of the algorithm. The classical KS algorithm suggested the 

Euclidean distance to compute; however, the modified KS algorithm proposed the Mahalanobis 

distance [42]. The Euclidean distance is a straightforward measure of the distance between two 

points. The Mahalanobis distance is a measure of distance that considers the covariance between 

variables. Both are commonly used measures in data science; however, the Euclidean distance 

is a simpler and more intuitive measure, while the Mahalanobis distance is more appropriate when 

the variables are not independent.  

While RS is based on statistical randomness, the KS sampling algorithm determines the training 

data set based on the mathematical distance metric between data points. Thus, repeated RS will 

generate multiple different subsets of data, whilst repeated sampling of KS will generate the 

sample subset unless additional data is added to the selection pool.  



 

 

 
Figure 4. A graphical representation of the KS algorithm. Two red points imply the longest distance 
among the given data and select as a starting point for the training data set. When comparing the 
distances of each blue dot and the red dot, A, the farthest distance between the two, is chosen. The 
process then re-iterates until the required number of subsamples is reached. 

 

2.4. Variable selection – choosing the variables used for training models 

Variable selection, also known as feature selection in machine learning, is the process of selecting 

a subset of related variables (also referred to as features or predictors) for building a statistical 

model. The general purpose of variable selection is to identify the most relevant and informative 

variables to predict a target variable and to reduce the number of variables used in the model by 

removing or dropping less relevant variables. It can be expected to improve model accuracy 

(when the number of predictors is large) because the model is trained on only the most valuable 

information by selecting the most relevant variables. Furthermore, models with fewer variables 

increase interpretability, as there are fewer variables to consider. Lastly, it reduces the overfitting 

problem by reducing the number of variables used in the model. There are several different 

techniques for performing variable selection, including filtering methods, wrapper methods, and 

embedded methods [18]. Here, a Markov Blanket (MB) structure learning algorithm is used as a 

variable selection method to achieve the minimal subsets as this has recently been shown to 

perform well in livestock datasets ultimately used for animal breeding purposes. 

 

2.4.1. Markov blanket – Bayesian Network structure  

Bayesian network (BN) is a graphical model that can be described as a directed acyclic graph 

(DAG) 𝐺  =  (𝑉,  𝐸) , where the nodes 𝑣𝑖   ∈ 𝑉  correspond to each random variable 𝑋  =

 {𝑋1,  𝑋2,   ⋯ ,  𝑋𝑁}, and the edges (or arcs) represent the dependent relationship between the linked 

nodes by conditional probabilities. It needs a few more terminologies to elucidate the BN; directed 

separation criterion (D-separation), which considers the directionality of arrows in the graph, and 

an independency map (I-map), which is the probabilistic dependence structure between the 

random variables in 𝑋 and the nodes 𝑉 of 𝐺 . The property of BN (Markov property) enables 

factorization that can calculate the joint probability distribution of the random variable 𝑋(Global 



 

 

distribution) as a product of the conditional probability distributions associated with each variable 

𝑋𝑖  (Local distribution) [20,43]. In other words, the key concept of BN is DAG which represents the 

probabilistic dependencies split into each variable in a given random variable set 𝑋, and it also 

can be used to infer the causal effect only under certain assumptions [44]. BN may be hard to 

illustrate as an image if there are many variables, but it enables us to obtain a Markov blanket 

(MB) that is a minimal set of the given random variables (Figure 5). The MB is the set of node A 

that consists of the direct parents of A, the children of A, and all the other nodes which share a 

child with A by following D-separation. In other words, the collection of variables conditioned on 

which all other variables are probabilistically independent. 

 
Figure 5. An example of a graphical sketch of MB. The bold line represents the MB of X6 in a given 
random variable X1 to X13, and it consists of its parent's node (X3, X4), children's node (X8, X9), and 
children’s other parents (X5, X7) 

 

2.4.2. Constraint-based structure learning algorithm – Incremental Association Markov 

Blanket (IAMB) 

Constructing a BN structure is called learning, including structure learning and parameter learning. 

The former aims to identify the graph structure of BN to have the minimal MB of the data, and the 

latter is for the parameter estimation of the global distribution. There are three broad approaches 

to finding a BN structure learning, including constraint-based, score-based, and ensemble (hybrid), 

and several algorithms have been proposed. The Inductive Causation (IC) algorithm proposed by 

Verma and Pearl in 1991 [45], which offers a theoretical framework for understanding the BN 

structure, serves as the basis for all constraint-based algorithms; however, it is unfeasible in the 

real world due to the exponentially increasing computation problem. Several algorithms have 

been developed to improve this issue, and we will discuss the Incremental Association Markov 

Blanket (IAMB) algorithm among them. 



 

 

The IAMB algorithm is a constraint-based structure learning algorithm for BN, and it consists of 

two phases that have a forward selection followed by a backward selection. It starts from the 

empty set and adds the nodes (variables) to make the maximum MB set, including the false 

positives. Then, it removes the unrelated nodes one by one by conditional independence test in 

the backward phase. It repeats until the BN structure converges to a stable. Since the 

performance of IAMB relies on the number of conditional independence and its associated 

calculations, IAMB has 𝑂(𝑀𝐵  × 𝑁) an average time complexity. It also has 𝑂(𝑁2) in the worst 

case if the number of MB is equal to 𝑁. (See the pseudocode provided in Figure 2 of [46].) 

 

2.5. Partial Least Squares Regression (PLSR)  

Partial Least Squares (PLS, often called a projection to latent structures) is a statistical method 

used for analyzing the relationship between two data sets (𝑋 and 𝑌), and it was first designed by 

the Sweden statistician Herman Wold in the late 1960s. It became popular in chemometrics as a 

standard analysis tool for chemical analytics because of the works of Svante et al., 2001 [47]. 

PLS has the advantage of processing data in the following two cases: (1) the wide matrix, where 

there are a small number of observations (𝑛; rows) and the relatively large number of predictors 

(𝑝; variables), and (2) multicollinearity of predictors, meaning the presence of high correlations 

between the predictors. In the first case (𝑛  ≪  𝑝), the problem of having more predictors than 

degrees of freedom (common in the least squares methods) is overcome by regressing on a 

number of latent variables for which there are adequate degrees of freedom. However, it can 

cause an overfitting problem that is not generalized to the new data set when we build the model 

using high-dimensional data. In this case, it leads to poor model performance and gives 

consequently inaccurate prediction values than what is expected based on the test data 

performances. In the second case, multicollinearity, which is due to highly correlated predictors, 

results in sensitive and inconsistent coefficient estimation in regression. In other words, 

multicollinearity causes an unstable regression model, so it is difficult to estimate the regression 

coefficients. Hence, it is one realistic approach to use the PLS method in these cases.  

An understanding of principal component analysis and principal component regression is needed 

to know how PLSR overcomes the two problems which are previously mentioned. PLS solves 

these problems through a variant of the principal component analysis (PCA), which is the 

dimensional reduction technique. PCA is an unsupervised method that extracts the latent 

variables (components) based on the variation that exists in the predictors (𝑋) using singular value 

decomposition (SVD). The principal components have the favorable property of being orthogonal 

to each other, and this property is the solution for the multicollinearity problem because orthogonal 

sets are automatically linearly independent. The number of principal components is the same as 

the number of predictor variables; however, the proportion of variation they explain in the predictor 

variables is from the most to the least. This results in another favorable property where a subset 

of principal components can explain a high percentage of variation in the original predictor 

variables. These principal components can be used as the variable instead of the original 

predictor variables and reduce the number of variables to a subset less than 𝑛. This approach 

can be extended to regression called Principal Components Regression (PCR). Similarly, PLS-

Regression (PLSR) is a supervised method in machine learning and a type of multivariate 

regression that makes predictions by extracting the orthogonal factors known as PLS components. 

Both methods are used for dimension reduction, but different results are obtained because of the 

different approaches. In terms of PCR, it only takes into account the predictors (𝑋) to perform the 



 

 

Principal Component Analysis (PCA) and find the maximum variance, fitting the model based on 

the principal components. However, there is no guarantee that the latent variables explain the 

target variable 𝑌 since it only relies on the given 𝑋 data. On the other hand, PLSR implements 

the same by considering the relationship that exists between predictors (𝑋 ) and response 

variables (𝑌).[48]. PLSR decomposed the given 𝑋 and 𝑌simultaneously as followed: 

𝑋  =  𝑇𝑃𝑇   +  𝜖1 (9) 

𝑌  =  𝑄𝑃𝑇   +  𝜖2 (10) 

In the equation (9) and (10), 𝑇 and 𝑈 are called the scores matrix, which is orthogonal to each 

other and contains the latent variables, and 𝑃 and 𝑄 are the loadings (weights). The PLSR model 

can be simplified the two relations: outer relations between 𝑋 and 𝑌 and inner relations between 

𝑇 and 𝑈.  

