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Abstract 

Background: Climate change is the greatest public health threat of our time. Increasing 

temperatures may increase mortality related to CRDs, particularly in urban areas. People of 

lower socioeconomic status may be more vulnerable to temperature related health impacts. In 

Oslo, there are large social health inequalities, including prevalence of CRDs. The role of 

socioeconomic conditions on temperature related mortality in Oslo is little explored, and 

research is needed to develop equitable climate adaptation strategies. 

Objective:  Investigate the association between ambient high and low temperature exposure 

and cardiorespiratory mortality in Oslo, and how this association may be modified by 

socioeconomic conditions. 

Methods: This study used a time-stratified case-crossover design with cohort and -registry 

based data. Daily mortality and temperature data for the period 2000-2018 were used to 

model the temperature-mortality association for CVD and respiratory mortality, and 

household income and education level were used as effect modifiers. I estimated the OR of 

mortality for cold and heat effects and interaction of effect modifiers using conditional 

logistic regression and distributed lag non-linear model (DLNM) including various lag-

structures. Additional analyses were conducted, stratified by lag-structures, age, sex and 

seasonality.  

Results: The results showed no statistically significant association of exposure to extreme 

cold and hot temperatures on CVD or respiratory mortality except for respiratory mortality 

when including lag days 0-3. However, the results indicated higher ORs of respiratory 

mortality from heat effects, while CVD seemed to have higher ORs from cold effects. 

Females had higher ORs from heat effects (respiratory mortality), while males had higher 

ORs of mortality from cod effects. No statistically significant effect modification of 

education or income were found. Though, it indicated a tendency to a trend of increasing risk 

of CVD mortality from heat effects with lower levels of education. There were similar 

tendencies for the respiratory mortality, however with extremely wide confidence intervals.    

Conclusion: Further research on this topic is needed for Oslo, with a larger population 

sample. Nevertheless, it will be important to consider socioeconomic conditions when 

developing climate adaptation strategies for Oslo considering the existing and increasing 

social health inequalities in the population.   
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Sammendrag  
Bakgrunn: Klimaendringer er vår tids største folkehelsetrussel. Økende temperaturer kan 

øke dødelighet relatert til kardiorespiratorisk sykdom, særlig i urbane områder. Personer med 

lavere sosioøkonomisk status kan være mer sårbare for temperaturerelaterte påvirkninger. I 

Oslo er det store sosiale helseforskjeller, inkludert for prevalens av kardiorespiratorisk 

sykdom. Hvordan sosioøkonomiske faktorer påvirker temperaturerelatert dødelighet i Oslo er 

lite utforsket, og forskning er nødvendig for å utvikle rettferdige klimatilpasningsstrategier. 

Formål: Undersøke sammenhengen mellom utendørstemperatur relatert til kulde og hete og 

kardiorespiratorisk dødelighet i Oslo, og hvordan denne sammenhengen kan modereres av 

sosioøkonomiske faktorer.  

Metode: Denne studien brukte et tidsstratifisert case-crossover design med kohort- og 

registerbaserte data. Dødelighet og temperaturdata for perioden 2000-2018 ble brukt til å 

modellere sammenhengen mellom temperatur og kardiovaskulær (CVD) og respiratorisk 

dødelighet. Husholdningsinntekt og utdanningsnivå ble brukt som effektmoderatorer. Jeg 

estimerte OR for dødelighet relatert til kulde- og hette og interaksjon av effektmoderatorene 

ved å bruke betinget logistisk regresjon og Distributed Lag Non-Linear Model (DLNM) 

inkludert ulike lag-strukturer. Tilleggsanalyser ble utført, stratifisert etter lag-strukturer, 

alder, kjønn og sesonger.  

Resultater: Resultatene viste ingen statistisk signifikant sammenheng mellom eksponering 

for ekstrem kulde og hete på CVD eller respiratorisk dødelighet, bortsett fra respiratorisk 

dødelighet ved inklusjon av 0-3 lag-dager. Imidlertid indikerte resultatene høyere OR av 

respiratorisk dødelighet fra heteeffekter, mens OR for CVD var høyere for kuldeeffekter. 

Kvinner hadde høyere OR av heteeffekter (respiratorisk dødelighet), mens menn hadde 

høyere OR av kulde. Ingen statistisk signifikant effektnodifikasjon av utdanning eller inntekt 

ble funnet. Resultatene indikerte en tendens til en trend med økende risiko for kardiovaskulær 

dødelighet fra hete for lavere utdanningsnivåer. Det var lignende tendenser for respiratorisk 

dødelighet, men med ekstremt brede konfidensintervaller.  

Konklusjon: Det er behov for videre forskning på dette temaet for Oslo, med et større 

befolkningsutvalg. Det vil likevel være viktig å vurdere sosioøkonomiske faktorer ved 

utvikling av klimatilpasningsstrategier for Oslo med tanke på de eksisterende og økende 

sosiale helseforskjellene i befolkningen.  
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1. Introduction  
Due to man-made climate change, the world is experiencing a warmer climate, with an 

increase in global mean temperatures of 1,2°C since pre-industrial time (Romanello et al., 

2021). The past seven years are reported as the hottest seven years on record, globally, and 

Europe has warmed faster overall than any other continent (Copernicus Climate Change 

Service, 2023). Climate change is considered the greatest public health threat of our time 

(World Health Organization, 2021b). A warmer climate has many direct and indirect impacts 

for health, of which more frequent and intense temperature events are one of them. Cold and 

hot temperatures are considered important risk factors for disease, particularly for 

cardiorespiratory diseases (CRDs), which consist of cardiovascular (CVDs) and respiratory 

diseases (RDs). CRDs are some of the leading causes of death worldwide, including Norway 

(Ariansen et al., 2020; World Health Organization, 2021a). Projections indicate an increase in 

excess mortality related to temperature exposure, though with great geographical variations 

between and within countries, and dependent on the extent of global temperature increases 

(Cissé et al., 2022). 

Populations living in urban areas more vulnerable to climate change impacts, such as 

temperature deviations, due to the built environment and urbanization (World Health 

Organization, 2021c). More than 55% of the global population now lives in urban areas, and 

this number is expected to increase to 68% by 2050. In Norway, around 82% of the 

population lives in towns or cities (Statistisk sentralbyrå, 2022c). Other factors that make 

people vulnerable to climate change impacts are socioeconomic conditions, with social 

inequalities being considered an important vulnerability factor for the health impacts of 

climate change (Cissé et al., 2022). Several studies have shown an increased mortality risk 

from temperature exposure among people with lower socioeconomic status (SES), although 

the evidence is inconsistent (Son et al., 2019). 

The 2030 UN Sustainable Development Goals (SDGs) is a global call for action to fight a 

range of social, environmental and development issues while at the same time tackle climate 

change (United Nations, s.a.-a). Climate adaptation is one way to tackle climate change and 

reducing vulnerability, by adjusting to the current and expected impacts (Leichenko & 

O'Brien, 2019). The UN SDGs work as a framework for Norwegian policy, including public 

health work (Meld. St. 19 (2018-2019)). Social health inequalities are a great public health 

concern in Norway, particularly in Oslo, where there are also great social health inequalities 
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between the districts. Reducing social health inequalities is one of the main goals of the 

Norwegian public health work. Prevalence of CRDs is higher among lower SES groups, and 

in Oslo lower SES groups also experience higher rates of CRD mortality (Oslo kommune, 

2020b).  

Already in 2010, The Official Norwegian Report (NOU) “Tilpasning til et klima i endring” 

recommended research on impacts of heat exposure on mortality and the significance this 

may have for society (NOU 2010: 10). Furthermore, the Norwegian Environment Agency 

underlines that the social dimensions and climate change vulnerability detected in the IPCC 

report from 2022, is highly relevant for Norway (Miljødirektoratet, 2022b). The potential 

skewed effects of climate change for lower SES populations, may contribute to further 

enhance the existing social health inequalities. Increased mortality risk related to temperature 

may be one of them.  However, this topic is little explored in Norway. So far, limited 

knowledge exists on the role of socioeconomic conditions related to temperature exposure 

and impacts on public health in Norway.  

The insights from research are crucial for policymakers in the development of equitable 

climate adaptation strategies. Considering the concentrated population and urbanization in the 

urban area of Oslo and the built environment, the great social health inequalities among the 

people living there, especially with regards to CRDs, it will be relevant to enhance 

knowledge about the role of socioeconomic conditions in the temperature-mortality 

relationship in Oslo. Therefore, this thesis will investigate how socioeconomic conditions 

impact the association of temperature exposure and mortality in Oslo, focusing on short-term 

exposure and CRD mortality. 

1.1 Structure of thesis  
This thesis is written as a monography, consisting of seven chapters. After this introduction 

chapter follows chapter 2 with a presentation of empirics and chosen theory relevant for the 

thesis aim. Aim and research questions is presented in chapter 3 In chapter 4, the thesis’ 

methods are explained, as well as a short evaluation of ethical considerations of this thesis. 

Following this, chapter 5 presents the results from the statistical analyses. In chapter 6 the 

results are discussed considering the theoretical background and existing literature, as well as 

a discussion of the strengths and limitations of this thesis. Lastly, in chapter 7 I present my 

conclusion based on the discussion in chapter 6 and the implications of this for further 

research and public health work.   
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2. Background  
In this chapter I present the theoretical and empirical background that forms the backdrop of 

this thesis. Relevant terms and theories will be explored, as well as the existing knowledge of 

the thesis` theme. Furthermore, I present the political and legal guidelines for the public 

health work relevant for the theme.  

2.1 Climate change  
2.1.1 Climate change-related temperature deviations  

Climate change has led to many regions experiencing higher daily minimum and maximum 

temperatures than they used to (Leichenko & O'Brien, 2019). This is especially evident 

during seasons such as hotter summers, where regions might experience temperatures that 

deviate from their average temperatures. An increase in the number of extreme temperature 

events such as heatwaves in the future will lead to more people being exposed to extreme 

temperatures (Pörtner et al., 2022). Several parts of the world have experienced heatwaves 

during the last two decades, with the summer of 2022 being the most recent example of this, 

affecting regions like India, Pakistan, and Europe. Europe experienced its hottest summer in 

2022 at 1.4 °C above the 1991-2020 average, and it was the second warmest year on record 

(Copernicus Climate Change Service, 2023). Extreme heat during the late spring and summer 

of 2022 resulted in conditions that could be hazardous for human health.  

When it comes to cold temperatures however, extreme cold events are reported to have 

decreased in frequency and intensity on a global level and are projected to consistently 

decrease for most warming levels (Cissé et al., 2022). However, cold weather events can still 

take place periodically and affect urban areas and their connected infrastructure. 

 

2.1.2 Temperature exposure in an urban context 

Urbanization is one of the greatest global trends with significant impact on health (World 

Health Organization, 2021c). According to Bednar-Friedl et al. (2022), the number of 

European residents living in urban areas was 547 million in 2015, corresponding to 74% of 

the total European population at the time. This number is expected to increase up to 84% by 

2050.  

Urban areas are considered drivers of climate change (World Health Organization, 2021c). 

The expansion and increasing densification of the built environment in urban areas can lead 

to the so-called urban heat island effect (UHI) (Reinwald et al., 2021). UHIs are 
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characterized by temperature differences between urban areas and the surrounding suburban 

and rural areas. The temperature differences can be up to several °C, usually around 2-4°C. 

The UHI effect is mainly being caused by the build-up and superstructure of natural 

permeable surfaces covered with vegetation. Urban areas usually consist of more materials 

like concrete and paving which absorb sun energy during the day, and slowly release this 

energy into the air as heat (Heaviside et al., 2017). Even though there is less incoming sun 

energy in the winter season, the UHI effect can be strong throughout the year.  

The UHI effect can impact health for urban populations in several ways, whereby the most 

direct health impact is through exposure to increased temperatures (Heaviside et al., 2017). 

Additionally, it can interact with and worsen air pollution. This may lead to higher 

temperature-exposure for those living in urban areas, especially during extreme events, which 

potentially can exacerbate heat-related health impact, including mortality. Generally, people 

living in urban areas can have an increased heat related mortality risk due to the UHI effect. 

During the 2003-heatwave in Europe, mortality increased by three times among residents in 

London, and in France, Paris and other cities were particularly affected (Heaviside et al., 

2017; The Lancet, 2018). According to European Environment Agency (2018), urban 

populations may experience twice as many days of heatwave compared to their surrounding 

rural areas.  

  

2.1.3 Climate change vulnerability and adaptation 

Climate change impacts are highly heterogonous depending on geographics, 

sociodemographics and socioeconomic conditions (Pörtner et al., 2022). Climate change 

vulnerability can be defined as “the predisposition or likelihood of being adversely affected 

by a climatic event or circumstance” (Leichenko & O'Brien, 2019, p.140). Furthermore, 

vulnerability is a result of the interaction between exposure to climate change and various 

factors that affect both susceptibility and capacity to adapt. Climate change vulnerability 

varies across time, countries and regions, and among groups and subgroups of communities. 

According to the report from the Intergovernmental Panel on Climate Change (IPCC) from 

2022, vulnerability reflects variations and changes in macro-scale non-climatic factors like 

population changes, economic development, infrastructure, behavior, technology and 

ecosystems, as well as individual- or household-specific characteristics such as age, health 

status, access to livelihood amenities and socioeconomic factors like education, income and 

employment (Pörtner et al., 2022).  
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The risk and vulnerability to climate change impacts can be reduced by adaptation to the 

climate changes and the accompanying consequences. Climate change adaptation has been 

defined by the IPCC (2014, cited in Eriksen, 2015, p.4) as “the process of adjustment to 

actual or expected climate and its effects. In human systems, adaptation seeks to moderate or 

avoid harm or exploit beneficial opportunities”. In 2015 all the member countries in The 

United Nations (UN) agreed on The 2030 Agenda for Sustainable Development and the 17 

SDGs aiming at securing peace and wealth for all citizens of the world, while protecting the 

planet (United Nations, s.a.-a).  

“Leave no one behind” is a central promise of the SDGs, to reduce inequalities and 

vulnerabilities among and within countries that leave people behind, by combating the root 

causes (United Nations, s.a.-b). At the UN Climate Change Conference (COP21) in Paris in 

2015, world leaders agreed on the legally binding Paris Agreement (United Nations, s.a.-c). 

With The Agreement all the 193 Parties agreed to reduce global greenhouse gas emissions to 

limit the global temperature increase in this century to 2 degrees Celsius while also aiming 

for an even further reduction to 1,5 degrees, as well as reducing climate vulnerability, 

strengthen resilience and increase capacity to adapt to climate impacts.  

The degree to which a society is capable to adapt to climate changes and it´s impacts is 

described as the society’s adaptive capacity (Oslo Kommune, 2020a). The adaptive capacity 

depends on how activities are organized, available knowledge and resources, what is 

prioritized and how. To a large extent, solutions and adaptive capacity lie in the areas of land 

use such as green areas, buildings and infrastructure, which prevents climate change impacts 

in other areas of society as well (Oslo Kommune, 2020a).  

 

2.1.4 Climate change in the Norwegian context and Oslo  

Norway´s commitment to the Paris Agreement is enshrined in the Norwegian Climate 

Change Act (klimaloven, 2017). The Norwegian government is working towards cutting 

emissions by 50-55% by 2030 compared to 1990-levels and by 90-95% by 2050. In White 

Paper No 13 (2020-2021) it is stated that the adaptive capacity of Norway shall be 

strengthened (Meld. St. 13 (2020-2021)).  

The NOU “Tilpasning til et klima I endring” from 2010 wrote about climate change 

impacting public health in many ways (NOU 2010: 10). The report recommended a regular 
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update on the knowledge base for climate change and its impacts, including analysis of 

vulnerability and adaptation-needs and climate projections. In White Paper No.33 (2012-

2013) “Climate adaptation in Norway”, Norwegian government stressed the importance of 

climate adaptation and underlines that it must be an integrated part of the work of actors in 

various fields (Meld. St. 33 (2012-2013)). It is essential that climate change considerations 

are included in planning, developing- and decision-making processes in all sectors in society 

and at all levels. Furthermore, the white paper places much of the future responsibility for 

adaptation on the municipalities. In 2014, the municipality of Oslo developed a climate 

adaptation strategy, in the woke of White Paper No.33 (2012-2013). The Climate adaptation 

strategy is updated regularly in line with increased knowledge about the future climate and 

based on the experiences that the municipality gains in the area (Oslo Kommune, 2013).  

The average temperature in Norway has increased by approximately 1.2°C from 1901 to 

2021, and the rate of changes has increased in recent decades (Miljødirektoratet, 2022a). Data 

from the Norwegian Meteorological Institute show an increase in the number and 

geographical distribution of hot days, defined as days where the average temperature is 

higher than 20 °C. In Norway as a whole, winters have become shorter. In Tromsø and Oslo, 

winters have become 22 days shorter between the two standard normal periods 1961-1990 

and 1991-2020.  

The temperature in Oslo has increased by 1,5°C and extreme events have occurred more 

often over the past century (Oslo Kommune, 2020a). The city is particularly vulnerable to 

climate change due to the dense population, urbanization and built environment. The basin-

shaped topography and compact city center may lead to UHIs. Oslo is projected to have an 

increase in inhabitants of about 15,6% in 2050 compared to 2022 (Statistisk sentralbyrå, 

2022a). Demographic changes like an expected increase in the elderly population will in itself 

impact general health outcomes in the population (Jore et al., 2022). Predictions on the future 

population in Oslo predicts that the number of people aged 80-89 years and 99 years and 

older, will double (Oslo Kommune, 2023). However, the population in Oslo is relatively 

young, and predictions for 2040 show that the population will remain relatively young.  

 

Hanssen-Bauer et al. (2015) projected the future climate in Norway and impacts from climate 

change, using different climate change scenarios based on models from IPCC (2014). Due to 

the precautionary-principle they used the high-emission-scenario as a basis for the impact-
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assessment. This projected a warmer climate towards 2071-2100, with an increase of annual 

mean-temperature of 4,5 °C, (span: 3,3 to 6,4 °C). The greatest warming is projected for 

winter-season, and least warming for the summer-season. However, the projections for the 

lower-emission-scenarios are significantly lower, respectively 2,7°C, and 1,5°C for the 

lowest-emission-scenario. There is a big difference between an increase of 1,5°C and 2°C, 

regarding impacts and adaptation-possibilities (Pörtner et al., 2022). Particularly a 4,5 °C-

increase will have drastic consequences for health. Temperature exposure is associated with 

mortality, with CVDs and RDs being identified as some of the main causes of death (Ragettli 

et al., 2023).  

 

2.2 Temperature exposure and cardiorespiratory mortality  
2.2.1 Cardiorespiratory health  

CRDs involves both CVDs and RDs, and they are considered non-communicable diseases 

(NCDs) (World Health Organization, 2021a). CVDs are a group of diseases that affect the 

heart and blood vessels. They include coronary heart disease (CHD), myocardial infarction 

(MI), cerebrovascular disease like stroke, rheumatic heart disease and other conditions. 

Chronic respiratory diseases  are a group of diseases that affect the airways and other 

structures of the lungs (World Health Organization, s.a.-a). Asthma and chronic obstructive 

pulmonary disease (COPD) are some of the most common chronic respiratory diseases.  

Health behavior factors, such as, unhealthy diet (especially high-fatty foods), physical 

inactivity, smoking tobacco and use of alcohol and substance-abuce are some of the most 

common risk factors for developing CVDs, as well as hypertension, high cholesterol and 

overweight (Oslo kommune, 2020b). COPD is caused by exposure to harmful particles or 

gasses, of which smoking is considered the most important cause and may explain around 

two thirds of COPD-cases in Norway. Air pollution is another important cause of COPD. 

Asthma in childhood is also a risk factor for developing COPD. 

According to WHO, CVDs are the number one cause of death globally (World Health 

Organization, 2021a). Around 17,9 million people died from CVDs in 2019, which makes up 

for 32% of all global deaths. The same year, around 262 million people globally were 

affected by asthma and around 455 000 people died from asthma. COPD is the third leading 

cause of death globally and caused 3.23 million deaths in 2019.  
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In Norway, the burden of disease is dominated by NCDs, which cause approximately 87% of 

the total burden of disease (Meld. St. 15 (2022-2023)). An estimated 1/5 of the population is 

affected by CVDs in Norway, either having a CVD or having high risk of developing a CVD 

(Ariansen et al., 2020). The prevalence of CVDs in Norway has decreased the past decades, 

due to healthier living conditions and preventive work, as well as more effective treatment. 

However, risk factors for CVD, such as smoking, physical inactivity and unhealthy diets are 

still prevalent, which suggests that CVDs will still affect many people. According to the 

Cause of Death Registry in Norway (DÅR), RDs, including COPD, were the fourth most 

frequently registered cause of death in Norway in 2021, and the fraction of people living with 

COPD will remain high in the years to come due to the increase in of elderly (Nystad, 2022).. 

Both CVD and COPD, in addition to cancer and diabetes, causes most of the premature 

mortality-cases in Norway, which is defined as death before the age of 75 years (Meld. St. 19 

(2018-2019)). In Oslo, CVDs are the most common cause of death for men and the second 

most common for women (Oslo kommune, 2020b).  

2.2.2 Ambient temperature exposure and CRD mortality  

Both cold and hot temperature-exposure are established as risk factors for health with studies 

showing important mortality effects in populations across the globe (Cissé et al., 2022; 

Masselot et al., 2023). The way in which exposure to temperatures impacts the human body is 

well documented and understood (Watts et al., 2019). An increased body temperature due to 

heat exposure can make the heart beat faster and harder, dilate the veins - particularly on the 

skin-surface and increase sweating to remove heat and regulate the body temperature. This 

can also lead to dehydration, which can be a critical condition (Liu et al., 2022). When 

exposed to cold temperatures however, the body tries to keep the warm body temperature, 

e.g., by constriction of veins, and cold exposure can increase peripheral resistance (Saucy et 

al., 2021).  

Extreme deviations in temperature can exacerbate existing health conditions, potentially 

leading to or worsening disease and death (Heaviside et al., 2017; Liu et al., 2022). Thus, 

mortality associated with extreme temperatures is not necessarily caused directly by hypo, - 

or hyperthermia or heat stroke, but by other indirect causes such as CRDs that are triggered 

when the human body attempts to adapt to the excessive environment (Liu et al., 2015).  

Exposure to heat can be a risk to all people, but people of older age and those with pre-

existing health conditions, particularly CRDs, are more sensitive to temperature extremes 
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than the general population (Åström et al., 2016). Aging leads to physiological changes in the 

thermo-regulation and reduced cardiovascular capacity (Liu et al., 2022). Furthermore, there 

is a higher prevalence of pre-existing health conditions as well as associated medication use 

among elderly people, which also might explain increased risk of negative CRD outcomes 

when exposed to temperature.  

