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Abstract

Infrared spectroscopy is a widely used method to investigate biological samples. The ap-
proach enables chemical information of molecules by evaluating the wavenumber depen-
dent absorption of the sample. Infrared microscopic techniques such as Fourier transform
infrared microspectroscopy (FTIR) achieve chemically rich spectra with a spatial resolution
at the diffraction limit. Nano infrared spectroscopy techniques such as Optical-probed ho-
tothermal induced tnfrated microspectroscopy (O-PTIR) and Atomic Force Microscopy-based
infraied spectroscopy (AFM-IR) circumvent the diffraction limit of infrared radiation, and the
techniques are promising for obtaining high quality subcellular spatially resolved spectra.

The aim of this thesis is to compare FTIR microscopy and nano infrared techniques for their
ability to achieve subcellular resolved spectra in the analysis of biological cells.

For FTIR microscopy, the newly developed approach of deep-learning empowered 3D in-
frared diffraction tomography is used. The method takes advantage of the scattering features
that arise in infrared microspectroscopy. Scattering effects change the absorbance spectra of
biological cells considerably, making it hard to analyze the chemical signatures in the sample.
Thus, a lot of effort has been made to remove the scattering effect, such as extended multiplica-
tive signal correction, and further by deep learning algorithms, which are less computationally
expensive. Instead of looking at the scattering as a disturbing effect, deep-learning empow-
ered 3D infrared diffraction tomography solves the inverse scattering problem and retrieves
the pure absorbance spectrum of the cell wall and cell interior of biological cells. This is possi-
ble by taking advantage of scattering chemical features that are characteristic for the chemical
and physical properties of the sample. The approach makes it possible to obtain subcellular
information from structures of biological samples that have sizes below the diffraction limit of
microspectroscopic instruments such as FTIR. We show in this thesis that with intact cells with
a diameter size bigger than 5 µm such as Phaffia rhodozyma it is possible to get high chemical
absorbance spectra of the cell wall and cell interior using the deep-learning empowered 3D
infrared diffraction tomography.

O-PTIR is theoretically limited by a green laser of 532 nm and the AFM-IR is only limited
by the tip radius of the cantilever, giving a spatial resolution down to 50 nm. In order to obtain
chemical information from the cell wall and cell interior, biological samples were sectioned.
The cells were embedded in epoxy, which is necessary to make nanometer sections. The epoxy
shows strong signals in the infrared absorbance spectra, leading to highly contaminated spec-
tra. We show that it is impossible to correct for the epoxy and to obtain chemical information
from the cell wall and cell interior from O-PTIR spectra. The AFM-IR sectioned cells were also
strongly affected by epoxy, especially in the region between 1200 cm−1 and 1000 cm−1. How-
ever, we were successfully able to distinguish the cell wall and cell interior due to chemical
differences in the spectra.

In a recent study, in-depth measurements of intact biological cells were performed with O-
PTIR. The study claims that it is possible to obtain in-depth chemical information about intact
cells. However, there are a lot of uncertainties with this technique. With a limited understand-
ing of the optical instrumentation, it is impossible to be sure that the chemical information
obtained by in-depth measurements originates from that focus point. Most likely, the signal
comes from the whole laser path of the probe laser and not only from the measured depth
of the sample. Therefore, it is not possible to use this approach to obtain subcellular chemical
information. However, the technique allows high-quality signals from different depths, giving
an approximation of the thickness of the cell.





Sammendrag

Infrarød spektroskopi er en mye brukt metode for å undersøke biologiske prøver. Tiln¬ærmingen
muliggjør kjemisk informasjon av molekyler ved å evaluere absorpsjonen av prøven som en
funksjon av bølgetall. Infrarøde mikroskopiske teknikker som Fourier transformerer infrarød
(FTIR) mikrospektroskopi oppnår kjemisk rike spektra med en romlig oppløsning ved diffrak-
sjon grensen. Nano infrarød spektroskopi teknikker som Optical-probed PhotoThermal induced
InfraRed microspectroscopy (O-PTIR) og Atomic Force Microscopy-based InfraRed spectroscop (AFM-
IR) omgår diffraksjonsgrensen for infrarød stråling, og teknikkene er lovende for å oppnå
høykvalitets subcellulære romlig oppløste spektra.

Målet med denne avhandlingen er å sammenligne FTIR-mikroskopi og nano-infrarøde
teknikker og deres evne til å oppnå subcellulære oppløste spektra i analysen av biologiske
celler. For FTIR-mikroskopi, den nyutviklede deep-learning empowered 3D infrared diffraction to-
mography metoden vil bli brukt. Metodene utnytter spredningseffektene som oppstår i infrarød
mikrospektroskopi. Spredningseffekter endrer absorbansspektrumet til biologiske celler bety-
delig, noe som gjør det vanskelig å analysere de kjemiske signaturene i prøven. Dermed har
det blitt gjort mye arbeid for å fjerne spredningseffekten, som metoden Extended multiplica-
tive signal correction og nye metoder ved bruk av dyp læring, som er mindre tidskrevende. I
stedet for å se på spredningen som en negativ effekt, løser deep-learning empowered 3D infrared
diffraction tomography det inverse spredningsproblemet som resulterer i rene absorbansspek-
trum for celleveggen og innsiden av cellen til biologiske celler. Dette er mulig ved å utnytte
spredningseffektene som er karakteristiske for de kjemiske og fysiske egenskapene til prøven.
Tilnærmingen gjør det mulig å oppnå subcellulær informasjon fra strukturer av biologiske
prøver som har størrelser under diffraksjonsgrensen for mikrospektroskopiske instrumenter
som FTIR. Vi viser i denne oppgaven at med intakte celler med en diameterstørrelse større enn
5 µm som Phaffia rhodozyma, at det er mulig å få høy kjemisk absorbansspektra av cellevegg
og av innsiden av cellen ved hjelp av deep-learning empowered 3D infrared diffraction tomography.

O-PTIR er teoretisk begrenset av en grønn laser på 532 nm og AFM-IR er bare begrenset
av radiusen til tuppen av cantileveren, og som gir en romlig oppløsning ned til 50 nm. For
å oppnå kjemisk informasjon fra cellevegg og innsiden av cellen ble de biologiske prøvene
snittet. Cellene var injisert med epoksy, som er nødvendig for å lage snitter med tykkelse på
nanometer. Epoksyen viser sterke signaler i det infrarøde absorbansspektrene, noe som fører
til svært forurensede spektra. Vi viser at det er umulig å korrigere for epoxyen og å skaffe
kjemisk informasjon fra celleveggen og innsiden av cellen fra O-PTIR-spektra. AFM-IR-snittet
celler var også sterkt påvirket av epoksy, spesielt i området mellom 1200 cm-1 og 1000 cm-1. Vi
var derimot i stand til å skille cellevegg og innsiden av cellen på grunn av kjemiske forskjeller
i spektrene.

I en nylig studie ble det utført dyptgående målinger av intakte biologiske celler med O-
PTIR. Studien hevder at det er mulig å få kjemisk informasjon av ulike dybder for intakte celler.
Det er imidlertid mange usikkerheter med denne metoden. Med en begrenset forståelse av
den optiske instrumenteringen, er det umulig å være sikker på at den kjemiske informasjonen
som ble oppnådd ved ulike dybdemålinger, stammer fra dette fokuspunktet. Mest sannsynlig
kommer signalet fra hele laserbanen til sondelaseren og ikke bare fra den målte dybden av
prøven. Derfor er det ikke mulig å bruke denne tilnærmingen for å oppnå subcellulær kjemisk
informasjon. På en annen side tillater metoden høy kvalitet på spektra fra forskjellige dybder,
noe som gir en tilnærming på tykkelsen til cellen.
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Chapter 1

Introduction

InfraRed (IR) spectroscopy is a frequently used tool for scientists in a wide range of areas, such
as biology, medicine and material science [23]. The technique enables detection of the chem-
ical composition of materials in the form of an interpretable chemical fingerprint of the spe-
cific sample. An important milestone in the history of infrared spectroscopy was in the 1960s
decade, when the Michelson interferometer from 1891 was combined with the Fast Fourier
Transform (FFT) algorithm from 1965 made by Cooley and Tukey [29] [7]. As a result of this
combination, Fourier Transform InfraRed (FTIR) Spectroscopy was developed. Digilab FTS 14
developed in 1969 the first commercial FTIR instrument, and paved the way for modern FTIR
spectroscopy as we know it today [14]. With the technology being commercialized, it was eas-
ily accessible to the scientists. In 1975 the Nicolet Instrument Corporation invented the Nicolet
model 17199 FTIR spectrometer. The competition between Nicolet and Digilab resulted in the
development of the reliable, versatile and sensitive instrument that exists today. The next big
milestone of infrared spectroscopy was in the 1980s when the infrared microscope was de-
veloped, where an FTIR spectrometer was combined with a microscope with adapted optics
to obtain infrared spectra spatially resolved. Combining FTIR spectroscopy and microscopy
provides both chemical and physical information from the same sample position. Infrared im-
ages can either be obtained by scanning sample areas with an infrared beam that is focused
by an aperture and where radiation is collected by a single element detector or by an imaging
system, where hyperspectral images are recorded with a Focal Plane Array (FPA) detector [5].
Today there are two types of infrared imaging systems available. Systems based on a Fourier
transform spectrometer and systems operated with tunable lasers [5].

Infrared images are information rich. The possibility of obtaining infrared spectra spatially
resolved provides information about the spatial distribution of chemical components. Further,
physical information, such as size and shape, are obtained in high-quality visual images that
can be obtained for the same regions for which infrared spectra are acquired [42] [39]. A
great advantage of modern spectroscopy such as FTIR spectroscopy is that the technique is
nondestructive, meaning that the sample is not fragmented or destroyed as it is necessary with
conventional chemical analysis. Further, FTIR spectroscopy provides high spectral resolution,
2-10 cm−1. The spatial resolution of infrared microscopy is restricted by the diffraction limit
which is in the same magnitude as the wavelength of the incoming radiation. Mid-infrared
radiation has wavelengths between 2.5 µm and 25 µm, which is also the order of sizes of
biological cells. Thus, with state of the art infrared techniques, it is in general very hard to
resolve subcellular components.

The IR absorbance spectrum is obtained by detecting the attenuation of the incoming IR
light intensity. Mainly the attenuation is due to chemical absorption of the sample, however,
it can also be due to scattering. When the attenuation is only due to chemical absorption,
the absorbance spectrum is referred to as the pure absorbance spectrum. However, if the loss
of incoming radiation is also due to scattering the absorbance spectrum is referred to as the
apparent absorbance spectrum. Absorbance spectra from biological cells and tissue suffer
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from distinct physical effects such as Mie scattering, which was first identified in IR spec-
tra in 2005 by Mohlenhoff et al. [30]. Hence, the absorbance spectra are not only showing
chemical absorption features but also physical features. In order to correctly read the chemical
contributions in the spectra it is necessary to preprocess the data. A frequently used model-
based preprocessing technique is Extended Multiplicative Signal Correction (EMSC) [1]. The
EMSC model is able to correct for physical features, such as shifts in the baseline, and to sep-
arate and quantify the chemical and physical variation in the spectra. A lot of effort has been
made to successfully correct for Mie scattering, and with the state of the art algorithm, Mie
Extinction Extended Multiplicative Signal Correction (ME-EMSC), it is possible to recover the
pure absorbance spectra of microscopic samples. However, the algorithm is computationally
expensive and the development of faster algorithms has been achieved using deep learning by
Magnussen et al. [23]. In recent years, this development has gone one step further and taken
advantage of the physical scattering effects to resolve subcellular information. Both physical
and chemical features are determined by the complex refractive index and the absorptivity of
the sample. Thus, by solving the inverse scattering problem, it is possible to obtain 3D opti-
cal, structural and chemical information from the FTIR spectroscopic measurements of intact
biological cells. By training a deep convolutional DeScattering AutoEncoder (DSAE) it is pos-
sible to predict the size of the cell wall and the cell interior of an intact cell [24]. In addition,
the algorithm can retrieve the chemical composition of the cell wall and cell interior and pre-
dict the refractive index of the sample. Thus, by taking advantage of the physical effects it is
possible to obtain information rich spectra at the diffraction limit. The approach is called 3D
IR diffraction tomography.

To circumvent the diffraction limitation due to the infrared wavelength, new infrared spec-
troscopic instrumentation that probes the near field has been invented: Optical-probed Photo-
Thermal induced InfraRed microspectroscopy (O-PTIR) and Atomic Force Microscopy-based
InfraRed spectroscopy (AFM-IR). Both instrumentations take advantage of the Photothermal
process that occurs when an infrared laser beam is focused onto the sample in a pulsed dura-
tion. As late as the 1980s and the 1990s the first experiments of PTIR were notified, hence the
technology is quite new and still under development [13] [15]. O-PTIR uses both an IR QCL
and a green visible laser which are made collinear and guided onto the sample. The IR laser
is absorbed by the sample and causes a photothermal effect. As a result of the absorption of
radiation from the IR laser, the reflectivity of the green laser changes. It can be shown that the
change in reflectivity is proportional to the absorption of IR radiation. By using the green laser
as the probing laser, the O-PTIR system is no longer limited to the diffraction limit of the IR
radiation wavelength but of the green laser wavelength which is in the sub-micrometer range
[33].

The AFM-IR based method was invented by A. Dazzi and it was patented in 2007. An
infrared laser is focused onto the sample causing a temperature change which leads to a rapid
expansion of the sample. Further, the expansion causes a deflection of the cantilever which
starts to oscillate. It has been shown that the oscillation is proportional to the IR absorption
[8]. The spatial resolution of the AFM-IR is limited by the tip radius of the cantilever, few tens
of nanometers [32] [6]. Highly detailed topographical images at the nanometer scale can be
achieved, which has opened the door to subcellular physical and chemical resolution.

Different sample preparation methods for O-PTIR and AFM may be used with the goal
of resolving subcellular chemical information. One approach is by micro-sectioning cells to
obtain infrared spectra of the cell wall and cell interior. Another approach that has been done
in a study by Zhang et al. [44] is to probe in-depth measurements of intact cells with O-
PTIR. The study claims that they successfully obtained depth-resolved chemical information
of biological cells.