Choosing the appropriate number of components is an essential task for the complexity and 

accuracy of the PLSR model. It may lead to an underfitting problem with fewer components, while 

an overfitting problem results from too many components. Cross-validation (see Section 2.6) 

using the calculation of the prediction residual error sum of squares (PRESS) is one way the 

selection of model complexity. A minimum PRESS value is calculated differently by the given data 

set, at least, empirically selecting the number of components that have the minimum PRESS is 

desirable [49]. 

 

2.6. Model Assessment – Metrics and cross-validation 

Model evaluation is the last step in the analysis process to assess how generally applicable the 

fitted model is and to measure the explainability of the model. The most common evaluation metric 

is R2 (R-squared, often called the coefficient of determination in Statistics), which shows how 

much of the variance for a dependent variable in a regression model is explained by one or more 

independent variables. The mathematical formula is followed as: 

𝑅2  =  1  −  
𝑆𝑆𝐸

𝑆𝑆𝑇
  =  1  −  

∑ (𝑦𝑖   −  𝑦�̂�)
2𝑛

𝑖 =1 

∑ (𝑦𝑖   −  𝑦𝑖)
2𝑛

𝑖 = 1

 (11) 

It is calculated by subtracting the proportion of the Sum of Squared Errors (SSE) divided by the 

Sum of Squared Total (SST) from 1. SSE measures the discrepancies between data and 

predicted data by the model, and SST measures the differences between the data and its mean. 

Thus, the ratio of SSE and SST has represented the overall variation percentage that cannot be 

explained by the model. Theoretically, we can say that the model fits well when R2 is close to 1. 

But in principle, the R2 has the possibility to take a negative value when the SSE is greater than 

SST in Formula 11. It means either the model did not explain enough of the given data, or the 

data contains the non-linearity characteristic that results in very large errors.   

Another widely used evaluation metric is Root Mean Square Error (RMSE), which is the square 

root of the Mean Square Error (MSE). The MSE measures the average of the differences between 

the actual data and the predicted data by the linear model, and it is often used in machine learning 

as a cost function for model performance. It is easy to apply and implement, while it takes the 



 

 

disadvantage of being affected by outliers. The RMSE alleviates this disadvantage by taking the 

root. 

𝑅𝑀𝑆𝐸  =  √
∑ (𝑦�̂�  −  𝑦𝑖)2
𝑁𝑃
𝑖 = 1

𝑁𝑃
 (12) 

, where 𝑦�̂� are the predicted values, 𝑦𝑖 represents the actual value of individual fatty acids for 
the number of 𝑁𝑃 samples. 

 

Cross-validation is a statistical method used to estimate the prediction error (e.g., R2 and or 

RMSE), and it is commonly used in machine learning to compare and select the best model 

because it is easy to implement and understand. In the case of PLSR and many other methods, 

increasing the number of latent variables will typically result in an increase in R2 and a decrease 

in RMSE. However, when such models are tested with independent datasets, they usually show 

a drastic drop in performance and generalization. To combat this, cross-validation is used to 

determine model performance in a proportion of the data that has not been used to train the model. 

The k-fold cross-validation is one type of cross-validation test that randomly divides the data into 

k groups (folds) of almost equal size. The first fold is assigned as a validation set, and the rest (k-

1 groups) parts are used to build the model in a test set. The MSE is then calculated on the first 

fold. This process is repeated k times until all k-folds are treated as a validation set, it results in 

the k number of MSE, and k-fold cross-validation is calculated by taking the average of these 

(Figure 6). The k in the k-fold cross-validation uses empirically 5 to 10 to take advantage of 

computational time, but there is no golden rule. When k is equal to the sample size, then it is 

known as leave-one-out cross-validation [50]. 

 
Figure 6. A graphical representation of k-fold cross-validation. Each fold selected a different validation 
set and calculated the validation accuracy. MSE by k-fold cross-validation calculated the average 
validation accuracy of each fold. 

 



 

 

3. Materials and Methods 

3.1. Sample data acquisition 

The processing of biological salmon samples in the current dataset has been described previously 

[15,51,52]. Briefly, the salmon originated from Benchmark Genetics AS as part of their commercial 

breeding practice and comprised 194 full-sibling families, which means the same set of biological 

parents, from 92 sires (father; male) and 194 dams (mother; female). The pedigree dataset 

contains all genetic relationships traced back to a total of 5 generations of information (F0 to F4) 

and includes a total of 1685 individuals. All fish were transferred to the sea when they reached an 

average body weight of 113.1g and were reared under the same conditions until they reached an 

average body weight of 3605g. They were fed a diet with high fish oil content and fasted about 2 

weeks before slaughter. After slaughter, a total of 668 sample data were obtained by recording 

characteristics such as weight (g), length (cm), age, and sex. Salmon muscle fillet was followed 

by the Norwegian Quality Cut (NQC) standards and was stored in freezing conditions of -20 

degrees after harvesting. Total lipids were extracted from muscle tissues following the method 

described by Folch et al., 1957 [53], and the fatty acids composition of the total lipids was analyzed 

as the method described by Mason and Waller [54]. Each fatty acid was expressed as a 

percentage of total fatty acid contents; for the purpose of this thesis, we only further considered 

three Omega-3 fatty acids; ALA, EPA, and DHA. 

 

3.2. Acquisition of spectroscopy measurements 

Both spectroscopic techniques were measured on ground salmon samples taken from the Atlantic 

salmon fillets. NIR spectra were measured using FOSS NIR Systems XDS Rapid ContentTM 

Analyzer (FOSS Analytical A/S, Hillerød, Denmark) with a range from 400 nm to 2500 nm in 0.5 

nm increments. The NIR spectra were converted to absorbance (A) units using the reflectance 

(R); A = log10(1/R). The NIR spectra selected in a range from 1150 nm to 2500 nm were used 

because they contained the relative Omega-3 fatty acid information [12], and SNV was applied 

as a pre-processed method for a baseline correction in a range from 1150 nm to 2450 nm. All the 

replicated measurements of NIR spectra were averaged for further analysis. 

Raman spectra were measured using a Kaiser Raman-RXN2™ Multi-channel Raman analyzer 

(Kaiser Optical Systems, Inc., Ann Arbor, MI, USA) with a range from 300 cm -1 to 1890 cm-1 in 

0.3 increments. Raman spectra were selected between 500 cm-1 and 1800 cm-1, and EMSC with 

a sixth-order polynomial extension was used as a pre-processing method for scatter correction. 

A sixth-order polynomial extension showed the best performance and it related to constructing a 

more parsimonious prediction model by choosing fewer components to reach minimum RMSE 

cross-validation (RMSECV) [55]. All the triplicated Raman spectra were averaged to the nearest 

whole number for further analysis. In short, SNV was applied to NIR spectra for the pre-processed 

method, while EMSC with a sixth-order polynomial extension was applied to Raman spectra 

[15,52]. After calculating the average of each spectrum wavelength, both have 1300 equal 

numbers of spectral wavelengths (Raman shift) and are used as predictors (variables, features) 

in regression models. 

 



 

 

3.3 Experimental design and data partitioning 

A total of 613 data were used in the subsequent analysis after all necessary data were merged 

and cleaned. All analyses were performed with R version 4.1.2 (R core team 2021), which is an 

extensively used statistical software. As described in Section 2.2, splitting the sample into training 

and testing datasets is a base stage for building models and validation. In data science, the data 

can be divided into two parts: training and test data; the training data set is empirically allocated 

from 60% up to 80% of sample data, while the rest is automatically assigned as a test data set. 

In this thesis, 100 samples (16%) are assigned as a training data set by both RS and KS, which 

is a sampling selection method, while the test data set has 513 observations (84%). This particular 

approach of allocating a relatively smaller number of training data samples was employed for two 

reasons. Firstly, in practice, due to the high cost of reference method analysis and logistical 

constraints, only 20-100 samples have concurrent spectral measurements in practice, and 

reference measurements are used for model building and validation. Secondly, the genetic 

models require adequately large data (102-103) to converge, and we wished to estimate 

quantitative genetic parameters on data not used for model building. The reasoning was to ensure 

that quantitative genetic analyses avoid overfitting problems and overly optimistic results. 

According to Difford et al., 2021 [52], in commercial and research of Atlantic salmon, the number 

of fish with spectroscopic measurements can vary from 19 to more than two thousand samples. 

Afseth et al., 2006 [56], obtained and utilized 50 salmon samples of Atlantic salmon for the 

potential of Raman spectroscopy using PLSR. As an extra quality control step, two further steps 

were conducted; 1) the model performance varied the sample sizes from 50 to 500 where run, 

and samples sizes above 100 showed diminishing returns (results presented in Appendix A as 

this was outside of the scope of this thesis) and 2) the model performance using the full data (n = 

613) showed similar results by using fewer number of components than published studies (results 

presented in Appendix B). 