Many studies have investigated the effects of ambient temperature on mortality, the so-called 

temperature-mortality association, of which many have found an increased mortality risk due 

to cold and hot temperatures (Gasparrini et al., 2015; Gasparrini et al., 2022; Masselot et al., 

2023; Ragettli et al., 2023; Rocklöv et al., 2014). Several of the studies have investigated 

cause-specific mortality and have found a positive association of temperature exposure and 

CVD and respiratory mortality (Åström et al., 2018; Bunker et al., 2016; Liu et al., 2015; Liu 

et al., 2022; Saucy et al., 2021; Witt et al., 2015).  

Several respiratory diseases are climate sensitive based on how people are exposed to the 

factors causing these diseases (Cissé et al., 2022). Several exposure pathways contribute to 

RDs in general, and some of these exposure pathways are climate related including changes 

in ambient air pollution concentrations. Temperature increase may alter concentration of air 

pollutants, and air pollution could modify the temperature-mortality association (Paavola, 

2017).  

The relationship between temperature and mortality is often described as a U or (inverse) J-

V-shaped curve, with a trough at a so-called minimum mortality temperature (MMT), and 

then increasing slopes towards both hot and cold tails of the temperature distribution (Åström 

et al., 2016; Liu et al., 2015; Ruuhela et al., 2018). The MMT refers to the temperature at 

which the mortality is at a minimum, often referred to as the optimum temperature.  

The risk of temperature related mortality has shown to be significant at even moderately high 

temperatures, although the most severe health impacts often happen during periods of more 

extreme temperatures such as heatwaves or cold spells, which have been associated with 

large excess mortality (Heaviside et al., 2017; Rocklöv et al., 2014). For instance, in 2003 the 

heatwave in Europe caused about 70 000 excess deaths (Saucy et al., 2021).  

However, the temperature-mortality association is highly heterogeneous across geographical 

areas and climatic zones (Åström et al., 2016; Ruuhela et al., 2018). The MMT is often lower 

in cooler compared to warmer climatic zones. According to Åstrøm et al (2018), mortality 
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risks related to high and low temperature exposure tend to be higher in colder and warmer 

regions, respectively, suggesting partial adaptation of population to their own climate,  

Furthermore, the association is a complex one due to the non-linear and delayed (lagged) 

impacts of thermal stress on health. Mortality related to heat effects usually occur relatively 

shortly after temperatures have begun to increase, often on the same day and last a few days 

(Gasparrini et al., 2015; Liu et al., 2015; Ruuhela et al., 2018), Cold effects might take longer 

to emerge, typically after a couple of days and last about 10 days till weeks. The excess 

mortality due to prolonged duration of extreme temperatures may be due to physiological 

exhaustion related to cumulative stress over many consecutive days (Rocklöv et al., 2014). 

Moreover, heat and cold stress can potentially lead to a displacement in mortality called 

“harvesting”, with death occurring earlier than it would have otherwise (Liu et al., 2015). 

Health impacts of extreme temperatures also vary by seasonality, e.g., health impacts of 

extreme heat can be more severe in the spring than later in the season.  

Winter mortality is mostly caused by CVDs and RDs (Åström et al., 2016). Cold 

temperatures lead to increased rates of several CVDs and RDs such as MI, hypothermia and 

influenza (Bunker et al., 2016). Despite increasing warming and decreasing cold events, there 

is inconsistent evidence of whether mortality related to extreme cold events will decrease in 

future decades in European urban areas (Cissé et al., 2022). This is partly due to various 

medical factors (such as increased cardiac risk factors and influenza seasons) also contribute 

to this excess mortality in winter periods. Higher regional variability in future climates means 

that extreme cold events still can be important mortality risks locally. This will be reinforced 

in many urban areas, particularly European cities, due to the expected increase of elderly and 

the high prevalence of CRDs.  

Hajat et al. (2014) projected the risk of future heat-and cold-related mortality to be 

significantly raised across all regions in the UK in the 2050s. Despite the very high increase 

of heat related mortality; an increase of 257% compared to the current annual baseline of 

2000 deaths and 2% decrease in cold related mortality from a baseline of around 41 000 

deaths, the burden of cold temperature continued to be higher than the heat burden in all 

periods.  

Although there is a projected temperature increase in Norway, extreme temperatures like 

heatwaves will not have the same mortality impacts as in the Southern Europe, due to the 

colder climate in Norway (Aamaas, 2019). In fact, the decrease in cold related mortality is 
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expected to be bigger than the increase in heat-related mortality in the Northern Europe 

(Gasparrini et al., 2017). However, they did not consider different vulnerable subgroups in 

their study, nor did they include data from Norway.  

A study from Sweden found that heatwaves significantly increased both all-cause mortality 

and CHD-mortality (Åström et al., 2018). On the contrary, the heatwave in the summer of 

2018 in Norway did not increase the net mortality among people over 75 and 85 years 

(Ranhoff et al., 2019), although they did not investigate cause-specific mortality. 

Though it is uncertain how ambient temperature in Norway will change in the future and 

what health impacts this will have for the Norwegian population, it is certain that it will not 

impact all groups equally (Ólafsdóttir, 2021). Future temperature related mortality also 

depends on vulnerability factors in the population, such as socioeconomic conditions. 

Climate change can be considered a driver of social health inequalities through already 

vulnerable people being hit harder by climate change impacts (Oslo Kommune, 2023). To 

stem the effects of climate change on health, World Health Organization (WHO) stresses that 

one must act against the inequalities that are the fundamental causes of health challenges. 

Next chapter explains how socioeconomic conditions can affect the mortality risk related to 

temperature exposure. Prior to this, I will set the context by exploring the framework of 

social health inequalities. To understand how socioeconomic conditions can impact the 

temperature-mortality association, one needs to understand how socioeconomic conditions 

are associated with health in general. 

 

2.3 Social inequalities in health  
2.3.1 Social determinants of health  

Health is not just about diseases such as CRDs or mortality, but rather the absence of 

diseases. In 1946 WHO defined health as “a state of complete physical, mental and social 

well-being, not merely the absence of disease or infirmity” (Naidoo & Wills, 2016p.4). The 

concept of health is holistic, consisting of individual, societal, environmental, and global 

dimensions. Within these dimensions there are many factors impacting the population's 

health, so-called health determinants. Social factors influencing health are called social 

determinants of health (SDH). WHO describes SDH as non -medical factors that impact 

health outcomes, and are the conditions in which people are born, grow, work, live and age 

(World Health Organization, s.a.-b).  SDH are determined by the wider set of forces and 
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systems shaping the conditions of daily life. This includes economic policies and systems, 

development agendas, social policies and norms, and political systems. Some of the SDH 

have extensive and complex impacts on health, such as economy and education. Other SDH 

are simpler and more direct in the way they impact health, for instance physical environment 

and tobacco (Meld. St. 15 (2022-2023)). Usually, the determinants come first and then health 

follows because of the determinants.  

A rainbow-model “the main determinants of health” by Dahlgren and Whitehead (1991) is a 

common representation of the SDH, aimed at illustrating how health determinants in various 

spheres of society and at different levels impact the public health, and how they impact each 

other (Øversveen & Rydland, 2021) (Figure 1). The outer layer of the model shows the 

organization of society and includes general socio-economic, cultural, and environmental 

conditions. In the second layer are the societal institutions that shape living- and working 

conditions, while the next layer shows social and community networks. The next layer 

consists of individual lifestyle factors such as many of the risk factors for diseases as 

mentioned above, namely smoking habits, physical activity, and diets. Finally, the inner layer 

consisting of age, sex and constitutional factors also influences health, but are considered 

fixed factors over which people have little control (Dahlgren & Whitehead, 1991).  

 

 

Figure 1: Social determinants of health. Adjusted model from Dahlgren and Whitehead (1991). 
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Poor health is not something that happens by chance or bad luck, rather there are systematic 

differences in health among the population. There are differences in health determinants, 

health outcomes such as mortality, and access to healthcare. These differences can be referred 

to as inequalities and inequities. Inequalities refer to differences between populations which 

to a large extent are avoidable. If these differences are also unfair and unjust, they can be 

described as inequities (Naidoo & Wills, 2016). Inequalities in health are in many cases 

unjustly distributed among populations based on socioeconomic status (SES) and can thus be 

described as inequities. Socioeconomic status can be described as “the result of how much 

and what kind of resources an individual possesses” Øversveen and Rydland (2021, p.38) 

Income, education, and employment status are common indicators of SES, and many studies 

investigating effects of socioeconomic factors involve these factors, including studies 

investigating effects of temperature on health.  

Social health inequalities follow a gradient across society, called the social gradient (World 

Health Organization, s.a.-b). It is not just the poorest in society that experience poor health, 

rather slightly better SES gives (statistically speaking) slightly better health  (Syse et al., 

2022). Several studies have explored the association between income inequalities and 

mortality, suggesting that it is the relative inequalities in income and material resources 

between populations, rather than the country being rich or poor itself, that affects health 

(Pickett & Wilkinson, 2015; Rodgers, 1979; Wilkinson & Pickett, 2011). However, as the 

rainbow model from Dahlgren and Whitehead demonstrates, it is not just the material 

resources that impacts health. The following section explores why and how social health 

inequalities arise and persist.  

2.3.2 Social conditions as fundamental causes of health inequalities  

Various explanations seek to understand health inequalities, focusing on cultural, behavioral, 

material, structural and psychosocial dimensions, suggesting that adverse environmental 

conditions at different times during life can lead to poor health (Naidoo & Wills, 2016). The 

causes are complex, and an accumulation of these conditions contributes to creating social 

health inequalities.  

Other explanations of the association between social inequalities and health are that it is 

health that impacts the social position, so-called reversed causality (Meld. St. 19 (2018-

2019)). It means that poor health leads to lower educational level or unemployment and so 

forth.   
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Neither of the explanations completely explains the inequalities in health, however Naidoo 

and Wills (2016) underline that health behaviors should not be separated from their social 

context. This is in line with Link and Phelans (1995) theory of social conditions as 

fundamental causes of health inequalities. The theory seek to explain why the association of 

SES and mortality has persisted despite considerable changes in the disease and risk factors 

that presumably explain it (Phelan et al., 2010).  SES inequalities in mortality now reflect 

new major causes of death such as CRDs and cancer. Health behaviors often follow the same 

pattern as education and income level, i.e., poor health behaviors are more common in lower 

SES populations (Syse et al., 2022).  

According to Link and Phelans theory this long-lasting association persists because SES 

consists of many types of resources, i.e., money, knowledge, prestige, power, and beneficial 

social connections that protect health, in line with SDH and Øversveen and Rydland`s 

description of SES. These types of resources are flexible and beneficial in different situations 

and can be reused when necessary (Ólafsdóttir, 2021). They can enable people to prevent 

health risks by having a healthier lifestyle, or reduce impacts from disease or events, such as 

temperature extremes, Education influences employment and income level. But it is also 

presumed to measure, among other things, an individual’s cognitive resources and 

knowledgebase, in addition to the ability to perceive health information, so-called health 

literacy (Dahll et al., 2014).  

A central aspect in the fundamental causes-theory is that of contextualizing risk factors and 

looking at the bigger picture, i.e. the broader social context that people live in (Ólafsdóttir, 

2021). It is important to understand why and how people make certain decisions affecting 

their health. Flexible resources can be conceptualized as “the “causes of causes” or “risks of 

risks” that shape individual health behaviors by influencing whether people know about, 

have access to, can afford, and receive social support for their efforts to engage in health-

enhancing or health protective behaviors” (Phelan et al., 2010, p.30).  

The mortality decline among higher SES populations has been evident in preventable 

diseases such as CRDs (Phelan et al., 2010). Furthermore, mortality rates for diseases that are 

not yet preventable have remained the same for low and high SES populations. Hence, the 

theory hypothesizes that people of higher SES have better capacity to prevent or reduce risk 

factors for health and promote health, due to flexible resources like knowledge, money, and 

power. As Ólafsdóttir (2021p. 32) writes “in the context of climate change, the theory of 
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fundamental causes of health inequalities anticipates that those with more resources will be 

better equipped to avoid the risks of extreme temperature events, as well as minimizing the 

consequences of them if they occur in their lives”.  

However, there are some limitations to the theory of Link and Phelan. Their theory has been 

empirically tested, including a study of 20 European populations from 1980-2010 by 

Mackenbach et al. (2017). They used mortality data by education level (low, medium, and 

high) for 22 causes of death. Their results support the fundamental causes-theory, however it 

also demonstrates other factors and mechanisms impacting mortality, than those implied in 

the theory. Furthermore, the findings of Mackenbach et al. (2017) also indicate that material 

resources are not the main hinderance for good health in a modern European context.  

Social health inequalities are a key issue in Norwegian public health policy. Next chapter 

explains social health inequalities in the Norwegian context, including the legal and political 

framework that underlies the work on public health and social health differences.  

2.3.3 Social health inequalities in the Norwegian context and Oslo  

The public health of the Norwegian population is generally good and the life expectancy 

high, being 84.7 years for females and 81.6 years for males in 2021 (Meld. St. 15 (2022-

2023)). Although social health inequalities in Norway in general are small compared to other 

countries, there are still considerable social health inequalities in Norway with an increasing 

trend since the 1980s (Syse et al., 2022). These inequalities have increased even further after 

the Covid-19 pandemic, due to the uneven provision of infection prevention measures. The 

proportion of financially secure households fell from 65% during Covid-19 to 49% in August 

2022 (Meld. St. 15 (2022-2023)).  

The Norwegian population with a high educational attainment and good economy live on 

average 5-6 years longer and have fewer health concerns than those with lower educational 

levels and poorer economy (Meld. St. 15 (2022-2023)). Those with the lowest household 

income has markedly shorter life expectancy. This group is characterized by a high 

proportion of people living alone and a low educational level.  

Social inequalities in Norway are seen in several diseases, particularly in NCDs (Syse et al., 

2022). According to The National Institute of Public Health (NIPH) health behaviors explain 

much of the inequalities in CVDs. Those with higher educational level smoke less, are more 
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physical active and generally have a healthier diet, as well as a lower blood pressure and are 

less obese, than those with lower educational level. It has also been shown that people with 

short educational level have a higher risk of dying after a heart attack. However, alcohol 

consumption is higher in higher SES groups, though it seems that the negative consequences 

related to alcohol consumption are smaller in higher SES groups than in lower SES groups 

(Syse et al., 2022).  

There are clear geographical health inequalities between the counties in Norway, with Oslo 

standing out negatively (Meld. St. 15 (2022-2023)). Oslo is a city where the great social 

health inequalities manifest itself as a geographical accumulation of resources and burdens 

(Oslo Kommune, 2023). Although the living conditions in Oslo are generally good, the city is 

diverse with big differences between various groups and geographical areas. Neighboring 

districts, sub-districts and quarters can have very different composition in terms of population 

age, SES, ethnic background, and housing type. This means that there may be large social 

and economic differences across relatively small geographical areas, and that various areas in 

the city have different challenges and opportunities (Oslo kommune, 2020b). It is often 

referred to as a geographical divide between the eastern and western part of the city. 

Generally, Oslo-residents have high educational attainments, however there are large 

differences among the districts (Oslohelsa, 2020). There is a bigger proportion of people with 

low educational status and household income among the districts in the eastern part of Oslo, 

with the opposite proportion-size for the western districts. For instance, the proportion of 

highly educated people is about double the size in the outer western districts than in the 

eastern district Groruddalen. The same goes for household income, with the average 

household income being much higher in the western districts, although low income is not just 

an east-side-phenomena. Likewise, the proportion of unemployed and people living in 

overcrowded housing is also higher in the eastern part of Oslo (Oslo Kommune, w.y). In the 

public health strategy for Oslo 2023-2030 it is stated that 92% of people (aged 20-66) with a 

university-or college degree of more than 4 years are employed, compared to only 55% of 

people with primary school as their highest level (Oslo Kommune, 2023). Living conditions 

and health literacy are also unevenly distributed in the population with a clear association to 

education, income, and employment (Syse et al., 2022).  

In Oslo, people with high educational level, generally experience lower levels of chronic 

disease and lower mortality, than people with low education (Oslo kommune, 2020b). The 
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variations between districts in prevalence of CVDs, COPD, lung cancer and diabetes (type 2) 

essentially follow the same pattern as the district variations in income and education. The 

population in the western districts are more seldom in contact with their general practitioner 

or emergency doctor due to CVD and have lower CVD mortality, than people living in some 

of the eastern districts. There are also great differences between the districts in Oslo when it 

comes to premature mortality due to COPD, with the lowest proportion in the period 2009-

2017 found in the western districts. Men in Oslo who has the highest educational level have 

around 5.4 years of longer life expectancy than men with the shortest educational attainment. 

For women, the differences are 4.4 years (Oslo Kommune, 2023) 

Life expectancy differences varies between the districts and it can be up to around 7 years of 

difference for males, and 5 years of difference for females (Meld. St. 15 (2022-2023)). 

According to the report “Oslohelsa”, the differences in life expectancy between districts can 

be related to the local environment and other characteristics of the local population than their 

educational status  (Oslo kommune, 2020b) 

The Norwegian public health work is anchored in the Norwegian Public Health Act, which 

defines public health work as: “society’s efforts to influence factors that directly or indirectly 

promote the populations health and well-being; prevent mental and somatic illness, injury or 

suffering;; or that protect against health threats; as well as efforts seeking more equal 

distribution of factors that directly or indirectly affect health” (folkehelseloven, 2011). The 

Norwegian Ministry of Health and Welfare underlines that public health work must facilitate 

health for all people and (strive to) reduce social differences. Public health work should be a 

part of all sectors, in line with “health in all policies” (Meld. St. 19 (2018-2019)).  

 “Reducing social health inequalities” is the main priority in the newest White Paper (No 15 

(2022-2023) and one of the three national goals (Meld. St. 15 (2022-2023)). This White 

Paper is to a large extent based on a report with updated information about SDH and social 

inequalities in Norway, conducted by Sir Michael Marmot in cooperation with The 

Norwegian University of Science and Technology. An important message in this report is that 

public health measures should be universally oriented, but work best for those who need it 

most, so-called proportional universalism. Furthermore, the Ministry of Health highlights 

several perspectives which, together with the efforts against social health inequalities, will be 

of considerable importance for future public health. Climate change is one of them, and they 

underline the increasingly clear association between climate and health and acknowledges 
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that climate crisis is also a health crisis. Furthermore, that people of lower SES are more 

vulnerable to the impacts of climate change. The Norwegian Ministry of Health aims to 

operationalize the public health goals in line with SDGs, which also forms the basis for the 

public health policy.  

The Public Health Act lays the fundament for the public health work to be systematic 

(folkehelseloven, 2011). This means that each municipality must have an overview of their 

population’s health status and the health determinants. Social health inequalities are also a 

main priority in Oslo’s public health strategy for 2023-2030, with a focus on equalizing 

living- and environmental conditions for the residents (Oslo Kommune, 2023). The strategy 

also mentions climate change and its potential impacts on public health, including the 

potential skewed impacts due to the inequalities in living - and geographical conditions in the 

city.  

But what does the literature say about the associations of SES, temperature exposure and 

mortality? 

 

2.4 Social health inequalities and impacts on temperature related mortality 
A large body of literature has investigated the potential vulnerability of socioeconomic 

conditions and inequalities in the temperature-mortality association, in different parts of the 

world. Effects modification occurs when an exposure has a different health effect among 

different sub-groups of a population, e.g., if hot or cold temperatures had a higher risk of 

mortality in people of lower SES than people of higher SES, then effect modification has 

occurred (Son et al., 2019). Some studies have investigated individual level SES, while others 

have explored community, - and neighborhood-level SES.   

The evidence is inconsistent. Many studies show an increased mortality risk for people of 

lower SES, whereas other studies show no increased risk or effect modification of 

socioeconomic factors. A positive association of SES in the temperature-mortality 

relationship is often related to where and how people live. Social inequalities are also 

connected to environmental inequalities. In many cases, lower SES populations are 

disproportionately exposed to hazardous environmental exposures such as higher and lower 

temperatures, as well as air pollution (European Environment Agency, 2018; World Health 

Organization, 2019).  
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In the review by Liu and his colleagues (2015), they found that people with lower SES 

generally had a higher vulnerability to temperature-related CVD mortality and morbidity. 

Particularly education and occupation class seemed to be important socioeconomic factors 

that impacted the population´s vulnerability and capacity to adapt.  

However, Son et al. (2019) found limited and inconsistent evidence of effect modification by 

individual level education and SES, as well as community-level SES in their systematic 

review and meta-analysis on all-cause temperature related mortality and potential effect 

modifiers, where they used studies before 2017 from around the world.  

A study that investigated the susceptibility to mortality in weather extremes across 135 US 

cities found that areas where people with higher poverty and lower levels of education live, 

had a higher susceptibility to extreme heat during warm months (Zanobetti et al., 2013). This 

is in line with the findings from another US-study, which also found that people living in 

areas with greater poverty were more vulnerable to heat related mortality (Madrigano, J. et al. 

(2013). They concluded that local areal vulnerability should be taken in consideration when 

cities are planning climate adaptation strategies. However, in the study of Yu et al. (2010), 

they did not find sufficient evidence to conclude that people with lower SES in Brisbane, 

Australia had a higher risk of dying in hot temperatures.  

In a European context, both the study of Gasparrini et al. (2022) and Masselot et al. (2023) 

suggested that socioeconomic inequalities could be a vulnerability factor for temperature 

related mortality for both heat and cold. The findings from Gasparrini et al. (2022) indicated 

that temperature-related mortality impacts were stronger in more deprived areas, in line with 

the studies from US.  

The findings from a study in Stockholm, Sweden, indicated that individuals of lower wealth 

had higher risks of heat related mortality, however their findings also showed that this 

association was related to heat wave duration and was strongest for people younger than 65 

(Rocklöv et al., 2014). Wealthier populations on the other hand, seemed to have a higher risk 

of cold related mortality.  

The next chapter present the aim and research questions of this thesis.  
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3. Aims and research question  

Drawing on what is explained in the background chapter, my hypothesis is that low and high 

temperatures will be associated with CRD mortality differently for people of low and high 

SES in Oslo, whereby lower SES groups will experience increased risk of CRD mortality 

compared to those with higher SES in Oslo. The findings from this study may aid the 

understanding of how socioeconomic conditions could modify the temperature-mortality 

association in Oslo and inform the development of equitable adaptation strategies that target 

vulnerable populations in Oslo.   

Therefore, the following research questions will be investigated:  

Main research question: 

How do socioeconomic conditions impact the association between short-term 

temperature exposure and cardiovascular and respiratory mortality in Oslo? 

To answer the main research question, I will need to first investigate the following 

secondary research question: 

How is short-term air temperature exposure associated with cardiovascular and 

respiratory mortality in Oslo? 

The objective of this thesis is thus to examine the temperature -mortality association for CVD 

and respiratory mortality in Oslo and if socioeconomic conditions are effect modifiers of this 

association, using individual level cohort and registry-based data for the adult population 

(over 18 years of age).  
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4. Methods 

This chapter describes and explains the data and methods used in the thesis, including the 

methodological choices. 