The thesis is a methodological study where the overall aim is to compare different micro-
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and nano spectroscopic instrumentation and evaluate how well it is possible to obtain sub-
cellular spatially resolved chemical information of biological cells. Three different infrared
techniques are compared, i.e. O-PTIR, AFM-IR and FTIR with a FPA detector where the 3D
infrared diffraction tomography approach by Magnussen et al. [24] is used. Further, two dif-
ferent preparation methods for biological cells are considered, namely sections of embedded
cells and intact cells. Cells sections are measured with O-PTIR and AFM-IR with the goal of
distinguishing the cell wall from the cell interior. The second preparation method used, is the
use of intact cells which are measured by FTIR FPA and where the chemical pure absorbance
spectra of the cell wall and cell interior are reconstructed by using a pre-trained algorithm
from the approach of Magnussen et al. [24]. In addition, depth-resolved spectra of intact cells
are measured with O-PTIR, similar to the method described in the study by Zhang et al. [44].
The biological samples considered are filamentous fungus Mucor circinelloides, two different
yeasts strains (Rhodotorula graminis, Phaffia rhodozyma) and one type of algae (Aurautiochyrium
limaanium).
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Chapter 2

Theory

2.1 Infrared spectroscopy

We will compare O-PTIR, AFM-IR and 3D infrared diffraction tomography which are all differ-
ent configurations using infrared spectroscopy, therefore we consider now the fundamentals
of infrared spectroscopy.

Spectroscopy is the study of electromagnetic radiation and how it interacts with matter
[37]. The interaction with light and matter includes absorption, transmission and scattering of
radiation by the material. Electromagnetic radiation consists of a whole spectrum of different
frequencies and wavelengths as shown in Fig. 2.1. This thesis is limited to the infrared (IR)
part of the electromagnetic spectrum, which is in the region between microwaves and visible
light. Further, IR radiation can be divided into three regions, i.e Far-InfraRed (FIR), mid-
InfraRed (mid-IR) and Near-InfraRed (NIR), with wavelengths between 500-25 µm, 25-2.5 µm
and 2.5-0.8 µm, respectively. A common practice in IR spectroscopy is to use wavenumber (ν̃)
instead of wavelength, which is defined as 1

λ , where λ is the wavelength. Wavenumber has
the unit cm−1, and Mid-IR spectroscopy lies in the spectral range between 400- 4000 cm−1,
also illustrated in Fig. 2.1. More precisely this thesis focuses on the mid-IR region of the IR
spectrum.

radio micro IR UV X ray gamma

FIR mid-IR NIR

12 500 cm-1

800 nm
4 000 cm-1

2500 nm
400 cm-1

25µm
20 cm-1

500µm
ν̃
λ

λ [m]

104 103 102 101 1100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

km m mm µm pm fm

f [Hz]
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MHz GHz THz PHz EHz

FIGURE 2.1: The electromagnetic spectrum with the different regions in separate
colors. The green and red arrows denote the frequency f [Hz] and wavelength
λ [m], respectively. A zoomed illustration of the IR region showing the three
regions, far-infrared, mid-infrared and near-infrared with the respective wave-
lengths and wavenumbers ṽ = 1

λ . By courtesy of Johanne Heitmann Solheim,
Faculty of Science and Technology, NMBU.

Today, a broad range of IR spectroscopy techniques exists. Fourier Transformed Infrared
(FTIR) Spectroscopy is the state of the art technique within IR instrumentation. FTIR uses the
mid-IR and NIR parts of the electromagnetic spectrum. With this technique it is possible to
calculate a spectrum in the frequency domain from an interferogram measured in the time
domain, using the Fourier transform. Infrared spectra make it possible to identify chemical
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substances in intact sample materials and to obtain physical information about the sample.
Recently new methods and instrumentations for measuring the IR absorbance spectra with
nanometer resolution have been developed, such as O-PTIR and AFM-IR [8]. Common for
spectroscopic techniques is that they all are non-destructive methods, which means that the
IR radiation does not fragment the sample. Hence, for spectroscopy, in general, a destruction
of the sample is not necessary and chemical structures can be analyzed in their native form,
contrary to chemical and biochemical analysis techniques.

Absorption of radiation by a material is a quantum effect requiring that molecules have
discrete energy levels and by absorption of electromagnetic radiation, the molecules change
their state from lower energy levels to higher energy levels. Incident radiation does not have
enough energy to excite electrons in atoms from lower to higher energy levels, but the energy
of the radiation is sufficient to excite the intrinsic chemical vibrational modes of the molecule.
The vibrational modes of complex samples result in spectral fingerprint that is characteristic
for the samples. Vibrational modes can be classified into two different motions, i.e. bending
and stretching. Further, bending vibration can be divided into rocking, twisting, scissoring
and wagging. Stretching can also be divided into symmetric- and asymmetric stretching, de-
pending on whether the motion is in phase or out of phase. The excited intrinsic vibrational
modes result in characteristic peaks in the IR absorbance spectrum which can be interpreted
as a fingerprint of a molecule. The fingerprint makes it possible to identify different molecules
because every molecule has fairly different vibrational modes, which results in different ab-
sorbance spectra [35]. IR spectroscopy is used in a wide range of biological science and life
science. Biological material, such as cells and tissue, consists of the main components proteins,
lipids and carbohydrates. Thus, biological materials all have similar main components and
only small features are distinguishing them apart. In section 3 and in Fig. 3.5 spectra of Mu-
cor circinelloides, rhodotorula graminis and phaffia rhodozyma measured with High Throughput
Screening (HTS) FTIR are shown.

When absorbance spectra are recorded it is important to distinguish between chemical and
physical effects. Figure 2.2 illustrates how absorbance spectra are recorded. First, as shown
in Fig. 2.2A, a background spectrum is recorded, where the incident radiation coming from
the source with intensity Ĩ propagates through the optical system towards an empty sample
holder. The transmitted radiation passing the empty sample holder is recorded at the detector.
The background intensity is denoted by I0. In Fig. 2.2B it is illustrated how the sample inten-
sity is obtained. The sample is mounted on the sample holder and the intensity that transmits
through the sample is measured at the detector. Due to the conservation of energy, the inten-
sity will be either absorbed, transmitted and/or scattered. The following equation shows this
relationship

Ĩ0 = IA + IT + Isca. (2.1)

where IA, IT and Isca are the absorbed, transmitted and scattered intensity, respectively. In
ideal cases, scattering is not taken into account and the incident light is either absorbed or
transmitted through the sample. The transmission of a sample can then be expressed as the
ratio of the intensity reaching the detector and the incoming intensity as follows

T (ν̃) =
Ĩ(ν̃)

I0(ν̃)
. (2.2)

A common practice is to represent the spectra according to absorbance and not transmission,
this is because the absorbance is proportional to the concentration of constituents according
to Beer-Lambert’s law [1]. The relationship between transmission and absorbance Z(ν̃) is as
following

Z(ν̃) = − log T (ν̃). (2.3)
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a)

Ĩ0

I0

b)

Ĩ0

I

FIGURE 2.2: Simplified illustration of how IR absorbance spectra are recorded.
(A) The reference spectrum is recorded when the incident radiation Ĩ probes an
empty sample holder and the transmitted radiation I reaches the detector. (B)
The incident radiation is probing the sample which is mounted on the sample
holder, and the transmitted radiation is recorded. By courtesy of Johanne Heit-
mann Solheim, Faculty of Science and Technology, NMBU.

2.2 The definition of the pure- and apparent absorbance spectrum

In electromagnetic theory absorption describes the phenomenon of light absorption by mat-
ter, causing for example the excitation of vibrational modes, when infrared radiation is used.
Absorbance is a physical quantity of unit one defined by Eq. 2.3. The radiation coming from
the IR source and attenuated by chemical absorption of molecules leads to chemical features
in the spectra. In this case, the obtained absorbance may be considered as ’pure ’ and denoted
by the pure absorbance spectrum (Zpure) [19]. However, in general some intensity may be lost
due to scattering, causing unwanted physical features in the spectra. In this case, the obtained
absorbance may be denoted as the apparent absorbance spectrum (Zapp) [39].

Pure absorbance spectrum is an ideal case whereas the measured spectrum is only affected
by attenuation by chemical absorption. In Fig. 2.3a a visualization of an ideal case is shown,
typically the sample is a thin film with a thickness ds. In this case, the radiation reaching the
detector D is only lost due to chemical absorbance. The pure absorbance spectrum as a function
of wavenumber is illustrated in Fig. 2.3b. The characteristic of a pure absorbance spectrum is
a constant flat baseline and all absorbance peaks correlate with the actual absorption of the
vibrational modes. This means that high absorbance peaks correlate with high absorption,
where absorbance equal to one means that 90% of the intensity has been absorbed by the
sample at the corresponding wavenumber. Further, absorbance equal to zero means that all
of the incident radiation transmits the sample, for instance, the flat region at 2000 cm−1 is
typically named the silent region due to zero absorption. The spectrum illustrated is of the
filamentous fungus Mucor Circinelloides.
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I0

I
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D
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FIGURE 2.3: (A) Visualization of a transmission experiment. The incoming ra-
diation intensity I0 propagates towards the sample with a thickness ds, and the
transmitted intensity I reaches the detector D. Here, the loss in intensity is only
due to chemical absorption by the sample. (B) Pure absorbance spectrum of the
filamentous fungus Mucor Circinelloides, measured with an HTS FTIR instrument
[11]. By courtesy of Johanne Heitmann Solheim, Faculty of Science and Technol-
ogy, NMBU.

To get a better understanding of how the pure absorbance spectrum is obtained, a closer
look at the intensity of the incident- and detected plane wave is necessary. The incident inten-
sity can be expressed in terms of the incident electric field amplitude E0 as following [19]

I0 =
c

2
ϵ0|E⃗0|2, (2.4)

where the constant c is the speed of light, ϵ0 is the permittivity in vacuum. The electric field
amplitude is changing depending on the depth position x in the sample, and can be expressed
as

E(x) = E0e
ik̃x, (2.5)

where k̃ is the complex angular wavenumber and can further be written as

k̃ = α+ i · κ = k0 · ñ, (2.6)

where α and κ are the real and imaginary part of k̃, respectively. k0 is the angular frequency
in vacuum and ñ is the complex refractive index. When the plane wave is detected by the
detector it has transmitted through the whole sample, given x = d. The intensity recorded by
the detector can now be written as

I =
c

2
ϵ0|E⃗|2 = c

2
ϵ0|E⃗0|2e−2κd. (2.7)

With Eq. 2.4 and Eq. 2.7 it is now possible to calculate the transmittance according to Eq. 2.2

T = e−2κd = e−4πn′dṽ, (2.8)

where n′ is the imaginary part of the complex refractive index. The pure absorbance spectrum
is derived in the following way

Zpure(ṽ) = − log T (ν̃) =
4πn′dṽ

ln 10
. (2.9)

Zpure(ṽ) is only explaining the chemical absorption by the matter, which means that −4πn′ṽ
ln 10

is a measure of the absorptivity of the sample, denoted as k. From Eq. 2.9 it is evident that
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the absorbance spectrum is wavelength dependent and proportional to the sample thickness
d. From the same equation, Beer-Lambert’s law can be derived as following

Z(ṽ) = kj(ṽ) · d · cj , (2.10)

where kj refers to the characteristic absorptivity for each component, d is the sample thickness
and cj is the concentration of each componentj, if the sample is a mixture [19].

Only in ideal cases, the thin film is scatter free. In most practical cases this approximation is
not applicable. Hence the term apparent absorbance is introduced. The apparent absorbance
spectrum displays attenuation caused by both absorption and scattering features as illustrated
in Fig. 2.4a. Due to the sample shape and size not all of the radiation will be transmitted
or absorbed, but some of the incident radiation will also be lost due to diffuse scattering. As
shown in Fig. 2.4b the scattering is prominent in the absorbance spectrum, displayed as a tilted
baseline.

Assuming that the amount of radiation lost due to scattering is constant with respect to
the wavenumber over the considered wavenumber range in the mid-infrared, the apparent
absorbance spectrum can be expressed as

Zapp(ṽ) = − log
I(ν̃)

αI0(ν̃)
= − log

I(ν̃)

αI0(ν̃)
+ logα, (2.11)

where α is a constant scaling effect for the intensity due to diffuse scattering. This scaling of
the intensity turns into a constant baseline of the absorbance with the value logα. In addition
to diffuse scattering, variations in the source intensity between the background and the sample
intensity may lead to the same constant baseline variations. We see that if the source intensity
is scaled with a factor of α compared to the background measurement a baseline shift occurs
in the absorbance spectra. The scaling coefficient may vary with the wavenumber, which may
cause a tilted baseline, as illustrated in the absorbance spectrum in Fig. 2.4b [39].

For single cell spectroscopy more sophisticated scatter effects occur. Biological samples
like single cells and or cells in a tissue have spherical morphological structures. Since the
wavelength of the incident infrared radiation is in the same order as the size of biological cells,
strong scattering effects appear. For cells, these scattering effects have been interpreted as
Mie-type scattering, which causes highly distorted infrared absorbance spectra [30] [38].

When absorbance spectra suffer from these distinct physical effects, the absorbance does
not longer have Beer-Lamber behavior and estimating the chemical composition of the sample
is not possible anymore. Modelling scatter effects is thereby an important activity in IR spec-
troscopy, and several methods have been proposed to correct the spectra and reconstruct the
pure absorbance spectra to retrieve the chemical fingerprint [[18] [3] [4] [19] [20] [38] [23]].
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FIGURE 2.4: (A) Visualization of a transmission experiment when incoming ra-
diation intensity I0 is lost due to both chemical absorption and scattering. The
attenuated radiation intensity I reaches the detector D. (B) Apparent absorbance
spectrum recorded from the filamentous fungus Mucor Circinelloides with an HTS
FTIR instrument [11] . By courtesy of Johanne Heitmann Solheim, Faculty of Sci-
ence and Technology, NMBU.

2.3 Spatial resolution

Every optical system is limited by spatial resolution, and factors such as misalignment and
imperfections in the lenses can affect the resolution in a negative way. However, there is one
important and critical parameter in every optical system which limits the spatial resolution,
namely the diffraction limit. The diffraction limit can be derived from the Rayleigh criterion

∆x ≥ 0.61
λ

n sin θ
, (2.12)

where ∆x is the spatial resolution, n is the refractive index of the medium and θ is the half-
angle of the maximum angle of the aperture. n sin θ refers to the numerical aperture denoted
as NA [22]. According to the equation, it is clear that the diffraction limit is in the same order
as the wavelength λ of the light source. Mid-IR light ranges from around 2.5 µm to 25 µm,
which is in the same order as the sizes of many biological cells. Thus, due to the limitation
it is not possible to achieve information on subcellular level or nano size level. As seen, spa-
tial resolution sets boundaries of the size of objects that can be spatially resolved by optical
methods.

