

Norges miljø- og biovitenskapelige universitet

Masteroppgave 2023 60 stp Fakultet for miljøvitenskap og naturforvaltning

Avrenning fra alunskifer: utlekking og nøytraliseringseffekt i kombinasjon med avfallsbetong

Runoff from alum shale: leaching and neutralization effect in combination with waste concrete

Hanne Ugstad Miljø og naturressurser

Sammendrag

Alunskifer er en syredannende bergart med utbredelse i Oslofeltet. Skiferen har flere problematiske egenskaper utover iboende syredannende potensial, blant annet et høyt (tung)metallinnhold, deriblant uran. Ved gitte forhold kan produsert syre og uran lekke ut av alunskiferen. På bakgrunn av dette reguleres håndtering og deponering av Avfallsforskriften (2004) og Forskrift om radioaktiv forurensning og avfall (2011a).

I denne oppgaven er to alunskiferprøver inkludert, en fra Regjeringskvartalet i Oslo og en fra Slemmestad i Asker kommune. For å nøytralisere skiferens potensielt iboende syrepotensial kan det være aktuelt ved deponering å samdeponere massene med et alkalisk materiale. I denne sammenheng ble avfallsbetong ansett som interessant på grunn av materialets syrenøytraliserende egenskaper. Basert på teoretiske beregninger av alunskifernes syredannende potensial og betongens syrenøytraliserende kapasitet kreves det ca. 460 kg betong for deponering av 1 tonn skifer i fra Regjeringskvartalet og ca. 1250 kg betong for deponering av 1 tonn skifer fra Slemmestad.

De tre materialprøvene ble inkludert i et umettet kolonneforsøk som ble vannet og analysert ukentlig i 13+ 3 uker. Kontroller med hvert av materialene ble satt opp i duplikater. Det ble i tillegg inkludert triplikater av hver av alunskiferne med et underliggende betonglag, en antatt syrenøytraliserende betongbehandling (80% alunskifer: 20% betong). Basert på utlekking fra kolonneforsøkt ble betongens syrenøytraliserende kapasitet beskrevet som en funksjon av tid (CaCO₃PR), og sett i lys av alunskifernes syreproduserende rate (SPR). Estimeringene viste at det foreligger en risiko for at betongen ikke vil evne å bufre hele løpet av syreproduksjon i alunskiferne.

Utlekkingen av uran fra alunskiferne ble også overvåket i det umettede kolonneforsøket. Det ble observert en uran- utlekking fra begge alunskiferne (RE: 210- 2865 μ g/L og SL: 185- 860 μ g/L). Basert på geokjemiske modelleringer ble det antatt at U i hovedsak lakk ut som U(VI), i form av mobile kalsium- karbonat- komplekser. I kolonnene hvor alunskiferne ble tilført en underliggende betongbehandling (i første rekke for å nøytralisere alunskifernes potensielt genererte syre) ble uran- utlekkingen redusert med tilnærmet 100%. Effekten ble antatt å skyldes en kombinasjon av betongens høye Ca- innhold, som blant annet kan medføre en sekvenstrering av U(VI) i ettringitt i betongen, samt en effekt av at betongbehandlingen reduserte systemets redokspotensial, resulterende i en reduksjon av U(VI) til U(IV).

Avfallsbetong kan potensielt inneholde en konsentrasjon av seksverdig krom som begrenser mulighet for gjenvinning i anleggsarbeid (8 mg Cr(VI)/kg). En slik forhøyet konsentrasjon ble ikke målt i avfallsbetongen inkludert i foreliggende studie (1,2 mg Cr(VI)/kg). Allikevel ble en utlekking av Cr(VI) over grenseverdi for utslipp av prosessavløpsvann til resipient (0,03 mg/L) observert over tid fra betongen (0,01- 0,07 mg/L) Ved implementering av avfallsbetong i alunskiferdeponi foreligger derfor en viss risiko tilknyttet Cr(VI), med mulige negative effekter dersom ytre miljø eksponeres for ubehandlet sigevann. Ved tilførsel av utlekkingsvann fra alunskifer til betongen (i betongbehandlede alunskiferkolonner) økte utlekkingen av Cr(VI) nevneverdig. Alle observasjonene ble målt til over grenseverdien (REB: 0,04- 0,16 mg/L og SLB: 0,03- 0,19 mg/L). Effekten ble antatt å skyldes høye sulfatkonsentrasjoner i utlekkingsvannet fra alunskiferne, som substituerer Cr(VI) foreliggende i ettringitt i betongen.

Før potensiell implementering av betongbehandling i alunskiferdeponi vil det være nødvendig å gjennomføre ytterligere undersøkelser og vurderinger av fordelaktige og negative effekter. Foreliggende studie er gjort over et begrenset tidsintervall, og over et begrenset pHintervall for alunskiferne. Interaksjonen imellom surt sigevann fra alunskifer (ARD) og betong er derfor ikke undersøkt. Det vil også være aktuelt å oppskalere forsøket for i større grad etterligne realistiske forhold i deponi, noe som gjøres i et pågående utendørs kontainerforsøk hos NOAH avdeling Langøya.

Abstract

Alum shale is an acid-forming rock prevalent in the Oslo field. The shale has several problematic properties in addition to its inherent acid-forming potential, for instance a high (heavy)metal content, including uranium. Under certain conditions, produced acid and Uranium can leak out of the alum shale. Based on this, handling and disposal are regulated by the Waste Regulations (Avfallsforskriften, 2004) and Regulations on radioactive pollution and waste (Forskrift om radioaktiv forurensning og avfall, 2011a)

In this thesis, two alum shale samples are included, one from Regjeringskvartalet in Oslo and one from Slemmestad in Asker municipality. In order to neutralize the shale's potentially inherent acid potential, it may be relevant when depositing to co-deposit the masses with an alkaline material. In this context, waste concrete was considered interesting because of the material's acid neutralizing properties. Based on theoretical calculations of the alum shale's acid-forming potential and the concrete's acid-neutralizing capacity, approximately 460 kg of concrete is needed for depositing 1 tonne of shale in from Regjeringskvartalet and approximately 1250 kg of concrete is needed for depositing 1 tonne of shale from Slemmestad.

The three material samples were included in an unsaturated column experiment that was watered and analyzed weekly for 13+ 3 weeks. Controls with each of the materials were set up in duplicate. In addition, triplicates of each of the alum shale with an underlying concrete layer, a presumed acid neutralizing concrete treatment (80% alum slate: 20% concrete) were included. Based on leaching from column tests, the concrete's acid-neutralizing capacity was described as a function of time (CaCO3PR) and compared with the alum slate's acid-producing rate (SPR). The estimates showed that there is a risk that the concrete will not be able to buffer the entire acid production in the alum shales.

The leaching of uranium from the alum shales was also monitored in the unsaturated column experiment. A uranium leaching from both alum shale was observed (RE: 210-2865 μ g/L and SL: 185-860 μ g/L). Based on geochemical modelling, it was assumed that U mainly leached out as U(VI), in the form of mobile calcium- carbonate- complexes. In the columns where the alum shale was added to an underlying concrete treatment (primarily to neutralize the alum shale's potentially generated acid) the uranium leaching was reduced by approximately 100%. The effect was assumed to be a combination of the concrete's high Ca content, which can lead

to an sequestration of U(VI) into ettringite in the concrete, as well as an effect of the concrete treatment reducing the redox potential of the system, resulting in a reduction of U(VI) to U(IV).

Waste concrete can potentially contain a concentration of hexavalent chromium that limits the possibility of recycling in construction work (8 mg Cr(VI)/kg). Such an elevated concentration was not measured in the waste concrete included in the present study (1.2 mg Cr(VI)/kg). Nevertheless, a leaching of Cr(VI) above the limit value for discharge of process wastewater to the recipient (0.03 mg/L) was observed over time from the concrete (0.01- 0.07 mg/L), and a certain risk associated with Cr(VI), with possible negative effects if the external environment is exposed to untreated leachate. When leaching water from alum shale was added to the concrete (in concrete-treated alum shale columns), the leaching of Cr(VI) increased significantly. All observations were measured above the limit value (REB: 0.04-0.16 mg/L and SLB: 0.03-0.19 mg/L). The effect was assumed to be due to high sulphate concentrations in the leaching water from the alum slates, which substitute Cr(VI) present in ettringite in the concrete.

Before the potential implementation of concrete treatment in alum shale landfill, it will be necessary to carry out further investigations and assessments of beneficial and negative effects. The present study has been carried out over a limited time interval, and over a limited pH interval for the alum shales. The interaction between acidic leachate from alum shale (ARD) and concrete has therefore not been investigated. It will also be relevant to scale up the experiment with the intention of more closely imitating realistic conditions in a landfill, which is being done in an ongoing outdoor container experiment at NOAH department Langøya.

Forord

Denne masteroppgaven er en endelig avslutning på et femårig studieløp på linjen miljø- og naturressurser ved Norges miljø- og biovitenskapelige universitet (NMBU). Oppgaven er skrevet på NMBU i samarbeid med SFI- earthresQue, Norges Geotekniske Institutt (NGI) og NOAH avdeling Langøya.

Først og fremst vil jeg rette en stor takk til veilederne mine Gudny Okkenhaug (NMBU/NGI) og Cathrine Eckbo (NGI). Gudny, takk for at du har delt av din enorme fagkunnskap og erfaring, og Cathrine, takk for ditt smittende pågangsmot og veiledning fra oppgavens begynnende planleggingsfase og opprigging av forsøk til ferdig produkt.

Den påfølgende listen av gode hjelpere er lang. Takk til gjengen på Langøya, med Kristofer Larsen i bresjen, for et godt samarbeid igjennom hele prosessen som har strekt seg over to år. Takk for delt kunnskap og muligheten til å få innsyn og bygge erfaringer om håndtering og deponering av alunskifer. En stor takk rettes også til Frøydis Meen Wærsted (NGI) som har delt av sin alunskiferkunnskap.

Til tross for et stort ønske om å være litt handy, hadde ikke et massivt kolonneforsøkt blitt reist uten unnværlig hjelp av verkstedgutta på NGI og praktikerne i kjelleren på jord. Tusen takk til Valentina Zivanovic, Irene E. Eriksen Dahl, Mona Mirgeloybyat og Oddny Gimmingsrud på Jord og vannkjemilaboratoriet ved NMBU for veiledning på lab og utføringen av vannanalyser (ICP, DOC og Tot- N). Takk til Christian Solheim for hjelp med kornfordelingsanalyse.

Til slutt vil jeg rette en enorm takk til mine fantastiske venner og familie som har bidratt med tidkrevende knusing og sikting av alunskifer og betong, stilt opp som motivator ved vanning av kolonneforsøk i sene nattetimer og støttet meg igjennom hele prosessen. Takk til gjengen på mastersalen på jordfag for alle delte kaffekanner; tenk, brått ble det en masteroppgave på hver og en av oss.

Innholdsfortegnelse

S	ammendrag	i
A	bstract	iii
F	orord	v
h	nholdsfortegnelse	vi
L	iste med forkortelser	viii
F	guroversikt	ix
Т	abelloversikt	xi
1	Innledning	1
	1.1 Bakgrunn	1
	1.2 Målsetting	2
2	Teori	2
	2.1 Alunskifer	2
	2.1.1 Mineralogi alunskifer	3
	2.1.2 Pyrittoksidasjon og syrenøytralisering	3
	2.1.5 Oran. 2.1.4 Deponering av alunskifer	8
	$2.2 \operatorname{Patana}$	10
	2.2 Betongproduksion	10
	2.2.2 Gjenvinning av betong	11
	2.2.3 Krom	12
3	Material og metode	13
	3.1 Material	13
	3.2 Faststoffanalyse	14
	3.2.1 Totalkonsentrasjon faststoff	14
	3.2.2 Tørrstoffanalyse	14
	3.3 Materialenes syre- og baseegenskaper	16
	3.3.1 Betongens syrenøytraliseringskapasitet	16
	3.4 Metode kolonneforsøk	17
	3.4.1 Forbehandling av prøvemateriale	17
	3.4.2 Oppsett av kolonner	18
	3.4.3 Prosedyre ved vanning	20
	3.5 Vannkjemi	23
	3.5.1 Målinger av pH, elektrisk konduktivitet og redokspotensialet	23
	5.5.2 Elementanalyse (lonekromatografi (IC))	25
	3.7 Dataanalyse	26
	3.7.1 Alunskillerens sulfat- produksjonsrate (SPK) og betongens alkalinitet-produksjonsrate (CaCO ₃ P)	K). 20 26
	3.7.2 Modellering av spesiering og mineralutfellinger i Visual minteg	20
	3.7.3 Generering av nedbørfeltdata	27
4	Resultater	28
	4.1 Faststoffanalyse	28
	··	

	 4.2 Materialenes syre og baseegenskaper 4.2.1 Alunskiferens syredannende potensial 4.2.2 Betongens syrenøytraliseringsevne 	30 30 31
	 4.3 Kolonneforsøk 4.3.1 Vanningsregime 4.3.2 pH, elektrisk konduktivitet (EC) og redokspotensiale (Eh) 4.3.3 Alunskiferens sulfatproduksjonsrate (SPR) og betongens karbonatproduksjonsrate (CaCO₃PR) 4.3.4 Utlekking av uran 4.3.5 Utlekking av krom 4.3.6 Modellering av overmetning av mineraler 	31 32 32 35 39 44 47
	4.4 Utlekking av øvrige metaller	47
5	Diskusjon	49
	5.1 Alunskifernes syredannende potensial	49
	 5.2 Håndtering og behandlingsløsning for alunskifer i deponi 5.2.1 Krav til deponering av alunskifer 5.2.1 Avfallsbetongs syrenøytraliserende kapasitet 	51 51 52
	 5.3 Effekt av samdeponering av alunskifer og avfallsbetong: Fokus på uran og seksverdig krom. 5.3.1 Utviklingen i pH og redokspotensial 5.3.2 Utlekking og immobilisering av uran 5.3.3 Utlekking og mobilisering av seksverdig krom (Cr(VI)) 	53 53 54 57
	 5.4 Usikkerhet ved gjennomførte forsøk 5.4.1 Forutsetninger ved kolonneforsøk 5.4.2 Usikkerhet ved statistiske analyser 	59 59 62
6	Konklusjon	63
7	Veien videre	64
8	Litteraturliste	67
V	edlegg	72
	Vedlegg A- Aktuelle kartutsnitt Vedlegg B- Faststoffanalyse Vedlegg C- Kornfordelingsanalyse Vedlegg D- Teoretisk klassifisering av alunskiferprøvene Vedlegg E- Ristetest Vedlegg F- Øvrige resultater fra kolonneforsøk Vedlegg G- Elementanalyse Vedlegg H- Kolonneforsøk ARDB	

Liste med forkortelser

ANC	Syrenøytraliseringskapasitet (acid neutralizing capacity)
ARD	Drensvann fra syredannende stein (Acid rock drainage)
AP	Syrepotensiale (acid potential)
Bq	Becquerel
CaCO ₃ PR	Kalsiumkarbonat- produksjonsrate
DOC	Løst organisk materiale (dissolved organic material)
EC	Elektrisk konduktivitet
Eh	Redokspotensiale
IC	Uorganisk karbon (inorgaic carbon)
<lod< td=""><td>Deteksjonsgrense (limit of detection)</td></lod<>	Deteksjonsgrense (limit of detection)
<lor< td=""><td>Rapporteringsgrense (limit of reporting)</td></lor<>	Rapporteringsgrense (limit of reporting)
NP	Nøytraliseringskapasitet (neutralizing capacity)
OM	Organisk materiale
pН	-log[H+]
SPR	Sulfat- produksjonsrate
TOC	Totalt organisk karbon (total organic carbon)
TS	Tørrstoff

Kolonnemateriale

В	Betong
RE	Alunskifer fra Regjeringskvartalet
REB	Alunskifer fra Regjeringskvartalet (80%) + betong (20%)
SL	Alunskifer fra Slemmestad
SLB	Alunskifer fra Slemmestad (80%) + betong (20%)

Elementer

U	Uran
CaCO ₃	Kalsiumkarbonat
Cr	Krom
Cr(III)	Treverdig krom
Cr(VI)	Seksverdig krom
FeS ₂	Pyritt
SO4 ²⁻	Sulfat

Figuroversikt

Figur 1- Illustrert fremstilling av U- anrikning i OM, Pyritt og fosfatnoduler i alunskifer. Modifisert fremstilling av Figur 2- Modellert U spesiering i et U-CO₂-H₂O- system, total U = 10^{-6} M, P_{CO2} 10^{-2} atm og temperatur = 25° C. Modelleringen er utført i Visual MINTEQ. a) Spesiering av U som en funksjon av pH. Uranyl (UO_2^{2+}) foreligger som fritt kation ved sure forhold. Med økende pH dannes hydroksid og karbonatkomplekser. b) spesiering av U som en funksjon av pH og redoks (Eh). Med økende pH dannes karbonatkompekser. Gjengitt fra Xie et al. (2019). Basert på modellering utført i Visual MINTEQ antas P_{CO2} 10⁻² atm å tilsvare 0,001 µg/L CO₃²⁻ og pH 6,9. 8 Figur 3- Spesiering av Cr som en funksjon av pH og redokspotensiale (E(V)). Med økende pH dannes hydroksidkomplekser. Cr konsentrasjon= 0,02 mM, temperatur = 25°C, ionestyrke = 0,35 mM. Gjengitt fra Figur 4- Materialer inkludert i forsøk. a) Befaring av alunskifer i Slemmestad før mottak i deponi (Foto: Kristofer Larsen, 09.03.21), b) Alunskifer fra Slemmestad ved prøveuttak, c) alunskifer fra Regjeringskvartalet ved Figur 5- Oppsett av titreringsforsøk. Betongløsningen i begerglass sår på en magnetrører, og røres kontinuerlig. Figur 6- Illustrasjon av kolonnenes oppsett. a) Oppsett av alunskiferkolonner med betongbehandling (REB og SLB). Kolonnene ble vannet fra toppen ved bruk at et beaerglass. b) Oppsett av skiferkontroller (RE og SL). Kolonnene ble vannet fra toppen ved bruk at et begerglass. c) Oppsett av betongkontroller. Ved vanning av disse kolonnene ble det plassert et plastbeger med fem hull (1mm) i bunn på toppen av kolonnen. Ved bruk av et begerglass ble plastbegeret fylt med vann som drenerte gjennom hullene plastbegeret. Vanningsmetoden ble benyttet for å redusere vannets fallhøyde og kraft som følge av mindre volum materiale i betongkolonnene...19 Figur 7- Opprigging og prosedyre ved kolonneforsøk. a) Opprigging av kolonner med bunnpropp, tilskåret meshduk og glassfiberull, b) materiale tilføres kolonnene (3 cm før stamping), c) tilført materiale stampes, d) tydelig lagdeling som følge av stamping, e) ferdig stampet betonglag, f) kolonne med betong tilført alunskifer, g) glasskuler tilført på toppen av kolonnene (lag på ~1cm), h) ferdig rigget kolonner, i) vanningsmetode for samtlige kolonner foruten B, j) vanningsbeger med hull benyttet for å vanne B, k) alunskiferkolonne med betongbehandling tilført vann med tydelig vannfront nedover (relativt homogen infiltrasjon i kolonnens ytterkant observeres), I) tilført vann har fuktet tidligere skifer (vises ved fargeskifte fra grå til svart) og store Figur 8- Vurdering av alunskifernes syre- og baseegenskaper. a) NP- AP diagram som vurderer skiferens netto syredannende potensial basert på acidification potential (AP) og nøytraliserende potensial (NP). b) Fe:S-Figur 9- Gjennomsnittlig målt pH og mengde tilført syre i tre titreringsforsøk av betong. Punkter representerer gjennomsnittlig tilført syre uttrykt som mmol H^+ (kg betong)⁻¹ ved hvert pH- nivå. Standardavvik viser Figur 10- Ukentlig mengde tilført vann til kolonnene vist med blå søyler. Alle kolonnene mottok samme mengde vann. Gjennomsnittlig mengde drenert eluat fra de ulike kolonnenegjentakene vises som punkter inkludert standardavvik som viser variasjon i drenert eluat imellom kolonnegjentakene av samme type. (B: n=2, RE: n=2, Figur 11- Ukentlig gjennomsnittlig målt pH for kolonnetypene, samt standardavvik som viser variasjon i målt pH imellom kolonnegjentak (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3). Rød stiplet linje representerer øvre utslippsgrense for prosessavløpsvann til resipient, pH = 9,5 (Forskrift om begrensning av forurensning, 2022). 33 Figur 12- Ukentlig gjennomsnittlig målt elektrisk konduktivitet, samt standardavvik som viser variasjon i målt EC for kolonnegjentakene av lik type. (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3). EC i uke 3 alunskiferkontroller (RE og SL), samt uke 6 for betong (B) og betongbehandlede alunskiferkolonner (REB og SLB) antas ikke å være Figur 13- Gjennomsnittlig ukentlig redoks for kolonnegjentakene, samt standardavvik som viser variasjonen i Figur 14- Gjennomsnittlig ukentlig beregnet SPR for alunskiferkontrollene (RE og SL) for hele forsøksperioden Figur 15- Akkumulativ gjennomsnittlig SPR for alunskiferkontrollene (RE og SL) i første vanningsperiode (uke 1-12, ikke inkludert flush i uke 0), samt standardavvik som viser variasjonen i akkumulativ SPR i kolonnegjentakene. En lineær trendlinje for utviklingen i SPR vises med en stiplet linje. (RE: n=2, SL: n=2).........35

Figur 16- Ukentlig gjennomsnittlig alkalinitet for betongkrontrollene ved pH 4,5 uttrykt som CaCO3PR [kg CaCO ₃ tonn ⁻¹ uke ⁻¹] i samtlige uker, foruten uke 7 hvor mengde eluat ikke ble registrert, samt standardavvik som representerer variasjonen imellom betongkontrollene i ukentlig beregnet SPR. (B: $n=2$)
Figur 17- Gjennomsnittlig akkumulert alkalinitet ved pH 4,5 for betongkontrollene (B) uttrykt som $CaCO_3PR$ [kg $CaCO_3$ tonn ⁻¹] i første vanningsperiode (uke 1- 12, ikke inkludert flush uke 0), samt standardavvik som viser ukentlig variasjon imellom betongkontrollenes akkumulerte $CaCO_3PR$. Stiplet linje representerer en lineær trendlinje for utviklingen av gjennomsnittlig akkumulert $CaCO_3PR$. (B: n=2)
Figur 18- Gjennomsnittlig akkumulativ CaCO ₃ PR for betongkolonnene (B) uttrykt som [(kg CaCO ₃ (tonn betong) ⁻¹], og SPR for alunskiferkolonnene (RE og SL) uttrykt som karbonatforbruk [– (kg CaCO ₃ (tonn alunskifer) ⁻¹], samt trendlinjer. (RE: n=2, SL: n=2, B: n=2)
Figur 19- Ukentlig gjennomsnittlig utlekking av U fra ubehandlet (RE) og behandlet (REB) alunskifer fra Regjeringskvartalet [μg/L]. Standardavvik representerer variasjonen i målt U imellom kolonnegjentakene. (RE: n=2, REB: n=3)
Figur 20- Ukentlig gjennomsnittlig utlekking av U fra ubehandlet (SL) og behandlet (SLB) alunskifer fra Slemmestad [μg/L]. Standardavvik representerer variasjonen i målt U imellom kolonnegjentakene. (SL: n=2, SLB: n=3)
Figur 21- To utvalgs t- test (med antatt ulik varians) for ukentlig gjennomsnittlig U- utlekking a) fra RE og REB, b) SL og SLB, (RE: n= 2, REB: n=3, SL: n=2, SLB: n=2). Punkter plassert under rød forkastningsgrense (α = 0,05) innebærer en signifikant forskiell imellom behandlet og ubehandlet alunskifer.
Figur 22- Søylene representerer filtereffekten av U i de betongbehandlede kolonnene, presentert som en ukentlig prosentvis differanse imellom aktuell betongbehandlet kolonne (REB: n= 1) og gjennomsnittlig
utlekking fra ubehandlet alunskifer (RE: n=2). Røde kryss, samt tall, viser gjennomsnittet av søylene innad i en uke, samt standardavvik som representerer variasjonen imellom søylene for samme uke
fra ubehandlet alunskifer (SL: n=2). Røde kryss viser gjennomsnittet av søylene innad i en uke, samt standardavvik som representerer variasjonen imellom søylene for samme uke
Regjeringskvartaletskifer (kolonne RE1) og behandlet (kolonne REB1) i uke 5 og 12
Slemmestadskifer (kolonne SL1) og behandlet (kolonne SLB1) i uke 5 og 12 Figur 26- Gjennomsnittlig utlekking av Cr(III) vist i rødt og Cr(VI) vist i gult i betongbehandlede alunskiferkolonner (REB: n=3 og SLB: n=3) og betongkolonner (B: n=2). Summen av Cr(III) og Cr(VI) antas å
representere total Cr
kollonnegjentakene. Rød stiplet linje representerer utslippsgrense ved utslipp til resipient i henhold til Forskrift om begrensning av forurensning (2022) §33-5, (Cr(VI))= 0,03 mg/L
Figur 28- To utvalgs t- test (med antatt ulik varians) for ukentlig gjennomsnittlig Cr(VI)- utlekking fra a) B og REB, samt b) B og SLB, (B: $n=2$, REB: $n=3$, SLB: $n=3$). Punkter plassert under rød forkastningsgrense (α = 0,05) innebærer en signifikant forskiell imellom betong og glunskiferkoloppene med betongbehandling
Figur 29- Modellert Cr- spesiering utført med programmet Visual MINTEQ for ubehandlet betong (kolonne B1) og betongbehandlede alunskiferkolonner (kolonne REB1 og SLB1) i uke 5 og 12.
Figur 30- Illustrert utvikling av konsentrasjonen av en forurensning i ARD. Modifisert figur fra Fig. 3.7 av Lottermoser (2007)
intervallet Mn- reduserende. Gjengitt fra Fig. 9.15 Appelo og Postma (2005)
(2015)
Figur A.34- Oransje punkt: uttak Regjeringskvartaleskifer (RE), lilla punkt: uttak Slemmestadskifer (SL)