The KS algorithm implementation in R software used the kenStone function of the prospectr 

package [41], and it can choose either the Euclidean or the Mahalanobis distance to compute the 

distance between two data. The Mahalanobis distance was selected as a distance metric because 

each wavelength is highly correlated to the others. RS sampling method used the sample function 

in the base package, which is a built-in function in R, and it was performed without replacement 

to keep the training data size consistent and prevent observations from being selected more than 

once. To overcome the small training sample size and to ensure concrete results by comparison 

of sample selection methods, 10-fold cross-validation was applied. In addition, since RS 

generates a different 100 samples and KS always results in the identical 100 samples, it was 

decided to run the models with 10 repetitions of RS to approximate the variation in R2 and RMSE 

to be expected in practice when using the RS approach. Effectively 10-fold cross-validation is 

conducted within each RS repetition (See in Figure 7). 

 



 

 

 
Figure 7. Graphical representation of 10-fold cross-validation by the sample selection methods. RS 
iterated 10 times enables to get the range of the PLSR model accuracy, while KS operated only one time 
due to the designed algorithm. 

 

The MB approach was implemented as a variable selection method to get the minimal subset of 

variables from vibrational spectroscopy data. Several algorithms have been developed to 

implement the BN learning structure, but the IAMB algorithm was performed for detecting MB in 

the given vibrational spectroscopy data because it shows good performance in terms of 

computation time and relatively high accuracy [57]. The learn.mb function of the bnlearn package 

in R [58] was used to detect the MB of each fatty acid using all wavelengths in both spectroscopy 

(n = 1300).  

Therefore, four scenarios were defined for each of the vibrational spectra types based on different 

combinations of sample selections and variable selections; 

• RS using full variable (without variable selection) 

• RS using MB 

• KS using full variable (without variable selection) 

• KS using MB 

These scenarios, illustrated by different colors in Figure 8, included the 100 training samples that 

were selected based on RS or KS, and vibrational spectra were full (e.g., 1300 variables) or a 

reduced subset using MB. 

PLSR was built to predict each of the respective Omega-3 fatty acids of interest (EPA, DHA & 

ALA) using either NIR or Raman spectroscopy under the four scenarios, and both spectroscopy 

data were preprocessed identically to have the same number of variables before regression 

analysis. The fitted model was constructed by using the plsr function in R pls package with a 

maximum of 15 principal components. The appropriate number of components was chosen based 

on the smallest RMSEP (Root Mean Squared Error of Prediction) values within the validation set 

to avoid the over-or underfitting problem in the PLRS model. The Kernel algorithm was chosen 

instead of the NIPALS algorithm, which is the classic orthogonal scores algorithm as default in 

the plsr function, because it yields the same results as NIPALS, and the kernel algorithm is fast 

for most cases as well [59]. 

Based on the findings from the PLSR models tested, it was decided that the genetic evaluations 

would be conducted only on KS scenarios, as these results are inherently more stable and tended 

to result in the lowest RMSE. As a result, 12 different models (3 fatty acids x 2 vibration spectra 



 

 

x 2 scenarios based on the variable selection) were used to predict the respective fatty acid 

content in the remaining 513 samples that were not used in the model training. The Rdmu 

package in R was used to interface with the DMU version 6, which was developed for analyzing 

multivariate mixed models in quantitative genetics. Quantitative genetic parameters were 

estimated by employing the Rdmuai function using multivariate mixed models in DMU version 6 

[60]. Using equation (6) above, where 𝑦 indicates the individual phenotype vectors (reference 

phenotypes for EPA, DHA, and ALA, or predicted phenotypes for EPA, DHA, and ALA), 𝑋 is the 

fixed effect matrix, which only included sex (three levels; male, female, and unknown), b is the 

coefficient vector corresponding to the 𝑋, and 𝑍 is the random effect matrix of genetic effects 

using the pedigree-derived numerator relationship matrix 𝐴, 𝑎 is the vector of estimated breeding 

values 𝑎 ~ 𝑁(0,  𝐴𝜎) , and 𝑒  is the residuals under 𝑎  normal distribution. Bivariate models of 

equation (6) were run between paired reference and predicted phenotypes (e.g., reference EPA 

and predicted EPA). The DMU output files then contained the phenotypic and genotypic 

correlations with their associated standard errors and heritability estimates. 

 

 
Figure 8. A graphical description of the methodology of this thesis for Atlantic salmon. Four different 
colors indicate different scenarios by sample selection and variable selection methods. 

 



 

 

 
Figure 9. The summary of the data analysis process for this thesis according to Figure 1. 

 

In short, Figures 8 and 9 illustrate the graphical description of the methodology flows of this thesis 

and a graphical summary of the data analysis process, which correspond to Figure 1. The four 

distinguished colors in Figure 8 suggest the different scenarios by the combination of sample 

selection and variable selection. The twelve respective PLSR models are compared in the 

following result section, encompassing the individual fatty acids, vibrational spectroscopy, and 

sample and variable selection methods. 

 

4. Results 

Table 1 shows the descriptive statistics of Omega-3 fatty acids using the reference data, which 

contained 613 samples. DHA has the highest percentage of fatty acids among the total Omega-

3 fatty acids, whilst ALA was the lowest in value. The proportional content of DHA has a wide 

range (4.34-9.04), while ALA has a narrow range (2.86-4.35). 

Table 1. Descriptive statistics of proportional content (%) of Omega-3 fatty acids 

Fatty Acids1
 Mean Min Max SD2

 

EPA 5.137 2.57 6.47 0.462 

DHA 6.758 4.34 9.04 0.523 

ALA 3.447 2.86 4.35 0.226 

Total Sum 15.342 12.33 17.94 0.702 
1 EPA = (eicosatetraenoic acid, C20-5n3), DHA = (docosahexaenoic acid, C22-6n3), and ALA = (α-

linolenic acid, 18:3n-3)  
2 SD = standard deviation 

 



 

 

4.1 NIR and Raman Spectra and IAMB selection 

The NIR and Raman spectra for all samples are visually described in Figure 10 and Figure 11. 

As described in Section 2.1 and Section 2.2, each spectroscopy has a unique feature to identify 

chemical compounds as a fingerprint. In the literature [12], the NIR spectra characterized wider 

peaks than the Raman spectra due to the water absorption, which are found at 1190, 1930 nm 

(O – H stretch; the molecule vibration motion of the oxygen and hydrogen), and 1450 nm (O – H 

stretch overtones). The molecular vibration of the first overtones (v = 0 to v = 2) are located around 

1715 and 1760 nm, and the second overtones (v = 0 to v = 3) are located at about 1200 nm. On 

the other hand, the Raman spectroscopy showed very sharp peaks, where the first two highest 

peaks are located around 1665 (C = C stretch; which refers to the carbon-carbon double bonds) 

and 1440 (CH2 scissoring; one of bending vibrations of CH2 groups) cm-1, and the second highest 

peaks are found around 1266 (C – H rock; the molecule rocking motion of the carbon-hydrogen) 

cm-1 and 1300 (CH2 twist; one of bending vibrations of CH2 groups) cm-1 [15,61]. 

 

The selected wavelengths for each Omega-3 fatty acid of interest (EPA, DHA, and ALA) using 

the MB in NIR spectroscopy (Figure 10) and Raman spectroscopy (Figure 11) are contrasted 

using color-coded vertical dotted lines. All the list of selected wavelengths (Raman shifts) by MB 

are in Appendix C. The IAMB algorithm used to get the optimal sets for each fatty acid performed 

well, but it only returned two wavelengths (at 1450 and 2427 nm) for EPA in NIR spectroscopy. 

Hence, this particular scenario could not be applied to the PLSR model for EPA estimation. In the 

case of NIR and ALA, and DHA, thirty-seven wavelengths were selected from the total 1300 

wavelengths, of which three wavelengths (1665, 1751, and 1762 nm) overlapped. 

 
Figure 10. A solid vertical line indicates the selected wavelengths using the MB in NIR spectroscopy for 
each fatty acid; eicosatetraenoic acid (EPA; Red dotted line), docosahexaenoic acid (DHA; Blue dotted 
line), and α-linolenic acid (ALA; Orange dotted line). 

 



 

 

In the case of Raman, the IAMB algorithm selected seventy-four Raman shifts for EPA, thirty-

three for DHA, and seventy for ALA. There are no common variables across Raman spectroscopy 

for all fatty acids. Interestingly, each pair has several variables in common; five Raman shifts 

(1371, 1453, 1469, 1610, and 1692 cm-1) between EPA and DHA, four shifts (822, 835, 1648, and 

1679 cm-1) between EPA and ALA, and two shifts (929 and 1666 cm-1) between DHA and ALA. 

Figure 11 shows several unselected ranges for all fatty acids, including the range of 770-821 cm-

1. 

Some of the wavelengths (Raman shifts) selected by MB are exact matches or very close to the 

fingerprints in the literature. For example, the MB picked at 1450 nm in EPA, around 1200 nm, 

and 1750 nm in DHA and ALA in NIR spectra, while it selected at exactly 1665 cm-1 in EPA, 1666 

cm-1 in DHA and ALA, which is close to 1665 cm-1, and some wavelengths (Raman shifts) around 

1400 and 1300 cm-1 across Omega-3 fatty acids in Raman spectra. 