This thesis is part of an ongoing EU-funded project “Exposure to heat and air pollution in 

Europe – cardiopulmonary impacts and benefits of mitigation and adaptation” 

(EXHAUSTION). The EXHAUSTION-project quantifies the future burden of 

cardiopulmonary disease morbidity and mortality that is attributable to heat and air pollution  

(EXHAUSTION, 2020). It does so by investigating the association between climate-

parameters, air pollution components and cardiopulmonary disease. EXHAUSTION aims 

to identify adaptation strategies that will help decrease premature death and disease among 

vulnerable groups in Europe (Zhang et al., 2020). The project started in 2019 and involves 14 

partners from 10 European countries, including The Norwegian Institute of Public Health 

(NIPH), CICERO and The University of Oslo. 

For the thesis I have collaborated with the NIPH and I have used data and methods from the 

EXHAUSTION project. In the EXHAUSTION project analyses on temperature exposure, 

CPD and effect modification by a variety of variables including socioeconomic variables, 

have already been conducted on a national level using Cohort of Norway (CONOR) by 

researchers connected to NIPH. For this thesis, I have applied the same methods and analyses 

as in EXHAUSTION, but using only an Oslo-cohort, The Oslo Health Study (HUBRO) for 

Oslo, which will be described further in chapter 4.2 Data material. 

4.1 Study design  
A time-stratified case-crossover design is used, which is especially suitable to investigate the 

effects of transient short-term exposures, like temperature, on the risk of health outcomes 

(Webb et al., 2017).  In this design, each individual serves as their own control. Only 

participants who experienced mortality were included in the statistical analyses. With the 

time-stratified case-crossover design, one compares the exposure profile of each individual at 

the day of event (case day) with their exposure profile at proximate days before or after the 

event (control days) (Ragettli et al., 2023). In this study, day of death (case day) was 

matched with three control days, which were the same day of the week within the same 

month and year prior to the event of death. By making within-participant comparisons 

between case and control days within the same month, one controls for the potential 
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confounding effects of participant characteristics, seasonality, long term trend and day of 

week, by design.  

 

4.2 Data material   

I have used individual level data from various data sources, including epidemiological health 

data from HUBRO and the Norwegian Cause of Death Registry (DÅR), meteorological data 

from the Norwegian Meteorological Institute as well as socioeconomic data from Statistics 

Norway (SSB) and HUBRO. All data sources were linked to HUBRO. This data linkage was 

done beforehand of my thesis, as part of the CONOR analyses. The data sources were linked 

based on the participants unique personal identification number, and Geographical 

Information Systems (GIS) was used to link the participants to the meteorological data, based 

on their historical residential addresses that were updated annually. A dataset consisting of 

variables from all data sources were made for the CONOR analyses. For my thesis, 

participants from HUBRO were extracted from this linked dataset, creating a new dataset 

with only the HUBRO-participants. This was the dataset I used for my analyses.  

HUBRO is part of CONOR, which is a collection of health data from several Norwegian 

health surveys (1994-2003) (Aamodt et al., 2010; Folkehelseinstituttet, 2019). HUBRO was 

conducted between 2000 and 2001. A total of 18 770 adults took part in HUBRO, which were 

46 % of the invited. The participants’ year of birth ranged from 1924 to 1955, where the 

mean year of birth was 1954. The final linked HUBRO dataset included 1070 participants 

who died from CVDs (N=1070) and 302 who died from respiratory diseases (N=203) during 

the study period. Participants with missing information on temperature data were excluded. 

This resulted in an analytical sample of N=1064 for CVD mortality and N=299 for 

respiratory mortality.  

The linkage of HUBRO to the other data sources are illustrated in a flow chart diagram below 

(Figure 2).  
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Figure 2: Flow chart diagram shows linkage of the data used in the statistical analyses. Green 

box shows mortality data, blue box shows exposure data and yellow box shows 

socioeconomic data. 

 

In the following chapter I will describe the data and explain my choice of SES variables.  

 

4.2.1 Health Data  

From DÅR, Individual level daily mortality data for all HUBRO participants from January 1st 

2000 to December 31st 2018 were obtained, which makes up the study period in this thesis. 

DÅR is a national register covering causes of death for all Norwegian residents 

(Folkehelseinstituttet, 2020). The causes of death are coded according to ICD-10, the 10th 

revision of the International Classification of Diseases (for the period of 1997 and onward). 

The mortality data were classified into death due to CVD (ICD-10: I00-I99) RD (ICD-10: 

J00-J99), and were used as separate health outcomes.  

 

4.2.2 Meteorological data  

The meteorological data is estimated from spatial-temporal temperature models. Daily mean, 

minimum and maximum air temperatures on a 1 km grid across mainland Norway from 1995 

to 2018 are obtained from the SeNorge2 dataset, released by the Norwegian Meteorological 

Institute. The dataset goes back to 1957 and is updated daily based on measurement data. 

Daily mean temperature is the exposure variable (independent variable) in this study. The 

possible delayed effects of temperature exposure on days prior to the event of death was also 
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accounted for in the analyses (lag days/periods). Variables were created for each exposure 

day, so temp_day0 for case day, temp_day1 for the day prior to death (lag day 1), temp_day2 

for exposure two days prior and so on. These variables are continuous variables.  

 

4.2.3. Socioeconomic data 

The socioeconomic variables included as effect modifiers in the analyses are household 

income and education level.  Education is a variable that stays relatively stable after 30 years 

of age when the majority has completed their education (Syse et al., 2022). This makes it a 

good variable to use to represent the participants’ SES, particularly considering the age of the 

participants in this study. Income and employment status are also common variables to use as 

SES-indicators in research. In the CONOR analyses, unemployment was the only SES 

variable that showed a statistically significant effect modification of the temperature-

mortality relationship, and so it would be relevant to also include employment status in this 

study. However, there were only four unemployed HUBRO participants that we know of. 

Most of them were pensioners. Thus, the employment variable was not relevant to include in 

the analyses. Therefore, I chose to include income level as well, as two variables gives a 

better representation of the role of SES in the temperature-mortality relationship.  

Both the income and education level variable were part of the extracted HUBRO dataset. 

Thus, the decoding of the variables had already been done beforehand.  I will explain how 

this was done.  

Income  

Household income is the total income for all household members after tax.  Income after tax 

is defined by SSB as “the sum of wages and salaries, income from self-employment, property 

income and transfers received minus total assessed taxes and negative transfers” (Statistisk 

sentralbyrå, s.a ). I had access to household income after tax from 2004 to 2018.  

In the analyses the household income from the year of death was used. If this value was 

missing, it was replaced by the values closest to the year of death that was available. If the 

information was still missing (missing values), the participant was excluded from the 

interaction analyses.  
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The household income variable is a numeric variable that was dichotomized into a dummy-

variable for the analyses, with the value 0 for income under median (low) and 1 for income 

above median (high).  

Education  

The education level variable is retrieved from both SSB and the HUBRO questionnaire. 

Originally this categorical variable had six categories both HUBRO and SSB, which was then 

decoded to three categories: “low” (<high school), “medium” (high school or vocational 

school) and “high” (university short/long). Similar coding has been done in other studies 

(Huang et al., 2015; Saucy et al., 2021). Missing information in the HUBRO variable was 

replaced by the SSB variable for the final education level variable that was used in the 

analyses.   

 

4.3 Statistical analyses  
The statistical analyses were performed using the R programming language (R software 

version 4.2.1). Original R-codes that were used for the CONOR analyses were used but 

adapted to HUBRO. These codes were provided by the researcher who conducted the 

CONOR-analyses. I also made some codes on my own. All statistical tests were two-sided 

with a 5% significance level.  

Statistical analyses were conducted in two stages in line with the study objectives. In the first 

stage analyses were preformed to investigate the short-term effects of temperature exposure 

on mortality. In the second stage, the potential effect modification of income and education 

level on the association of temperature and CRD-mortality was investigated.  

 

4.3.1 Stage 1 – Short term effects of temperature on CRD-mortality  

Conditional logistic regression models were used to estimate the short-term effects of 

temperature on mortality using the analytical sample of participants who died during the 

study period. Conditional logistic regression takes the “matching” of the cases and controls 

into account, where the participants of this study are both cases and controls as described in 

chapter 4.1 and it estimates the adjusted odds ratio (OR) (Jaakkola, 2003). For the regression 
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analyses individual data used a dummy-variable with the value 1 for case days (= dead) and 0 

for control days (= “alive”). CVD and respiratory mortality were analyzed separately.  

Distributed lag non-linear model (DLNM) was applied to characterize the potentially non-

linear and delayed association between temperature and mortality. Simple statistical models 

compare mortality and temperature from the same day (Ruuhela et al., 2018). However, 

distributed lag non-linear models (DLNMs) have been widely applied in recent years to 

account for the so-called exposure-lag-response-associations (Huang et al., 2015).  

I conducted first a main analysis, where I included 0 to 10 lag days of temperature, which I 

will refer to as “the main exposure”. However, the approach with 0-10 lag days may 

potentially underestimate heat effects (which have shorter lags) or cold (which might have 

longer lags) as demonstrated in the background chapter. Therefore, additional analyses were 

conducted, where different lag periods of temperature were applied, respectively 0-3 lag days 

for heat effects and 0-21 lag days for cold effects. Previous studies have used similar lag 

structures for heat and cold effects (Gasparrini et al., 2015; Huang et al., 2015; Saucy et al., 

2021). The sensitivity analyses also included adjusting for seasonality by looking at the cold 

and heat-effects during the summer period (May-September) and the winter period 

(November-March) separately, as well as adjusting for sex (female, male) and age (65+, 

75+). This was done by analyzing the various strata separately.  

The effect of heat was estimated as the odds ratio (OR) of mortality for an increase in daily 

mean air temperature from the 75th to the 95th percentile of the temperature distribution, and 

the effect of cold was estimated for a decrease from the 25th to the 1st percentile. The 

uncertainty of the effect estimates was measured as confidence intervals (CI).  

 

4.3.2 Stage 2 – Effect modification of income and education level 

In the second stage, interaction analyses was performed to estimate the potential effect 

modification of income and education level on the association between temperature and CPD. 

Effect modification is a statistical technique where one investigates if the association between 

exposure X and outcome Y varies depending on a third variable M (Webb et al., 2017). The 

interaction analysis was performed by adding an interaction term between a cross-basis of air 

temperature and each of the socioeconomic variables to the conditional logistic regression 

model (temperature*income and temperature*education level). I did separate interaction 

analyses for income and education level stratified by the various categories (low, high for 
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income level and low, medium, high for education level), and stratified by cause of death 

(CVD and respiratory mortality).  

 

4.4 Research ethics 
This thesis is conducted in line with ethical principles of research according to the 

Declaration of Helsinki, a declaration developed by the World Medical Association in 1994 

(Torp, 2019). The declaration works as a set of ethical principles for medical research. It 

particularly highlights the importance of informed consent of participants, the ethical 

responsibility that lies with the researcher and the considerations of vulnerable groups.  

As this thesis is based on cohort and register data, it was necessary to apply for an approval 

from the Reginal Committee for Medical and Health Research Ethics (REK). A REK 

application was sent for the EXHAUSTION project. For my thesis, it was necessary with an 

updated application. The updated approval from REK was received prior to the start of the 

thesis (Appendix 1). A data managing agreement was established between NIPH and NMBU, 

to ensure data managing as approved by REK. The data managing agreement included 

requirements for non-disclosure and confidentiality.  

In accordance with the ethical principles, proper and safe storage of the data is required. As I 

worked with sensitive data containing personal information in this thesis, all statistical 

analyses were performed in Services for Sensitive Data (TSD), a platform for collecting, 

storing, analyzing and sharing sensitive data in compliance with the Norwegian privacy 

regulation (Universitetet I Oslo, s.a.). It is developed by the Norwegian University of Oslo. 

The participants in HUBRO were given allotted numbers instead of their ID-number to 

anonymize them. The participants address levels that were used to link the temperature data 

to HUBRO was removed after the linkage was conducted. Thus, access to the participants 

addresses was not possible.  

5. Results  
This chapter presents and describes the results of the statistical analyses. Firstly, descriptive 

statistics of the population is presented in chapter 5.1, followed by the results of the main and 

additional analyses of short-term temperature effects on mortality in chapter 5.2. Finally, 

chapter 5.3 will present the results from the interaction analyses of income and education 

level on the association of short-term temperature exposure and mortality.  
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5.1 Descriptive statistics of population 

Table 1 summarizes descriptive characteristics for HUBRO participants who died from 

CVDs and RDs during the study period, stratified by sex.   

In total, 3527 HUBRO participants died from all causes of deaths (all-cause mortality) from 

2000 to 2018, of which 1070 of these participants died from CVDs and 302 died from 

respiratory diseases, corresponding to respectively 30.3% and 8.6% of the all-cause mortality.  

Table 1 Characteristics of HUBTO participants who died stratified by sex and cause of deatha  

                                                          Sex    

               CVD (N=1070)              RD (N=302)  

 Female Male  Female Male 

 n=533 n=537 n=158 n=144 

Age at death         

     Mean (SD)  83.8 (8.7) 79.7 (10.8) 83.5 (8.8) 81.7 (8.9) 

Education         

     Low level  221 (41.5) 161 (30.0) 75 (47.5) 55 (38.2) 

     Medium level  226 (42.4) 228 (42.5) 60 (38.0) 55 (38.2) 

     High level  86 (16.1) 146 (27.2) 22 (13.9) 34 (23.6) 

     Missing   0 (0) 2 ((0.3) 1 (0.6) 0 (0) 

Income         

     Mean (SD)  286 626 (169145) 418 900 (578622) 333118 (408870) 355043 (182233) 

     Low 306 (57.4) 161 (30.0) 90 (57.0) 48 (33.3) 

     High 169 (31.7) 299 (55.7) 56 (35.4) 83 (57.7) 

     Missing 58 (10.9) 77 (14.3) 12 (7.6) 13 (9.0) 

a Data are presented as frequencies (column percentages) unless otherwise indicated.  

 

The distribution of sex was even for CVD and respiratory mortality. For the CVD cases, there 

were 533 females (49.8%) and 537 males (50.2%), and for the respiratory cases there were 

158 females (52.3%) and 144 males (47.7%). The mean age when the event of death occurred 

was 81.7 (SD: 9.9) for all CVD cases and 82.6 (SD: 8.9) for all respiratory cases. When 
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stratified by sex, females were generally a couple of years older when they died than males 

(Table 1),  

For both CVD and RD there were most participants with low and medium level education. 

However, the proportion of males with high level education was higher than for females for 

both CVD and RD. The mean income was also much higher for males than females among 

the CVD cases, while it was similar for the RD cases. For both CVD and RD, there were 

higher proportions of males in the high-income category and highest proportion of females in 

the low-income category (table 1).  

 

5.2 Association of short-term temperature exposure and CRD mortality  
The exposure-response curves are illustrated in Figure 3, which is a result of the main 

analyses on short-term exposure and mortality, with a 10-day lag effect. The exposure-

response relationship between short-term temperature exposure and mortality look non-linear, 

although the wide confidence intervals suggest linearity for CVD and respiratory mortality. 

The MMT for Oslo was around 15°C. The dashed lines in the exposure-response curves 

represent the cutoffs for what was considered extreme temperatures, which was the 1st 

percentile of temperature distribution for extreme cold and the 99th percentile for extreme 

heat. 

 

Figure 3. Exposure-response function between daily mean air temperature and mortality, and 

histograms with the air temperature distribution from 2000 to 2018 for cardiovascular and respiratory 

mortality. The dashed lines represent the cutoffs for extreme temperatures; 1st percentile for extreme 

cold and 99th percentile for extreme heat.  
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Table 2 summarizes the results from the main and additional analyses. It shows the OR of 

mortality for cold effect (decease in daily mean air temperature from the 25th to the 1st 

percentile of temperature distribution) and for heat effects (increase in daily mean air 

temperature from the 75th to the 99th percentile of temperature distribution). The table also 

shows the temperatures for the cold effects and heat effects for the main exposure (lag 0-10), 

and the extreme temperatures for the alternative lag-structures (99th percentile for lag 0-3, 1st 

percentile for lag 0-21) and seasons (99th percentile for warm, 1st percentile for cold). The 

median temperature (50th percentile of temperature distribution) for the study period was 

5.3°C for CVD mortality and 4.11°C for respiratory mortality.  

For the main analysis, the OR of CVD mortality was 1.79 (CI: 0.76-4.20) for cold effects and 

1.17 (CI: 0.54-2.50) for heat effects, while the OR for respiratory mortality was 1.74 (CI: 

0.36-8.29) for cold effects and 1.90 (CI: 0.38-9.51) for heat effects. Hence, the main analyses 

indicated that short-term exposure for heat effects seemed worse for respiratory mortality, 

while cold effects seemed to have similar mortality risk for both CVD and respiratory 

diseases, though the results did not reach statistical significance.  

However, when I ran the cold and warm season separately in the additional analysis, it 

seemed that cold effects had a stronger adverse effect on CVD than on respiratory mortality, 

and the OR of respiratory mortality seemed to increase of cold effect with lag 0-21. In the 

section below I summarize the main results for CVD and respiratory mortality from the 

various stratums of the additional analysis. Only one of the findings reached statistical 

significance.  

Lag days 

I observed a significant increase in the OR of respiratory mortality for heat effects, when 

changing the lag structure to 0-3 days (OR: 4.92, CI: 1.48-16.4). The OR more than doubled 

compared to the main analysis. For the 21-day lag structure, there mainly was an increase in 

the OR of respiratory mortality from cold effects (OR: 11.42, CI: 0.94-139.56), however not 

significant.  

Age 

The OR for CVD mortality due to cold effects in the 65+ was 1.84 (CI: 0.75-4.50) and 1.72 

(CI:0.68-4.40) for the 75+group. The OR for respiratory mortality in the 65+ group was 0.77 
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(CI: 0.15-3.94) and 1.02 (CI: 0.17-5.91) in the 75+ group. For heat effects however, the OR for 

CVD was 0.99 (CI: 0.66-1.47) in the 65+ group and 1.15 (CI: 0.51-2.60) in the 75+ group.  

Sex 

When stratifying by sex, it seemed that cold effects had the most impact on both CVD and 

respiratory mortality risk for males, while heat effects seemed to have the most impact for 

females (table 3). Particularly the OR for respiratory mortality differed greatly between the 

sexes, respectively ORs for cold effects of 3.12 (CI: 0.40-24.34) for males compared to 0.65 

(CI: 0.06-7.42) for females, and ORs for heat effects; 0.36 (CI: 0.04-3.45) for males and 3.16 

(CI: 0.20-51.08) for females. Additionally, for males the OR of CVD mortality was higher for 

cold effects (OR: 2.30, CI: 0.74-7.17) than heat effects (OR: 0.99, CI: 0.31-3.14), whereas the 

OR for CVD for females was approximately the same for both cold and heat effects.  

Seasonality 

When looking at the cold and warm season separately, it seemed that the warm season had 

more adverse effects on respiratory mortality, whereas the cold season seemed to have 

somewhat more effects on CVD mortality, however not significantly estimated. During the 

warm season (May-Sept) the ORs for heat effects were 5.90 (CI: 0.19-186.28) of respiratory 

mortality and 0.73 (CI: 0.18-2.95) for CVD mortality. During the cold period (Nov-March), 

the ORs for cold effects were 1.2 (CI: 0.10-13.62) for respiratory mortality and OR: 2.3 (CI: 

0.66-8.01) for CVD mortality.  
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Table 2 ORs (95% CIs) and temperatures of mortality for a decrease in daily mean air temperatures 

from the 25th to the 1st percentile of temperature distribution (cold effects) and an increase in daily 

mean air temperatures from the 75th to the 99th percentile of temperature distribution (warm effects) 

in the main and additional analyses. 

  Cold effect  Temperature 

Decrease (°C) 

Heat effect    Temperature 

Increase (°C) 

Main analysis         

     Cardiovascular mortality   1.79 (0.76-4.20)  -0.17 - 14.1 1.17 (0.54-2.50)  13.02 - 21.5 

     Respiratory mortality   1.74 (0.36-8.29)  -0.1 - 14.0 1.90 (0.38-9.51)  11.81 - 21.6 

Lag 0-3        

     Cardiovascular mortality   
 

 1.15 (0.66-2.02)  21.51 

     Respiratory mortality   
 

 4.92 (1.48-16.4)  21.8 

Lag 0-21        

     Cardiovascular mortality   1.42 (0.37-5.55)  -14.0 
 

 

     Respiratory mortality   11.46 (0.94-139.56)   -14.1 
 

 

Age 65+        

     Cardiovascular mortality   1.84 (0.75-4.50)   0.99 (0.66-1.47)   

     Respiratory mortality   0.77 (0.15-3.94)   2.1 (0.38-10.69)   

Age 75+        

     Cardiovascular mortality   1.72 (0.68-4.40)   1.15 (0.51-2.60)   

     Respiratory mortality   1.02 (0.17-5.91)   2.06 (0.35-12.01)   

Males        

     Cardiovascular mortality   2.30 (0.74-7.17)   0.99 (0.31-3.14)   

     Respiratory mortality   3.12 (0.4-24.34)   0.36 (0.04-3.45)   

Females        

     Cardiovascular mortality   1.44 (0.42-4.93)   1.41 (0.51-3.88)   

     Respiratory mortality  0.65 (0.06-7.42)   3.16 (0.2-51.08)   

Warm season (May-Sep)      

    Cardiovascular mortality    0.73 (0.18-2.95)  22.9 

    Respiratory mortality    5.9 (0.19-186.28)  23.0 

Cold season (Nov-March)     

    Cardiovascular mortality   2.30 (0.66-8.01)  -15.9   

    Respiratory mortality  1.20 (0.1-13.62)  -15.2   

Estimate(s) with p <0.05 are marked as bold. 
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5.3 Results from interaction analyses  

Table 3 summarizes the results of effect modification for income and education level for cold 

and heat effects for all-cause, - CVD and respiratory mortality, with a 10-day lag effect (main 

exposure). It shows the OR for each category of income and education level with p-value for 

the interaction between the groups. The section below presents the ORs of CVD and 

respiratory mortality for each category of income and education level compared to each other.  

Income 

The OR for CVD mortality from cold effects for the low-income group was 2.53 (CI: 0.76-

8.39) and 1.74 (CI: 0.39-7.80) for the high-income group. For heat effects from CVD 

mortality, the OR was 1.09 (CI: 0.30-4.05) for the low-income group and 1.25 (CI: 0.43-3.66) 

for the high-income group. None of the results reached statistical significance. 

For respiratory mortality, the OR for cold effect was 0.36 (CI: 0.03-4.40) for the low-income 

group and 2.0 (CI: 0.16-24.85) for the high-income group. The OR of heat effects was 2.97 

(CI: 0.28-32.02) in the low-income group and 0.4 (0.02-6.35) in the high-income group. Once 

again, not statistically significant.  

