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Abstract
The atmosphere’s mass is about 5.1480 × 1018 kg where water vapor amounts to about 0.25 %.
This tiny fraction of water vapor is a key greenhouse gas, and is essential in the hydrological,
meteorological and biological processes. An important component in the land-atmosphere domain
is evapotranspiration (evaporation and transpiration together). For about 75 years, studies have
been conducted to give good predictive evapotranspiration models. However, results show that
different models yield different accuracy in their spatiotemporal application.

As part of the Norwegian Meteorological Institute’s project; Hydrometeorology to Operations
(H2O), this thesis will study evapotranspiration to evaluate evapotranspirational models, Priestley-
Taylor and Penman-Monteith, and evaluate evapotranspirational data from remote sensing and
pan evaporation.

Five versions of the Priestley-Taylor (PT) model were evaluated, of which four were hourly-based.
One of the models used the standard α of 1.29. One model was based on the approach from Cristea
et al. (2013) to calculate α. The two other hourly-based models required programming with curve-
fitting, where one used curve-fitting to calculate α and γ, while the other one used curve-fitting for
α only. The fifth PT model was daily-based with an α value calculated by curve-fitting. The best
PT model had α values between 0.2755 and 0.3789 with an RMSE compared to measurements of
0.0043.

Four versions of the Penman-Monteith (PM) model were evaluated, of which two were daily-based
and two were hourly-based. The first daily-based PM model calculated actual evapotranspiration
directly and resulted in significant underestimations. The other PM models calculated reference
evapotranspiration before being multiplied by a crop coefficient. The second daily-based and the
first hourly-based PM models used a crop coefficient of 0.9, while the second hourly-based PM
model used curve-fitting to calculate a suitable crop coefficient of 0.588. The best PM model was
the hourly-based with the calibrated crop coefficient, resulting in an RMSE value of 0.0039.

Remote sensing measurements were evaluated by comparing them to eddy-covariance measure-
ments. The remote sensing measurements were about 30-40 % greater than the eddy-covariance
measurements. It was however not found out if this is a systematic error or just a coincidence.

Pan evaporation measurements were evaluated by converting them into estimates of actual evapo-
transpiration and comparing them to eddy-covariance measurements. Crop coefficients of 0.9 and
0.588 were used in this conversion. It was found that on an hourly basis, the conversion using a crop
coefficient of 0.588 yielded the most accurate result compared to eddy-covariance measurements.

This thesis has proven that an hourly-based PM model with crop coefficient of 0.588 is more
accurate than a PT model with α of between 0.2755 and 0.3789. It has also been proven that
the literature-based PM model is more accurate than the literature-based PT model. The overall
conclusion of all evaluations is that more extended time series’ are needed to reach a conclusive an-
swer. However, the results seem promising as proof of concept that calibrating evapotranspirational
models could yield valuable predictions, and that data from remote sensing and pan evaporation
could be reliable.
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Sammendrag
Massen til atmosfæren er omtrent 5,1480 × 1018 kg hvorav vanndamp utgjør rundt 0,25 %. Denne
lille andelen vanndamp er en viktig drivhusgass, og er avgjørende for hydrologiske, meteorolo-
giske og biologiske prosesser. En viktig komponent i land-atmosfære koblingen er fordampning
og transpirasjon (evapotranspirasjon). I omtrent 75 år har det blitt utført forsøk på å finne gode
prediktive modeller for evapotranspirasjon. Resultatene viser imidlertid at ulike modeller gir ulik
nøyaktighet i deres geografiske og tidsmessige anvendelse.

Som del av Meteorologisk Institutt sitt prosjekt, "Hydrometeorology to Operations" (H2O), skal
denne avhandlingen studere evapotranspirasjon for å evaluere evapotranspirasjonsmodeller, Priestley-
Taylor og Penman-Monteith, samt vurdere evapotranspirasjonsdata fra fjernmåling og fordampn-
ingskar.

Fem versjoner av Priestley-Taylor (PT)-modellen ble evaluert, hvorav fire var timebaserte. En av
modellene brukte standard α-verdi på 1,29. En modell var basert på tilnærmingen fra Cristea
et al. (2013) for å beregne α. De to andre timebaserte modellene krevde programmering med
kurvetilpasning, der den ene brukte kurvetilpasning for å beregne både α og γ, mens den andre
kun brukte kurvetilpasning for α. Den femte PT-modellen var dagsbasert med en -verdi beregnet
ved kurvetilpasning. Den beste PT-modellen hadde α-verdier mellom 0,2755 og 0,3789 med en
RMSE sammenlignet med målinger på 0,0043.

Fire versjoner av Penman-Monteith (PM)-modellen ble evaluert, hvorav to var dagsbaserte og to
var timebaserte. Den første dagsbaserte PM-modellen beregnet faktisk fordampning direkte og
resulterte i betydelig underestimering. De andre PM-modellene beregnet referansefordampning
før de ble multiplisert med en avlingskoeffisient. Den andre dagsbaserte og den første timebaserte
PM-modellen brukte en avlingskoeffisient på 0,9, mens den andre timebaserte PM-modellen brukte
kurvetilpasning for å beregne en egnet avlingskoeffisient på 0,588. Den beste PM-modellen var den
timebaserte med kalibrert avlingskoeffisient, noe som resulterte i en RMSE-verdi på 0,0039.

Fjernmålinger ble evaluert ved å sammenligne dem med eddy-kovariansmålinger. Fjernmålingene
var omtrent 30-40 % høyere enn eddy-kovariansmålingene. Det ble imidlertid ikke fastslått om
dette skyldes en systematisk feil eller om det bare var en tilfeldighet.

Målinger fra fordampningskar ble evaluert ved å konvertere dem til estimater av faktisk fordampn-
ing og sammenligne dem med eddy-kovariansmålinger. Avlingskoeffisienter på 0,9 og 0,588 ble
brukt i denne konverteringen. Det ble funnet ut at på timebasis ga konverteringen med en
avlingskoeffisient på 0,588 det mest nøyaktige resultatet sammenlignet med eddy-kovariansmålinger.

I denne avhandlingen har det blitt bevist at en timebasert PM-modell med en avlingskoeffisient
på 0,588 er mer nøyaktig enn en PT-modell med α-verdier mellom 0,2755 og 0,3789. Det har også
blitt bevist at den litteraturbaserte PM-modellen er mer nøyaktig enn den litteraturbaserte PT-
modellen. Den overordnede konklusjonen av alle evalueringene er at det trengs lengre tidsserier for
å komme fram til en endelig konklusjon. Imidlertid virker resultatene lovende som en bevisføring
av konseptet om at kalibrering av evapotranspirasjonsmodeller kan gi verdifulle prediksjoner, og
at data fra fjernmåling og fordampningskar kan være pålitelige.
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1 Introduction

1.1 Background
On average, the total mass of the atmosphere is 5.1480 × 1018 kg, whereas water vapor amounts
in the range of 1.27 × 1016 kg (Trenberth & Smith, 2005). Although water is only 0.25 % of the
atmosphere in weight, it plays a significant role as a greenhouse gas to keep our planet warm, and
in the water (or hydrological) cycle. There is a consensus in the scientific community that human
activity has warmed the climate. The Intergovernmental Panel on Climate Change mentions
this in their assessment report (Masson-Delmotte et al., 2021). With an increasing global mean
temperature, the hydrological cycle is believed to increase (Genfo et al., 1991; Trenberth, 1999).
This means the evaporation rates will increase, and the atmosphere can hold more water. Thus
increasing the favor of intense rainfall events.

Knowledge about evaporation and transpiration is crucial to better understanding the climate and
its variations and giving good predictions about future hydrological cycles. With better predictions,
water resource managers can take proper actions, irrigation requirements can be adjusted, and
river forecasts will be improved (Blaney & Criddle, 1962; Xu & Singh, 2001; Jackson et al., 2001).
Evapotranspiration (ET) is also important in the ecological domain, as it gives clues about plant
activity and the energy balance in an ecosystem(Currie, 1991; O’Brien, 1993).

Since ET models reflect the water and energy balance of a local or regional system, it is possible
to get an idea of how much water there is in the local ecosystem. This could help prevent water
damage to infrastructure because of the ability to predict heavy rain. It would also be possible to
take action before a drought since it would be possible to know how much water is leaving the soil.

Studies have been done for about 75 years in the search for good predictive ET models, some with
higher complexity and depending on more variables than others. ET models were mainly developed
to predict crops’ water balance, so optimized irrigation systems could be built (Barry & Blanken,
2016a; Blaney & Criddle, 1962). Studies have also compared different models to determine which
will yield the most accurate predictions (Xu & Singh, 2001; Fisher et al., 2011; Gavin & Agnew,
2004).

However, results show that ET models will have varying accuracy depending on their spatiotempo-
ral application. The considerable uncertainty and variation stem from the vegetation, as it is hard
to quantify plant productivity. Transpiration from stomatal conductance in plant leaves, hetero-
geneous vegetation consisting of different plant species and sizes, and the fact that transpiration
represents 80-90 % of terrestrial ET (Jasechko et al., 2013), are some of the reasons why predicting
ET poses challenges. Another issue is the available meteorological data one can use to calculate
ET. Many models are therefore based on empirical constants that represent plant productivity,
since it is hard to quantify. The models would then only depend on variables that are easy to
measure (i.e air temperature, air pressure, daylight hours, latitude, etc).

A commonly used model that requires only a few measurements is the Priestley-Taylor model. It is
a radiation-based model. It estimates ET, consists of primarily empirical constants, and depends
on variables such as air temperature, air pressure and irradiation. The more advanced Penman-
Monteith model is a combination-type model. Besides meteorological data as the Priestley-Taylor
needed, this model also requires information about the surface (i.e vegetation and surroundings)

1



1.2 Motivation
As mentioned in the previous section, ET models have a high variance in their spatiotemporal
application. Empirical constants used in equations may be adjusted to make ET models fit better
for their application. Some studies have adjusted these constants depending on their spatial and
temporal application, resulting in higher accuracy models.

For example, the study by Cristea et al. (2013) looked into how to improve the accuracy of the
Priestley-Taylor model in the USA by using linear regression depending on relative mean relative
humidity and mean wind speed to find more appropriate values for the empirical constant α (will
be explained further in the theory section). From their results, adjusting α reduced the model
median root-mean-squared-error (RMSE) value from 1 to 0.78-0.85.

Another study by Gavin & Agnew (2004) used Penman-Monteith and Priestley-Taylor models to
model actual, reference and equilibrium evaporation from a temperate wet grassland. Using two
different values for α (1.25 and 0.80) to represent the wetness level of the surface in the Priestley-
Taylor model, reliable estimates of actual evaporation were achieved when compared to Bowen
ratio energy balance data with RMSE.

As mentioned in the previous section, knowledge about ET is essential to understand the climate
and hydrological cycles better. ET models also play an important role in land-surface models
(LSMs). With improved understanding and modeling of the hydrological activities (i.e improved
ET models), LSMs could provide reliable estimates of surface- and groundwater fluxes. This
could, in turn, facilitate early warning of flash floods, agricultural drought and give more precise
Numerical weather predictions (NWP). So far, no applicable ET models are explicitly calibrated
for the Norwegian climate.

1.2.1 Hydrometeorology to operations (H2O)

NWP depends on atmospheric variables such as irradiation, wind, humidity and air temperature.
Despite advances over the past few decades, predicting intense local rainfall remains challenging.
Currently, NWPs do not fully consider the coupling between the atmosphere and the components
on land (i.e soil moisture and temperature, land biosphere, terrestrial snow, ET, lake temperature,
etc). NWPs without the Land-Atmosphere (LA) coupling are believed to fall short of their abil-
ity to predict short-range forecasts and hydrological forecasts (what happens to the water after
precipitation).

In 2020 the Norwegian Meteorological Institute started a campaign called Hydrometeorology to
Operations (H2O) which aims to develop world-leading NWPs which will be integrated across the
LA domain. Emphasis is put on the LA coupling and soil hydrology so that reliable hydrometeo-
rological forecasts can be warnings for enhanced preparedness can be delivered.

As part of the H2O project, this thesis will study ET in the LA domain to increase our understand-
ing of ET data in the Norwegian climate, and if it is possible to achieve beneficial results from ET
models. The observations for this study originate from the meteorological station at Søråsjordet
located in Ås, Viken county, Norway. The reason for choosing this meteorological site is because it
has a close connection to the Norwegian University of Life Sciences (NMBU), the meteorological
station has a eddy-covariance (EC) instrument with two years of flux measurements, a long time
series of pan evaporation measurements, long term meteorological measurements stretching back
to 1859 in which the surroundings have remained almost consistent, and the area around the site
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is an agricultural field.

To achieve the objective of this thesis, the following subjects are investigated:

1. Evaluating and adapting typically used parameters of ET-models like Penman-
Monteith and Priestley-Taylor, and compare to the EC-measurements for use in Nor-
wegian Climate. Five types of Priestley-Taylor models are evaluated: One with literature values
from Priestley & Taylor (1972), one with a calculated approach from Cristea et al. (2013) and
three using curve-fitting to find best-suited values, of which one is based on daily resolution.
Four types of Penman-Monteith models are evaluated: Two based on daily resolution, where one
calculates evapotranspiration directly and one through calculating reference evapotranspiration
first. Two other Penman-Monteith models are based on hourly resolution and calculate reference
evapotranspiration first, but the two use different crop coefficient values.

2. Compare the EC measurements with MODIS-based satellite data.

3. Evaluate the long-term pan evaporation measurements from Søråsjordet by com-
paring the EC measurements with a two-year parallel. The pan evaporation measurements
are converted to estimations of actual evapotranspiration. Two series of estimated actual evap-
otranspiration are calculated, where the difference is the choice of crop coefficient. One crop
coefficient value is derived from one of the Penman-Monteith models.
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2 Theory

2.1 Energy balance in the land-atmosphere system
For a better understanding of ET, looking into the source and the different energy states in the
LA system is crucial. The core energy source for this system is the incoming solar radiation, which
on annual average irradiates ∽1361 W/m−2 to the top of our atmosphere(Kopp & Lean, 2011).
The electromagnetic wavelength range of this incoming radiation is 200-2500 nm (96.3 % of the
radiation) (Newport-Corporation, n.d.). Radiation that reaches the surface has to pass through the
atmosphere, which will absorb and scatter the radiation spectrum. Oxygen and nitrogen absorb
short waves, blocking radiation with wavelengths below 190 nm. The absorption of short waves
turns oxygen into ozone, which absorbs longer ultraviolet waves (200-300 nm) and weakly absorbs
visible light. Water vapor, carbon dioxide and oxygen also absorb near-infrared radiation. If it
is a cloudless day and the zenith angle is zero (the Sun is directly above a point on the Earth’s
surface), the solar irradiance is effectively reduced from ∽1361 W/m−2 at the top of the atmosphere
to ∽1050 W/m−2 when it reaches the surface (Newport-Corporation, n.d.).

When there is a net radiation surplus (usually during daytime), the energy must be dispersed
at the surface through conduction, convection, phase change, and storage. In the LA system,
heat is transported into deeper soil layers mainly by conduction, which is the ground heat flux,
G. Whereas the dominant heat transportation through air happens by convection, which is the
sensible heat flux, H, and phase change is the latent heat flux, λE, where λ is the latent heat of
vaporization and E is the rate of evaporation. The equation of energy balance can therefore be
written as

Rn = G + H + λE +
(

ρcp
∆T

∆t
dz

)
, (1)

where Rn is the net radiation. Figure 1 shows these fluxes with their representative positive
directions. The last term, which is in the bracket, represents the energy storage, where ρ is the
density of either air or soil, cp is the specific heat capacity of either air or soil, ∆T/∆t is the rate
of temperature change, and dz is the depth beneath or height above of the surface area where the
radiation is dispersed. When searching for the ET, the λE term in equation 1 must be found to
calculate ET.
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Figure 1: The arrows in this figure represent the given positive direction of the different energy
fluxes. As one can see, energy surplus will be stored in the air and the soil, and released if the net
radiation is too low.