 
Figure 11. A solid vertical line indicates the selected wavelengths using the MB in RAMAN spectroscopy 
for each fatty acid; eicosatetraenoic acid (EPA; Red line), docosahexaenoic acid (DHA; Blue line), and 
α-linolenic acid (ALA; Orange line) 

 

4.2. Prediction of Omega-3 fatty acids across scenarios 

The predictive performance of PLSR models across all four scenarios contrasting different 

combinations of RS and KS with or without MB variable selection for NIR and Raman are 

presented in Table 2 for comparison. To ensure robust results under RS scenarios, 10 repetitions 

were conducted to approximate the full variability RS can result in. Note that KS chose identical 

samples due to the algorithms, while RS selected non-identical training data samples for each 

iteration. In the case of different RS iterations, the optimal PLSR model can have different 

numbers of components, as such the range of components is included in Table 2. Additionally, a 

further PLSR result for the entire dataset using both spectroscopy is in Appendix B, in which the 

overall results showed a similar or slightly less model accuracy but used less number of 

components than Afseth et al., 2022 [15].  



 

 

The overall results in Table 2 show that the R2 and RMSE varied according to the fatty acids, 

vibrational spectroscopy (NIR and Raman spectroscopy), sample selection (KS and RS), and 

variable selection methods (with or without MB adoption). In general, KS showed the best affinity 

in NIR spectroscopy rather than Raman spectroscopy, while RS showed better performance in 

Raman spectroscopy. Raman spectroscopy showed robustness rather than NIR spectroscopy. 

The model performance is overall improved with the MB adoption rather than using all 1300 

variables. Graphical results are presented in Figure 12 for EPA and NIR where MB could not be 

utilized and in Figure 13 for NIR with ALA and DHA. Figure 14 graphically presents all three fatty 

acids of interest with Raman spectra. 

Table 2. PLSR results of ten times repetition for each fatty acid across scenarios of sample and variable 

selection for NIR and Raman spectroscopy 

Fatty 

Acids1 

Spectros

copy2 

Sample 

Selection
3 

Variable 

Selection
4 

Variable 

Number 

Compone

nt 

Number5
 

Mean R2 

(Min-Max) 

Mean 

RMSE 

(Min-Max) 

EPA NIR RS FULL 1300 12(14) 0.5 
(0.38-0.58) 

0.33 
(0.3-0.39) 

MB 2 - - - 

KS FULL 1300 14 0.57 0.31 

MB 2 - - - 

Raman RS FULL 1300 4(8) 0.66 
(0.54-0.73) 

0.27 
(0.24-0.32) 

MB 74  4(9) 0.71 
(0.61-0.8) 

0.25 
(0.22-0.29) 

KS FULL 1300 11 0.59 0.25 

MB 74 15 0.64 0.23 

DHA NIR RS FULL 1300 11(13) 0.51 
(0.38-0.59) 

0.38 
(0.34-0.44) 

MB 37 11(15) 0.55 
(0.43-0.62) 

0.36 
(0.32-0.41) 

KS FULL 1300 12 0.56 0.34 

MB 37 11 0.67 0.36 

Raman RS FULL 1300 5(9) 0.62 
(0.54-0.69) 

0.33 
(0.3-0.38) 

MB 33 5(7) 0.69 
(0.56-0.74) 

0.3 
(0.27-0.36) 

KS FULL 1300 5 0.61 0.29 

MB 33 7 0.67 0.27 

ALA NIR RS FULL 1300 12(15) 0.46 
(0.22-0.56) 

0.17 
(0.16-0.22) 

MB 37 13(15) 0.58 
(0.42-0.69) 

0.15 
(0.13-0.17) 

KS FULL 1300 15 0.54 0.16 

MB 37 15 0.65 0.15 

Raman RS FULL 1300 6(10) 0.62 
(0.47-0.69) 

0.14 
(0.13-0.17) 

MB 70 6(11) 0.73 
(0.6-0.8) 

0.12 
(0.1-0.15) 



 

 

KS FULL 1300 9 0.53 0.13 

MB 70 10 0.65 0.11 
1 EPA = (eicosatetraenoic acid, C20-5n3), DHA = (docosahexaenoic acid, C22-6n3) and ALA = (α-linolenic 

acid, 18:3n-3), 2 NIR = Near-Infrared Spectroscopy, Raman = Raman Spectroscopy,  
3 RS = Random Sample, KS = Kennard Stone, 4 FULL = complete spectra, MB = Markov Blanket, 
5 Range of Number of Components = first interquartile range to the third interquartile range because of the 

variety of ranges based on the RS. 

 

The PLSR models using NIR spectroscopy yielded lower estimates in RS scenarios; EPA has an 

average R2 of 0.5 (in a range of 0.38-0.58) across components 12 to 14, DHA has an R2 of 0.51 

(in a range of 0.38-0.59) across components 11 to 13, and ALA has an R2 of 0.46 (in a range of 

0.22-0.56) across components 12 to 15. The identical model but using the KS method provided a 

better estimation for each fatty acid (EPA, DHA, and ALA) with estimates R2 around 0.55 (0.57, 

0.56, and 0.54) when the model used 14, 12, and 15 components, respectively. Furthermore, the 

R2 is generally increased when the MB is applied to the PLSR models. The MB opted for an 

identical number of wavelengths for each vibrational spectroscopy depending on the individual 

fatty acid, and the PLSR models were constructed using different numbers of latent variables 

according to the spectroscopy data, sample selections, and variable selection. The MB is not 

employed in the case of the EPA in the PLSR models using NIR spectroscopy because only two 

wavelengths are selected in the IAMB algorithm. For DHA estimation, the PLSR model using NIR 

spectroscopy combined with RS and MB shows an average R2 of 0.55 (in a range of 0.43-0.62) 

across the number of components 11 to 15 among 37 wavelengths. ALA estimation shows an 

average R2 of 0.58 (in a range of 0.42 to 0.69) across the number of components 13 to 15 among 

37 wavelengths. Besides, the R2 showed the best performance when the MB is combined with 

the KS in the PLSR model; DHA estimates an average R2 of 0.67 with 11 latent variables among 

37 selected wavelengths, while ALA estimates an average R2 of 0.65 using 15 components within 

37 selected wavelengths. Note that the MB chose the same total number of wavelengths in DHA 

and ALA, but they are mostly different wavelengths. 

 

The PLSR models using Raman spectroscopy yielded better estimates than those using NIR 

spectroscopy, regardless of employing sample selection and variable selection. It built the models 

using relatively fewer components than using NIR spectroscopy. The PLSR models using Raman 

spectroscopy in RS provide an average R2 of 0.66 (in a range of 0.54-0.73) by components 

between 4 and 8 for EPA, while it generates an average R2 of 0.62 (in a range of 0.54-0.69) using 

between 5 and 9 latent variables for DHA, and an average R2 of 0.62 (in a range of 0.47-0.69) 

using 6 to 10 components for ALA. Interestingly, the model used KS yielded a lower prediction 

range than RS. The PLSR models constructed with Raman spectroscopy using KS provide an 

average R2 of 0.59 with 11 components for EPA, an average R2 of 0.61 with 5 components for 

DHA, and an average R2 of 0.53 with 9 components for ALA. As with the PLSR model using NIR 

spectroscopy, employing the MB also helped to increase the R2 no matter which sample selection 

methods were used. The PLSR models constructed with Raman spectroscopy using RS adding 

the MB as a variable selection provide an average R2 of 0.71 (in a range of 0.61-0.8) using 

between 4 and 9 components for EPA in 74 selected wavelengths through MB, while it provides 

an average R2 of 0.69 (in a range of 0.56-0.74) using 5 to 7 latent variables at 33 selected 

wavelengths for DHA, and an average R2 of 0.73 (in a range of 0.6-0.8) using 6 to 11 latent 

variables at 70 selected wavelengths for ALA. The PLSR models constructed with Raman 

spectroscopy using KS adding the MB generates an average R2 of 0.64 using 15 components for 



 

 

EPA, an average R2 of 0.67 using 7 latent variables for DHA, and an average R2 of 0.65 using 10 

latent variables for ALA. 

 

 
Figure 12. Comparison of KS and RS repetitions of EPA by the PLSR model using NIR spectroscopy. 
The left side of the figure shows R2 of ten times repetitions by the sampling method and the right side 
shows RMSE. In each repetition, the orange dot represents the value obtained by the fitted model on the 
dataset partition following the KS, and the blue asterisks denote the corresponding values on the n = 100 
dataset partitions provided by the RS method. 

 

Figure 12 shows a range of each model assessment value (R2 and RMSE) of EPA by the fitted 

PLSR model using NIR spectroscopy depending on the selected sample by the RS or KS. In 

Figure 12, R2 has the lowest value (R2 = 0.38) in repetition 6 of the RS, which shows poor 

performance even compared with KS. The KS method gives identical R2 values (R2 = 0.57) 

regardless of the iteration and enables us to obtain similar or better R2 values than the RS method, 

and the RMSE values also consistently show a similar pattern. Figure 13 and Figure 14 describe 

the ten times iteration results of the PLSR using the vibrational spectroscopy combined with the 

sample selection methods and variable selection. Figure 13-A and Figure 13-B show the 

comparison results for DHA of the PLSR models using NIR spectroscopy based on the sample 

selection methods, while Figure 13-C and Figure 13-D show the comparison results for ALA. One 

noticeable point is that sample selection methods combined with MB showed an improvement in 

R2 values rather than without MB adoption, whilst it didn't reduce the RMSE values as much as it 

did. Figures 14-A, C, and E show the ten times repetition results of R2 comparison according to 

the sample selection methods combined with MB for the individual fatty acids of the PLSR models 

using Raman spectroscopy, and Figures 14-B, D, and F show ten times repetition results of RMSE. 