Tabelloversikt

Tabell 1- Volumprosentandel av fraksjoner inkludert i kolonneforsøk (<0,06 og 0,006- 2mm)	17
Tabell 2- Oversikt over samtlige kolonner, inkludert blandingsforhold på volum- og vektbasis	20
Tabell 3- Oversikt over instrument og elektrode benyttet for å måle pH for de betongbehandlede	
alunskiferkolonnene (REB og SLB), samt betongkontrollene (B).	23
Tabell 4- Oversikt over instrument og elektrode benyttet for å måle pH for alunskiferkontrollene (RE og SL)	23
Tabell 5- Oversikt over instrument og elektrode benyttet for å måle EC for de betongbehandlede	
alunskiferkolonnene (REB og SLB), samt betongkontrollene (B).	24
Tabell 6- Oversikt over instrument og elektrode benyttet for å måle EC for alunskiferkontrollene (RE og SL)	24
Tabell 7- Oversikt over gjennomførte analyser og tester i forbindelse med masteroppgave, samt hvor	
foreliggende resultater presenteres	28
Tabell 8- Materialprøvenes tørrstoffinnhold (TS), innhold av totalt organisk karbon (TOC) og totalt uorganisk	(
karbon (TIC)	29
Tabell 9- Totalinnhold av aktuelle elementer i alunskiferprøvene (Regjeringskvartalet og Slemmestad)	29
Tabell 10- Totalinnhold av aktuelle elementer i betong	30
Tabell 11- Betongens ANC (pH \geq 5) basert på titreringsforsøk, samt estimering av mengde betong som må til	l for
å nøytralisere skiferens NNP. ANC antas å skyldes karbonatbufring	31
Tabell 12- Total gjennomsnittlig ionesammensetning [% mol/L] i eluat i kolonnegjentak	34
Tabell 13- Forvitringsraten av pyritt vist som SPR for RE og SL, samt estimering av tiden det vil ta før det nett	0
syrepotensialet uttrykt som SO4 ²⁻ i 1 tonn alunskifer er oksidert	36
Tabell 14- Alkalinitet ved pH 4,5 uttrykt som forvitringsraten av CaCO $_3$ (CaCO $_3$ PR) for betong (B), samt	
estimering av tiden det vil ta før totalt karbonatinnhold i ett tonn betong er forvitret	37
Tabell 15- Estimering av forvitringshastigheten til anbefalt betongmengde i deponering av 1 tonn alunskifer	(RE
og SL) (Tabell 11)	38
Tabell 16- Sum av ukentlig gjennomsnittlig utlekking av U fra kolonneforsøk (RE: n=2, SL: n=2), samt beregni	ng
av hvor mange kg alunskifer som vil gi en årlig utlekking tilsvarende en grenseverdi =1000 Bq/år (Forskrift or	n
radioaktiv forurensning og avfall, 2011b)	40
Tabell 17- t- test av U- utlekking fra ubehandlet og behandlet alunskifer i forsøksperioden. (α = 0,05)	41
Tabell 18- t- test av alunskiferens effekt på Cr(VI) utlekking	46
Tabell 19- Metningsgraden (SI) av aktuelle mineraler i henhold til modellering utført i Visual MINTEQ i uke 5	og
12 for alunskiferkontrollene (RE1 og SL1) og i uke 5, 12 og 31 for betongholdige kolonner (B1, REB1 og SLB1).	•
Positiv verdi (rød) indikerer overmetning, negativ verdi (blå) indikerer undermetning	47
Tabell 20- Fargekoder benyttet til å vise a) tilstandsklasser for klassifisering av ferskvann (Direktoratsguppen	1
vanndirektivet 2018, 2018), og b) grenseverdier for tungmetaller for prosessavløpsvann ved utslipp til resipie	ent
(Forskrift om begrensning av forurensning, 2022) i Tabell 19	48
Tabell 21- Minimum og maksimum observert ukentlig gjennomsnittlig utlekking av øvrige metaller (As, Cd, C	ìr,
Cu, Ni, Pb og Zn) fra kontrollkolonner (RE, SL, B) og betongbehandlede alunskiferkolonner (REB og SLB).	
Klassifisering av a) tilstandsklasser for ferskvann fra Direktoratsguppen vanndirektivet 2018 (2018) og b)	
grenseverdi for tungmetaller i prosessavløpsvann ved utslipp til resipient i henhold til Forskrift om begrensni	ng
av forurensning (2022), tar utgangspunkt i på maksimum- observasjon og vises med representative fargekoa	der
som fremkommer av i Tabell 18	48
Tabell B.22- Analysemetoder «Alunskiferpakka»	75
Tabell B.23- Analyseresultater faststoffanalyse (betongpakka og alunskiferpakka)	76
Tabell B.24- Innhold av OM [%TS], TOC [%TS] og TIC [%TS]. OM er bestemt ved glødetap (550°C), TOC er	
beregnet med antagelsen at TOC utgjør 58% av OM. TOC = OM [%TS]1,724 , og TIC er bestemt ved glødeta	ıp
(950°C)	77

1 Innledning

1.1 Bakgrunn

I Oslofeltet, som strekker seg fra Porsgrunn/Skien i sør til Hamar og Lillehammer i nord, foreligger en utbredelse av den problematiske bergarten alunskifer. (Bjørlykke, 1974; Løken, 2007). Foruten mulig utsiving av radongass, er alunskiferen lite reaktiv så fremt den ligger i ro. Det er ved utgraving og eksponering for luft og vann (grunnlaget for forvitringsreaksjoner) at problemene oppstår. Forvitringen av alunskifer kan medføre at bergarten sveller, og resultere i skade på infrastruktur og bygninger (Løken, 2007). I tillegg er forvitringsreaksjonen syredannende som resultat av pyrittoksidasjon, og kan generere et surt sigevann, som på engelsk omtales som acid rock drainage (ARD), ofte anriket med forhøyede konsentrasjoner av tungmetaller, deriblant uran (U) (Falk et al., 2006; Løken, 2007; Pabst et al., 2016; Vine & Tourtelot, 1970).

U er et naturlig radioaktivt tungmetall med både kjemi- og radiotoksiske egenskaper som ved mobilisering utgjør en potensiell fare for menneskers helse og økosystemer (Alloway, 2010). På bakgrunn av dette er U et aktuelt element som må hensyntas i vurderingen av skadepotensiale til alunskifer.

De nevnte potensielt negative effektene ved alunskifer utgjør hovedårsakene til at skiferen i stor grad graves ut og fjernes i utbyggingsområder, og leveres til deponi. På grunn av alunskifers innhold av radioaktive isotoper kreves det tillatelse fra Statens strålevern for å motta slike masser. Et av deponiene med en slik tillatelse er NOAH AS, avdeling Langøya, som har tillatelse for deponering av 100.000 tonn alunskifer pr. år med spesifisert utslippstillatelse (Forskrift om radioaktiv forurensning og avfall, 2011a; Statens strålevern, 2017).

For å motvirke netto syredannelse i deponert alunskifer med resulterende mobilisering av tungmetaller og øvrige ugunstige sporstoffer, med påfølgende utlekking til ytre miljø, kan det være gunstig å samdeponere alunskifermassene med et materiale med alkaliske (nøytraliserende) egenskaper. Fra et samfunnsøkonomisk og driftsmessig perspektiv vil det være gunstig om avfallsfraksjoner kan benyttes i denne hensikt. Avfallsbetong er ansett som et interessant materiale i denne sammenheng på grunn av dens basiske karakter (NGI, 2021). Sett i lys av EUs rammedirektiv for avfall med en målsetning om 70% resirkuleringsgrad av ikke- farlig byggeavfall innen 2020 gjør problemstillingen ytterligere interessant i et samfunnsperspektiv (European Commission, 2016). Dog ansees det ikke fullstendig uproblematisk å gjenbruke avfallsbetong på grunn av en forhøyet konsentrasjon av det toksiske elementet krom (Cr) i seksverdig form (Cr(VI)). Det er kjent at Cr(VI) kan forårsake anemi og hemolyse, samt virke kreftfremkallende og irritere hud og slimhinner (FHI, 2018; Rollinson, 1973; vanLoon & Duffy, 2017).

Før mulig implementering av betongbehandlingen i deponiformål må ytterligere undersøkelser av nøytraliseringsegenskaper (betong) og utlekking av tungmetaller og uheldige sporstoffer (alunskifer og betong) ligge til grunn. Dette danner fundamentet for målsettingen for denne masteroppgaven.

1.2 Målsetting

Formålet med denne masteroppgaven er å undersøke hvorvidt to alunskiferprøver (en fra Regjeringskvartalet og en fra Slemmestad) påvirkes av samdeponering med betong, samt vurdere om betong viser tilstrekkelig fordelaktige egenskaper til å vurderes som aktuell i samdeponering med alunskifer. På bakgrunn av dette er følgende delmål lagt til grunn:

- Estimere alunskiferprøvenes netto syredannende potensial i form av det totale potensiale og som en funksjon av tid.
- Undersøke syrenøytraliserende egenskaper til avfallsbetong, og vurdere om betongen er egnet for samdeponering med alunskifer på lang sikt.
- Undersøke utlekkingen av uran fra to typer alunskifer, samt hvordan utlekkingen påvirkes når alunskiferne behandles med avfallsbetong i et langtids umettet kolonneforsøk.
- Undersøke utlekkingen av seksverdig krom (Cr(VI)) fra avfallsbetong, også i kombinasjon med alunskifer, i et langtids umettet kolonneforsøk.

2 Teori

2.1 Alunskifer

Svartskifer er en sedimentær bergart som finnes i store deler av verden. Spesielt store avsetninger finnes i Russland, USA, Canada, Australia, Kina, Brasil og Nord- Europa (Alloway, 2010). I Norge finnes svartskifer blant annet i Oslofeltet, som strekker seg fra Porsgrunn/Skien i sør til Hamar og Lillehammer i nord. I Oslofeltet ble det avsatt flere lag med skifer på havets bunn fra kambrium til silur (ca. 400- 550 millioner år siden). Ulike sedimenterinsforhold resulterte i skiferavsetninger med varierende kjemiske egenskaper. Blant de svarte leirskiferne finnes alunskiferformasjonen (Løken, 2007).

2.1.1 Mineralogi alunskifer

Alunskiferformasjonen ble dannet som et resultat av sedimentering av marint leirslam, samt rester av organisk materiale (Løken, 2007), og består i hovedsak av silikatmineraler, organisk materiale, karbonater og sulfider (Falk et al., 2006; Pabst et al., 2016).

Alunskiferen er rik på organisk materiale og kan inneholde opp til 20% totalt organisk karbon (TOC) (Lecomte et al., 2017). Det er innholdet av organiske substanser (kerogen) som gir skiferen den karakteristiske svarte fargen (Falk et al., 2006).

Karbonater utgjør generelt sett en liten andel av alunskiferens sammensetning (1- 2%). I hovedsak foreligger karbonatet som kalsitt (CaCO₃), gjerne i form av knoller som resulterer i en varierende konsentrasjonsfordeling innad i skiferen (Andersson et al., 1985; Bjørlykke, 1974; Falk et al., 2006).

Sulfider ble dannet som et resultat av reduksjon av sulfat (SO4²⁻) til hydrogensulfid (H₂S) under anaerobe sedimenteringsforhold. Sulfidene inneholder ofte utfellinger av andre (tung)metaller, blant annet uran (U), kadmium (Cd), nikkel (Ni) og sink (Zn) (Falk et al., 2006; Lecomte et al., 2017; Løken, 2007; Vine & Tourtelot, 1970). Særs vanlig er forekomsten av jernsulfider, i hovedsak i form av pyritt (FeS₂) og pyrotitt (FeS) (Bjørlykke, 1974). Pyritt foreligger som spredte kuber eller fine korn, gjerne synlig for det blotte øyet. Ofte er pyritt anriket i tynne soner eller i oppkonsentrasjoner. Dette medfører at pyrittkonsentrasjonen vil kunne variere innad i skiferavsetningen (Oftedal, 1955).

2.1.2 Pyrittoksidasjon og syrenøytralisering

Pyrittoksidasjon

Når skiferen eksponeres for oksygen og fuktighet, f.eks. ved utgraving og deponering uten tilstrekkelig tildekking, vil sulfid (i hovedsak foreliggende som FeS₂) oksideres til SO₄²⁻. Et produkt i denne oksidasjonsprosessen er svovelsyre (H₂SO₄) (Løken, 2007). Eksplisitt

innebærer dette at alunskiferen har et iboende potensiale til å generere syre, noe som på engelsk omtales som acid rock drainage (ARD) (Pabst et al., 2016).

I oksidasjonen vil (tung)metallene utfelt i metallsulfidene frigjøres. Ytterligere vil produsert svovelsyre akselerere forvitringshastigheten i materialet, med en påfølgende utlekking av (tung)metaller i tillegg til surt drensvann (Alloway, 2010; Lottermoser, 2007; Statens strålevern, 2012). Dermed kan oksidasjon av pyritt utgjøre store konsekvenser for ytre miljø. Oksidasjonsreksjonen kan beskrives ved følgende likninger (Appelo & Postma, 2005):

$$FeS_2 + \frac{15}{4}O_2 + \frac{7}{2}H_2O \rightarrow Fe(OH)_3 + 2SO_4^{2-} + 4H^+$$

Likning 1

Likning 1 beskriver oksidasjonen av pyritt med vann og luft (O₂ som elektronakseptor). Oksidasjon av 1 mol FeS₂ produserer 4 mol syre (H⁺).

Ved en fullstendig oksidasjon av pyritt blir disulfid (S_2^{2-}) og Fe²⁺ oksidert (Likning 2):

$$FeS_2 + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$

Likning 2

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$$

Likning 3

Dersom pH er >3,5 vil Fe^{3+} felle ut:

$$Fe^{3+} + 3H_2 0 \rightarrow Fe(OH)_3 + 3H^+$$

Likning 4

Oksidasjonen av S_2^{2-} som vises i Likning 2 kan forekomme ved et lavere redokspotensial enn oksidasjonen av Fe^{2+} (Likning 3). Dette forårsakes av begrenset luftutveksling resulterende i en redusert tilgang til O₂ som elektronakseptor. Ved slike forhold kan pyrittoksidasjon forekomme med Fe^{3+} som elektronakseptor, forutsatt at pH er lav nok til at Likning 4 begrenses. Dette kan resultere i en ufullstendig pyrittoksidasjon som vises med en anrikning av SO4²⁻ og Fe²⁺ (Likning 5):

$$FeS_2 + 14Fe^{3+} + 8H_2 O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$$

Likning 5

Oksidasjonen i Likning 5 er å anse som «selvdreven» ettersom pyrittoksidasjonen kan forekomme uten ekstern elektronakseptor (O₂). Fe^{2+} kan oksideres tilbake til Fe^{3+} av O₂, dog er kinetikken treg ved lav pH. På bakgrunn av dette vil teoretisk sett oksidasjonen av Fe^{2+} tilbake til elektronakseptoren Fe^{3+} være en begrensende faktor for den «selvdrevne pyrittoksidasjonen». I naturlige miljøer vil tilstedeværelsen jernoksiderende bakterier forårsake en akselerasjon av denne prosessen.

Likning 5 illustrerer den betydelige produksjonen av syre som følge av «selvdreven pyrittoksidasjon»; oksidasjon av 1 mol FeS₂ produserer 16 mol syre (H⁺), fire ganger så mye syre sammenlignet med oksygenindusert pyrittoksidasjon.

Syrenøytralisering

I en varierende grad vil alunskifere ha en iboende egenskap til å nøytralisere syre som følge av forvitringen av basiske mineraler som karbonat, som i hovedsak foreligger som kalsiumkarbonat (CaCO₃) (Andersson et al., 1985; Bjørlykke, 1974; Falk et al., 2006) Det nøytraliserende potensialet (NP) vil på denne måten motvirke ARD. I hvilken grad ARD motvirkes avhenger av forholdet mellom NP og det syredannende potensialet (AP) (NGI, 2021).

Kalsittforvitring er avhengig av pH og skjer ved følgende reaksjoner (Appelo & Postma, 2005):

Ved pH >6,4:

$$CaCO_3 + H^+ \rightarrow HCO_3^- + Ca^{2+}$$

Likning 6

Slik det fremgår av Likning 6 konsumerer kalsittforvitringen syre (H⁺), og er dermed netto nøytraliserende (1 mol CaCO₃ nøytraliserer 1 mol syre).

Når pH er <6,4:

$$CaCO_3 + 2H^+ \rightarrow H_2CO_3 + Ca^{2+}$$

Likning 7

Eller:

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O$$

Likning 8

Slik det vises av Likning 6 sammenlignet med Likning 7 (og Likning 8) dobles syrenøytraliseringen ved kalsittforvitringen når pH reduseres til <6,4 (2 mol syre (H⁺) pr mol CaCO₃).

2.1.3 Uran

²³⁸U er den vanligst forekommende U- isotopen i jordskorpen ($T_{1/2} = 4,51*10^9$ år), samt i øvrige naturlige forekomster (Alloway, 2010). En forhøyet konsentrasjon av U kan blant annet forkomme i svartskifere, hvor den skandinaviske alunskiferen er av svartskiferne med størst anrikning. U i alunskiferen stammer fra sjøvannet hvor skiferen ble avsatt, og anrikningen antas å ha forekommet i flere former og prosesser. Sulfatreduserende forhold ved sedimentering medførte en reduksjon av U løst i sjøvannet fra U(VI) til U(IV) med en påfølgende utfelling i det organisk- rike sedimentet, antakelig i from av uranitt (UO₂) (Alloway, 2010; Lecomte et al., 2017; Swanson, 1961; Vine & Tourtelot, 1970). I enkelte alunskifere antas det at så mye som 50% av U- anrikningen skyldes denne prosessen (Swanson, 1961). Fosfatnoduler, i hovedsak i form av karbonat- fluorapatitt- noduler, er en annen komponent hvor det er observert en betydelig U- anrikning i alunskifer (Alloway, 2010; Lecomte et al., 2017; Swanson, 1961). En illustrert fremstilling av U- anrikningen i alunskifer følger i Figur 1.

Figur 1- Illustrert fremstilling av U- anrikning i OM, Pyritt og fosfatnoduler i alunskifer. Modifisert fremstilling av Fig. 27 Lecomte et al. (2017).

Spesieringen, og med det også mobiliteten, til U er i tillegg til redoksforhold svært avhengig av pH (Figur 2). I akvatisk miljø kan U foreligge med oksidasjonstrinnene +IV og +VI, men samtlige oksidasjonstrinn fra +III til +VI kan observeres naturlig (Alloway, 2010; Xie et al., 2019).

Ved reduserende forhold vil U i hovedsak foreligge som relativt uløselig tetravalent U(IV) i form av utfelte, lite løselige oksider, f.eks. UO₂. U- utfelling kan også forekomme i form av kompleksering med fosfater, sulfater, silisium (Si), OM og karbonat (Alloway, 2010; Nolan et al., 2021). Ved sure (pH 2- 4), oksiderende forhold foreligger U(VI) som et hydratisert kation, uranyl (UO₂²⁺), med sterke metall- oksygen- bindinger som medfører at ionet er lite reaktivt og svært mobilt. Implisitt innebærer dette at U er mobilt ved forekomst av AMD (Smedley & Kinniburgh, 2023). Ved økende pH vil UO₂²⁺ potensielt danne ulike negativt ladde komplekser, i hovedsak med hydroksider og karbonater (pH 7- 9). Dannelsen av kabonatkomplekser er kjent at øker mobiliteten til U som følge av at kompleksene er svært løselige, samt har en nøytral eller negativ overflateladning som reduserer graden av adsorpsjon (Alloway, 2010; Nolan et al., 2021). Mindre fokus har vært rettet imot immobile U- holdige karbonatkomplekser (Nolan et al., 2021).

Figur 2- Modellert U spesiering i et U-CO₂-H₂O- system, total U = 10^{-6} M, P_{CO2} 10^{-2} atm og temperatur = 25°C. Modelleringen er utført i Visual MINTEQ. a) Spesiering av U som en funksjon av pH. Uranyl (UO₂²⁺) foreligger som fritt kation ved sure forhold. Med økende pH dannes hydroksid og karbonatkomplekser. b) spesiering av U som en funksjon av pH og redoks (Eh). Med økende pH dannes karbonatkompekser. Gjengitt fra Xie et al. (2019). Basert på modellering utført i Visual MINTEQ antas P_{CO2} 10^{-2} atm å tilsvare 0,001 µg/L CO₃²⁻ og pH 6,9.

Uran et aktuelt element som inngår i estimeringen av alunskiferens skadepotensiale og skadeomfang. Uran er et naturlig radioaktivt tungmetall med både kjemi- og radiotoksiske egenskaper for mennesker og økosystemer. Opprinnelig er human uraneksponering blitt ansett som en radiologisk helserisiko, men et økende fokus er også rettet imot kjemisk helserisiko med nyrebetennelse (nephritis) som primær human helseeffekt (Alloway, 2010; FHI, 2018; Smedley & Kinniburgh, 2023). Det foreløpig ikke gjort funn som kan vise at U utgjør en essensiell funksjon hos hverken planter eller dyr (Alloway, 2010). Toksisiteten vil avhenge av hvordan U foreligger innenfor et størrelsesspekter fra low molecular mass (LMM), kolloider eller nanopartikler til større partikler, hvorav LMM- specier er antatt å være mest mobile og potensielt biotilgjengelige (Salbu & Lind, 2020).

2.1.4 Deponering av alunskifer

Med hensyn til syredannelse

I henhold til Avfallsforskriften kapittel 9 må det foreligge en basiskarakterisering av masser som kan inneholde syredannende bergarter før massene kan tas imot ved et avfallsdeponi. Basiskarakteriseringen skal også gi opplysninger om det foreligger behov for særskilte forhåndsregler som må hensyntas i forbindelse med deponering slik det fremgår av bokstav j avfallsforskriften kapittel 9 (Avfallsforskriften, 2004). Det er avfallsprodusenten eller avfallsbesitteren som er ansvarlig for at basiskarakteriseringen gjennomføres. Veiledning til aktuelle metoder for karakterisering av avfallstyper, samt veiledning til egnet håndtering og eventuell deponiløsning, er gitt i rapporten *Håndtering av potensielt syredannende svartskifer* (NGI, 2021).

I utgangspunktet forutsettes opprettelse av egne celler i deponi ved deponering av syredannende masser. Et unntak kan tillates dersom samdeponerte avfallsmasser kan bidra til bedrede pH- forhold i cellen. Opprettholdelsen av en tilnærmet nøytral pH i deponi vil være gunstig for å motvirke en storskala mobilisering av sporstoffer som i hovedsak opptrer ved svært sure (pH <3) eller basiske (pH >11), samt motvirke en potensiell spontan, eksoterm forvitring av alunskiferen ved sure forhold, pH> 3,5 (Likning 5). (NGI, 2015a; vanLoon & Duffy, 2017).

Det vil både fra et samfunnsøkonomisk og driftsmessig perspektiv være gunstig å benytte alkaliske avfallsmasser til pH- regulering i deponi. Det vil være kostnadsreduserende, samt plassbesparende da behovet for «rene» masser reduseres. Eksempler på slike alkaliske avfallsfraksjoner som egner seg til pH- regulering i deponi er: bunnaske fra avfallsforbrenning, bioaske fra forbrenning av biologisk materiale og betong (NGI, 2021) Om en avfallsfraksjon, for eksempel betong, skal vurderes som egnet til dette formålet forutsettes det at betongens nøytraliserende kapasitet minimum utligner det syredannende potensialet til alunskiferen uten å kreve urimelige mengder nøytraliserende materiale. I tillegg må reaksjonshastigheten til det basiske materiale samsvare tilstrekkelig med den syredannende reaksjonen til skiferen.

Med hensyn til uraninnhold

På bakgrunn av alunskiferens mulige U- innhold foreligger et potensial for radioaktiv forurensning, og deponering reguleres under Forskrift om radioaktiv forurensning og avfall (2011a) vedlegg 1a, vedlegg 1b og vedlegg 2. Slik det fremgår av forskriften må alunskiferen leveres til mottak med tillatelse fra Statens strålevern. Deponier for farlig avfall kan ta imot radioaktivt avfall med en total aktivitet på <10 Bq/g (=800 mg U/kg) uten ytterligere spesielle tillatelser. Deponier for ordinært avfall må alltid søke Direktorat for strålevern og atomsikkerhet (DSA) om tillatelse, dersom det er ønskes å ta imot og håndtere alunskifer. En viktig bemerkning er at det er først når slike masser graves ut/flyttes at det regnes som avfall. Urørt grunn og løsmasser regnes ikke som radioaktivt avfall (NGI, 2021).

Under Forskrift om radioaktiv forurensning og avfall (2011a) Vedlegg I §2b spesifiseres grenseverdier for total aktivitet [Bq/år] og spesifikk aktivitet [Bq/g] for deponeringspliktig radioaktivt for ulike radionuklider, deriblant U- nuklider. På bakgrunn av dette forsøkets

karakter hvor U- utlekkingen overvåkes, ansees grenseverdien for U²³⁸ (definert som U²³⁸ i likevekt med alle døtre) som mest korrekt å anvende da det ikke kan antas at alle døtre lekker ut i like massekonsentrasjoner (Smedley & Kinniburgh, 2023; U.S.NRC). Utslippsgrensen for totalaktivitet for U²³⁸ er fastsatt til 1000 Bq/år og grensen for spesifikk aktivitet til 1 Bq/g (Forskrift om radioaktiv forurensning og avfall, 2011a). Grensen for spesifikk aktivitet antas å tilsvare 80 mg U/kg tørrstoff (TS) (IAEA, 2003; NGI, 2015a). Derimot er det gjort observasjoner som imidlertid har vist at 1 Bq/g tilsvarer en U- konsentrasjon på nærmere 100 mg/kg, som indikerer en noe konservativ tilnærming i estimering av spesifikk aktivitet basert på totalinnhold [mg/kg TS] (NGI, 2015a).