2.1.1 Ground and sensible heat fluxes

Radiation not reflected from the surface or absorbed by vegetation will be converted into heat
energy for the soil, also known as ground heat flux. The composition of the individual soil com-
pounds and water content determines the conductivity of the soil. Sand, for example, has a high
conductivity since it consists of mostly quartz minerals, whereas organic soils have a low conduc-
tivity. The porosity of the ground also determines the conductivity since air works as an insulator.
However, if the pores are filled with water (i.e high soil moisture), the conductivity increases (Barry
& Blanken, 2016a). The ground heat flux, G, from equation 1 is given by equation 2, where gc is
the conductivity of the soil, and ∆T/∆z is the vertical temperature gradient of the soil.

G = −gc
∆Ts

∆z
(2)

The ground heat flux is a crucial component of the surface energy balance (eq. 1) as it affects the
exchange of heat and moisture with the laminar boundary layer (thin layer of air right above the
surface shown in fig. 2). The ground heat flux is also a parameter used in the Penman-Monteith
equation (eq. 19, 20, 22), which will be further explained in section 2.5.2.

Another essential component of the lower surface level, which is also a parameter of the Penman-
Monteith equation (eq. 19), is the bulk surface conductance, gs, also known as stomatal con-
ductance, and is described by equation 3, where rs is the bulk surface resistance (which will be
explained further in the paragraph before equation 4).

gs = r−1
s (3)

5



This conductance describes a plant’s ability to exchange gases with the boundary layer. The
stomates on a plant are responsible for the transpiration of a plant. Water vapor is "exhaled" from
the stomates during transpiration while carbon dioxide is "inhaled". This process will be explained
in more detail in section 2.2. As the stomates’ opening increases, the bulk surface conductance
increases. The environmental factors influencing the conductance are irradiation, temperature,
humidity and wind speed. The conductance is made into a "bulk" because it is difficult to separate
whether the water vapor comes from soil evaporation or plant transpiration.

As shown in equation 3, the inverse of bulk surface conductance, gs, is the bulk surface resistance,
rs. The term bulk surface "resistance" comes from the analog of Ohm’s law in electricity. Current
or flux is proportional to a potential difference and inversely proportional to resistance, making
it applicable to water vapor diffusing through the stomata of plant leaves (Lhomme, 1991). The
bulk surface resistance is calculated by eq.4, where rl is bulk stomatal resistance and LAIactive is
active sunlit leaf area (Allen et al., 1998).

rs = rl

LAIactive

(4)

Since it would be impossible to measure the stomatal resistance of each individual leaf, the bulk
stomatal resistance, rl, is the average resistance of all leaves. This resistance varies between crops,
crop management, and how far into the growing season the crop is. It is also influenced by climate
and water availability. If a crop is water stressed, the resistance increases (Allen et al., 1998). Leaf
area index (LAI) is dimensionless and is expressed as the fraction of leaf area (only the upper side)
per ground area, and the part of the leaf area that contributes to surface heat and vapor transfer
is the active LAI. From Allen et al. (1998), it is said that LAI values differ widely between crops,
but is usually in the range of 3-5 for mature crops.

An example for calculating the bulk surface resistance of well-watered grass crop can be found in
Allen et al. (1998), Box 5. Here the Assumption is that the LAI of grass is given as; LAI = 24h,
where h is the height of the grass in m. Further, LAIactive is given as; LAIactive = 0.5LAI,
assuming that only the upper half of dense clipped grass actively contributes to the surface heat
and vapor transfer. It is assumed that the stomatal resistance, rl, of well-watered grass is 100
s/m and that the crop height, h, is 0.12 m. From these assumptions, it is concluded that the bulk
surface resistance of well-watered grass with a height of 0.12 m is 70 s/m.

Figure 2 shows where in the plant canopy aerodynamic resistance (will be explained in the next
paragraph) and bulk surface resistance are.
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Figure 2: The figure shows where the bulk surface and aerodynamic resistance are in the plant
canopy. The Evaporating surface is the same as the laminar boundary layer.

Radiant energy absorbed by vegetation and soil but not transformed into latent heat flux will
increase the surface temperature of the vegetation and soil, contributing to an increase in sensible
heat flux. Latent heat loss is highest in energy-limited water-rich ecosystems, for example, irrigated
systems, since these are usually well-watered crops. Latent heat loss decreases as available water
decreases (which will increase the sensible heat flux).

The heat from the vegetation and/or soil is transferred through conduction to the laminar boundary
layer, and then transported into the atmosphere by convection. There are two types of convection;
free and forced. When an air mass by the surface is heated, its density is decreased. Due to
buoyancy, the less dense air will rise and displace cooler air, and the cooler air will sink to replace
the warmer air mass. Forced convection refers to the phenomenon where air is compelled to rise
due to surface irregularities. In the LA system, surface roughness is essential for the sensible heat
flux. Convection depends on turbulence, which depends on aerodynamic conductance, ga. Aerody-
namic conductance increases with greater surface roughness (Monson & Baldocchi, 2014a). Some
typical estimations of surface roughness, zom are displayed in table 1. The inverse of aerodynamic
conductance is the aerodynamic resistance, ra, and is calculated by equation 5.

ra =
ln
(

zm−d
zom

)
ln
(

zh−d
zoh

)
k2uz

(5)

Here, zm is the height of the wind measurement, zh is the height of the humidity measurement, d
is the zero plane displacement height, zom is the roughness length governing momentum transfer,
zoh is the roughness governing the transfer of heat and vapor, k is von Karman’s constant (0.41),
and uz is the wind speed at the measuring height z.

Roughness length governing momentum, zom is the height at which the wind speed profile would
be assumed to be zero due to surface roughness. The following logarithmic equation gives the wind
speed profile;

Uz = u∗

k
ln(z/zom) (6)

where Uz is the wind speed at height z, u∗ is the friction velocity, which provides the wind’s
tendency to transfer momentum on the surface, create sheer stress and produce turbulence. k is
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Table 1: Some examples of surface roughness estimations depending on the landscape. The table
is inspired from Barry & Blanken (2016a).

Terrain roughness for Momentum
Class Roughness [m] Description

Sea 0.0002 Open water, snow-covered flat plain, featureless
desert. Free fetch of several kilometers

Smooth 0.005 Featureless landscape, with litle to none vegetation.
Marshes, snow-covered open country

Open 0.03 Level country with low vegetation and
isolated obstacles. Grass, tundra

Roughly open 0.1 Low crops or plant cover. Moderately open with
occasional obstacles. Isolated trees, low buildings

Rough 0.25 High crops or crops of varying height.
Scattered obstacles. Buildings, tree belts

Very rough 0.5 Intensely cultivated. Large farms and forest clumps.
Bushland. Urban areas with low buildings

Skimming 1.0 Covered with large similar obstacles. Forests. Dense urban
areas without significant building height variations

Chaotic +2 Irregular distribution of large obstacles. Dense urban
with mix of low and high buildings. Forests with clearings

von Karman’s constant, and z is the height. The rougher the surface, the higher the point where
U will equal zero. The theoretical height at which U becomes zero as a function of ln(z) is known
as the roughness length, zom. The greater the value of zom, the rougher the surface, and the higher
the point above ground U becomes zero (Monson & Baldocchi, 2014b). From Barry & Blanken
(2016b) and Allen et al. (1998), the roughness length for a well-watered grass canopy is estimated
to be 0.1h, where h is the crop height.

The zero plane displacement height, d, is the height at which the mean wind speed is zero due
to roughness elements such as plants, trees, buildings and other obstacles on the surface. When
looking at actual canopied surfaces, reductions of Uz will reach zero at a height above the predicted
zom (Monson & Baldocchi, 2014b). From Barry & Blanken (2016b) and Allen et al. (1998), zero
plane displacement height for a well-watered grass canopy is estimated to be 2/3 of the crop height,
h.

Roughness height governing heat and vapor, zoh is the height at which temperature and vapor
profiles are assumed to be zero. The roughness height governing heat and vapor depends on
the surface roughness governing momentum, zom. From Allen et al. (1998), the roughness height
governing heat and vapor for well-watered grass is estimated to be 0.1zom.

A limitation of this equation is that it is only valid for neutral stable conditions for short time
scales (hourly or less). Since it is challenging to measure d, zom and zoh, empirical equations have
been developed to estimate these parameters (as mentioned in the previous paragraph). It is also
possible to use the estimations in table 1 for an estimated value of zom.

Following the calculations from Allen et al. (1998), Box 4, it is possible to get an estimate of
aerodynamic resistance for well-watered grass, dependent on wind speed. Assuming that zero
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plane displacement height, d, is 2/3h, roughness length governing momentum, zom, is 0.123h,
roughness height governing heat and vapor, zoh is 0.1zom, crop height, h is 0.12m, and that the
height of wind speed and humidity measurements, zm and zh are 2 m. The estimate for the
aerodynamic resistance, ra, becomes 208/u2, where as mentioned, u2 is the measured wind speed
at 2 m.

2.2 Wind
Wind is essentially an air mass that is being moved by a force. Newton’s second law of motion
can explain it;

F = ma (7)

where m is the mass of the air and a is the acceleration of the air mass, and F is the force applied
on the air mass. The opposing forces of the force that is accelerating the air mass, are pressure
and friction. Since the air pressures on Earth’s surface are not in containers, they will try to
reach an equilibrium. This pressure difference will therefore create a force that accelerates the
atmospheric masses from high to low pressure. The atmospheric mass encounters flow resistance
due to accelerated air molecules colliding with slower air molecules within the mass itself. The
acceleration from the difference in air pressure including resistance can be stated as;

a = −
(

∆P

ρax
+ FD

m

)
(8)

where a is still the acceleration, ∆P is the pressure difference between two points, ρa is the air
density, x is the distance between the two pressure points, FD is the resistance as drag force which
causes deceleration, and m is the mass.

The drag is caused by friction at the molecular scale, and acts therefore as viscosity. In the
domain where the air is in layers and the flow of air is mostly laminar, the molecular viscosity is
an essential factor. However, in turbulent flows, a larger scale of interactions is the critical factor
determining the shear stresses (Monson & Baldocchi, 2014b). Momentum can be transferred and
shear be caused due to parcels of air interacting with adjacent layers. These air parcels are called
wind eddies and create eddy viscosity, the turbulence that opposes the inertial forces propelling
the flow. The eddies increase in size with the height above ground, and because of the inherent
instability of the eddies, they will decompose into smaller eddies as they move with the flow. When
large eddies decompose they transfer their energy. As they become smaller, they will eventually
be so small that their energy is consumed as work against viscosity and kinetic energy becomes
heat. Figure 3 shows how the eddies look in a wind speed profile for a longitudinal wind, u. The
figure also shows the composition of the eddy with longitudinal wind, u, and vertical wind, w.
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Figure 3: The figure shows a standard wind speed profile with parcels of eddy turbulence.

Since ∆P will change during the course of time, the wind speed will also change with time. The
wind speed during the course of time can be represented as;

Ut1 = Ut0 + a∆t (9)

where Ut1 is the wind speed at time t1, Ut0 is the wind speed at time t0, which is the wind before
the state of ∆P changed. ∆t is the difference in time.

The wind speed U is a composite wind speed that can be decomposed into three wind components
in Cartesian coordinates. Along the x-axis is the longitudinal wind velocity, u, along the y-axis
is the latitudinal wind velocity, v, and along the z-axis is the vertical wind velocity, w. The
magnitude of each component will vary with time, and therefore also their contribution to mean
wind speed velocity, periodic wave velocity, and random fluctuating velocity.

The mean wind velocity reflects the "quasi-constant" components, regional pressure gradients, and
local near-surface pressure gradients. Energy and mass are advected along these pressure gradients.
Since these pressure gradients do not change significantly in their magnitude or distribution during
the time span to derive the mean wind velocity, they are quasi-constant.

Time-dependent variance with a periodicity of a few hours around the mean wind velocity is known
as the periodic wave velocity. These waves are often not explicitly considered in the analyses of
turbulent transport. These waves tend to occur during stable thermal stratification at night.
Waves that are regular in their periodicity will have no net directional transport.

Random fluctuating velocity reflects motions in short time scales such as seconds and minutes.
These are turbulences, and can be caused by instabilities in the flow. The random fluctuating
component is responsible for the turbulent transport of heat, energy and mass between the surface
and atmosphere. The different wind velocity components are shown in figure 4.
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Figure 4: The figure shows the longitudinal wind velocity u as a time series. Circle B shows the
mean wind velocities of the two different periods from the wave-like pattern. Circle A shows the
mean wind velocity in a short time span with the random fluctuations.

2.3 Water vapor and latent heat
The latent heat flux, λE, is dependent on the amount of energy that can be used for evaporation
(eq. 1 and fig. 1), and the concentration of water vapor that is in the laminar boundary layer. The
energy drives the phase change from liquid water to water vapor, and the concentration of water
vapor drives the flux of energy and mass from the surface. The relation that defines the chemical
potential of water vapor in terms of mole fraction is given as;

µw = µw ∗ +RTln
caw

caw∗
(10)

where µw and µw∗ are chemical potentials for water vapor (the first in a sample of air and the
second is standard value). caw is the mole fraction of water vapor in the sample of air, and caw∗ is
the saturated mole fraction of water vapor in the air sample. R and T are the ideal gas constant
(8.314 J/(K mol)) and air temperature respectively. From equation 10, one can see that as the
mole fraction of water increases (evaporation happens), the chemical potential of water vapor in
the air increases. As water evaporates, the water molecules do not contain higher kinetic energy
as the temperature does not change. It is only the chemical potential of the water molecules that
changes.

Even though the phase change is not due to temperature changes, it does not mean that the air
temperature above a wet surface does not affect the evaporation rate. Changes in µw can be
caused by a change in caw∗. The value of caw is related to air temperature, and this relation
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comes from the fact that as air temperature changes, its capacity to hold water changes. As the
ground absorbs radiant energy, the air above the ground will heat up through sensible heat flux,
H, and consequently, its capacity to hold water will increase. This relation can be derived from
the Clausius-Clapeyron relation. The derived form of the Clausius-Clapeyron relation is given as;

dcaw∗
dT

≈
λw(T )caw∗

RT 2 (11)

where caw∗ is the saturated mole fraction of water vapor in the air, or in other words; air’s capacity
to hold water vapor. λw(T ) is the latent heat of vaporization (temperature dependent). R is the
ideal gas constant, and T is the air temperature. This equation assumes that water vapor acts as
an ideal gas and that the specific molar volume of water vapor is large enough compared to liquid
water so that the difference can be ignored. Assuming that λw(T ) is constant in a narrow range of
temperature changes in the plant-atmosphere domain, λw(T ) becomes λw. Using calculus and the
assumption, the Clausius-Clapeyron relation becomes;

caw∗(2) = caw ∗(1) e− λw
R∆T (12)

This equation shows that the air’s capacity to hold water vapor increases exponentially as tem-
perature increases. This equation also shows that with a rise in temperature, T , the air’s vapor
holding capacity, caw∗ increases by 7 % per ◦C. Since these derived forms of the Clausius-Clapeyron
relation are hard to work with, a more empirical relation is used. The empirical relation is given
as;

caw∗ = c1
P

e
c2T

T +c3 (13)

where the temperature T is in ◦C, the air pressure P is in Pa, and the coefficients c1, c2 and c3 are
611 Pa, 17.502, and 240.97 ◦C. If the saturation vapor pressure is given by; e0 = caw ∗ P , equation
13 becomes equation 17.