 

 

Similarly, the iteration results show that applying MB to the sample selection methods boosts R2 

and reduces the RMSE. An interesting point of Figure 14 is that RS with MB shows the highest 

range of RS among the other scenarios. Some repetitions in Figure 14-A and C show the highest 

value (R2 = 0.8) that can be yielded for the RS combined with MB. 

 

  

  
Figure 13. Comparison R2 and RMSE for DHA (A-B) and ALA (C-D) using NIR spectral according to 

scenarios combining sample selection and variable selection. Each repetition contains random sampling 

(RS) or Kennard-Stone sampling (KS) with Markov Blanket MB variable selection or not. Note, MB was 

not successful for EPA and is not presented (See Figure 12). 
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Figure 14. Comparison R2 and RMSE for EPA (A-B), DHA (C-D) and ALA (E-F) using Raman spectral 

according to scenarios combining sample selection and variable selection. Each repetition contains random 

sampling (RS) or Kennard-Stone sampling (KS) with Markov Blanket MB variable selection or not. In each 

iteration, the black dot represents the value from the fitted model on the data set following the KS and the 

red dot describes the value from the fitted model of the KS combined with MB, while the orange asterisks 

denote each iteration value corresponding on the n = 100 data set selected by the RS and the blue asterisks 

describe each fitted values by the RS combined with MB. 

 

4.3. Quantitative Genetic parameters 

The quantitative genetic parameters of the predicted EPA, DHA, and ALA from the KS sampling 

method with or without MB variable selection are presented in Table 3. The genetic parameters 

for the reference method individual fatty acids and those predicted from the PLSR were generally 

very similar. For instance, all predicted fatty acids were significantly heritable ranging from h2 = 

0.22 - 0.44 with standard errors in the range of 0.10 - 0.11. Importantly, the heritability estimates 

are remarkably similar between the reference phenotypes and the predicted phenotypes for the 

fatty acids, except for ALA using NIR with MB variable selection, which was approximately half 

(h2 = 0.22) of the respective reference phenotype heritability (h2 = 0.49). 

The genetic correlations between the reference phenotype and the predicted phenotype for all 

fatty acids were generally very strong and positive ranging from rG = 0.69 - 0.99, with standard 

errors ranging from 0.004 to 0.08. There was a tendency for higher genetic correlations in Raman 

spectroscopy rather than in NIR spectroscopy and a tendency to yield higher genetic correlations 

when the MB is applied instead of the full spectral data. The Raman spectroscopy applied to MB 

for ALA shows the highest genetic correlation (rG = 0.99). Regardless of the spectroscopy data, 

the genetic correlation for DHA applied to the MB provides a value greater than 0.9 and, albeit 

marginally, gives a higher value in Raman spectroscopy (rG = 0.94) than in NIR spectroscopy (rG 

= 0.93). The phenotypic correlation also tends to increase when the MB is applied; however, there 

are cases in which the phenotypic correlation does not increase even if the MB is applied. The 

phenotypic correlations reduce by approximately 4% (rP = 0.76 to rP = 0.73) for DHA and 3% (rP 

= 0.58 to rP = 0.55) for ALA in NIR spectroscopy. 

E F 



 

 

Table 3. Genetic parameter estimation results by RMDU. 

Fatty 

Acid1
 

Spectra2
 Variable 

Selection3
 

Genetic 

correlation 

(rG) ± S.E*. 

Phenotypic 

correlation 

(rP) ± S.E. 

True 

phenotype 

h2 ± S.E. 

Predicted 

phenotype 

h2 ± S.E. 

EPA NIR FULL 0.69 (0.04) 0.70 (0.11) 0.35 (0.10) 0.41 (0.11) 

MB - - -  

Raman FULL 0.84 (0.04) 0.75 (0.08) 0.43 (0.11) 0.38 (0.11) 

MB 0.86 (0.04) 0.79 (0.10) 0.39 (0.11) 0.35 (0.11) 

DHA NIR FULL 0.87 (0.08) 0.76 (0.16) 0.45 (0.12) 0.41 (0.11) 

MB 0.93 (0.08) 0.73 (0.16) 0.39 (0.11) 0.43 (0.11) 

Raman FULL 0.83 (0.05) 0.77 (0.12) 0.36 (0.10) 0.39 (0.11) 

MB 0.94 (0.08) 0.83 (0.17) 0.39 (0.11) 0.44 (0.11) 

ALA NIR FULL 0.66 (0.01) 0.58 (0.02) 0.34 (0.10) 0.35 (0.11) 

MB 0.81 (0.01) 0.55 (0.02) 0.49 (0.12) 0.22 (0.10) 

Raman FULL 0.75 (0.00)* 0.63 (0.01) 0.35 (0.10) 0.31 (0.10) 

MB 0.99 (0.01) 0.78 (0.10) 0.49 (0.11) 0.36 (0.10) 
1 EPA = (eicosatetraenoic acid, C20-5n3), DHA = (docosahexaenoic acid, C22-6n3) and ALA = (α-linolenic 

acid, 18:3n-3), 
2 NIR = Near-Infrared Spectroscopy, Raman = Raman Spectroscopy,  
3 MB = Markov Blanket, FULL = complete spectra, *S.E. = standard error, note these are rounded to the 

nearest digit two points after the decimal point, thus <= 0.004 is set to 0.00. h2 = heritability. 

 

5. Discussion 

In this thesis, we estimated individual Omega-3 fatty acids predicted by vibrational spectroscopy 

and their heritability based on the estimated predicted phenotypes. We have identified the 

potential for further research and evaluated the results across all combinations per scenario. 

 

5.1. Small datasets and repetitions in PLSR models 

As we mentioned in Section 3.3, the PLSR models were restricted to training on 100 samples 

which were selected according to the sample selection methods RS and KS. This choice was 

motivated by mimicking practical circumstances where difficulties in obtaining enough reference 

data are the reason researchers look into vibrational spectra and PLSR models. The second 

motivation was to have enough independent data to estimate genetic parameters like heritability 

and genetic correlations with sufficiently small standard errors. The fitted PLSR model performed 

well utilizing the small number of data sets; however, the k-fold cross-validations only used 

randomly selected 10 samples among the training data. Since reasonable doubts may arise as to 

whether this is a reliable number of training data for fitting the model or whether the cross-

validations work well, the model fitting and assessment procedure was repeated ten times using 

a small number of training data based on the sample and variable selection methods by individual 

fatty acids. This approach enabled us to see the distribution of R2 and RMSE by the RS sampling 

method and helped to find a possible experiment in a given situation. We acknowledge that 

increasing the training sample sizes will further increase the R2 and decrease the RMSE of 

prediction as demonstrated by Afseth et al., 2022 [15], but the current work demonstrated what 



 

 

can be achieved with training sample sizes more closely aligned to commercial practices Difford 

et al., 2021 [52] for Atlantic salmon. Interpretation of the PLSR model using the full dataset 

(Appendix B) was out of scope for this thesis, and it is not recommended to be used to train data 

on the testing dataset from a Machine Learning perspective due to the objective of testing the 

model is generally estimating how well predictions performs to unseen data. However, 

considering the commercial practice, which is hard to obtain enough samples as expected in data 

science, and comparing to previous results by Afseth et al., 2022 [15], it can be noted that 

comparable results by using fewer components as a positive control. 

 

5.2. Comparison of the sample selection methods 

It is hard to say which sampling method is best because the RS and KS are unique methods; RS 

chooses randomly based on the uniform distribution, while KS selects a sample according to the 

distance between the two observations based on the predictor variable space. Repeated random 

sampling results suggest that the sample selection may lead to contrasting consequences 

depending on the vibrational spectra data and the fatty acid to be predicted. Most of the estimated 

R2 provides better performance when the KS is applied for sample selection. It generates identical 

R2 and RMSE values no matter how many iterations due to its algorithm. Some specific cases in 

each iteration by RS give slightly above or even worse R2 than estimated by KS with respect to 

the NIR spectroscopy; For example, at least one of each repetition (5) and (6) for ALA achieves 

over the R2 of 0.55, which is slightly above than KS repetitions, while one of the repetitions (3) 

reaches the lowest R2, and all of the repetitions (4) show the lower R2 in RS than KS. It may 

indicate that KS worked well in NIR spectroscopy for most situations, but RS may give comparable 

performance by the coincidence of selecting the optimal sample. As Nawar et al., 2018 [16] and 

Ferreira et al., 2022 [17] reported the KS performed similarly or exceeded the RS practically in 

NIR data, and our results somewhat supported those points. Interestingly, it shows the opposite 

results when it comes to Raman spectroscopy. In most cases of EPA and ALA and some in DHA, 

it attains higher estimated values of R2 by the RS; as shown in Figure 14, one value in repetition 

7 shows a noticeably lower value among the RS iterations using Raman spectroscopy, while the 

KS shows an invariant value (R2 = 0.59) over iteration. Although the R2 ranges of the RS repeats 

in each fatty acid are different, utilizing RS is more likely to choose a better sample in Raman 

spectroscopy compared to NIR spectroscopy. 