 

Education level 

The OR of CVD mortality for heat effects was 2.34 (CI: 0.52-10.55) for the low-level 

education group, 1.2 (CI: 0.34-4.30) for the medium-level group and 0.63 (CI: 0.16-2.49) for 

the high-level education group. This might indicate a tendency towards a trend of stronger 

heat effects for the low-level to the high-level education group. However, the estimates were 

not statistically significant. For cold effects the OR for CVD mortality was 1.80 (CI: 0.47-

7.01) for the low-level education group, 3.58 (CI: 1.02-12.61) for the medium-level group 

and 0.13 (CI:0.01-2.56) for the high-level education group. The OR for the medium-level 

group was statistically significant, though with a wide CI. The other ORs were not 

significant. 

The OR of respiratory mortality for heat effects was 5.34 (CI: 0.31-91.85) for the low-level 

education group, 1.86 (CI:0.10-34.90) for the medium-level group and 1.37 (CI: 0.03-63.41) 

for the high education group. The ORs of respiratory mortality for cold effects was 1.63 (CI: 



 34 

0.14-19.72) for the low-level education group, 2.01 (CI: 0.17-23.41) for the medium-level 

group and 0.02 (CI: 0.0-223.81) for the high-level group. These estimates were not 

significant, and the CI for the high-level education group was extremely wide, due to the very 

few respiratory mortality cases in the high-level education group.  

 

Table 3 ORs (95% CIs) of mortality for a decrease in daily mean air temperatures from the 25th to the 

1st percentile of temperature distribution (cold effects) and an increase in daily mean air temperatures 

from the 75th to the 99th percentile of temperature distribution (heat effects) modified by income and 

education level with p-value for the interaction between the level groups.  

 Cardiovascular mortality Respiratory mortality 

 Heat Effect Cold Effect Heat Effect Cold Effect 

Income     

     Low 1.09 (0.30-4.05) 2.53 (0.76-8.39) 2.97 (0.28-32.02) 0.36 (0.03-4.40) 

     High 1.25 (0.43-3.66) 1.74 (0.39-7.80) 0.40 (0.02-6.35) 2.00 (0.16-24.85) 

P-value for 

interaction 

0,176 

 

0.663 

 

Education 

Level 

    

     Low 2.34 (0.52-10.55) 1.80 (0.47-7.01) 5.34 (0.31-91.85) 1.63 (0.14-19.72) 

     Medium 1.20 (0.34-4.30) 3.58 (1.02-12.61) 1.86 (0.10-34.90) 2.01 (0.17-23.41) 

     High 0.63 (0.16-2.49) 0.13 (0.01-2.56) 1.37 (0.03-63.41) 0.02 (0.0-223.81) 

P-value for 

interaction 

0.728 

 

0.976 

 

   

Estimate(s) with p <0.05 are marked as bold. 
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6. Discussion  
In this chapter I will discuss my findings in light of the theoretical background and existing 

literature. First, I will discuss how short-term temperature exposure is associated with CRD 

mortality in Oslo. Following this, I will discuss how socioeconomic conditions impact the 

temperature-mortality association from CVDs and respiratory diseases in Oslo. Lastly, 

follows a method discussion where I will discuss the methodological strengths and limitations 

of this study. 

 

6.1 Associations of short-term temperature exposure and CRD mortality in 

Oslo  
Summarized, the results from the main and additional analyses indicated that heat effects had 

a more adverse effect on respiratory mortality than cold effects although the CIs overlapped 

considerably in the main analysis. However, in the additional analyses with a 21-day lag 

structure, the OR of respiratory mortality for cold effects was very high. Furthermore, the OR 

of respiratory mortality for cold effects was also high for males, while it seemed that heat had 

an adverse effect on respiratory mortality in females. However, none of the results reached 

statistical significance, except the OR of respiratory mortality with the 3-day lag structure 

which increased of heat effects compared to lags 0-10.  

The ORs of CVD mortality were generally higher for cold effects than heat effects both in the 

main and additional analyses, for males included. The OR of cold effects did not seem to 

increase with a 21-day lag structure compared to the main exposure, however the OR remained 

above 1. With lags 0-3, the OR for CVD mortality for heat effects remained approximately the 

same as in the main analyses. Neither of the results were statistically significant. The estimated 

CIs for both CVD and respiratory mortality were generally very wide, particularly for 

respiratory mortality.  

Although the results did not reach statistical significance, the observed trends in the 

associations of heat effects on respiratory mortality are in line with other studies that have 

found increased risk of respiratory mortality when exposed to hot temperatures. Bunker et al. 

(2016) found in their systematic review that a 1°C temperature rise led to a 3.6% (95%CI: 3.18-

4.02) increase in respiratory mortality, while a 1°C temperature fall led to a 2.9% (CI: 1.84-

3.97) increase in respiratory mortality. Witt et al. (2015) found that the excess mortality risk 
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due to chronic lung disease from exposure to heatwaves was 1.8-2% higher per day than on 

days with average summer temperatures.  

However, in a time-stratified case-crossover study from Denmark, Copenhagen they found an 

apparent modest effect of increasing temperature on respiratory mortality during the warm 

period (April-September), when also accounting for a 6-day lag effect (cumulative average of 

temperature), corresponding to 0.9% per 1°C increase (Wichmann et al., 2011). They also 

found a decrease in respiratory mortality risk during cold season (also with a 6-day lag effect), 

though, the results were not statistically significant. A study from Stockholm found that gradual 

temperature increases during summer were associated with mortality among people with 

COPD in the population younger than 65 years (Rocklöv et al., 2014).   

A study from 2001 investigated temperature effects on all-cause, CVD and respiratory 

mortality in Oslo for the period 1990-1995 (Nafstad et al., 2001). The results only showed a 

statistically significant increase in daily mortality above 10°C for respiratory mortality, which 

increased by 4.7% per 1°C increase in the last seven days average temperature. Furthermore, 

at temperatures below 10°C, a 1°C fall in the last 7 days average temperature increased the 

daily mortality from CVDs by 1.7% and respiratory diseases by 2.1%. Hence, a temperature 

increase seemed to increase the relative risk of respiratory mortality more than a temperature 

decrease, in line with the trend of associations observed in this study. However, the study is 

over 20 years old. Though, it is, to the best of my knowledge, the only similar study 

investigating temperature effects on cause-specific mortality in Oslo using individual level 

data.  

The significant OR of respiratory mortality from heat effects when including a 3 -day lag period 

may indicate delayed and cumulative effects of heat on respiratory mortality of the included 

participants. This is in line with findings from other studies, which have shown increased risk 

of heat effects on mortality when accounting for short-term delayed effects (Liu et al., 2015; 

Ragettli et al., 2023). Furthermore, the observed heat effects on respiratory mortality among 

females, are in line with previous findings from literature, of females having a higher risk of 

mortality related to hot temperatures (Gasparrini et al., 2022; Saucy et al., 2021; Son et al., 

2019). The trend of higher OR of cold effects among males compared to females in this study 

(2.30, CI: 0.74-7.17 for CVD and 3.12, 0.4-24-34 for respiratory mortality), were also observed 

in the study of Rocklöv et al. (2014) who found higher death rates among males (over 65 years) 

compared to females when temperatures decreased (OR:1.019, 95%CI: 1.002-1.016 for a one 
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unit decrease of maximum temperature with lag 0-6). Literature suggests that differences in 

temperature-mortality associations among sex, can be related to differences in physiology, as 

well as exposure patterns and occupational exposure.  

The trend in my associations indicating stronger heat effects on respiratory mortality might 

be related to the synergistic effect of air pollution and heat combined. Heat stress combined 

with increased ambient air pollution such can lead to acute as well as chronic damage to the 

lung tissue (Witt et al., 2015). The synergistic interaction of heat and air pollution can 

exacerbate respiratory conditions such as asthma and COPD. Chen et al. (2018) found an 

effect modification of air pollution and air temperature on mortality in their study of eight 

European urban areas, although they did not investigate respiratory mortality. The 

associations between air pollutants and mortality were generally stronger at high ambient 

temperatures compared to low temperatures (> 75th percentile vs <25th percentile of 

temperature distribution, respectively). On the other hand, the EXHAUSTUION-analyses 

with CONOR (including HUBRO) found no modifying effects of air pollution on the 

temperature-mortality association (EXHAUSTION project, 2022). However, there could 

potentially be other impacts of air pollution on the temperature-mortality relationship in Oslo, 

than observed in the CONOR analyses. Though, I did not include air pollution in my analyses 

and thus cannot know how this might have impacted the effects of temperature on respiratory 

mortality for only the HUBRO-participants.  

The lag period of 21 days for cold effects also seemed to increase the risk of respiratory 

mortality, to 11.46 (0.94-139.56), although the CI is extremely wide. These findings might be 

related to influenza, which is more common during colder periods in Norway 

(Folkehelseinstituttet, 2022). Influenza can cause respiratory infections like pneumonia, which 

can be especially hazardous for elderly people and people with pre-existing diseases. 

Pneumonia was also one of the most common respiratory causes of death for the HUBRO cases 

during the study period. Bunker et al. (2016) found that the greatest risk of respiratory mortality 

was associated with cold-induced pneumonia (6.89%, CI: 20-12.99), as well as respiratory 

morbidity (4.93%, CI: 1.54-8.44). Considering this, one might have expected an increase in the 

OR of respiratory mortality during the cold season in the additional analyses. On the other 

hand, the analyses for winter used the main exposure of 0-10 lags day and did not account for 

the potential longer delay of cold effects, which might could have underestimated this 

association.  
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The lag-structures of 0-3 and 0-21 days did not seem to increase the OR of CVD mortality 

(OR: 1.15, CI: 0.66-2.02 for lag 0-3 and 1.42, 0.37-5.55 with lag 0-21) indicating no adverse 

delayed effects of heat or cold on CVD for the HUBRO participants. However, not 

statistically significant. The unobserved association of delayed effects of cold on CVD with a 

prolonged-lag period contrasts with the previous studies showing delayed effects of cold on 

CVD mortality (Liu et al., 2015).  Furthermore, it is not in line with the trend of stronger 

effects of cold on CVD mortality in the main analyses and for cold season in this study.  

CVD mortality has been associated with both cold and hot temperatures (Bunker et al., 2016). 

In a review from different parts of the world, including Sweden, Liu and his colleagues 

(2015) found that cold and hot temperatures, in general, were associated with a positive mean 

excess CVD mortality, although the relative risk (RR) were highly heterogenous across the 

included studies. Nevertheless, they underline that the detrimental effects of cold on CVD 

mortality were consistent.  

Wichmann et al. (2011) found an inverse association of temperature exposure and CVD 

mortality for both the summer and winter period, although not significant for the winter 

period. They found that a moderate temperature increase indicated a protective effect on 

CVD mortality. During the warm period, they found a significant decrease in CVD mortality. 

Moreover, they found that the population over 80 years seemed to have a stronger protective 

effect of the temperature increase during summer.   

In the study of Saucy et al. (2021) from Zurich, Switzerland however, they found an 

increased risk of CVD mortality mainly from heat with a significant OR of 1.28 (95% CI: 

1.11-1.25) and the CVD mortality was higher during summer. They found a tendency of 

increased cold effects, however not significantly estimated (OR:1.15, CI: 0.95-1.39). In 

Stockholm, Sweden, increased temperatures during summer were associated with mortality 

among people older than 80 years, and for people with a previous MI for those under 65 years 

old (Rocklöv et al., 2014). Previous MI also increased the risk of mortality during winter 

among those older than 65.  Another study from Sweden showed that heatwaves significantly 

increased both all-cause mortality and coronary heart disease-mortality (Åström et al., 2018) 

The unobserved association of CVD mortality from heat effects in my analyses might be 

related to the few periods/days of extremely high temperatures in Oslo during the study 

period, as shown in the exposure-response curves in chapter 5.2. The daily median 

temperature during the study period was 5.31°C for the CVD cases, which was lower than the 
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MMT of around 15°C. Gasparrini et al. (2015) found that the attributable fraction for 

mortality due to cold was 7.29% (95% CI: 7.02-7.49), whereas it was 0.42% (CI: 0.39-0.44) 

for heat. They explain this difference by the high MMT percentile with most of the mean 

daily temperatures being lower than this. Furthermore, they found that most of the mortality 

was due to moderately cold and hot temperatures, and the contribution of extremely cold and 

hot days were comparatively low despite increased RR. These findings are supported by 

Masselot et al. (2023) who also found a higher attributable fraction for cold related mortality 

than heat related mortality across 854 cities in 30 European countries. Their study included 

Norwegian cities (including Oslo), with an estimated attributable fraction of 9.89% ((95% CI: 

7.14-12.36) for cold and 0.25% (CI: 0.09-12.36) for heat. 

Furthermore, Masselot et al. (2023) found great differences between ages, with increased 

cold, - and hot related mortality risk among older age groups, whereas younger ages had 

lower vulnerability to cold. They found that the mortality increase was generally more 

pronounced with increasing age for cold effects, including Oslo. Many other studies have 

also found an increased mortality risk among elderly, particularly for people over 75 years for 

both CVD and respiratory mortality (Bunker et al., 2016; Liu et al., 2015; Liu et al., 2022). 

My findings of mortality risk among the 65+ and 75+ however, did not show an indication of 

differences between the age groups, with a high degree of overlap in the CIs.  

 

6.2 The role of socioeconomic conditions in the temperature-mortality 

association  
The interaction analysis did not show any significant effect modification of income level and 

education level on the temperature-mortality relationship for the HUBRO-participants. The 

CIs were generally very wide with a high degree of overlap between most of the OR-

estimates, in addition to high p-values. The estimates for CVD mortality for heat effects 

showed tendency to a trend of increasing mortality risk for low level of education. The OR 

was 2.34 (CI: 0.52-10.55) for the low-level education group, 1.2 (CI: 0.34-4.30) for the 

medium-level group and 0.63 (CI: 0.16-2.49) for the high-level education group, however 

with high uncertainty. There were similar tendencies for the respiratory mortality, however 

with extremely wide CIs.   

Generally, the OR for the high-education level group was lower than the other groups and 

below 1, except for the OR of respiratory mortality for heat effects. Again, the CIs were very 

wide and overlapping, Although the results indicated no effect modification of income or 
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education level nor a clear trend of differences between the groups, there could still be 

differences in these associations for low and high SES groups in Oslo, but due to the very 

small population size of this study, I could not detect this. Particularly the respiratory cases 

were very few, with only 299 cases in the analytical sample. The small population size causes 

the wide CIs and large uncertainty in the effect estimates. This and other methodological 

strengths and limitations of this study will be further elaborated in the chapter 6.3 of method 

discussion. 

Nevertheless, I will compare my results to other studies who have investigated effect 

modification of socioeconomic conditions in the temperature-mortality relationship. 

Furthermore, in light of these studies and the theoretical background of this thesis, I will try 

to explain some potential mechanisms for socioeconomic inequalities in the temperature-

mortality relationship which may also exist in Oslo despite my findings.   

As demonstrated in the background chapter, literature on effect modification of 

socioeconomic conditions on the temperature-mortality association show inconsistent 

evidence. Like my study, Saucy et al. (2021) also used three education level categories, 

where individuals with the low-level of education had increased OR of both cold (1.37, 

95%CI: 1.0-1.92) and heat effects (1.49, 1.17-1.91) and for heat effects for the medium-level 

education group (1.25, 1.02-1.55). The low-level education group had the highest OR for 

both cold and heat effects, although the estimates were not statistically significant for the 

high-level group (0.97, 0.65-1.45 for heat, and 0.77, 0.45-1.32 for cold). The results from this 

study also showed lower ORs for the higher education level group (CVD: 0.63, 0.16-2.49 for 

heat, 0.13, 0.01-2.56 for cold, and RD: 1.37, 0.03-63.41 for heat, 0.02-223.81 for cold), 

however the CIs were very wide, particularly for the respiratory mortality.  

Furthermore, they found gender-differential effect modification by education, particularly 

relevant for females. This study had a substantially larger population sample than my study, 

respectively 8830 cases in the low-level education group, 12 353 in the medium-level 

education group and 3150 in the high-level group, with narrower CIs than for my estimates. 

Also Huang et al. (2015) used three education categories and found the strongest temperature 

effects for the low-level education group, however only for heat effects, not cold effects.  

On the other hand, the review from Son et al. (2019) also identified studies that found no 

difference or higher mortality risks for those with higher educational attainments, in line with 

the findings from  Yu et al. (2010). Socioeconomic factors can be correlated with each other, 
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and one specific indicator do not fully represent actual SES. SES can relate to a variety of 

factors such as multiple sources of income, family income and historical income (Son et al., 

2019). Furthermore, both individual and community SES can impact health. Although Son et 

al. (2019) found limited or suggestive evidence for effect modification of community-level 

SES, the studies of and Madrigano et al. (2013), Zanobetti et al. (2013) and Gasparrini et al. 

(2022) indicated higher mortality risks for people living in lower SES neighborhoods.  

This is supported by the findings of Åström et al. (2018). In their study of effect modification 

from neighborhood deprivation in Sweden, they used neighborhood deprivation index (NDI) 

as a measure. This is a summary measure of four variables that indicate deprivation: the 

proportion of inhabitants with low educational status, low income, unemployment and social 

welfare recipients. They found that that neighborhood deprivation may modify the mortality 

risk due to CHD during heat waves in Sweden (not for all-cause mortality). On a national 

level, their findings showed a significantly higher RR of mortality for the most deprived 

neighborhoods; 1.32 (CI:1.17-1.48) compared to the less deprived neighborhoods; 1.10 (CI: 

1.01-1.20) and the least deprived neighborhoods; 1.02 (0.91-1.15). This is in line with the 

previous findings from Wichmann et al. (2011), who found a stronger association of 

temperature increase and CVD mortality in Copenhagen among lower SES groups, where the 

neighborhood SES was based on household income, educational and employment status.  

These findings can be seen in light of Link and Phelans fundamental causes theory. Flexible 

resources influence access to the broader contexts such as the neighborhood one resides in, 

with various associated risk- and protective factors. Phelan et al. (2010) exemplify this with 

the possibility people of high SES have to live in affluent neighborhoods with other people of 

high SES. Moreover, where the neighbors jointly make an effort to reduce health risks such 

as traffic and air pollution, as well as having health promoting amenities like green and blue 

spaces and playgrounds nearby. One of the possible explanations of the long-lasting divide 

between the wealthier western districts of Oslo and the less wealthy eastern districts is that 

people of higher SES tend to be attracted to neighborhoods with other people of high SES 

(Elstad, 2017).  

In many urban areas, people of lower SES tend to live in more deprived neighborhoods with 

less vegetation and access to green and blue spaces  (European Environment Agency, 2018; 

World Health Organization, 2019). Green and blue spaces, such as parks, urban forests, street 

trees, green roofs/walls on buildings, lakes and ponds, can reduce heat by providing cooling 
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through shading and evapotranspiration, and are considered to be important climate 

adaptation measures in urban areas (Dodman et al., 2022).  

Additionally, lower SES groups tend to live in more denser parts of the city, where the UHI 

effects is often more intense (European Environment Agency, 2018; Reinwald et al., 2021). 

They can therefore have higher exposure to hot temperatures. In a study of spatial patterns of 

heat related CVD mortality in the Czech Republic urban districts with low and high SES 

index were compared. They found that below a certain threshold, SES had a relevant impact 

on excess CVD mortality, however not when all districts were considered together (including 

rural areas) (Urban et al., 2016). The findings of the significant relationship between 

decreased SES and increased heat related mortality in the most deprived urban districts 

actually occurred when they accounted for the cumulative lagged effects of heat, which were 

rather small in the high SES urban groups compared to the lower SES urban groups. The 

increase in excess mortality in the lower SES urban districts was 26.3% compared to 8.4% in 

the higher SES urban districts. This underlines the importance of accounting for potential 

delayed effects of temperatures on mortality.  

Furthermore, lower SES populations are also more likely to live in areas nearby main roads 

and industrial activity where concentrations of air pollution are higher, due to cheaper rents in 

these areas (Paavola, 2017). The eastern districts of Oslo, with a higher proportion of lower 

SES groups, are shown to be disproportionately exposed to hazardous air pollution levels, 

compared to the higher SES western districts (Venter et al., 2023).  

On the other hand, in some areas higher SES populations live in more central parts of the city 

and can thus be more exposed to UHIs  (European Environment Agency, 2018). According to 

the recent study of Venter et al (2023), the portion of people in Oslo that are 

socioeconomically and environmentally disadvantaged are concentrated in the inner and outer 

eastern regions of the city. The proportion of people with a high educational attainment 

(university or college degree) in Oslo are similar in inner city/central districts like Sagene and 

Grunerløkka as the western districts such as Ullern, Frogner and Vestre Aker (Statistisk 

sentralbyrå, 2022b).  

Furthermore, Oslo has around 800 parks and approximately 98% of the population lives less 

than 300 meters from a green area (Oslo kommune, 2020b). Nevertheless, Venter et al (2023) 

found that lower SES districts in Oslo had less available blue-green spaces than the higher 
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SES districts. However, the authors did not find increased exposure to heat among the lower 

SES districts, and income was not spatially correlated with heat hazard.  

It is not just what area or neighborhood people live in that impacts how they are affected by 

temperatures and the ability to adapt. Housing conditions can also influence health impacts, 

such as mortality. According to World Health Organization (2019), housing conditions can 

have a direct impact on heat related mortality, particularly during extreme temperatures. 

Houses can offer protection against hazardous temperature exposures, or it can be responsible 

for increased exposure.  

Inequalities in housing quality are often related to socioeconomic conditions associated with 

income (World Health Organization, 2019). People of lower SES can often live in housing 

segments of lower quality, due to lower financial resources (World Health Organization, 

2019). This can be associated with less adequate living conditions in terms of building 

quality, thermal efficiency and equipment and amenities, such as air conditions and heating 

facilities. Geometry of buildings and how they are built and designed impact exposure to 

heat, with top floor apartments experiencing more thermal stress than ground floor 

apartments. Impacts of extreme temperatures increases when buildings do not cool down 

during the night but keep accumulating heat. Hoses of lower quality can overheat at lower 

temperatures (The Lancet, 2018).  

According to a report on environmental inequalities in Europe, populations with lower 

household income in urban areas had greater difficulties with keeping the household cool 

during summer and adequately warm during winter (World Health Organization, 2019) An 

adequately warm household with temperatures above at least 18°C is essential to life 

expectancy and reduces excess winter mortality and health risks associated with CRDs, 

particularly for elderly. Many of the household struggling to adapt to low temperatures, are in 

the lowest income quantile. The highest inequality ratios by income related to keeping the 

household warm, was found in several countries including Norway, reporting income-related 

inequalities beyond a ratio of 6:1 (World Health Organization, 2019). Inability to keep the 

household adequately cool during periods of higher temperatures, were also found in 

Norway. Furthermore, increasing living costs are reinforcing health, social and economic 

inequalities in Oslo (Meld. St. 15 (2022-2023)). Many Norwegian residents today are 

experiencing the burden of increased electricity costs, which again hits lower SES groups 

extra harder. This also increases the number of households that are struggling. In the study of 
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(Rocklöv et al., 2014) however, it seemed that the wealthier populations in Stockholm had a 

higher risk of cold related mortality, which the authors related to wealthier municipalities 

might being characterized to a larger extent by older, less energy efficient houses. 