2.2 Betong

Siden utviklingen av betong har det blitt det mest brukte menneskeskapte byggemateriale. På verdensbasis brukes det omtrent tre tonn betong pr person årlig (de Brito & Saikia, 2012). Den utbredte brenuken resulterer på den andre siden til en betydelig andel avfall. I 2020 utgjorde betong og tegl 34% av avfallet fra bygge- og anleggsvirksomhet, 28% av dette ble levert til deponi (SSB), dette tolv år etter at EU's rammedirektiv for avfall vedtok en målsetning om at innen 2020 skulle 70% av (ikke- farlig) byggavfall resirkuleres (European Commission, 2016).

2.2.1 Betongproduksjon

Et primitivt opphav til den moderne betongen er mørtel laget av kalk (CaO/CaCO₃). Det er gjort funn av primitive ovner som indikerer produksjon av kalk fra kalkstein så langt tilbake som for 5000 år siden. Egypterne brukte på denne tiden kalk i byggingen av pyramider i form av første sementen, en blanding av kalkpasta og vulkansk aske. I 1824 avanserte briten, Joseph Aspdin sementproduksjonen. Aspdin lagde et nytt sementmaterial fremstilt ved brenning av kalkstein og leire. Produktet fikk navnet Portlandsement. Dagens sement er betraktelig forbedret, men lages fremdeles av de to opprinnelige materialene, et leiraktig materiale (f.eks. skifer eller leire) og inntil 5% på vektbasis av et kalkholdig materiale (f.eks. kalkstein (>70% kalsitt)) (Brunauer & Copeland, 1964; Matschei et al., 2007).

Dagens portlandsement prepareres i to trinn. Først gjennomføres en blanding og prosessering av kalkstein, sand og leire ved høy temperatur for å produsere et sementpulver. Råmaterialene blandes og varmes opp til høy temperatur (1450°C). Oppvarmingen frigir H₂O og CO₂ og medfører reaksjon imellom materialene, samt en delvis smelting. Påfølgende avkjøling resulterer i dannelsen av klinkere, mindre kuler med blandet, interagert materiale. (MacLaren & White, 2003).

Ettersom Portlandsementen består av mange komponenter er det ingen entydig kjemisk formel som kan beskrive den kjemiske sammensetningen. I hovedsak er det dog fire komponenter som utgjør mer enn 90% av sementen på vektbasis, alitt (3CaO·SiO₂), belitt (2CaO·SiO₂), dikalsiumsilikataluminat (2CaO·Al₂O₃) og tetrakalsiumaluminoferrit (2CaO·Al₂O₃·Fe₂O₃). Det skal nevnes at formlene presentert i parentesene ikke er helt reelle, da samtlige komponenter kan inneholde oppløste urenheter (Brunauer & Copeland, 1964).

Betong produseres ved å male opp sementklinkere og blande sementpulveret med vann og tilslagsmateriale i form av fine aggregater (sand) og grove aggregater (grus eller knust stein) (Brunauer & Copeland, 1964). Totalt utgjør sementen 7-15%, de fine aggregatene 30- 50%, de grove aggregatene 24- 28%, vann 14- 18% og luft 0,5- 8% av betongen (Karasin et al., 2015).

2.2.2 Gjenvinning av betong

Håndtering av næringsavfall, for eksempel fra bygge- og riveprosjekter, reguleres av forurensningsloven. Slik det fremgår av §32 plikter den som produserer næringsavfall å levere til lovlig avfallsanlegg eller materialgjenvinning. Gjenvinning av betong fra bygge og riveprosjekter reguleres ytterligere under Avfallsforskriften (2004). Jamfør §14a er formålet med bestemmelsene *«å fremme gjenvinning av betong»*. Gjenvinningen forutsetter en miljøkartlegging av betongen, og helse- og miljøfarlige stoffer må ikke overskrider grenseverdier. Dette står i sammenheng med en ytterligere paragraf i Forurensningsloven (1983) §7 første ledd, som gjør det ulovlig å iverksette noe som kan utgjøre fare for forurensing.

I rapporten *GEOreCIRC- Utlekking av treverdig og seksverdig krom fra betong* (Eckbo, 2019) nevnes flere faktorer som hindrer gjenvinning av betong. En første faktor som nevnes er manglende aksept i markedet knyttet til variasjoner i betongens egenskaper (tetthet, kornstørrelse, sementinnhold, utlekking osv.) og de mekaniske egenskapene (bæreevne, slitasje, motstand osv.), samt manglende tilgang på materialet og god tilgang til jomfruelige masser. En annen, i mange tilfeller avgjørende faktor for gjenvinning av betong, er overskridelse av normverdier som fremkommer av Avfallsforskriften (2004). Spesielt

problematisk er ofte betongens innhold av Cr(VI). Det skal nevnes at i 2020, i etterkant av publisering av rapporten til Eckbo (2019), ble konsentrasjonsgrensen for Cr(VI) i betong hevet. Grensen ble da hevet fra 2mg Cr(VI)/kg til 8 mg Cr(VI)/kg (Endr. i avfallsforskriften (betong og tegl fra riveprosjekter), 2020).

På bakgrunn av den begrensede etterspørselen for betong til gjenbruk ansees det som interessant å gjennomføre undersøkelser av egnethet for gjenvinning i form av bruk som nøytraliserende materiale deponi.

2.2.3 Krom

Avhengig av omgivende redoksforhold kan Cr foreligge i ulike oksidasjonstrinn (Figur 3), henholdsvis hvert trinn fra -II til +VI, hvorav +II, +III og +VI er de vanligste. +II er det laveste oksidasjonstrinnet kjent i vannløsning (Rollinson, 1973). Cr(III) er et nødvendig sporelement i pattedyrs metabolisme. Slik det fremkommer av Figur 3 vil Cr(III) i et oksiderende miljø potensielt oksideres til Cr(VI) (Shupack, 1991), med økt sannsynlighet ved høy pH. Cr(VI) er et toksisk element som blant annet kan forårsake anemi og hemolyse, samt virke kreftfremkallende og irritere hud og slimhinner da gjerne i form av komponentene kromater (CrO₄²⁻), dikromater (Cr₂O₇²⁻) og kromsyre (H₂CrO₄) (FHI, 2018; Rollinson, 1973; vanLoon & Duffy, 2017).

Figur 3- Spesiering av Cr som en funksjon av pH og redokspotensiale (E(V)). Med økende pH dannes hydroksidkomplekser. Cr konsentrasjon= 0,02 mM, temperatur = 25° C, ionestyrke = 0,35 mM. Gjengitt fra Marinho et al. (2018).

Krom finnes blant annet i kalkstein, som er en vesentlig komponent i sement i betong. I hovedsak vil Cr foreligge som Cr(III) i kalken, men vil kunne oksideres til høyere oksidasjonstrinn ved eksponering for høye temperaturer. Dette er tilfellet ved produksjon av klinkere i sementproduksjon, noe som resulterer i forhøyede konsentrasjoner av Cr(VI) i betong (Roskovic et al., 2011; Sinyoung et al., 2011). Som følge av de potensielt negative helseeffektene for sementarbeidere tilføres et reduksjonsmiddel i sementproduksjonen, for eksempel Fe(II)sulfat (FeSO₄), som reduserer deler av produsert Cr(VI) tilbake til Cr(III) etter følgende Likning 9 (Roskovic et al., 2011):

$$3FeSO_4 + CrO_4^{2-} + 3Ca(OH)_2 + 4H_2O \rightarrow 3Fe(OH)_3 + Cr(OH)_3 + 3CaSO_4 + 2OH^{-1}$$

Likning 9

Likning 9 kan forkortes til:

$$Cr^{6+} + 3Fe^{2+} \rightarrow Cr^{3+} + 3Fe^{3+}$$

Likning 10

Engelsen et al. (2010) viser at Cr(VI) i resirkulert betong i hovedsak er bundet i ettringitt i resirkulert betong. Det er ytterligere vist i litteraturen at Cr(VI)- utlekking fra sement i stor grad kontrolleres av tilstedeværelsen av ettringittmineraler (Engelsen et al., 2010; Karamalidis & Voudrias, 2007), som på massebasis utgjør omtrent 0,13% av sement (Snyder, 2009).

3 Material og metode

3.1 Material

Alunskiferne som inngår i forsøket kommer fra pigging etterfulgt av utgraving i forbindelse med utbyggingsprosjekter i Regjeringskvartalet i Oslo og ved Slemmestad brygge i Asker kommune (områder presenteres i kart i Vedlegg A). Begge alunskiferne ble mottatt av NOAH avdeling Langøya våren 2021. Det foreligger ingen eksakt informasjon om hvor lenge materialet ble mellomlagret i tiden mellom utgraving og levering til deponi. Det samme gjelder betongen som ble levert fra rivingsprosjekter ved tidligere Fornebu flyplass. Frem til prøveuttak (14.07.21) ble alunskiferne og betongen oppbevart utendørs i hauger, eksponert for luft og nedbør (uten tildekking) på Langøya. Materialprøvene ble oppbevart i plastbøtter i et kjølig rom frem til forsøk. Mengde materiale tatt ut ved prøveuttak:

- Betong: 24 kg
- Alunskifer fra Regjeringskvartalet (RE): 25 kg
- Alunskifer fra Slemmestad (SL): 28 kg

Figur 4- Materialer inkludert i forsøk. a) Befaring av alunskifer i Slemmestad før mottak i deponi (Foto: Kristofer Larsen, 09.03.21), b) Alunskifer fra Slemmestad ved prøveuttak, c) alunskifer fra Regjeringskvartalet ved prøveuttak, d) materialprøve betong.

3.2 Faststoffanalyse

3.2.1 Totalkonsentrasjon faststoff

Materialprøvene (Regjeringskvartaletskifer, Slemmestadskifer og betong) ble sendt til ALS for analyse av totalinnhold. Analysemetode fremgår av Vedlegg B.

3.2.2 Tørrstoffanalyse

Forbehandling av prøvemateriale

Prøvematerialet ble knust ved hjelp av en kjefteknuser (Retsch KG BB1 og Retsch BB100). For å skille ut fraksjonen >2mm ble materialet siktet med et mekanisk siktetårn. Materiale i fraksjonen <0,06 og 0,06- 2mm ble inkludert i videre forsøk. De tre materialene ble individuelt homogenisert med hensyn til kornstørrelse. Ytterligere beskrivelse av forbehandling følger under avsnitt 3.4.1.

Tørrstoffanalyse (105°C)

For å måle prøvematerialenes tørrstoffinnhold (TS) ble et par gram prøvemateriale overført til en digel og satt til tørking i et tørkeskap som holdt $105 \pm 5^{\circ}$ C i ett døgn. Prøven ble veid før og etter tørking ved bruk av en vekt med tre desimalers nøyaktighet. Vektreduksjonen etter tørking tilsvarer prøvematerialets vanninnhold.

TS- innholdet i prosent (TS%) er regnet ut etter følgende formel:

$$TS\% = \frac{vekt \; etter \; tørking}{vekt \; før \; tørking} \times 100$$

Formel 1

Glødetap av organisk materiale (550°C)

Etter tørrstoffanalyse ble de samme digelene med prøvematerialene satt i en glødeovn med en temperatur tilsvarende $550 \pm 25^{\circ}$ C i overkant av tre timer for å måle prøvenes innhold av organisk materiale (OM). Prøvene ble veid etter gløding ved hjelp av en vekt med tre desimalers nøyaktighet. Vekttap antas å tilsvare innhold av OM.

Glødetapet av OM regnes ut med bruk av følgende formel:

$$Glødetap \ OM\% = \frac{vekt \ etter \ tørking \ (105^{\circ}C) - vekt \ etter \ gløding \ (550^{\circ}C)}{vekt \ etter \ tørking \ (105^{\circ}C)} \times 100$$

Formel 2

Basert på prøvens innhold av OM kan innholdet av TOC (totalt organisk karbon) beregnes på følgende måte:

$$TOC = \frac{Gl \emptyset detap \ OM \ [\%TS]}{1,724 *}$$
Formel 3

*Forutsetter antagelsen at TOC utgjør 58% av OM.

3.3 Materialenes syre- og baseegenskaper

Materialenes iboende syre- og baseegenskaper påvirker pH og mobiliteten av elementer. Dette gjelder både for skiferne og betongen. Det ble dermed utført ulike tester, både teoretiske og praktiske, for å kartlegge disse egenskapene. Se Vedlegg D for teoretisk estimering av iboende syre- og baseegenskaper og skiferprøvenes etasjetilhørighet etter metodene som fremkommer av NGI (2015b).

3.3.1 Betongens syrenøytraliseringskapasitet

For å undersøke betongens evne til å nøytralisere tilført syre, Acid Neutralizing Capacity (ANC), ble det gjennomført et titreringsforsøk. Betongen ble tørket i et varmeskap som holdt 105°C. Denne temperaturen er høy nok til å fjerne vann bundet i materialet, men ikke høy nok til å endre karbonatstrukturene i betongen. Den tørkede betongen ble knust ved hjelp av en kjefteknuser og ytterligere malt opp med en kulemølle. Videre ble materialet siktet til 200 µm. 50g betong og 500mL milliQ- vann, tilsvarende et L/S- forhold (liquid- solid- forhold) lik 10, ble veid inn ved hjelp av en vekt med tre desimalers nøyaktighet i et begerglass.

Begerglasset med løsningen ble satt på en magnetrører og pH ble overvåket kontinuerlig (Figur 5). Når pH tilsynelatende var stabilisert (~17 min) ble titrering iverksatt. Dråpevis ble 1M HCl tilført løsningen ved hjelp av en byrette til pH var redusert én enhet (heltall), etterfulgt av 15 min stabilisering uten tilførsel av syre. pH ble avlest og løsningen titrert ned til neste pH-enhet. Følgende prosedyre ble gjennomført ned til pH 5, dog antas total alkalinitet å representeres i intervallet fra maksimum pH ned til pH 4,5 (Appelo & Postma, 2005).

Figur 5- Oppsett av titreringsforsøk. Betongløsningen i begerglass sår på en magnetrører, og røres kontinuerlig. 1M syre tilføres dråpevis med hjelp av en byrette festet til et stativ. pH måles i sanntid.

3.4 Metode kolonneforsøk

Formålet med kolonneforsøket var å simulere utlekking fra to alunskifere (Regjeringskvartalet og Slemmestad) og betong, samt undersøke utlekkingen fra hver av alunskiferne i kombinasjon med betong. Hensikten med forsøket var å etterligne utlekking fra materialene i et tenkt deponi. Forsøket ble gjennomført innendørs i romtemperatur (~22°C) på NMBU under kontrollerte forhold med hensikt å minimere usikkerheten knyttet til ytre faktorer. Dog ble kolonnene oppbevart i et vekstrom preget av betydelig belysning (lys i nærheten av kolonner ble koblet av) og god ventilasjon igjennom første vanningsperiode, og flyttet til et mørkere lagerrom før andre vanningsperiode.

Kolonnene ble vannet ovenfra med fri drenering for å etterligne vanntilførsel i form av nedbør i deponi. Utformingen av kolonneforsøket ble basert på resultater fra innledende ristetester. Metode og resultater for ristetesten fremgår av Vedlegg E.

3.4.1 Forbehandling av prøvemateriale

Prøvematerialet ble knust ved hjelp av en kjefteknuser (Retsch KG BB1 og Retsch BB100), da det var ønskelig at materialets kornstørrelse ikke oversteg 2mm på grunn av kolonnenes diameter (10cm). Valget begrunnes med ønsket om å minimere risikoen for foretrukne strømningsveier (preferential flow) i kolonnene (NGI, 2019). Det var også ønskelig å inkludere sementen fra betongen, som ble antatt å i hovedsak foreligge i finfraksjon etter knusing. For å skille ut fraksjonen >2mm ble materialet siktet med et mekanisk siktetårn, 1kg om gangen i 30s. Materiale i siktfraksjonen <0,06 og 0,06- 2mm ble inkludert i videre forsøk. Volumprosent av hver fraksjon presenteres i påfølgende Tabell 1. En ytterligere beskrivelse av kornstørrelsesfordelingen i from av kornfordelingskurve finnes i Vedlegg C.

Materiale	<0,06 [vol%]	0,06- 2mm [vol%]
RE	38,70	61,30
SL	38,23	61,77
В	45,07	54,93

Tabell 1- Volumprosentandel av fraksjoner inkludert i kolonneforsøk (<0,06 og 0,006- 2mm).

De tre materialene ble individuelt blandet og homogenisert med hensyn til kornstørrelse i forkant av fylling av kolonnene. Dette ble gjort ved å samle alt materiale av ønsket kornstørrelse i en felles beholder og røre rundt i materiale med håndkraft til materiale var tilstrekkelig homogenisert basert på en visuell vurdering.

3.4.2 Oppsett av kolonner

Det ble benyttet glasskollonner 10cm i diameter og 50cm høyde som ble plassert i et tilpasset stativ for å sikre kolonnenes stabilitet igjennom hele forsøket. Kolonnene ble tettet i bunn med en ikke- metallisk propp med en O-ring i proppens ytterkant. Det ble boret et hull på 5mm i hver propp for å muliggjøre installering av en gummislange (5mm diameter) til drenering av eluatet fra vanningen av kolonnene. Gummislangen ble ført ut i en plastflaske med kork med et hull i korken >5mm. Eluatet ble samlet i flasken. For å motvirke utvasking av finstoff og tetting av gummislangen ble det lagt inn en tilskåret meshduk i plast med en meshvidde på 2mm, samt glassfiberull (ca 1cm høyde i komprimert tilstand) på toppen av bunnproppen (Figur 6).

Materialets vekt ble korrigert for vanninnhold, og ble veid opp ved bruk av en vekt med tre desimalers nøyaktighet. Kolonnene ble fylt lagvis med bruk av en skje. For hver tredje fylte cm ble tilført materiale komprimert med hjelp av et lodd som ble sluppet tre ganger over en kloss tilsvarende kolonnens diameter. Dette resulterte i 3 tilførsler av betong og 12 tilførsler av skifer. På toppen av de fylte kolonnene ble det lagt et 1cm lag med glasskuler (1:1 fordeling av 2mm og 6mm) med formål å bremse og fordele vannet som tilføres ved senere vanning (Figur 6).

Figur 6- Illustrasjon av kolonnenes oppsett. a) Oppsett av alunskiferkolonner med betongbehandling (REB og SLB). Kolonnene ble vannet fra toppen ved bruk at et begerglass. b) Oppsett av skiferkontroller (RE og SL). Kolonnene ble vannet fra toppen ved bruk at et begerglass. c) Oppsett av betongkontroller. Ved vanning av disse kolonnene ble det plassert et plastbeger med fem hull (1mm) i bunn på toppen av kolonnen. Ved bruk av et begerglass ble plastbegeret fylt med vann som drenerte gjennom hullene plastbegeret. Vanningsmetoden ble benyttet for å redusere vannets fallhøyde og kraft som følge av mindre volum materiale i betongkolonnene.

Basert på resultater fra ristetest, samt en praktisk tilnærming for å etterligne mulige realistiske materialforhold i deponi, ble det bestemt å benytte et forhold mellom alunskifer og betong på henholdsvis 80:20 i de betongbehandlede alunskiferkolonnene. Det ble rigget triplikater med disse kolonnene. Det ble også inkludert duplikater med kontroller av hvert enkelt materiale med tilsvarende materialmengde som inngikk i blandingskolonnene. Kolonnene ble rigget med materiale slik det fremkommer av Tabell 2.

Kolonne	Materiale volumbasis [% TS]	Materiale vektbasis [g TS]
REB1	Skifer Regjeringskvartalet (80%) + Betong (20%)	RE: 3200g + B: 800g
REB2	Skifer Regjeringskvartalet (80%) + Betong (20%)	RE: 3200g + B: 800g
REB3	Skifer Regjeringskvartalet (80%) + Betong (20%)	RE: 3200g + B: 800g
SLB1	Skifer Slemmestad (80%) + Betong (20%)	SL: 3200g + B: 800g
SLB2	Skifer Slemmestad (80%) + Betong (20%)	SL: 3200g + B: 800g
SLB3	Skifer Slemmestad (80%) + Betong (20%)	SL: 3200g + B: 800g
RE1	Skifer Regjeringskvartalet	RE: 3200g
RE2	Skifer Regjeringskvartalet	RE: 3200g
SL1	Skifer Slemmestad	SL: 3200g
SL2	Skifer Slemmestad	SL: 3200g
B1	Betong	B: 800g
B2	Betong	B: 800g

Tabell 2- Oversikt over samtlige kolonner, inkludert blandingsforhold på volum- og vektbasis.

3.4.3 Prosedyre ved vanning

Første vanningsperiode

Ettersom volumet i av materiale i kolonnene varierte betraktelig ble vanningsmetode tilpasset. Kolonnene RE, SL, REB og SLB ble vannet ved å forsiktig helle over vann ved hjelp av et begerglass. REB og SLB ble vannet ved at det ble fylt vann opp til kanten av kolonnen. Når tilsynelatende det meste av tilført vann hadde drenert ned i kolonnen ble det på nytt tilført vann opp til kolonnens øvre kant. RE og SL ble tilført ca tilsvarende mengde vann om gangen som REB og SLB. Betongkolonne, med et relativt lite volum materiale, ble vannet ved hjelp at et plastbeger hvor det ble boret fem hull på 1mm. Begeret ble plassert på toppen av kolonnen (Figur 6) og fylt med vann. Denne vanningsmetoden ble valgt for å redusere vannets fallhøyde og kraft.

I uke 0, en uke før oppstart av hoveddelen av forsøket, ble det tilført 1,5L milliQ-vann til alle kolonnene. Formålet med denne første vanningen var å fukte materiale, samt skylle ut eventuelt akkumulerte salter. Vanningen ble gjennomført i flere omganger i et tidsintervall på 13 timer. Påfølgende dag ble eluatet veid og filtrert ved bruk av 0,45µm sprøytefilter. Filtrert eluat ble analysert for redoks, EC, og pH, samt sendt til kjemisk analyse (Avsnitt 3.5.2 og Vedlegg G).

I påfølgende uker (uke 1- 12) ble kolonnene vannet etter tilsvarende prosedyre som i uke 0. Tilførselen av vann ble gjentatt så mange ganger som nødvendig over et tidsintervall på ca. syv timer. Påfølgende dag ble eluatet ble innhentet og behandlet etter samme prosedyre som beskrevet i uke 0.

Etter de tretten ukene med vanning (inkludert uke 0) opphørte vanningen av kolonnene som fremdeles ble stående i kontakt med luft.

Andre vanningsperiode

Etter 17 uker uten vanning ble vanningen gjenopptatt i en periode på tre uker. I uke 29, den første vanningsuken i den andre vanningsperioden, ble det tilført 1L milliQ-vann til kolonnene over et tidsintervall på 32 timer. Bakgrunnen for økt vannmengde fra normal vanning begrunnes i at en stor andel vann ble holdt tilbake av materialet i kolonnene, som resulterte i for liten mengde eluat til analyser. I uke 30 og 31 ble det gjennomført normal vanning, 0,5L milliQ-vann. Vanningen foregikk etter tilsvarende prosedyre som ved første vanningsperiode.

Totalt ble det igjennom første og andre vanningsperiode tilført 9,5L vann til kolonnene. Basert på et generert nedbørsfelt i Holmestrand fremstilt i databasen NEVINA utarbeidet av NVE antas gjennomsnittlig en årsnedbør (periode: 1961- 1990) tilsvarende 943,3mm/år, og en middelavrenning (periode: 1961- 1990) tilsvarende 559,1 mm/år (Vedlegg A). I sum innebærer dette en estimert infiltrasjon på 384,23mm/år. Om det antas 100% infiltrasjon av tilført vann til kolonnene i forsøket, vil en vannmengde på 9,5L tilsvare ~3 år og 2 måneder med nedbør.

Figur 7- Opprigging og prosedyre ved kolonneforsøk. a) Opprigging av kolonner med bunnpropp, tilskåret meshduk og glassfiberull, b) materiale tilføres kolonnene (3 cm før stamping), c) tilført materiale stampes, d) tydelig lagdeling som følge av stamping, e) ferdig stampet betonglag, f) kolonne med betong tilført alunskifer, g) glasskuler tilført på toppen av kolonnene (lag på ~1cm), h) ferdig rigget kolonner, i) vanningsmetode for samtlige kolonner foruten B, j) vanningsbeger med hull benyttet for å vanne B, k) alunskiferkolonne med betongbehandling tilført vann med tydelig vannfront nedover (relativt homogen infiltrasjon i kolonnens ytterkant observeres), l) tilført vann har fuktet tidligere skifer (vises ved fargeskifte fra grå til svart) og store deler har drenert ned i flaske under kolonne.

3.5 Vannkjemi

3.5.1 Målinger av pH, elektrisk konduktivitet og redokspotensialet

pН

pH er et mål for den negative logaritmen til aktiviteten av H⁺- ioner i løsningen (-log[H⁺]), og uttrykker vannets surhetsgrad. Før måling ble pH- instrumentet kalibrert med standardløsninger med pH 4 og 7. På NMBU ble kalibrering etterfulgt av en kontrollmåling av husstandard med pH 6,87.

På grunn av kapasitet på laboratoriene og tilgang til ønskede instrumenter ble målingene av pH gjort på fire laboratorier. Målingene av pH ble utført på følgende måte for de betongbehandlede alunskiferkolonnene (REB og SLB), samt betongkontrollene (B) (Tabell 3):

Tabell 3- Oversikt over instrument og elektrode benyttet for å måle pH for de betongbehandlede alunskiferkolonnene (REB og SLB), samt betongkontrollene (B).