2.4 Fourier transformed infrared spectroscopy

2.4.1 Michelson interferometer and Fourier transform

FTIR spectroscopy is based on the interferometer designed by Michelson more than 100 years
ago, namely the Michelson interferometer [29]. The configuration consists of collimated radi-
ation which propagates towards a beam splitter, where the radiation is split into two perpen-
dicular beams, as shown in Fig. 2.5 [14]. Assuming an ideal beam splitter, 50% of the beam
is transmitted and the other 50% is reflected. The beamsplitter introduces a phase difference
between the two beams due to a phase change of 90◦ of the reflected beam. The transmitted
beam strikes a movable mirror, while the reflected beam strikes a fixed mirror. Both beams are
reflected by the mirrors, and propagate back to the beam splitter and recombine. Depending
on the position of the movable mirror, the two beams are in phase or out of phase when they
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recombine, creating either constructive or destructive interference. The intensity of each beam
striking the detector depends on the phase of the two different beams and how they interfere.
If the beams are out of phase causing destructive interference the beam will propagate back to
the source causing zero intensity at the detector.

OSource

Fixed mirror

Detector

Beamsplitter

M

F

Movable
mirror

Direction of
travel

FIGURE 2.5: Visualization of the Michelson interferometer. The incident light
propagates towards a beamsplitter, where it is either transmitted or reflected.
Further, the light strikes either the fixed or the movable mirror, where it reflects
and propagates back to the beamsplitter. The light recombines and reaches either
the detector or is reflected back to the source depending on the phase of the
beam. With inspiration from [14].

Depending on the movable mirror, the phase difference will vary and the mirror can ei-
ther be a continuous-scan interferometer, where the mirror moves at a constant velocity, or
it can be a step-scan interferometer, where the mirror moves between some fixed points, or
it can be a rapid-scan interferometer, where the mirror moves continuously with high veloc-
ity, approximately 0.1 cm s−1 [35]. The Optical Phase Difference (OPD) of the two beams is
called retardation and is denoted by the symbol δ. The spectral information achieved from the
Michelson interferometer is the fluctuation of intensity as a function of the retardation and has
the symbol I ′(δ). If the mirror is moved with constant velocity, which is most common, the
detected intensity varies sinusoidally given by

I ′(δ) = 0.5I(ν̃0)(1 + cos 2πν̃0δ). (2.13)

The equation consists of a constant part and a sinusoidally part, however, it is only the non-
constant part that is of interest and is known as the interferogram I(δ)

I(δ) = 0.5I(ν̃0) cos 2πν̃0δ, (2.14)
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where I(ν̃0) is the intensity of the source. It is practically impossible to have an ideal beamsplit-
ter, thus I(ν̃0) is multiplied by a wavenumber dependent factor of cos 2πν̃0δ, which corrects
for non-ideal beamsplitter. The signal achieved by the interferogram is depending on the effi-
ciency of the beamsplitter, the response at the detector and the characteristics of the amplifier,
in addition to the intensity of the source. The source intensity is the only factor that varies for
each measurement, the other parameters are fixed for each system configuration. Taking these
factors into consideration, it is possible to modify Eq. 2.14 by a single wavenumber-dependent
correction factor, H(Ṽ0). Hence, the signal achieved by the interferometer is

S(δ) = 0.5H(ν̃0)G(ν̃0)I(ν̃0) cos 2πν̃0δ, (2.15)

where G(ν̃0) is the responsitivity by the detector and the amplifier, measured in (V ·W−1). To
simplify the equation let B(ṽ) be equal to 0.5H(ν̃0)G(ν̃0)I(ν̃0). The interferogram can now be
expressed as

S(δ) = B(ν̃0) cos 2πν̃0δ, (2.16)

where B(ν̃0) is the intensity of the source at the specified wavenumber. The spectral informa-
tion is finally achieved by computing the cosine Fourier transform of S(δ), and this is why it
is called Fourier transform infrared spectroscopy. The Fourier transform turns the signal mea-
sured at the detector as a function of path difference S(δ) into the intensity as a function of the
wavenumber ṽ.

2.5 The photothermal effect based techniques

2.5.1 The photothermal effect

Optical-Photothermal IR spectroscopy and Atomic Force microscopy-based IR spectroscopy
(AFM-IR) are two techniques based on the detection of the photothermal effect that occurs
when IR radiation is absorbed by the sample. It results in a change of temperature, refrac-
tive index within the sample and induces thermal expansion and photomechanical pressure
change [2]. Equation 2.9 shows that the power absorbed by the sample is proportional to the
imaginary component of the refractive index, n′. When the IR radiation is focused onto the
sample some of the IR power is absorbed by the material. The absorbed power Pabs can be
expressed by [8]

Pabs =

∫
V

πcϵ0
λ

Im(ñ(λ)2)|Eloc|2dV, (2.17)

where V is the volume of the sample, c is the speed of light, λ is the wavelength of the radiation,
ñ(λ)2 = n2 + inκ − κ2, where only the imaginary part is considered, namely inκ. Further,
|Eloc|2 is the electric field inside the sample. The amount of energy which is absorbed by the
sample is strongly depending on the electric field inside the sample and the refractive index.
Normally, the electric field inside a sample is not known. In addition, the refractive index
may vary within the sample and cannot be obtained as a function in space. Consequently,
it is necessary to make assumptions. As we recall, mid-IR radiation is in the range of 2.5-25
µm and the sample size is in the size range of a few micrometers. Hence, the electric dipole
approximation can be used, stating that small variations of the electric fields inside the sample
can be neglected. Therefore, it can with good approximation assume that the electric field
inside the sample is constant [21]. The second assumption is that the absorption corresponding
to a molecular vibration is weak from which it follows that n2 >> n′2. By Eq. 2.9 the imaginary
part of the complex refractive index n′ can be calculated, by assuming that the absorbance
Z = 1, the sample thickness is 10 µm, and λ = 6 µm. Then, solving the equation gives n′ = 0.1
which is much smaller than n which is around 1.3. With these two assumptions the absorbed
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power Pabs in Eq. 2.17 can be expressed as [8]

Pabs = IincαoptV ṽn′(ṽ), (2.18)

Iinc is obtained by the relationship of |E0|2 from Eq. 2.4, and αopt = 2πn. From this equation
it is evident that the power absorbed by the sample is proportional to the absorptivity of the
sample explained in Eq. 2.9, since both the power absorbed and the pure absorbance spectrum
are proportional to ṽ and n′. The IR radiation irradiates the sample in a pulsed duration time,
corresponding to the rectangular box function. The concept of the photothermal expansion
effect is to take advantage of the fact that IR radiation which is absorbed by the sample, causes
a change in temperature. The increasing temperature in the sample induces thermal stress,
which is relaxed by a mechanical expansion of the sample. With the Fourier heat equation, it
is possible to mathematically express the relationship between the temperature change in time
and space and the power absorbed by the sample.

ρCp
∂T

∂t
=

Π(tp) · Pabs

V
+ kth∆T, (2.19)

where ρ is the density of the sample and Cp is the heat capacity. Π(tp) is the rectangular
box function with length tp. Assuming that the laser signal has the shape of a rectangular
pulse with a duration of tp. The quantity kth represents the thermal conductivity and ∆ is the
Laplacian operator. Π(tp) · Pabs may be denoted as the power of the heating source. Equation
2.19 gives a clear relationship between the laser duration, the power absorbed by the sample
and the temperature change of the sample. When using an Optic Parametric Oscillator (OPO)
laser, which is a short pulse laser with a duration time of one nanosecond, the laser duration
is much smaller than the heat relaxing time of the sample. It can be shown that it is possible to
solve the Fourier heat equation with respect to the temperature and obtain [8]

T =
Tmax

tp
t, when 0 ≤ t ≤ tp, (2.20)

T = Tmaxe
− (t−tp)

τrelax , when tp ≤ t, (2.21)

where the maximum temperature increase is expressed as Tmax =
Pabstp
V ρCp

and the relaxation
time is expressed as τrelax =

ρcp
keff

a2, where a is the radius of the sample and keff is the external
heat conductivity of the environment surrounding the sample, i.e the air and the sample slide.
By integrating the temperature with respect of time it is possible to visualize the characteristic
of the samples temperature change as shown in Fig. 2.6. There is a linear relationship between
time and temperature when the time is less or equal to the laser duration, reaching the maxi-
mum temperature when the time is equal to tp. When the time is exceeding tp the temperature
is decreasing exponentially. The mechanical expansion caused by the increasing temperature
can be expressed as

u(t) = aGαT∆T (t), (2.22)

where a is the size of the heated region, G is a constant depending on the geometry of the
sample, αT is the thermal expansion coefficient and ∆T (t) is the rise in temperature due to the
absorption of the IR laser.

It has now been shown that the power absorbed by the sample and the absorptivity of
the sample are both proportional to the wavenumber and the imaginary part of the refractive
index. Hence the power absorbed and the absorptivity of the sample are linearly dependent on
each other. Further, It is shown by the Fourier heat equation that the change in temperature is
proportional to the power absorbed. Lastly, the thermal expansion is shown to be proportional
to the temperature change. Thus, the photothermal expansion of the sample is proportional to
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FIGURE 2.6: The blue graph shows the temperature change of the sample when
an IR laser illuminates it. The characteristic temperature change shows that the
laser interval (tp) is less than the relaxation time of the sample, as obtained ex-
ample with an OPO laser.

the power absorbed by the sample [9].

2.5.2 Optical-probed photothermal induced infrared microspectroscopy

Optical-probed PhotoThermal induced InfraRed microspectroscopy (O-PTIR), is a newly emerg-
ing technique that uses a visible laser to probe the photothermal effect occurring inside the
sample. The instrumentation setup is shown in Fig. 2.7 where the number 1 denotes a tunable
IR laser beam and how it is guided to the sample surface. The number 2 denotes the meeting
point of the IR laser and the green visible laser, where the two beams are made collinear and
guided towards a Cassegrain microscope objective which is denoted with the number 3. The
objective focuses the two beams onto the sample surface. The number 4 denotes the sample
where the IR laser and the green laser are focused onto the sample. The IR laser illuminates
a larger area of the sample and the absorption of the IR laser causes a photothermal expan-
sion. As described in the previous chapter the absorption of IR radiation causes a change in
temperature, refractive index and thermal expansion. The green laser probes a smaller area,
and due to the changes in temperature and refractive index the reflection of the green laser
changes. The reflected beam is guided back to the detector marked with the number 5 in the
illustration [31]. Due to the green laser, also denoted as the probing laser, the instrument is
wavelength independent in the IR spectral region. A priori, This means that the spatial resolu-
tion is not dependent on the IR laser, but on the green laser which is a continuous wave with
a wavelength of 532 nm. Hence, submicron spatial resolution is achieved. Another advantage
of O-PTIR is that the IR absorbance spectrum is not distorted by IR Mie scattering [16]. So far
the theory behind this technique is not well explained in the literature, and there are no good
explanations of how the IR O-PTIR signal is recorded. However, one way it is explained is
that the change in reflectivity of the visible laser is caused by the thermal expansion causing a
change in the intensity of the scattered light, also known as Rayleigh scattering. By deriving
the Rayleigh scattering equation it is possible to calculate the photothermal response in the
following way

∆PPR ∝ σN

κCp

∂n

∂T
PprPIR, (2.23)
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FIGURE 2.7: Schematic view of the O-PTIR system. (1) The laser path of the
pulsed tunable IR laser is in red. (2) The IR laser and the green probe laser
are made collinear. (3) A microscope objective focuses the two collinear beams
onto the surface of the sample. (4) The sample absorbs the IR laser radiation,
causing a photothermal expansion effect that causes a change in the reflection of
the green probe laser. (5) The reflected light returns back to the detector, and the
IR response is recorded.

where ∆PPR is the probe power detected, σ is the absorbance cross section of the sample, N is
the atomic number density, κ is the heat conductivity, Cp is the heat capacity, n is the refractive
index, T is the temperature, Ppr is the power of the visible laser and PIR is the power of the
IR laser [44]. The probe power monitored by the detector is then processed and allows to
indirectly measure the IR response of the sample, unlike traditional IR instruments where the
direct absorbance of the sample is measured. Another explanation of how the O-PTIR signal
is obtained is due to thermal diffusion, where the refractive index of the air around the sample
changes. Thus the reflectivity of the green laser changes and is then recorded. However, this
is not explained well in the literature.

2.5.3 Atomic force microscopy-based infrared spectroscopy

Atomic Force Microscopy-based InfraRed spectroscopy (AFM-IR) is a technique where atomic
force microscopy and IR spectroscopy are combined [28]. The technique takes advantage of
the linear proportionality between the photothermal expansion effect and the absorptivity of
the sample to obtain an IR absorbance spectrum. The instrumental setup is shown in Fig. 2.8
and consists of an infrared laser that highlights the sample, a cantilever, a red diode and a
photodiode. When measuring, the tip of the AFM cantilever is placed in contact mode with
the sample. The IR laser is tuned to a specific wavelength in the mid-infrared, causing an
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almost instantaneous photothermal expansion due to an instant temperature increase in the
absorbing area. Further, the photothermal expansion causes a force impulse on the cantilever
through the tip, causing a deflection on the cantilever. Following a temperature rise, the tip
of the cantilever reacts accordingly, and the cantilever starts to oscillate on its eigenmodes.
The cantilever oscillation is recorded with the optical system of the AFM: a red diode and the
photodiode, as seen in the yellow dashed line in the figure. The value of the maximum peak-
to-peak amplitude of the oscillation may be plotted versus the IR radiation illuminating the
sample to reconstruct the local IR absorbance spectrum [8]. AFM-IR provides spatial resolution

FIGURE 2.8: Schematic view of the AFM-IR setup with the infrared laser illumi-
nating the sample. The cantilever is in contact mode and starts to oscillate when
the sample absorbs the IR radiation. The oscillation changes the angle of the de-
flection laser, which is recorded by the photodiode. With inspiration from [28].

of less than 50 nm allowing subwavelength infrared imaging. The resolution is only limited
by the radius of the cantilever tip [9]. The high spatial resolution makes it possible to achieve
spectral information far below the conventional FTIR technique. Thus, this makes AFM-IR
measurements an attractive technique in the study of for example subcellular compartments of
biological cells. The technique allows high spatially-resolved IR mapping of cells and provides
highly resolved spectral data.