For small spans of air temperature, the relation between saturation vapor pressure and temperature
becomes approximately linear. The slope from this relation is referred to as the saturation-to-vapor
pressure slope, which is ∆ from equation 16. Figure 5 shows the relation between saturation vapor
pressure and temperature.
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Figure 5: The figure shows the relation between saturation vapor pressure and temperature.

2.4 Evapotranspiration
Evapotranspiration is the process that consists of evaporation from soil and wet surfaces, and
transpiration through plant leaves. ET returns about 2/3 of precipitation into the atmosphere
(Chen & Liu, 2020). Sublimation is not included in the context of ET, since it is a phase change
from solid water to water vapor, not liquid water to water vapor. Vapor from evaporation is
derived from sources such as open waters (i.e oceans, lakes, rivers, puddles, etc.), water on objects
(i.e vegetation, buildings and soil surface), or measuring devices. Transpiration is the process where
vegetation "breathes in" carbon dioxide from the surrounding air through its stomates located on
leaves, needles or stems (depending on the plant). While consuming carbon dioxide, stomates also
tend to release water as vapor, since the air in the intercellular spaces of the leaf is usually saturated
or near saturated (Gates, 1968). Nutrients in the soil are dissolved in water, and consumed by
the plants through their roots. Only a tiny fraction of the water consumed stays within the plant,
while most of it is transpired. A simplified drawing of a plant with its stomates is shown in figure
6.
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Figure 6: A drawing of a plant with a zoom-in on the leaf to show the stomata.

We use the term "evapotranspiration" because once the water vapor is released into the air, it is
hard to distinguish how much of the vapor is from evaporation, and how much is from transpiration.
A simple figure of evapotranspiration and water balance at surface level in the LA system is shown
in figure 7. From the figure, one can see that evapotranspiration occurs where there is vegetation.

Figure 7: A simplification of the water balance in the LA domain.

As we know, phase-shifting liquid water into water vapor requires tremendous amounts of energy
(2256 kJ/kg) due to the strong hydrogen bonds between water molecules. This increases with
orders of magnitude if there are impurities in the water (Marek & Straub, 2001). The required
energy for evaporation is provided by heat or radiation. However, evaporation will not happen
if the surrounding air is saturated, and there is no wind to facilitate the transportation of water
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molecules in the air. Thus, the main climatic influences on evaporation are solar radiation (directly
or indirectly as air temperature), relative humidity of the air, and air transportation in the form of
wind. Transpiration depends on the type of vegetation in the area of interest. The ground or soil
characteristics determine the retention of precipitation inputs in the form of soil moisture. Overall,
these three controls of ET can alter depending on the spatiotemporal scale and the eco-climate
system.

2.5 Potential ET and Actual ET
When looking at ET, it is essential to distinguish between potential evapotranspiration, ETp,
and actual evapotranspiration, ETa. With knowledge about the available energy, it is possible
to calculate ETp since it represents how much ET is theoretically expected from the amount of
energy in the system if available water is not a limiting factor. This measure of ET is vital for
farmers, so they know how much irrigation is needed for their crops to avoid drought or waterlogged
soils (Fisher et al., 2011). Also, ETp models rely on meteorological measurements that are easy to
acquire. A simple way to measure ETp is to use evaporation pans, since the measurement would be
pure evaporation without being dependent on plant productivity. A parameter similar to potential
evapotranspiration, ETp, is reference evapotranspiration, ET0. Reference evapotranspiration, ET0,
can be obtained by calculation from evaporation pan measurements. Reference evapotranspiration,
ET0, is a measure of how much evapotranspiration is theoretically expected from a well-irrigated
surface with a grass reference crop (Allen et al., 1998).

ETa is the actual amount of water lost into the atmosphere through both evaporation and transpi-
ration. Thus, ETa represents the actual water balance of a system, and varies depending on soil,
vegetation and wind (Fisher et al., 2011). One thing to note is that ETa will never exceed ETp as
ETp is the highest possible rate of ET if water is not limited. For example, in a desert, the value
of ETp will be significant because the air is dry, and plenty of energy is available for evaporation.
However, the value of ETa will be close to zero, since the system has almost no water to evaporate.

Studies have been done to find values of evaporation and evapotranspiration by eddy-covariance
measurements and by estimated calculations. One of these studies is the thesis by Rutger (2002).
The location of the study was in the sub-arctic area around the Tana basin in the north of Norway
and Finland. Here, it was found that evaporation values were 59 mm between 23. June to 27.
July 1999 and 57 mm between 5. June to 23. July 2000. The estimated evapotranspiration values
were calculated to be 74 mm between 22. June to 2. August 1999 and 75 mm between 5. June
to 23. July 2000. Another study done in Alaska found evapotranspirational values of about 21.5
mm/week in July 2013 and 17 mm/week in August 2013 (Ruairuen et al., 2015).

2.5.1 Estimation of Potential Evapotranspiration

As mentioned in the introduction, a simple equation to calculate ETp is the Priestley-Taylor
equation, which is given by;

ETp = α
∆

∆ + γ
Rn (14)

This equation is based on radiation, or more precisely, net radiation, Rn, temperature and air
pressure. The empirical constant in this equation is α. ∆ is the slope of saturation-to-vapor
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pressure and is shown in equation 16, and γ is the psychrometric constant and is shown in equation
15.

The constant α depends on the water saturation level of the surface, which means that α would
be greater for a saturated surface than for an unsaturated surface. In the study by Priestley and
Taylor (1972), different values of α were found even though an effort was put to get values for
saturated surfaces only. These values ranged from 1.33 to 1.08. Priestley and Taylor also did
calculations to get values of α above bodies of water. The resulting values of α ranged from 1.30
to 1.20. From these results, Priestley and Taylor concluded that the best overall mean estimate
(for land and water) value for α is 1.26. This value of 1.26 will be referred to as "literature value"
in this thesis.

The psychrometric constant γ from equation 14 is air pressure dependent. The psychrometric
constant is called a "constant", because it has negligible variations when used on a local and short
time-series scale. It is also constant if mean air pressure is used (Allen et al., 1998). The equation
for the psychrometric constant is given as;

γ = cpP

ϵλ
, (15)

where cp is the specific heat of air at constant air pressure. The specific heat of air, cp, depends
on the composition of the air. Different sources have different values for the specific heat of air.
In Allen et al. (1998) it is given as 1.013 kJ/(kg ◦C). In Barry & Blanken (2016c) it is given as
1003.5 J/(kg K). And in (TETB, n.d.) it is given as 1.006 kJ/(kg K) at 18 ◦C. λ is the latent heat
of vaporization of water, and on average will have a value of 2450 kJ/kg (Allen et al., 1998). P
is the air pressure, and ϵ is the molecular weight ratio between water vapor and dry air (which is
0.622) (Allen et al., 1998). On average, the psychrometric constant would be somewhere in the
region of 0.066 kPa/◦C.

In equation 14, ∆ is the saturation-to-vapor pressure slope. This is the reason why the PT equation
is dependent on air temperature. From Allen et al. (1998), ∆ is given by this equation;

∆ = 4098e0

(Ta + 237.3)2 , (16)

e0 = 611e
17.27Ta

Ta+237.3 , (17)

where e0 is the saturation vapor pressure in Pa at the given air temperature, Ta, in ◦C (Allen et
al., 1998). Note that the coefficients in equation 17 and equation 13 from section 2.3 are different.
c1 is still the same in both equations, c2 is 17.502 in eq. 13 and 17.27 in eq. 17, and c3 is 240.97
in eq. 13 and 237.3 in eq. 17).

Since the best mean estimate of α is 1.26, and the value comes from estimates of saturated surfaces,
this model falls short when used in arid areas with low soil moisture, where the actual value of
α would be lower. Areas with a lot of wind, plenty of water in the soil and low air humidity will
have a higher value of α than 1.26. Therefore, to solve this issue, α should be adjusted to make
the PT model fit better for the region it is applied to. The psychrometric constant γ should also
be adjusted for the location of application, to make the PT model as precise as possible. In the
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study by Cristea et al. (2013), the value of α has been site-calibrated in order to improve the
performance of the PT model. In the study by Cristea et al. (2013), multiple linear regressions,
with mean annual relative humidity, RH, mean annual wind speed, U , and coefficients b1, b2 and
b3 were used in equation 18 to determine α.

α = b1 + b2RH + b3U (18)

From Cristea et al. (2013), the coefficients b1, b2 and b3 are 2.214, -1.526 RH−1 and 0.079 (m/s)−1

respectively. From this study, it was found that α could vary between 1.09 and 1.68 depending on
the site. Values of ∆ and γ were calculated using the procedures from Allen et al. (1998), which
are the same procedures as mentioned in this theory. The paper from Cristea et al. (2013) also
mentions that there are many other papers that have tried to site calibrate the value of α, which
have resulted in values ranging from 0.6 to 2.47. The papers are listed in Table 1 in Cristea et al.
(2013). A plot of the α values obtained from equation 18 with annual mean relative humidity in
the range 0.40 to 0.80 and annual mean wind speed in the range 1 to 5 m/s, is shown in figure 8.

Figure 8: The figure shows the relation between α values and relative humidity and wind speed.

2.5.2 Estimation of Actual Evapotranspiration

Actual evapotranspiration, ETa, is dependent on more variables than potential evapotranspiration,
ETp, and is therefore more troublesome to calculate. Not only does the energy in the system
determine ETa (which is enough to calculate ETp), but also the available water in the system, the
weather, and plant productivity. One way to calculate ETa is to use the Penman-Monteith (PM)
equation. This equation has different modifications depending on if it is supposed to calculate
daily or hourly values.

One of the variations of PM is the daily-based equation that calculates ETa directly and depends
on the variables on the ground (i.e bulk surface resistance and aerodynamic resistance, eq. 4 and
5). The equation is given as;
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ETa = ∆At + (ρacpD)/ga

∆ + γ(1 + gs/ga) (19)

where ∆ is the saturation-to-vapor pressure slope (eq. 16), t is the time-span in seconds (86400
s in a day), A is the energy available for evaporation which is given as; Rn - G, where Rn is net
radiation and G is ground heat flux. ρa and cp are density and heat capacity of air respectively. D
is the vapor pressure deficit. ga and gs are aerodynamic- and bulk surface conductance respectively,
which means that they are the inverse of aerodynamic resistance and bulk surface resistance (eq.
5 and 4). γ is the psychrometric constant, and is given by equation 15. This Penman-Monteith
equation is gathered from Barry & Blanken (2016a).

Another approach to calculate ETa, is to first calculate reference evapotranspiration, ET0. ET0
can be calculated by the daily-based PM equation, given as;

ET0 =
0.408∆At + γ 900

Ta+273u2(e0 − ea)
∆ + γ(1 + 0.34u2)

(20)

where ∆ is the saturation-to-vapor pressure slope (eq. 16), A is energy available for evaporation,
which is defined as Rn - G, where from equation 1 Rn is the net radiation and G is the ground heat
flux. t is the time span in seconds (for this equation it is the number of seconds in a day, t = 86400
s), Ta is the mean air temperature throughout the day, u2 is the mean wind speed throughout the
day measured at 2m. γ is the psychrometric constant given by equation 15. e0 is the saturation
vapor pressure at temperature Ta, given by equation 17. And ea is the actual vapor pressure, and
is given as;

ea = e0 RH

100 (21)

where RH is the mean relative humidity. The difference between saturation vapor pressure, e0,
and actual vapor pressure, ea is known as the vapor pressure deficit, D, or V PD.

One can also calculate ETa on an hourly basis. Again, first, the reference evapotranspiration, ET0,
has to be calculated. The hourly based PM equation to calculate ET0 is given as;

ET0 =
0.408∆At + γ 37

Ta+273u2(e0 − ea)
∆ + γ(1 + 0.34u2)

(22)

where ∆ is saturation-to-vapor pressure slope, and A, u2 and Ta are now hourly mean values. t
is the number of seconds in an hour (t = 3600 s). γ is the psychrometric constant. e0 is the
saturation vapor pressure at temperature Ta (eq. 17). And ea is the actual vapor pressure (eq.
21).

Calculating reference evapotranspiration, ET0, it is multiplied with a crop coefficient, kc, to get
actual evapotranspiration ETa. The crop coefficient, kc is an empirical constant that can be found
in tables (for example Table 12 in Allen et al. (1998)). A summary of Table 12 from Allen et al.
(1998) can be viewed in table 2. Note that the values in table 2 are under the assumption that the
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soil is properly irrigated so that the crop is not water stressed. The equation calculating actual
evapotranspiration, ETa, from reference evapotranspiration, ET0 is given as;

ETa = ET0kc (23)

In order to measure ETa, advanced measuring equipment is needed, such as an eddy-covariance
instrument.

Table 2: A summary of Table 12 from Allen et al. (1998). Cool season grasses are types of grass
that are bluegrass, ryegrass and fescue. kc ini is the crop coefficient at the beginning of the growth
period. kc mid is the crop coefficient in the middle of the growth period. kc end is the crop coefficient
at the end of the growth period.

Crop coefficients
Crop type kc ini kc mid kc end Maximum crop height [m]

Small vegetables 0.70 0.90-1.05 0.75-1.00 0.3-0.6
Vegs - Solanum 0.60 1.05-1.15 0.70-0.90 0.6-0.8

Vegs - Cucumber 0.40-0.60 0.85-1.00 0.60-0.90 0.3-0.4
Roots and Tubers 0.30-0.50 0.80-1.20 0.30-0.95 0.4-1.5

Legumes 0.40-0.50 1.00-1.15 0.30-1.10 0.4-1.0
Perennial Vegetables 0.40-0.60 0.85-1.15 0.30-1.10 0.2-0.8

Fibre crops 0.35 0.40-1.20 0.4-0.70 1.2-1.5
Oil crops 0.35 1.00-1.15 0.25-0.55 0.3-2.0
Cereals 0.30-1.05 1.00-1.20 0.25-1.05 1.0-4.0
Forages 0.40-0.95 0.50-1.20 0.50-1.15 0.1-1.2

Turf grass - cool season 0.90 0.95 0.95 0.10
Sugar cane 0.40 1.25 0.75 3.0

Tropical fruits and trees 0.50-1.10 0.30-1.20 0.30-1.15 0.6-8.0
Grapes and Berries 0.30 0.70-1.05 0.50-0.85 1.5-5.0

Fruit trees 0.40-1.00 0.45-1.20 0.45-1.05 2.0-10
Wetlands temperate climate 0.30-1.05 1.10-1.20 0.30-1.10 0.3-2.0

Open water <2 m depth
subhumid climate

tropics
- 1.05 1.05 -

Open water >5 m depth
clear of turbidity
temperate climate

- 0.65 1.25 -

2.6 Evapotranspirational measurements
2.6.1 Eddy covariance instrument

Eddy-covariance is a real-time sensor-based measurement of gasses. The measuring instrument
consists of a three-axis sonic anemometer that measures the speed and direction of the wind, and
an infrared gas analyzer that measures gas concentrations. A simplified figure of an open path EC
instrument used to gain data for this study is shown in figure 9. The measurements are taken with
a high frequency (10-20 Hz), and calculated into means of 30-minute intervals.
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Figure 9: Simple 3D drawing of an open-path eddy covariance instrument LICOR LI-7500S. The
anemometer is located to the top left, and the infrared gas analyzer is on the top right.

One way to understand how the measuring works, is to imagine that the gasses the EC instrument
measures are within a particular space. Inside this space, there are numerous rotating eddies
(currents) that transport these gasses. The vertical component of the moving gasses is the flux
that is of interest. Figure 10 shows a simple descriptive figure of how the eddies pass the eddy-flux
tower that measures the eddies carrying water vapor.