 

5.3. Variable selection effects of Markov Blanket  

When the MB is applied as a variable selection method in addition to the sample selection method, 

each fatty acid selects a different number of variables (wavelengths, Raman shifts) by 

spectroscopic data, as shown in Table 2. If the PLSR model is constructed with the selected 

variables through the MB from the spectroscopic data, it shows an overall pattern of increasing 

the R2 and decreasing the RMSE. However, it is not in all cases; the PLSR model could not apply 

for EPA in NIR spectroscopy because it selected only two wavelengths through the MB, and the 

PLSR model for DHA in Raman spectroscopy increased the RMSE. Likewise, the PLSR models 

required similar or more latent variables to build. This may imply that the MB, as a variable 

selection method, helps to increase prediction accuracy to some extent without affecting PLSR.  

In addition, as shown in Figure 10 and Figure 11, it is possible to distinguish which part of each 

fatty acid is concentrated in the spectroscopy data by different colors, and some regions in 

vibrational spectroscopy data were not considered as a selected variable at all. Among selected 



 

 

variables according to the fatty acids and the spectroscopy data, a few common variables exist 

depending on the combination; In NIR spectroscopy, the three wavelengths (1665, 1751, and 

1762 nm) between DHA and ALA were commonly selected by MB, while five Raman shifts (1371, 

1454, 1469, 1610, and 1692 cm-1) in EPA and DHA, two (929, 1666 cm-1) in DHA and ALA, and 

four (822, 835, 1648, 1679 cm-1) between EPA and ALA in Raman spectroscopy. A few 

wavelengths (Raman shifts) selected by MB were exactly matched or closed with the chemical 

characteristics of Omega-3 fatty acids, as described in the literature [15,61]; In EPA, 1450 nm in 

NIR spectra and around 1665 cm-1 across fatty acids in Raman spectra. Nonetheless, it is hard 

to check how these selected variables via MB are related to some extent to the individual fatty 

acid because the MB can be used for causal analysis only if certain assumptions are met.  

In this thesis, the IAMB was employed as a variable selection method to find the best subset 

because it is reasonably fast, accurate, and widely applicable according to the result from [62]. 

As discussed earlier, the IAMB worked well on the given data set and had an impact on improving 

the prediction accuracy in the fitted PLSR model. Apart from that, one limitation of this paper is 

only one algorithm (IAMB) was tested and implemented for MB as a variable selection. There are 

several different algorithms to implement MB, but there is no guarantee that the other algorithms 

perform well on the given data set or return identical variables like the IAMB. Nevertheless, given 

the overall improvement MB had on PLSR model prediction and the uncertainty as to why MB 

improves PLSR prediction, it is recommended that other variable selection algorithms are also 

investigated to shed light on the causes and limitations of variable selection in conjunction with 

PLSR prediction. 

 

5.4. Comparison of Vibrational spectroscopy methods NIR and Raman 

As mentioned in Section 3.3, we set the maximum number of principal components as 15 to 

construct the PLSR models. Some PLSR models required the highest latent variables, as 

described in Table 2. One notable thing is the PLSR models easily reach the maximum number 

of components (e.g.,15 here) when it comes to using NIR spectroscopy whilst Raman 

spectroscopy had consistently lower numbers. In general, lower numbers of latent variables are 

favored because it is an indicator that the vibrational spectroscopy method is capturing chemical 

information from the fatty acid of interest, and it makes the PLSR model interpretability easier. It 

may raise interest in how many maximum latent variables are required when constructing a PLSR 

model using NIR spectroscopy. However, it may indicate that NIR spectroscopy has more 

complexity than Raman spectroscopy in terms of interpretability, which is required more latent 

variables to construct the PLSR models. 

The principle of each spectroscopy is different, but it is widely used to quantify the measurement 

of chemical components. In this paper, we utilized NIR and Raman spectroscopy to estimate the 

fatty acid and to compare the prediction ability. As a result, it showed two general points: 1) NIR 

spectroscopy showed a lower prediction accuracy than Raman spectroscopy regardless of 

sample and variable selection, and 2) NIR required more components than Raman spectroscopy 

in the PLSR models for measuring individual fatty acids. This shows similar results to those 

reported by Afseth et al., 2022 [15] that Raman spectroscopy has more possibility to achieve high 

and optimal performance. Hence, it indicates that Raman spectroscopy can be more robust and 

stabilities to measure fatty acid compared to NIR spectroscopy. 



 

 

One limitation of this thesis is that vibrational spectroscopy is generally measured on one specific 
surface of the sample, which cannot cover the whole sample and cannot get spatial information. 
Although our results showed that vibrational spectroscopy is a useful tool to measure and capture 
the chemical information that we desired, further studies may consider employing hyperspectral 
images (i.e., high-throughput and spatial information across the fillet) to overcome this drawback, 
which can be used to maximize the information extraction from the data and can apply more 
complex models such as neural networks.  
 

5.5. Genetic parameters estimation and validation of predicted phenotypes  

Genetic parameters of individual fatty acids were estimated in 506 samples using a training 

dataset of 100 samples selected solely by KS solely but with or without MB variable selection. 

This choice was motivated by the stability of KS samples across vibrational spectra types and the 

Omega-3 fatty acids and the fact that MB improved predictions in NIR and was generally as good 

as RS in Raman on average. Furthermore, KS is inherently a completely repeatable sample 

selection method which eliminates the extra variability added when employing RS. The heritability 

estimates for EPA, DHA, and ALA ranged from (h2 = 0.34 - 0.49, which is the “True Phenotype” 

heritability from Table 3) using the reference method, which was far larger than those of Horn et 

al., 2018, whose estimates ranged from (h2 = 0.22 - 0.26) on 668 samples, of which our 506 

samples are a subset of the research by Horn et al., 2018. A careful review by Horn et al., 2018 

found that body weight was used as a covariate, and sex was included as a fixed effect. It is one 

of the different points since we only considered sex as a fixed effect in all genetic regression 

models. Hence, it may have reduced their heritability because body weight is correlated with fatty 

acids, and it is highly hereditary.  

According to Equations (6) and (7), heritability is a major factor to be considered in estimating the 

EBV and the response to selection for a given variable. Higher heritability results in higher 

response to selection or improvements in the response variables in the next generation, which 

are the desired goal for breeders. The results from Table 3 showed that heritability tended to 

increase after adopting the MB as a variable selection method, and the predicted heritability 

tended to have a higher heritability when the genetic correlation (rG) and phenotypic correlation 

(rP) were close to each other. All genetic and phenotypic correlations achieved strong positive 

values whether or not the adoption of MB, and the correlations improved when the MB was applied, 

which is a similar pattern to the results of individual estimation in Omega-3 fatty acids. In particular, 

the genetic correlations for DHA in the adoption of the MB are over 0.9, and the genetic correlation 

of ALA reached the highest value (rG = 0.986) after the adoption of the MB. One potential point of 

issue is that the MB approach does not always work well to predict fatty acids and their heritability. 

For example, the predicted heritability for ALA using the MB approach was recorded as the lowest 

estimation (h2 = 0.22). It may result from the huge gap between the genetic and phenotypic 

correlation (rG = 0.81 and rP = 0.55) and may lead to undesirable consequences, despite the 

advantage of MB adoption. 

To the best of our knowledge, this is the first time that predicted phenotypes from vibrational 

spectra have been validated using genetic correlations between the true and predicted 

phenotypes for Omega-3 fatty acids. Difford et al., 2021 [52], used the current dataset to estimate 

genetic correlations between true and predicted total fat, and also found a genetic correlation of 

0.93 using NIR spectroscopy and 0.98 using Raman spectroscopy, although they did not 

investigate the use of MB. In the vast majority of cases, geneticists simply estimate the R2 and or 

RMSE in small sample sizes and assume that this would result in high genetic correlations. This 



 

 

is not always the case. For example, Poulsen et al., 2014 [63] predicted fatty acid content in the 

milk of dairy cows using gas chromatography (GC, which is known as a more accurate than 

vibrational spectrometry but expensive and time-consuming method) and Fourier-Transform 

Infrared (FT-IR). The results showed that four out of eight fatty acids had high genetic correlations 

(> 0.94), two had moderate (0.45-0.52), and one had a highly negative genetic correlation (-0.86) 

in Stearic Acid (C18:0, which is a saturated fatty acid). If the authors had not conducted a genetic 

validation and proceeded to select based on spectral predicted phenotypes, Stearic Acid would 

have resulted in a negative unwanted response to selection in the opposite direction intended as 

seen by the strong negative genetic correlation (-0.86) between the true and predicted phenotype.   