*Målt dagen etter vanning
**Målt to dager etter vanning

mail to adjet eller vaniling				
Uke	Instrument	Elektrode		
0-5*	meterLab PHM210	Thermo orion 8172BNWP	(NMBU)	
6*	inoLab, pH level 2		(NGI)	
7**	Utført av ALS i henhold til NS-EN	ISO 10523:2012		
8-12**	WTW Multi 9620 IDS	WTW universal low maintenance IDS	(NOAH)	
		pH- electrodes SenTix® 940		
29- 30*	meterLab PHM210	Thermo orion 8172BNWP	(NMBU)	

For alunskiferkontrollene (RE og SL) ble målingene utført på følgende måte (Tabell 4):

Tabell 4- Oversikt over instrument og elektrode benyttet for å måle pH for alunskiferkontrollene (RE og SL).

**Malt to dager etter vanning			
Uke	Instrument	Elektrode	
0-2*	meterLab PHM210	Thermo orion 8172BNWP	(NMBU)
3*	inoLab, pH level 2		(NGI)
4**	Utført av ALS i henhold til N	NS-EN ISO 10523:2012	
5- 12**	WTW Multi 9620 IDS	WTW universal low maintenance IDS	(NOAH)
		pH- electrodes SenTix® 940	
29-30*	meterLab PHM210	Thermo orion 8172BNWP	(NMBU)

*Målt dagen etter vanning
Elektrisk konduktivitet

*Målt dagen etter vanning

Elektrisk konduktivitet (EC) er et mål på løsningens evne til å lede elektrisk strøm. Den elektriske ledningsevnen korrelerer positivt med konsentrasjonen av ioner. Konduktiviteten måles i enheten milliSimens/cm [mS/cm] (Hofstad, 2022).

På grunn av kapasitet på laboratoriene og tilgang til ønskede instrumenter ble målingene av EC gjort på fire laboratorier. De betongbehandlede alunskiferkolonnene (REB og SLB), samt betongkontrollene (B), ble målingene utført som følger (Tabell 5):

Tabell 5- Oversikt over instrument og elektrode benyttet for å måle EC for de betongbehandlede alunskiferkolonnene (REB og SLB), samt betongkontrollene (B).

**Malt to a	lager etter vanning		
Uke	Instrument	Elektrode	
0-5*	Metrohm 712 Conductometer	6.0908.110	(NMBU)
6*	WTW LF 538		(NGI)
7**	Utført av ALS i henhold til NS ISC	D 7888	
8-12**	WTW Multi 9620 IDS	WTW - IDS digital conductivity cells	(NOAH)
		TetraCon [®] 925 for universal applications	
29- 30*	Metrohm 712 Conductometer	6.0908.110	(NMBU)

For alunskiferkontrollene (RE og SL) ble målingene av EC utført på følgende måte (Tabell 6):

Tabell 6- Oversikt over instrument og elektrode benyttet for å måle EC for alunskiferkontrollene (RE og SL).

*Målt dagen etter vanning
**Målt to dager etter vanning

	man io at			
	Uke	Instrument	Elektrode	
	0-2*	Metrohm 712 Conductometer	6.0908.110	(NMBU)
	3*	WTW LF 538		(NGI)
	4**	Utført av ALS i henhold til NS ISO	7888	
	5-12**	WTW Multi 9620 IDS	WTW - IDS digital conductivity cells	(NOAH)
			TetraCon [®] 925 for universal applications	
	29-30*	Metrohm 712 Conductometer	6.0908.110	(NMBU)
1				

Redokspotensialet

Redokspotensial er et mål på tilgjengeligheten av elektroner i en løsning. Dette innebærer hvor lett elektronene overføres fra et stoff til et annet (et redokspar). Den totale potensialforskjellen for å gi og ta imot elektroner måles i millivolt [mV]. Oksygen er den mest effektive elektronakseptoren, som vil medføre et stort potensialforskjell. Dette innebærer at dersom oksygenet forbrukes i kolonnene vil det potensielt vises ved reduksjon i redokspotensialet (Universitetet i Oslo- Institutt for biovitenskap, 2011). Forbruket av oksygen vil kunne sees i sammenheng med oksidasjon av mineraler i kolonnen, f.eks. pyritt.

Målingene ble gjort ved bruk av instrumentet Symphony VWR SB20P og elektroden HANNA HI3230 dagen etter vanning. Før måling av redokspotensialet ble instrumentet kontrollert og eventuelt kalibrert med en standardløsning (220mV).

Målt redokspotensiale vil avhenge av benyttet elektrode, og er derfor korrigert med en elektrodespesifikk korreksjonsfaktor for konvertering til et standardpotensial (Eh) [mV] slik det følger av Formel 4:

$$Eh = m$$
ålt redokspotensial $[mV] + 206^* [mV]$

*korreksjonsfaktor = 206 [mV] er gjeldende for Ag/AgCl (3,5M KCl)- elektrode.

Formel 3

Eh [mV] kan også uttrykkes som enheten pe. Konverteringen gjøres på følgende måte (Formel 5):

$$pe = \frac{redokspotensial [V]}{0,059}$$

Formel 4

3.5.2 Elementanalyse (ionekromatografi (IC))

U ble analysert ved bruk av instrumentet Agilent Technology ICP- MS- 8800 QQQ. Prøvene ble fortynnet 10 ganger før analyse på grunn av høy ionekonsentrasjon. Disse analysene ble gjennomført ved jord og vann- kjemilaboratoriet ved NMBU av Valentina Zivanovic.

Prøvene som skulle analyseres for Cr(VI) ble tilsatt konserveringsmiddel ((NH4)2SO₂+NH4OH) før prøvene ble sendt til analyse (standard metode hos ALS). Total Cr og Cr(VI), samt sulfat, ble bestemt ved IC med spektrofotometrisk deteksjon. Cr(III) ble bestemt ved beregning av forskjell mellom total Cr og Cr(VI). Analysene bel gjennomført av ALS. Ytterligere spesifisering av analysemetode følger i Vedlegg G.

Elementanalyse av øvrige elementer kommer frem i Vedlegg G.

3.7 Dataanalyse

3.7.1 Alunskiferens sulfat- produksjonsrate (SPR) og betongens alkalinitetproduksjonsrate (CaCO₃PR) *Sulfatproduksjonsrate (SPR)*

Produksjonen av sulfat, som et uttrykk for oksidasjonsraten av pyritt (Likning 1), kan estimeres slik det fremkommer av følgende Formel 6 (Morin & Hutt, 2001). Ettersom sulfat tenderer å forbli i løsning når det først er frigitt til vannfase, er det en interessant parameter å overvåke dersom en ønsker å undersøke dannelsen av ARD (Lottermoser, 2007).

$$SPR [kg SO_4^{2-} tonn^{-1}uke^{-1}] = \frac{sulfat \left[\frac{mg}{L}\right] \times volum \ eluat \ [L]}{material prøvens \ vekt \ [kg]} * 1000$$

Formel 5

Alkalinitet produksjonsrate (CaCO₃PR)

Betongens alkalinitets- produksjonsrate (CaCO₃PR) er presentert etter tilsvarende metode som fremkommer for SPR (Formel 5) (Morin & Hutt, 2001). Målt alkalinitet ved pH 4,5 antas å skylde karbonatforvitring, og er dermed uttrykt som karbonat (CaCO₃ [mg/L].

$$CaCO_{3}PR [kg CaCO_{3} tonn^{-1}uke^{-1}] = \frac{CaCO_{3} \left[\frac{mg}{L}\right] \times volum \ eluat \ [L]}{material pr \ øvens \ vekt \ [kg]} * 1000$$
Formel 6

3.7.1 Statistisk analyse

Fremstilling av grafer, samt dataanalyse i form av beregninger av gjennomsnittsverdier, standardavvik og t- test er gjennomført i Microsoft Excel versjon 16.71. På bakgrunn av datasettets karakter, samt ønskede hypotesetester, er t- testene gjennomført med betingelsene «tosidig, to utvalg med ulik varians (heteroskedastisk)».

3.7.2 Modellering av spesiering og mineralutfellinger i Visual minteq

Modelleringsprogrammet Visual MINTEQ versjon 3.1 (<u>https://vminteq.com/</u>) er benyttet for å modellere spesieringen av U og Cr(VI) og potensielle mineralutfellinger. Modelleringen av U i alunskiferkontroller (RE og SL) og betongbehandlede alunskiferkolonner (REB og SLB), samt modellering mineralutfellinger for alunskiferkontroller, ble kun gjennomført for uke 5 og 12 på grunn av stor variasjon i U- utlekking i andre vanningsperiode (uke 29- 31). Modelleringen av Cr(VI) og mineralutfellinger i betongkontroll (B1) og betongbehandlede alunskiferkolonner (REB1 og SLB1) ble gjort for uke 5, 12 og 31.

Som input i modelleringsprogrammet ble analyseresultater av følgende parametere/elementer inkludert:

- Temperatur: 22°C
- pH
- Redokspotensiale [mV]
- Al, Si, Fe, Mn, Mo, U, Ca, Mg, Na, K
- Cr, Cl, F, SO4
- DOC (NICA- Donnan), Tot- N
- Betongkontroll og betongbehandlede alunskiferkolonner: CO₃, alunskiferkontroller: HCO₃

 $Cr(OH)_2^+/CrO_4^{2-}$, Fe^{2+}/Fe^{3+} , U^{4+}/UO_2^{2+} ble definert som redokspar.

Som output oppgis estimert spesiering av samtlige elementer, konsentrasjon og aktivitet av spesiene, metningsindeks (SI) og massebalanse ved likevekt. I videre presentasjon av resultater og i drøfting er konsentrasjonen av aktuelle spesier og metningsindeks inkludert med følgende forutsetninger:

- Konsentrasjonen av U og Cr(VI) spesier ble konvertert fra [mol/L] til [mg/L] ved å gange med elementets molar masse (U: Mm = 238,0289 g/mol, Cr: Mm = 51,9961 g/mol).
- Positiv metningsindeks indikerer overmetning av aktuelt mineral.

3.7.3 Generering av nedbørfeltdata

Årsnedbør og middelavrenning er generert i NEVINA versjon 3 (sist oppdatert 18.03.2022, <u>https://nevina.nve.no/</u>) utarbeidet av NVE for vassdragsnummer 013.2 (Vedlegg A).

4 Resultater

Tabell 7 viser en oversikt over samtlige frembragte resultater i forbindelse med denne masteroppgaven, samt hvor resultatene presenteres.

Forsøk	Dato	Frembrakte resultater	Resultater presenteres
Faststoffanalyse metaller	Juli 2021	Totalinnhold skifer og Betong.	Avsnitt 4.1, Vedlegg B
Tørrstoffinnhold og glødetap	22.04-23.04.2022	TS, OM, TIC.	Avsnitt 4.1, Vedlegg B
Kornfordelingsanalyse	13.03.2023	Konfordeling materialprøver (RE, SL, B).	Vedlegg C
Teoretisk klassifisering av alunskifere	Oktober 2022	AP- NP- diagram, Fe- S- diagram, trekantdiagram for klassifisering av etasjetilhørighet.	Vedlegg D
Titreringsforsøk betong	16.07-21.07.2021	ANC betong.	Avsnitt 4.2.2
Ristetest	04.10- 07.10- 2021	pH, Eh, EC, samt elementanalyse.	Vedlegg E
Kolonneforsøk (alunskifere og	05.04- 30.11.2022	pH, Eh, EC, samt elementanalyse.	Avsnitt 4.3, Vedlegg F
betong)		Beregning av SPR for alunskifer og CaCO ₃ PR for betong.	Avsnitt 4.3.3
		Modellering av spesiering og mineralutfelling i Visual MINTEQ	Avsnitt 4.3.4- 4.3.5
Kolonneforsøk (ARD og betong)	04.03- 05.07.2022	pH, Eh, EC, samt elementanalyse.	Vedlegg H

Tabell 7- Oversikt over gjennomførte analyser og tester i forbindelse med masteroppgave, samt hvor foreliggende resultater presenteres.

4.1 Faststoffanalyse

Materialenes totale innhold av TS, TOC og TIC vises i Tabell 8. TOC og TIC presenteres som prosent av TS. Slik det fremkommer av resultatet foreligger hovedandelen av karbon (C) som organisk (OC) i alunskiferne, og som uorganisk (IC) i betongen. Tabell 8- Materialprøvenes tørrstoffinnhold (TS), innhold av totalt organisk karbon (TOC) og totalt uorganisk karbon (TIC).

*Bestemt ved gløding (550°C) på NMBU- lab. TOC = OM[TS%]/1,724

**Bestestemt ved titrering til pH 5 (Avsnitt 3.3.1 bestemmelse av ANC betong). Forutsetter antagelsen at det kun er karbonater (uorganisk karbon, IC) som utøver en syrenøytraliserende effekt i forsøket.

Material	TS	ТОС	TIC	
	[%]	[%TS]	[% TS]	
RE	94,93	5,8	0,25	
SL	98,75	4,1	0,15	
В	96,17	1,5*	4,6**	

Øvrige resultater er fremstilt av ALS (Vedlegg B).

I Tabell 9 presenteres totalinnhold av aktuelle elementer i alunskiferprøvene (Regjeringskvartalet og Slemmestad). Slik det fremkommer tabellen overskrider ikke alunskiferprøvene 80 mg U/kg TS som antas å tilsvare spesifikk aktivitetsgrense for radioaktivt avfall i henhold til Forskrift om radioaktiv forurensning og avfall (2011b) (IAEA, 2003; NGI, 2015a).

	Totalinnhold alunskifer									
	SiO ₂ [%	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	As [mg/kg	Cd [mg/kg
	TS]	[% TS]	[% TS]	[% TS]	[% TS]	[% TS]	[% TS]	[% TS]	TS]	TS]
RE	51,2	13,9	3,5	6,7	4,9	2,2	0,07	1,3	58,5	6,3
SL	54,6	14,3	1,6	10,5	5,4	1,4	0,02	0,9	120	9,8
	Co [mg/k	Cr	Cu [mg/kg	Mo [mg/kg	Ni [mg/kg	Pb	S	V [mg/kg	Th [mg/kg	U [mg/kg
	g TS]	TS]	TS]	TS]	TS]	TS]	[mg/kg TS]	TS]	TS]	TS]
SL	15,1	92,4	113	111	175	44	68800	1620	15,5	43,7
RE	17	77	99,4	101	124	30,5	30400	1220	13,2	60,6

Tabell 9- Totalinnhold av aktuelle elementer i alunskiferprøvene (Regjeringskvartalet og Slemmestad).

Tabell 10 viser en oversikt over totalinnhold av aktuelle elementer i betongprøven. Det fremkommer at Cr(VI)- innholdet ikke overskrider grenseverdien for gjenvinning tilsvarende 8 mg Cr(VI)/kg TS i henhold til Endr. i avfallsforskriften (betong og tegl fra riveprosjekter) (2020).

	Totalinnhold betong							
	As	Cd	Cr	Cu	Ni	Pb	Zn	Cr(VI)
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
В	3,8	0,39	23	18	26	9,1	53	1,2

Tabell 10- Totalinnhold av aktuelle elementer i betong.

En fullstendig sammenfatning av samtlige analyseresultater for materialenes (alunskifer og betong) faststoffkonsentrasjon ligger vedlagt i Vedlegg B.

4.2 Materialenes syre og baseegenskaper

4.2.1 Alunskiferens syredannende potensial

Basert på faststoffinnholdet gitt i Tabell 9 er det gjort en estimering av alunskifernes syreog baseegenskaper etter metoder som fremkommer av NGI (2015b) og Pabst et al. (2016) (Vedlegg D). Slik det vises av Figur 8a er det utformet et NP- AP diagram som vurderer skiferens netto syredannende potensial basert på skiferens S- innhold omregnet til acidification potential (AP) og skiferens nøytraliserende potensial (NP) basert på skiferens TIC- innhold. Det er også plottet et Fe:S- diagram som vises i Figur 8b basert på alunskifernes totale Fe og S innhold. Resultatene indikerer at begge alunskiferprøvene å regnes som netto syredannende. Slik det fremkommer i Vedlegg D antas det også at begge alunskiferne tilhører Alunskiferformasjonen på bakgrunn av observerte tendenser og egenskaper.

Figur 8- Vurdering av alunskifernes syre- og baseegenskaper. a) NP- AP diagram som vurderer skiferens netto syredannende potensial basert på acidification potential (AP) og nøytraliserende potensial (NP). b) Fe:S- diagram basert på alunskifernes totalinnhold av Fe og S.

4.2.2 Betongens syrenøytraliseringsevne

Betongens syrenøytraliseringsevne er anslått ved titrering. Resultatene fra titreringsforsøket representerer hvor mange mmol syre (mmol H⁺) 1 kg betong evner å nøytralisere ned til pH 5 oppnås i løsningen. Gjennomsnittsverdiene som presenteres med standardavvik i Figur 9 baseres på tre titreringsforsøk gjennomført etter samme prosedyre.

Figur 9- Gjennomsnittlig målt pH og mengde tilført syre i tre titreringsforsøk av betong. Punkter representerer gjennomsnittlig tilført syre uttrykt som mmol H⁺ (kg betong)⁻¹ ved hvert pH- nivå. Standardavvik viser variasjonen i mengde tilført syre ved hvert pH- nivå

Slik det fremgår av Figur 9 vil betongen i gjennomsnitt evne å nøytralisere 3227 mmol H⁺ pr kg betong når betongens naturlige pH titreres ned til pH 5. Regnes dette om til CaCO₃ - ekvivalenter tilsvarer dette 0,16 kg CaCO₃ (kg betong)⁻¹. Basert på dette resultatet er det beregnet mengde betong som kreves for å nøytralisere estimert netto nøytraliserende potensial (NNP) for 1 tonn alunskifer, henholdsvis 74 kg CaCO₃ tonn⁻¹ RE og 203 kg CaCO₃ tonn⁻¹ SL (Vedlegg D). Dette tilsvarer ~459 kg betong pr. tonn RE og ~1254 kg betong pr. tonn SL (Tabell 11).

Tabell 11- Betongens ANC (pH \geq 5) basert på titreringsforsøk, samt estimering av mengde betong som må til for å nøytralisere skiferens NNP. ANC antas å skyldes karbonatbufring.

mmol H ⁺ (kg betong) ⁻¹	kg CaCO3- ekv. (kg betong) ⁻¹	kg betong (tonn RE) ⁻¹	kg betong (tonn SL) ⁻¹
3227	0,16	459	1254

4.3 Kolonneforsøk

En sammenfatning av samtlige resultater fra kolonneforsøk ligger vedlagt i Vedlegg F.

4.3.1 Vanningsregime

Samtlige innsamlede eluatprøver er analysert etter metoder som fremkommer av Avsnitt 3.5.2 og Vedlegg G. Resultatene som presenteres er en gjennomsnittsverdi av kolonnene med lik behandling (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3).

Figur 10 viser forholdet imellom ukentlig tilført vann (blå søyler) og gjennomsnittlig drenert eluat samlet i plastflaske under kolonnegjentakene (fargede punkter). Mengde eluat ble målt med en vekt med tre desimalers nøyaktighet. Resultatene er konvertert fra g til mL med antagelsen 1kg = 1L. Differansen imellom tilført vann og mengde eluat antas å skylde adsorpsjon av kolonnemateriale eller tap grunnet fordamping, noe som også er observert i andre kolonneforsøk med tilsvarende oppsett (Pabst et al., 2017).

Figur 10- Ukentlig mengde tilført vann til kolonnene vist med blå søyler. Alle kolonnene mottok samme mengde vann. Gjennomsnittlig mengde drenert eluat fra de ulike kolonnenegjentakene vises som punkter inkludert standardavvik som viser variasjon i drenert eluat imellom kolonnegjentakene av samme type. (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3).

4.3.2 pH, elektrisk konduktivitet (EC) og redokspotensiale (Eh)

pН

Figur 11 viser ukentlig gjennomsnittlig målt pH, samt standardavvik. Figuren inkluderer også en øvre utslippsgrense (pH = 9,5) for utslipp av prosessavløpsvann til resipient fra virksomheter som produserer fabrikkbetong, betongvarer og betongelementer i henhold til Forskrift om begrensning av forurensning (2022) §33-6. Det tenderer til gruppering av alunskiferkontrollene (RE og SL) under utslippsgrensen ved pH ~8, og en gruppering av de

behandlede alunskiferkolonnene (REB og SLB) og betongkontrollene (B), samtlige over utslippsgrensen, ved pH~12,5.

Figur 11- Ukentlig gjennomsnittlig målt pH for kolonnetypene, samt standardavvik som viser variasjon i målt pH imellom kolonnegjentak (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3). Rød stiplet linje representerer øvre utslippsgrense for prosessavløpsvann til resipient, pH = 9,5 (Forskrift om begrensning av forurensning, 2022).

Elektrisk konduktivitet (EC)

Slik det vises av Figur 12 er EC ukentlig målt for samtlige prøver. Slik det fremkommer varierer EC noe over tid. Spesielt i intervallet uke 7- 12 vises en tenderende gruppering av alunskiferkontrollene (RE og SL), og en annen gruppering av de betongbehandlede alunskiferkolonnene (REB og SLB) og betongkontollene (B) ved høyere nivåer for målt EC. I uke 3 for skiferkontrollene (RE og SL) og uke 6 for de resterende kolonnene (REB, SLB, B) vises en tydelig nedgang i EC som antas å skyldes målefeil. Disse målingene ble utført på laboratoriet hos NGI, resterende målinger ble utført hos NMBU, ALS eller NOAH.

Figur 12- Ukentlig gjennomsnittlig målt elektrisk konduktivitet, samt standardavvik som viser variasjon i målt EC for kolonnegjentakene av lik type. (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3). EC i uke 3 alunskiferkontroller (RE og SL), samt uke 6 for betong (B) og betongbehandlede alunskiferkolonner (REB og SLB) antas ikke å være representative grunnet målefeil.

Sett alle ukene under ett utgjør ionene vist i Tabell 12 ioner den største andelen av utlekte ioner for de representative kolonnene, og antas dermed å være de viktigste bidragsyterne til EC basert på %mol/L. Slik det fremkommer av tabellen er Ca²⁺ det mest dominerende kationet i eluatet fra samtlige kolonner. Det mest dominerende anionet er HCO₃⁻ i betongkontrollene (B), SO₄²⁻ i alunskiferkontrollene (RE og SL) og F⁻ i de betongbehandlede alunskiferkontrollene (REB og SLB).

Kolonne	Element
В	Ca (32%), Al (22%), HCO ₃ (21%), CO ₃ (17%), K (3%), Na (3%)
RE	SO4 (36%), Ca (22%), F (15%), Mg (13%), Na (5%), HCO3 (4%), K (3%), Cl/Si/Al (1%)
SL	SO4 (37%), Ca (21%), Mg (18%), F (10%), HCO3 (8%), Cl/Si/Al (1%), Na/K (2%)
REB	Ca (31%), F (22%), CO ₃ (13%), SO ₄ (11%), HCO ₃ (9%), Na (8%), K (5%), Cl (1%)
SLB	Ca (34%), F (21%), SO ₄ (16%), CO ₃ (10%), HCO ₃ (9%), Na/K (4%), Cl (1%)

Tabell 12- Total gjennomsnittlig ionesammensetning [% mol/L] i eluat i kolonnegjentak.

Redokspotensiale

Slik det kommer frem av Figur 13 er redokspotensialet (Eh) målt ukentlig, foruten i uke 4 for RE og SL og uke 7 for B, REB og SLB. RE og SL befinner seg i et oksiderende intervall (Eh > 0), noe som også gjelder de betongbehandlede kolonnene (REB og SLB), dog ved et lavere nivå. Redoksmåling vurderes til å være noe høyere enn de reelle forholdene eluatet utsettes for i kolonnen, da redoks er målt dagen etter vanning, som innebærer at eluatet samlet i plastflaske under kolonnen (Figur 6) sto i kontakt med luft frem til analyse.

Figur 13- Gjennomsnittlig ukentlig redoks for kolonnegjentakene, samt standardavvik som viser variasjonen i målt redoks imellom kolonnegjentak av samme type. (B: n=2, RE: n=2, SL: n=2, REB: n=3, SLB: n=3).

4.3.3 Alunskiferens sulfatproduksjonsrate (SPR) og betongens karbonatproduksjonsrate (CaCO₃PR)

Alunskiferens sulfatproduksjonsrate (SPR)

Basert på utlekking av SO₄²⁻ fra alunskiferkollonnene er ukentlig gjennomsnittlig SPR beregnet etter metode som fremkommer av Likning 6. SPR, samt standardavvik imellom kolonnegjentakene vises av Figur 14.

Figur 14- Gjennomsnittlig ukentlig beregnet SPR for alunskiferkontrollene (RE og SL) for hele forsøksperioden (uke 0-12 + 29- 31), foruten uke 4 hvor mengde eluat ikke ble målt. (RE: n=2, SL: n=2).

I Figur 15 presenteres en akkumulativ ukentlig utvikling av alunskiferprøvenes (RE og SL) gjennomsnittlige SPR beskrevet med en lineær trendlinje, samt standardavvik som viser variasjonen i akkumulativ SPR i kolonnegjentakene. Akkumuleringen korrelerer godt med en lineær beskrivelse (RE: R^2 = 0,99, SL: R^2 = 0,99). Dermed antas raten av SPR å være konstant, og beskrives av stigningstallet (RE: 0,1852 [kg SO4²⁻ tonn⁻¹], SL: 0,1914 [kg SO4²⁻tonn⁻¹]).

Figur 15 inkluderer kun observasjonene fra uke 1- 12 da disse ukene antas å være mest representative for en generell trend. Uke 0 antas å påvirkes av en flush- effekt forårsaket av større vanningsmengde med en påfølgende flush av akkumulerte salter. Ettersom mengde eluat ikke ble registrert i uke 4 er det ikke beregnet en SPR i denne uken.

Figur 15- Akkumulativ gjennomsnittlig SPR for alunskiferkontrollene (RE og SL) i første vanningsperiode (uke 1-12, ikke inkludert flush i uke 0), samt standardavvik som viser variasjonen i akkumulativ SPR i kolonnegjentakene. En lineær trendlinje for utviklingen i SPR vises med en stiplet linje. (RE: n=2, SL: n=2).