By having information about the wind and the concentration of water vapor, the EC instrument
calculates a mean of all the measurements to come to a net value of the flux. After these calcu-
lations, it is possible to tell how much of these gasses are absorbed into or released from the soil
and vegetation (Chatterjee & et.al, 2017).

The mounting height of the eddy-covariance instrument should be chosen considering the ecosystem
where it is installed. From Aubinet et al. (2012), the mounting height of the EC-instrument over
grassland should be hm > [d+4(hc-d)] where hc is the mean canopy height and should be less than or
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equal to 1.75 m. d is the zero plane displacement height. Over forested or more complex ecosystems,
the mounting height should be hm ≈ d+4(hc-d). For the most accurate EC measurements of an
area, the land has to be flat and consist of homogeneous vegetation. Environmental conditions
need to be steady as well (Chatterjee & et.al, 2017). As mentioned in the previous section, the
EC instrument is used to measure actual evapotranspiration ETa. In order to measure potential
evapotranspiration ETp, an evaporation pan can be used.

Figure 10: A flux-tower measuring the eddies carrying water vapor molecules.

2.6.2 Pan evaporation measurement

An evaporation pan is an instrument that measures evaporation, ETpan. This way of measuring
evaporation and estimating evapotranspiration has been important for farmers, water and irriga-
tion managers, and water resource project planning as it gives an idea about the water budget
in the local area and an indication of crop water usage (Smajstrla et al., 2000). Today, the data
gathered from long time series of pan evaporation plays an important role in the study of climate
change, and data can also be compared with modern EC instruments to find out how well this
type of measurement performs (which will be done in this thesis).

There are different kinds of evaporation pans used throughout the world, and there are ways to
convert measurements between these pans. The different pans have different ways of installation,
and there are about 50 different equations to estimate reference evapotranspiration, ET0, depending
on different assumptions and different meteorological data requirements (Grismer et al., 2002). One
of the many pan standards is the Class A evaporation pan used in the USA, set by the National
Weather Service. The Class A pan is a cylindrical tub made of galvanized steel with a diameter
of 120.7 cm and depth of 25 cm, which rests on a level wooden base, and is enclosed by chains to
avoid animals drinking from the pan (Farnsworth et al., 1982; Smajstrla et al., 2000).

The general equation for the reference evapotranspiration, ET0, from pan evaporation, ETpan, is
given as;

21



ET0 = kpEpan, (24)

where kp is the pan coefficient and Epan is the amount of evaporation from the pan. The pan
coefficient kp is a correction factor and depends on the meteorological and spatial conditions
surrounding the evaporation pan. Several equations have been made in order to estimate a value
for the pan coefficient, where many of them depend on daily mean relative humidity, daily mean
wind speed and fetch distance (Grismer et al., 2002). One of these equations for the Class A pan
coefficient that only depends on relative humidity, RH, as shown in equation 25 (Eagleman, 1967).
For the Class A pan, the pan coefficient varies between 0.35 and 0.85.

kp = 0.56 + 0.00275RH (25)

After calculating the reference evapotranspiration, ET0, the actual evapotranspiration, ETa can
be calculated by equation 23. The crop coefficient in equation 23 is a coefficient that depends on
the type of vegetation, and how far into the growing season the crop is.

2.6.3 Remote sensing

Remote sensing is a way to acquire data from areas and objects by measuring reflected and emitted
radiation using sensors (from radars, airplanes or satellites). The sensors detect and record emitted
energy from the surface, either passively (measuring reflected energy from the Sun on Earth’s
surface) or actively (measuring reflected energy from the satellite on the Earth’s surface). There
are three common classes of satellite orbits; low-Earth orbit which is from 160 to 2,000 km above
Earth’s surface, medium-Earth orbit which is from 2,000 to 35,500 km above Earth, and high-
Earth orbit which is above 35,500 km above Earth’s surface. The most commonly used orbit for
remote sensing is the low-Earth orbit with a polar-orbiting path (satellite orbits the Earth from
pole to pole) while the Earth rotates. This allows satellites to gain data for the entire globe rapidly
(NASA, n.d.).

Resolution from satellites determines the quality of the data gathered from the sensors, and varies
depending on the orbit and the type of sensor. The four types of resolutions are; radiometric,
spatial, spectral and temporal. Radiometric resolution is the bit resolution, which indicates how
many potential digital values a pixel can have. The higher the radiometric resolution, the easier it
is to distinguish slight differences in energy. Spatial resolution is the surface area each pixel covers.
The finer the spatial resolution (pixel covers the lowest possible amount of surface area), the higher
the detail of an image. Spectral resolution is the number of wavelength bands a sensor can discern.
A normal photo camera has 3 spectral bands that capture the wavelengths of visible light (red,
green and blue). Sensors on satellites can be multispectral with up to 10 wavelength bands, or even
hyperspectral with hundreds to thousands of wavelength bands including the infrared, ultraviolet
or even x-ray range. The more and narrower bands, the finer the spectral resolution. Temporal
resolution depends on a satellite’s orbit and its swath width. The resolution is the time it takes
for a satellite to revisit an observational area. The temporal resolution of polar satellites can vary
from 1 to 116 days. Temporal and spatial resolution are often inverse of each other due to the
fact that to acquire a high spatial resolution, the swath width has to be narrow, meaning that the
temporal resolution will have to be low, and vice versa (NASA, n.d.).
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Two satellites launched by NASA for remote sensing are Terra Satellite Platform, which launched
in 1999, and Aqua, which launched in 2002. Both satellites use a Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor. The satellites are part of a project to remote sense photosyn-
thesis and evapotranspiration for all biomes in a 15-year period. The University of Montana was
tasked with developing software and algorithms for the MODIS-based satellites (UMT, n.d.-a).
The algorithm for remote sensing evapotranspiration is MOD16. It has a spatial resolution of 1
km2 and a temporal resolution of 8 days (dataset in 8-day intervals). Evapotranspiration from
the MOD16 algorithm is based on the Penman-Monteith equation, and it needs inputs from the
satellite’s measurements and meteorological measurements from the ground to calculate this. A
flowchart of the algorithm is shown in figure 11. The dataset for evapotranspiration calculated by
the MOD16 algorithm has to be multiplied by 0.1 to get the real ET values (UMT, n.d.-b), and
the ET values are summations of the 8-day interval (W.R et al., 2021).

Figure 11: Flowchart of the MOD16 algorithm to calculate actual ET. The green boxes are remote
sensing inputs with 8 day intervals. The blue boxes are meteorological inputs with daily intervals.
The purple boxes are intermediate algorithm calculations, which are done on daily basis. The
yellow box is the final algorithm output in 8 day resolution. FPAR stands for Fraction of Absorbed
Photosynthetically Active Radiation. Figure is inspired from W.R et al. (2021).
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3 Methods and Materials
The dataset provided for the analysis and evaluation of the Penman-Monteith and Priestley-Taylor
model, consists of several measurements from different meteorological instruments obtained from
Søråsjordet. Søråsjordet is an agricultural site of about 500 acres (the meteorological site disposes
12 acres) in Ås, Viken county, Norway. Its coordinates are N59°39’37” E10°46’54” and it is located
93.9m above sea level. The vegetation is relatively homogeneous and consists mostly of short grass,
and the field is relatively plane (slope of 1% towards southwest) (NMBU, 2009). The data used
in the evaluation spans from the 29th of June 2021 to the 27th of September 2021 and the 16th
of June 2022 to the 25th of August 2021. These time periods were chosen because of missing ET
measurements in the beginning of June for both years, and at the end of August in 2022. There
were also some NaN values in these timelines that had to be removed, and there were dates with
precipitation that had to be handled.

The eddy covariance instrument used for ET measurements at Søråsjordet is an open-path infrared
gas analyzer (LICOR LI-7500DS). The EC instrument was mounted at a height of 6m (see figure
12). Since the EC instrument is an open-path gas analyzer kind, it means that air is not sucked into
a sampling chamber, but is directly sampled, making measurements during precipitation invalid,
since droplets will obstruct the measurement path.

3.1 Meteorology during measuring period
The year 2021 was warmer and drier than the normal. For the whole country, the mean temperature
was 1.1 ◦C above the normal, and the precipitation was 15 % less than the normal (Grinde et al.,
2021). 2022 was also warmer than normal, with a mean temperature for the whole country of 0.7
◦C above the normal. Even though the precipitation for the country as a whole was 15 % above
the normal, the eastern part of the country had a summer that was classified as "very dry" or
"extremely dry" (Mamen et al., 2022).

Measurements from Søråsfeltet station indicate that the temperature during summer 2021 in Ås
was higher than normal. The driest month in 2021 was August, with a total accumulated precipi-
tation of 3.6 mm. This is 3.74 % of the normal value of 96.3 mm. July had a total accumulated
precipitation of 90.3 mm, 8.2 mm more than the normal value. June had 58.4 % less precipitation
than the normal of 76.9 mm (Wolff & Grimenes, 2022). In the summer of 2022, the mean temper-
ature of July was 16.6 ◦C, which is 0.2 ◦C lower than the normal, while the mean temperature of
June and August were 1.3 ◦C and 0.8 ◦C higher than the normal respectively. June was drier than
normal, with 5.5 mm less accumulated precipitation than normal. July had a total accumulated
precipitation of 93.6 mm, 11.5 mm more than normal. August 2022 had only 1/3 of its normal
precipitation (Wolff, 2023). The mean temperature and precipitation of summers 2021 and 2022
with the monthly normal are summarized in table 3.

Table 3: Monthly mean temperatures and total accumulated precipitation.

2021 2022 Normal
June July August June July August June July August

Temperature[◦C] 16.2 18.9 15.5 15.8 16.6 16.5 14.5 16.8 15.7
Precipitation[mm] 32.0 90.3 3.6 71.4 93.6 24.6 76.9 82.1 96.3
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Figure 12: A picture of the eddy-covariance instrument (marked with the red ring) mounted on the
eddy-flux tower.

3.2 Meteorological parameters correlation
Looking at the Priestley-Taylor and Penman-Monteith equations (eq. 14, 19, 20 and 22) it is
possible to see what kind of meteorological parameters they depend on. Before working on these
equations, a quick investigation of the parameters and their correlation to evapotranspiration was
done. Scatter plots of net radiation Rn, wind speed U , relative humidity RH and ground heat flux
G compared to ET were made to show how the parameters correlate to ET. Spearman’s’s rank
correlation coefficient with the p-value was calculated for each parameter. From the Priestley-
Taylor equation (eq. 14), one can see that there should be a linear correlation between Rn and
ET, so a linear regression was also done for this parameter.

3.3 Creating and evaluating Priestley-Taylor models
The analysis of the dataset and the evaluation of the ET models were performed with the program-
ming tool Python 3.8. Some datasets were in intervals of 10 minutes, and some were in intervals
of 30 minutes. To make a consistent dataframe from these datasets, the 10-minute datasets had
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to be turned into 30-minute datasets. Depending on the parameter, the values were either turned
into mean values or summation of three 10-minute data points. For example; air temperature and
wind speed were turned into mean values, while precipitation was summed. None valid values in
the datasets were marked with the value "-9999" beforehand, which is the logger’s way of marking
an invalid measurement. These values were replaced with NaN values. Ultimately, all datasets
were saved into one dataframe, and the time resolution was changed to one-hour.

A dataframe with a daily resolution was also generated to analyze how the Priestley-Taylor model
would react to daily values. Mean daily and daily summed values were generated accordingly,
depending on the parameter.

As stated in the theory, the value of α should be adjusted to get good models for the spatiotemporal
application. Four different PT models were created, and compared. One model based on Priestley
& Taylor (1972), where α is (as mentioned in section 2.3.1) the mean estimated value of 1.26. This
model will be named "PT1".

A second model based on the approach from Cristea et al. (2013), where α is calculated based
on local variables as mean relative humidity and mean wind speed, and calculated with equation
18. This model will be named "PT2". Since both of these approaches (PT1 and PT2) have no set
value of γ, the value of γ was calculated with equation 15.

The third PT model calculated α and γ using Python’s "scipy.optimize curve_fit" function. The
curve_fit function takes in the model function, the independent variables (in this case, irradiation
and air temperature), and the y-data (measured ET-values). The function returns the best-fit
parameters (α and γ) by the least-squares method. Different values of α and γ were calculated for
each month and whether there was daylight. This model will be named "PT3".

In the fourth PT model, curve fitting was used for α only, while γ was calculated using equation
15. Again, different values of α were created depending on the month and daylight. This model
will be named "PT4".

For both curve-fitting models (PT3 and PT4), irradiation, temperature and ET values were used
as data for the two months of the consecutive years. This means that data for both June 2021
and June 2022 were used together to calculate α and γ values for June. The same goes for July
and August. This approach was chosen to make the values of α and γ as general as possible by
using as large datasets as possible. To make the models as precise as possible, extreme ET values
above 1 mm/h and below -0.2 mm/h, and data that coincide when precipitation above 1 mm were
removed from the y-data during the curve-fitting. The removal of data at the same time as when
there is precipitation is because of the limitation of the EC instrument.

A fifth PT model based on daily values was created in the same manner as PT4. Curve fitting
was used to calculate values for α depending on the month, and data for both 2021 and 2022 was
used. The difference is that extreme values and times with precipitation were not removed, since
daily values would not be as affected by these incidents. The model made from this approach will
be named "PT5"

After creating the five models, they were each compared with the ET measurements, visually
with plots, mathematically by calculating the mean difference between model and measurements,
and statistically through root-mean-squared error. All comparisons were made with data with no
precipitation, except for PT5.

26



3.4 Creating and evaluating Penman-Monteith models
The datasets used for the Penman-Monteith modeling are the same as the ones used to create and
evaluate the Priestley-Taylor models. The cleanup of these datasets is done in the same manner
as for the datasets used in the PT modeling. Values in 10-minute temporal resolution were turned
into 30-minute resolution, and invalid values were turned into NaN values. All datasets were then
saved as one dataframe. The time resolution of the dataframe was then changed to one-hour
resolution.

To calculate actual evapotranspiration and reference evapotranspiration with the daily PM equa-
tions (eq. 19 and 20), the hourly dataframe was transformed into a dataframe with a daily
resolution. For the reference evapotranspiration, the crop coefficient was chosen as kc = 0.9, based
on table 2. This value is for cool-season turf grass, which is a type of grass that grows at higher
latitudes, such as bluegrass, ryegrass and fescue. Estimated actual evapotranspiration from using
equation 19 and equation 20 with kc = 0.9 was plotted with EC measurements. The results were
also compared to EC measurements by calculating the mean difference and RMSE. Data for both
2021 and 2022 were used in the comparison. The PM models from these approaches are named
"PMdaily1" for equation 19 and "PMdaily2" for equation 20 with kc = 0.9.

The PM model based on equation 22, was calculated using the hourly dataframe, and with two
different crop coefficients. One as kc = 0.9, which is for cool season turf grass according to table
2. Another PM model used a crop coefficient calculated using the built-in function in Python
"scipy.optimize curve_fit", to find a more fitting crop coefficient. To get a reasonable estimate
of a crop coefficient value, times with precipitation were removed from the dataframe used in
the curve-fitting to calculate the crop coefficient. Data for both 2021 and 2022 was used in the
calculation. The results for both approaches were then plotted, and mean difference and RMSE
values between model values and EC measurements were calculated. The mean difference and
RMSE are calculated for the data without precipitation, to avoid errors that might occur due to
the limitation of the EC instrument. The PM model from the approach with a crop coefficient of
0.9 is named "PMhourly1" and the PM model from the approach of calculating a crop coefficient
using curve fitting is named "PMhourly2".

3.5 MODIS data
As the theory mentions, the MODIS algorithm calculates actual evapotranspiration using the
Penman-Monteith equation. It needs inputs from the satellite’s measurements and meteorological
measurements from the ground to calculate this. The ground measurements needed are air pressure,
air temperature, air humidity, and radiation. From the sensors on the satellite, the inputs are the
type of land cover, leaf area index and albedo.