The estimated heritability also tended to have a higher estimate when it was used by Raman 

spectroscopy. Although using a different species, Blay et al., 2021 [64] estimated the fatty acids 

and their heritability using Raman spectroscopy in the adipose viscera tissues (organs, not muscle 

as we have done) from Rainbow trout and reported very low heritability estimates regarding EPA, 

DHA, and ALA. They trained on ridge regression models using 268 samples from an experimental 

facility and then predicted phenotypes in a separate population of 1400 samples from 

commercially selected fish for estimating the genetic variability. Surprisingly, the genetic and 

phenotypic correlations of Omega-3 fatty acids that we are interested in recorded strongly 

negative values amongst each other, while their heritability recorded low and varied (ALA= 0.02, 

EPA= 0.16, and DHA= 0.03, respectively). It is hard to compare directly with the current study as 

we had different species, different tissues, and different predictive models, but since the studies 

show such different heritability estimates to our own, it is worth testing our approach in an 

independent commercial dataset as Blay et al., 2021 [64] have done to ensure our results are 

reproducible in different populations of Atlantic salmon. 

 

6. Conclusion 

This paper showed the optimization possibility by combining appropriate methods to achieve 

competitive output from the data acquisition to the model evaluation. To estimate the Omega-3 

fatty acids and their heritability, we used vibrational spectroscopy combined with sample selection 

methods and the MB as a variable selection. Although we used a small number of training data 

to train the PLSR model, both NIR and Raman spectroscopy worked well in general, but Raman 

showed overall better prediction accuracy and estimation of genetic parameters across the fatty 

acids. When it comes to choosing the sample selection methods in the given spectroscopic data, 

NIR spectroscopy achieved higher accuracy in the KS rather than the RS. Raman spectroscopy 

works well in both sample selection methods since it shows analogous results; however, it could 

achieve higher accuracy in the RS only if it selected a good representative sample to elucidate 

the fatty acid. It is recommendable to use KS as sample selection to obtain solid and reproducible 

results in general, but it needs to be noted that RS also shows superior results by the good 

representative selection in Raman spectra. The MB performed well in most cases of Omega-3 

prediction and heritability estimation, and there is no doubt that it helped to increase the prediction 

accuracy and reduce the variable. However, which variable selection methods perform the best 

or to what extent the selected variables are related to the individual fatty acids are not in the scope 

of this thesis and warrant further investigation. Most importantly, the prediction of Omega-3 fatty 

acids using Raman spectroscopy in the muscle of Atlantic salmon is highly feasible and has the 

possibility to break the bottleneck in acquiring suitable numbers of phenotypes for breeding 

purposes. 



 

 

References 

1. FAO. The State of World Fisheries and Aquaculture 2022. FAO; 2022 Jun.  

2. Ahern M, Thilsted S, Oenema S, Kühnhold H. The role of aquatic foods in sustainable healthy diets. UN 

Nutrition Discussion Paper. 2021;  

3. Janssen K, Chavanne H, Berentsen P, Komen H. Impact of selective breeding on European aquaculture. 

Aquaculture. Elsevier B.V.; 2017;472:8–16.  

4. Ytrestøyl T, Aas TS, Åsgård T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) 

in Norway. Aquaculture. Elsevier; 2015;448:365–74.  

5. Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in 

farmed Atlantic salmon, 2006-2015. Sci Rep. Nature Publishing Group; 2016;6.  

6. Hill WG, Mackay TFC. D. S. Falconer and Introduction to Quantitative Genetics. Genetics. 

2004;167:1529–36.  

7. Xu S. Quantitative Genetics. Quantitative Genetics. Springer International Publishing; 2022.  

8. Trygve G. Selection and breeding programs in aquaculture. Dordrecht: Springer; 2005.  

9. Robertson A. The Sampling Variance of the Genetic Correlation Coefficient. Biometrics. 1959;15:469.  

10. Chiu HH, Kuo CH. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid 

analysis in biological samples. J Food Drug Anal. No longer published by Elsevier; 2020;28:60–73.  

11. Jens Petter Wold, Tiril Aurora Lintvedt. Fast and effective measurements of fatty acid composition in 

salmon fillets [Internet]. 2023 [cited 2023 Apr 17]. Available from: https://nofima.com/results/fast-and-

effective-measurements-of-fatty-acid-composition-in-salmon-fillets/ 

12. Afseth NK, Segtnan VH, Marquardt BJ, Wold JP. Raman and Near-Infrared Spectroscopy for 

Quantification of Fat Composition in a Complex Food Model System. Appl Spectrosc. 2005.  

13. Pasquini C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. 

J. Braz. Chem. Soc. 2003.  

14. Beć KB, Huck CW. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review 

of recent developments. Front Chem. Frontiers Media S.A.; 2019.  

15. Afseth NK, Dankel K, Andersen PV, Difford GF, Horn SS, Sonesson A, et al. Raman and near Infrared 

Spectroscopy for Quantification of Fatty Acids in Muscle Tissue—A Salmon Case Study. Foods. MDPI AG; 

2022;11:962.  

16. Nawar S, Mouazen AM. Optimal sample selection for measurement of soil organic carbon using on-

line vis-NIR spectroscopy. Comput Electron Agric. Elsevier B.V.; 2018;151:469–77.  

17. Ferreira R de A, Teixeira G, Peternelli LA. Kennard-Stone method outperforms the Random Sampling 

in the selection of calibration samples in SNPs and NIR data. Ciência Rural. FapUNIFESP (SciELO); 2022;52.  

https://nofima.com/results/fast-and-effective-measurements-of-fatty-acid-composition-in-salmon-fillets/
https://nofima.com/results/fast-and-effective-measurements-of-fatty-acid-composition-in-salmon-fillets/


 

 

18. Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. J Mach Learn Res. JMLR.org; 

2003;3:1157–82.  

19. Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in Partial Least 

Squares Regression. Chemometrics and Intelligent Laboratory Systems. 2012. p. 62–9.  

20. Nagarajan R, Scutari M, Lèbre S. UseR ! Bayesian Networks in R with Applications in Systems Biology 

[Internet]. Available from: http://www.springer.com/series/6991 

21. Felipe VPS, Silva MA, Valente BD, Rosa GJM. Using multiple regression, Bayesian networks and artificial 

neural networks for prediction of total egg production in European quails based on earlier expressed 

phenotypes. Poult Sci. Oxford University Press; 2014;94:772–80.  

22. Dórea JRR, Rosa GJM, Weld KA, Armentano LE. Mining data from milk infrared spectroscopy to 

improve feed intake predictions in lactating dairy cows. J Dairy Sci. Elsevier Inc.; 2018;101:5878–89.  

23. Hutu I, Oldenbroek K, Waaij L. Animal breeding and husbandry. first. Timisoara: Agroprint; 2020.  

24. Johannsen W. The genotype conception of heredity1. Int J Epidemiol. Oxford University Press; 

2014;43:989–1000.  

25. Visscher PM. On the Sampling Variance of Intraclass Correlations and Genetic Correlations. Genetics. 

1998;149:1605–14.  

26. Coffey M. Dairy cows: in the age of the genotype, #phenotypeisking. Animal Frontiers. 2020;10:19–22.  

27. Sultanbawa Y, Smyth HE, Truong K, Chapman J, Cozzolino D. Insights on the role of chemometrics and 

vibrational spectroscopy in fruit metabolite analysis. Food Chemistry: Molecular Sciences. 2021;3:100033.  

28. Cozzolino D. An Overview of the Successful Application of Vibrational Spectroscopy Techniques to 

Quantify Nutraceuticals in Fruits and Plants. Foods. 2022;11:315.  

29. Larkin P. Infrared and raman spectroscopy: principles and spectral interpretation. Elsevier; 2011.  

30. Blanco M, Villarroya I. NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical 

Chemistry. 2002;21:240–50.  

31. Pasquini C. Near infrared spectroscopy: A mature analytical technique with new perspectives – A 

review. Anal Chim Acta. 2018;1026:8–36.  

32. Pizarro C, Esteban-Díez I, González-Sáiz J-M, Forina M. Use of Near-Infrared Spectroscopy and Feature 

Selection Techniques for Predicting the Caffeine Content and Roasting Color in Roasted Coffees. J Agric 

Food Chem. 2007;55:7477–88.  

33. Cattaneo TMP, Holroyd SE. The Use of near Infrared Spectroscopy for Determination of Adulteration 

and Contamination in Milk and Milk Powder: Updating Knowledge. J Near Infrared Spectrosc. 

2013;21:341–9.  

34. Smith E, Dent G. Modern Raman Spectroscopy-A Practical Approach. John Wiley & Sons, Inc.; 2005.  

35. Orlando A, Franceschini F, Muscas C, Pidkova S, Bartoli M, Rovere M, et al. A Comprehensive Review 

on Raman Spectroscopy Applications. Chemosensors. 2021;9:262.  

http://www.springer.com/series/6991


 

 

36. Lohumi S, Lee S, Lee H, Cho B-K. A review of vibrational spectroscopic techniques for the detection of 

food authenticity and adulteration. Trends Food Sci Technol. 2015;46:85–98.  