Med antagelsen om at SPR- trendlinjen for RE og SL er representativ for hele tidsintervallet hvor sulfatforvitring vil forekomme er det estimert hvor lang tid det vil ta før alunskiferens estimerte netto syrepotensiale i form av SO4²⁻ (Vedlegg D) er forvitret (Tabell 13).

Tabell 13- Forvitringsraten av pyritt vist som SPR for RE og SL, samt estimering av tiden det vil ta før det netto syrepotensialet uttrykt som SO_4^{2-} i 1 tonn alunskifer er oksidert.

* Total S er konvertert til $SO_4^{2^-}$ på følgende måte: Total $SO_4^{2^-}$ [mg/kg TS] = Total S [mg/kg TS] * 3 **Resultater presentert som antall uker i forsøket.

***Antall uker er konvertert til reelle uker basert på nedbørintensitet. Tilført vann i en uke med forsøk tilsvarer i snitt nedbørsmengden til 1,988 uker i Holmestrand.

	RE	SL
Forvitringsrate (SPR) [kg SO ₄ ²⁻ tonn ⁻¹]	0,1852	0,1914
Total SO42-* [kg SO42- /tonn skifer]	9,120	2,0640
Uker i forsøk når total SO4 forvitret**	48	106
Uker reelt når total SO4 forvitret ***	96	211
År reelt	2	4

Betongs karbonatproduksjonsrate (CaCO₃PR)

Basert på målt alkalinitet ved pH 4,5 er det beregnet en ukentlig gjennomsnittlig CaCO₃PR for betongkolonnene etter metoden som fremkommer av Formel 7 (Figur 16).

Figur 17 presenterer den akkumulative gjennomsnittlige utviklingen i CaCO₃PR til betong, samt standardavvik som viser ukentlig variasjon imellom betongkontrollenes akkumulerte CaCO₃PR. Akkumuleringen korrelerer godt med en lineær beskrivelse (R^2 = 0,997). På bakgrunn av dette antas raten av SPR å være konstant, og beskrives av stigningstallet (1,4276 kg CaCO₃ tonn⁻¹).

I Figur 17 inkluderes kun første vanningsperiode da disse ukene antas å være mest representative for utviklingen av en generell trend, samt å i liten grad være påvirket av en flusheffekt som antas i uke 0. Ettersom mengde eluat ikke ble registrert i uke 7 er det ikke beregnet en CaCO₃PR i denne uken.

Figur 17- Gjennomsnittlig akkumulert alkalinitet ved pH 4,5 for betongkontrollene (B) uttrykt som CaCO₃PR [kg CaCO₃ tonn⁻¹] i første vanningsperiode (uke 1- 12, ikke inkludert flush uke 0), samt standardavvik som viser ukentlig variasjon imellom betongkontrollenes akkumulerte CaCO₃PR. Stiplet linje representerer en lineær trendlinje for utviklingen av gjennomsnittlig akkumulert CaCO₃PR. (B: n=2).

På bakgrunn av antagelsen at alkalinitet ved pH 4,5 kan uttrykkes som CaCO₃, samt at CaCO₃PR er representativ for karbonatforvitringen, er det gjort en estimering av tiden det vil ta før alt karbonat i betongen er forvitret (Tabell 14).

Tabell 14- Alkalinitet ved pH 4,5 uttrykt som forvitringsraten av CaCO₃ (CaCO₃PR) for betong (B), samt estimering av tiden det vil ta før totalt karbonatinnhold i ett tonn betong er forvitret.

*Resultater presentert som antall uker i forsøket.

År reelt når total CaCO3 forvitret

tilsvarer i snitt nedbørsmengden til 1,988 uker i Holmestrand.				
	В			
Forvitringsrate (CaCO ₃ PR) [kg CaCO ₃ tonn ⁻¹]	1,4276			
Total CaCO ₃ [kg/tonn betong]	16,15			
Uker i forsøk når total CaCO ₃ forvitret*	113			
Uker reelt når total CaCO ₃ forvitret **	356			

7

**Antall uker er konvertert til reelle uker basert på nedbørintensitet. Tilført vann i en uke med forsøk tilsvarer i snitt nedbørsmengden til 1,988 uker i Holmestrand.

Vurdering av tidsaspektet ved alunskiferens sulfatproduksjonsrate (SPR) og betongens karbonat- produksjonsrate (CaCO₃PR)

For å sammenligne alunskiferens SPR og betongens CaCO₃PR er begge parameterne konvertert til akkumulativ karbonatekvivalent [kg CaCO₃ tonn⁻¹]. Akkumulativ SPR er

presentert som negative karbonatekvivalenter ettersom SPR er en syredannende prosess (forbruker karbonater), og CaCO₃PR vises som positive ekvivalenter ettersom prosessen frigir karbonat. Den akkumulative utviklingen av SPR og CaCO₃PR korrelerer godt med en lineær tilnærming (RE: R²= 0,993, SL: R²= 0,990, B: R²= 0,997). Raten antas dermed å være konstant, og beskrives av stigningstallet (RE: 0,579, SL: 0,598, B:1,428).

Figur 18- Gjennomsnittlig akkumulativ CaCO₃PR for betongkolonnene (B) uttrykt som [(kg CaCO₃ (tonn betong)⁻¹], og SPR for alunskiferkolonnene (RE og SL) uttrykt som karbonatforbruk [– (kg CaCO₃ (tonn alunskifer)⁻¹], samt trendlinjer. (RE: n=2, SL: n=2, B: n=2).

Slik det fremkommer av Tabell 15 er det estimert hvor lang tid det vil ta før syrenøytraliseringskapasiteten til anbefalt betongmengde for deponering av ett tonn alunskifer er forvitret. Slik det kommer frem av Tabell 15 vil det ta 2 år før karbonatinnholdet i anbefalt mengde betong for deponering av ett tonn RE er forvitret, og 2 år før totalt syrepotensial i den samme alunskiferen er forvitret (Tabell 13). For SL vil det ta 5 år før karbonatet i anbefalt betongmengde er forvitret (Tabell 15), og henholdsvis 4 år før totalt syrepotensial i alunskiferen er forvitret (Tabell 13).

Tabell 15- Estimering av forvitringshastigheten til anbefalt betongmengde i deponering av 1 tonn alunskifer (RE og SL) (Tabell 11).

*Resultater presentert som antall uker i forsøket.

**Antall uker er konvertert til reelle uker basert på nedbørintensitet. Tilført vann i en uke med forsøk tilsvarer i snitt nedbørsmengden til 1,988 uker i Holmestrand.

	RE	SL
Anbefalt mengde betong [kg]	459	1245
[kg CaCO ₃ /anbefalt mengde betong]	74	201
Forvitringsrate (B) [kg CaCO ₃ tonn ⁻¹]	1,4276	1,4276
Uker i forsøk når total CaCO3 i betong forvitret *	52	141
Uker reelt når total CaCO ₃ i betong forvitret **	103	280
År reelt	2	5

4.3.4 Utlekking av uran

Eluat fra samtlige kolonner er analysert ukentlig for utlekking av U. Slik det fremkommer av Vedlegg F er U- utlekkingen fra betong tilnærmet neglisjerbar. Ukentlig gjennomsnittlig U- utlekking fra ubehandlet (RE og SL, n=2) og betongbehandlet alunskifer (REB og SLB, n=2) presenteres i Figur 19 og 20 (deteksjonsgrense (<LOD) = 0,0014 μ g U/L).

Figur 19- Ukentlig gjennomsnittlig utlekking av U fra ubehandlet (RE) og behandlet (REB) alunskifer fra Regjeringskvartalet [μ g/L]. Standardavvik representerer variasjonen i målt U imellom kolonnegjentakene. (RE: n=2, REB: n=3).

Figur 20- Ukentlig gjennomsnittlig utlekking av U fra ubehandlet (SL) og behandlet (SLB) alunskifer fra Slemmestad [μ g/L]. Standardavvik representerer variasjonen i målt U imellom kolonnegjentakene. (SL: n=2, SLB: n=3).

I henhold til Forskrift om radioaktiv forurensning og avfall (2011b) Vedlegg II må virksomhet som medfører tilførsel av stoffer med en spesifikk aktivitet over 1 Bq/g og total aktivitet over 1000 Bq/år fra radionukliden U²³⁸ alltid ha tillatelse jf. Forskrift om radioaktiv forurensning og avfall (2011a) §4 andre ledd. Slik det fremkommer av Tabell 16 overskrider ikke nåværende U- utlekking i forsøksperioden eller i et estimert år grensen for spesifikk aktivitet. På bakgrunn målt U- utlekking fra alunskiferkolonnene (RE og SL) i perioden uke 1-12 er det beregnet hvor mye alunskifer som skal til for å overskride grensen for den årlige grenseverdien for total aktivitet. Grenseverdien ble estimert å tilsvare 70 kg for begge alunskiferne (Tabell 16).

Tabell 16- Sum av ukentlig gjennomsnittlig utlekking av U fra kolonneforsøk (RE: n=2, SL: n=2), samt beregning av hvor mange kg alunskifer som vil gi en årlig utlekking tilsvarende en grenseverdi =1000 Bq/år (Forskrift om radioaktiv forurensning og avfall, 2011b).

Målt U- utlekking [mg/L] *er konvertert til* [Bq/g] *med antagelsen:* 1mg/kg = 12,35 Bq/kg = 12,35 Bq/L (*IAEA, 2003*).

	RE	SL
Sum U- utlekking uke 1- 12 i forsøk [Bq/g skifer]	0,029	0,029
Sum U- utlekking ett reelt år [Bq/g skifer]	0,014	0,014
Mengde skifer [kg] som tilsvarer utslippsgrense U [1000 Bq/år]	70	70

For å vurdere om den gjennomsnittlige ukentlige U- utlekkingen fra alunskifer (RE og SL) påvirkes av betongbehandlingen (henholdsvis REB og SLB) er det utført t- test. Slik det fremkommer av Figur 21a er det kun 1/16 uker (6,3%) hvor U- utlekkingen er signifikant forskjellig imellom ubehandlet og behandlet alunskifer fra Regjeringskvartalet. I t-testen utført for alunskifer fra Slemmestad er ubehandlet (SL) alunskifer er 11/16 (68,8%) uker signifikant forskjellig fra behandlet skifer (SLB) (Figur 21b).

Figur 21- To utvalgs t- test (med antatt ulik varians) for ukentlig gjennomsnittlig U- utlekking a) fra RE og REB, b) SL og SLB, (RE: n= 2, REB: n=3, SL: n=2, SLB: n=2). Punkter plassert under rød forkastningsgrense (α = 0,05) innebærer en signifikant forskjell imellom behandlet og ubehandlet alunskifer.

Det er også blitt gjort en t- sett alle ukene under ett. Dette innebærer en betydelig økning i antall observasjoner i hver gruppe (n=16), sammenlignet med ukentlig t- test (RE, SL: n= 2; REB, SLB: n= 3). Formålet er å undersøke om det i sum igjennom forsøksperioden forekom en forskjell i U- utlekking fra ubehandlet og betongbehandlet alunskifer. Slik det fremkommer av Tabell 17 utgjør betongbehandlingen en signifikant effekt på U- utlekking.

Tabell 17- t- test av U- utlekking fra ubehandlet og behandlet alunskifer i forsøksperioden. (α = 0,05).

Materiale	Resultat t- test	Signifikant (α= 0,05):
Regjeringskvartaletskifer (RE vs. REB)	$p=1,9*10^{-4}$	Ja
Slemmestadskifer (SL vs. SLB)	p= 1,3*10 ⁻⁹	Ja

Betongs filtereffekt for uranutlekking fra alunskifer

Figur 22 og Figur 23 presenterer ukentlig prosentvis reduksjon av U- utlekking fra betongbehandlede kolonner sammenlignet med ubehandlede kolonner. I gjennomsnitt reduseres U- utlekkingen fra Regjeringskvartaletskifer med 99,998% og U- utlekkingen fra Slemmestadskifer med 99,999%.

Figur 22- Søylene representerer filtereffekten av U i de betongbehandlede kolonnene, presentert som en ukentlig prosentvis differanse imellom aktuell betongbehandlet kolonne (REB: n= 1) og gjennomsnittlig utlekking fra ubehandlet alunskifer (RE: n=2). Røde kryss, samt tall, viser gjennomsnittet av søylene innad i en uke, samt standardavvik som representerer variasjonen imellom søylene for samme uke.

Figur 23- Søylene representerer filtereffekten av U i de betongbehandlede kolonnene, presentert som en ukentlig prosentvis differanse imellom aktuell betongbehandlet kolonne (SLB: n= 1) og gjennomsnittlig utlekking fra ubehandlet alunskifer (SL: n=2). Røde kryss viser gjennomsnittet av søylene innad i en uke, samt standardavvik som representerer variasjonen imellom søylene for samme uke.

Modellert uran-spesiering

Figur 24 og 25 vises modellert U- spesiering i ubehandlet alunskifer (kolonne RE1 og SL1) og betongbehandlet alunskifer (kolonnene REB1 og SLB1) i uke 5 og 12, med unntak av uke 12 for REB1 og SLB1 ettersom det ikke ble observert U- utlekking. Modelleringen er utført i Visual MINTEQ. Slik det vises i figuren er det estimert at U i all hovedsak vil foreligge som U(VI) i skiferkontrollene (RE1 og SL1). I de betongbehandlede alunskiferkolonnene (REB1 og SLB1) er det estimert at alt foreligger som U(IV) som et kompleks med DOC i form av fluvinsyrer (FA) som FA2-U(IV)_{aq}.

Det ble ikke gjennomført modellering av U- spesiering i andre vanningsperiode som følge av stor variasjon i U- utlekkingen i alunskiferkontrollene (RE og SL) i denne perioden (Figur 19 og 20).

Figur 24- Modellert U- spesiering [% av total U innhold] utført med programmet Visual MINTEQ for ubehandlet Regjeringskvartaletskifer (kolonne RE1) og behandlet (kolonne REB1) i uke 5 og 12.

Figur 25- Modellert U- spesiering [% av total U innhold] utført med programmet Visual MINTEQ for ubehandlet Slemmestadskifer (kolonne SL1) og behandlet (kolonne SLB1) i uke 5 og 12.

Spesieringen er konvertert til mol på følgende måte: Konsentrasjon av spesie = aktivitet (konsentrasjon) * molar masse (U)

4.3.5 Utlekking av krom

Ukentlig analyser av Cr(III), Cr(VI) og total Cr er gjennomført for samtlige kolonner (rapporteringsgrense (<LOR): Cr(VI)= 0,0004 mg/L, total Cr= 0,002 mg/L). I Figur 26 vises ukentlig gjennomsnittlig utlekking av Cr(III) og Cr(VI) for de betongbehandlede alunskiferkolonnene (REB: n= 3 og SLB: n= 3). Utlekkingen av Cr(III) og Cr(VI) antas at i sum representere total Cr. Slik det vises av figuren domineres Cr- utlekkingen av Cr(VI).

Cr- utlekkingen fra alunskiferkontrollene (RE og SL) tilnærmet neglisjerbar slik det fremkommer av Vedlegg F.

Figur 26- Gjennomsnittlig utlekking av Cr(III) vist i rødt og Cr(VI) vist i gult i betongbehandlede alunskiferkolonner (REB: n=3 og SLB: n=3) og betongkolonner (B: n=2). Summen av Cr(III) og Cr(VI) antas å representere total Cr.

Gjennomsnittlig utlekking av Cr(VI) fra de betongbehandlede alunskiferkolonnene (REB: n= 3 og SLB: n= 3) og betongkontrollene (B: n= 2) presenteres i Figur 27 (rapporteringsgrense= 0,0004 mg/L). Figuren inkluderer også utslippsgrensen for Cr(VI) (=0,03 mg/L) i prosessavløpsvann ved utslipp til resipient fra virksomheter som produserer fabrikkbetong, betongvarer og betongelementer i henhold til Forskrift om begrensning av forurensning (2022) §33-5. Slik det vises er samtlige målinger av REB- og SLB kolonnene over grenseverdien for Cr(VI)- utlekking. For betongkolonnene (B) er ingen av målingene fra første vanningsperiode over utslippsgrensen, foruten uke 0. I andre vanningsperiode er alle av målingene over grenseverdien.

Figur 27- Gjennomsnittlig utlekking av Cr(VI) fra alunskiferkolonner med betongbehandling (REB: n=3 og SLB: n=3) og betongkontroll (B: n=2) med standardavvik som viser variasjon i Cr(VI)- utlekkingen i mellom kollonnegjentakene. Rød stiplet linje representerer utslippsgrense ved utslipp til resipient i henhold til Forskrift om begrensning av forurensning (2022) §33-5, (Cr(VI))= 0,03 mg/L.

Det er gjennomført t- test for å undersøke om ukentlig gjennomsnittlig Cr(VI)- utlekking fra betong endres når den kombineres med alunskifer (REB og SLB). Slik det fremkommer av Figur 28a er de gjennomsnittlige observasjonene i 14/16 (87,5%) uker signifikant forskjellige for B sammenlignet med REB. Figur 28b viser at B er signifikant forskjellig fra SLB i 4/16 (25,0%) uker.

Figur 28- To utvalgs t- test (med antatt ulik varians) for ukentlig gjennomsnittlig Cr(VI)- utlekking fra a) B og REB, samt b) B og SLB, (B: n=2, REB: n=3, SLB: n=3). Punkter plassert under rød forkastningsgrense (α = 0,05) innebærer en signifikant forskjell imellom betong og alunskiferkolonnene med betongbehandling.

Utover t- testene gjennomført for ukentlig gjennomsnittlig utlekking av Cr(VI) for betongkontroll (B) sammenlignet med betongbehandlede alunskiferkolonnene (REB og SLB) er det blitt utført t- test sett alle ukene under ett. Dette innebærer en betydelig økning i antall observasjoner i hver gruppe (n=16), sammenlignet med ukentlig t- test (B: n= 2; REB, SLB: n= 3). Formålet med denne t- testen er å undersøke om det i sum igjennom forsøksperioden er en forskjell i Cr(VI)- utlekking fra betongkontrollene og de betongbehandlede alunskiferkolonnene. Slik det vises av Tabell 18 utgjør kombinasjon med alunskifer en signifikant effekt på Cr(VI)- utlekkingen.

Tabell 18- t- test av alunskiferens effekt på Cr(VI) utlekking.

Materiale	Resultat t- test	Signifikant (α= 0,05):
B vs. REB	$p=1,7*10^{-5}$	Ja
B vs. SLB	$p=2,4*10^{-5}$	Ja

Modellert krom-spesiering

I Figur 29 viser modellert Cr- spesieringen fra betong (kolonne B1) og de betongbehandlede alunskiferkolonnene (kolonnene REB1 og SLB1) i uke 5, 12 og 31. Modelleringen er utført i Visual MINTEQ. Slik det vises estimeres det at Cr i hovedsak foreligger som Cr(VI), foruten i uke 12 for SLB hvor Cr foreligger som redusert Cr(III) i form av et organisk kompleks (FA2-Cr(III)_{aq}.

Figur 29- Modellert Cr- spesiering utført med programmet Visual MINTEQ for ubehandlet betong (kolonne B1) og betongbehandlede alunskiferkolonner (kolonne REB1 og SLB1) i uke 5 og 12.

Spesieringen er konvertert til mol på følgende måte: Konsentrasjon av specie = aktivitet (konsentrasjon) * molar masse (Cr)

4.3.6 Modellering av overmetning av mineraler

Ved bruk av programmet Visual MINTEQ er metningsgraden (SI) av mineraler i kolonnene modellert for alunskiferkontroller (RE1 og SL1) i uke 5 og uke 12 og for alunskiferkolonner med betongbehandling (REB1 og SLB1) og betongkontroll (B1) i uke 5, 12 og 31 (Vedlegg F). De mest aktuelle mineralene for denne oppgaven som er estimert overmettet presenteres i Tabell 19.

	REB1		RE1		SLB1		SL1 Like		B				
Mineral	5	12	31	5	12	5	12	31	5	12	5	12	31
Kalsitt (CaCO ₃)	3,2	2,9	1,9	0,9	1,1	3,2	2,9	2,0	1,5	1,1	3,1	2,8	1,9
Cr(VI)- ettringitt	-6,6	-6,2	-6,8	-	-90,9	-6,0	-50,6	-7,2	-	-103	-7,0	-5,6	-4,7
Dolomitt	1,4	0,9	-1,2	1,6	2,0	1,3	1,2	-0,2	3,0	1,7	1,5	-	-1,1
$(CaMg(CO_3)_2)$													
Ettringitt (Ca6Al₂(SO4)₃ (OH)12·26H2O)	9,6	11,0	9,0	-	-6,5	10,1	10,8	8,0	-	-6,9	-	-	5,8
Gibbsitt Al(OH) ₃	-0,6	-0,4	0,1	-	3,9	-0,9	-0,4	0,2	-	4,2	0,5	1,0	1,6

Tabell 19- Metningsgraden (SI) av aktuelle mineraler i henhold til modellering utført i Visual MINTEQ i uke 5 og 12 for alunskiferkontrollene (RE1 og SL1) og i uke 5, 12 og 31 for betongholdige kolonner (B1, REB1 og SLB1). Positiv verdi (rød) indikerer overmetning, negativ verdi (blå) indikerer undermetning.

4.4 Utlekking av øvrige metaller

Utover elementene som fokuseres på i denne masteroppgaven er det observert utlekking av andre metaller med potensielt problematiske konsekvenser En oppsummering sett i lys av *Tilstandsklasser for ferskvann* (Direktoratsguppen vanndirektivet 2018, 2018) og *Grenseverdier for tungmetaller og suspendert stoff* (grenseverdier for prosessavløpsvann ved utslipp til resipient) (Forskrift om begrensning av forurensning, 2022) vises i påfølgende Tabell 21: Tabell 20- Fargekoder benyttet til å vise a) tilstandsklasser for klassifisering av ferskvann (Direktoratsguppen vanndirektivet 2018, 2018), og b) grenseverdier for tungmetaller for prosessavløpsvann ved utslipp til resipient (Forskrift om begrensning av forurensning, 2022) i Tabell 19.

a) Tilstandsklasser for ferskvann	b) Grenseverdier for tungmetaller i prosessavløpsvann
Klasse I (Bakgrunn)	Under grenseverdi
Klasse II (God)	Over grenseverdi
Klasse III (Moderat)	Ikke oppgitt grenseverdi
Klasse VI (Dårlig)	
Klasse V (Svært dårlig)	

Tabell 21- Minimum og maksimum observert ukentlig gjennomsnittlig utlekking av øvrige metaller (As, Cd, Cr, Cu, Ni, Pb og Zn) fra kontrollkolonner (RE, SL, B) og betongbehandlede alunskiferkolonner (REB og SLB). Klassifisering av a) tilstandsklasser for ferskvann fra Direktoratsguppen vanndirektivet 2018 (2018) og b) grenseverdi for tungmetaller i prosessavløpsvann ved utslipp til resipient i henhold til Forskrift om begrensning av forurensning (2022), tar utgangspunkt i på maksimum- observasjon og vises med representative fargekoder som fremkommer av i Tabell 18.

Metall	Materiale	Utlekking fra kolonneforsøk (min- maks) [µg/L]					
		a) Tilstandsklasser for ferskvann b) Grenseverdier for tungmetal					
			prosessavløpsvann				
As	RE	0,7- 5,6	0,7- 5,6				
	REB	0,8- 2,8	0,8- 2,8				
	SL	0,8-2,7	0,8-2,7				
	SLB	0,1-2,0	0,1-2				
	В	0,0- 0,4	0,0- 0,4				
Cd	RE	1,3- 11,5	1,3- 11,5				
	REB	0,03- 0,3	0,03- 0,3				
	SL	33,5- 62,5	33,5- 62,5				
	SLB	0,02- 0,2	0,02- 0,2				
	В	0,0- 0,03	0,0- 0,03				
Cr	RE	0,0	0,0				
	REB	30- 170	0,03- 0,2				
	SL	0,0	0,0				
	SLB	30- 176	0,03- 0,2				
	В	0,0- 61	0,0- 61				
Cu	RE	0,0-4,68	0,0- 4,68				
	REB	3,8- 62,3	3,8- 62,3				
	SL	0,0- 5,6	0,0- 5,6				
	SLB	2,9- 55,7	2,9- 55,7				
	В	2,4- 17	2,4- 17				
Ni	RE	66,5-945	66,5- 945				
	REB	0,0- 25,3	0,0- 25,3				
	SL	1300- 2000	1300- 2000				
	SLB	0,0- 22,3	0,0- 22,3				
	В	0,0- 7,0	0,0- 7,0				
Pb	RE	0,0-0,2	0,0- 0,2				
	REB	0,3- 5,1	0,3- 5,1				
	SL	0,0-0,2	0,0- 0,2				
	SLB	2,6- 32,3	2,6- 32,3				
	В	0,4-2,9	0,4-2,9				
Zn	RE	11,7- 400	11,7- 400				
	REB	0,3-27,7	0,3- 27,7				
	SL	705- 1850	705- 1850				
	SLB	0,6- 19,0	0,6- 19,0				
	В	3,5-24	3,5-24				

5 Diskusjon

5.1 Alunskifernes syredannende potensial

Slik det fremkommer av resultatene i Vedlegg D antas begge skiferprøvene (Regjeringskvartalet og Slemmestad) å tilhøre alunskiferformasjonen, og er å anse som netto syredannende (Figur 8).

Begge skiferprøvene evner å generere mer syre enn skiferens iboende nøytraliseringskapasitet (Vedlegg D), henholdsvis -74 kg CaCO₃ tonn⁻¹ (RE) og -203 CaCO₃ tonn⁻¹ (SL). Dette representerer en teoretisk estimering av skiferens netto syredannende potensial hvor skiferens iboende nøytraliserende egenskaper er trukket ifra det syredannende potensialet. Estimatene er basert på skiferens totalinnhold, og er dermed ikke påvirket av fiksert kornstørrelse som kolonneforsøkene. Det ansees som sannsynlig at en teoretisk beregning av skiferens syredannende kapasitet vil overestimeres på bakgrunn av antagelsen om at all svovel foreligger som syredannende sulfider (Morin & Hutt, 2001; NGI, 2021). Dog vil også skiferens nøytraliserende kapasitet potensielt overestimeres på bakgrunn av antagelsen om at hele totalinnholdet av TIC antas å foreligge som syrenøytraliserende karbonater. Risikoen vedrørende overestimeringen av nøytraliseringskapasitet kan hensyntas ved legge til en sikkerhetsmargin i beregning av mengde basemateriale som bør tilføres ved deponeringen av alunskiferen.