For the evaluation of the remote sensing from MODIS, actual evapotranspiration data from MODIS
is compared to evapotranspiration measurements from the EC instrument. The EC data was
summed into 8-day accumulated values, because the data from MODIS has a 8-day temporal
resolution (W.R et al., 2021).

While looking into the datasets it was noticed that the timelines between the MODIS data and
EC data were offset. Before calculating the differences between MODIS data and EC data, the
measurements from EC were offset with -3 days for the 2021 data and +2 days for the 2022 data,
so that the values from MODIS and the EC instrument would be on the same dates. Dates not
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common between MODIS and EC were removed before calculating the differences.

3.6 Pan evaporation measurements from Søråsjordet
The evaporation pan used at Søråsjordet is a pan that has been developed and built at the Nor-
wegian University of Life Sciences. The evaporation pan does the measurements automatically.
Evaporation is measured in mm with an uncertainty of ± 0.1 mm. The evaporation is measured
with a floater that measures the height of the water in the pan, and the pan is buried into the
ground. Automatic corrections are made in case of precipitation by subtracting the measured
precipitation from the measured water level in the pan. If there is little water left in the pan, the
pan is refilled. The time index of the measurements are in Norwegian normal time, or Central
European Time (CET). Figure 13 shows a drawn figure of the pan. Measurements are not done
between November and March due to the possibility of the water freezing (NMBU, 2014).

Figure 13: A simplified 3D figure of the evaporation pan used at Søråsfeltet.

The pan evaporation measurements, ETpan, was first compared with the eddy-covariance measure-
ments, ETa, visually to see how much they coincide with each other. Hourly and daily values of
ETpan were compared to ETa values from the EC instrument. Periods with missing data from
the EC instrument were removed (ref. section 3.3), and coinciding pan measurements were also
removed. Extreme outliers in the pan measurements were also removed. The dates of these
measurements are mentioned in section 4.1.2 and discussed in section 5.1.2. Since the pan mea-
surements were in CET, and the measurements from the EC instrument were in Central European
Summer Time (CEST), the time index of the pan measurements were shifted with -1 hour.

Reference evapotranspiration, ET0, was calculated from the pan measurements, ETpan, by equation
24 . The pan coefficient was calculated with equation 25 using hourly relative humidity values.
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The reference evapotranspiration, ET0 was compared to EC measurements, ETa (both hourly
and daily). After that, estimates of actual evapotranspiration were calculated using equation 23.
The first estimates of actual evapotranspiration, ETa1, were calculated using a crop coefficient,
kc, of 0.9 (which is for cool season turf grass, ref. table 2). The second estimates of actual
evapotranspiration, ETa2 were calculated using the crop coefficient found from the curve-fitting
approach for the Penman-Monteith model PMhourly2 (ref. section 3.4). The idea behind using
the crop coefficient from the PMhourly2 model, was to see if the estimates of ETa2 would be more
accurate than the estimates of ETa1. RMSE values were calculated when comparing ETa from the
EC instrument with ETpan, ET0, ETa1 and ETa2.
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4 Results

4.1 Presenting the data
As there are six plots for each parameter (one for each summer month of 2021 and 2022), the plots
for this sub-section have to be looked up in Appendix A.

4.1.1 Evapotranspiration

When looking into the figures 39 to 44, there are some distinguishing features. First of all, the daily
oscillation is very much apparent. It is possible to see that ET is going on during the daytime, and
little to no ET during nighttime. It is possible to see that most ET values are between 0 mm/h
and 0.4 mm/h.

The summer of 2021 had 4 days where the ET was above 0.4 mm/h, while the summer of 2022
had 22 days where the ET was above 4 mm/h. In 2021 the ET increased slightly from June into
about the 5th of July, and then it slowly decreased again from about the 17th of July throughout
August. For 2022 it looks more as if the ET is more stable with peaks at about 0.4 mm/h through
June and July, except for the extremes on the 13th of July and 25th of July. August 2022 has a
lower ET, with peak values between 0.2 and 0.3 mm/h.

There are extreme dips in ET in 2021. These happen between the 10th and 11th of July, the night
between the 14th and 15th of July, and the night between the 10th and 11th of August. Extreme
dips in ET during 2022 occurred between the 27th and 28th of June, between the 31st of July and
the 1st of August, the night between the 2nd and 3rd of August, and the 11th of August.

4.1.2 Pan evaporation

As with the ET data, the pan evaporation has a daily oscillation, which can be seen in figures
45 to 50. One can observe spikes in evaporation happening during daytime, and less evaporation
during nighttime. Most spikes are in the range between 0.25 and 0.5 mm/h.

The summer of 2021 had about 18 days where the measured evaporation was above 0.5 mm/h,
while the summer of 2022 had about 20 days where the measured evaporation was above 0.5 mm/h.
Extremes with measured evaporation above 1 mm/h happened on the 21st and 31st of July 2021,
the 16th and 17th of August 2021, the 18th, 29th and 30th of July 2022, and the 22nd and 26th
of August 2022.

Low daytime peak values (below 0.2 mm/h) occurred on the 10th of July 2021, 26th of June 2022,
21st of July 2022, and 18th of August 2022.

4.1.3 Accumulated ET, Evaporation and Precipitation

The plots of accumulated evapotranspiration and precipitation have different beginnings of mea-
surement and ends of measurement, the only month that can be compared between 2021 and 2022
is July. From the plots in figure 14 and 15, one can see that the accumulated evapotranspiration
in July 2021 was about 70 mm and about 90 mm in July 2022. The accumulated precipitation
was about 90 mm for both July 2021 and July 2022. The accumulated evaporation in July 2021
was about 130 mm and about 120 mm in July 2022.
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Figure 14: Daily accumulated evapotranspiration (blue), precipitation (red) and pan evaporation
(green) during summer 2021.

Figure 15: Daily accumulated evapotranspiration (blue), precipitation (red) and pan evaporation
(green) during summer 2022.
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Figure 16: Every July’s accumulated precipitation (red) and pan evaporation (green) between 1997
and 2021. Mean precipitation (red line) and mean pan evaporation (green line). 75 and 25 per-
centiles as dashed lines.

The plot in figure 16 shows the accumulated precipitation and evaporation for each month of July
since 1997. The straight horizontal lines are mean values and the dashed lines are 25 and 75
percentiles. One can see that there are some missing data, since the evaporation values for 2005,
2008, 2009 and 2010 are zero. The mean evaporation line in the plot is excluding these zero values.
Excluding the zero evaporation values, the evaporation values do not vary that much, as the 25
percentile is at about 85 mm and the 75 percentile is at 120 mm. There is one extreme deviation
in 2018, where the evaporation was just above 200 mm. Thus, the measured values in July 2021
and 2022 are within the higher range of normal evaporation. The accumulated precipitation has a
lot of variation for each July, except for 2016, 2017, 2018 and 2019. The accumulated precipitation
for each year has a 75 percentile at about 115 mm and a 25 percentile at about 50 mm. The
accumulated precipitation from July 2021 and 2022 is about at the mean for the accumulated
precipitation in each July since 1997.

4.1.4 Net radiation

Looking into the figures from figure 51 to figure 56, as with the ET, the daily oscillations are very
apparent. It is visible that there is positive net radiation during daytime, and slight negative net
radiation during nighttime. It is possible to see that for both 2021 and 2022, most net radiation
peaks are in the range between 400 and 500 W/m2. There are some days where the peak values
are below 300 W/m2, which might indicate days with overcast.

Some extreme low values occurred on the 10th of July 2021, 27th of July 2021, 29th of July 2021,
22nd of July 2022, and 25th of July 2022.
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4.1.5 Ground heat flux

Exploring the plots from figure 57 to figure 62, there is a daily oscillation as with ET and net
radiation. As with net radiation, the values of ground heat flux are positive during the daytime
and negative during the nighttime. Taking the theory from section 2.1 into account, it is a logical
trend, as the soil will consume and store thermal energy during daytime, and release stored thermal
energy during nighttime.

Most of the peak values of ground heat flux appear to be between 30 to 60 W/m2, while most of
the negative dips are at about -20 W/mm. This is true for both summers of 2021 and 2022.

Some low peaks occur on the 10th of July 2021, 27th of July 2021, 29th of July 2021, 1st of August
2021, 27th of August 2021, 22nd of July 2022, and 25th of July 2022. These dates are the same as
the ones mentioned in the previous section, when low peaks of net radiation were mentioned.

4.1.6 Air temperature

The plotted air temperature data from figure 63 to figure 68 show daily oscillation, with high
temperature during daytime and low temperature during nighttime. From the plot in figure 64
of July 2021, one can see that the month was very warm, with 24 days where the measured
temperature was above 20 ◦C. Compared to July 2022, one can see in the plot in figure 67 that
it had 17 days with a measured temperature above 20 ◦C. Of the warm days in July 2021, 9 days
had measured temperatures above 25 ◦C, while July 2022 had only one day with a measured air
temperature above 25◦C. All days in the summer of 2021 and 2022 have temperatures above 15
◦C during daytime.

4.1.7 Air pressure

In contrast to the previous parameters that have been looked into, air pressure does not oscillate
on a daily basis. This can be viewed in the plots in figures from figure 69 to figure 74. Most of the
measured air pressures are between 99.5 kPa and 101 kPa. Very low air pressure (below 99 kPa)
occurred between the 29th of July 2021 and the 2nd of August 2021, between the 18th and 19th
of August 2021, and between the 25th and 26th of July 2022. Something noticeable for all plots is
that almost all measured air pressures are below the average sea-level atmospheric pressure, which
is approximately 101.3 kPa.

4.1.8 Vapor pressure deficit

Looking at the plots from figure 75 to figure 80, there is a noticeable daily oscillation, with peaks
during daytime and dips during nighttime. Right of the bat, one can see measuring errors between
the 27th and 28th of June 2022 and between the 2nd and 3rd of August 2022, where the vapor
pressure deficit drops below 0 kPa. Most of the peaks of measured vapor pressure deficit occur in
the range between 1 and 2 kPa. Some noticeable high values (above 2 kPa) occurred on the 3rd,
14th and 25th of July 2021, and on the 12th and 14th of August 2022.

4.1.9 Relative humidity

The relative humidity plots from figure 81 to figure 86 show an daily oscillation. However, compared
to all the other parameters that had daily oscillations with peaks during daytime and dips during
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nighttime, the relative humidity is the inverse of that, with peaks during nighttime and dips during
daytime (most of the time). Noticeable features are the two long-lasting values of 100 % relative
humidity during the 27th and 28th of June 2022, and between the 2nd and 3rd of August 2022.
From the previous section, these dates are also the dates with measuring errors of vapor pressure
deficit. Low values (below 30 %) of relative humidity occurred on the 18th and 20th of June 2022,
the 23rd of July 2022, and the 8th, 9th, 11th and 23rd of August 2022.

4.1.10 Precipitation

Looking at the accumulated precipitation plots from figure 87 to figure 92, one can see that the
total accumulated precipitation for July 2021 and July 2022 was about 90 mm. It is also visible
that August 2021 was very dry with only about 3.6 mm of precipitation. July 2021 had a dry
period between the 15th and 26th. August 2022 had a dry period between the 5th and 16th.

4.1.11 Daylight

Looking at the daylight plots from figure 93 to figure 98, one can see that the amount of daylight
is longer than the number of hours without daylight. This should not be a surprise since the
measurements are during the summer in the northern hemisphere. A (slightly) noticeable feature
on the plots of July 2021 and 2022 is that the number of hours without daylight is more extended
by the end of the month, than at the beginning of the month. This should be expected as the
amount of daylight should decrease after the 21st of June.

4.2 Evaluation of parameter correlation
The scatterplot in figure 17 shows a linear correlation between net radiation, Rn, and evapotran-
spiration, ET . The result from the linear regression shows a strong linear correlation between net
radiation and evapotranspiration as the R2 value is 0.710. The regression line between ET and Rn

has the equation; ET = 0.0359 + 0.0007Rn. The Spearman’s rank correlation coefficient is 0.866
with a p-value of 0.0. The scatterplot in figure 18 shows the correlation between wind speed, U ,
and evapotranspiration, ET . A noticeable feature from the plot is that for wind speeds below 4
m/s, there is a tighter gathering of ET values around zero. The Spearman’s correlation coefficient
is 0.527 with a p-value of 0.0. The scatterplot inf figure 19 shows the correlation between relative
humidity, RH, and evapotranspiration, ET . From the plot, it is visible that there is a lot of
scattering for values of RH below 75 %. One can also see some linearity on the top part of the
scatterplot, and that ET decreases with increasing RH. The Spearman’s rank correlation coeffi-
cient is -0.575 with a p-value of 0.0. The scatterplot in figure 20 shows the correlation between
ground heat flux, G, and evapotranspiration, ET . One can see in the plot that there is a tight
gathering of ET values around zero for G values below 20 W/m2. There is a lot of scattering in
the plot, but a noticeable increase in the ET values as the G values increase. The Spearman’s rank
correlation coefficient is 0.751 with a p-value of 0.0. Table 4 lists the Spearman’s rank correlation
coefficients.
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Figure 17: Scatter plot of net radiation Rn vs evapotranspiration with the regression line in red.

Figure 18: Scatter plot of wind speed vs evapotranspiration.
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Figure 19: Scatter plot of relative humidity vs evapotranspiration.

Figure 20: Scatter plot of ground heat flux, G, vs evapotranspiration.

Table 4: Spearman’s rank correlation coefficient values of different meteorological parameters com-
pared to evapotranspiration, ET . Rn is net radiation, U is wind speed, RH is relative humidity,
and G is ground heat flux.

Spearman’s rank correlation coefficients
Parameter Rn U RH G

Coeff 0.866 0.527 -0.575 0.751
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4.3 Evaluation of Priestley-Taylor
The five PT models mentioned in section 3.3 were compared with EC measurements of actual
evapotranspiration, ETa. To visually show how the PT models perform they were plotted. Since
there are six plots for each model (one for each summer month in 2021 and 2022), the full plots
can be viewed in Appendix B1, while small sections of the plots will be shown here.

The PT-model with literature value α = 1.26 is shown in figure 21 and in Appendix B1 from
figure 99 to figure 104. The PT-model using the approach from Cristea et al. (2013) to calculate
α is shown in figure 22 and in Appendix B1 from figure 105 to figure 110. The PT model using
curve-fitting to calculate values for α and γ is shown in figure 24 and in Appendix B1 from figure
111 to figure 116. And the PT model using curve-fitting to calculate values for only α is shown in
figure 25 and Appendix B1 from figure 117 to figure 122. The last PT model, which is based on
daily values and uses curve-fitting to calculate only α is shown in figure 27. The four previous PT
models are also shown with daily values in figure 27, so all models can be visually compared. The
α and γ values for each model are displayed in tables 5 and 6.

Figure 21: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT1 model. This is just a section of the whole timeline plot where each point represents an
hour.
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Figure 22: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT2 model. This is just a section of the whole timeline plot where each point represents an
hour.

Some noticeable features in both PT1 and PT2 are that both models tend to overestimate evap-
otranspiration during the daytime. Another feature is the estimation of more negative evapo-
transpiration during nighttime compared to the measurements. Both models have a similar trend
compared to the measurements. The plot from figure 21 is plotted together with net radiation,
Rn in figure 23, to display how the model correlates with net radiation. As shown in figure 23,
the deep slopes with negative values in both PT1 and PT2 correlate with the negative values of
net radiation. From the full plots from figure 99 to figure 110 in Appendix B1, one can see that
the estimated ET is close to the measured ET on the following dates; 10th, 27th and 29th of July
2021, 27th of June 2022, and 22nd of July 2022. There is also a low estimation of ET on the 25th
of July 2022.
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Figure 23: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT1 model in the upper plot. Net radiation measurements (in green) in the lower plot.