2.6 Spectral preprocessing and data analysis

2.6.1 The multiplicative signal correction

Multivariate Signal Correction (MSC) is a frequently used technique in IR spectroscopy to re-
move physical effects like scattering, scaling effects and baseline shift in apparent absorbance
spectra. The aim of the prepossessing is to reconstruct the pure absorbance spectrum by re-
moving the physical effects to obtain only the chemical contributions in the spectrum. MSC
was first introduced in 1983 by Martens et al. [25]. The MSC model is based on the Beer-
Lambert Law. MSC is the simplest version of the correction. In MSC the apparent absorbance
spectrum Zapp(ṽ) is modelled as



2.6. Spectral preprocessing and data analysis 17

Zapp(ṽ) = a+ b · Zref (ṽ) + ϵ(ṽ), (2.24)

where a describes the constant baseline shift, b is a scaling parameter, Zref (ṽ) is the refer-
ence spectrum and ϵ(ṽ) takes care of the residuals which are not described by the model. The
reference spectrum is ideally a good representative of the samples chemical composition. In
many cases, the mean of the apparent absorbance spectra in the dataset is used as the reference
spectrum. The corrected spectra are then standardized with respect to this average which rep-
resents for example the average thickness of the sample. Using a reference spectrum which is a
good representative of the sample set considered leads to a stable correction model [39]. Least
squares regression is performed in order to obtain the parameters a and b. The corrected ab-
sorbance spectrum is obtained by removing the physical effects from the apparent absorbance
spectrum as follows

Zcorr(ṽ) =
Zapp(ṽ)− a

b
, (2.25)

where Zcorrr is the corrected absorbance spectra. According to Eq. 2.24 Zcorr(ṽ) can also be
written as

Zcorr(ṽ) = Zref (ṽ) +
ϵ(ṽ)

b
. (2.26)

We recall that b is the scaling effect and Zref (ṽ) is often the mean spectrum of Zapp(ṽ). From
Eq. 2.26 it can be seen that the interesting chemical features of each spectrum are taken care of
by the residual spectrum ϵ(ṽ). An advantage of MSC is that it easily can be extended, which
makes it a robust model when dealing with highly complex scatter effects.

2.6.2 The extended multiplicative signal correction

Extended Multiplicative Signal Correction (EMSC) is the extended version of MSC introduced
in 1991 by Martens and Stark [27]. It is a standard prepossessing method in IR spectroscopy
because of its flexibility in choosing higher polynomial orders correcting for the complexity of
the data set. Due to the fact that diffuse scattering is often wavenumber dependent, significant
baseline distortions may occur which often can be approximated by polynomials. By adding
wavenumber-dependent polynomials to the MSC model of Eq. 2.24 the model is extended as
following [17]

Zapp(ṽ) = a+ b · Zref (ṽ) + c · ṽ + d · ṽ2 + ϵ(ṽ). (2.27)

While there are in principle no limitations on the number of polynomial orders, it is impor-
tant to choose the order of the polynomial carefully. Adding higher polynomial orders is only
meant to correct the physical artifacts, but if too high polynomial orders are used, important
chemical features may be removed as well. EMSC can be extended to also include other chemi-
cal absorbance spectra so-called constituent model spectra [40]. The constituent model spectra
can both include analytes and interferents, which have been previously termed good-spectra
and bad-spectra respectively [26]. In cases when the sample is embedded in a medium whose
spectral features afterward need to be subtracted from the spectra, an interferent spectrum
representing the media may be used. Epoxy, paraffin and water are examples of different me-
dia with unwanted chemical features in the apparent absorbance spectra. When selecting an
interferent spectrum one needs to be careful and avoid too high collinearity with important
chemical features in the target pure absorbance spectrum that is to be retrieved. Analyte spec-
tra can as well be used as model spectra in the EMSC model. An analyte spectrum is used
as a stabilizing factor in the model, and the aim is not to remove the analyte spectrum in the
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correction process. Instead, it can be used to quantify the concentration of a known constituent
as the parameter associated with a respective analyte is estimated in the EMSC modelling pro-
cess for each measured spectrum [40]. In order to understand how the constituent spectra are
included in the EMSC model we consider how the reference spectrum is achieved according
to Beer-Lambert law. The measured spectrum Z(ṽ) can be expressed as:

Z(ṽ) =
J∑

j=1

cjkj(ṽ), (2.28)

where cj is the concentration of compound j and kj is the absorbance of compound j. When
constituent spectra are included, the total chemical compounds can be written as

J∑
j=1

cjkj(ṽ) =
J∑

j=1

cj(kj − Zref (ṽ)) + Zref (ṽ), (2.29)

assuming the sum of concentrations is equal to 1. Rewriting (kj −Zref (ṽ)) to ∆kj , which is the
chemical differences from the reference spectrum. The EMSC model can now be expressed by

Zapp(ṽ) = a+ b · Zref (ṽ) + c · ṽ + d · ṽ2 + b ·

{
J∑

j=1

cj∆kj(ṽ)

}
+ϵ(ṽ). (2.30)

Further, the expression can be simplified further by expressing b · cj as hj , such that

Zapp(ṽ) = a+ b · Zref (ṽ) + c · ṽ + d · ṽ2 +
J∑

j=1

hj ·∆kj(ṽ) + ϵ(ṽ). (2.31)

When both analyte and interferent spectra are included in the EMSC model, it can finally be
expressed as

Zapp(ṽ) = a+ b · Zref (ṽ) + c · ṽ + d · ṽ2 + f · Zana(ṽ) + g · Zint(ṽ) + ϵ(ṽ). (2.32)

Zana and Zint denotes the analyte spectrum and interferent spectrum, respectively. Finally, the
corrected absorbance spectra can be expressed in the same way as Eq. 2.25 and Eq. 2.26, but
including the extended version.

Zcorr(ṽ) =
Zapp(ṽ)− a− c · ṽ − d · ṽ2 − g · Zint(ṽ)

b
(2.33)

Zcorr(ṽ) = Zref (ṽ) +
f · Zana(ṽ) + ϵ(ṽ)

b
(2.34)

From Eq. 2.33 and Eq. 2.34 it is clear that the interferent and analyte spectrum has the opposite
effects of each other.

Another useful method in EMSC is to apply weights on different regions in the spectra. For
instance, regions with high chemical variations can be weighted down, and regions with high
physical variations can be weighted up. The model focuses on correcting the variation that is
weighted up instead of focusing on the whole spectrum. Figure 2.9 shows an example with and
without weighted EMSC (see Fig. 2.9A and 2.9B, respectively). In the region above 1800 cm−1,
the weighted EMSC is able to correct for the scaling effect. Further, in the region between
1700 cm−1 and 1500 cm−1 the weighted model is not correcting for the chemical variability
as desired in contrast to the non-weighted model. There are large chemical variations in the
region between 1700 cm−1 and 1500 cm −1, which we want to keep in the corrected spectra,
thus this part is weighted down. There is no correct answer to how to apply weights, and
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in many cases, it is a process of trial and error. However, a good start is to weight physical
variability around 1 and chemical variability around 0.1.

(A) (B)

FIGURE 2.9: Visualization of EMSC correction with and without weights. (A)
Shows the correction with the weights 1, 0.05 and 0.3 shown by the grey dotted
line. The weights are scaled by 600 in the figure for better visualization. (B)
Shows the correction without any weighted parameters.

2.6.3 Principal component analysis

Principal Component Analysis (PCA) is an often used tool in the data analysis of high dimen-
sional and complex data sets. PCA is frequently applied for the multivariate data analysis
of spectroscopic data. The aim of PCA is to decompose a data set into new latent variables
named Principal Components (PCs). The principal components are linear combinations of
the variables in the original data set and define a new coordinate system where the principal
components are orthogonal with respect to each other [36]. The first principal component de-
fines a new direction that maximizes the co-variance of the data set. Thereafter, the residual
in the data set is considered and again the co-variance in the data is maximized, resulting in
the second principal component etc. Since principal components are orthogonal to each other,
the new variables are independent and uncorrelated. Usually, we are able to catch close to
100% of the explained variance by considering only the first few components in infrared data
of biological samples. Therefore, PCA is an efficient tool for dimensionality reduction [14].
Mathematically PCA can be expressed as

X = X + TAP
T
A + EA, (2.35)

where X is the original matrix with dimension (N × K), where N is number of measurements
and K is wavenumbers. Further, X is the mean of each row in X, and TA is the score matrix
with dimension (N × A) and PA is the loading matrix with (K × A) dimension. EA denotes
the residual matrix and represents the variance which is not expressed by the PC model TAPA.
Figure 2.10 illustrates the dimension of the matrices. The score matrix is the new coordinates
of the original data matrix returned by the PCA analysis, which can be plotted in a score plot
where the PCs are the axes. The loading matrix explains how the original spectra are related
to the new PCs, and may be visualized in a loading plot [36].

2.6.4 Multivariate curve resolution

Multivariate Curve Resolution (MCR) was developed by the field of chemometrics and can
both be performed by a non-iterative and an iterative algorithm in the analysis of chemical
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X = N ×K = TA =
N ×A

+

P T
A = K ×A

+ E = N ×K

FIGURE 2.10: Visualization of the dimensions of the matrices in PCA, where X
is the original data matrix, TA is the score matrix, PT

A is the loading matrix and
E is the residual matrix.

mixture problems [34]. The iterative approach is the most common and the one considered in
this thesis, more precisely Multivariate Curve Resolution - Alternating Least Square (MCR-
ALS), is the most widely used algorithm. In the MCR of infrared spectroscopic data, a data
matrix of absorbance spectra is decomposed by a linear model:

D = C · ST + E, (2.36)

where D is the initial matrix with absorbance spectra, C and S are matrices representing the
concentration and the respective pure component spectra. E is the residuals, which is not
explained by the model. The dimensions of matrix D and E are (N × K), while matrix C is
(N × A) and matrix ST is (K × A). The matrix of concentrations C and the matrix of pure
component spectra S have the same dimensions as the score and loading matrices in PCA,
respectively (see Fig. 2.10). The difference is that in MCR certain conditions are imposed for
the matrices C and S, such as for example non-negativity for the pure components S. The goal
of MCR is to estimate the true values of C and S when only having information of the initial
matrix D. The first step of the MCR-ALS algorithm is to determine the number of components,
which can be the same as the number of principal components used in the PCA. The second
step is to determine the initial estimates of C or S. In this thesis, the scores from the PCA have
been used as initial estimates for C. The third step is the optimization of C and S by solving Eq.
2.36 with the iterative model ALS and by using a linear transformation matrix T . The model
is updated as following [34]

D = C · (T · T−1) · ST + E, (2.37)

D = (C · T ) · (T−1·ST ) + E. (2.38)

In every iteration different constraints can be applied, whereas non-negativity is used in the
data analysis in this thesis [41].

2.6.5 3D infrared diffraction tomography

IR spectroscopy aims to study chemical information in the examined material, however, due
to loss of radiation caused by scattering, the chemical information in the spectra is often bi-
ased by scatter contributions. Biological samples have the same size as the magnitude of the
wavelength of the radiation, thus highly scatter-distorted spectra, such as Mie-type scatter-
ing is prominent. Scattering is determined by the complex refractive index function of the
sample. Further, the complex refractive index may vary in space since biological samples are
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not homogeneous, and the real and imaginary part of the refractive index are not constant
over the sample volume [24]. Thus, both chemical and physical features are dependent on
the refractive index and the absorptivity of the sample, causing the scattering features to be
highly entangled with the chemical features in the absorbance spectra. The ME-EMSC algo-
rithm has successfully managed to remove the Mie-scattering from the IR-absorbance spectra,
by updating the estimate of the pure absorbance spectrum. The algorithm has become the
state-of-art correction and is an open-source algorithm [38]. Deep learning models have later
outperformed the ME-EMSC correction in terms of time and performance, as described by
Magnussen et. al [23]. Further, by taking advantage of the fact that scattering and chemical
absorption features in measured spectra for chemical cells are highly informative for the phys-
ical and chemical properties of cells, the inverse scattering problem of predicting chemical and
physical properties of the cell wall and cell interior was solved by a deep convolutional neural
network [24]. The algorithm predicts the physical properties such as size and refractive index
of the cell wall and the cell interior, in addition, it predicts information rich pure absorbance
spectra of the cell wall and cell interior. These predictions are made by an estimation of a
highly scatted mean spectrum of the measured cell. The proposed algorithm has successfully
managed to retrieve chemical information of biological cells and predict the size and chemical
composition of the cell wall and the cell interior of an intact cell. This approach is termed 3D
infrared diffraction tomography. In this thesis we use this algorithm, from the study made by
Magnussen et al. [24], to predict the pure absorbance spectrum of cell wall and cell interior and
the physical properties of the fungus Mucor circinelloides and the yeast cells Phaffia rhodozyma
and Rhodotorula graminis. The approach will be compared with O-PTIR and AFM-IR and how
well it is possible to obtain high quality chemical information of the cell wall and cell interior
of both intact and sectioned biological cells.
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Method

3.1 Biological samples

The experimental part is divided into two different sections in regard to sample preparations,
namely sectioned cells and intact cells. As for the sectioned cells, yeast Rhodotorula graminis
CCY 20-2-47 and algae Aurautiochyrium limaanium are used as biological samples. The size of
the Rhodotorula graminis cell is approximately between 2.3 - 3.9 µm in diameter and the Aurauti-
ochyrium limaanium has a cell size of approximately 5 - 10 µm in diameter. The cells were first
treated with osmium and then sectioned with a cryo-microtome in 500 nm and 200 nm thin
sections. To be able to make such fine sections, the samples were embedded in epoxy which is
a type of resin. The epoxy is embedding the biological samples in liquid state. Samples were
then dried for a period of three weeks, where they turned into a polymerized block. The sec-
tioning was performed by the imaging center at the Norwegian University of Life Sciences. As
intact cells, two different types of carotenogenic yeast were used, namely Rhodotorula graminis
CCY 20-2-47 and Phaffia rhodozyma CCY 77-1-1. Phaffia rhodozyma has a cell diamteter ranging
from 6 µm to 10 µm. In addition, filamentous fungi Mucor circinelloides FRR 5020 were studied.
However, the exact cell size is difficult to define as it creates long hyphae which can vary in
length and thickness. The cultivation of the intact cells was done by members of the BioSpec
Norway group at Norwegian University of Life Sciences. Table 3.1 shows an overview of the
different biological samples considered with the respective sample preparation and sample
size for each sample.

TABLE 3.1: Overview of the instrumentation, sample preparation and sample
size that were used for the different biological cells

Rhodotorula
graminis

Phaffia
rhodozyma

Aurautiochyrium
limaanium

Mucor
circinelloides

Instrumentation
O-PTIR
AFM-IR

FTIR-FPA

O-PTIR
FTIR-FPA

O-PTIR
AFM-IR

O-PTIR
FTIR-FPA

Sample
preparation

Sectioned cells
Intact cells

Intact cells Sectioned cells Intact cells

Sample size [µm] 2.3-3.9 6-10 5-10 Not defined

3.2 Instrumentation

All data measured with O-PTIR, AFM-IR and FTIR FPA hyperspectral measurements have
been performed by the candidate. FTIR HTS measurements have been performed by members
of the BioSpec Norway group at Norwegian University of Life Sciences, and Transmission
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Electron Microscopy (TEM) has been performed in an earlier study by the imaging center at
the Norwegian University of Life Sciences.