Forvitringsraten, med andre ord tidsaspektet, er en annen faktor som ikke hensyntas i de teoretiske beregningene av skiferens syredannende potensial og iboende nøytraliseringskapasitet. I den teoretiske tilnærmingen antas forvitringsraten av karbonater å fullstendig korrelere med syreproduksjonen, hvorav alt forvitret karbonat inngår i nøytralisering av generert syre.

Skiferens syreproduksjon antas å skylde pyrittforvitring, med forutsetningen om å direkte korrelere med utlekkingen av SO4²⁻ fra alunskiferne. På bakgrunn av dette er SO4²⁻ -utlekkingen benyttet til å beregne ukentlig pyrittforvitringsrate, SPR. Beregnet SPR i uke 1- 12 antas å være representativ for en generell trend, og ligger til grunn for beregningen av akkumulativ SPR (Figur 15). Over de 12 antatt representative ukene ble det tilført en vannmengde tilsvarende ~2 år med nedbør i Holmestrand. Implisitt innebærer dette at akkumulert total SO4²⁻ -utlekking fra kolonnene antas å tilsvare total SO4²⁻ -utlekking over to år i deponi fra tilsvarende mengde materiale som i kolonnen (RE: 3,8 kg, SL: 3,2kg).

En lineær trendlinje beskriver den akkumulative utviklingen av SPR (RE: $R^2= 0,99$, SL: $R^2= 0,99$). Dette innebærer at SPR- raten antas å være konstant igjennom hele forvitringsløpet (RE: 0,185 kg SO₄²⁻ tonn⁻¹, SL: 0,191 kg SO₄²⁻ tonn⁻¹). Forvitringsratene er benyttet for å beregne tiden det vil ta før alunskifernes totale pyrittinnhold, beskrevet som totalinnholdet av SO₄²⁻, er forvitret ved reelle forhold basert på nedbørintensiteten i Holmestrand. Det er det estimert at det vil ta 2 år før 1 tonn alunskifer fra Regjeringskvartalet og 4 år før 1 tonn alunskifer fra Slemmestad er fullstendig oksidert (Tabell 13). Det er nødvendig å presisere at antagelsen kun er gjeldene for benyttet kornstørrelse (<2mm). Drøftinger vedrørende estimatenes begrensning som følge av urealistisk kornstørrelse sett i lys av aktuelle kornstørrelser i deponi følger i Avsnitt. 5.4.1.

Figur 30 viser en skjematisk fremstilling av utlekking av forurensning i drensvann basert på en figur fra Lottermoser (2007). I starten er utlekkingsraten av en forurensning, for eksempel sulfat, tregere som følge av at ARD nøytraliseres internt i materialet av materialets egen bufferkapasitet). Når bufferkapasiteten er brukt opp kan et dropp i pH observeres som følge av økt utlekking av ARD, og utlekking av forurensning (SO₄²⁻) vil i teorien øke eksponentielt etter første observasjon av ARD, før et toppunkt nås og nivået av utlekking avtar gradvis med tiden. (Lottermoser, 2007).

L_{max}: Maksimum konsentrasjon av forurensning

Figur 30- Illustrert utvikling av konsentrasjonen av en forurensning i ARD. Modifisert figur fra Fig. 3.7 av Lottermoser (2007).

Ettersom SO_4^{2-} -utlekking, som antas å skyldes pyrittforvitring, forekommer uten en observerbar reduksjon i pH i alunskiferne i foreliggende studie (pH: RE: 7,6- 8,6 og SL: 7,5- 8,2), antas skiferne å være i en begynnende fase av forvitringsløpet hvor iboende syrenøytraliserende kapasitet evner å nøytralisere generert ARD. I denne fasen vil en lineær rate være beskrivende for forvitringen (Figur 30), slik som også observeres for akkumulativ SPR (R² (RE)= 0,99, R² (SL)= 0,99 (Figur 15). Som det kommer frem av Figur 30 vil raten endres over tid, og forvitringsraten vil i mindre grad kunne beskrives som en lineær funksjon. Dette er ikke tatt høyde for i vurderingen av hvor lang tid det vil ta før skiferens pyrittinnhold er oksidert, og vil være en usikkerhet i vurderingen.

5.2 Håndtering og behandlingsløsning for alunskifer i deponi

5.2.1 Krav til deponering av alunskifer

Alunskifernes kartlagte egenskaper må hensyntas ved deponering, og vil ligge til grunn for krav til deponiløsning i henhold til Avfallsforskriften kapittel 9 (Avfallsforskriften, 2004). Basert på skiferens etasjetilhørighet og uraninnhold skal skiferne som er inkludert i denne oppgaven, etter flytdiagrammet presentert i *Håndtering av potensielt syredannende svartskifer, Fig. 12* (NGI, 2021), deponeres i deponi for ordinært avfall med tillatelse fra DSA. Riktig håndtering av masser av en slik karakter vil være viktig for å motvirke risiko for uheldige direkte og indirekte konsekvenser av pyrittoksidasjon (Likning 5), deriblant syredannelse med påfølgende metallutlekking og temperaturutvikling. Slike konsekvenser vil utgjøre en mulig fare innad i deponi og grensende nedbørsfelt.

Det ønskelig å velge deponeringsløsning som reduserer massenes eksponering for luft og vann (om ikke vannmettet deponeringsløsning). Dette bør prioriteres for å svekke pyrittoksidasjonen. Spesielt kritisk vil det være å opprettholde pH- nivåer >3,5 for å motvirke «selvdreven» pyrittoksidasjon (Likning 5). For å opprettholde gunstige pH- nivåer i deponi kan det være aktuelt å samdeponere alunskifermassene med et alkalisk materiale som øker systemets syrenøytraliseringskapasitet. Fra et samfunnsøkonomisk og driftsmessig perspektiv vil det være fordelaktig om avfallsfraksjoner med slike egenskaper kan benyttes. I denne sammenheng er avfallsbetong er vurdert interessant. Det er derfor gjort ytterligere undersøkelser av betongens nøytraliserende egenskaper i deponiformål.

5.2.1 Avfallsbetongs syrenøytraliserende kapasitet

Betongens syrenøytraliserende kapasitet er ikke basert på totalinnhold og teoretiske beregninger, men titreringsforsøk utført over et begrenset tidsintervall. Titreringen ble gjennomført i et raskt tempo som trolig begrenset etablering av en representativ likevekt i systemet. En slik praktisk test av «effektiv ANC» vil dermed trolig innebære en undervurdering av betongens syrenøytraliserende kapasitet.

Estimeringen av betongens «effektive ANC» gir lite informasjon om forvitringsraten av betongens alkalinitet. Hvis avfallsbetong implementeres i deponi med hensikt å fungere som et buffermateriale for alunskifer vil det uten ytterligere vurderinger foreligge en risiko for at deler av betongens syrenøytraliskapasitet er forvitret og lekket ut av systemet før alunskiferen anse som netto syredannende. For vurdere er å å forvitringsraten av syrenøytraliseringskapasitet er målt alkalinitet ved pH 4,5 for betongkolonnene benyttet til å beregne CaCO₃PR (Figur 16). Uke 1- 12 antas å være beskrivende for trenden i karbonatutlekking i kolonneforsøket, og er benyttet i utarbeidingen av akkumulativ CaCO3PR (Figur 17). Raten viser god korrelasjon med en lineær tilnærming ($R^2 = 0.997$), og antas å være konstant igjennom hele forvitringsløpet (1,428 [kg CaCO₃ tonn⁻¹]).

Slik det fremkommer av Figur 18 er betongens CaCO₃PR (1,428 [kg CaCO₃ tonn⁻¹]) høyere enn alunskiferens SPR (uttrykt som forbruk av CaCO₃) (RE: 0,579 [-(kg CaCO₃ tonn⁻¹)] og SL: 0,598 [-(kg CaCO₃ tonn⁻¹)]). Dette indikerer at betongens syrenøytraliseringsrate overgår alunskifernes rate av syreproduksjon når blandingsforholdet alunskifer: betong er 4:1. Dog vil forvitringen av betongens syrenøytraliserende komponenter nå et maksimum hvor all betongens totale ANC er brukt opp. Den totale ANC vil avhenge av mengde betong. I henhold til teoretiske beregninger som presenteres i Tabell 11 vil det kreve 459 kg betong pr tonn RE og 1254 kg betong pr tonn SL. Med antatt CaCO₃PR, beskrevet som en lineær funksjon over tid, vil total alkalinitet i disse betongmengdene være fullstendig forvitret etter henholdsvis 2 år (RE) og 5 år (SL). Sett i lys av alunskifernes forvitringsrate gir denne forvitringsraten av anbefalt mengde betong et ikke tilstedeværende/minimalt sikkerhetsmargin i samdeponering med formål om at betongens syrenøytraliseringskapasitet skal bufre skiferens totale syrepotensial over tid når det er estimert at det reelt vil ta 2 år før 1 tonn RE og 4 år før 1 tonn SL er fullstendig oksidert. Slik som for skiferens SPR er det aktuelt å presisere at estimert CaCO₃PR anses å være betydelig påvirket av materialets modifiserte kornstørrelse i kolonneforsøk slik det kommer frem under avsnitt 5.4.1. Allikevel ansees det som en interessant observasjon at betongens alkalinitet forvitrer raskere enn pyritten (syrepotensialet) i alunskiferne.

5.3 Effekt av samdeponering av alunskifer og avfallsbetong: Fokus på uran og seksverdig krom.5.3.1 Utviklingen i pH og redokspotensial

Spesieringen og mobiliteten av flere elementer vil påvirkes av pH og Eh i kolonnene. I målingene av både pH og Eh ble det observert en gruppering av alunskiferkontrollene (RE og SL), samt en annen gruppering av de betongbehandlede alunskiferkolonnene (REB og SLB) og betongkontrollene (B). Dette antyder at betongbehandlingen kan påvirke utlekkingen fra alunskifer, både direkte i form av pH og Eh, og potensielt indirekte i form av endret spesiering av elementer.

pН

Samtlige gjennomsnittlige observasjoner av pH i eluatet fra betongkontrollene (pH B: 12,0-12,8), samt de betongbehandlede alunskiferkolonnene (pH REB: 12,0- 12,7 og SLB: 11,9-12,6) overskrider øvre grenseverdi for utslipp av prosessavløpsvann til resipient (pH = 9,5) (Forskrift om begrensning av forurensning, 2022) (Figur 11). Selv om denne grenseverdien ikke direkte er gjeldene i deponi, kan imidlertid et basisk sigevann internt i deponiet ha en effekt på den geokjemiske stabiliteten av annet deponert materiale. På bakgrunn av dette kan bli aktuelt å iverksette pH- reduserende tiltak for drensvannet for å redusere negative effekter for ytre miljø.

Redokspotensialet

Det ble observert en trend i kolonneforsøket hvor eluatet fra kolonnene som inneholder betong viste et lavere redokspotensial (Eh) (REB: 147- 278 mV, SLB 151- 280 mV, B: 158-354 mV) enn alunskiferkontrollene (RE: 355- 483 mV og SL: 397- 499 mV) (Figur 13) i samtlige målinger. Denne grupperingen viser ingen direkte korrelasjon med vannets oppholdstid i kolonnene. Basert på en visuell observasjon tok det kortest tid fra vannet ble tilført til vannet drenerte ut ifra betongkontroll- kolonnene sammenlignet med øvrige kolonner. En mulig forklaring på observasjonen er en effekt av pH. Redokspotensialet er et mål på dragningen av elektroner i redokselektroden til løsningen (eluatet). Alkalint eluat vil preges av en høy konsentrasjon av negativt ladde hydroksylioner (OH⁻) som vil ha en frastøtende effekt på elektronene i redokselektroden. På denne måten vil redokspotensiale ha en invers korrelasjon med pH (Copeland & Lytle, 2014; Rayner- Canham & Overton, 2014). En pH målt i kolonneforsøket for REB på 12,0- 12,7, SLB på 11,9- 12,6 og B på 12,0- 12,8 vil derfor kunne gi et lavere redokspotensiale.

Slik det ytterligere fremkommer av Figur 13 er ukentlig gjennomsnittlig Eh generelt noe høyere (mer oksiderende) for betongkontrollene (B) enn de betongbehandlede alunskiferkolonnene (REB og SLB). Her ansees det ikke utenkelig at økt oppholdstid av vannet, og med det også redusert O₂- diffusjon, i REB og SLB potensielt har hatt en betydning.

5.3.2 Utlekking og immobilisering av uran

Basert på alunskiferprøvenes totalinnhold av U (RE: 60,6 mg/kg TS og SL: 43,7 mg/kg TS) (Tabell 9) antas det basert på forutsetninger som fremkommer av IAEA (2003) og NGI (2015a) (80mg U/kg TS= 1 Bq/g) at alunskiferne ikke vil overskride grenseverdien for spesifikk aktivitet, 1 Bq/g (Forskrift om radioaktiv forurensning og avfall, 2011b). Basert på observert utlekking er det estimert at grenseverdien for årlig total aktivitet (1000 Bq/år) tilsvarer 70 kg alunskifer, noe som ansees som realistisk at overskrides ved eventuell deponering av alunskiferne.

Slik det fremkommer av Figur 19 og 20 er U- utlekkingen betydelig høyere for alunskiferkontrollene (RE: 210- 2865 μ g/L og SL: 185- 860 μ g/L) sammenlignet med de betongbehandlede kolonnene (REB: <LOD - 0,03 μ g/L og SLB: <LOD). I Figur 21 vises ukentlige t- tester som sammenligner ubehandlet og betongbehandlet alunskifer. For alinskiferen fra Regjeringskvartalet er kun 1/16 observasjoner signifikant forskjellige (α = 0,05). Dette skyldes mest sannsynlig testens begrensede utvalgsstørrelse (RE: n=2, REB: n=3). Ser man alle ukene under ett basert på ukentlig gjennomsnitt økes utvalgets størrelse (RE: n= 16, REB: n= 16) og det observeres en signifikant forskjell imellom ubehandlet og behandlet alunskifer (p= 1,9*10⁻⁴). En god effekt av betongbehandling for reduksjon U- utlekking presenteres også av Figur 21 og 22 hvor en gjennomsnittlig filtereffekt på tilnærmet 100% vises. Tilsvarende statistiske tester og fremstilling er gjort for alunskiferen fra Slemmestad hvor 11/16 av ukentlige t- tester viser en signifikant forskjell (α = 0,05) imellom ubehandlet og

behandlet alunskifer, dog anses også disse t- testene å være påvirket av utvalgets begrensede størrelse (SL: n=2, SLB: n=3). Sett alle ukene under ett observeres en signifikant forskjell (p= $1,3*10^{-9}$), som samsvarer med filtereffekten som presenteres i Figur 22 med en observert gjennomsnittlig filtereffekt tilnærmet 100%.

Uran-spesiering

Tradisjonelt har karbonat blitt ansett å mobilisere U, og det fremkommer i litteraturen at karbonat dramatisk påvirker adsorpsjonen av U(VI) (Alloway, 2010; Nolan et al., 2021). På grunn av høy utlekking av karbonat fra betongen var det i forkant av forsøket forventet at betongbehandlingen potensielt ikke ville sorbere U fra alunskiferne. Det motsatte ble derimot observert.

Slik det vises av den geokjemiske modelleringen av U- spesiering utført i Visual MINTEQ (Figur 24 og 25) vil hovedandelen av U i samtlige alunskiferkontrollene foreligge som U(VI) i uke 5 og 12 selv om det forekommer moderat reduserende forhold, tilsvarende mangan (Mn)-reduserende forhold i disse ukene (Figur 31) (pe : RE: 6,0- 8,2 og SL: 6,7- 8,5). Dette samsvarer med observasjoner i litteraturen hvor det er vidt kjent at sulfatreduserende bakterier evner å redusere U(VI) (Lovley & Coates, 1997; Phillips et al., 1994; Sani et al., 2004), imens effekten opphører ved svakere reduserende forhold (moderat Mn- reduserende) og U vil potensielt foreligge i oksidert form (VI) (Smedley & Kinniburgh, 2023). Dette samsvarer også med Pourbaixdiagrammet som vises i Figur 2b.

Figur 31- Reduksjon og oksidasjonsprosesser som en funksjon av pH. Målt Eh i kolonneforsøket forekommer i intervallet Mn- reduserende. Gjengitt fra Fig. 9.15 Appelo og Postma (2005).

Basert på geokjemisk modellering vil U i alunskiferkontrollene (RE og SL) i hovedsak foreligge som (VI) uranyl- kalsium- karbonat- komplekser i form av Ca₂UO₂(CO₃)₃ og negativt ladet CaUO₂(CO₃)₃²⁻ som er vist at i liten grad adsorberes (Nolan et al., 2021; Steward et al., 2009; Wazne et al., 2003; Xie et al., 2019; Zheng et al., 2003). I de betongbehandlede alunskiferkolonnene (REB1 og SLB1) estimeres det at U vil foreligge på redusert form som U(IV) i et organisk kompleks i form av FA2-U(IV)(6)_{aq}.

Modellert U- spesiering for alunskiferkontrollene (RE1 og SL1) samsvarer i all hovedsak med U- spesieringen i Pourbaixdiagrammet som kommer fram av Figur 2b. Ved aktuell pH (RE1: 8,1 (uke 5 og 12) og SL1: 8,2 (uke 5), 7,8 (uke 12)) og Eh (RE1: 390 mV (uke 5), 489 mV (uke 12) og SL1: 441 mV (uke 5) og 499 mV (uke 12)) vil hovedandelen av U i alunskiferkontrollene foreligge som mobilt $UO_2(CO_3)_3^{4-}$ basert på Pourbaixdiagrammet. Dannelsen av Ca- komplekser antas å skyldes Ca- konsentrasjon i alunskiferen. For de betongbehandlede alunskiferkolonnene vil U i henhold til Pourbaixdiagrammet (Figur 2b) i hovedsak foreligge som $UO_2(CO_3)_3^{4-}$ ved aktuell pH (REB: 12,5 (uke 5), 12,4 (uke 12) og SLB: 12,5 (uke 5), 12,3 (uke 12)) og Eh (REB: 239 mV (uke 5), 242 mV (uke 12) og SLB: 246 mV (uke 5), 235 mV (uke 12)), noe som ikke samsvarer med modelleringen som estimerer at U foreligger som redusert FA2-U(IV)(6)_{aq} – kompleks.

Avviket imellom modellert U- spesiering for de betongbehandlede alunskiferkolonnene (REB1 og SLB1) og Pourbaixdiagrammet setter lys på at kvaliteten av geokjemisk modellering (både i foreliggende studie og utformingen av Pourbaixdiagram) er sterkt avhengig av hvilken termodynamisk database modelleringen baseres på (Mühr-Ebert et al., 2019), samt konsentrasjonen av øvrige elementer. I denne forbindelse ansees HCO₃⁻ og CO₃²⁻ som svært viktig. En forhøyet konsentrasjon av enkelte elementer kan medføre en overmetning i systemet, potensielt resulterende i mineralutfellinger som kan påvirke mobiliteten av U. Derfor ble metningsgraden (SI) av mineraler i systemet også modellert.

Modelleringen estimerte en overmetning av ettringitt, kun i kolonnene hvor betong inngår (REB1, SLB1, B) (Tabell 19). Dette antas blant annet å skyldes høyere pH- nivåer i de betongholdige kolonnene (REB: 12,5 og SLB:12,4, B: 12,0- 12,8), da ettringitt er et stabilt mineral ved pH over 10,7 (Myneni et al., 1998). Dannelsen av ettringitt ansees som et relevant aspekt for den observerte U- filtereffekten betongbehandlingen viser. I et forsøk utført av Yorkshire et al. ble det observert et opptak tilsvarende 99% av U(VI) i ettringitt. Som følge av

at det ikke ble observert inkorporering av U(VI) i ettringittstrukturen, ble det antatt at det var tilstedeværelsen av Ca i ettringittsystemet som var ansvarlig for sekvenstreringen av U(VI) i Ca- holdig uranyl-hydroksid eller i form av en kalsium- uranyl- fase. Dette ansees som relevante funn sett i lys av observert filtereffekt og modellert U- spesiering for de betongbehandlede alunskiferkolonnene (REB og SLB). Funnene vist av Yorkshire et al. (2021) samsvarer med øvrige studier som har fastslått at Ca er en faktor som begrenser mobiliteten til U(VI) i Ca- rike miljøer (Felipe-Sotelo et al., 2017; Nolan et al., 2021; Ochs et al., 2018; Skierszkan et al., 2020). På bakgrunn av dette antas det også at den estimerte overmetningen av kalsitt (i samtlige kolonner) kan ha en effekt i immobilisering av U(VI) i de betongbehandlede alunskiferkolonnene.

5.3.3 Utlekking og mobilisering av seksverdig krom (Cr(VI))

Betongprøvens totalinnhold (1,2 mg Cr(VI)/kg TS) overskrider ikke grenseverdien for gjenvinning i anleggsarbeid, 8 mg Cr(VI)/kg TS (Endr. i avfallsforskriften (betong og tegl fra riveprosjekter), 2020). Dette betyr at betongen fritt kan benyttes som materiale i veg, parkeringsplasser og til utfyllingsformål.

For å evaluere potensialet for negative effekter for ytre miljø ble utlekkingen av Cr(VI) fra betongen vurdert basert på utslippsgrensen for prosessavløpsvann ved utslipp til resipient (0,03 mg/L) (Forskrift om begrensning av forurensning, 2022). For betongkontrollene (B) var målt Cr(VI) utlekking kun over grenseverdien i uke 0 (0,03 mg/L) i første vanningsperiode. I andre vanningsperiode var samtlige målinger over grenseverdien (0,03- 0,07 mg/L). Implisitt innebærer dette at selv om betongens totalinnhold av Cr(VI) ikke overskrider grenseverdien for gjenvinning vil utlekkingen av Cr(VI) overskride grenseverdien for utslipp av prosessavløpsvann til resipient, og anses dermed til å utgjøre en mulig risiko for ytre miljø.

Slik det vises i Figur 27 antydes en betydelig øking i utlekking av Cr(VI) fra betongen når den kombineres med alunskifer (REB og SLB). Samtlige målte ukentlige gjennomsnittsverdier for Cr(VI)- utlekking fra de betongbehandlede alunskiferkolonnene (REB: 0,03- 0,16 mg/L og SLB: 0,03- 0,19 mg/L) overskrider utslippsgrensen (0,03 mg/L). Ved implementering av betong i et alunskiferdeponi vil det dermed foreligge en viss risiko tilknyttet Cr(VI) med mulige negative effekter dersom ytre miljø eksponeres for sigevannet. Det skal bemerkes at deponier normalt har system for oppsamling og behandling av sigevann, og risikoen for direkte utslipp til resipient vurderes som liten. For å undersøke om observert økning i Cr(VI)- utlekking når betongen (B) kombineres med alunskifer (REB og SLB) er signifikant ble det utført t- tester (Figur 28). Slik det fremkommer av figuren er det en signifikant forskjell i Cr(VI)- utlekking mellom B og REB i 14/16 uker, men kun i 4/16 uker for B sammenlignet med SLB. Her antas utvalgets størrelse (B: n=2; REB, SLB: n=2) å ha en betydelig påvirkning på samme grunnlag som t- testene for U. Sett alle ukene under ett vises en signifikant forskjell mellom Cr(VI)- utlekkingen fra B og REB (p = $1,7*10^{-5}$), samt for B og SLB (p= $2,4*10^{-5}$). På bakgrunn av dette antas det at Cr(VI)- utlekkingen fra betongen vil øke når den kombineres med alunskifer.

Spesiering av krom

Basert på Pourbaixdiagrammet som fremkommer av Figur 3 vil Cr i systemene ved aktuell pH (B1: 12,2- 12,5; REB1: 12,1- 12,5; SLB1: 11,9- 12,5 mV) og Eh (B: 160- 372 mV; REB1: 166- 242 mV; SLB1: 188- 246 mV) i uke 5, 12 og 31 foreligge som både Cr(III) i form av Cr(OH)³ og Cr(OH)⁴⁻, samt Cr(VI) i form av CrO4²⁻. Observert Cr- utlekking (Figur 26) samsvarer ikke direkte med antagelsen om at Cr vil lekke ut både som Cr(III) og Cr(VI), da den observerte Cr utlekkingen i hovedsak var i form av Cr(VI). Dog samsvarer observasjonene med at Cr er mest mobilt i oksidert form (Lottermoser, 2007). Avviket imellom teori og observert Cr- utlekking antas at kan skyldes forsøkets karakter. Pourbaixdiagrammet baseres på et system i likevekt, noe som antas at ikke er tillfellet i kolonnene da vannets strømningshastighet antas å være for høy (Lottermoser, 2007). Dette kan ha medført at til tross for Mn- reduserende forhold forekommer, strømmer vannet for raskt til at en reduksjon av Cr(VI) til Cr(III) oppstår.

Slik det vises av geokjemisk modellering av Cr utført i Visual MINTEQ (Figur 29) estimeres det at Cr- utlekkingen fra betongen foreligger som Cr(VI), noe som samsvarer med observert Cr- utlekking (Figur 26). Basert på modelleringene vil Cr- utlekkingen fra de betongbehandlede alunskiferkolonnene (REB1 og SLB1) også foreligge som Cr(VI) i de modellerte ukene, foruten SLB1 i uke 12 hvor Cr lekker ut på redusert form som et organisk FA2-Cr(III)(6)_{aq} -kompleks.