In Oslo, the less wealthy residents tend to live in high rise apartments to the east and north, 

which might increase exposure to heat (Venter et al., 2023). Lower financial resources and a 

scarce housing market in Oslo, may lead to lower SES populations living in poorer quality 

houses and potentially a more deprived neighborhood. In Oslo the differences in people who 

own or rent their home follows the social gradient, with fewer people of lower SES owning 

their own home (Elstad, 2017). When owning the home, one may have more control and 

power over the housing situation and can thereby have better chances to adapt to climate 

changes, like temperature deviations. Seen as the temperatures are projected to increase 

further in Norway, although with high uncertainty of how much, it will be important with 

capacity to adapt to such temperature changes, particularly in an urban are like Oslo. 

Although, cold temperatures may remain the greatest mortality burden in Norway (Masselot 

et al., 2023).  

The temperature-mortality relationship is also impacted by the individual’s susceptibility to 

temperature exposure (Cissé et al., 2022).  Poorer health status among lower SES groups in 

Oslo, with higher prevalence of pre-existing CRDs, can make these populations more 

susceptible to heat and cold effects to begin with. When lower SES groups additionally may 

be more exposed to ambient temperature deviations and less capable of adapting, this can 

enhance their vulnerability to climate change health impacts. Furthermore, it can increase 

existing health inequalities, contrary to the “Leaving No one behind”-principle. 

Health literacy may also impact temperature related health effects (Paavola, 2017). For 

instance, educational status may influence ability to translate health education (e.g., 

information about temperature exposure and health impacts) into action. Again, this 

demonstrates the impacts of flexible resources, such as knowledge and power. In light of this, 

the higher health literacy among higher SES populations in Oslo may lead them to taking 

better action to protect themselves against harmful temperature impacts, and thus strengthen 

their adaptive capacity.  

However, it is important to underline that I have not examined these underlying mechanisms 

myself. The unobserved effect modification of education and income level in this study may 



 45 

be related to the small size of the population sample. In the next section follows a discussion 

of methodological considerations, strengths and weaknesses of this study.  

 

6.3 Methodological considerations, strengths and limitations  
In all research it is important to ensure quality inn all parts of the process. A study’s quality 

relies on its reliability, internal and external validity (Ringdal, 2014). In the following section 

I will explain these terms and evaluate the quality of this study by discussing its reliability, 

internal and external validity.  

6.3.1 Reliability 

Reliability refers to whether the results of the study are reliable;  if it is possible to replicate 

the study and verify the results (Ringdal, 2014). High reliability is a prerequisite for high 

validity.  

Transparency is an important principle to ensure reliability (Ringdal, 2014). I have strived to 

ensure transparency in the thesis by providing a step-by-step description and explanation of 

the choices and considerations throughout the process, as best I could given that the data 

collection and linkage was done beforehand by others. Furthermore, I have attached the R-

scripts of the codes used in the analyses to make it easier to replicate exactly what was done 

in the analyses (Appendix 2, 3 and 4).  

For the results to be reliable, this requires that the methods used to investigate the research 

questions, are feasible for the study aim (Jaakkola, 2003p. 81). In this study I used the time-

stratified case-crossover design which is a feasible design for studying short-term effects of 

transient exposures like temperature. This study design has been used in many similar studies 

investigating temperature effects on mortality, of which many have also used similar 

methodological approaches as in this study, including the conditional logistic regression and 

DLNM (Åström et al., 2018; Huang et al., 2015; Saucy et al., 2021; Wichmann et al., 2011).  

Furthermore, the data used in this study is based on high-resolution temperature data, 

objective registry data and detailed cohort data. However, there may be potential biases that 

can have impacted the findings of this study, i.e. impacting the validity of the study.  
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6.3.2 Internal validity 

Internal validity is defined as «the extent to which the results of a study reflect the true 

situation in the study sample” (Webb et al., 2017, p.251). For a study to have high internal 

validity, this implies that what one wants to investigate aligns with what one actually 

investigates (Ringdal, 2014). 

To evaluate if the results of a study is really valid for the study population, one has to 

consider potential alternative explanations for the results, such as bias (Webb et al., 2017). 

Overall, there are usually three types of bias that may occur in epidemiological studies, and 

these are confounding, selection bias and information bias.  

6.3.2.1 Selection bias 

Selection bias refers to the selection of participants in the study, and it occurs when the 

participants included in the study sample are not representative for the for the target 

population, i.e., the population one wants to learn about and the population which the sample 

is supposed to represent (Webb et al., 2017). 

There may be a risk of selection bias if there are systematic differences between those who 

participate in a study and those who do not. For instance, if less advantageous and 

stigmatized groups are less represented in the study sample, or there is an overrepresentation 

of people with higher SES. On a general basis, participants in baseline examinations of cohort 

studies tend to be females of high SES with healthier lifestyles in comparison to non-

participants (Enzenbach et al., 2019). As my study is based on the HUBRO cohort, the 

possibility of selection bias cannot be eliminated. Although, the distribution of sex was even 

in the sample population of this study, and there were fewer participants with high level of 

education. Furthermore, in an article about CONOR, which HUBRO is a part of, it is stated 

that investigations of variables such as age, sex, education, smoking habits and alcohol use 

indicate that CONOR corresponds to the general population in Norway (unpublished material 

according to the article) (Aamodt et al., 2010). However, variables such as e.g., smoking 

habits and physical activity may be affected by under- or overreporting, a potential 

measurement error or information bias. 

 

6.3.2.2 Information bias  

Measurement error or information bias means that information is being misclassified, due to 

random or systematic errors, which can impact the effect estimate (Webb et al., 2017). 
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Differential misclassification impacts the study groups unequally, while non-differential 

misclassification affects the study groups study groups equally.  

When information is based on self-reporting, though e.g., questionnaires, this could lead to 

underreporting of information about e.g., alcohol-use, smoking habits or overreporting about 

e.g., physical activity (Aamodt et al., 2010). For self-reported data, recall bias must be 

considered, i.e., if there are systematic differences in under -, or overestimating exposures 

between the comparing groups (Webb et al., 2017). Such information bias may produce 

under-, or overestimates of the associations. In the HUBRO questionnaire some of the 

questions may be affected by under-, or overreporting, such as smoking and alcohol use. 

However, I have not included such variables in my analysis. Furthermore, in my study the 

cases are their own controls, and the exposure data is objective and not based on self-

reporting, thereby mitigating the possibility of recall bias. Through, the education level 

variable in my study was mostly based on the HUBRO questionnaire (with missing 

information replaced by information from SSB) and some participants of this study might 

have been misclassified into the wrong education category due to measurement error. If so, 

this might have impacted the observed association of effect modification (of education).  

A strength of using education as a measure of SES is that education level remains relatively 

stable after 30 years of age when the majority has completed their education (Syse et al., 

2022). This was suitable for my study populations as most of the participants were pensioners 

at the time of death. Moreover, there were only 0.2% missing information on education level 

for the CVD cases and 0.3% for the RD cases, which probably have not impacted the 

observed association. 

For income however, the proportion of missing information was 12.6% for the CVD cases 

and 8.3% for the respiratory cases, which are considered high proportions that probably 

impact the effect estimation. It may over- or underestimate the association of 

effectmodification.  Moreover, income can, to a greater extent than education, change over 

time, can be defined in many ways and not all income is reported to the tax authorities (Syse 

et al., 2022). In this study, the income variable used was the household income from the same 

year as death occurred, and the income level could have changed from e.g., the prior year. 

However, this is less likely for this study population as the majority were pensioners. 

Furthermore, income level does not capture potential fortunes/wealth of participants. One 

could have a low income but have a high fortune, in which case the income level would not 
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be an accurate measure of financial resources. For instance, maybe some of the participants in 

this study had saved up a private pension, perhaps in form of stocks or funds, which is not 

counted as their income. This can be considered a weakness of using income to represent 

SES. However, I still considered it to be a relevant variable to include in the analyses, 

together with education level to strengthen the association of SES in the temperature-

mortality relationship.  

The use of registry-based data mitigates the issue of information bias (Webb et al., 2017). 

The Cause of Death Registry provides precise information on cause of death, although some 

non-differential misclassification is possible. Some challenges in using mortality data related 

to cause-specific death may be related to coding of the actual cause of death. It may not be 

straightforward to evaluate the actual cause of death if the person has many coexisting 

diseases, which is the case for many elderlies. The average age at death among the 

participants of this study was 83.7 (9.69) for the CVD cases and 80.13 (10.37) for the 

respiratory cases, and it is likely that some of the participants had several diseases. However, 

approximately 39% of all the participants who died during the study period had a CVD or RD 

as cause of death. Thus, it may be unlikely with many cases of misclassification of the cause 

of death in this study population.  

Even though the temperature data is based on high-resolution data, it may be subject to 

measurement errors as it is based on data from measuring stations and calculations. 

Furthermore, the temperature exposure is estimated for the participant’s residential addresses 

(updated annually) and temperature data did not include exposures while away from home. 

This could lead to some non-differential misclassification of exposure, which could produce 

an underestimation or overestimation of temperature effects (Saucy et al., 2021). However, 

elderly people tend to spend more time home. On the other hand, with elderly people 

spending more time indoor could also affect the cold related mortality for the lowest 

temperatures, but probably not at higher temperatures (Nafstad et al., 2001). This will 

probably apply to most elderly people, but perhaps to a greater extent to those who have very 

poor health and have a high risk of dying, which can be the case for elderly with existing 

CRDs. If more people with CRDs spend more time home and are thus less exposed to cold 

temperatures than those without pe-existing CRDs, this maybe lead to differences in the 

estimated ORs among the groups. If this to a larger extent is the case for lower SES groups, 

who often hive a higher prevalence of CRDs, this may lead to lower estimated ORs among 

the low SEs groups and potentially impact the association of effect modification.  
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6.3.2.3. Confounding  

Confounding occurs when the investigated association is confused by the effect of other 

factors (Webb et al., 2017). It refers to a mixing of effects, and can occur when the 

comparing groups are not completely exchangeable and thus differ by other factors than their 

exposure. If such factors are the cause of the outcome and is associated with the exposure, 

then parts of or all of the observed association between the exposure and outcome might be 

due to these factors. In the case-crossover deign the participants are “matched” with 

themselves and serves as their own controls, thereby reducing potential confounding of 

individual characteristics such as sex, age and health status, The minimizing confounding of 

individual characteristics in the case-crossover design, also strengthens effect modification 

analyses to identify vulnerable individuals (Saucy et al., 2021).  

However, there may be other factors that could have confounded the observed associations in 

this study. Air pollution may impact the temperature-mortality association. The study of 

Rocklöv et al. (2014) from Sweden would include air pollution as a confounder if it changed 

the estimated relative effect by more than 10%, however it did not and was thus not included. 

Other studies have included air pollution as effect modifiers in their analyses of the 

temperature-mortality association, including the CONOR-analyses in EXHAUSTION (Chen 

et al., 2018). However, the CONOR analyses did not find any significant effect modification 

of air pollution (EXHAUSTION project, 2022). On the other hand, these results could 

potentially be different for Oslo, and air pollution may be a confounder of the observed 

temperature-mortality association.  

Other meteorological parameters such as humidity and wind were not included in the 

analyses, nor did I not have data on these variables. These are also potential confounders of 

the temperature-mortality relationship (Nafstad et al., 2001). Furthermore, influenza may also 

impact temperature related mortality during wintertime. However, it is not likely that 

influenza impacts temperature, but rather cold temperatures that leads to influenza. In that 

way, influenza could potentially mediate the temperature-mortality association.  

Even though one controls for potential confounders in the analyses, there will usually be 

some potential confounding variables that one does not know of or does not have the 

possibility to control for, known as residual confounding (Webb et al., 2017).  
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6.3.3. External validity  

External validity refers to the study’s generalizability; whether the results can be generalized 

and apply for other populations than the sample population (Webb et al., 2017). The  

Although education is a relatively stable SES indicator at an individual level, the pattern of 

education in Oslo has changed over time. Since 1990 to 2018 the proportion of people with a 

higher educational attainment of more than 4 years has increased (Oslo kommune, 2020b). In 

2000 and 2001 when the HUBRO questionnaire was conducted, the proportion of people with 

higher educational attainment of more than four year was greater among males, while this 

trend has turned and now there is a greater proportion of females with a high educational 

attainment. The education level category with the highest proportion in Oslo today is the high 

level education category (university or college) with 54.1% in 2022, 26.8% with high school 

or vocational school and 19.1% with primary school as their highest educational level 

(Statistisk sentralbyrå, 2022b). In my population sample there were approximately 35.7% and 

43.1 % in the low education category, 42.4% and 38.1 % in the medium level category and 

21.7% and 18.5% in the high level category for CVD and respiratory cases, respectively. 

Hence, the educational pattern of the study population is not the same as the educational 

pattern of Oslo’s residents today, which also makes the sample population less representative 

for Oslo populations today.  

Furthermore, as I have investigated the short-term effects of temperature exposure on 

mortality with a month prior to death as the hazard/exposure period and the average age at 

death was 81.7 (SD: 9.9) and 82.2 (SD: 8.9) for CVD and respiratory cases respectively, this 

means that this study is mostly representative for the elderly population of Oslo. Older age is 

considered a risk factor for the temperature-mortality relationship, which could have 

contributed to the observed ORs. It thus makes it harder to generalize the findings to younger 

populations. Moreover, the small population size makes the results of this study less 

generalizable beyond the study population, because of the high uncertainty in the effect 

estimates. Hence, it weakens the external validity of the study.  

 

6.3.4 Strengths and limitations  

A strength of this study is that it is based on high resolution and detailed data. Furthermore, 

that it included the DLNM model with various lag-structures. This could potentially produce 

more accurate estimates for the temperature-mortality information, when accounting for 

potential delayed effects of cold and hot temperatures.  
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However, a limitation of the study is the small population, particularly the cases of 

respiratory mortality and the various groups of education, - and income level for both CVD 

and respiratory mortality ranging from 25 to 454. The estimated CIs were generally very 

wide, indicating poor precision of the effect estimation and high uncertainty (Webb et al., 

2017). Additionally, there were high p-values in the interaction analysis, which also indicates 

a higher probability that the observed association of effect modification could be due to 

chance.  

A small population size can weaken the statistical power of a study, i.e., if  “a study has 

enough power to detect a true association with sufficient precision” (Webb et al., 2017, 

p.176). It might be that there truly are associations of temperature exposure, CRD mortality 

and socioeconomic effect modification among the HUBRO-participants, but the study was 

too small to detect this with any certainty, i.e., weak statistical power. Although my findings 

were not statistically significant, the trend in the associations of heat effects on respiratory 

mortality and increased OR of respiratory mortality among females compared to males, is to 

a large extent consistent with existing literature, which might give some strength to these 

observed associations potentially being real and not only due to chance (Bunker et al., 2016).   

The use of both income level and education level to represent SES can be a more accurate 

indicator for real SES than using just one variable. The use of three education level categories 

will probably capture more variation and nuances than using fewer categories. However, due 

to the small population size of this study it might have been more suitable to use only two 

categories, to have more participants in each education category for each cause of death-

stratum. Particularly, considering effect modification requires a lot of statistical power to 

detect a statistically significant effect, often due to the lower number of participants in the 

various stratums (Webb et al., 2017).  

In a high-income city with considerable income inequalities like Oslo, it could be more 

relevant to use more than two income categories to capture more of the income variation. 

However, due to the few cases of CVD and respiratory mortality in HUBRO, this was not 

suitable to do in this study. Furthermore, stratifying by seasonality could provide more useful 

information about the effects of temperature on health for a multi-season country like 

Norway. In this study it was considered relevant to see if the estimates differed by summer 

and winter (May-Sept and Nov-March). This could be a strength of the study. On the other 

hand, the season stratums for each cause of death were very small, leading to even wider CIs. 
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Particularly the CI for respiratory mortality during the cold season was extremely wide, 

which could be a limitation of stratifying by seasonality with the small population size. 

Moreover, the analyses of the season stratums included the main exposure (0-10 lag days), 

which could underestimate the cold effects during cold season and heat effects during the 

warm season. With a larger population sample, it could have been relevant to stratify by four 

seasons to potentially capture more of the varying effects of temperature on CRD mortality.  
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7. Conclusion and implications for public health work 
In this study I did not find a statistically significant association of temperature and mortality, 

except for respiratory mortality when accounting for a 3-day lag period. Though I did find 

some trends indicating more adverse heat effects for respiratory mortality including females, 

while males seemed to be more impacted by cold effects. Furthermore, I did not find 

evidence of higher CVD or respiratory mortality risk related to high and low temperatures 

among lower SES groups compared to higher SES groups. This may be related to the small 

population sample.  

Although not detected in this study, there could be an association of socioeconomic 

conditions in the temperature-mortality relationship in Oslo, particularly considering the 

existing socioeconomic health inequalities. Socioeconomic conditions impact the greater 

context of people’s lives. Although I did not investigate underlying mechanisms, it is possible 

that lower SES populations in Oslo may have less access to flexible resources such as 

knowledge, money and power which may impact their level of exposure to temperature, their 

adaptive capacity and susceptibility. This might lead to a predisposition of being adversely 

affected by climate change circumstances, such as increased CRD mortality associated with 

temperature exposure, potentially making them more vulnerable to these impacts.  

Therefore, despite the lack of evidence in this study with the small population sample, I still 

argue that socioeconomic conditions and potential unequal impacts of temperature exposure 

and other climate change consequences, should be considered when developing and 

implementing equitable climate adaptation strategies in Oslo. This is essential to achieve the 

2030 UN SDGs and one of the main goals of Norwegian public health policy of reducing 

social health inequalities, in line with the “leave no one behind-principle” and the 

proportional universalism-strategy. Socioeconomic conditions should be considered in all 

sectors in the urban planning of Oslo. This may include housing policy and development, the 

use of green areas and providing of information and knowledge to the population.  

However, this topic needs further investigation. Further research should be conducted on 

climate related temperature impacts and social health inequalities in Oslo, with a larger 

population sample. It would be interesting to investigate the association of temperature 

exposure and housing quality, if one owns or rents the household, and lives alone or not. 

Furthermore, studies including air pollution in the temperature-mortality relationship could 

also be relevant for Oslo.   
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R script main interaction

Camilla/Kicki

5/14/2023

#---------------------------------------------------#
# Name: R code_short-term temperature and mortality #
# Adapted from EXHAUSTION script #
# Version: 02.03.2023 #
#---------------------------------------------------#

rm(list=ls())

## Load packages to be used; Author's R version 4.1.0
library(dlnm)
library(dplyr)
library(survival)
library(splines)
library(miceadds)

## Set the working directory
path <- "N:/durable/LEVEL3_MORTALITY/"
setwd(path)

## load the functions
source("Kicki/R code_adapted/00_FUNCTION.R")

## 1. Import data sets ####

## Note: The data set should include the following variables
## (1) status: indicator of the case (=1) or control (=0)
## (2) temp_s0 - temp_s10: single-day lags of air temperature
## (3) id (ID for participants): only participants who experienced events during the follow up (case only)
load.RDS(filename="Kicki/R code_adapted/DATA_EXHAUSTION_HUBRO_mort.RDS","mort") #for the first dataset Siqi made for us.

mort<-DATA_EXHAUSTION_HUBRO_mort

## create data sets for each mortality outcome
mort_natural <- mort ## natural cause mortality
mort_cpd <- subset(mort,cause_death%in%c(sprintf("I%02d", 0:99),sprintf("J%02d", 0:99),as.character(390:519))) ## cardiopulmonary mortality
mort_cvd <- subset(mort,cause_death%in%c(sprintf("I%02d", 0:99),as.character(390:459))) ## cardiovascular mortality
mort_ihd <- subset(mort,cause_death%in%c(sprintf("I%02d", 20:25),as.character(410:414))) ## ischemic heart disease mortality
mort_cerebr <- subset(mort,cause_death%in%c(sprintf("I%02d", 60:69),as.character(430:438))) ## cerebrovascular mortality
mort_resp <- subset(mort,cause_death%in%c(sprintf("J%02d", 0:99),as.character(460:519))) ## respiratory mortality
mort_copd <- subset(mort,cause_death%in%c(sprintf("J%02d", 40:44),"J47",as.character(c(490:492,494:496)))) ## COPD mortality
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## create a list containing all datasets
dlist <- list(mort_natural,mort_cpd,mort_cvd,mort_ihd,mort_cerebr,mort_resp,mort_copd)
## names of the outcomes in the order of that in the dlist
name_outcome <- c("mort_natural","mort_cpd","mort_cvd","mort_ihd","mort_cerebr","mort_resp","mort_copd")

## 2. Effect estimation (refer to the function "casecrs" in "00_FUNCTION.R") ####

## output with elements for creating exposure-response curves ####
result1 <- list()

## output to be saved, not including "mat_temp" and "cb_temp" to reduce the size
out1 <- list()

for (i in 1:length(dlist)){
mort_hubro <- dlist[[i]]
result1[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(min=TRUE, pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
out1[[i]] <- within(result1[[i]],rm(mat_temp,cb_temp))

}
names(result1) <- names(out1) <- name_outcome
saveRDS(out1,file = "Kicki/short-term_temp_mort_HUBRO.RDS")

## 3. Exposure-response curves ####

## e.g. natural-cause mortality
tiff("Kicki/short-term_temp_mort_natural_HUBRO.tiff",width=600,height=500) #change dataset here, example mort_cpd to get the right figures, change all places.
layout(mat = matrix(c(1,2),2,1, byrow=TRUE), height = c(7,3))
par(mar=c(2, 4, 1, 1))

# get the output for figures
mat_temp <- result1$mort_natural$mat_temp; cb_temp <- result1$mort_natural$cb_temp
coef <- result1$mort_natural$model_coef; vcov <- result1$mort_natural$model_vcov

# centering temperature MMT, if MMT < 5%, use 5%, if MMT > 95%, use 95%
mmt <- findmin(cb_temp,coef=coef,vcov=vcov);temp5 <- quantile(mat_temp,0.05);temp95 <- quantile(mat_temp,0.95)
cen_plot <- ifelse(mmt<temp5,temp5,ifelse(mmt>temp95,temp95,mmt))

# exposure-response function
cp <- crosspred(cb_temp, coef=coef, vcov=vcov, model.link="logit", cen=cen_plot, by=0.1, cumul=T)
plot(cp, "overall", ylab="OR", xlab="Temperature", lwd=1.5, xlim=range(mat_temp),ylim=c(0,6),col=2) ## adjust ylim if needed
mtext("HUBRO Cohort",cex=1.2,line=-0.5,font=2) ## add cohort name

abline(v=quantile(mat_temp,c(1,99)/100),lty=2,lwd=1)
axis(1,at=-8:8*5)

# histogram
breaks <- c(min(mat_temp,na.rm=T)-1,seq(cp$predvar[1],cp$predvar[length(cp$predvar)],length=30),max(mat_temp,na.rm=T)+1)
hist <- hist(mat_temp,breaks=breaks,plot=FALSE)
hist$density = hist$counts/sum(hist$counts)*100
plot(hist,freq=FALSE,col=grey(0.95),main=NULL,xaxt="n",xlim=range(mat_temp),ylab="Density (%)")
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abline(v=quantile(mat_temp,c(1,99)/100),lty=2,lwd=1)
layout(mat = matrix(c(1,2),2,1, byrow=TRUE), height = c(5,5))
dev.off()