O-PTIR measurements: All biological samples were measured with O-PTIR, in addition, mea-
surement of pure epoxy was measured as reference. The O-PTIR instrument has four QCL
lasers, which cover a spectral range of 910 cm−1 to 1903 cm−1. Images of the O-PTIR instru-
ment are shown in Fig. 3.1. Figure 3.1B shows the whole instrumental setup where the number
1 indicates the position of the microscope objective and number 2 shows the source of the IR
laser beam, Further, Fig. 3.1A shows a closer image of IR laser setup. The setup depends on
what laser type that is used. Number 1 indicates the path of the QCL laser and number 2 the
path of the OPO laser. Figure 3.1C shows the stage where the sample is placed on. The stage
is movable in x, y and z direction, where x and y are used to find the wanted position of the
target sample, and changing the z position is used to get the right focus. Further, the image
shows two different objectives, the one with a yellow thin stripe is a 10X objective with nu-
merical aperture of 0.3 which gives a better visualization of larger sample areas. The objective
with a blue stripe is a 40X objective with numerical aperture of 0.78. A background measure-
ment was acquired every time a new sample was measured. The background measurement
optimizes the position of the four lasers and it optimizes the power of the IR lasers which are
shown in Fig. 3.2. Laser brakes occurs in the transitions between lasers and it needs to be cor-
rected in the preprocessing. The laser breaks are approximately at 1693 cm−1, 1433 cm−1 and
1205 cm−1. An Avalanche PhotoDiode (APD) detector, where used which is highly sensitive.
Before measuring the samples the optical parameters needed to be optimized. This is done by
looking at the response of the sample when changing the power of the IR laser and the green
laser. By increasing the laser powers too much it is possible to burn the sample. In addition to
tuning the two laser powers, the pulse rate and the pulse width may be optimized to obtain
higher response of the sample. The optimal signal was achieved at 42% and 24% for the IR
laser and 0.22% for the green probe power. The pulse rate and pulse width were mostly set to
100 kHz and 100 ns, respectively, however for some cases they were set to 200 kHz and 200 ns.
These parameter yields for all samples except the algae because no optimal parameters were
obtained due to bad quality of the measured spectra. An average of four spectra was used for
all acquired spectra. The O-PTIR data were measured at Paris-Saclay university, institute of
chemical physics in Paris, France.

Tentative depth-resolved O-PTIR measurements were performed on intact cells. Figure 3.3
shows a simplified version the optical setup for depth-resolved measurements. The green
laser probes the sample at the focal point, and the sample stage can be moved up and down in
the Z-direction to probe at different depths within the sample.

AFM-IR measurements: The 500 nm thin sectioned cells were as well measured with the AFM-
IR. For the algae, it was not possible to obtain optimal parameters, because of bad quality of
the spectra. With Rhodotorula graminis, the IR laser power was set to 9.79% with a pulse rate
of approximately 400 kHz and a pulse width of 160 ns. Spectra were obtained as an average
of two spectra with a spectral range from 900 cm−1 to 1900 cm−1. The height images varied
in width size between 1 µm and 4 µm and height size between 4µm and 5µm. The AFM-
IR measurements were performed at Paris-Saclay university, institute of chemical physics in
Paris, France.

FTIR FPA hyperspectral measurements: FTIR microspectroscopic imaging were measured
of intact cells with an FTIR Hyperion 3000 from Bruker, with a FPA detector. The measure-
ments were performed in transmission mode, with a resolution of 8 cm−1. The number of
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(A)

(B)

(C)

FIGURE 3.1: Images of the O-PTIR instrumentation. (A) shows the IR laser setup,
where 1 and 2 illustrates the beam paths of the QCL laser and the OPO laser,
respectively. (B) Number 1 indicates the location of the microscope and number
2 labels the IR lasers. (C) Image of the stage and the two different objectives.

FIGURE 3.2: Optimized power of the four infrared QCL lasers. Data is obtained
from an arbitrary background measurement.

scans varied between 32 and 64 scans. A background spectrum was acquired before every
measurement.

In table 3.1 the three techniques O-PTIR, AFM-IR and FTIR FPA are shown with the corre-
sponding measured biological samples.
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FIGURE 3.3: Schematic view of the depth-resolved O-PTIR measurement. The
green laser probes the sample at different focus points within the sample by mov-
ing the stage in the Z-direction. The IR laser is illuminating a larger part of the
sample. With inspiration from A. Dazzi.

FTIR HTS measurements: High Throughput Screening (HTS) measuremnts of Mucor circinel-
loides, rhodotorula graminis and phaffia rhodozyma was performed by BioSpec Norway group
at Norwegian University of Life Sciences. The measurements were measured with spectral
resolution of 6 cm−1 and number of scans was 64.

Transmission electron microscopy: TEM image of sectioned Rhodotorula graminis is shown in
Fig. 3.4, were subcellular structures are seen. The cell wall is the edge around the whole cell
and the cell interior is considered to be everything within the cell wall. The image has been
performed by the imaging center at the Norwegian University of Life Sciences.

3.3 Spectral preprocessing and data analysis

O-PTIR and AFM-IR: All spectra obtained from O-PTIR and AFM-IR have been laser cor-
rected using a Python script made by Paris-Saclay University, institute of chemical physics in
Paris, France. In general, the laser breaks occur approximately at 1693 cm−1, 1433 cm−1 and
1205 cm−1, however, in some cases the laser breaks may be shifted a few wavenumbers. It is
therefore important to look at the acquired spectra to be sure where the laser breaks occur.

FTIR FPA hyperspectral images: The FPA hyperspectral images of intact cells was applied to
the 3D infrared diffraction tomography approach which is a pre-trained deep convolutional
neural network algorithm published by Magnussen et al. [24].

To analyze the data the software Quasar version 1.5.0 and the programming language Python
was used.

Three different terms are used to label the sampling of spectral data, namely point scan, line
scan, and spectral image. Point scan refers to a measurement of a single spectrum at one
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position of the sample, line scan denotes sampling of spectra along a line, and with spectral
image we refer to sampling of spectra in an image plane.

FIGURE 3.4: TEM image of Rhodotorula graminis showing subcellular structures.

FTIR HTS spectra: Figure 3.5 A, B and C show HTS coupled to FTIR measurements of Mucor
circinelloids, Rhodotorula graminis and Phaffia rhodozyma, respectively, which can be considered
as relatively pure absorbance spectra. The most important peaks are annotated with the corre-
sponding wavenumbers, and table 3.2 shows the respective peak assignments. In general, the
cell wall consists of a higher concentration of carbohydrates, which are associated with peaks
in the spectral region between 1200 cm−1 and 1000 cm−1, relative to the cell interior which
has a higher concentration of lipids and proteins. The peaks at 2925 cm−1, 2855 cm−1, 1745
cm−1 and 1146 cm−1 refer to lipids, as shown in table 3.2. Further, the two peaks at 1655 cm−1

and 1455 cm−1 are assigned to proteins, which are denoted as Amide I and Amide II. The fig-
ures show that the fungi and the two yeasts share the same vibrational bands. However, the
heights of the absorbance peaks vary a lot. The peak heights are associated with the amount of
molecules the different chemical compounds have. Thus, by evaluating the ratio of the area of
different absorbance bands, it is possible to obtain quantitative information about the chemical
composition of biological samples.
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(A)

(B) (C)

FIGURE 3.5: FTIR-HTS spectra of (A) Mucor circinelloides (B) Rhodotorula graminis
(C) Phaffia rhodozyma. The most important peaks are annotated with the corre-
sponding wavenumber.
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TABLE 3.2: Peak assignments with the corresponding wavenumbers of biologi-
cal cells [12].

Wavenumber (cm−1) Peak assignment
3500-3200 O-H stretching (carbohydrates)
3275 N-H stretching (chitin/chitosan)
3010 = C-H stretching (lipids)
2925 >CH2 of acyl chain (lipids)
2855 C-H (CH2) stretching (lipids)
1745 -C = O stretching in esters (lipids)
1655 -C = O stretching, Amide I (proteins, chitin)
1555 C-N-H deformation, Amide II (proteins, chitin)
1455 -C-H (CH2, CH3) bending (lipids)
1377 -C-H (CH3) bending (chitin)
1245 P = O stretching (polyphosphates)
1146 C-O-C stretching in esters (lipids)
1075 C-O stretching (charbohydrates)
1045 C-O-C stretching (carbohydrates)
885 P-O-P stretching (polyphosphates)
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Results and discussion

In the following, the three techniques O-PTIR, AFM-IR and 3D IR diffraction tomography will
be compared with respect to their ability to obtain infrared spectral data from subcellular com-
ponents of cells. In addition, sample preparation procedures will be compared for the three
techniques. Sectioned cells of Rhodotorula graminis and Aurautiochyrium limaanium and, intact
cells of Rhodotorula graminis, Phaffia rhodozyma and Mucor circinelloides will be compared and
the preparation procedures will be evaluated. Further, we will discuss how well it is possible
to obtain subcellular chemical information of depth-resolved measurements using O-PTIR.
Lastly, FPA hyperspectral images of intact cells will be evaluated with the 3D IR diffraction
tomography algorithm from Magnussen et al. [24].

4.1 Spatial resolution of O-PTIR

As mentioned in section 2.5.2 the lack of a theoretical explanation of the instrument makes
it difficult to know precisely what the spatial resolution is. Thus, a measurement testing the
spatial resolution has been performed. Figure 4.1A shows a mid-infrared photothermal image
where the high-intensity points are PolyStyrene (PS) beads with a diameter range of 500 nm.
Further, Fig. 4.1B shows five line scans through five of the different beads. The offset value is
estimated to be 0.015 which has been corrected in Fig. 4.1C. The scans have been aligned such
that the peaks are overlapping. Figure 4.1D shows the average of the five line scans. The Full
Width Halft Maximum (FWHM) illustrated with the orange dashed line was calculated giving
a distance of 0.86 µm. This result indicates that it is not possible to spatially resolve particles
of size 500 nm. A similar experiment using a PMMA bead of 500 nm to calculate the FWHM
has been done in a study by Zhang et al. [44] resulting in 0.61 µm.

4.2 Sectioned cells measured with O-PTIR

Figure 4.2 shows three separate O-PTIR measurements of sectioned Rhodotorula graminis where
the spectra are corrected by weighted EMSC using a constant offset. As reference spectrum the
average spectrum of Rhodotorula graminis is used. Figure 4.2A, B shows spectra of 500 nm sec-
tions of Rhodotorula graminis cells measured at different positions probing different cells, and
Fig. 4.2C shows spectra of 200 nm section of Rhodotorula graminis cells. Different thicknesses
of the sections were used to evaluate if the sample thickness has an effect on the quality of the
obtained spectra. By comparing Fig. 4.2A, B with Fig. 4.2C it shows that the thickness of the
sectioned cells does not effect the quality of the spectra. Further, in Fig. 4.2A the most signifi-
cant absorbance peaks are annotated with a dashed line with the corresponding wavenumber.
Due to the epoxy, the spectra do not only show chemical absorbance peaks due to absorption
by the biological cells as described in table 3.2, but also chemical absorbance peaks due to
absorption by the epoxy. Figure 4.2D shows the optical image corresponding to the spectra
measured in Fig. 4.2C, where the blue line (see the red arrow) is the acquired line scan. The
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(A)

(B) (C)

(D)

FIGURE 4.1: (A) Mid-infrared photothermal image of 500 nm polystyrene beads.
(B) Line scan through five different beads. (C) The line scans are aligned accord-
ing to the peak maximum. (D) Average line scan where the orange dashed line
marks the FWHM = 0.86 µm
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cells are visualized as light points, while the black points are artifacts. The image shows that it
is not possible to get a good visualization of cells with a diameter less than 4 µm by looking at
the optical image. However, the infrared response is good resulting in high quality absorbance
spectra. The ratio of the absorbance band at 1745 cm−1 and the spectral range between 1200
cm−1 and 1000 cm−1 varies a lot when comparing the three different measurements in Fig.
4.2. This variation may be explained by the power of the IR laser. By increasing the IR laser
power, the intensity of the bands at 1200-1000 cm−1 decreases as seen in Fig. 4.2A, and by
decreasing the IR laser power the intensity of the same bands increases in intensity as seen in
Fig. 4.2B. Thus, the IR laser power does affect the reflectivity of the green laser. However, it
is not fully understood how it is affected. The background measurement can also be a reason
for the observed variation. Generally, in conventional IR spectroscopy, the background spec-
trum is acquired before every measurement. However, in O-PTIR measurements this is not the
practice. The instrumental setup has predefined instrumental parameters for the background,
and commonly the background is only acquired once for every sample. Thus, when changing
parameters such as the IR laser power or the probe power, the same background measurement
is used, which may cause shifts in the absorbance spectra. A separate study should evaluate
the relationship between the two lasers and the spectral response, and how the background
measurements should be done.

The sectioned cells were embedded in epoxy which was necessary in order to obtain thin
sections (200 - 500 nm) using a cryo-microtome. The cells are too soft and by embedding the
cells with epoxy it turns into a polymerized block which makes it possible to make thinner
sections. The presence of epoxy around and in the cell is expected to lead to contamination
of the absorbance spectra with chemical signatures from epoxy. Therefore, it is important to
know what the chemical absorbance spectra of pure epoxy look like in order to be able to
identify epoxy signals in IR spectra and to be able to assess the degree of overlap of epoxy
and cell signals in the spectra. Figure 4.3 shows EMSC corrected spectra of only epoxy where
absorbance peaks are annotated with the respective wavenumbers. The spectra are corrected
with a constant offset and the mean spectrum is used as the reference spectrum. There are
many absorbance peaks of epoxy that overlap with the FTIR HTS spectra of intact Rhodotorula
graminis cells from Fig. 3.5B, such as the peak at 1745 cm−1, the two peaks at 1460 cm−1 and
1375 and the three peaks at 1250cm−1, 1155 cm−1 and 1110 cm−1. Thus, epoxy and Rhodotorula
graminis share many of the same absorption bands, and the absorbance peaks in Fig. 4.2 show
contributions from both Rhodotorula graminis and epoxy. However, there are some peaks in the
spectra of sectioned Rhodotorula graminis in Fig. 4.2 that are not present in the epoxy spectra,
meaning that the signals only come from chemical absorption of yeast and not epoxy. These
are the amide I and amide II peaks at 1655 cm−1 and 1550 cm−1, and the peaks at 1415 cm−1

and 990 cm−1. The same peaks are present in the FTIR HTS measurements of intact Rhodotorula
graminis in fig 3.5B, verifying that chemical absorption origins from the yeast cells. In order
to obtain subcellular information of the cell wall and cell interior it is necessary to subtract
the chemical signal origin from epoxy from the sectioned cells in fig 4.2. For the correction of
spectra of the nano sections with respect to epoxy, it is important to evaluate if the pure epoxy
spectra show variations. This may affect the choice of ’bad spectra’ (i.e. interferent spectra)
in the EMSC correction model. From Fig. 4.3 we can conclude that the epoxy spectra do not
show significant chemical variation.