37. Rinnan Å, Berg F van den, Engelsen SB. Review of the most common pre-processing techniques for 

near-infrared spectra. TrAC - Trends in Analytical Chemistry. 2009. p. 1201–22.  

38. Guo Q, Wu W, Massart DL. The robust normal variate transform for pattern recognition with near-

infrared data. Anal Chim Acta. 1999;382:87–103.  

39. Afseth NK, Kohler A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. 

Chemometrics and Intelligent Laboratory Systems. 2012;117:92–9.  

40. Kennard RW, Stone LA. Computer Aided Design of Experiments. Technometrics. 1969;11:137–48.  

41. Stevens A, Ramirez-Lopez L. An introduction to the prospectr package [Internet]. 2022 [cited 2023 Feb 

2]. Available from: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html 

42. Saptoro A, Tadé MO, Vuthaluru H. A modified Kennard-Stone algorithm for optimal division of data 

for developing artificial neural network models. Chemical Product and Process Modeling. 2012;7.  

43. Pearl J. PROBABILISTIC REASONING IN INTELLIGENT SYSTEMS: Networks of Plausible Inference 

REVISED SECOND PRINTING. 1988.  

44. Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT Press, Cambridge; 

2009.  

45. Verma TS, Pearl J. Equivalence and Synthesis of Causal Models. Proceedings of the 6th Conference on 

Uncertainty in Artificial Intelligence. 1990;220–7.  

46. Tsamardinos I, Aliferis CF, Statnikov A. Algorithms for Large Scale Markov Blanket Discovery [Internet]. 

2003. Available from: www.aaai.org 

47. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and 

Intelligent Laboratory Systems [Internet]. 2001;58:109–30. Available from: 

www.elsevier.comrlocaterchemometrics 

48. Mateos-Aparicio G. Partial least squares (PLS) methods: Origins, evolution, and application to social 

sciences. Commun Stat Theory Methods. 2011;40:2305–17.  

49. Geladi P, Kowalski BR. PARTIAL LEAST-SQUARES REGRESSION: A TUTORIAL. Anal Chim Acta. Elsevier 

Science Publishers B.V; 1986.  

50. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York, NY: Springer New 

York; 2009.  

51. Horn SS, Ruyter B, Meuwissen TH, Hillestad B, Sonesson AK. Genetic effects of fatty acid composition 

in muscle of Atlantic salmon. Genetics Selection Evolution. BioMed Central Ltd.; 2018;50:1–12.  

52. Difford GF, Horn SS, Dankel KR, Ruyter B, Dagnachew BS, Hillestad B, et al. The heritable landscape of 

near-infrared and Raman spectroscopic measurements to improve lipid content in Atlantic salmon fillets. 

Genetics Selection Evolution. BioMed Central Ltd; 2021;53.  

https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html


 

 

53. FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total 

lipides from animal tissues. J Biol Chem. 1957;226:497–509.  

54. Mason ME, Waller GR. Dimethoxypropane Induced Transesterification of Fats and Oils in Preparation 

of Methyl Esters for Gas Chromatographic Analysis. Anal Chem. 1964;36:583–6.  

55. Liland KH, Kohler A, Afseth NK. Model-based pre-processing in Raman spectroscopy of biological 

samples. Journal of Raman Spectroscopy. John Wiley and Sons Ltd; 2016;47:643–50.  

56. Afseth NK, Wold JP, Segtnan VH. The potential of Raman spectroscopy for characterisation of the fatty 

acid unsaturation of salmon. Anal Chim Acta. 2006;572:85–92.  

57. Zhang Y, Zhang Z, Liu K, Qian G. An improved IAMB algorithm for Markov blanket discovery. J Comput 

(Taipei). 2010;5:1755–61.  

58. Marco Scutari. bnlearn: Bayesian Network Structure Learning, Parameter Learning andInference. 2022.  

59. Mevik B-H. Introduction to the pls Package. 2022.  

60. Maia RP, Madsen P, Labouriau R. Multivariate survival mixed models for genetic analysis of longevity 

traits. J Appl Stat. Routledge; 2014;41:1286–306.  

61. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a 

review. Journal of Raman Spectroscopy. 2015;46:4–20.  

62. Chang K, Lee J, Jun CH, Chung H. Interleaved incremental association Markov blanket as a potential 

feature selection method for improving accuracy in near-infrared spectroscopic analysis. Talanta. Elsevier 

B.V.; 2018;178:348–54.  

63. Aagaard Poulsen N, Eskildsen C, Skov T, Larsen L, Buitenhuis A. Comparison of Genetic Parameters 

Estimation of Fatty Acids from Gas Chromatography and FT-IR in Holsteins. 2014.  

64. Blay C, Haffray P, D’Ambrosio J, Prado E, Dechamp N, Nazabal V, et al. Genetic architecture and 

genomic selection of fatty acid composition predicted by Raman spectroscopy in rainbow trout. BMC 

Genomics. BioMed Central Ltd; 2021;22.  

  

 

 

 

 

 

 

  



 

 

Appendix A 

 
Figure A 1. The predictive performance of PLSR models with increasing training sizes from 50 to 500 
samples for EPA under different scenarios of sample selection and variable selection for EPA.  

 

 

Appendix B 

Table B 1. PLSR results for the whole data set (n = 613) using NIR and Raman spectroscopy 

 NIR spectroscopy1
 Raman spectroscopy1

 

Fatty 

Acids2
 

PCs3
 R2

 RMSE PCs3 R2
 RMSE 

EPA 11 0.62 0.28 5 0.73 0.24 

DHA 11 0.63 0.32 7 0.77 0.25 

ALA 15 0.69 0.13 8 0.81 0.1 
1 Both spectroscopy data have the identical number of variables (p = 1300), 
2 EPA = (eicosatetraenoic acid, C20-5n3), DHA = (docosahexaenoic acid, C22-6n3) and ALA = (α-

linolenic acid, 18:3n-3), 
3 PCs = Number of Components (maximum = 15) 

 



 

 

Appendix C 

Table C 1. All selected list of spectroscopy wavelengths/Raman shifts by Markov Blanket 

Fatty 
Acids1 

NIR spectroscopy2 Raman spectroscopy3 

EPA 1450, 2427 514, 545, 608, 624, 636, 648, 654, 666, 
698, 729, 748, 757, 822, 835, 861, 870, 
873, 884, 934, 990, 1004, 1068, 1087, 
1116, 1120, 1126, 1149, 1197, 1224, 
1233, 1243, 1247, 1259, 1265, 1293, 
1312, 1331, 1358, 1365, 1371, 1404, 
1419, 1439, 1441, 1453, 1455, 1459, 
1465, 1469, 1476, 1481, 1488, 1494, 
1497, 1501, 1533, 1552, 1605, 1610, 
1613, 1634, 1645, 1648, 1665, 1679, 
1692, 1697, 1704, 1708, 1717, 1749, 
1753, 1760, 1763 

DHA 1163, 1164, 1170, 1173, 1209, 1224, 
1245, 1313, 1330, 1341, 1363, 1373, 
1422, 1425, 1501, 1543, 1634, 1648. 
1665, 1691, 1692, 1750, 1751, 1762, 
1821, 1838, 1902, 2063, 2092, 2157, 
2158, 2270, 2286, 2295, 2364, 2394, 
2441 

549, 566, 577, 593, 600, 612, 699, 718, 
760, 821, 865, 871, 922, 929, 1032, 
1073, 1077, 1083, 1167, 1278, 1318, 
1351, 1371, 1453, 1469, 1594, 1610, 
1627, 1633, 1666, 1682, 1692, 1786 

ALA 1157, 1169, 1235, 1250, 1374, 1405, 
1429, 1458, 1476, 1578, 1603, 1654, 
1665, 1680, 1703, 1716, 1731, 1751, 
1762, 1786, 1791, 1881, 1964, 2046, 
2117, 2135, 2136, 2213, 2226, 2242, 
2272, 2288, 2305, 2316, 2337, 2418, 
2449 

529, 535, 548, 617, 674, 680, 746, 756, 
768, 822, 835, 851, 869, 874, 898, 902, 
911, 929, 947, 957, 965, 974, 1014, 
1063, 1085, 1103, 1108, 1111, 1124, 
1130, 1166, 1181, 1193, 1198, 1205, 
1217, 1222, 1275, 1313, 1334, 1374, 
1377, 1382, 1390, 1400, 1425, 1442, 
1454, 1486, 1534, 1537, 1543, 1549,  
1557, 1570, 1591, 1607, 1619, 1626, 
1632, 1636, 1648, 1655, 1666, 1673, 
1679, 1713, 1727, 1758, 1762 

1 EPA = (eicosatetraenoic acid, C20-5n3), DHA = (docosahexaenoic acid, C22-6n3) and ALA = (α-

linolenic acid, 18:3n-3) 
2 selected NIR spectroscopy (nm) by MB 
3 selected RAMAN spectroscopy (cm-1) by MB 
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