Figure 24: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT3 model. This is just a section of the whole timeline plot where each point represents an
hour.
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Figure 25: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT4 model. This is just a section of the whole timeline plot where each point represents an
hour.

Noticeable features from the plots of PT3 and PT4 are that the estimated evapotranspiration will
often be underestimated during daytime. The other noticeable feature is that both models will
have two "fangs" during nighttime, one at the beginning and one at the end of the night. Figure
26 shows the correlation between the estimated values from PT3, the net radiation, Rn, and if
daylight is registered. These plots show that the net radiation becomes negative at 20:00 and stays
negative until 05:00 the next day. The value of daylight is not "True" (in a binary language) at
22:00, and is not "True" until 03:00 the next day. The two dips in the estimated evapotranspiration
values occur at 21:00 and 03:00 the next day. Another interesting feature in the full plots from
figure 111 to figure 122 in Appendix B1 are estimated ET values that are much lower than the
measured ET values. This occurs on the following dates: the 27th of June 2022, and the 13th,
22nd and 25th of July 2022.
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Figure 26: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PT3 model in the upper plot. Net radiation (in green) in the middle plot. Daylight value (in
purple) in the lower plot.

Figure 27: Comparison of measured ET-values (in blue) and the estimated ET-values from PT1
(red), PT2 (green), PT3 (purple), PT4 (yellow) and PT5 (teal). This is just a section of the whole
timeline plot where each point represents a day.

From the plot in figure 27, one can see that the PT1 and PT2 will often overestimate ET values,
ranging from a factor of two to a factor of five. PT3 and PT4 will sometimes over- and underesti-
mate ET values compared to EC measurements. However, the deviation from the measurements
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is minuscule compared to PT1 and PT2, with a difference ranging from 0 to 2 mm/day. The daily
PT model (PT5) has a similar deviation from the measurements of PT3 and PT4. A noticeable
trend is that the ET values from PT1 and PT2 are closer to EC measurements when the measured
values drop. The differences in the dropping ET values can range from 0 to about 4 mm/day. By
looking into the full plots in Appendix B1 from figure 123 to figure 124, one can see that the daily
PT model (PT5) will often overestimate ET values in 2021, and often underestimate ET values in
2022.

From the full plots in Appendix B1 from figure 123 to figure 124, one can see that the dates that
have low estimated ET values in all PT models, and which make PT1 and PT2 estimate ET values
closer to EC measurements, happen on the following dates; 10th, 27th and 29th of July 2021. 2nd
of August 2021. 26th and 27th of June 2022. 3rd, 22nd and 25th of July 2022. 2nd, 4th, 16th, 18th
and 21st of August 2022. By comparing these dates with the net radiation plots and precipitation
plots in Appendix A (fig. 51-56 and 87-92) and looking into figure 27, which is a section of the
time-series, one can see that the dates mentioned are the same dates as when the net radiation is
low, and when there is precipitation.

Table 5: α and γ values for the first four PT models.

α and γ values
Daylight

Model PT1 PT2 PT3 PT4
Month α γ α γ α γ α γ
June 1.26 64.46-66.72 1.359 64.46-66.72 0.0010 0.0260 0.3789 65.27-66.24
July 1.26 64.46-66.72 1.359 64.46-66.72 0.0006 -0.0432 0.3350 64.46-66.34

August 1.26 64.46-66.72 1.359 64.46-66.72 0.0004 -0.0489 0.2755 64.53-66.69
No daylight

Model PT1 PT2 PT3 PT4
Month α γ α γ α γ α γ
June 1.26 64.46-66.72 1.359 64.46-66.72 -69.79 57060 -0.0807 65.33-66.17
July 1.26 64.46-66.72 1.359 64.46-66.72 -102.0 62822 -0.1083 64.48-66.38

August 1.26 64.46-66.72 1.359 64.46-66.72 -7.945 13933 -0.0382 64.53-66.67

Table 6: α and γ values for the daily based PT model

α and γ values for PT5
Month α γ
June 11.03 65.33-66.17
July 12.12 64.52-66.31

August 11.12 64.76-66.66

From table 5, one can see that the calculated value for α using the approach from Cristea et al.
(2013) with equation 18, the value is 0.099 higher than the literature value of 1.26. The α values
for PT3 and PT4 are negative at night. The values of α for PT3 during daytime are in the 10−4

order of magnitude, while the γ values are in the 10−2 order of magnitude. Also, the values of γ for
PT3 are negative during the daytime in July and August. Values of γ for PT3 during nighttime
are in the 104 order of magnitude. Values of α for PT4 are in the 10−1 order of magnitude during
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daytime. The γ values for PT1, PT2 and PT4 range between 64 and 67 kPa/◦C. For PT5, the
values of α are in the range of about 11 and 12, and the values of γ are in the range of about 64
and 67 kPa/◦C.

The root-mean-squared error analysis on these models is listed in table 7. This analysis found
that the approach of using curve-fitting to find values for α and γ, also known as PT3, yields the
highest accuracy with an RMSE value of 0.0032. The approach of the model PT4 yielded the
second-best accuracy with an RMSE value of 0.0043. The approach of the model PT3 yielded
the worst accuracy with an RMSE value of 0.2312. Model PT1 yielded the second-worst accuracy
with an RMSE value of 0.1898. Since PT5 is based on daily values its RMSE and mean difference
value are not comparable to the other models.

Table 7: RMSE and mean difference values of the five Priestley-Taylor models. For PT1-PT4 the
mean difference is in mm/h, while for PT5 it is mm/day.

Comparison method
Model RMSE Mean diff
PT1 0.1898 0.280
PT2 0.2312 0.309
PT3 0.0032 0.039
PT4 0.0043 0.045
PT5 0.7518 0.672

4.4 Evaluation of Penman-Monteith model
The four PM models mentioned in section 3.4 were compared with EC measurements of actual
evapotranspiration, ETa. To visually show how the PM models perform they were plotted. Since
there are six plots for each model (one for each summer month in 2021 and 2022), the full plots
can be viewed in Appendix B2, while small sections of the plots will be shown here.

The plots comparing EC measurements and PM-model using equation 22 and crop coefficient of
0.9 are shown in figure 28 and in Appendix B2 from figure 125 to figure 130. By using curve-
fitting to calculate a more suitable value for the crop coefficient, the PMhourly2 model uses a crop
coefficient of 0.588. The plots comparing EC measurements and PM-model using equation 22 and
crop coefficient 0.588 are shown in figure 29 and in Appendix B2 from figure 131 to figure 136.
The PMhourly1 model and PMhourly2 model are made into daily resolution and plotted together
with PMdaily2 and EC measurements in figure 30 and in Appendix B2 from figure 137 to figure
138. Because the PMdaily1 model has such a significant error, it is plotted separately in figure 31
and in Appendix B2 from figure 139 to figure 140. The daily values estimated from PMdaily1 are
in the 10−1 mm/day order of magnitude.
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Figure 28: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PMhourly1 model. This is just a section of the whole timeline plot where each point represents
an hour.

Figure 29: Comparison of measured ET-values (in blue) and the estimated ET-values (in red) from
the PMhourly2 model. This is just a section of the whole timeline plot where each point represents
an hour.

As one can see from the plot in figure 30, the PMhourly1 model tends to overestimate ET values
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during daytime, and underestimate ET values during nighttime. One can also see some parts
where there is missing data. One can also see that the PMhourly1 model follows the trend of the
EC measurements.

From the plot in figure 29, one can see that the estimated values from the PMhourly2 model fit
better to the measurements compared to PMhourly1. One can also see that the PMhourly2 model
tends to underestimate ET values compared to the EC measurements. One can also see that
the PMhourly2 model also underestimates ET values during the night, but not as much as the
PMhourly1 model. In the plot, one can see the same missing values as in the PMhourly1 model.

In Appendix B2 from figure 125 to figure 136 one can see that both PMhourly1 and PMhourly2,
have some dates with very low values of ET. These are the following dates; 10th, 27th and 29th
of July 2021. 26th and 27th of June 2022. 1st, 3rd, 22nd and 25th of July 2022. And nights to
the 3rd, 16th, and 18th of August 2022. These dates are the same as the PT models estimated
with low ET values. There is no need to show the net radiation plot and precipitation plot with
the PM models, as the correlation on the dates mentioned is the same for PM models as with the
PT models.

Figure 30: Comparison of measured ET-values (in blue) and the estimated ET-values from
PMhourly1 (red), PMhourly2 (green), and PMdaily2(purple). This is just a section of the whole
timeline plot where each point represents a day.

From the plots in figure 30 and in Appendix B2 from figure 137 to figure 138, one can see that the
PMdaily2 model (PM3 in the figures) is, for the most part, underestimating the daily ET values.
The same is true for the PMhourly2 model (PM2 in figures). On a daily scale, the PMhourly1
model (PM1) tends to overestimate the ET values.

45



Figure 31: Comparison of measured ET-values (in blue) and the estimated ET-values from PM-
daily1 (red). This is just a section of the whole timeline plot where each point represents a day.

The results from doing root-mean-squared error analysis and calculating the mean difference of
each model are summarized in table 8. The PMhourly1 model compared to EC measurements
resulted in an RMSE value of 0.0108 and a mean difference of 0.074 mm/h. The PMhourly2 model
compared to EC measurements resulted in an RMSE value of 0.0039 and a mean difference of
0.044 mm/h, which is better than the PMhourly1 model. The PMdaily2 model compared to EC
measurements resulted in an RMSE value of 0.8759 and a mean difference of 0.778 mm/day. The
PMdaily1 model compared to the EC measurements resulted in an RMSE value of 5.7660 and a
mean difference of 2.220 mm/day.

Table 8: RMSE and mean difference values of the four Penman-Monteith models. For the hourly
models the mean difference is in mm/h, while it is mm/day for the daily models.

Comparison method
Model RMSE Mean diff

PMdaily1 5.7660 2.220
PMdaily2 0.8759 0.778

PMhourly1 0.0108 0.074
PMhourly2 0.0039 0.044

4.5 Evaluation of MODIS
The plot comparing the measurements from MODIS and the EC instrument is shown in figure 32.
As shown in the plot, there is an offset of three days between the data points from MODIS and the
EC instrument in 2021, and an offset of two days in 2022. This offset is due to a difference in what
date the summation of 8 days starts and ends between MODIS data and EC data. The plots show
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that the ET values from MODIS are always higher than those from the EC instrument. However,
both the MODIS and EC data have a similar trend in the way that the ET values are high in
July and decrease throughout August. After offsetting the timelines of the EC measurements,
the difference between MODIS and EC measurements of actual ET in 2021 were calculated to be
between 3.2 and 9.8 mm/8days. In 2022, the difference between MODIS and EC measurements
were calculated to be between 0.5 and 9.9 mm/8days. The mean difference in 2021 was therefore
6.2 mm/8days and 4.6 mm/8days in 2022. This means the MODIS data overestimates EC mea-
surements by about 30-40 %. The RMSE values between MODIS and EC data for 2021 and 2022
are 44 and 33.

Figure 32: The plot shows ET values from MODIS (blue) and EC instrument (red)

4.6 Evaluation of pan evaporation measurements
The pan evaporation measurements were compared with EC measurements visually by plotting
them. The plots are presented in hourly and daily resolution, where full plots in hourly resolution
can be found in Appendix C. The daily pan evaporation, ETpan, and daily ETa from the EC
instrument for 2021 and 2022 are shown in figure 33, while the hourly values are shown in Appendix
C from figure 141 to figure 146. The daily reference evapotranspiration, ET0, and ETa from the EC
instrument for 2021 and 2022 are shown in figure 34, while the hourly values shown in Appendix C
from figure 147 to figure 152. The daily estimates of actual evapotranspiration, ETa1, using crop
coefficient 0.9, and ETa from the EC instrument for 2021 and 2022 are shown in figure 35, while
the hourly values are shown in Appendix C from figure 153 to figure 158. The daily estimates of
actual evapotranspiration, ETa2, using crop coefficient 0.588, and ETa from the EC instrument
for 2021 and 2022 are shown in figure 36, while the hourly values are shown in Appendix C from
figure 159 to figure 164.
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Figure 33: Comparison of measured ET-values (in blue) and the pan evaporation values (red). The
plot on top is for 2021 and the bottom plot is for 2022. Time resolution is in days.

From figure 33 the plot of ETpan in both 2021 and 2022 is greater than ETa, with a few exceptions.
In 2021 the mean value of ETpan was 3.88 mm/day while ETa had a mean value of 2.07 mm/day.
ETpan had a maximum of 8.23 mm/day and a minimum of 0.48 mm/day in 2021. ETa had a
maximum of 3.83 mm/day and a minimum of 0.74 mm/day in 2021. In 2022 ETpan had a mean
value of 3.81 mm/day while ETa had a mean value of 2.68 mm/day. Maximum and minimum
in 2022 for ETpan were 8.44 mm/day and 0.97 mm/day, and 4.91 mm/day and 1.08 mm/day for
ETa. Interesting features of the ETpan plot in 2021 are the values above above 6 mm/day in the
middle of July, and the increasing difference between ETpan and ETa throughout August. In 2022
and interesting feature of the ETpan plot is the peak in the end of July.
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Figure 34: Comparison of measured ET-values (in blue) and the reference evapotranspiration values
(red). The plot on top is for 2021 and the bottom plot is for 2022. Time resolution is in days.

Figure 34 shows that reference evapotranspiration, ET0 is closer to ETa values compared to ETpan.
The mean of ET0 in 2021 was 2.81 mm/day and the maximum and minimum were 5.86 mm/day
and 0.39 mm/day. The mean of ET0 in 2022 was 2.74 mm/day and the maximum and minimum
were 6.15 mm/day and 0.77 mm/day. These results show that the mean of ET0 was 0.74 mm/day
more than ETa in 2021 and 0.06 mm/day more in 2022. As with the plots of ETpan, there are
values above 4 mm/day of ET0 from the middle of July in 2021, and an increase in difference
between ET0 and ETa throughout August in 2021. ET0 has a peak in the end of July in 2022.
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Figure 35: Comparison of measured ET-values (in blue) and the estimated evapotranspiration
(kc=0.9) values (red). The plot on top is for 2021 and the bottom plot is for 2022. Time resolution
is in days.

Figure 35 shows the daily estimates of actual evapotranspiration, ETa1, with crop coefficient 0.9.
As one can see, the values of ETa1 are lower than pan evaporation ETpan and lower than reference
evapotranspiration, ET0. The ETa1 values fit better with the ETa values from the EC instrument,
especially in the beginning of July 2021. The mean values of ETa1 were 2.53 mm/day in 2021 and
2.47 mm/day in 2022. The maximum and minimum values were 5.27 mm/day and 0.35 mm/day
in 2021, and 5.53 mm/day and 0.70 mm/day in 2022. Compared to ETa, the means of ETa1 were
0,46 mm/day more in 2021 and 0.21 mm/day less in 2022. As with ETpan and ET0, there are high
values of ETa1 in the second half of July in 2021, an increasing difference between ETa1 and ETa

throughout August 2021, and a peak in the end of July 2022.
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Figure 36: Comparison of measured ET-values (in blue) and the estimated evapotranspiration
(kc=0.588) values (red). The plot on top is for 2021 and the bottom plot is for 2022. Time
resolution is in days.