4.2.1 Removing epoxy from the sectioned cells

Figure 4.4A shows spectra of sectioned Rhodotorula graminis where the spectra are corrected
with weighted EMSC using a polynomial order zero and the mean spectrum as the reference
spectrum. In addition, the spectra were normalized with respect to the peak at 1745 cm−1.
Further, the black epoxy spectrum in Fig. 4.4A was subtracted from all spectra in Fig. 4.4A,
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(A) (B)

(C) (D)

FIGURE 4.2: O-PTIR measurement of sectioned Rhodotorula graminis. The spec-
tra are corrected with weighted EMSC with polynomial order zero. The mean
spectrum is used as the reference. (A) Absorbance spectra of a 500 nm thin sec-
tion, where the most prominent absorbance peaks are illustrated with dashed
lines and the respective wavenumber. (B) Absorbance spectra of a 500 nm thin
section. (C) Absorbance spectra of a 200 nm thin section. (D) Optical image of
the line scan measured in C.

where the result is displayed in fig 4.4B. Negative peaks are observed in 1730 cm−1 and in
the region between 1200 cm−1 and 1000 cm−1, This indicates that there are chemical absorp-
tion bands of yeast in these regions, consequently to much signal has been subtracted. At the
wavenumbers 1780 cm−1 and 1750 cm−1 two small peaks appears. They may partially be re-
lated to absorption by yeast cells. It turned out that it was not possible to obtain pure chemical
absorbance signal of Rhodotorula graminis by subtracting the epoxy spectrum directly. Further
data treatment was necessary.

A weighted EMSC model, with polynomial order zero, was performed on the same data
as in Fig. 4.4. Instead of using the mean spectrum as a reference, the mean spectrum of in-
tact Rhodotorula graminis cells measured with FTIR microspectroscopy imaging was used. An
epoxy spectrum showed in Fig. 4.4A colored in black, was included as an interferent spectrum
in the EMSC model. As we recall from section 2.6.2, an interferent spectrum contains chem-
ical information that is unwanted in the spectra. Figure 4.5A shows the result of the EMSC
correction, where some of the epoxy seems to be successfully subtracted. The peak at 1745
cm−1 is reduced and the height of the peak looks like the actual lipid peak that is present in
yeast cells. We checked the Pearson correlation coefficient between the mean spectrum and
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FIGURE 4.3: O-PTIR measurement of pure epoxy. The spectra are EMSC cor-
rected with polynomial order zero and the mean spectrum is used as the refer-
ence. The spectra are obtained from different positions on a 500 nm sectioned
film. Significant peaks are illustrated with dashed lines with the respective
wavenumber.

(A) (B)

FIGURE 4.4: O-PTIR spectra of a 500 nm sectioned Rhodotorula graminis. (A)
Weighted EMSC corrected spectra with polynomial order zero and the mean
spectrum as reference. The spectra are in addition normalized with respect of
the 1745 cm−1 peak. The black spectrum shows only signals of epoxy. (B) The
black epoxy spectrum is is subtracted from all spectra.

the reference spectrum. It turned out that the Pearson correlation is 0.36. Therefore, we do not
expect that there is any instability in the estimation of the multiplicative effect related to the
reference spectrum and the parameter related to the interferent spectrum, i.e. epoxy spectrum.

Further, a PCA analysis was performed using the EMSC corrected data. The total variance
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explained by the three first PCs are 83.25 %, where 67.12 % is explained by the first PC, 10.96
% is explained by the second PC, and 5.18 % is explained by the third PC. The loadings of the
three first PCs are displayed in Fig. 4.5B. The blue spectrum visualizes the loading of PC1.
It has a significant peak at 1745 cm−1 where it shows strong signals both from epoxy and
lipids from yeast. There are two peaks at 1655 cm−1 and 1555 cm−1, which do not contain
any signals from epoxy, only signals from proteins. Further PC2, shows strong signals in the
protein region and it has a significant peak at 990 cm−1. Figure 4.5C shows the score plot for
the first and second PCs along the x-axis and the y-axis, respectively. It is not possible to draw
any conclusions from the score plot, which might be because the spatial resolution most likely
is not good enough to get signals from pure cell wall and cell interior of samples with a size of
2-3 µm such as Rhodotorula graminis.

Further, an MCR analysis is performed with non-negative constraints. For the MCR analy-
sis, the corrected data from the EMSC correction presented in Fig. 4.5A and the scores from the
PCA analysis in Fig. 4.5C were used for initializing the MCR algorithm. The resulting three
latent variables of the MCR analysis are shown in Fig. 4.5D, where the blue, orange and green
spectra are the first, second and third latent variables of the MCR analysis, respectively. In Fig.
4.5E and F the first and third latent variables are shown in blue together with the mean spec-
trum of the intact yeast cell which was used as the reference spectrum in the EMSC model.
Considering the spectral range below 1400 cm−1 for the first latent variable and the range
above 1400 cm−1 for the third latent variable, they share a lot of the same signals as the mean
spectrum. Looking closer at the peak at 1745 cm−1 and the two peaks at 1650 cm−1 and 1550
cm−1, the ratio between the peaks looks accurate in comparison to the mean spectrum of intact
Rhodotorula graminis. It seems like the epoxy has been successfully extracted from this region.
However, the epoxy could not be removed successfully for all spectral data of the same sample
following this preprocessing approach. In most of the cases, the contribution from epoxy to
the spectra was so strong that it has not been possible to remove the contribution from epoxy
from the spectra of sectioned yeast cells. The epoxy signal has a strong influence on the spec-
tra, making the data analysis hard. Even though we were able to remove some of the epoxy
signals, it was not possible to distinguish clearly the cell wall and the cell interior apart from
each other for the O-PTIR data.

O-PTIR measurements of sectioned algae are displayed in Fig. 4.6. It was not possible
to obtain good spectra for the algae and most of the measurements resulted in noisy spectral
data that was difficult to interpret (not displayed). The algae samples have high roughness and
thick cell wall, which may have caused issues when cryo-microtome the cells. The algae were
also measured with AFM-IR, with the same poor result. It is not clear why it was not possible
to obtain high quality spectra such as of yeast. Due to these results, no further investigation
regarding algae has been done.

4.2.2 Sectioned cells measured with AFM-IR

A section of Rhodotorola Graminis was measured by AFM-IR. The result is displayed in Fig.
4.7. Figure 4.7A shows the absorbance spectrum of only epoxy in orange and an arbitrary
absorbance spectrum of the sectioned cell. The spectra are corrected by weighted EMSC with
polynomial order zero and with the mean spectrum as the reference spectrum. The two spec-
tra share the same absorbance peaks at 1745 cm−1, 1460 cm−1. However, the intensities of the
peaks are different. For instance at 1745 cm−1, the epoxy spectrum has an intensity of approxi-
mately 24 mV, and the cell spectrum has an intensity of approximately 12 mV. A topographical
images of the measured cell is shown in Fig. 4.7C. The color bar shows the height of the cell
and it is a clear contrast of the cell wall and the cell interior. Figure 4.7B shows spectra of the
cell with the same EMSC correction as 4.7A. The spectra do not show considerable chemical
absorption in the carbohydrate region 1200-1000 cm−1, even though the Rhodotorola Graminis
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FIGURE 4.5: O-PTIR spectra of 500 nm sectioned Rhodotorula graminis. (A)
Weighted EMSC corrected with polynomial order zero (see the main text for in-
formation on the reference and the interference model spectra). (B) The loading
plot from PCA analysis. The three first principal components are displayed. (C)
Score plot from PCA analysis with the first and second principal component
along the x-axis and y-axis, respectively. (D) The three first latent variables of
the MCR model, which are obtained by MCR of corrected EMSC spectra and the
scores from the PCA analysis. (E) and (F) show the first and third latent vari-
ables from the MCR, respectively. The black spectrum is the mean spectrum of
Rhodotorula graminis measured with FTIR microspectroscopic imaging.

cell is expected to show chemical absorption in this area, as expected from the HTS FTIR spec-
tra in Fig. 3.5B. The reason why there is no signal from yeast visible in this region is most likely
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FIGURE 4.6: Raw spectra of 500 nm sectioned algae Aurautiochyrium limaanium,
measured with O-PTIR.

because the epoxy signal is strong in this region. Thus, important signals of carbohydrates in
the cell wall are thereby lost because of the dominance of epoxy. Therefore, nano sections that
are obtained by embedding the cells in epoxy are not preferable if the interest is to obtain ab-
sorption signals in the range below 1200 cm−1. The AFM-IR signal in this range is in addition
very low, because of the power of the laser.

Five significant peaks are presented in Fig. 4.8 as heat maps and the five peaks are shown
as dashed lines in Fig. 4.7C at the wavenumbers 1745 cm−1, 1655 cm−1, 1555 cm−1 1460 cm−1

and 1415 cm−1, respectively. Further, the heat maps in Fig. 4.8 show the integrated area across
these five peaks which are as follows: 1770-1690 cm−1, 1575-1685 cm−1, 1495-1580 cm−1,1470-
1450 cm−1 and 1400-1425 cm−1. Each pixel in the heat map represents the integration of the
respective peak area for each spectrum in the pixel. The color illustrates the intensity of the
peaks, with yellow as the maximum intensity and dark blue as the minimum intensity. In Fig.
4.8A the spectra are smoothed with a Savitzky Golay filter using a window size of three. In
Fig. 4.8B the spectra were in addition corrected with a weighted EMSC with polynomial order
zero and using the mean spectrum as the reference spectrum. The reason why we correct the
spectra with a weighted EMSC is to evaluate if the contrast of the intensity between the cell
wall and cell interior increases. The integral across the 1745 cm−1 peak has a maximum value
of 500 and a minimum value of 200 for both Fig. 4.8A and 4.8B. The heat map does not show
a significant difference in the intensity of the cell interior and the cell wall, even though we
expect more lipids in the cell interior. As seen in Fig. 4.7A, the epoxy signal at 1745 cm−1 is
strong and interferes with the lipid signal, which makes it difficult to separate the cell wall and
the cell interior with respect to the lipid peak at 1745 cm−1. However, the heat map without
EMSC correction shows a slightly higher intensity in the cell interior and it seems that the lipid
content varies, anyways it is not possible to separate the cell wall and cell interior by looking
at the 1745 cm−1 peak. The integration across the 1655 cm−1 peak has a maximum value of
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220 and a minimum value of 40 for both Fig.4.8A and 4.8B, and it shows that there is a higher
content of protein (amide I) in the cell wall than in the cell interior. The contrasts are seen in
both Fig. 4.8A and 4.8B. However, the signal is stronger in the EMSC corrected heat map. The
three last heat maps which show integrated peak areas across the peaks 1555 cm−1, 1460 cm−1

and 1415 cm−1, have maximum and minimum values equal to 90 and 10, 18 and 6, and 28 and
2, respectively for both Fig. 4.8A and Fig. 4.8B. All three heat maps show strong signals in
the cell interior and low signals in the cell wall, whereas the EMSC corrected heat maps show
slightly improved contrasts. The peak at 1555 cm−1 is assigned to protein (amide II) and 1460
cm−1 to lipids. The assignment of the peak at 1415 cm−1 is not completely clear. It may be due
to the contribution of several chemical compounds, such as lipids and chitin. By integrating
the area across significant peaks it makes it possible to successfully distinguish the cell wall
and the cell interior. Heat maps obtained from spectra with and without EMSC correction
show this trend. The contrasts in intensity are slightly improved when the spectra are EMSC
corrected, making it easier to distinguish the cell wall from the cell interior. The sectioned cell
is uniform in thickness and the AFM-IR is probing the same depth into the cell which means
that we do not expect a large variance in scaling. Thus, the EMSC correction will only slightly
change the spectra. In conclusion, integrating the peak area and presenting it as a heat map is a
valid approach to analyzing and visualizing the data of sectioned cells embedded with epoxy,
making it possible to distinguish the cell wall and the cell interior. Hence, with this approach,
we may potentially see different chemical compounds in the cell wall and cell interior which
provide valuable insight into cell structure and chemistry.

The same approach using EMSC, PCA and MCR as illustrated for the O-PTIR data in Fig.
4.5 was applied to the data from AFM-IR. However, it was not possible to successfully distin-
guish the cell wall and the cell interior with this approach. The main problem with spectra
obtained from sections prepared from epoxy embedded cells is the strong absorption of epoxy
in the same spectral regions that show strong chemical absorption of fungal cells. It is difficult
to successfully subtract the epoxy from the apparent absorbance spectra with EMSC. How-
ever, scientists have successfully subtracted samples embedded with paraffin and water from
the spectra using EMSC [40], for samples whose characteristic absorbance signals do not over-
lap considerably with the interferent signals. It is therefore a reasonable hypothesis that it is
possible to remove the epoxy with EMSC correction and other preprocessing models. How-
ever, more time and resources are necessary to follow up on this hypothesis.