## 4. Effect modification ####

## 4.1 Greenness ####
result1 <- list()
## output to be saved, not including "mat_temp" and "b1temp" to reduce the size
out1 <- list()

for (i in 1:length(dlist)){
data <- dlist[[i]]
data$ndvi_cat <- ifelse(data$NDVI>=median(data$NDVI,na.rm=T),1,0)
result1[[i]] <- casecrs_int_2cats(status="status",id="LOPENR",modif="ndvi_cat",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=data)
out1[[i]] <- within(result1[[i]],rm(mat_temp,b1temp))

}
names(result1) <- names(out1) <- name_outcome
saveRDS(out1,file = "Kicki/short-term_temp_mort_greennes_HUBRO.RDS")

## 4.2 Socio-economic: income ####
result2 <- list()
## output to be saved, not including "mat_temp" and "b1temp" to reduce the size
out2 <- list()

for (i in 1:length(dlist)){
data <- dlist[[i]]
data$income_cat <- ifelse(data$income_h>=median(data$income_h,na.rm=T),1,0)
result2[[i]] <- casecrs_int_2cats(status="status",id="LOPENR",modif="income_cat",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=data)
out2[[i]] <- within(result2[[i]],rm(mat_temp,b1temp))

}
names(result2) <- names(out2) <- name_outcome
saveRDS(out2,file = "Kicki/short-term_temp_mort_income_HUBRO.RDS")

## 4.3. Education ####
result3 <- list()
## output to be saved, not including "mat_temp" and "b1temp" to reduce the size
out3 <- list()

for (i in 1:length(dlist)){
data <- dlist[[i]]
result3[[i]] <- casecrs_int_3cats(status="status",id="LOPENR",modif="edulev",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=data)
out3[[i]] <- within(result3[[i]],rm(mat_temp,b1temp))

}
names(result3) <- names(out3) <- name_outcome
saveRDS(out3,file = "Kicki/short-term_temp_mort_education_HUBRO.RDS")
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HUBRO+Sensitivity analysis

Camilla/Kicki

5/14/2023

#---------------------------------------#
# Name:5.1_sensitivity_case-crossover #
# Project: EXHAUSTION #
# Version: 01.12.2021 #
#---------------------------------------#
rm(list=ls())

##__________________________________________________________________________________####
## Sensitivity analysis: case-crossover ####
##-----------------------------------------------------------------------------------###

## Load packages to be used; Author's R version 3.6.3
library(dlnm)
library(dplyr)
library(survival)
library(splines)
library(miceadds)
library(lubridate)

## Set the working directory
path <- "N:/durable/LEVEL3_MORTALITY/"
setwd(path)

## load the functions
source("Kicki/R code_adapted/00_FUNCTION.R")

## Import data sets ####

## Note: The data set should include the following variables
## (1) status: indicator of the case (=1) or control (=0)
## (2) temp_s0 - temp_s10: single-day lags of air temperature
## (3) id (ID for participants): only participants who experienced events during the follow up (case only)
mort <- readRDS("N:/durable/LEVEL3_MORTALITY/Kicki/R code_adapted/DATA_EXHAUSTION_HUBRO_mort.RDS") ## with HUBRO and SSB variables

## create data sets for each mortality outcome
mort_natural <- mort ## natural cause mortality
mort_cpd <- subset(mort_natural,cause_death%in%c(sprintf("I%02d", 0:99),sprintf("J%02d", 0:99),as.character(390:519))) ## cardiopulmonary mortality
mort_cvd <- subset(mort_natural,cause_death%in%c(sprintf("I%02d", 0:99),as.character(390:459))) ## cardiovascular mortality
mort_ihd <- subset(mort_natural,cause_death%in%c(sprintf("I%02d", 20:25),as.character(410:414))) ## ischemic heart disease mortality
mort_cerebr <- subset(mort_natural,cause_death%in%c(sprintf("I%02d", 60:69),as.character(430:438))) ## cerebrovascular mortality
mort_resp <- subset(mort_natural,cause_death%in%c(sprintf("J%02d", 0:99),as.character(460:519))) ## respiratory mortality
mort_copd <- subset(mort_natural,cause_death%in%c(sprintf("J%02d", 40:44),"J47",as.character(c(490:492,494:496)))) ## COPD mortality
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## create a list containing all data sets
dlist <- list(mort_natural,mort_cpd,mort_cvd,mort_ihd,mort_cerebr,mort_resp,mort_copd)
## names of the outcomes in the order of that in the dlist
name_outcome <- c("mort_natural","mort_cpd","mort_cvd","mort_ihd","mort_cerebr","mort_resp","mort_copd")

## 1. Lag 0-3 of temperature ####
sens1 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
sens1[[i]] <- casecrs(status="status",id="LOPENR",lag=3,varper=c(10,75,90),lagnk=1,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens1[[i]] <- within(sens1[[i]],rm(mat_temp,cb_temp))

}
names(sens1) <- name_outcome
saveRDS(sens1,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_lag_03.RDS")

## 2. Lag 0-21 of temperature
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens2 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
sens2[[i]] <- casecrs(status="status",id="LOPENR",lag=21,varper=c(10,75,90),lagnk=3,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens2[[i]] <- within(sens2[[i]],rm(mat_temp,cb_temp))

}
names(sens2) <- name_outcome
saveRDS(sens2,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_lag_21.RDS")

## 3. age 65+ ####
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens3 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort <- subset(mort,age_death>=65)
sens3[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens3[[i]] <- within(sens3[[i]],rm(mat_temp,cb_temp))

}
names(sens3) <- name_outcome
saveRDS(sens3,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_age65plus.RDS")

## 4. age 75+ ####
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens4 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort <- subset(mort,age_death>=75)
sens4[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),
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estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens4[[i]] <- within(sens4[[i]],rm(mat_temp,cb_temp))

}
names(sens4) <- name_outcome
saveRDS(sens4,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_age75plus.RDS")

## 5. male ####
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens5 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort <- subset(mort,sex==1)
sens5[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens5[[i]] <- within(sens5[[i]],rm(mat_temp,cb_temp))

}
names(sens5) <- name_outcome
saveRDS(sens5,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_male.RDS")

## 6. female ####
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens6 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort <- subset(mort,sex==0)
sens6[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens6[[i]] <- within(sens6[[i]],rm(mat_temp,cb_temp))

}
names(sens6) <- name_outcome
saveRDS(sens6,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_female.RDS")

## 7. cold season (Nov-March) ####
##lag10
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens7 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort$month <- month(mort$d_death)
sens7[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens7[[i]] <- within(sens7[[i]],rm(mat_temp,cb_temp))

}
names(sens7) <- name_outcome
saveRDS(sens7,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_coldseason_lag10.RDS")

## 8. warm season (May-Sep) ####
## lag 10
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
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sens8 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort$month <- month(mort$d_death)
mort <- subset(mort,month%in%5:9)
sens8[[i]] <- casecrs(status="status",id="LOPENR",lag=10,varper=c(10,75,90),lagnk=2,cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens8[[i]] <- within(sens8[[i]],rm(mat_temp,cb_temp))

}
names(sens8) <- name_outcome
saveRDS(sens8,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_warmseason_lag10.RDS")

## lag 1
mort<- mort_natural #to get a big dataset again, it was only 619 obs from the last loop
sens8.2 <- list()
for (i in 1:length(dlist)){

mort <- dlist[[i]]
mort$month <- month(mort$d_death)
mort <- subset(mort,month%in%5:9)
sens8.2[[i]] <- casecrs_lag01(status="status",id="LOPENR",lag=1,varper=c(10,75,90),cen=list(pct=c(25,75)),

estpct=c(1,2.5,5,10,90,95,97.5,99),data=dat)
sens8.2[[i]] <- within(sens8.2[[i]],rm(mat_temp,cb_temp))

}
names(sens8.2) <- name_outcome
saveRDS(sens8.2,file = "Camilla/Results-HUBRO/sensitivity analysis/sensitivity_warmseason_lag1.RDS")
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00_Function.R

Camilla/Kicki

5/14/2023

#-----------------------------------------#
# Name:00_FUNCTION #
# Project: EXHAUSTION #
# Version: 27.04.2021 #
#-----------------------------------------#

##-------------------------------------------------------------------------------------####
## 1. FUNCTION TO ESTIMATE MINIMUM OF A EXPOSURE-RESPONSE FUNCTION FROM A FITTED MODEL ####
##-------------------------------------------------------------------------------------####
findmin <- function(basis,model=NULL,coef=NULL,vcov=NULL,at=NULL,from=NULL,

to=NULL,by=NULL,sim=FALSE,nsim=5000) {
#
################################################################################
# R code from https://github.com/gasparrini/2017_tobias_Epidem_Rcodedata/blob/master/findmin.R
#
# ARGUMENTS:
# - basis: A SPLINE OR OTHER BASIS FOR AN EXPOSURE x CREATED BY DLNM FUNCTION
# CROSSBASIS OR ONEBASIS
# - model: THE FITTED MODEL
# - coef AND vcov: COEF AND VCOV FOR basis IF model IS NOT PROVIDED
#
# - at: A NUMERIC VECTOR OF x VALUES OVER WHICH THE MINIMUM IS SOUGHT
# OR
# - from, to: RANGE OF x VALUES OVER WHICH THE MINIMUM IS SOUGHT.
# - by: INCREMENT OF THE SEQUENCES x VALUES OVER WHICH THE MINIMUM IS SOUGHT
#
# - sim: IF BOOTSTRAP SIMULATION SAMPLES SHOULD BE RETURNED
# - nsim: NUMBER OF SIMULATION SAMPLES
################################################################################

################################################################################
# CREATE THE BASIS AND EXTRACT COEF-VCOV
#
# CHECK AND DEFINE BASIS
if(!any(class(basis)%in%c("crossbasis","onebasis")))

stop("the first argument must be an object of class 'crossbasis' or 'onebasis'")
#
# INFO
one <- any(class(basis)%in%c("onebasis"))
attr <- attributes(basis)
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range <- attr(basis,"range")
if(is.null(by)) by <- 0.1
lag <- if(one) c(0,0) else cb=attr(basis,"lag")
if(is.null(model)&&(is.null(coef)||is.null(vcov)))

stop("At least 'model' or 'coef'-'vcov' must be provided")
name <- deparse(substitute(basis))
cond <- if(one) paste(name,"[[:print:]]*b[0-9]{1,2}",sep="") else

paste(name,"[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}",sep="")
#
# SET COEF, VCOV CLASS AND LINK
if(!is.null(model)) {

model.class <- class(model)
coef <- dlnm:::getcoef(model,model.class)
ind <- grep(cond,names(coef))
coef <- coef[ind]
vcov <- dlnm:::getvcov(model,model.class)[ind,ind,drop=FALSE]
model.link <- dlnm:::getlink(model,model.class)

} else model.class <- NA
#
# CHECK
if(length(coef)!=ncol(basis) || length(coef)!=dim(vcov)[1] ||

any(is.na(coef)) || any(is.na(vcov)))
stop("model or coef/vcov not consistent with basis")

#
# DEFINE at
at <- dlnm:::mkat(at,from,to,by,range,lag,bylag=1)
predvar <- if(is.matrix(at)) rownames(at) else at
predlag <- dlnm:::seqlag(lag,by=1)
#
# CREATE THE MATRIX OF TRANSFORMED CENTRED VARIABLES (DEPENDENT ON TYPE)
type <- if(one) "one" else "cb"
Xpred <- dlnm:::mkXpred(type,basis,at,predvar,predlag,cen=NULL)
Xpredall <- 0
for(i in seq(length(predlag))) {

ind <- seq(length(predvar))+length(predvar)*(i-1)
Xpredall <- Xpredall + Xpred[ind,,drop=FALSE]

}
#
################################################################################
# FIND THE MINIMUM
#
pred <- drop(Xpredall%*%coef)
ind <- which.min(pred)
min <- predvar[ind]
#
################################################################################
# SIMULATIONS
#
if(sim) {

# SIMULATE COEFFICIENTS
k <- length(coef)
eigen <- eigen(vcov)
X <- matrix(rnorm(length(coef)*nsim),nsim)
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coefsim <- coef + eigen$vectors %*% diag(sqrt(eigen$values),k) %*% t(X)
# COMPUTE MINIMUM
minsim <- apply(coefsim,2,function(coefi) {

pred <- drop(Xpredall%*%coefi)
ind <- which.min(pred)
return(predvar[ind])

})
}
#
################################################################################
#
res <- if(sim) minsim else min
#
return(res)

}

##-------------------------------------------------------------------------------------####
## 2. FUNCTION TO ESTIMATE MAXIMUM OF A EXPOSURE-RESPONSE FUNCTION FROM A FITTED MODEL ####
##-------------------------------------------------------------------------------------####

findmax <- function(basis,model=NULL,coef=NULL,vcov=NULL,at=NULL,from=NULL,
to=NULL,by=NULL,sim=FALSE,nsim=5000) {

#
################################################################################
# Adapted from R code findmin()
# ARGUMENTS:
# - basis: A SPLINE OR OTHER BASIS FOR AN EXPOSURE x CREATED BY DLNM FUNCTION
# CROSSBASIS OR ONEBASIS
# - model: THE FITTED MODEL
# - coef AND vcov: COEF AND VCOV FOR basis IF model IS NOT PROVIDED
#
# - at: A NUMERIC VECTOR OF x VALUES OVER WHICH THE MINIMUM IS SOUGHT
# OR

# - from, to: RANGE OF x VALUES OVER WHICH THE MINIMUM IS SOUGHT.
# - by: INCREMENT OF THE SEQUENCES x VALUES OVER WHICH THE MINIMUM IS SOUGHT
#
# - sim: IF BOOTSTRAP SIMULATION SAMPLES SHOULD BE RETURNED
# - nsim: NUMBER OF SIMULATION SAMPLES
################################################################################

################################################################################
# CREATE THE BASIS AND EXTRACT COEF-VCOV
#
# CHECK AND DEFINE BASIS
if(!any(class(basis)%in%c("crossbasis","onebasis")))

stop("the first argument must be an object of class 'crossbasis' or 'onebasis'")
#
# INFO
one <- any(class(basis)%in%c("onebasis"))
attr <- attributes(basis)
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range <- attr(basis,"range")
if(is.null(by)) by <- 0.1
lag <- if(one) c(0,0) else cb=attr(basis,"lag")
if(is.null(model)&&(is.null(coef)||is.null(vcov)))

stop("At least 'model' or 'coef'-'vcov' must be provided")
name <- deparse(substitute(basis))
cond <- if(one) paste(name,"[[:print:]]*b[0-9]{1,2}",sep="") else

paste(name,"[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}",sep="")
#
# SET COEF, VCOV CLASS AND LINK
if(!is.null(model)) {

model.class <- class(model)
coef <- dlnm:::getcoef(model,model.class)
ind <- grep(cond,names(coef))
coef <- coef[ind]
vcov <- dlnm:::getvcov(model,model.class)[ind,ind,drop=FALSE]
model.link <- dlnm:::getlink(model,model.class)

} else model.class <- NA
#
# CHECK
if(length(coef)!=ncol(basis) || length(coef)!=dim(vcov)[1] ||

any(is.na(coef)) || any(is.na(vcov)))
stop("model or coef/vcov not consistent with basis")

#
# DEFINE at
at <- dlnm:::mkat(at,from,to,by,range,lag,bylag=1)
predvar <- if(is.matrix(at)) rownames(at) else at
predlag <- dlnm:::seqlag(lag,by=1)
#
# CREATE THE MATRIX OF TRANSFORMED CENTRED VARIABLES (DEPENDENT ON TYPE)
type <- if(one) "one" else "cb"
Xpred <- dlnm:::mkXpred(type,basis,at,predvar,predlag,cen=NULL)
Xpredall <- 0
for(i in seq(length(predlag))) {

ind <- seq(length(predvar))+length(predvar)*(i-1)
Xpredall <- Xpredall + Xpred[ind,,drop=FALSE]

}
#
################################################################################
# FIND THE MINIMUM
#
pred <- drop(Xpredall%*%coef)
ind <- which.max(pred)
min <- predvar[ind]
#
################################################################################
# SIMULATIONS
#
if(sim) {

# SIMULATE COEFFICIENTS
k <- length(coef)
eigen <- eigen(vcov)
X <- matrix(rnorm(length(coef)*nsim),nsim)
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coefsim <- coef + eigen$vectors %*% diag(sqrt(eigen$values),k) %*% t(X)
# COMPUTE MINIMUM
minsim <- apply(coefsim,2,function(coefi) {

pred <- drop(Xpredall%*%coefi)
ind <- which.max(pred)
return(predvar[ind])

})
}
#
################################################################################
#
res <- if(sim) minsim else min
#
return(res)

}

##-------------------------------------------------------------------------------------####
## 3. FUNCTION OF CASE-CROSSOVER ANALYSIS ####
##-------------------------------------------------------------------------------------####

casecrs <- function (status, id, confounder=NULL, lag, varper, lagnk, cen=list(min=NULL,max=NULL,degree=NULL,pct=NULL),
estpct, data){

## Input: status, id, confounder: variables used to define the formula applied to clogit() in the form:
## case.status~exposure+confounder+strata(matched.set)
## status: case status, 1=case, 0=control
## id: ID for participants
## confounder: optional, vector of covariates to be included in the model
## lag: the maximum lag in the cross basis
## varper: numeric vector of percentiles of the distribution of temperature for internal knots
## lagnk: the number of internal knots in the lag-response dimension
## cen: a list to define the centering temperature
## - "min" and "max": optional, "TRUE" if the minimum or maximum mortality temperature to be used
## - "degree": optional, numeric vector of temperature (?C)
## estpct: numeric vector of percentiles of temperature distributions for effect estimate compared to centering temperature

## Build cross-basis function of temperature and lags
## Note: (1) exposure-response: natural cubic spline with internal knots placed at percentile of the temperature
## distribution as defined by "varper"
## (2) lag-response: natural cubic spline with an intercept and n="lag" internal knots placed at
## equally spaced values on the log scale

## 1. delete observations with NA in temperature
dat <- subset(mort,rowSums(is.na(mort[which(names(mort)%in%paste0("temp_s",0:lag))]))==0)
## 2. extract matrix of temperature at lag0 to lag="lag"
mat_temp <- as.matrix(dplyr::select(dat,paste0("temp_s",0:lag)))
## 3. define basis for temperature
argvar <- list(fun="ns",knots=quantile(mat_temp,varper/100,na.rm=T))
## 4. define basis for lag
arglag <- list(fun="ns",knots=logknots(lag,lagnk))
## 5. build the cross-basis function
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cb_temp <- crossbasis(mat_temp,lag=c(0,lag),argvar=argvar,arglag = arglag)

## Different percentile of the temperature matrix
tper <- quantile(mat_temp,seq(0,100,1)/100)

## Temperature summary for case days
tsum_case <- summary(subset(dat,status==1)$temp_s0)
tsum_case["SD"] <- sd(subset(dat,status==1)$temp_s0)

## Temperature summary for control days
tsum_control <- summary(subset(dat,status==0)$temp_s0)
tsum_control["SD"] <- sd(subset(dat,status==0)$temp_s0)

## Conditional logistic regression ####
## Note: "clogit" function in the "survival" package (same output as "clogistic" in "Epi" package)

if (is.null(confounder)==F){
fml <- as.formula(paste0(status,"~cb_temp+strata(",id,")+",paste0(confounder,collapse = "+")))

} else {
fml <- as.formula(paste0(status,"~cb_temp+strata(",id,")"))

}
mod <- clogit(fml,data=dat)

# Reduction to overall cumulative (it is irrelevant the cen value)
red <- crossreduce(cb_temp, mod, cen = 20)
# Store reduced coefs
coef <- coef(red)
vcov <- vcov(red)

## centering temperature
cen_temp <- NULL;cen_name <- NULL

if (is.null(cen$min)==F){
cen_temp <- c(cen_temp,findmin(cb_temp,mod))
cen_name <- c(cen_name,"min")

}
if (is.null(cen$max)==F){

cen_temp <- c(cen_temp,findmax(cb_temp,mod))
cen_name <- c(cen_name,"max")

}
if (is.null(cen$degree)==F){

cen_temp <- c(cen_temp,cen$degree)
cen_name <- c(cen_name,paste0(cen$degree," degree"))

}
if (is.null(cen$pct)==F){

cen_temp <- c(cen_temp,quantile(mat_temp,cen$pct/100))
cen_name <- c(cen_name,paste0(cen$pct,"th"))

}

## Predict ORs from each cen_temp to each estpct
estimate <- list()
for (k in 1:length(cen_temp)){

pred <- crosspred(cb_temp, mod, model.link="logit", cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
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estimate[[k]] <- round(data.frame(OR=pred$allRRfit,CIlow=pred$allRRlow,CIhigh=pred$allRRhigh),3)
estimate[[k]]$temp <- as.numeric(rownames(estimate[[k]]))
estimate[[k]]$perc <- paste0(estpct,"th")
estimate[[k]]$cen <- cen_name[k]
estimate[[k]] <- dplyr::select(estimate[[k]],c(cen,perc,temp,everything()))

}
estimate_all <- do.call(rbind,estimate)
rownames(estimate_all) <- NULL

## output:result, a list containing the following elements
## - n_case: number of cases
## - n_control: number of controls
## - tper: temperature distribution (percentiles)
## - tsum_case: summary of temperature on case days
## - tsum_control: summary of temperature on case days
## - coef: coefficients for the overall association
## - vcov: variance-covariance of coefs for overall association
## - estimate: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp
## output for plots
## - mat_temp: matrix of temperature
## - cb_temp: cross-basis of temperature
## - model_coef: coefficients of conditional logistic regression model
## - model_vcov: variance matrix of conditional logistic regression model

result <- NULL
result$n_case <- nrow(subset(dat,status==1))
result$n_control <- nrow(subset(dat,status==0))
result$tper <- tper
result$tsum_case <- tsum_case
result$tsum_control <- tsum_control
result$coef <- coef
result$vcov <- vcov
result$estimate <- estimate_all
result$mat_temp <- mat_temp
result$cb_temp <- cb_temp
result$model_coef <- mod$coefficients
result$model_vcov <- mod$var
return(result)

}

##-------------------------------------------------------------------------------------####
## 4. FUNCTION OF CASE-CROSSOVER ANALYSIS FOR SUMMER MONTHS (LAG01) ####
##-------------------------------------------------------------------------------------####

casecrs_lag01 <- function (status, id, confounder=NULL, lag, varper, cen=list(min=NULL,max=NULL,degree=NULL,pct=NULL),
estpct, data){