Både Cr(III) og Cr (VI) ble observert for SLB1 over tid, men ut over dette avviker modelleringen fra Pourbaixdiagrammet. I vurderingen av spesiering basert på Pourbaixdiagram er det også her nødvendig å presisere at modelleringen av diagrammet vil preges av konsentrasjonen av øvrige elementer, samt hvilken termodynamisk database som er benyttet (Mühr-Ebert et al., 2019).

Basert på geokjemiske modellering av mineral- overmetning (Tabell 19) er det estimert en overmetning av ettringitt i de betongbehandlede alunskiferkolonnene (REB1 og SLB). Basert på litteraturen antas det at ettringit foreligger i betongen (Engelsen et al., 2010), og selv om ingen overmetning av ettringitt ble modellert i betongkontrollen (B1) før i uke 31 antas det at ettringitt også forekommer.

I litteraturen er det beskrevet observasjoner hvor CrO₄²⁻ i ettringitt substitueres med SO₄²⁻ ved økende sulfatkonsentrasjon, resulterende i en økt Cr(VI)- utlekking (Pang et al., 2022). Geelhoed et al. (2003) observerte en tilsvarende effekt og påfølgende Cr(VI)- utlekkingen ved tilsetting av FeSO₄ til et kalkrikt kromittmalm. Dette sees i sammenheng med observert økning i Cr(VI)- utlekking fra betong (B:<LOR- 0,07 mg/L) når betongen kombineres med et overliggende lag med alunskifer med sulfatrik avrenning i de betongbehandlede alunskiferkolonnene (REB: 0,03- 0,16 mg/L og SLB: 0,03- 0,19 mg/L). Cr(VI)- utlekking fra de betongholdige kolonnene (B, REB og SLB) ligger i størrelsesordenen μ g/L, mens og SO4²⁻ -utlekking fra de alunskiferholdige kolonnene ligger i størrelsesordenen mg/L (RE: 994- 4215 mg/L; REB: 73-1323 mg/L; SL: 721-5655 mg/L; SLB: 199-1863 mg/L), slik at usikkerheten blir for stor til å kunne vurdere en korrelasjon mellom en økning i Cr(VI)- utlekking og en nedgang i SO42- -utlekking, da usikkerheten antas å være betydelig. På bakgrunn av gjennomførte analyser foreligger det ikke mulighet for å gjøre ytterligere testing av denne hypotesen, om Cr(VI) potensielt foreliggende i ettringittstrukturen i betongen substitueres av SO₄²⁻, men funnene i litteraturen ansees som interessante sett i lys av observasjonene i kolonneforsøket.

5.4 Usikkerhet ved gjennomførte forsøk

5.4.1 Forutsetninger ved kolonneforsøk

Selv om lignende kolonneforsøk observeres i litteraturen (Eckbo et al., 2022; Pabst et al., 2017; Sephton & Webb, 2017; Sephton et al., 2019) er slike forsøk, gjerne omtalt som «leach columns», ikke en standardisert metode. Dette medfører en usikkerhet dersom en ønsker å se resultater i sammenheng med resultater fra andre lignende forsøk. Blant annet varierer mengde materiale, mengde tilført vann og vanningsintensitet blant forsøkene.
Vanningen av kolonnene, i dette forsøket gjennomført rutinemessig, gjøres ofte i formål om å etterligne nedbør. De simulerte «nedbørtilfellene» gjøres over et kortere tidsintervall, og vil i stor grad ansees som ekstremt sammenlignet med naturlige nedbørstilfeller (Morin & Hutt, 2001). Ønsket med vanningsperiodene i dette forsøket var å etterligne en periode med nedbør i Holmestrand med sesongvariasjoner i form av gjentagende syklus med vanning og tørkeperiode. Med antagelsen om 100% infiltrasjon av tilført vann til kolonnene i forsøket, vil en vannmengde på 9,5L tilsvare en nedbærsmengde tilsvarende ~3 år og 2 måneder (3,148år) i et generert nedbørsfelt i Holmestrand (Vedlegg A).

Teorien er at det i «nedbørsperioder» vil forekomme en utlekking av løselige salter, og i «tørkeperioder» forekomme en utfelling av sekundærmineraler og salter (Lottermoser, 2007; Morin & Hutt, 2001). Dog er dette gjennomført over et redusert tidsintervall satt til totalt 13 uker med kontinuerlig vanning/tørke- syklus etterfulgt av 17 uker tørke og avsluttet med tre uker med vanning/tørke- syklus. Valget av redusert tidsintervall og intensiv vanning i vanningsperioder ble tatt på bakgrunn av to faktorer; den praktiske gjennomførbarheten av forsøket, samt få nok eluat ved hver prøvetaking til å gjennomføre de ønskede analysene. Faren ved et slikt vanningsregime med ekstreme tilførsler av vann er en unaturlig transporthastighet og dannelsen av mindre representative redoksforhold i form av mer ekstreme forskjeller enn i naturlige forhold. For å motvirke uheldige konsekvenser forårsaket av en unaturlig høy transporthastighet, blant annet at ikke alle partikkeloverflatene eksponeres for vann resulterende i at en likevekt mellom fast fase og vannfase ikke oppnås, er det aktuelt å justere materialets hydrauliske konduktivitet.

På bakgrunn av observasjoner fra ristetest (Vedlegg E) i kombinasjon av ønsket om å redusere og homogeisere materalets hydrauliske konduktivitet, samt motvirke preferential flow i kolonnene ble materialet forbehandlet i from av knusing ved hjelp av en kjefteknuser og siktet til en kornstørrelse tilsvarende <2mm. Dette innebærer at det ble benyttet en kornstørrelsesfordeling i forsøket som er lite representativ for hovedandelen av materialet ved mottak i et deponi, gjeldende for begge materialene.

Erguler og Erguler (2015) undersøkte partikkelstørrelsens effekt for raten av AMD (acid mine drainage), og kom fram til at AMD- raten er negativt korrelert med partikkelstørrelse. Effekten skyldes en økt spesifikk overflate eksponert for oksidasjonsprosesser. Denne teorien antas å også være representativ for utviklingen av ARD uttrykt ved SPR i kolonneforsøket, og

illustreres i Figur 32. Korrelasjonen opphører, og dreies mot en positiv korrelasjon når partikkelstørrelsen blir så fin (<0,626mm) at materialets hydrauliske konduktivitet reduseres av betydelig grad. Denne effekten antas også å skylde en økt utfelling av sekundærmineraler som ytterligere kan redusere materialets hydrauliske konduktivitet, samt danne en mindre reaktiv coating på partiklenes overflate (Erguler & Erguler, 2015; Plumlee, 2015). Estimert SPR- rate for alunskiferne (RE og SL) ansees å kun være representativ for kornstørrelsen inkludert i forsøk, og vil trolig være betydelig forhøyet som følge av unaturlig liten kornstørrelse.

Figur 32- Illustrasjon av partikkelstørrelsens effekt for raten av SPR. Inspirert av Fig. 1 av Erguler og Erguler (2015).

Ved knusing av betong vil det gjerne dannes store mengde finstoff, da sementen i betongen lett pulveriseres. Betongens nøytraliseringsegenskaper vil på samme måten som alunskiferne påvirkes av en urealistisk stor spesifikke overflate som kan medføre en raskere forvitring av karbonatmineraler (Plumlee, 2015). En effekt som mulig forsterker den observert høye CaCO₃raten er et fravær av passivering av betongoverflaten. Over tid er det ikke utenkelig at betongoverflatens reaktivitet kan reduseres som følge av en coating av sekundærmineraler, deriblant Fe- oksid (Cravotta, 2003; Hedin & Watzlaf, 1994; Plumlee, 2015). Denne effekten motvirkes potensielt ved en unaturlig høy forvitringsrate.

I hvilken grad en trolig hurtigere oksidasjon av alunskiferen og forvitring av betongen påvirker, og mulig utligner hverandre, er vanskelig å vurdere kun basert på ett forsøk i form av et kolonneforsøk. Wilke et al. (2015) presenterer at et høyt vann/stein- forhold medføre en fortynning av de potensielle ekstremverdiene forårsaket av materialenes store spesifikke overflate. Dog observeres en unaturlig høy SPR- rate, samt CaCO₃- rate, dermed anses den eventuelle effekten å være av mindre betydning i dette kolonneforsøket. Til tross for at SPR- raten og CaCO₃- raten ansees å være unaturlig høye for naturlige forhold i deponi, med betydelig større kornstørrelser med mindre spesifikk overflate, resulterende i en urealistisk vurdering av hvor mange år det vil ta før alunskifernes pyrittinnhold er oksidert og betongens karbonatinnhold er forvitret, gir sammenligningen av ratene nyttig informasjon i dannelsen av et kunnskapsgrunnlag for samdeponering av alunskifer og betong.

Dog, en ytterligere svakhet som ikke hensyntas i forsøket, som til en viss grad vil redusere alunskiferens syrepotensial ytterligere er at all SO4²⁻ antas å stamme fra oksidasjon av syredannende pyritt, noe som ikke nødvendigvis er korrekt. SO4²⁻ kan blant annet ha sitt opphav i andre sulfater og gips (Lottermoser, 2007). Dette er aktuelt å ta høyde for i ekstrapolering av datagrunnlag for vurdering av feltforhold.

Samtlige overnevnte forutsetninger og svakheter ved metoden for gjennomførte kolonneforsøk ligger til grunn for fremstilt datasett som danner grunnlaget for diskusjon av resultatene sett i lys av oppgavens fastsatte problemstillinger.

5.4.2 Usikkerhet ved statistiske analyser

For å undersøke om U- utlekkingen fra alunskifer og Cr(VI)- utlekkingen fra betong endres når alunskifer og betong kombineres ble det utført tosidig t- test med antatt ulik varians (heteroskedastisk) imellom de to utvalgene som inngikk i hver test. En av forutsetningene ved en t- test er at dataene er normalfordelte. Sett i lys av sentralgrenseteoremet, som forklarer at for uavhengige forsøk med same tilfeldige variabel tenderer summen å være tilnærmet normalfordelt dersom utvalget er av tilstrekkelig størrelse. En tommelfingerregel i statistikken peker på at en tilstrekkelig utvalgsstørrelse tilsvarer n ≥ 30 (Løvås, 2018).

Nevnte begrensninger ved gjennomførte t- tester antas som mulig årsak til at ukentlig Uutlekking når alunskiferkontroller (n=2) sammenlignes med betongbehandlet alunskifer (n=3) (spesielt for REB vs. RE), og Cr(VI) utlekking når betongkontroller (n=2) sammenlignes med betongbehandlede alunskiferkontroller (n=3), i hovedsak ikke observeres som signifikant. Dette til tross for at U- utlekking (Figur 19 og 20) og Cr(VI)- utlekking (Figur 27) kan basert på en visuell vurdering se ut til å endres betydelig når materialene kombineres. Slik problematikk er ikke uvanlig å møte i statistiske analyser, da mange statistiske modeller baseres på antagelse om normalfordeling (eller andre fordelinger som også krever en viss utvalgsstørrelse). Når alle ukene vurderes under ett, og det gjennomføres t- tester med en økt utvalgsstørrelse, n= 16 (Tabell 17 og 18) viser samtlige t- tester signifikante forskjeller i U- og Cr(VI)- utlekking. Dette antas å skylde en sterkere normalfordeling av dataene, og redusert variasjon som følge av flere observasjoner.

6 Konklusjon

Formålet med denne oppgaven var å undersøke hvorvidt to alunskiferprøver (en fra Regjeringskvartalet og en fra Slemmestad) påvirkes av samdeponering med avfallsbetong, samt gjøre en vurdering av om avfallsbetongen viste tilstrekkelig fordelaktige egenskaper til å vurderes som aktuell i samdeponering med alunskifer.

Basert på alunskiferens syredannende potensial og betongens syrenøytraliserende egenskaper basert på totalinnhold kreves det ca. 460 kg betong i deponering av 1 tonn alunskifer i fra Regjeringskvartalet og ca. 1250 kg betong i deponering av 1 tonn alunskifer fra Slemmestad for å nøytralisere skiferens estimerte netto syrepotensiale. Utlekkingsresultater fra alunskiferne og avfallsbetongen fra et umettet kolonneforsøk med beregning av alunskifernes syreproduksjons- rate (SPR) og betongens syrenøytraliserings- rate (CaCO₃PR), indikerer imidlertid at det foreligger en risiko for at betongen ikke vil evne å bufre hele løpet av syreproduksjon i alunskiferne. Dette skyldes at forvitringen av betong er raskere sammenlignet med forvitringen av alunskiferne. En vurdering basert på totalinnhold gir derfor en ikke god nok sikkerhetsmargin med hensyn til estimerte forvitringsrater.

Begge materialene inkludert i forsøket har problematiske aspekter ved seg med hensyn til innhold av (tung)metaller, blant annet U (alunskifer) og Cr(VI) (betong). I det gjennomførte umettede kolonneforsøket ble det observert U- utlekking fra begge alunskiferne (RE: 210-2865µg/L, SL: 185- 860 µg/L). Geokjemisk modellering viser at U i hovedsak lekker ut som mobile kalsium- karbonat- komplekser i form av Ca₂UO₂(CO₃)_{3 (aq)} og CaUO₂(CO₃)_{3²⁻. På bakgrunn av dette ansees det som sannsynlig at mobiliseringen skjer om følge av oppløsning av U foreliggende i karbonatholdige utfellinger i alunskiferne.}

Når alunskiferne ble kombinert med en underliggende betongbehandling i et umettet kolonneforsøk ble U- utlekkingen redusert tilnærmet 100% sammenlignet med ubehandlet alunskifer. Betongen påvirker trolig U- utlekkingen hovedsakelig på to måter. Betongen antas

å ha en U- filtereffekt, som antas at til en viss grad skyldes betongens høye innhold av Ca som er vist at kan redusere mobiliteten til U(VI), deriblant ved sekvenstrering i ettringitt. Den andre effekten tilskrives betongens påvirkning av U- spesiering som et resultat av redusert redokspotensial i systemet. Slik det vises av målt redokspotensial reduserer betongbehandlingen redokspotensialet i systemet (RE: 355- 483 mV, SL: 397- 499 mV, REB: 147- 278 mV, SLB: 151- 280 mV), noe som kommer fram i geokjemisk modellering hvor det estimeres at U lekker ut som U(VI) fra ubehandlet alunskifer og som U(IV) fra betongbehandlet alunskifer.

Betongens totalinnhold av Cr(VI) overskrider ikke grenseverdien for gjenvinning i anleggsarbeid (8 mg/kg TS). Allikevel observeres en utlekking av Cr, hovedsakelig i form av Cr(VI), i konsentrasjoner over grenseverdi for utslipp av prosessavløpsvann til resipient (0,03 mg/L) fra betongen utover i det umettede kolonneforsøket (0,01- 0,07 mg/L). Ved implementering av betong i et alunskiferdeponi vil det dermed foreligge en viss risiko tilknyttet Cr(VI) med mulige negative effekter dersom ytre miljø eksponeres for ubehandlet sigevann.

Ved tilførsel av utlekkingsvann fra alunskifer til betongen øker Cr(VI)- utlekkingen i foreliggende forsøk (REB: 0,04- 0,16 mg/L og SLB: 0,03- 0,19 mg/L), og samtlige observasjoner overskrider grenseverdien for prosessavløpsvann (0,03 mg/L). En antatt forklaring på dette tilskrives at sulfat, som foreligger i høye konsentrasjoner i utlekkingsvannet fra alunskiferen, substituerer Cr(VI) foreliggende i ettringittmineraler i betongen.

Foreliggende studie har frambrakt data som ansees som nyttige i vurderingen av betongens egnethet til implementering i et alunskiferdeponi med hensikt å virke syrenøytraliserende. Det presiseres at fremstilte resultater fra det umettede kolonneforsøket i stor grad er påvirket av forsøkets utforming. Blant annet ansees materialenes kornstørrelse å påvirke utlekkingen i betydelig grad. Dette er nødvendig at hensyntas i ekstrapolering til reelle forhold i deponi.

7 Veien videre

Kolonneforsøket har gitt flere interessante observasjoner som er nyttig i dannelsen av et kunnskapsgrunnlag om effekten av samdeponering av alunskifer og betong, men ytterligere undersøkelser vil være aktuelt før en endelig totalvurdering. For å begrense oppgavens omfang ble mobiliseringen og skadeomfanget basert på grenseverdier kun vurdert for U og Cr. Slik det fremkommer av Tabell 21 antas det at også andre metaller vil lekke ut i forhøyede konsentrasjoner i henhold til tilstandsklasser for ferskvann (Direktoratsguppen vanndirektivet 2018, 2018) og grenseverdier ved utslipp av prosessavløpsvann til resipient (Forskrift om begrensning av forurensning, 2022). Dette må hensyntas i en endelig totalvurdering.

Om mulig bør kolonneforsøket opprettholdes over en lengre tidsperiode, minimum til netto syredannelse. Dette anses som interessant både for å innhente kunnskap om alunskiferens egenskaper, men også interaksjonen imellom alunskifer og betong. Hvis en parameter som pH endres over tid, antas også utlekkingen av en del metaller antas å endres (Morin & Hutt, 2001). Sett i lys av det begrensede observerte pH intervallet, og en mulig eskalering av forvitringsrate med følgende metallutlekking over tid som fremkommer av Figur 30, ville slike mulige observasjoner gitt interessant informasjon i vurderingen av SPR- rate og CaCO₃- rate. Ytterligere vil en reduksjon av pH trolig ha en negativ effekt for stabiliteten av ettringitt, som er et stabilt mineral når pH er over 10,8 (Myneni et al., 1998). Foreløpig antas det at den observerte filtereffekten av U i betong å skyldes immobilisering som følge betongens Ca-innhold, blant annet i ettringittmineraler. Det ansees derfor ikke at utenkelig å observere en U-mobilisering ved fravær av ettringitt (Gomes et al., 2012).

Som følge av målte pH- verdier i risteforsøket ble det i planleggingsfasen av kolonneforsøket antatt at alunskiferne potensielt ikke ville ha tid til å utvikle netto syredannelse i løpet av kolonneforsøket. For å kompensere for dette ble det inkludert tre betongkolonner som ble vannet med surt sigevann (pH ~2,7) fra en annen netto syredannende alunskifer. På bakgrunn om begrensning av denne oppgavens omfang ble ikke disse kolonnene med følgende resultater inkludert i selv oppgaven. For ytterligere beskrivelse, samt resultater, henvises det til Vedlegg H.

Observasjonene i kolonneforsøket viser en Cr(VI)- utlekking av problematisk karakter, da kombinasjonen av alunskifer og betong resulterer i et flertall målinger over gitt utslippsgrense. Med utspring fra eksisterende litteratur kan det potensielt finne avbøtende tiltak som kan iverksettes. Blant annet har Eckbo et al. (2022) undersøkt effekten av OM på mobiliteten til Cr(VI). Studiet viste at OM evnet å redusere Cr(VI) til Cr(III), som i kombinasjon med bedrede forhold for adsorpsjon reduserte utlekkingen av Cr(VI). Dette sees i sammenheng med studier

som har observert en tilsvarende effekt i svartskifer, hvor det antas at OM, samt jernoksider, i skiferen evner å immobilisere Cr(VI) (Jabłońska, 2020; Min et al., 2010).

Kolonneforsøket i denne oppgaven er gjennomført for et lite volum, med en liten kornstørrelse under kontrollerte forhold innendørs. For å undersøke utviklingen i materialene ved mer reelle forhold er det aktuelt å oppskalere forsøket utendørs. Dette gjøres i form av et kontainerforsøk som ble iverksatt på Langøya i 2021. Materiale fra samme hauger som prøvematerialet til kolonneforsøket ble hentet ut er fylt 1000L IBC- kontainere hvor toppen er skåret av (Figur 33a). Kontainerne med materialet står i kontinuerlig kontakt med omgivende klima. Vann som samles i kontaineren dreneres ut til en plastdunk (Figur 33b). Drensvannet analyseres med jevne mellomrom.

Figur 33- Utendørs kontainerforsøk på Langøya med de samme materialene som inngår i kolonneforsøket. a) Opprigging av kontainerforsøk, b) drensvannet fra kontainerne samles i plastkanne og analyseres med jevne mellomrom.

8 Litteraturliste

- Alloway, B. J. (2010). Heavy Metals in Soils- Trace Metals and Metalloids in Soils and their Bioavailability (s. 18- 20, 565- 575). Tredje utg.: Springer.
- Andersson, A., Dahlman, B., Gee, D. G. & Snäll, S. (1985). The Scandinavian alum shales.
- Appelo, C. A. J. & Postma, D. (2005). *Geochemestry, groundwater and pollution (kap. 1, 5 og 9)*. 2. utg.: CRC Press.
- Avfallsforskriften. (2004). *Forskrift om gjenvinning og behandling av avfall* (avfallsforskriften),. Tilgjengelig fra: <u>https://lovdata.no/dokument/SF/forskrift/2004-06-01-930</u> (lest 06.10.2022).
- Bjørlykke, K. (1974). Depositional History and Geochemical Composition of Lower Palaeozoic Epicontinental Sediments from the Oslo Region.
- Brunauer, S. & Copeland, L. E. (1964). The chemisty of concrete.
- Copeland, A. & Lytle, D. A. (2014). Measuring the oxidation-reduction potential of important oxidants in drinking water.
- Cravotta, C. A. (2003). Size and Perfoformance of Anoxic Limestone Drains to Neutralize Acidic Mine Drainage.
- de Brito, J. & Saikia, N. (2012). Recycled Aggregate in Concrete- Use of Industrial, Construction and Demolition Waste: Springer.
- Direktoratsguppen vanndirektivet 2018. (2018). Klassifisering av miljøtilstand i vann.
- Eckbo, C. (2019). GEOreCIRC- Utlekking av treverdig og seksverdig krom fra betong.
- Eckbo, C., Okkenhaug, G. & Hale, S. E. (2022). The effects of soil organic matter on leaching of hexavalent chromium from
- concrete waste: Batch and column experiments.
- Endr. i avfallsforskriften (betong og tegl fra riveprosjekter). (2020). *Kapittel 14A. Betong og tegl fra riveprosjekter*. Tilgjengelig fra: https://lovdata.no/dokument/LTI/forskrift/2020-02-03-510.
- Engelsen, C. J., van der Sloot, H. A., Wibetoe, G., Justnes, H., Lund, W. & Stoltenberg-Hansson, E. (2010). Leaching characterisation and geochemical modelling of minor and trace elements released from recycled concrete aggregates.
- Erguler, Z. A. & Erguler, G. K. (2015). The effect of particle size on acid mine drainage generation: Kinetic column tests.
- European Commission. (2016). EU Construction & Demolition Waste Management Protocol.
- Falk, H., Lavergren, U. & Bergbäck, B. (2006). Metal mobility in alum shale from Öland, Sweden.
- Felipe-Sotelo, M., Hinchliff, J., Field, L. P., Milodowski, A. E., Preedy, O. & Read, D. (2017). Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.
- FHI. (2018). *Kjemiske og fysiske stoffer i drikkevann*. Tilgjengelig fra: <u>https://www.fhi.no/nettpub/stoffer-i-drikkevann/kjemiske-og-fysiske-stoffer-i-drikkevann/kjemiske-og-fysiske-stoffer-i-drikkevann/#krom-cr</u> (lest 13.10.2022).
- Forskrift om begrensning av forurensning. (2022). Del 7. Krav til forebygging av forurensning fra visse virksomheter eller utslippskilder, Kapittel 33. Forurensning fra produksjon av fabrikkbetong, betongvarer og betongelementer (§33-5, §33-6). Tilgjengelig fra: <u>https://lovdata.no/dokument/SF/forskrift/2004-06-01-</u> 931/KAPITTEL 8-10#KAPITTEL 8-10 (lest 11.04.2023).
- Forskrift om radioaktiv forurensning og avfall. (2011a). *Forskrift om forurensningslovens anvendelse på radioaktiv forurensning og radioaktivt avfall av (2011)*. Tilgjengelig fra: <u>https://lovdata.no/dokument/SF/forskrift/2010-11-01-1394#KAPITTEL_1</u> (lest 07.10.2022).

- Forskrift om radioaktiv forurensning og avfall. (2011b). *Vedlegg II. Tilførsel av radioaktive* stoffer som alltid trenger tillatelse, jf. § 4 annet ledd. Tilgjengelig fra: <u>https://lovdata.no/dokument/SF/forskrift/2010-11-01-</u> <u>1394/KAPITTEL_1#KAPITTEL_1</u> (lest 14.03.23).
- Forurensningsloven. (1983). Lov om vern mot forurensninger og om avfal (Forurensningsloven).
- Geelhoed, J. S., Meeussen, J. C. L., Roe, M. J., Hillier, S., Thomas, R. P. & Paterson, E. (2003). Chromium Remediation or Release Effect of Iron(II) Sulfate Addition on Chromium(VI) Leaching from Columns of Chromite Ore Processing Residue.
- Gomes, A. F. S., Lopez, D. L. & Ladeira, A. C. Q. (2012). Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal.
- Hedin, R. S. & Watzlaf, G. R. (1994). The effects of anoxic limestone drains on mine water chemestry.
- Hofstad, K. (2022). Konduktivitet. I: *Store norske leksikon*. Tilgjengelig fra: <u>https://snl.no/konduktivitet</u> (lest 20.01.23).
- IAEA. (2003). Guidelines for radioelement mapping using gamma ray spectrometry data.
- Jabłońska, B. (2020). Removing of Cr(III) and Cr(VI) compounds from aqueous solutions by shale waste rocks.
- Karamalidis, A. K. & Voudrias, E. A. (2007). Release of Zn, Ni, Cu, SO42– and CrO42– as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge.
- Karasin, A., Günaslan, S. E. & Öncü, M. E. (2015). Models for confined concrete colomns with fiber composites.
- Lecomte, A., Cathelineau, M., Michels, R., Peiffert, C. & Brouand, M. (2017). Uranium mineralization in the Alum Shale Formation (Sweden): Evolution of a U-rich marine black shale from sedimentation to metamorphism.
- Lottermoser, B. G. (2007). Mine Wastes- Characterization, Treatment, Environmental Impacts.
- Lovley, D. R. & Coates, J. D. (1997). Bioremediation of metal contamination.
- Løken, T. (2007). Alunskifer/svartskifer den forurensende bergarten.
- Løvås, G. G. (2018). Statistikk for universiteter og høyskoler (4. utgave).
- MacLaren, D. C. & White, M. A. (2003). Cement: Its Chemistry and Properties.
- Marinho, B. A., Cristóvão, R. O., Boaventura, R. A. R. & Vilar, V. J. P. (2018). As(III) and Cr(VI) oxyanion removal from water by advanced oxidation/reduction processes—a review.
- Matschei, T., Lothenbach, B. & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration.
- Min, J. E., Lee, T., Park, J. W. & Choi, J. (2010). Black Shale as a Sorbent for Trichloroethylene and CR(VI).
- Morin, K. A. & Hutt, N. M. (2001). Environmental geochemistry of minesite drainage: practical theory and case studies, digital edition.
- Mühr-Ebert, E. L., Wagner, F. & Walther, C. (2019). Speciation of uranium: Compilation of a thermodynamic database and its experimental evaluation using different analytical techniques.
- Myneni, S. C. B., Traina, S. J. & Logan, T. J. (1998). Ettringite solubility and geochemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K.
- NGI. (2015a). Deponering av syredannende bergarter. Grunnlag for veileder.
- NGI. (2015b). Identifisering og karakterisering av syredannende bergarter- Veileder for Miljødirektoratet.
- NGI. (2019). Testing og karakterisering av materialer til gjevinning.