4.3 depth-resolved O-PTIR measurements of intact cells

Figure 4.9A shows depth-resolved apparent absorbance spectra of intact Phaffia rhodozyma cell
measured at the same point with different Z-focus (point scan measurement). The sample stage
is first placed such that the focus point is first located at the top of the cell before it is gradually
raised with a step size of approximately 0.5 µm. The spectra are laser corrected and in Fig. 4.9B,
as well as being baseline corrected where the mean offset value of the spectra in the region
above 1800 cm−1 is subtracted from the spectra. Figure 4.10A visualizes the development
of the baseline corrected spectra with 30 different Z-foci. The first spectrum is marked as
number one, indicating that the focus is on top of the cell, and spectrum 30 is probing below
the cell. Further, Fig. 4.10A shows that the signal gradually increases in magnitude, and
reaching maximum intensity at spectrum 12, the intensity is then gradually decreasing until
zero intensity. Spectrum one and the spectra from 26 to 30 do not contain any signal, meaning
that the cell is not probed. The main variation is seen in the two protein peaks, amide I and
II, and in the carbohydrate region between 1200 cm−1 and 1000 cm−1. Figure 4.10B shows the
integration across the whole spectral range (1903-929 cm−1), which gives the total intensity as
a function of the Z-focus. The total intensity is low for the first Z-focus and gradually increases
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FIGURE 4.7: Measurement of a 500 nm sectioned yeast cell Rhodotorola Graminis
recorded with AFM-IR. The spectra are corrected by weighted EMSC with the
mean spectrum as a reference and polynomial order zero. (A) The orange spec-
trum illustrates only epoxy and the blue spectrum is a spectrum obtained from
a cell embedded with epoxy. (B) Spectra of a cell embedded with epoxy, where
important signals from yeast are marked with dashed lines. (C) A visual image
of the recorded cell, where the color bar gives the height of the cell.

until it reaches a maximum at spectrum 12, where the intensity starts decreasing as the Z-focus
increases further. Assuming that the maximum total intensity is in the middle of the cell, i.e.
spectrum 12, and knowing that the cell has a diameter between 6-10 µm, the cell is between
spectrum number 2 and number 22. This corresponds well with Fig.4.10A as we see that the
main signal is in this region. In Fig. 4.10C, the integral across the lipid band at 1745 cm−1 (1767-
1731 cm−1) is shown for each Z-focus. It shares a similar characteristic as the total intensity
displayed in Fig. 4.10B, only the maximum intensity reaches approximately 800 compared to
150000 for the total intensity. It is expected that the shapes are similar since the lipid signal is
normally higher in the cell interior and lower in the cell wall. Figure 4.10D shows the ratio of
the integrated area across the peak at 1745 cm−1 (1767-1731cm−1) and the peak at 1655 cm−1

(1706-1589 cm−1). The ratio is approximately between 0.06 and 0.04 for the Z-focus 2 to 5,
probing the cell wall. Further from Z-focus between 6 and 12, the ratio decreases between 0.02
and 0.4 where the protein content is increasing compared to the lipid content. In this region,
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FIGURE 4.8: Heat maps of the integration of five different peak bands from the
same measurement as Fig.4.7. The color bar for each peak band shares the same
axis for both A and B and the max and min values are: 1745 cm−1: 500-200, 1655
cm−1: 220-40, 1555 cm−1: 90-10, 1460 cm−1: 60-6, 1415 cm−1: 28-2. (A) Spectra
are preprocessed With a Savitzky Golay filter, window 3. (B) Spectra are cor-
rected by weighted EMSC with polynomial order zero and the mean spectrum
as a reference. In addition, the spectra are preprocessed with the Savitzky Golay
filter, window 3.

the laser is probing the cell interior. Moreover, the ratio increases as the Z-focus increases to 25,
meaning that the lipid content increases compared to the protein. This result shows that the
lipid content is at its minimum when reaching the maximum intensity of the cell, compared to
the amide I peak. Furthermore, as the laser probes through the sample and comes closer to the
cell wall, the lipid content is higher compared to the amide I peak. In general, it is expected
that the ratio should be at its highest at maximum total intensity, which is in the middle of
the cell. However, it is not known exactly how the morphology of the cell is when placed on
the slide, and the lipid body might lay closer to the cell wall along the sample slide and not
exactly in the middle of the cell. In addition, it is not certain what the laser probes when the
focus point is deep inside the cell. The signal will consist of contributions from the whole laser
path and not only from the focus point.

Figure 4.11A shows depth-resolved spectra of Mucor circinelloides, where the point scan is
of a single cell. Further, in Fig. 4.11B the spectra are laser corrected and the same baseline cor-
rection as previously described was performed. The same spectra are visualized in Fig. 4.12A,
where the first spectrum is obtained with a Z-focus above the cell and where the Z-focus grad-
ually decreases in depth with approximately 0.5 µm steps. In contrast to the measurements
obtained for the Phaffia cell, we observe a large variation of the intensity regarding the lipid
peak at 1745 cm −1, in addition to the two protein peaks amide I and II. Some of the spectra
do not show strong absorption signals even though the focus point is inside the cell, such as
for example spectrum 11 and spectrum 21. Further, some of the amide I peaks are noisy which
may occur due to saturation. However, in this case, we expect that the lipid peak at 1745 cm
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FIGURE 4.9: O-PTIR depth-resolved measurement of intact Phaffia rhodozyma
with a step size of approximately 0.5 µm of the Z-focus. (A) Raw spectra. (B)
Baseline corrected spectra.

−1 shows saturation as well, which is not the case. These spectra may therefore be consid-
ered outliers and the discussed noise as artifacts. Figure 4.12B shows the total intensity as a
function of the Z-focus. As expected, the intensity increases as the focal point reaches the cell
interior and decreases as the focus reaches the lower cell wall. The maximum intensity is ob-
tained for spectrum 23 with a total intensity exceeding 400000. The high total intensity value
may indicate that the measured cell is thick, compared to the cell of Phaffia which showed less
total intensity. In addition, the dependency of the intensity on the Z-focus is an indication of
how big the cell is. Fig. 4.12C shows the integration across the 1745 cm−1 lipid area (1775-1718
cm−1) which shows increasing signals in the cell interior and decreasing as the focus reaches
the cell wall. However, Z-focus 15 to 20 shows decreasing amount of lipids, which should not
be the case. Looking at the spectra with regard to the Z-focus, we see that for all spectra the
amide peak is saturated or noisy. Fig. 4.12D shows the ratio between the 1745 cm−1 lipid peak
and amide I band (1719-1603 cm−1), where the ratio is more or less constant, except for a few
points which can be considered as outliers. Lastly, Fig. 4.12E shows the ratio of the lipid peak
at 1745 cm −1 and the total intensity. However, the dependency of this ratio on the Z-focus is
not conclusive. Fig. 4.13A shows the same as Fig. 4.12A, but the outliers are removed. The
missing samples identified as outliers appear as empty space in Fig. 4.12A and as missing
points in Fig. 4.13B-E. As for Fig. 4.12, the dependency of the peak areas and the ratios from
the Z-focus is not conclusive.

Figure 4.14A shows depth-resolved spectra of Mucor circinelloides, where the point scan is
focused on a hypha. The spectra are laser corrected, while a significant laser jump at 1687
cm−1 can still be seen. Different wavenumbers close to the laser break were tested in case the
laser break was shifted, without succeeding in correcting the laser shift. In addition, the laser
correction on the O-PTIR software was tested in an attempt to achieve better correction. How-
ever, a better correction could not be achieved. Since an improvement of the laser correction
procedure was out of the scope of this thesis, no further attempt to improve the laser correction
was made. An in-depth understanding of how the laser correction works should be urgently
considered in further research on O-PTIR data. Fig. 4.14B shows the baseline corrected spectra,
and Fig. 4.15A visualizes the spectra as the Z-focus penetrates through the hyphae. In total,
the 18 different Z-scans indicate a thin sample. The chemical signals mainly occur in the two
protein bands amide I and amide II, and in the carbohydrate region. In addition signals from
the 1250 cm−1 peak were also prominent. The main difference between the hyphae and the cell
is that the hyphae do not show any signals from lipids. The total intensity for each Z-focus is
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FIGURE 4.10: O-PTIR depth-resolved measurement of intact yeast Phaffia
rhodozyma. (A) Baseline corrected spectra where spectrum 1 has the focus on
the top of the cell and the spectra gradually decrease in depth with approxi-
mately 0.5 µm until spectrum 30 which is probing below the cell. (B) Integrated
across 1903-929 cm−1 showing the total intensity along the y-axis and each Z-
focus along the x-axis. (C) Integrated across 1767-1731 cm−1. (D) The ratio of the
integrated area 1767-1731 cm−1 and 1706-1589 cm1−1.
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FIGURE 4.11: O-PTIR depth-resolved measurement of intact fungi Mucor circinel-
loides focused on a cell, with a step size of approximately 0.5 m of the Z-focus.
(A) Raw spectra. (B) Baseline corrected spectra.

displayed in Fig. 4.15B, where it has been integrated across the whole spectral range (1903-929
cm−1). In contrast to the depth-resolved spectra of Phaffia and Mucor as shown in Fig. 4.10
and Fig. 4.13, the total signal does not show a clear development. One reason why it may be
more difficult to achieve signals of the cell wall and the cell interior is that the hyphae are thin,
making it difficult to probe the cell wall and the cell interior separately.

Summarizing the results for the depth-resolved point scans of Phaffia rhodozyma and Mucor
circinelloides (both a cell and hyphae), we can conclude that it is possible to obtain signals from
different depths within the cell. The signal is gradually increasing as the focus reaches the cell
interior and then gradually decreases as the focus reaches the bottom of the cell. For Phaffia
and Mucor cells it was possible to see higher total intensity and lipid content in the middle of
the cell, but for the hyphae it was not possible to obtain conclusive results when looking at the
total intensity. The obtained results may indicate that in-depth measurements of O-PTIR do
not allow to obtain highly sensitive in-depth-resolved signals. We may rather conclude that
the signal could have contributions of the surrounding area of the focus point. For instant
when probing with different Z-focus, the green laser penetrates different depths in the cell
meaning it is not possible to only get information of the focus area but we most likely also get
contributions along the whole laser path. As described in the section 2.5.2, it is the change in
reflectivity of the green laser which is detected and translated into IR absorbance spectra. It is
not understood how the reflectivity is affected by changing the Z-focus for the green laser from
the surface of the sample to within the sample. With today’s knowledge of the optical system
and the physics behind it, it is not possible to know exactly how much of the signal is obtained
from the actual focal point and what comes from the surrounding. In a study from Zhang et al.
[44] depth-resolved images are performed, where they show depth-resolved signals of a lipid
droplet and protein. The measurement from this paper is done in transmission mode of a PC-3
cell, which is a cancer cell. The cell is considerably bigger than the cells measured in this thesis,
however, the thickness of the sample described by Zhang et al. [44] has a maximum thickness
of 10 µm. Zhang et al. [44] are in total measuring 29 µm in depth, meaning that they are
not only probing the cell but also far outside. Based on the result of this thesis, we conclude
that when measuring in transmission mode as done by Zhang et al. [44], the laser collects
signals from the whole cell and we expect contributions to the acquired signal along the whole
laser path. We conclude that with current setups it is not possible to obtain clearly spatially
resolved spectra with depth-resolved spectra with O-PTIR of subcellular chemical information
of the cell. Further knowledge of the optical system and the physics of it is necessary.
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FIGURE 4.12: O-PTIR depth-resolved measurement of intact Mucor circinelloides
focused on a cell. (A) Baseline corrected spectra where spectrum 1 has the focus
on the top of the cell and the spectra gradually decrease in depth with approx-
imately 0.5 m until spectrum 41 which is probing below the cell. (B) Integrated
across 1903-929 cm−1 showing the total intensity along the y-axis and each Z-
focus along the x-axis. (C) Integrated across 1775-1718 cm−1. (D) The ratio of the
integrated 1775-1718 cm−1 and 1719-1603 cm−1. (E) The ratio of the integrated
1775-1718 cm−1 peak and the total intensity.
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FIGURE 4.13: O-PTIR depth-resolved measurement of intact fungi Mucor circinel-
loides focused on a cell, where the outliers are removed and visualized with an
empty spot. (A) Baseline corrected spectra where spectrum 1 has the focus on
the top of the cell and the spectra gradually decrease in depth with approxi-
mately 0.5 m until spectrum 41 which is probing below the cell. (B) Integrated
across 1903-929 cm−1 showing the total intensity along the y-axis and each Z-
focus along the x-axis. (C) Integrated across 1775-1718 cm−1. (D) The ratio of the
integrated 1775-1718 cm−1 and 1719-1603 cm−1. (E) The ratio of the integrated
1775-1718 cm−1 peak and the total intensity.
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FIGURE 4.14: O-PTIR depth-resolved measurement of intact Mucor circinelloides
focused on a hypha with a step size of approximately 0.5 µm of the Z-focus. (A)
Raw spectra. (B) Baseline corrected spectra.

(A) (B)

FIGURE 4.15: O-PTIR depth-resolved measurement of intact Mucor circinelloides
focused on a hyphae. (A) Baseline corrected spectra where spectrum 1 has the
focus on the top of the cell and the spectra gradually decrease in depth with
approximately 0.5 µm until spectrum 18 which probes below the cell. (B) Inte-
grated across the whole spectrum (1903-929 cm−1) showing the total intensity
along the y-axis and each Z-focus along the x-axis.
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In addition to the depth-resolved point scan, depth-resolved spectral images of Phaffia
rhodozyma were measured with the O-PTIR, with three different Z-foci. In Fig. 4.16, the first
focus was obtained at 5305 µm and then decreased with 2 µm, and the second and third spec-
tral image was obtained at 5303 µm and 5301 µm, respectively. The images were both laser-
corrected and baseline-corrected as described for the depth-resolved point scans. Figure 4.16
shows the heat maps of the spectra, where Fig. 4.16A illustrates the integration across the
whole spectrum (1903-929 cm−1), showing the total intensity, with a maximum value of 80000
and a minimum value at 0. Further Fig. 4.16B shows the integration across the 1745 cm−1 peak
band, with a maximum value at 3000 and a minimum value equal to 0. A visual image of the
cell is shown in the middle at the top of Fig. 4.16, where the scale bar corresponds to 13.85 µm.
From the maps, it is not possible to see a clear separation between the cell wall and the cell
interior.

FIGURE 4.16: Heat maps of depth-resolved spectral images of an intact Phaffia
rhodozyma cell, where the Z-foci are 5305 µm, 5303 µm and 5301 µm. The spectra
are baseline corrected. (A) Integrated across 1903-929 cm−1 showing the total
intensity, where maximum intensity of the color bar is 80000 and minimum is
0. (B) integrated across the 1745 cm−1 lipid peak, where maximum intensity is
3000 and minimum is 0. Scale bar of the optical image: 13.85 µm

Figure 4.17A-C shows a line scan across the cell shown in Fig. 4.16, where Fig. 4.17A-C
show the spectra with a constant focus on 5305 µm, 5303 µm and 5301 µm respectively. Fig-
ure 4.17D shows all three line scans in one figure using the same colors to mark the different
Z-focuses as in Fig. 4.17A-C. For all Z-focus, the first three measurements show very weak sig-
nals, compared to the last spectra. It is not possible to obtain any information on the different
depths in the cell.