From figure 36, it is shown that the daily estimates of actual evapotranspiration with crop coeffi-
cient 0.588, ETa2, are below ETa values in June and the first half of July in 2021, but after about
the 20th of July, the ETa2 values fit better with the ETa values. In the plot of ETa2 in 2022, one
can see that ETa2 values are always below ETa, but that the difference between ETa2 and ETa is
lower in August. The mean of ETa2 in 2021 was 1.65 mm/day and 1.61 mm/day in 2022. The
maximum and minimum of ETa2 were 3.44 mm/day and 0.23 mm/day in 2021, and 3.61 mm/day
and 0.45 mm/day in 2022. Compared to the means of ETa, the means of ETa2 were 0.42 mm/day
less in 2021 and 1.07 mm/day less in 2022.
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Figure 37: Comparison between ETa1 (red) and ETa2 (green) with ETa (blue) during wet (top) and
dry (bottom) period.

Figure 37 shows how ETa1 and ETa2 values are compared to to the measured ETa values during
a dry and wet period. In the figure one can see that ETa1 values are closer to ETa values during
the wet period compared to ETa2 values, while the ETa2 values are closer to ETa values during
the dry period compared to ETa1 values.

Figure 38: Zoomed in hourly plot of ETpan (red) and ETa (blue) in June 2021

Figure 38 is one of the plots with hourly resolution from Appendix C. The plot shows that in an
hourly resolution, there is a difference between the peak values of ETa and ETpan, even after the
time index of the pan data has been shifted with -1 hour. One can see that the ETa peaks occur
at about 12 and the ETpan peaks are up to 3 hours behind.

52



The results from doing the root-mean-squared error analysis on the pan evaporation measurements,
ETpan, reference evapotranspiration, ET0, and estimated evapotranspiration, ETa1 and ETa2, com-
pared to eddy-covariance measurements, ETa, are summarized in table 9. From the table, one can
see that the estimated actual evapotranspiration using the modified crop coefficient, ETa2, yielded
a higher accuracy in 2021 with RMSE values of 0.0087 in the hourly resolution and 0.7368 in the
daily resolution, compared to the estimated actual evapotranspiration using the crop coefficient of
0.9, ETa1, which yielded RMSE values of 0.0113 in the hourly resolution and 0.9768 in the daily
resolution. For 2022, the estimations of actual evapotranspiration using crop coefficient 0.9, ETa1,
was slightly better than estimations of actual evapotranspiration using crop coefficient 0.588, ETa2.
ETa1 yielded RMSE values of 0.0171 in the hourly resolution and 0.6499 in the daily resolution,
while ETa2 yielded also 0.0171 in the hourly resolution, but 1.6814 in the daily resolution.

Table 9: RMSE values where evaporation measurements, ETpan, reference evapotranspiration, ET0,
and estimated evapotranspiration, ETa1 and ETa2, have been compared to evapotranspiration mea-
surements, ETa, from the EC instrument.

RMSE values
Time scale: Hourly Time scale: Daily

Comparison Year 2021 Year 2022 Year 2021 Year 2022
ETpan vs ETa 0.0200 0.0240 4.9914 2.3963
ET0 vs ETa 0.0129 0.0179 1.4230 0.6728
ETa1 vs ETa 0.0113 0.0171 0.9768 0.6499
ETa2 vs ETa 0.0087 0.0171 0.7368 1.6814
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5 Discussion

5.1 Explaining the raw data
5.1.1 Evapotranspiration

By comparing the ET data with precipitation data, one can see that in many instances where
there are extreme measurements of ET (both positive and negative), there is also an increase in
accumulated precipitation, which means that there is precipitation happening during these extreme
measurements. As mentioned in section 3, ET measurements done when there was precipitation are
removed when calculating the accuracy of models compared to ET measurements, because of the
errors that might occur. And this error is shown in the comparison between ET and accumulated
precipitation data.

While comparing ET data with net radiation data, one can observe that there are low net radiation
values in many instances with low peak ET values. And high ET values when the net radiation
values are high. This fact coupled with the result from the correlation analysis in section 4.2
implies that net radiation is a strong driving force for evapotranspiration.

The values of accumulated evapotranspiration in July were about 70 mm and 90 mm in 2021 and
2022 respectively. As mentioned in the theory, the thesis by Rutger (2002) estimated evapotran-
spiration values to be 74 mm between the 22nd of June to 2nd of August 1999 and 75 mm between
the 5th of June to 23rd of July 2000 in the sub-arctic area. Even though the values from Rutger
(2002) are lower, they are in the same order of magnitude, and one has to take the difference
between sub-arctic and temperate climates into consideration. From Ruairuen et al. (2015) ET
values were found to be about 21.5 mm/week in July 2013 and 17 mm/week in August 2013, which
is very similar to the values found in this study, as 70 mm and 90 mm of ET in July would be
about 17.5 mm/week and 22.5 mm/week.

5.1.2 Pan evaporation

The diary of the pan measurements says that the grass at the meteorological station was cut
and that a diffuse was adjusted on the 21st of July 2021, which could explain the spike in the
evaporation measurements that day. The spike on the 31st of July 2021 occurred for unknown
reasons, since there is no information about that day in the diary, and there are no abnormal
meteorological measurements that day. The spike on the 16th of August 2021 could be explained
as a measuring error since there was precipitation that day, and from the diary it says that the pan
was refilled. For the 17th of August 2021, there is no information in the diary, nor any reasonable
explanation in the meteorological data for the spike.

The spike that occurred on the 18th of July 2022 could be explained by several factors that could
lead to a measuring error. From the diary it says that the grass was cut, the pan was refilled and
that a diffuse was adjusted. There was also precipitation that day. On the 29th of July 2022, the
highest net radiation during July was recorded, and from the diary it says that there was an error
on the mechanical thermometer. These instances could explain the spike on the 29th of July 2022.
For the spike on the 30th of July 2022, there is no explanation to be drawn, not from the diary, nor
the meteorological data. From the diary it says that the grass was cut and that the evaporation
pan was refilled, which can explain the spike on the 22nd of August 2022. The evaporation pan
was refilled on the 26th of August 2022, which can explain the spike that day.
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On the 10th of July 2021, the measured net radiation was low, and there was precipitation during
that day, which explains the low evaporation. On the 26th to 27th of June 2022, the measured net
radiation was low, there was precipitation, and the relative humidity was high, which explains the
low evaporation. No explanation was found for the low evaporation value on the 21st of July 2022.
The measured net radiation on the 18th of August 2022 was a little low (about 250 W/m2 peak
value), but not enough to explain the low evaporation measured that day. Nor are there other
meteorological data that could explain this low-measured evaporation.

Rutger (2002) got values of evaporation of 59 mm between 23rd of June to 27th of July 1999,
and 57 mm between 5th of June to 23rd of July. These values are about half of the accumulated
evaporation from this study.

In figure 16 one can see that the evaporation in 2018 was extremely high compared to other years.
This is because the the period from May-July had a mean air temperature of 17.6 ◦C, which is
3.9 ◦C more than the normal. The precipitation was also extremely low with 167 mm in May-July
compared to the normal of 209 mm, and about one third of the precipitation came during one day
(58.4 mm on the 17th of June) (Wolff et al., 2019). The mean temperature in July 2018 was 20.5
◦C, which is 1.6 ◦C more than in July 2021 and 3.7 ◦C more than in July 2022.

5.2 Priestley-Taylor models
The values of γ in the two first PT models (PT1 and PT2) are within the range of what is
expected from the literature (from the theory section; about 66 Pa/◦C). Something surprising is
that the calculated value of α using equation 18 yielded a model less accurate than simply using
the literature-given value of 1.26. One reason might be that the study done by Cristea et al. (2013)
was done in the USA, and the coefficients in equation 18 are unsuitable for the Norwegian climate.
Another explanation could be that the study by Cristea et al. (2013) used mean annual relative
humidity and mean annual wind speed. In contrast, the mean relative humidity and mean wind
speed during summer were used in this study.

The results showed that the most accurate PT models were gained from using Python’s "scipy.optimize
curve_fit". This is because the values of α (and γ for PT3) are specifically tailored for the ET mea-
surements made, and will therefore obviously yield the highest accuracy when compared with the
measurements they were made from. The values of α (and γ for PT3) gained from this approach
are in a range that has not been seen in any literature while doing this study. The model PT4,
where curve-fitting was used only to find values for α and equation 15 to find values for γ yielded
less accuracy than PT3. However, the α values during daytime for PT4 are more reasonable than
for PT3, and the γ values for PT4 are within a reasonable range compared to the 66 Pa/◦C that
has been mentioned in the theory section. The negative α values during the night for both PT3
and PT4 do not make any sense physically. If one looks into equations for PT (eq. 14), ∆ (eq.
16) and γ (eq. 15), one can see that ∆ and γ will always remain positive. So the only way for ET
to be negative is if net radiation Rn is negative. α can therefore not be negative during the night,
and these negative values should rather be replaced by zero. And since γ can not be negative, the
negative daytime γ values for PT3 also do not make any sense. All in all, the PT3 model should
be discarded. A solution, however, would be to set a limiting range of values for the curve-fitting
function.

The α values obtained from curve fitting with daily mean values (PT5 model) are about ten times
larger than the literature value of 1.26. When looking at the RMSE values, it seems as if the PT5
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model yields the worst results, however, this is because the values used in the RMSE analysis are
much larger since they are daily values instead of hourly values (as for PT1-PT4). From the daily
plot with all PT models, it is visually clear that PT5 outperforms PT1 and PT2.

As mentioned in the methods section, due to the limitation on the ET measurements when there
is precipitation, data points were removed if they belonged to times when precipitation was above
1 mm. When comparison between model and measurement was done, these data points were still
not included. Henceforth, it is essential to consider this fact when looking at the accuracy results
of the five PT models.

Looking into the meteorological monthly overview of the years 2021 and 2022, it turns out that
both years had June and August that were unusually warm and dry at the location where the data
for this study is gathered (Grinde et al., 2021; Mamen et al., 2022; Wolff & Grimenes, 2022; Wolff,
2023). This in turn could imply that the values for α and γ from curve-fitting are potentially
useless in more "normal" conditions. These dry and warm summers could also explain why the two
models from the literature (PT1 and PT2) overestimated the ET values. As mentioned in section
2.5.1, an α value of 1.26 is a mean estimate of well-watered (saturated) soil and bodies of water.
From Priestley & Taylor (1972), it is also said that lower values of α are expected if the soil is not
saturated. A case of low α values also occurred in the study by Kustas et al. (1996). In the study
mentioned, the α value was found to vary between 1 and 0.6. The conditions mentioned in the
study are similar to those in this study, as both had a dry period in the summer.

The Priestley-Taylor model is a potential evapotranspiration model, it does not consider if there
is enough water in the system. It only takes energy as a parameter. This would explain the
overshooting of both literature-based models. The dry summers is a reasonable explanation for
the low α values in the model PT4, since a low α value means that there is significant canopy
resistance (De Bruin, 1983).

Since the comparison is made with EC measurements, the PT models are compared with actual
evapotranspiration, ETa, but the PT equation is for potential evapotranspiration, ETp. It could
be possible to convert ETa to ETp by dividing ETa by an empirical stress factor. The stress factor
represents water availability and the canopy-atmosphere coupling (Peng et al., 2019). This was
unfortunately not done in this study.

5.3 Penman-Monteith models
By comparing the PMhourly1 and PMhoury2 models with the EC measurements, it is clear that the
PMhourly2 model yielded the highest accuracy, since it has an RMSE value of 0.00393 compared
to 0.01082 for the PMhourly1 model. From the plots in figures 28, 29 and 30 it is possible to see
that the PMhourly1 model will often overestimate evapotranspiration while PMhourly2 will often
underestimate evapotranspiration. From the plot in figure 30, it is also visible that the PMdaily2
model tends to underestimate evapotranspiration.

As with the PT3 and PT4 models, the meteorological conditions during the summers of 2021 and
2022 must be considered. It might be that the modified crop coefficient for the PMhourly2 model
is 0.588 because of the warm and dry conditions, and that a crop coefficient of 0.9, as used in the
PMhourly1 model is more suitable during "normal" meteorological conditions. According to the
paper by Allen et al. (1998), if the soil surface is dry, the crop coefficient can drop as low as 0.1.

Much time and effort have been spent figuring out why the PMdaily1 model performs poorly.
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The Python code used to calculate the ETa estimates have been checked by supervisors and other
students, however, an error could not be located. Therefore, the reason for this poor performance
is unknown.

5.4 Priestley-Taylor vs Penman-Monteith
Since the PT and PM models are compared to EC measurements, it is also possible to com-
pare them. By looking at the RMSE values, the best hourly model is PT3, with an RMSE of
0.0032. However, as mentioned in the discussion about the PT models, PT3 will yield the best
ET estimates, since both γ and α were calculated with curve fitting. PT3 will be discarded.

The best model, with an RMSE value of 0.0039, is the PMhourly2 model, which is the hourly PM
model with a modified crop coefficient. As with the PT4 model, it might be that the modified
crop coefficient is the reason for the good result, but that the model is not as good during normal
meteorological conditions.

When looking at the models purely based on literature, the PMhourly1 model yields the best
result with an RMSE value of 0.0108 compared to PT1 with an RMSE value of 0.1898. This result
should be expected as the Penman-Monteith equation reflects the actual evapotranspiration and
is dependent on more variables than the Priestley-Taylor equation, which is supposed to calculate
the potential evapotranspiration, and depends on only available energy.

Comparing the two daily-based models, PT5 and PMdaily2 show that PT5 yields a higher accuracy
with an RMSE value of 0.7518 compared to 0.8759 from PMdaily2. This result could be explained
by the fact that the value of α was calculated using curve fitting for the PT5 model, while the
PMdaily2 model used the literature-given crop coefficient of 0.9.

5.5 MODIS
As mentioned in the results, actual ET from MODIS is greater than actual ET measurements from
the EC instrument by about 30-40 %. A study by Degano et al. (2021) trying to compare MODIS
data of potential evapotranspiration and actual evapotranspiration had issues with the MODIS
data systematically overestimating potential evapotranspiration at about 65%. However, they
found that there was both over- and underestimation for the actual evapotranspiration, depending
on the geographical zone where the values were compared (Degano et al., 2021). Compared to
Degano et al. (2021), a similar trend is the decreasing difference between MODIS data and ground
measurements towards the end of the growth stage. From Degano et al. (2021) the trend is only
valid in the following zones; Undulating Pampa, Laboulaye and Junín. However, the ground
measurements from Degano et al. (2021) have higher values of ET than the MODIS data. A
speculation that the study by Degano et al. (2021) got overestimations when comparing MODIS
ETp data with ground measurements and good results when comparing MODIS ETa data with
ground measurements is that the study by Degano et al. (2021) did not use an EC instrument to
measure the actual evapotranspiration, but used the Penman-Monteith equation similar to equation
20 to calculate the ETa. The MODIS algorithm also uses Penman-Monteith to calculate ETa.
This could explain the good results between MODIS ETa and ground ETa, and the overestimation
between MODIS ETp and ground ETa.

Another study comparing MODIS data with EC measurements is Hu et al. (2015). The results
from Hu et al. (2015) have similarities in the MODIS and EC values of actual evapotranspiration
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over grassland. The grassland from Hu et al. (2015) was in the Netherlands, and the ETa values
from MODIS were ranging from over 30 to over 20 mm/8days during summer. From the results,
the ETa values in this study were ranging at about 35 to 15 mm/8days. The EC measurements
from Hu et al. (2015) were below MODIS values, and ranged at around 20 mm/8days. From the
results in this thesis, the EC measurements of ETa were ranging somewhere between 25 and 10
mm/8days. Another similarity to the findings in Hu et al. (2015) is that the land cover is grassland
and that the ETa values from MODIS and the EC instrument decrease towards the end of the
summer.

As mentioned in the results, the data between MODIS and EC were offset to each other in time.
This was said to be due to the difference in the start and end date of the 8-day summation between
these two. This will also mean that the EC and MODIS measurements will have summed some
different days in the 8-day interval. In 2021 the ETa value from MODIS was summed by three
days before the 8-day summation from the EC instrument. In 2022, the ETa value from MODIS
was summed by two days later compared to the 8-day summation from the EC instrument.