## Input: status, id, confounder: variables used to define the formula applied to clogit() in the form:
## case.status~exposure+confounder+strata(matched.set)
## status: case status, 1=case, 0=control
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## id: ID for participants
## confounder: optional, vector of covariates to be included in the model
## lag: the maximum lag in the cross basis
## varper: numeric vector of percentiles of the distribution of temperature for internal knots
## cen: a list to define the centering temperature
## - "min" and "max": optional, "TRUE" if the minimum or maximum mortality temperature to be used
## - "degree": optional, numeric vector of temperature (?C)
## - "pct": optional, numeric vector of the percentiles of temperature distribution
## estpct: numeric vector of percentiles of temperature distributions for effect estimate compared to centering temperature

## Build cross-basis function of temperature and lags
## Note: (1) exposure-response: natural cubic spline with internal knots placed at percentile of the temperature
## distribution as defined by "varper"
## (2) lag-response: natural cubic spline

## 1. delete observations with NA in temperature
dat <- subset(data,rowSums(is.na(data[which(names(data)%in%paste0("temp_s",0:lag))]))==0)
## 2. extract matrix of temperature at lag0 to lag="lag"
mat_temp <- as.matrix(dplyr::select(dat,paste0("temp_s",0:lag)))
## 3. define basis for temperature
argvar <- list(fun="ns",knots=quantile(mat_temp,varper/100,na.rm=T))
## 4. define basis for lag
arglag <- list(fun="ns")
## 5. build the cross-basis function
cb_temp <- crossbasis(mat_temp,lag=c(0,lag),argvar=argvar,arglag = arglag)

## Different percentile of the temperature matrix
tper <- quantile(mat_temp,seq(0,100,1)/100)

## Temperature summary for case days
tsum_case <- summary(subset(dat,status==1)$temp_s0)
tsum_case["SD"] <- sd(subset(dat,status==1)$temp_s0)

## Temperature summary for control days
tsum_control <- summary(subset(dat,status==0)$temp_s0)
tsum_control["SD"] <- sd(subset(dat,status==0)$temp_s0)

## Conditional logistic regression ####
## Note: "clogit" function in the "survival" package (same output as "clogistic" in "Epi" package)

if (is.null(confounder)==F){
fml <- as.formula(paste0(status,"~cb_temp+strata(",id,")+",paste0(confounder,collapse = "+")))

} else {
fml <- as.formula(paste0(status,"~cb_temp+strata(",id,")"))

}
mod <- clogit(fml,data=dat)

# Reduction to overall cumulative (it is irrelevant the cen value)
red <- crossreduce(cb_temp, mod, cen = 20)
# Store reduced coefs
coef <- coef(red)
vcov <- vcov(red)
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## centering temperature
cen_temp <- NULL;cen_name <- NULL

if (is.null(cen$min)==F){
cen_temp <- c(cen_temp,findmin(cb_temp,mod))
cen_name <- c(cen_name,"min")

}
if (is.null(cen$max)==F){

cen_temp <- c(cen_temp,findmax(cb_temp,mod))
cen_name <- c(cen_name,"max")

}
if (is.null(cen$degree)==F){

cen_temp <- c(cen_temp,cen$degree)
cen_name <- c(cen_name,paste0(cen$degree," degree"))

}
if (is.null(cen$pct)==F){

cen_temp <- c(cen_temp,quantile(mat_temp,cen$pct/100))
cen_name <- c(cen_name,paste0(cen$pct,"th"))

}

## Predict ORs from each cen_temp to each estpct
estimate <- list()
for (k in 1:length(cen_temp)){

pred <- crosspred(cb_temp, mod, model.link="logit", cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate[[k]] <- round(data.frame(OR=pred$allRRfit,CIlow=pred$allRRlow,CIhigh=pred$allRRhigh),3)
estimate[[k]]$temp <- as.numeric(rownames(estimate[[k]]))
estimate[[k]]$perc <- paste0(estpct,"th")
estimate[[k]]$cen <- cen_name[k]
estimate[[k]] <- dplyr::select(estimate[[k]],c(cen,perc,temp,everything()))

}
estimate_all <- do.call(rbind,estimate)
rownames(estimate_all) <- NULL

## output:result, a list containing the following elements
## - n_case: number of cases
## - n_control: number of controls
## - tper: temperature distribution (percentiles)
## - tsum_case: summary of temperature on case days
## - tsum_control: summary of temperature on case days
## - coef: coefficients for the overall association
## - vcov: variance-covariance of coefs for overall association
## - estimate: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp
## output for plots
## - mat_temp: matrix of temperature
## - cb_temp: cross-basis of temperature
## - model_coef: coefficients of conditional logistic regression model
## - model_vcov: variance matrix of conditional logistic regression model

result <- NULL
result$n_case <- nrow(subset(dat,status==1))
result$n_control <- nrow(subset(dat,status==0))
result$tper <- tper
result$tsum_case <- tsum_case
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result$tsum_control <- tsum_control
result$coef <- coef
result$vcov <- vcov
result$estimate <- estimate_all
result$mat_temp <- mat_temp
result$cb_temp <- cb_temp
result$model_coef <- mod$coefficients
result$model_vcov <- mod$var
return(result)

}

##-------------------------------------------------------------------------------------####
## 5. crossreduce_int FUNCTION FOR INTERACTION ANALYSIS: 2 CATEGORIES ####
## Adapted from crossreduce_int_2APcats by Kai
## https://github.com/CHENlab-Yale/Two-way_effect_modifications/blob/master/crossreduce_int_2APcats.R
##-------------------------------------------------------------------------------------####
crossreduce_int_2cats <- function (basis, model = NULL, type = "overall", value = NULL,

coef = NULL, vcov = NULL, model.link = NULL, at = NULL, from = NULL,
to = NULL, by = NULL, lag, bylag = 1, cen = NULL, ci.level = 0.95)

{
if (all(class(basis) != "crossbasis")) {

stop("the first argument must be an object of class 'crossbasis'")
}
name <- deparse(substitute(basis))
attr <- attributes(basis)
if (ncol(basis) == 1)

cond <- name
if (is.null(model) && (is.null(coef) || is.null(vcov))) {

stop("At least 'model' or 'coef'-'vcov' must be provided")
}
type <- match.arg(type, c("overall", "var", "lag"))
if (type != "overall") {

if (is.null(value))
stop("'value' must be provided for type 'var' or 'lag'")

else if (!is.numeric(value) || length(value) > 1) {
stop("'value' must be a numeric scalar")

}
if (type == "lag" && (any(value < attr$lag[1]) || any(value >

attr$lag[2]))) {
stop("'value' of lag-specific effects must be within the lag range")

}
} else value <- NULL
lag <- attr$lag
if (lag != attr$lag && attr$arglag$fun == "integer")

stop("prediction for lag sub-period not allowed for type 'integer'")
if (!is.numeric(ci.level) || ci.level >= 1 || ci.level <=

0) {
stop("'ci.level' must be numeric and between 0 and 1")

}
cond <- if (ncol(basis) == 1L) name else

paste(name, "[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}", sep = "")
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cond.modif_cat2 <- paste(name, "[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}\\:modif_cat2",
sep = "")

if (!is.null(model)) {
model.class <- class(model)
coef <- dlnm:::getcoef(model, model.class)
ind.all <- grep(cond, names(coef))
ind.modif_cat2 <- grep(cond.modif_cat2, names(coef))
ind.main <- ind.all[ind.all != ind.modif_cat2]

### Extract the coef and vcov from the interaction model for modif categories
coef.main <- coef[ind.main]
coef.int_cat2 <- coef[ind.modif_cat2]
##vcov for modif categories
vcov.all <- dlnm:::getvcov(model, model.class)
vcov.main <- dlnm:::getvcov(model, model.class)[ind.main, ind.main, drop = FALSE]
vcov.int_cat2 <- dlnm:::getvcov(model, model.class)[ind.modif_cat2, ind.modif_cat2, drop = FALSE]

#cat=1
coef_modifcat1 <- coef.main
vcov_modifcat1 <- vcov.main
#cat=2
coef_modifcat2 <- coef_modifcat1+coef.int_cat2
####Important!! note that for interaction analysis, vcov(b1*b2)=var(b1)+var(b2)+2cov(b1,b2)
####This is only correct for cov(b1, b2) == cov(b2, b1); otherwise(like here), must using cov(b1, b2) + cov(b2,b1)
vcov_modifcat2 <- vcov_modifcat1+vcov.int_cat2+dlnm:::getvcov(model, model.class)[ind.main, ind.modif_cat2, drop=FALSE]+

dlnm:::getvcov(model, model.class)[ind.modif_cat2, ind.main, drop=FALSE]

#model.link
model.link <- dlnm:::getlink(model, model.class)

}
else model.class <- NA
npar <- ncol(basis)
range <- attr$range
at <- dlnm:::mkat(at, from, to, by, range, lag, bylag)
cen <- dlnm:::mkcen(cen, type = "cb", basis, range)
attributes(basis)$argvar$cen <- attr$argvar$cen <- NULL
if (type == "overall") {

lagbasis <- do.call("onebasis", c(list(x = dlnm:::seqlag(lag)),
attr$arglag))

M <- diag(ncol(basis)/ncol(lagbasis)) %x% (t(rep(1, diff(lag) +
1)) %*% lagbasis)

newbasis <- do.call("onebasis", c(list(x = at), attr$argvar))
if (!is.null(cen)) {

basiscen <- do.call("onebasis", c(list(x = cen),
attr$argvar))

newbasis <- scale(newbasis, center = basiscen, scale = FALSE)
}

}
else if (type == "lag") {

lagbasis <- do.call("onebasis", c(list(x = value), attr$arglag))
M <- diag(ncol(basis)/ncol(lagbasis)) %x% lagbasis
newbasis <- do.call("onebasis", c(list(x = at), attr$argvar))
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if (!is.null(cen)) {
basiscen <- do.call("onebasis", c(list(x = cen),

attr$argvar))
newbasis <- scale(newbasis, center = basiscen, scale = FALSE)

}
}
else if (type == "var") {

varbasis <- do.call("onebasis", c(list(x = value), attr$argvar))
if (!is.null(cen)) {

basiscen <- do.call("onebasis", c(list(x = cen),
attr$argvar))

varbasis <- scale(varbasis, center = basiscen, scale = FALSE)
}
M <- varbasis %x% diag(ncol(basis)/ncol(varbasis))
newbasis <- do.call("onebasis", c(list(x = seqlag(lag,

bylag)), attr$arglag))
}
dimnames(newbasis) <- list(seq(nrow(newbasis)), paste0("b",

seq(ncol(newbasis))))
##cat=1
newcoef_modifcat1 <- as.vector(M %*% coef_modifcat1)
names(newcoef_modifcat1) <- colnames(newbasis)
newvcov_modifcat1 <- M %*% vcov_modifcat1 %*% t(M)
dimnames(newvcov_modifcat1) <- list(colnames(newbasis), colnames(newbasis))
fit_modifcat1 <- as.vector(newbasis %*% newcoef_modifcat1)
se_modifcat1 <- sqrt(pmax(0, rowSums((newbasis %*% newvcov_modifcat1) * newbasis)))

if (type == "var") {
names(fit_modifcat1) <- names(se_modifcat1) <- outer("lag", seqlag(lag, bylag),

paste, sep = "")
}
else names(fit_modifcat1) <- names(se_modifcat1) <- at

##cat=2
newcoef_modifcat2 <- as.vector(M %*% coef_modifcat2)
names(newcoef_modifcat2) <- colnames(newbasis)
newvcov_modifcat2 <- M %*% vcov_modifcat2 %*% t(M)
dimnames(newvcov_modifcat2) <- list(colnames(newbasis), colnames(newbasis))
fit_modifcat2 <- as.vector(newbasis %*% newcoef_modifcat2)
se_modifcat2 <- sqrt(pmax(0, rowSums((newbasis %*% newvcov_modifcat2) * newbasis)))

if (type == "var") {
names(fit_modifcat2) <- names(se_modifcat2) <- outer("lag", seqlag(lag, bylag),

paste, sep = "")
}
else names(fit_modifcat2) <- names(se_modifcat2) <- at

##result list
list <- list(coef_modifcat1 = newcoef_modifcat1, vcov_modifcat1 = newvcov_modifcat1,

coef_modifcat2 = newcoef_modifcat2, vcov_modifcat2 = newvcov_modifcat2,
basis = newbasis, type = type, value = value)

if (type != "var")
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list$predvar <- at
if (!is.null(cen))

list$cen <- cen
list <- c(list, list(lag = lag, bylag = bylag, fit_modifcat1 = fit_modifcat1, se_modifcat1 = se_modifcat1,

fit_modifcat2 = fit_modifcat2, se_modifcat2 = se_modifcat2))

z <- qnorm(1 - (1 - ci.level)/2)
if (model.link %in% c("log", "logit")) {

#cat=1
list$RRfit_modifcat1 <- exp(fit_modifcat1)
list$RRlow_modifcat1 <- exp(fit_modifcat1 - z * se_modifcat1)
names(list$RRlow_modifcat1) <- names(fit_modifcat1)
list$RRhigh_modifcat1 <- exp(fit_modifcat1 + z * se_modifcat1)
names(list$RRhigh_modifcat1) <- names(fit_modifcat1)
#cat=2
list$RRfit_modifcat2 <- exp(fit_modifcat2)
list$RRlow_modifcat2 <- exp(fit_modifcat2 - z * se_modifcat2)
names(list$RRlow_modifcat2) <- names(fit_modifcat2)
list$RRhigh_modifcat2 <- exp(fit_modifcat2 + z * se_modifcat2)
names(list$RRhigh_modifcat2) <- names(fit_modifcat2)

}
else {

#cat1
list$low_modifcat1 <- fit_modifcat1 - z * se_modifcat1
names(list$low_modifcat1) <- names(fit_modifcat1)
list$high_modifcat1 <- fit_modifcat1 + z * se_modifcat1
names(list$high_modifcat1) <- names(fit_modifcat1)
#cat2
list$low_modifcat2 <- fit_modifcat2 - z * se_modifcat2
names(list$low_modifcat2) <- names(fit_modifcat2)
list$high_modifcat2 <- fit_modifcat2 + z * se_modifcat2
names(list$high_modifcat2) <- names(fit_modifcat2)

}
list$ci.level <- ci.level
list$model.class <- model.class
list$model.link <- model.link
class(list) <- "crossreduce"
return(list)

}

##-------------------------------------------------------------------------------------####
## 6. FUNCTION OF CASE-CROSSOVER EFFECT MODIFICATION: 2 CATEGORIES ####
##-------------------------------------------------------------------------------------####

casecrs_int_2cats <- function (status, id, modif, confounder=NULL, lag, varper, lagnk, cen=list(degree=NULL,pct=NULL),
estpct, data){

## Input: status, id, modif_cat, confounder: variables used to define the formula applied to clogit() in the form:
## case.status~exposure*modif+confounder+strata(matched.set)
## status: case status, 1=case, 0=control
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## id: ID for participants
## modif: effect modifier with two categories
## confounder: optional, vector of covariates to be included in the model
## lag: the maximum lag in the cross basis
## varper: numeric vector of percentiles of the distribution of temperature for internal knots
## lagnk: the number of internal knots in the lag-response dimension
## cen: a list to define the centering temperature
## - "degree": optional, numeric vector of temperature (?C)
## - "pct": optional, numeric vector of the percentiles of temperature distribution
## estpct: numeric vector of percentiles of temperature distributions for effect estimate compared to centering temperature

## Build cross-basis function of temperature and lags
## Note: (1) exposure-response: natural cubic spline with internal knots placed at percentile of the temperature
## distribution as defined by "varper"
## (2) lag-response: natural cubic spline with an intercept and n="lag" internal knots placed at
## equally spaced values on the log scale

## 1. delete observations with NA in temperature and effect modifier
dat <- subset(data,rowSums(is.na(data[which(names(data)%in%c(paste0("temp_s",0:lag),modif))]))==0)
## 2. define the effect modifier
dat$modif_cat <- dat[,modif]
dat$modif_cat <- as.factor(dat$modif_cat)
dat$modif_cat <- ifelse(dat$modif_cat==levels(dat$modif_cat)[1],1,2)
dat$modif_cat <- as.factor(dat$modif_cat)
## 3. extract matrix of temperature at lag0 to lag="lag"
mat_temp <- as.matrix(dplyr::select(dat,paste0("temp_s",0:lag)))
## 4. define basis for temperature
argvar <- list(fun="ns",knots=quantile(mat_temp,varper/100,na.rm=T))
## 5. define basis for lag
arglag <- list(fun="ns",knots=logknots(lag,lagnk))
## 6. build the cross-basis function
cb_temp <- crossbasis(mat_temp,lag=c(0,lag),argvar=argvar,arglag = arglag)
## 7. build the one-basis function for temperature
b1temp <- onebasis(mat_temp, fun="ns", knots=quantile(mat_temp,varper/100,na.rm=T))

## Different percentile of the temperature matrix
tper <- quantile(mat_temp,seq(0,100,1)/100)

## Temperature summary for case days in the first subgroup
tsum_cat1 <- summary(subset(dat,status==1&modif_cat==1)$temp_s0)
tsum_cat1["SD"] <- sd(subset(dat,status==1&modif_cat==1)$temp_s0)

## Temperature summary for case days in the second subgroup
tsum_cat2 <- summary(subset(dat,status==1&modif_cat==2)$temp_s0)
tsum_cat2["SD"] <- sd(subset(dat,status==1&modif_cat==2)$temp_s0)

## Conditional logistic regression ####
## Note: "clogit" function in the "survival" package (same output as "clogistic" in "Epi" package)

if (is.null(confounder)==F){
fml <- as.formula(paste0(status,"~cb_temp*modif_cat+strata(",id,")+",paste0(confounder,collapse = "+")))

} else {
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fml <- as.formula(paste0(status,"~cb_temp*modif_cat+strata(",id,")"))
}

mod <- try(clogit(fml,data=dat), silent=TRUE)

if (class(mod)[1]!="try-error"){
# Reduction to overall cumulative (it is irrelevant the cen value)
red <- crossreduce_int_2cats(cb_temp, mod, cen = 20)
# Store reduced coefs
#cat1
coef.cat1 <- red$coef_modifcat1
vcov.cat1 <- red$vcov_modifcat1
#cat2
coef.cat2 <- red$coef_modifcat2
vcov.cat2 <- red$vcov_modifcat2

## centering temperature
cen_temp <- NULL;cen_name <- NULL

if (is.null(cen$degree)==F){
cen_temp <- c(cen_temp,cen$degree)
cen_name <- c(cen_name,paste0(cen$degree," degree"))

}
if (is.null(cen$pct)==F){

cen_temp <- c(cen_temp,quantile(mat_temp,cen$pct/100))
cen_name <- c(cen_name,paste0(cen$pct,"th"))

}

## Predict ORs from each cen_temp to each estpct for each subgroup
estimate_cat1 <- list()
for (k in 1:length(cen_temp)){

pred_cat1 <- crosspred(b1temp, coef=coef.cat1, vcov=vcov.cat1, model.link="logit",cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate_cat1[[k]] <- round(data.frame(OR=pred_cat1$allRRfit,CIlow=pred_cat1$allRRlow,CIhigh=pred_cat1$allRRhigh),3)
estimate_cat1[[k]]$temp <- as.numeric(rownames(estimate_cat1[[k]]))
estimate_cat1[[k]]$perc <- paste0(estpct,"th")
estimate_cat1[[k]]$cen <- cen_name[k]
estimate_cat1[[k]] <- dplyr::select(estimate_cat1[[k]],c(cen,perc,temp,everything()))

}
estimate_cat1_all <- do.call(rbind,estimate_cat1)
rownames(estimate_cat1_all) <- NULL

estimate_cat2 <- list()
for (k in 1:length(cen_temp)){

pred_cat2 <- crosspred(b1temp, coef=coef.cat2, vcov=vcov.cat2, model.link="logit", cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate_cat2[[k]] <- round(data.frame(OR=pred_cat2$allRRfit,CIlow=pred_cat2$allRRlow,CIhigh=pred_cat2$allRRhigh),3)
estimate_cat2[[k]]$temp <- as.numeric(rownames(estimate_cat2[[k]]))
estimate_cat2[[k]]$perc <- paste0(estpct,"th")
estimate_cat2[[k]]$cen <- cen_name[k]
estimate_cat2[[k]] <- dplyr::select(estimate_cat2[[k]],c(cen,perc,temp,everything()))

}
estimate_cat2_all <- do.call(rbind,estimate_cat2)
rownames(estimate_cat2_all) <- NULL
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## output:result, a list containing the following elements
## - n_cat1: number of participants in the 1st subgroup
## - n_cat2: number of participants in the 2nd subgroup
## - tper: temperature distribution (percentiles)
## - tsum_cat1: summary of temperature on case days for the 1st subgroup
## - tsum_cat2: summary of temperature on case days for the 2nd subgroup
## - coef_cat1: coefficients for the overall association for the 1st subgroup
## - coef_cat2: coefficients for the overall association for the 2nd subgroup
## - vcov_cat1: variance-covariance of coefs for overall association for the 1st subgroup
## - vcov_cat2: variance-covariance of coefs for overall association for the 2nd subgroup
## - estimate_cat1: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp for the 1st subgroup
## - estimate_cat2: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp for the 2nd subgroup
## output for plots
## - mat_temp: matrix of temperature
## - b1temp: one-basis of temperature

result <- NULL
result$n_cat1 <- nrow(subset(dat,modif_cat==1))
result$n_cat2 <- nrow(subset(dat,modif_cat==2))
result$tper <- tper
result$tsum_cat1 <- tsum_cat1
result$tsum_cat2 <- tsum_cat2
result$coef_cat1 <- coef.cat1
result$vcov_cat1 <- vcov.cat1
result$coef_cat2 <- coef.cat2
result$vcov_cat2 <- vcov.cat2
result$estimate_cat1 <- estimate_cat1_all
result$estimate_cat2 <- estimate_cat2_all
result$mat_temp <- mat_temp
result$b1temp <- b1temp
return(result)

} else {
result <- NULL
result$n_cat1 <- nrow(subset(dat,modif_cat==1))
result$n_cat2 <- nrow(subset(dat,modif_cat==2))
result$tper <- tper
result$tsum_cat1 <- tsum_cat1
result$tsum_cat2 <- tsum_cat2
result$coef_cat1 <- NA
result$vcov_cat1 <- NA
result$coef_cat2 <- NA
result$vcov_cat2 <- NA
result$estimate_cat1 <- NA
result$estimate_cat2 <- NA
result$mat_temp <- NA
result$b1temp <- NA
return(result)

}
}

##-------------------------------------------------------------------------------------####
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## 7. crossreduce_int FUNCTION FOR INTERACTION ANALYSIS: 3 CATEGORIES ####
## Adapted from crossreduce_int_2APcats by Kai
## https://github.com/CHENlab-Yale/Two-way_effect_modifications/blob/master/crossreduce_int_2APcats.R
##-------------------------------------------------------------------------------------####
crossreduce_int_3cats <- function (basis, model = NULL, type = "overall", value = NULL,

coef = NULL, vcov = NULL, model.link = NULL, at = NULL, from = NULL,
to = NULL, by = NULL, lag, bylag = 1, cen = NULL, ci.level = 0.95)