4.4 3D infrared diffraction tomography

By using the pre-trained algorithm of Magnussen et al. [24] reconstructed spectra of the cell
wall and cell interior were obtained for intact cells of Mucor circinelloides, Phaffia rhodozyma
and Rhodotorula graminis. Figure 4.18A shows the raw spectra of an FTIR microspectroscopic



4.4. 3D infrared diffraction tomography 49

(A) (B)

(C) (D)

FIGURE 4.17: Depth-resolved O-PTIR measurements of an intact yeast Phaffia
rhodozyma cell, where the spectra are baseline corrected. (A) Line scan with con-
stant Z-focus equal to 5305 µm. (B) Line scan with Z-focus equal to 5303 µm. (C)
Line scan with constant Z-focus equal to 5301 µm. (D) All three line scans are
visualized in one figure with the same colors.

image of Mucor circinelloides. Figure 4.18C shows a corresponding chemical image, where the
total absorbance is displayed as a heat map. Figure 4.18D shows the area of interest of the cell
defining the area of which spectra where used for the 3D diffraction tomographic reconstruc-
tion of the cell wall and cell interior according to [24]. In Fig. 4.18B the average spectrum of the
cell area of Fig. 4.18D is shown. Lastly, the reconstructed spectra of cell wall and cell interior,
obtained with the reconstruction algorithm of Magnussen et. al.[24], are shown in Fig. 4.18E.
The predicted inner and outer radius of the cell is 7.5 µm and 9.4 µm, respectively. The pre-
dicted refractive index of the cell core and cell wall is 1.33 and 1.35, respectively. We expect the
refractive index of biological cells to be approximately equal to the refractive index of water
which is 1.33. Thus, the predicted values of the refractive index is in a valid range. The red
spectrum in Fig. 4.18E refers to the cell interior and does not show a strong signal at the lipid
band at 1745 cm−1, which is expected to be prominent in the cell interior. The blue spectrum
of the cell wall shows a significant signal of the lipid peaks at 1745 cm−1, 2855 cm−1 and 2925
cm−1, which are not expected to be that prominent in the cell wall. In the paper [24], the au-
thors were able to predict the chemical absorbance of the cell wall and the cell interior, which
corresponded very well with the expected composition known from the literature [10]. In both
this thesis and in the Magnussen study, FPA hyperspectral images are considered, while dif-
ferent fungal strains were investigated in [24] and this thesis. Figure 4.18C shows the results
for different fungal cells, while no significant improvement were achieved when testing other
cells. A reason why we are not able to reconstruct a meaningful spectrum of the cell wall and
the cell interior might be because the mean spectrum obtained for the area of the cell according
to Fig. 4.18D does not show significant scattering signals. The algorithm extracts information
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from the scattering features to solve the inverse scattering problem. Therefore, it is important
that the average spectrum contains some scatter information in order to get a good prediction.
In the spectral image in Fig. 4.18A, the averaging process eliminates the scattering. In future
work, it needs to be evaluated how the scatter information in the spectra can be used in a better
way for the 3D reconstruction.

Figure 4.19A shows an FTIR microspectroscopic image of Phaffia rhodozyma, where sig-
nificant scattering features are present. In Fig. 4.19B the respective hyperspectral image is
visualized, and Fig 4.19C shows the hyperspectral image of the average spectrum displayed
in 4.19D. The average spectrum has distinct physical effects from scattering. Fig4.19E shows
the predicted cell interior and cell wall where the predicted inner and outer radius were 2.3
µm and 3.3 µm, respectively. The predicted size corresponds well with the actual size which is
between 6 µm and 10 µm in diameter. The refractive index in the core and in the cell wall are
predicted to be 1.33 and 1.36 respectively, which lie in a valid range for the refractive index.
Clearly, we see molecular absorption assigned to lipids for the cell interior, with pronounced
peaks at 2925 cm−1, 2855 cm−1 and 1745 cm−1. The results are promising showing information
rich spectra of both the cell interior and the cell wall. The average spectrum does not originate
from one cell but from many cells, as seen in Fig. 4.19C. Some cells are even overlapping. Since
the deep-learning empowered 3D diffraction tomographic inverse model is based on spherical
isolated samples, the optimal would be cells which are well separated and not overlapping.
However when picking single cells the spectra had low quality and the prediction of cell wall
and interior spectra did not acieve good results. Due to the limited spectral resolution of the
FTIR microscopy, the resolution is limited. Satisfactory spectra where only obtained when the
cells were clustered together. In this case, the predicted cell and cell interior spectra may how-
ever be not valid as the deep-learning empowered 3D diffraction tomographic inverse model
is based on single cells.

Figure 4.20A shows spectra obtained from Rhodotorula graminis. The size of the sample is
only a few micrometers, which is very close to the limit of the spatial resolution of the FTIR
microscopic system. Thus, binning is used to be able to get chemical signals of the cell and not
only noise. Therefore it is not possible to see the cells on the hyperspectral image in Fig. 4.20C.
The average spectrum of the whole hyperspectral image is visualized in Fig. 4.20B. Finally,
the predicted spectra of the cell wall and cell interior are visualized in Fig. 4.20D. Further,
the predicted radius of the cell core is 8.0 µm and the radius of the cell wall is predicted to be
12.0 µm. The algorithm is thus not able to predict the correct size of the sample. The spectral
resolution of the optical system is not good enough to get any signal of single cells which
makes it impossible for the algorithm to predict the correct values. The predicted refractive
index is 1.32 and 1.42 for the core and the cell wall, respectively, which is the result we expect.
The spectrum of the cell wall contains a lot of noise and it is not possible to rely on the chemical
information in the cell interior. Further, it would be interesting to measure the same cell with
synchrotron radiation or with a QCL laser system instead of a conventional IR source. The
advantage of using synchrotron IR radiation is the high-brightness feature. In comparison,
the brightness of a synchrotron source is more than two orders larger than the brightness of a
conventional IR source [43].
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FIGURE 4.18: (A) Raw spectra of an FTIR microspectroscopic image of Mucor
circinelloides. (B) Average spectrum of the region visualized in D. (C) Hyper-
spectral image with the total absorbance intensity visualized as a heat map. (D)
Selected area of interest. (E) 3D reconstructed spectra of cell interior and cell
wall, obtained by the pre-trained 3D diffraction tomographic reconstruction al-
gorithm developed by Magnussen et at. [24].
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FIGURE 4.19: (A) Raw spectra of an FTIR microspectroscopic image of Phaffia
rhodozyma, (B) Average spectrum of the region visualized in D. (C) Hyperspec-
tral image with the total absorbance intensity visualized as a heat map. (D) Se-
lected area of interest. (E) 3D reconstructed spectra of cell interior and cell wall,
obtained by the pre-trained 3D diffraction tomographic reconstruction algorithm
developed by Magnussen et at. [24].
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FIGURE 4.20: (A) Raw spectra of an FTIR microspectroscopic image of
Rhodotorula graminis. (B) Average spectrum of the region visualized in C. (C)
Hyperspectral image with the total absorbance intensity visualized as a heat
map. (E) 3D reconstructed spectra of cell interior and cell wall, obtained by the
pre-trained 3D diffraction tomographic reconstruction algorithm developed by
Magnussen et at. [24].
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Chapter 5

Conclusions and Outlook

In this thesis, biological samples have been analyzed with three different micro- and nano-
IR spectroscopic instrumentation to evaluate how well subcellular chemical information is
obtained. Two different preparation methods have been considered, namely sectioned cells
and intact cells.

Sectioned cells of Rhodotorula graminis and Aurautiochyrium limaanium were measured with
the nano-IR spectroscopic instrumentation O-PTIR and AFM-IR. The optical image of O-PTIR
does not have a high enough resolution to be able to get a good visualization of sectioned
cells of Rhodotorula graminis. Thus, it is not possible to know exactly which cell compartment
is probed. The absorbance spectra show clear spectral signatures, however, the spectra are
highly contaminated with epoxy. Subtraction of epoxy was tried by correcting the spectra by
weighted EMSC with epoxy as an interferent spectrum. Further, PCA and MCR were per-
formed without succeeding to remove the epoxy and obtain subcellular chemical information.
A problem with epoxy is that the molecules absorb in the same spectral range as the molecules
of biological cells. In further studies, other mediums should be evaluated which do not share
the same absorption bands as biological cells. The same sectioned cells were also measured
with AFM-IR. The optical visualization has a much higher resolution than O-PTIR making it
possible to obtain highly detailed information of cells on subcellular level. Further, the AFM-
IR intensity spectra face the same issue as the absorbance spectra of O-PTIR, due to the epoxy.
However, by integrating across significant bands such as the 1745 cm−1, 1655 cm−1, 1555 cm−1,
1460 cm−1 and 1415 cm−1 and presenting them as heat maps, we successfully managed to dis-
tinguish the cell wall and the cell interior. The absorbances at the wavenumbers 1555 cm−1,
1460 cm−1 and 1415 cm−1 show significantly higher signal in the cell interior compared to the
cell wall, and the absorbance band at 1655 cm−1 shows higher intensity in the cell wall. Ac-
cording to the literature [10] this corresponds well with the chemical absorption peaks that are
expected in the cell wall and the cell interior.

Sectioned cells of Aurautiochyrium limaanium were also measured with O-PTIR and AFM-
IR, however, it was not possible to acquire consistent spectra, without noise or other features
disturbing the sample. Thus, we were not able to obtain high quality spectral information of
Aurautiochyrium limaanium.

Depth-resolved spectra were acquired with O-PTIR with different Z-focus. Intact cells of
Phaffia rhodozyma and Mucor circinelloides were measured with this technique. The aim was
to obtain chemical information on the different layers in the cells. The spectra show that the
total intensity increases as the focus reaches the center of the cell, and then decreases as the Z-
focus progresses further in depth of the cell. In addition to the total intensity, we see a similar
shape of the area across the 1745cm −1 lipid band. With respect to the total intensity and the
lipid signatures, it seems like it is possible to obtain significant signals from the different layers.
However, the recorded absorbance spectra do not only contain signals from the focus point but
also signals from the surrounding area. Thus, the chemical variation in the spectra is not only
coming from the respective layer of the cells. The idea of in-depth measurements with O-PTIR
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comes from the study by Zhang et al. [44]. The authors perform transmission measurements
and not reflection measurements which has been done in this thesis. However, the same issues
of sampling signal from other areas than the z-focus are valid. O-PTIR is a new technique and
the physical background of the measurement principle when probing real samples is not fully
understood. Measurement depth and resolution need to be investigated further in order to
understand from which cell compartments chemical information is collected. To summarize,
at the current stage, it is not possible to conclude that the difference in the absorbance spectra is
due to chemical variation in the different layers of the biological cell or if it is due to an increase
in the responsivity of the sample. The absorbance spectra show contributions of chemical
absorption from the whole laser path of the probing laser and not only from the focus point.

Because of the diffraction limitation, due to the magnitude of the mid-IR radiation, it is
not possible for FTIR-spectroscopy to obtain subcellular spatially resolved chemical informa-
tion of biological cells on a few micrometers. However, by taking advantage of highly scat-
tered distorted spectra, named Mie-scattering, which occurs due to the spherical morphology
of biological cells, Magnussen et al. [24] have shown that it is possible to obtain 3D chemical
information of the cell wall and cell interior. Earlier, scattering features have been seen as a dis-
turbing effect that obscures the absorbance spectra and needs to be removed by preprocessing
techniques such as ME-EMSC. By taking advantage of the relationship of scattering, refrac-
tive index and the absorptivity of the sample, the inverse scattering problem can be solved by
using a 3D infrared diffraction tomographic approach which has successfully obtained sub-
cellular chemical information of the cell wall and the cell interior. In this thesis, a pre-trained
deep learning algorithm from Magnussen et al. [24] has been used on three different biologi-
cal samples, namely Rhodotorula graminis, Phaffia rhodozyma and Mucor circinelloides measured
with FTIR microspectroscopic imaging. Rhodotorula graminis is the smallest cell with a diame-
ter range of 2.3-3.9 µm. This is in the limit of the spectral resolution of the instrument which is
between 2-10 cm−1. Thus measuring intact single cells caused considerable noise in the spectra
and poor quality spectra. Therefore, binning was used to obtain chemical information about
the cells. However, the 3D infrared diffraction tomography approach was not able to correctly
predict the size of the cells and the chemical absorbance in the cell wall and cell interior. The
main reason is that the spatial resolution of the instrument is too low and the binning makes
it impossible to average across cells because the hyperspectral image is lost. A suggestion for
further work is to measure the same sample with synchrotron IR radiation which has higher
brightness of the source and which might lead to higher spatial resolution. Further, the algo-
rithm successfully managed to reconstruct the chemical information of the cell wall and cell
interior of intact Phaffia rhodozyma cells. In addition, the algorithm correctly predicted the size
of the cell. The cells have a range between 6-10 µm in diameter, which is big enough to get
chemical information about the cells without binning. Lastly, intact cells of Mucor circinelloides
were measured with FTIR microspectroscopic imaging. The average spectrum did not contain
significant scattering features, thus the algorithm did not manage to make a good prediction of
the cell wall and cell interior. In addition, a poor prediction of the size of the cell was obtained.
In further work, an evaluation of how we can extract the scattering features in a better way is
necessary to get better predictions.

We have seen that it is difficult to obtain subcellular spatially resolved chemical information
of biological cells. However, with AFM-IR of sectioned cells and the 3D infrared diffraction
tomography approach of intact cells measured with FPA hyperspectral image we have been
able to obtain chemical information and physical information about the cell wall and the cell
interior. In table 5.1 a summary of the main results of the O-PTIR, AFM-IR and FTIR with
the 3D IR diffraction tomography approach of both sectioned cells and intact cells are shown.
The text colored in green shows were the methods was successful and the text colored in blue
corresponds to situations where problems with the respective approach were observed. The
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grey empty columns are not considered and are outside the scope of this thesis.
As for O-PTIR we have not with certainty been able to get chemical information on subcel-

lular level. However, this instrumentation is very new and there is a big lack of understanding
the optical system and the physics of the configuration. Further research should therefore fo-
cus on the understanding of the system and then a reevaluation of how it is possible to use
sectioned cells and in-depth measurements should be made.

We can see that the deep-learning empowered 3D diffraction tomographic infrared spec-
troscopy works well for larger cells. It has the advantage that no sectioning and embedding is
needed. But the techniques is very limited in resolution.

AFM-IR has by far the best spatial resolution and it delivers premium spectra of subcel-
lular components at nano-scale. However, further work with the development of sectioning
protocols is needed to achieve spectra that are less contaminated by embedding materials.

TABLE 5.1: Summary of the main results of O-PTIR, AMF-IR, and FTIR-FPA
using the 3D diffraction tomography approach. Overview of both sectioned and
intact cells, in addition to the resolution. The green color indicates successful
performance of the respective method, while the blue color indicates issues with
the approach. The empty columns are not considered in this thesis.

AFM-IR O-PTIR
FTIR - 3D IR

Diffraction Tomography

Sectioned
cells

Possible to distinguish
cell wall from cell interior.

May work with
bigger sample (>10µm).

Contamination of
epoxy especially between

1200-1000 cm−1.

Dominated by epoxy
signals which is

impossible to remove.

Intact
cells

Good quality signal
from both surface

and within the cell.

Works on samples > 5µm.
High quality pure

absorbance spectra of
cell wall and cell interior.

Uncertain on where the
signal comes from

when probing in-depth.

Not working on samples < 5µm.
Need to be highly scattered spectra.

Resolution > 50 nm >532 nm
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