Since the time series of EC measurements is only for two summers, it is hard to conclude if there
is a systematic overestimation from the MODIS data, or if it is just a coincidence.

5.6 Pan evaporation and thoughts on the ET models
Looking at the daily plots from section 4.6 of the pan measurements (figure 33), ETpan, compared
to the EC measurements, ETa, it is shown that the evaporation from the pan measurements is
always larger than the evapotranspirational measurements from the EC instrument. The pan can
evaporate water if there is enough energy and the surrounding air is not saturated by water vapor.
Evapotranspiration will be lower than the evaporation from the pan, because evaporating water
from the soil requires more energy (ref. section 2.4), and the vegetation will also hold on to more
water if it is water stressed.

The feature with high values of ETpan after the 15th of July in 2021 can be explained by the
high air temperatures (ref. figure 64) and low relative humidity (ref figure 82) during daytime
and nighttime in that period. The feature with the increasing difference between ETpan and
ETa throughout August can be explained by the increase in air temperature throughout August
(ref figure 65), and the low amount of precipitation, that decreases the evapotranspiration (ref.
section 4.1.10). The feature with the peak ETpan value at the end of July 2022 does not have
a meteorological explanation, which means that it might just have been some measuring errors.
Many of the times, when the ETpan values are close to ETa values, are the exact times when there
has been precipitation. One can see this because the ETpan are close to ETa values when both of
them are low. Low values come from low net radiation since precipitation comes in clouds, as well
as increased relative humidity because of the moisture in the air.

A study by Liu et al. (2019) did an analysis on changes in actual evapotranspiration and pan
evaporation and their influencing factors, from 1998 to 2005. Their results for 2002 have some
similarities with the findings in this thesis. In 2002, Liu et al. (2019) had the highest values of
pan evaporation (about 450 mm) and the lowest values of actual evapotranspiration (about 250
mm) during summer compared to other years. Liu et al. (2019) also calculated the lowest crop
coefficient (mean kc of about 0.7) in the summer of 2002 compared to other years. The similarity
here is the high values of pan evaporation and low values of actual evapotranspiration, which
makes ETa2 more accurate than ETa1, where ETa2 uses a crop coefficient of 0.588 compared to
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ETa1 which uses a crop coefficient of 0.9. The summer of 2002 where the study by Liu et al. (2019)
was conducted was drier than normal (precipitation: 180.3 mm compared to 304.8 mm in 2001,
355.6 mm in 2003, 330.2 mm in 2004).

An interesting result is the comparison between the RMSE values of ETa1 and ETa2. Table 9
shows that ETa2 yields estimates closer to the ETa values measured by the EC instrument in 2021.
In one way, this goes to show that the calibrated crop coefficient of 0.588 is more suitable to use
when the meteorological conditions are drier than normal (ref. section 3.1). Table 9 also shows
that ETa1 had values closer to ETa in 2022. From figure 37 one can also visually see that ETa1
is more suitable for wet conditions while ETa2 is more suitable for dry conditions. From section
3.1 it was mentioned that the conditions in 2022 were wetter than in 2021, which could explain
why using a crop coefficient of 0.9 yielded better results in 2022. These results show that the crop
coefficients in Table 12 from Allen et al. (1998) might not be valid for dry conditions.

The results from the comparison of ETa1 and ETa2 also build up the statement mentioned in
section 5.4 about the calibrated evapotranspirational models. The summer of 2021 was drier than
normal, and could therefore make the calibrated models unreliable during normal conditions.

The temporal difference between the peak values of ETpan and ETa can be explained by the
temporal difference between peak net radiation and peak air temperature. If one compares the
figures 38, 51 and 63, one can see that the peak net radiation is at about 12, which is the same
time as the peak values of ETa. The peak air temperature values can lag up to four hours after
the peak net radiation, which explains why the peak ETpan values can lag behind the peak ETa

values.
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6 Conclusion

6.1 Evapotranspiration models
Taking the results and discussions from the evaluation of the Priestley-Taylor and Penman-
Monteith models, it has been shown that the crop coefficient calibrated (kc = 0.588) PM model is
the most accurate hourly-based ET model with an RMSE value of 0.00039, and the second most
accurate ET model being the α calibrated (α = 0.2755-0.3789) PT model with an RMSE value
of 0.0043. It has also been shown that the hourly PM with a literature-based crop coefficient of
0.9 yields a more accurate result than the hourly Priestley-Taylor with a literature-based α value
of 1.26, which is expected, since the Penman-Monteith equation is more advanced as it includes
water vapor and wind.

The good performances of both the calibrated PM model and the calibrated PT model should
not be considered ground truth as they are based on limited data. The limitation is that both
calibrations were done for two summer periods that were warmer and drier than usual, which can
lead to faulty results under "normal" conditions. The negative values in PT4 should be replaced
by zero. The PT3 model should be discarded.

The Penman-Monteith equation from Barry & Blanken (2016a) (eq. 19), has proven to perform
poorly. The reason for this is unknown.

Overall, longer time series’ are needed to evaluate all evapotranspirational models introduced in
this thesis properly. Using data from only two summers is not enough to come to a conclusive
answer as weather can be significantly different on a year-to-year basis. A 10-year series or longer
would be ideal. Despite this limitation, the results seem promising as a proof of concept.

6.2 MODIS
The results found that the MODIS data overestimate values of actual evapotranspiration by about
30-40 % compared to the EC measurements. It has also been found out that this type of overesti-
mation has happened over grassland in the Netherlands as well in the study by Hu et al. (2015). If
it is found that this is a systematic overestimation every summer at high latitudes over grassland,
it would maybe be reasonable to assume that the MODIS algorithm could need improvements.
Since the timeline of the EC measurements is only over two summers, it is not possible to conclude
if this is a systematic error. It is also therefore difficult to conclude if the data from MODIS is
reliable for the area of interest. If it is found that the data from MODIS is reliable, it would
provide valuable information, since data from MODIS has a long time series of measurements back
in time.

6.3 Pan evaporation measurements
From the comparison of the EC measurements with the pan evaporation measurements, it is clear
that the pan evaporation measurements could be trusted, however, an emphasis has to be put
on the choice of what crop coefficient value to use if the measurements are converted to actual
evapotranspiration. Again, as with the ET models, longer time series is needed to evaluate the
reliability of the measurements correctly.
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6.4 Future outlook
In order to come to a conclusive answer on what α values to use in the Priestley-Taylor equation,
and what crop coefficient to use in the Penman-Monteith equation, longer time series are needed.
The same is true for the evaluation of these calibrated parameters. An interesting research could
also be to find α and crop coefficient values for ecosystems in Norway different from the grassland
studied in this thesis. If different ecosystems and sites in Norway would be studied for a suitable α
value, maybe a map similar to the one presented by Cristea et al. (2013) could be made. Coupling
soil moisture data with the data from this thesis could also provide useful information on how α
and crop coefficient values would vary depending on the available water in the soil.

As mentioned in section 6.2, the time series between MODIS and EC data need to be longer to
reach a conclusive answer on the evaluation. Something that should be looked into is if the data
from MODIS systematically overestimates ET values during summer. If so, it should be easy
to evaluate the reliability of the MODIS data, since a solution could be to improve the MOD16
algorithm.

The evaluation of the pan measurements has also been challenging with limited data. However,
the historical data from 1997 has slight variation, which could indicate that the data is reliable,
but it does have some missing values. As with the evaluation of the ET models, it would maybe
be interesting to couple soil moisture with the data from this thesis, to see how the comparison
between ETa from the EC instrument and ETpan from the pan measurements behaves with different
values of soil moisture.
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Appendix A: Meteorological parameters

Evapotranspiration

Figure 39: Hourly evapotranspiration measurements in June 2021.

Figure 40: Hourly evapotranspiration measurements in July 2021.
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Figure 41: Hourly evapotranspiration measurements in August 2021.

Figure 42: Hourly evapotranspiration measurements in June 2022.
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Figure 43: Hourly evapotranspiration measurements in July 2022.

Figure 44: Hourly evapotranspiration measurements in August 2022.
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Pan evaporation

Figure 45: Hourly pan evaporation measurements in June 2021.

Figure 46: Hourly pan evaporation measurements in July 2021.
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Figure 47: Hourly pan evaporation measurements in August 2021.

Figure 48: Hourly pan evaporation measurements in June 2022.

70



Figure 49: Hourly pan evaporation measurements in July 2022.

Figure 50: Hourly pan evaporation measurements in August 2022.
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Net radiation

Figure 51: Hourly measured net radiation in June 2021.

Figure 52: Hourly measured net radiation in July 2021.
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Figure 53: Hourly measured net radiation in August 2021.

Figure 54: Hourly measured net radiation in June 2022.
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Figure 55: Hourly measured net radiation in July 2022.

Figure 56: Hourly measured net radiation in August 2022.
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Ground heat flux

Figure 57: Hourly measured ground heat flux in June 2021.

Figure 58: Hourly measured ground heat flux in July 2021.
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Figure 59: Hourly measured ground heat flux in August 2021.

Figure 60: Hourly measured ground heat flux in June 2022.
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Figure 61: Hourly measured ground heat flux in July 2022.

Figure 62: Hourly measured ground heat flux in August 2022.
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Air temperature

Figure 63: Hourly measured air temperature in June 2021.

Figure 64: Hourly measured air temperature in July 2021.
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Figure 65: Hourly measured air temperature in August 2021.

Figure 66: Hourly measured air temperature in June 2022.
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Figure 67: Hourly measured air temperature in July 2022.

Figure 68: Hourly measured air temperature in August 2022.
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Air pressure

Figure 69: Hourly measured air pressure in June 2021.

Figure 70: Hourly measured air pressure in July 2021.
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Figure 71: Hourly measured air pressure in August 2021.

Figure 72: Hourly measured air pressure in June 2022.
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Figure 73: Hourly measured air pressure in July 2022.

Figure 74: Hourly measured air pressure in August 2022.
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Vapor pressure deficit

Figure 75: Hourly measured vapor pressure deficit in June 2021.

Figure 76: Hourly measured vapor pressure deficit in July 2021.
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Figure 77: Hourly measured vapor pressure deficit in August 2021.

Figure 78: Hourly measured vapor pressure deficit in June 2022.
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Figure 79: Hourly measured vapor pressure deficit in July 2022.

Figure 80: Hourly measured vapor pressure deficit in August 2022.
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Relative humidity

Figure 81: Hourly measured relative humidity in June 2021.

Figure 82: Hourly measured relative humidity in July 2021.
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Figure 83: Hourly measured relative humidity in August 2021.

Figure 84: Hourly measured relative humidity in June 2022.
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Figure 85: Hourly measured relative humidity in July 2022.

Figure 86: Hourly measured relative humidity in August 2022.
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Precipitation

Figure 87: Hourly accumulated precipitation in June 2021.

Figure 88: Hourly accumulated precipitation in July 2021.
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Figure 89: Hourly accumulated precipitation in August 2021.

Figure 90: Hourly accumulated precipitation in June 2022.
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Figure 91: Hourly accumulated precipitation in July 2022.

Figure 92: Hourly accumulated precipitation in August 2022.
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Daylight

Figure 93: Hourly measurement of daylight in June 2021. Daylight at 1 and no daylight at 0.

Figure 94: Hourly measurement of daylight in July 2021. Daylight at 1 and no daylight at 0.
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Figure 95: Hourly measurement of daylight in August 2021. Daylight at 1 and no daylight at 0.

Figure 96: Hourly measurement of daylight in June 2022. Daylight at 1 and no daylight at 0.
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Figure 97: Hourly measurement of daylight in July 2022. Daylight at 1 and no daylight at 0.

Figure 98: Hourly measurement of daylight in August 2022. Daylight at 1 and no daylight at 0.
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Appendix B: ET models

B1: PT models
PT1

Figure 99: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red) using
PT1 model in June 2021.

Figure 100: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT1 model in July 2021.
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Figure 101: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT1 model in August 2021.

Figure 102: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT1 model in June 2022.
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Figure 103: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT1 model in July 2022.

Figure 104: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT1 model in August 2022.
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PT2

Figure 105: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in June 2021.

Figure 106: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in July 2021.
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Figure 107: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in August 2021.

Figure 108: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in June 2022.
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Figure 109: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in July 2022.

Figure 110: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT2 model in August 2022.
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PT3

Figure 111: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in June 2021.

Figure 112: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in July 2021.
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Figure 113: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in August 2021.

Figure 114: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in June 2022.

103



Figure 115: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in July 2022.

Figure 116: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in August 2022.
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PT4

Figure 117: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT4 model in June 2021.

Figure 118: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in July 2021.
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Figure 119: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in August 2021.

Figure 120: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in June 2022.
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Figure 121: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in July 2022.

Figure 122: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PT3 model in August 2022.
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PT daily

Figure 123: Daily measured (dashed blue), and estimated by PT1 (red), PT2 (green), PT3 (purple),
PT4 (yellow) and PT5 (teal) evapotranspiration values in 2021.

Figure 124: Daily measured (dashed blue), and estimated by PT1 (red), PT2 (green), PT3 (purple),
PT4 (yellow) and PT5 (teal) evapotranspiration values in 2022.
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B2: PM models
PMhourly1

Figure 125: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in June 2021.

Figure 126: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in July 2021.
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Figure 127: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in August 2021.

Figure 128: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in June 2022.
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Figure 129: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in July 2022.

Figure 130: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly1 model in August 2022.
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PMhourly2

Figure 131: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in June 2021.

Figure 132: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in July 2021.
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Figure 133: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in August 2021.

Figure 134: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in June 2022.
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Figure 135: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in July 2022.

Figure 136: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using PMhourly2 model in August 2022.
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PMdaily2 and daily resolution of PMhourly1 and PMhourly2

Figure 137: Daily measured (dashed blue), and estimated by PMhourly1 (red), PMhourly2 (green)
and PMdaily2 (purple) evapotranspiration values in 2021.

Figure 138: Daily measured (dashed blue), and estimated by PMhourly1 (red), PMhourly2 (green)
and PMdaily2 (purple) evapotranspiration values in 2022.
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PMdaily1

Figure 139: Daily measured (blue) and estimated by PMdaily1 (red) evapotranspiration values in
2021.

Figure 140: Daily measured (blue) and estimated by PMdaily1 (red) evapotranspiration values in
2022.
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Appendix C: Pan vs EC

Pan evaporation hourly

Figure 141: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in June
2021.

Figure 142: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in July
2021.
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Figure 143: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in
August 2021.

Figure 144: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in June
2022.
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Figure 145: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in July
2022.

Figure 146: Hourly measured evapotranspiration (blue) and measured pan evaporation (red) in
August 2022.
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Reference evapotranspiration hourly

Figure 147: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in June 2021.

Figure 148: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in July 2021.
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Figure 149: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in August 2021.

Figure 150: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in June 2022.
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Figure 151: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in July 2022.

Figure 152: Hourly measured evapotranspiration (blue) and estimated reference evapotranspiration
(red) in August 2022.
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Actual evapotranspiration hourly, kc=0.9

Figure 153: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in June 2021.

Figure 154: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in July 2021.
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Figure 155: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in August 2021.

Figure 156: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in June 2022.
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Figure 157: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in July 2022.

Figure 158: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.9 in August 2022.
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Actual evapotranspiration hourly, kc=0.588

Figure 159: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in June 2021.

Figure 160: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in July 2021.
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Figure 161: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in August 2021.

Figure 162: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in June 2022.
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Figure 163: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in July 2022.

Figure 164: Hourly measured evapotranspiration (blue) and estimated evapotranspiration (red)
using crop coefficient of 0.588 in August 2022.
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