{
if (all(class(basis) != "crossbasis")) {

stop("the first argument must be an object of class 'crossbasis'")
}
name <- deparse(substitute(basis))
attr <- attributes(basis)
if (ncol(basis) == 1)

cond <- name
if (is.null(model) && (is.null(coef) || is.null(vcov))) {

stop("At least 'model' or 'coef'-'vcov' must be provided")
}
type <- match.arg(type, c("overall", "var", "lag"))
if (type != "overall") {

if (is.null(value))
stop("'value' must be provided for type 'var' or 'lag'")

else if (!is.numeric(value) || length(value) > 1) {
stop("'value' must be a numeric scalar")

}
if (type == "lag" && (any(value < attr$lag[1]) || any(value >

attr$lag[2]))) {
stop("'value' of lag-specific effects must be within the lag range")

}
} else value <- NULL
lag <- attr$lag
if (lag != attr$lag && attr$arglag$fun == "integer")

stop("prediction for lag sub-period not allowed for type 'integer'")
if (!is.numeric(ci.level) || ci.level >= 1 || ci.level <=

0) {
stop("'ci.level' must be numeric and between 0 and 1")

}
cond <- if (ncol(basis) == 1L) name else

paste(name, "[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}", sep = "")

cond.modif_cat2 <- paste(name, "[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}\\:modif_cat2",
sep = "")

cond.modif_cat3 <- paste(name, "[[:print:]]*v[0-9]{1,2}\\.l[0-9]{1,2}\\:modif_cat3",
sep = "")

if (!is.null(model)) {
model.class <- class(model)
coef <- dlnm:::getcoef(model, model.class)
ind.all <- grep(cond, names(coef))
ind.modif_cat2 <- grep(cond.modif_cat2, names(coef))
ind.modif_cat3 <- grep(cond.modif_cat3, names(coef))
ind.main <- ind.all[ind.all != ind.modif_cat2&ind.all != ind.modif_cat3]
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### Extract the coef and vcov from the interaction model for modif categories
coef.main <- coef[ind.main]
coef.int_cat2 <- coef[ind.modif_cat2]
coef.int_cat3 <- coef[ind.modif_cat3]

##vcov for modif categories
vcov.all <- dlnm:::getvcov(model, model.class)
vcov.main <- dlnm:::getvcov(model, model.class)[ind.main, ind.main, drop = FALSE]
vcov.int_cat2 <- dlnm:::getvcov(model, model.class)[ind.modif_cat2, ind.modif_cat2, drop = FALSE]
vcov.int_cat3 <- dlnm:::getvcov(model, model.class)[ind.modif_cat3, ind.modif_cat3, drop = FALSE]

#cat=1
coef_modifcat1 <- coef.main
vcov_modifcat1 <- vcov.main
#cat=2
coef_modifcat2 <- coef_modifcat1+coef.int_cat2
####Important!! note that for interaction analysis, vcov(b1*b2)=var(b1)+var(b2)+2cov(b1,b2)
####This is only correct for cov(b1, b2) == cov(b2, b1); otherwise(like here), must using cov(b1, b2) + cov(b2,b1)
vcov_modifcat2 <- vcov_modifcat1+vcov.int_cat2+dlnm:::getvcov(model, model.class)[ind.main, ind.modif_cat2, drop=FALSE]+

dlnm:::getvcov(model, model.class)[ind.modif_cat2, ind.main, drop=FALSE]
#cat=3
coef_modifcat3 <- coef_modifcat1+coef.int_cat3
####Important!! note that for interaction analysis, vcov(b1*b2)=var(b1)+var(b2)+2cov(b1,b2)
####This is only correct for cov(b1, b2) == cov(b2, b1); otherwise(like here), must using cov(b1, b2) + cov(b2,b1)
vcov_modifcat3 <- vcov_modifcat1+vcov.int_cat3+dlnm:::getvcov(model, model.class)[ind.main, ind.modif_cat3, drop=FALSE]+

dlnm:::getvcov(model, model.class)[ind.modif_cat3, ind.main, drop=FALSE]
#model.link
model.link <- dlnm:::getlink(model, model.class)

}
else model.class <- NA
npar <- ncol(basis)
range <- attr$range
at <- dlnm:::mkat(at, from, to, by, range, lag, bylag)
cen <- dlnm:::mkcen(cen, type = "cb", basis, range)
attributes(basis)$argvar$cen <- attr$argvar$cen <- NULL
if (type == "overall") {

lagbasis <- do.call("onebasis", c(list(x = dlnm:::seqlag(lag)),
attr$arglag))

M <- diag(ncol(basis)/ncol(lagbasis)) %x% (t(rep(1, diff(lag) +
1)) %*% lagbasis)

newbasis <- do.call("onebasis", c(list(x = at), attr$argvar))
if (!is.null(cen)) {

basiscen <- do.call("onebasis", c(list(x = cen),
attr$argvar))

newbasis <- scale(newbasis, center = basiscen, scale = FALSE)
}

}
else if (type == "lag") {

lagbasis <- do.call("onebasis", c(list(x = value), attr$arglag))
M <- diag(ncol(basis)/ncol(lagbasis)) %x% lagbasis
newbasis <- do.call("onebasis", c(list(x = at), attr$argvar))
if (!is.null(cen)) {

basiscen <- do.call("onebasis", c(list(x = cen),
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attr$argvar))
newbasis <- scale(newbasis, center = basiscen, scale = FALSE)

}
}
else if (type == "var") {

varbasis <- do.call("onebasis", c(list(x = value), attr$argvar))
if (!is.null(cen)) {

basiscen <- do.call("onebasis", c(list(x = cen),
attr$argvar))

varbasis <- scale(varbasis, center = basiscen, scale = FALSE)
}
M <- varbasis %x% diag(ncol(basis)/ncol(varbasis))
newbasis <- do.call("onebasis", c(list(x = seqlag(lag,

bylag)), attr$arglag))
}
dimnames(newbasis) <- list(seq(nrow(newbasis)), paste0("b",

seq(ncol(newbasis))))
##cat=1
newcoef_modifcat1 <- as.vector(M %*% coef_modifcat1)
names(newcoef_modifcat1) <- colnames(newbasis)
newvcov_modifcat1 <- M %*% vcov_modifcat1 %*% t(M)
dimnames(newvcov_modifcat1) <- list(colnames(newbasis), colnames(newbasis))
fit_modifcat1 <- as.vector(newbasis %*% newcoef_modifcat1)
se_modifcat1 <- sqrt(pmax(0, rowSums((newbasis %*% newvcov_modifcat1) * newbasis)))

if (type == "var") {
names(fit_modifcat1) <- names(se_modifcat1) <- outer("lag", seqlag(lag, bylag),

paste, sep = "")
}
else names(fit_modifcat1) <- names(se_modifcat1) <- at

##cat=2
newcoef_modifcat2 <- as.vector(M %*% coef_modifcat2)
names(newcoef_modifcat2) <- colnames(newbasis)
newvcov_modifcat2 <- M %*% vcov_modifcat2 %*% t(M)
dimnames(newvcov_modifcat2) <- list(colnames(newbasis), colnames(newbasis))
fit_modifcat2 <- as.vector(newbasis %*% newcoef_modifcat2)
se_modifcat2 <- sqrt(pmax(0, rowSums((newbasis %*% newvcov_modifcat2) * newbasis)))

if (type == "var") {
names(fit_modifcat2) <- names(se_modifcat2) <- outer("lag", seqlag(lag, bylag),

paste, sep = "")
}
else names(fit_modifcat2) <- names(se_modifcat2) <- at

##cat=3
newcoef_modifcat3 <- as.vector(M %*% coef_modifcat3)
names(newcoef_modifcat3) <- colnames(newbasis)
newvcov_modifcat3 <- M %*% vcov_modifcat3 %*% t(M)
dimnames(newvcov_modifcat3) <- list(colnames(newbasis), colnames(newbasis))
fit_modifcat3 <- as.vector(newbasis %*% newcoef_modifcat3)
se_modifcat3 <- sqrt(pmax(0, rowSums((newbasis %*% newvcov_modifcat3) * newbasis)))
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if (type == "var") {
names(fit_modifcat3) <- names(se_modifcat3) <- outer("lag", seqlag(lag, bylag),

paste, sep = "")
}
else names(fit_modifcat3) <- names(se_modifcat3) <- at

##result list
list <- list(coef_modifcat1 = newcoef_modifcat1, vcov_modifcat1 = newvcov_modifcat1,

coef_modifcat2 = newcoef_modifcat2, vcov_modifcat2 = newvcov_modifcat2,
coef_modifcat3 = newcoef_modifcat3, vcov_modifcat3 = newvcov_modifcat3,
basis = newbasis, type = type, value = value)

if (type != "var")
list$predvar <- at

if (!is.null(cen))
list$cen <- cen

list <- c(list, list(lag = lag, bylag = bylag, fit_modifcat1 = fit_modifcat1, se_modifcat1 = se_modifcat1,
fit_modifcat2 = fit_modifcat2, se_modifcat2 = se_modifcat2,
fit_modifcat3 = fit_modifcat3, se_modifcat3 = se_modifcat3))

z <- qnorm(1 - (1 - ci.level)/2)
if (model.link %in% c("log", "logit")) {

#cat=1
list$RRfit_modifcat1 <- exp(fit_modifcat1)
list$RRlow_modifcat1 <- exp(fit_modifcat1 - z * se_modifcat1)
names(list$RRlow_modifcat1) <- names(fit_modifcat1)
list$RRhigh_modifcat1 <- exp(fit_modifcat1 + z * se_modifcat1)
names(list$RRhigh_modifcat1) <- names(fit_modifcat1)
#cat=2
list$RRfit_modifcat2 <- exp(fit_modifcat2)
list$RRlow_modifcat2 <- exp(fit_modifcat2 - z * se_modifcat2)
names(list$RRlow_modifcat2) <- names(fit_modifcat2)
list$RRhigh_modifcat2 <- exp(fit_modifcat2 + z * se_modifcat2)
names(list$RRhigh_modifcat2) <- names(fit_modifcat2)
#cat=3
list$RRfit_modifcat3 <- exp(fit_modifcat3)
list$RRlow_modifcat3 <- exp(fit_modifcat3 - z * se_modifcat3)
names(list$RRlow_modifcat3) <- names(fit_modifcat3)
list$RRhigh_modifcat3 <- exp(fit_modifcat3 + z * se_modifcat3)
names(list$RRhigh_modifcat3) <- names(fit_modifcat3)

}
else {

#cat1
list$low_modifcat1 <- fit_modifcat1 - z * se_modifcat1
names(list$low_modifcat1) <- names(fit_modifcat1)
list$high_modifcat1 <- fit_modifcat1 + z * se_modifcat1
names(list$high_modifcat1) <- names(fit_modifcat1)
#cat2
list$low_modifcat2 <- fit_modifcat2 - z * se_modifcat2
names(list$low_modifcat2) <- names(fit_modifcat2)
list$high_modifcat2 <- fit_modifcat2 + z * se_modifcat2
names(list$high_modifcat2) <- names(fit_modifcat2)
#cat3
list$low_modifcat3 <- fit_modifcat3 - z * se_modifcat3
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names(list$low_modifcat3) <- names(fit_modifcat3)
list$high_modifcat3 <- fit_modifcat3 + z * se_modifcat3
names(list$high_modifcat3) <- names(fit_modifcat3)

}
list$ci.level <- ci.level
list$model.class <- model.class
list$model.link <- model.link
class(list) <- "crossreduce"
return(list)

}

##-------------------------------------------------------------------------------------####
## 8. FUNCTION OF CASE-CROSSOVER EFFECT MODIFICATION: 3 CATEGORIES ####
##-------------------------------------------------------------------------------------####

casecrs_int_3cats <- function (status, id, modif, confounder=NULL, lag, varper, lagnk, cen=list(degree=NULL,pct=NULL),
estpct, data){

## Input: status, id, modif_cat, confounder: variables used to define the formula applied to clogit() in the form:
## case.status~exposure*modif+confounder+strata(matched.set)
## status: case status, 1=case, 0=control
## id: ID for participants
## modif: effect modifier with three categories
## confounder: optional, vector of covariates to be included in the model
## lag: the maximum lag in the cross basis
## varper: numeric vector of percentiles of the distribution of temperature for internal knots
## lagnk: the number of internal knots in the lag-response dimension
## cen: a list to define the centering temperature
## - "degree": optional, numeric vector of temperature (?C)
## - "pct": optional, numeric vector of the percentiles of temperature distribution
## estpct: numeric vector of percentiles of temperature distributions for effect estimate compared to centering temperature

## Build cross-basis function of temperature and lags
## Note: (1) exposure-response: natural cubic spline with internal knots placed at percentile of the temperature
## distribution as defined by "varper"
## (2) lag-response: natural cubic spline with an intercept and n="lag" internal knots placed at
## equally spaced values on the log scale

## 1. delete observations with NA in temperature and effect modifier
dat <- subset(data,rowSums(is.na(data[which(names(data)%in%c(paste0("temp_s",0:lag),modif))]))==0)
## 2. define the effect modifier
dat$modif_cat <- dat[,modif]
dat$modif_cat <- as.factor(dat$modif_cat)
dat$modif_cat <- ifelse(dat$modif_cat==levels(dat$modif_cat)[1],1,ifelse(dat$modif_cat==levels(dat$modif_cat)[2],2,3))
dat$modif_cat <- as.factor(dat$modif_cat)
## 3. extract matrix of temperature at lag0 to lag="lag"
mat_temp <- as.matrix(dplyr::select(dat,paste0("temp_s",0:lag)))
## 4. define basis for temperature
argvar <- list(fun="ns",knots=quantile(mat_temp,varper/100,na.rm=T))
## 5. define basis for lag
arglag <- list(fun="ns",knots=logknots(lag,lagnk))
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## 6. build the cross-basis function
cb_temp <- crossbasis(mat_temp,lag=c(0,lag),argvar=argvar,arglag = arglag)
## 7. build the one-basis function for temperature
b1temp <- onebasis(mat_temp, fun="ns", knots=quantile(mat_temp,varper/100,na.rm=T))

## Different percentile of the temperature matrix
tper <- quantile(mat_temp,seq(0,100,1)/100)

## Temperature summary for case days in the first subgroup
tsum_cat1 <- summary(subset(dat,status==1&modif_cat==1)$temp_s0)
tsum_cat1["SD"] <- sd(subset(dat,status==1&modif_cat==1)$temp_s0)

## Temperature summary for case days in the second subgroup
tsum_cat2 <- summary(subset(dat,status==1&modif_cat==2)$temp_s0)
tsum_cat2["SD"] <- sd(subset(dat,status==1&modif_cat==2)$temp_s0)

## Temperature summary for case days in the third subgroup
tsum_cat3 <- summary(subset(dat,status==1&modif_cat==3)$temp_s0)
tsum_cat3["SD"] <- sd(subset(dat,status==1&modif_cat==3)$temp_s0)

## Conditional logistic regression ####
## Note: "clogit" function in the "survival" package (same output as "clogistic" in "Epi" package)

if (is.null(confounder)==F){
fml <- as.formula(paste0(status,"~cb_temp*modif_cat+strata(",id,")+",paste0(confounder,collapse = "+")))

} else {
fml <- as.formula(paste0(status,"~cb_temp*modif_cat+strata(",id,")"))

}

mod <- try(clogit(fml,data=dat), silent=TRUE)

if (class(mod)[1]!="try-error"){
# Reduction to overall cumulative (it is irrelevant the cen value)
red <- crossreduce_int_3cats(cb_temp, mod, cen = 20)
# Store reduced coefs
#cat1
coef.cat1 <- red$coef_modifcat1
vcov.cat1 <- red$vcov_modifcat1
#cat2
coef.cat2 <- red$coef_modifcat2
vcov.cat2 <- red$vcov_modifcat2
#cat3
coef.cat3 <- red$coef_modifcat3
vcov.cat3 <- red$vcov_modifcat3

## centering temperature
cen_temp <- NULL;cen_name <- NULL

if (is.null(cen$degree)==F){
cen_temp <- c(cen_temp,cen$degree)
cen_name <- c(cen_name,paste0(cen$degree," degree"))

}
if (is.null(cen$pct)==F){
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cen_temp <- c(cen_temp,quantile(mat_temp,cen$pct/100))
cen_name <- c(cen_name,paste0(cen$pct,"th"))

}

## Predict ORs from each cen_temp to each estpct for each subgroup
estimate_cat1 <- list()
for (k in 1:length(cen_temp)){

pred_cat1 <- crosspred(b1temp, coef=coef.cat1, vcov=vcov.cat1, model.link="logit",cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate_cat1[[k]] <- round(data.frame(OR=pred_cat1$allRRfit,CIlow=pred_cat1$allRRlow,CIhigh=pred_cat1$allRRhigh),3)
estimate_cat1[[k]]$temp <- as.numeric(rownames(estimate_cat1[[k]]))
estimate_cat1[[k]]$perc <- paste0(estpct,"th")
estimate_cat1[[k]]$cen <- cen_name[k]
estimate_cat1[[k]] <- dplyr::select(estimate_cat1[[k]],c(cen,perc,temp,everything()))

}
estimate_cat1_all <- do.call(rbind,estimate_cat1)
rownames(estimate_cat1_all) <- NULL

estimate_cat2 <- list()
for (k in 1:length(cen_temp)){

pred_cat2 <- crosspred(b1temp, coef=coef.cat2, vcov=vcov.cat2, model.link="logit", cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate_cat2[[k]] <- round(data.frame(OR=pred_cat2$allRRfit,CIlow=pred_cat2$allRRlow,CIhigh=pred_cat2$allRRhigh),3)
estimate_cat2[[k]]$temp <- as.numeric(rownames(estimate_cat2[[k]]))
estimate_cat2[[k]]$perc <- paste0(estpct,"th")
estimate_cat2[[k]]$cen <- cen_name[k]
estimate_cat2[[k]] <- dplyr::select(estimate_cat2[[k]],c(cen,perc,temp,everything()))

}
estimate_cat2_all <- do.call(rbind,estimate_cat2)
rownames(estimate_cat2_all) <- NULL

estimate_cat3 <- list()
for (k in 1:length(cen_temp)){

pred_cat3 <- crosspred(b1temp, coef=coef.cat3, vcov=vcov.cat3, model.link="logit", cen=cen_temp[k], at=quantile(mat_temp,estpct/100))
estimate_cat3[[k]] <- round(data.frame(OR=pred_cat3$allRRfit,CIlow=pred_cat3$allRRlow,CIhigh=pred_cat3$allRRhigh),3)
estimate_cat3[[k]]$temp <- as.numeric(rownames(estimate_cat3[[k]]))
estimate_cat3[[k]]$perc <- paste0(estpct,"th")
estimate_cat3[[k]]$cen <- cen_name[k]
estimate_cat3[[k]] <- dplyr::select(estimate_cat3[[k]],c(cen,perc,temp,everything()))

}
estimate_cat3_all <- do.call(rbind,estimate_cat3)
rownames(estimate_cat3_all) <- NULL

## output:result, a list containing the following elements
## - n_cat1: number of participants in the 1st subgroup
## - n_cat2: number of participants in the 2nd subgroup
## - tper: temperature distribution (percentiles)
## - tsum_cat1: summary of temperature on case days for the 1st subgroup
## - tsum_cat2: summary of temperature on case days for the 2nd subgroup
## - coef_cat1: coefficients for the overall association for the 1st subgroup
## - coef_cat2: coefficients for the overall association for the 2nd subgroup
## - vcov_cat1: variance-covariance of coefs for overall association for the 1st subgroup
## - vcov_cat2: variance-covariance of coefs for overall association for the 2nd subgroup
## - estimate_cat1: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp for the 1st subgroup
## - estimate_cat2: OR and CI at the "estpct" percentile of temperature distribution compared to each cen_temp for the 2nd subgroup
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## output for plots
## - mat_temp: matrix of temperature
## - b1temp: one-basis of temperature

result <- NULL
result$n_cat1 <- nrow(subset(dat,modif_cat==1))
result$n_cat2 <- nrow(subset(dat,modif_cat==2))
result$n_cat3 <- nrow(subset(dat,modif_cat==3))
result$tper <- tper
result$tsum_cat1 <- tsum_cat1
result$tsum_cat2 <- tsum_cat2
result$tsum_cat3 <- tsum_cat3
result$coef_cat1 <- coef.cat1
result$vcov_cat1 <- vcov.cat1
result$coef_cat2 <- coef.cat2
result$vcov_cat2 <- vcov.cat2
result$coef_cat3 <- coef.cat3
result$vcov_cat3 <- vcov.cat3
result$estimate_cat1 <- estimate_cat1_all
result$estimate_cat2 <- estimate_cat2_all
result$estimate_cat3 <- estimate_cat3_all
result$mat_temp <- mat_temp
result$b1temp <- b1temp
return(result)

} else {
result <- NULL
result$n_cat1 <- nrow(subset(dat,modif_cat==1))
result$n_cat2 <- nrow(subset(dat,modif_cat==2))
result$n_cat3 <- nrow(subset(dat,modif_cat==3))
result$tper <- tper
result$tsum_cat1 <- tsum_cat1
result$tsum_cat2 <- tsum_cat2
result$tsum_cat3 <- tsum_cat3
result$coef_cat1 <- NA
result$vcov_cat1 <- NA
result$coef_cat2 <- NA
result$vcov_cat2 <- NA
result$coef_cat3 <- NA
result$vcov_cat3 <- NA
result$estimate_cat1 <- NA
result$estimate_cat2 <- NA
result$estimate_cat3 <- NA
result$mat_temp <- NA
result$b1temp <- NA
return(result)

}
}

## 9. Description of continuous variables ####
desc_con <- function(x0,digit){

x <- x0[!is.na(x0)]
nmin <- length(x)
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nall<-length(as.vector(x0))
percent<-round((nall-nmin)/nall*100,digits=1)
mean<-round(mean(x),digits=digit)
sd <- round(sd(x),digits=digit)
p25 <- round(quantile(x,probs=0.25),digits=digit)
p50 <- round(quantile(x,probs=0.50),digits=digit)
p75 <- round(quantile(x,probs=0.75),digits=digit)
iqr <- round(p75-p25,digits=digit)
min <- round(min(x),digits=digit)
max <- round(max(x),digits=digit)
out <- data.frame(N=nmin,Missing=percent,mean=mean,SD= sd,min=min,p25=p25,median=p50,p75=p75,max=max,IQR=iqr)
out

}

## 10. Description of categorical variables ####
desc_cat <- function(x0) {

x <- x0[!is.na(x0)]
nmin <- length(x)
nall<-length(as.vector(x0))
nmiss <- nall - nmin
percentmiss<-round(nmiss/nall*100,digits=1)

n <- c(table(x),"NA"=nmiss)
percent <- round(prop.table(table(x))*100,1) # ATTENTION: Percentages are calculated for reduced N!
perc<-c(percent,percentmiss)
out <- cbind(n,perc)
out

}
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