- NGI. (2021). Håndtering av potensielt syredannende svartskifer- Fagrapport til Miljødirektoratet.
- Nolan, P., Bone, S. E., Campbell, K. M., Pan, D., Healy, O. M., Stange, M., Bargar, J. R. & Weber, K. A. (2021). Uranium(VI) attenuation in a carbonate-bearing oxic alluvial aquifer.
- Ochs, M., Vriens, B. & Tachi, Y. (2018). Retention of uranium in cement systems: effects of cement degradation and complexing ligands.
- Oftedal, C. (1955). On the sulphides of the alum shale in Oslo.
- Pabst, T., Sørmo, E. & Endre, E. (2016). Geochemical characterisation of Norwegian Cambro-Ordovician black mudrocks for building and construction use.
- Pabst, T., Molson, J., Aubertin, M. & Bussière, B. (2017). Reactive transport modelling of the hydro-geochemical behaviour of partially oxidized acid-generating mine tailings with a monolayer cover.
- Pang, F., Wei, C., Zhang, Z., Wang, W. & Wang, Z. (2022). The migration and immobilization for heavy metal chromium ions in the hydration products of calcium sulfoaluminate cement and their leaching behavior.
- Phillips, E. J. P., Landa, E. R. & Lovley, D. R. (1994). Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction.
- Plumlee, G. S. (2015). The environmental geology of mineral deposits.
- Rayner- Canham, G. & Overton, T. (2014). Descriptive Inorganic Chemistry- Sixth Edition.
- Rollinson, C. L. (1973). The chemistry of chromium, molybdenium and tungensten. I: Press, P. (red.) *Comprehensive Inorganic Chemistry*.
- Roskovic, R., Oslakovic, I. S., Radic, J. & Serdar, M. (2011). Effects of chromium(VI) reducing agents in cement on corrosion of reinforcing steel.
- Salbu, B. & Lind, O. C. (2020). Analytical techniques for charactering radioactive particles deposited in the environment.
- Sani, R. K., Peyton, B. M., Amonette, J. E. & Geesey, G. G. (2004). Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides.
- Sephton, M. G. & Webb, J. A. (2017). Application of Portland cement to control acid mine drainage generation from waste rocks.
- Sephton, M. G., Webb, J. A. & McKnight, S. (2019). Applications of Portland cement blended with !y ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks.
- Shupack, S. I. (1991). The Chemistry of Chromium and Some ResultingAnalyticalProblems.
- Sinyoung, S., Songsiriritthigul, P., Asavapisit, S. & Kajitvichyanukul, P. (2011). Chromium behavior during cement-production processes: A clinkerization, hydration, and leaching study.
- Skierszkan, E. K., Dockrey, J. W., Mayer, U., Bondici, V. F., M., M. J. & Beckie, R. D. (2020). Geochemical Controls on Uranium Release from Neutral-pH Rock Drainage Produced by Weathering of Granite, Gneiss, and Schist.
- Smedley, P. L. & Kinniburgh, D. G. (2023). Uranium in natural waters and the environment: Distribution, speciation and impact
- Snyder, K. A. (2009). Mineralogical and microstructural evolutio in hydrating cementitious systems
- SSB. *Avfallsregnskapet*. Tilgjengelig fra: <u>https://www.ssb.no/statbank/table/10514/</u> (lest 22.08.2022).
- Statens strålevern. (2012). Alunskifer- kilde til radioaktivt avfall og radioaktiv forurensning.
- Statens strålevern. (2017). Tillatelse 1U17-1O etter forurensningsloven til mottak og deponering av radioaktivt avfall og utslipp av radioaktive stoffer fra NOAH AS, Langøya.

- Steward, B. D., Mayes, M. A. & Fendorf, S. (2009). Impact of Uranyl-Calcium-Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments.
- Swanson, V. E. (1961). Uranium in carbonaceous rocks- geology and geochemistry of uranium in marine black shales, a review.
- U.S.NRC. *Natural Uranium*. Tilgjengelig fra: <u>https://www.nrc.gov/reading-rm/basic-ref/glossary/natural-uranium.html</u> (lest 19.04).
- Universitetet i Oslo- Institutt for biovitenskap. (2011). *Redoksreaksjoner*. Tilgjengelig fra: <u>https://www.mn.uio.no/ibv/tjenester/kunnskap/plantefys/leksikon/r/redoksreaksjoner.h</u> <u>tml</u> (lest 13.12.2022).
- vanLoon, G. W. & Duffy, S. J. (2017). *Environmental Chemistry- a global perspective*: Oxford University Press.
- Vine, J. D. & Tourtelot, E. B. (1970). Geochemistry of Black Shale Deposits- A Summary Report.
- Wazne, M., Korfiatis, G. P. & Meng, X. (2003). Carbonate Effects on Hexavalent Uranium Adsorption by Iron Oxyhydroxide.
- Wilke, F. D. H., Vieth-Hillebrand, A., Naumann, R., Erzinger, J. & Horsfield, B. (2015). Induced mobility of inorganic and organic solutes from black shales using water extraction: Implications for shale gas exploitation.
- Xie, Y., Chena, C., Rena, X., Wangd, X., Wange, H. & Wang, X. (2019). Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation.
- Yorkshire, A. S., Stennett, M. C., Walkley, B., O'Sullivan, S. E., Mottram, L. M., Bailey, D. J., Provis, J. L., Hyatta, N. C. & Corkhilla, C. L. (2021). Spectroscopic evaluation of UVI–cement mineral interactions: ettringite and hydrotalcite.
- Zheng, Z., Tokunaga, T. K. & Wan, J. (2003). Influence of Calcium Carbonate on U(VI) Sorption to Soils.

Vedlegg

Vedlegg A- Aktuelle kartutsnitt Kart over uttak av skifer

Figur A.34- Oransje punkt: uttak Regjeringskvartaleskifer (RE), lilla punkt: uttak Slemmestadskifer (SL).

Nedbørfeltparametere

Vassdragsnr.:	013.2				
Kommune.:	Holmestrand				
Fylke.:	Vestfold og	Telemark			
Vassdrag.:	KYSTFELT				
Feltparametere			Hypsografisk kurve		
Areal (A)	0.5	km²	Høyde _{MIN}	60	ε
Effektiv sjø (A _{SE})	0	%	Høyde ₁₀	76	ε
Elvleengde (E _L)	0.4	кя	Høyde ₂₀	84	ε
Elvegradient (E_G)	64.2	m/km	Høyde ₃₀	93	ε
Elvegradent ₁₀₈₅ (E _{G,1085})	62.7	m/km	Høyde 40	101	ε
Helning	4.5	0	Høyde ₅₀	108	E
Dreneringstetthet (D $_{T}$)	0.0	km ⁻¹	Høyde ₆₀	111	E
Feltlengde (F _L)	1.0	km	Høyde ₇₀	113	E
			Høyde ₈₀	116	E
Arealklasse			Høvde	118	E
Bre (A _{BRE})	0	%	Havida	178	5
Dyrket mark (A _{Jorb})	16.8	%	XWODG	24	Ξ
Myr (A _{MYR})	0	%	Klima- /hydrologiske param	etere	
Leire (A _{LEIRE})	100.3	%	Avrenning 1961-90 (Q_N)	17.7	l/s*kı
Skog (A _{Sk06})	14.3	%	Sommernedbør	413	E
Sjø (A _{SJO})	0	%	Vinternedbør	530	шШ
Snaufjell (A _{SF})	0	%	Årstemperatur	6.1	ပ္
Urban (A _U)	56.3	%	Sommertemperatur	13.8	ပ္
Uklassifisert areal (A _{REST})	13	%	Vintertemperatur	0.5	ပ္

ج ج

Figur A.2 - Generert nedbørsfelt i Holmestrand ved bruk av databasen NEVINA utarbeidet av NVE inkludert nedbørsfeltpaametere.

Nedbørsfeltdata

Vedlegg B- Faststoffanalyse

Totalkonsentrasjon faststoff

Metode totalkonsentrasjon faststoff

Analyser av totalkonsentrasjon av faststoff ble utført av ALS. Skiferprøvene (RE og SL) ble analysert med «Alunskiferpakka» (Tabell B.1) og betongprøven (B) ble analysert med «Betongpakka» (Tabell B.2).

Prepareringsmetoder	Metodebeskrivelser
S-PPHOM4	CZ_SOP_D06_07_P01 Prøvepreparering av faste prøver for analyse (knusing, kverning og pulverisering).
Analysemetoder	Metodebeskrivelser
S-AFS-17A	Bestemmelse av kvikksølv (Hg) i fast stoff ved bruk av AFS i henhold til SS-EN ISO 17852:2008. Før analyse blir prøven oppsluttet i henhold til S-PA16-HB.
S-DRY-GRCI	CZ_SOP_D06_01_045 (CSN ISO 11465, CSN EN 12880, CSN EN 14346), CZ_SOP_D06_07_046 (CSN ISO 11465, CSN EN 12880, CSN EN 14346, CSN 46 5735) Bestemmelse av tørrstoff gravimetrisk og bestemmelse av vanninnhold ved utregning fra målte verdier.
S-DW105	Gravimetrisk bestemmelse av tørrstoff ved 105°C iht SS 28113 utg. 1.
S-LOI1000	Bestemmelse av tap ved tenning ved 1000 °C i henhold til SE-SOP-0060.
S-PP-crushmill	Knusing og maling
S-PP-dry50	Prøven tørkes ved 50°C.
S-SFMS-16	Bestemmelse av metaller i fasts stoff ved bruk av ICP-SFMS i henhold til SS-EN ISO 17294-2:2016 og US EPA Method 200.8:1994. Før analyse er prøven oppsluttet i henhold til S-PA16-HB.
S-SFMS-49	Bestemmelse av metaller i faste stoffer av ICP-SFMS i henhold til SS-EN ISO 17294-2:2016 og US EPA Method 200.8:1994. Før analyse smeltes prøven sammen og fordøyes i henhold til S-PS49-FU.
S-SUM-OXID	Beregning av sum av bestemte oksider.
S-TC1-IR	CZ_SOP_D06_07_121.A (CSN ISO 29541, CSN EN ISO 16994, CSN EN ISO 16948, CSN EN 15407, CSN ISO 19579, CSN EN 15408, CSN ISO 10694, CSN EN 13137) Bestemmelse av totalt karbon (TC), totalt organisk karbon (TOC), total svovel og hydrogen ved forbrenningsmetode ved bruk av IR,-bestemmelse av total nitrogen ved forbrenningsmetode ved bruk av TCD og bestemmelse av oksygen ved utregning og totalt uorganisk karbon (TIC) og karbonater ved utregning fra målte verdier.
S-TIC-CC	CZ_SOP_D06_07_121.A (CSN ISO 29541, CSN EN ISO 16994, CSN EN ISO 16948, CSN EN 15407, CSN ISO 19579, CSN EN 15408, CSN ISO 10694, CSN EN 13137) Bestemmelse av totalt karbon (TC), totalt organisk karbon (TOC), total svovel og hydrogen ved forbrenningsmetode ved bruk av IR,-bestemmelse av total nitrogen ved forbrenningsmetode ved bruk av TCD og bestemmelse av oksygen ved utregning og totalt uorganisk karbon (TIC) og karbonater ved utregning fra målte verdier.
S-TOC1-IR	CZ_SOP_D06_07_121.A (CSN ISO 29541, CSN EN ISO 16994, CSN EN ISO 16948, CSN EN 15407, CSN ISO 19579, CSN EN 15408, CSN ISO 10694, CSN EN 13137) Bestemmelse av totalt karbon (TC), total organisk karbon (TOC), total svovel og hydrogen ved forbrenningsmetode ved bruk av IR,-bestemmelse av total nitrogen ved forbrenningsmetode ved bruk av TCD og bestemmelse av oksygen ved utregning og totalt uorganisk karbon (TIC) og karbonater ved utregning fra målte verdier.

Tabell B.22- Analysemetoder «Alunskiferpakka».

Tabell B.2- Analysemetoder «Betongpakka».

Analysemetoder	Metodebeskrivelser	
S-BM8MET (6460)	Analyse av metaller ved ICP.	Metode:
	DS259:2003+DS/EN 16170:2016. Hg ved DS 259:2003+DS/EN 16175-1:2016.	
	Måleusikkerhet: 10-20%	
S-BMCr6C (7574.20)	Metode: ISO 15192:2010.	
S-BMP7 (6574)	Analyse av PCB-7 ved GC/MS/SIM, metode ISO 15308, EPA 3550C	

Resultat totalkonsentrasjon faststoff Tabell B.23- Analyseresultater faststoffanalyse (betongpakka og alunskiferpakka)

	Knusi ng	0		:	:		ŝ	5	mg/kg TS	113	99.4	TIC	% TS	0,15	0,25
	Cr6+		mg/kg	1,2			ć	5	mg/kg TS	92,4	77	TOC	% TS	4,1	5,78
	Sum PCB-	1	mg/kg	n.d.			ć	5	mg/kg TS	15,1	17	TS (E)	%	5,66	99,4
	PCB 180		mg/kg	<0.0020			3	3	mg/kg TS	9,78	6.28	D	mg/kg TS	43,7	60,6
	PCB 153		mg/kg	<0.0020			è	De	mg/kg TS	3,28	4.17	ΨL	mg/kg TS	15,5	13,2
	PCB 138		mg/kg	<0.0020			à	Da	mg/kg TS	3370	2000	Zr	mg/kg TS	135	154
	PCB 118		mg/kg	<0.0020			1	sv	mg/kg TS	120	58.5	Zn	mg/kg TS	347	258
	PCB 101		mg/kg	<0.0020			101		% TS	11,7	12.1	Y	mg/kg TS	36,2	32,8
	PCB 52	}	mg/kg	<0.0020		8	NO AL	7011	% TS	0,843	0.783	M	mg/kg TS	3,23	1,96
gpakka	PCB 28	ł	mg/kg	<0.0020		ferpakk	2010	507J	% TS	0,314	0.161	v	mg/kg TS	1620	1220
Betong	Betong Zn I	mg/kg	23		Alunski	04-04	O7EV	% TS	0,881	1.25	Sr	mg/kg TS	187	295	
	Pb		ng/kg	9,1			0-W		% TS	0,0206	0.0672	Sn	mg/kg TS	3,78	3,17
	N		ng/kg 1	26			0.14	OSW	% TS	1,38	2.17	Sc	mg/kg TS	16,4	13,4
	Hg		ng/kg 1	0.010			04/1		% TS	5,35	4.91	s	mg/kg TS	68800	30400
	Сп		ng/kg r	18			004-a	CO7a4	% TS	10,5	6.73	Pb	mg/kg TS	44	30,5
	ۍ		ng/kg r	23			9-0	CaO	% TS	1,64	3.54	N	mg/kg TS	175	124
	Cd		ıg/kg n	0,39			00017	SULAN	% TS	14,3	13.9	qN	mg/kg TS	15,9	20,4
	As 4 1g/kg mį 3,8 0		000	7010	% TS	54,6	51.2	Mo	mg/kg TS	111	101				
	ter		л				A DOT	12(1)	%	94,9	92.2	Hg	mg/kg TS	0,193	0,105
	Parame		Enhet	Betong	,					SL	RE			SL	RE

Glødetap *Metode glødetap* Materialet ble forbehandlet under metode som fremgår av avsnitt 3.4.1.

Glødetap av karbonat (950°C)

Etter gløding ved 550 \pm 25°C ble prøvene glødet ytterligere i overkant av to timer ved 950 \pm 25°C. Ved slik temperatur vil karbonater omdannes til CO_{2 (g)} og diffundere ut. Etter gløding ble prøven veid med bruk av en vekt med tre desimalers nøyaktighet. Vekttapet representerer materialprøvenes karbonatinnhold.

Glødetap av karbonater regnes ut med bruk av følgende formel:

$$Glødetap \ karbonatinnhold\% = \frac{vekt \ etter \ tørking \ (550^{\circ}C) - vekt \ etter \ gløding \ (950^{\circ}C)}{vekt \ etter \ tørking \ (950^{\circ}C)} * 100$$

Formel B.7

Resultat glødetap

Glødetap av organisk materiale (550°C) og karbonat (950°C)

Tabell B.24- Innhold av OM [%TS], TOC [%TS] og TIC [%TS]. OM er bestemt ved glødetap (550°C), TOC er beregnet med antagelsen at TOC utgjør 58% av OM. $TOC = \frac{OM [\%TS]}{1,724}$, og TIC er bestemt ved elødetap (050°C).

Materiale	OM [%TS]	TOC [%TS]	TIC [%TS]	
RE	6,6	3,8	2,3	
SL	6,8	4,0	2,4	
В	2,6	1,5	6,6	

Vedlegg C- Kornfordelingsanalyse Metode kornfordelingsanalyse

Kornfordelingsanalyse ble gjennomført ved laser- differering- partikkelstørrelse- analyse ved bruk instrumentet Beckman Coulter LS 13320. Analysene ble utført av Christian Solheim ved laboratoriet på NMBU.

Resultat kornfordelingsanalyse

RE

	SAMPLE STATISTICS												
SAMPLE IDENTI	TY:	RE				ANALYS	ST &	DATE:	,				
SAMPLE TY	PE:	Polymo	dal, Ve	ry Poorly Sor	ted T	EXTURA	AL GI	ROUP:	Mudd	y Sand			
SEDIMENT NA	ME:	Very C	oarse S	ilty Coarse S	and								
			4					OTDIE					
	6	∞m ovin	0.54	0		GR DAVEL					22 50/		
MODE 1:	17	04,9 740 0	0,54	0	G	SAND	76 7	70/.	ME	NUM SAND	25,5%		
	2	40,0	-0,79	0		SAND.	70,7	70		DIUNI SAND.	10,3%		
MODE 3.	2	1,72	5,52	1		WOD.	23,3	0 70		FINE SAND.	10,3%		
D ₁₀ :	0	,443	-0,03	1	V COADCE O		0.00		V	FINE SAND.	0,0%		
MEDIAN or D ₅₀ :	4	05,3	1,30	3	V COARSE G	RAVEL:	0,09	/0	V CO	ARSE SILT:	5,0%		
D ₉₀ :	15	048,4	6,88	8	COARSE G	RAVEL:	0,09	%	00	ARSE SILT:	4,5%		
(D ₉₀ / D ₁₀):	1	183,4 -10,92		20	MEDIUM G	RAVEL:	0,0	%	M	DIUM SILT:	4,3%		
(D ₉₀ - D ₁₀):	15	540,0	7,51	9	FINE G	RAVEL:	0,09	%		FINE SILT:	4,1%		
(D ₇₅ / D ₂₅):	1	1,40	18,7	5	V FINE G	RAVEL:	0,09	%	\	/ FINE SILT:	2,8%		
(D ₇₅ - D ₂₅):	7	95,4	3,51	1	V COARSE	E SAND:	20,8	3%		CLAY:	2,7%		
			METH	HOD OF MON	IENTS			FOLK	& WA	RD METHOD	2		
		Arith	metic	Geometric	Logarithmic	Geome	etric	Logari	thmic	Desc	cription		
		مس		∞m	f	∞m		f					
MEAN	(\bar{x})	48	3,9	148,0	2,306	220,	5	2,18	31	Fine	Sand		
SORTING	(s):	49	7,6	8,825	2,768	6,99	9	2,80)7	Very Poo	orly Sorted		
SKEWNESS ((Sk):	0,9	995	-1,004	1,117	-0,48	88	0,48	38	Very Fin	e Skewed		
KURTOSIS	(K):	3,0	005	2,889	3,326	1,04	8 1,		48	Meso	okurtic		
1	. /		-					i			1		

Figur C.1- Kornfordelingsanalyse RE.

SL

Figur C.2 - Kornfordelingsanalyse SL.

Particle Diameter (@m)

Figur C.3- Kornfordelingsanalyse B.

В

Vedlegg D- Teoretisk klassifisering av alunskiferprøvene

En teoretisk estimering av skiferens syre og baseegenskaper ble gjort på bakgrunn av de teoretiske metodene som fremkommer i *Håndtering av potensielt syredannende svartskfer* (NGI, 2021).

AP- NP diagram Metode AP- NP diagram

Et AP- NP diagram ble utformet for å vurdere det syredannende potensialet, AP (Acidification Potential) opp imot nøytraliseringspotensialet, NP (Neutralisation Potential). Denne metoden baserer seg på at TIC (Total Inorganic Carbon) foreligger som nøytraliserende karbonat (CaCO₃) og svovel foreligger som syredannende sulfider. Dette kan resultere i en overestimering av både det nøytraliserende- og det syredannende potensialet. Konsentrasjonene av TIC og svovel omregnes slik at det uttrykkes som kalsiumkarbonatekvivalenter (kg CaCO₃/tonn).

Det nøytraliserende potensialet (NP) er beregnet etter følgende formel:

$$NP = 83,33 * \% TIC$$

Formel D.1

Hvor NP er det estimerte nøytraliserende potensialet uttrykt med enheten kg CaCO₃/tonn og %TIC er prosentvis innhold av uorganisk karbon i skiferen.

Det syredannende potensialet er beregnet med følgende formel:

$$AP = 31,25 * \% S_{sulfider} \approx 31,25 * \% S$$

Formel D.2

Hvor AP er skiferens estimerte syredannende potensial gitt sulfidinnhold uttrykt med enheten kg CaCO₃/tonn, %S_{sulfider} er det prosentvise innholdet av sulfider og %S er svovelinnholdet gitt i prosent.

Basert på de beregnende verdiene for AP og NP gitt i karbonatekvivalenter (CaCO₃/tonn) plottes et NP- AP diagram (Figur D.1). I diagrammet legges det inn to linjer, som representerer AP:NP -forhold tilsvarende 1:1 og 1:3. Analyseresultatene plottes i diagrammet, og vil basert på disse to linjene bli plassert i en av tre soner:

- Syredannende (NP:AP < 1:1)
- Usikker (1:1 < NP:AP < 3:1)
- Bufret (NP:AP > 3:1)

syredannende potensialet. Allikevel er skiferen å betrakte som mulig syredannende ettersom karbonatene i hovedsak forvitrer lettere og rakere enn sulfidene, og vil potensielt vaskes ut før syredannelsen er ferdig. I tillegg er det lagt inn et sikkerhetsmargin på bakgrunn av usikkerhetene i antagelsene som ligger til grunn for beregningene.

AP- NP diagram kan også benyttes i vurdering av etasjetilhørigheten til RE og SL, da de ulike etasjene til en viss grad karakteriseres av ulikt syrepotensial. For eksempel er det i hovedsak Alunskiferformasjonen som knyttes opp imot syredannelse. Dersom plottet diagram kombinerer et tilstrekkelig stort nok datasett med skifere med kjent etasjetilhørighet med prøver med ukjent etasjetilhørighet er det mulig å gjøre en visuell bedømmelse, og basere en antagelse av etasjetilhørighet på likheter imellom kjent etasje og prøver av ukjent etasje.

Resultat AP- NP diagram

Basert på skiferens syredannende potensial (AP) og nøytraliserende potensiale (NP) kan en ut ifra plottet AP-NP tabell og diagram som vises i henholdsvis Tabell D.1 og Figur D.2 anta at skiferne RE og SL er å anse som syredannende.

Materiale	TIC [% TS]	NP [kgCaCO3/tonn]	S [%TS]	AP [kgCaCO3/tonn]	NNP* [kgCaCO3/tonn]	NPR** [kgCaCO3/tonn]
RE	0,25	20,83	3,04	95,00	-74,17	-0,28
SL	0,15	12,50	6,88	215,00	-202,50	-0,06
500 400	Buf	ret sone	- MP	R=2ila	Usikker sone	
000 ND [kg CaCO3 tonn 000 000 100					NP:AP	= 1:1 e sone
0	·····	*****	•			

Tabell D.1 - Estimering av skiferprøvenes netto nøytraliseringspotensial (NNP) og nøytraliserende produksjonsrate (NPR).

*NPP= NP- AP. < -20 = syreproduserende, usikker sone = -20 til 20, bufret sone. **NPR= $\frac{NP}{AP}$. <1 = syreproduserende, 1- 2,5 =usikker sone, >2,5 = bufret sone.

.

etasjetilhørighet, kan det antydes at RE og SL tenderer til å tilhøre Alunskiferformasjonen (etasje 2 og 3a).

AP [kg CaCO3 tonn⁻¹]

Figur D.3 - AP- NP diagram med skiferprøvene (RE og SL) fremstilt med bruk av exceldokument med foreliggende datasett utarbeidet av NGI.

Fe- S- diagram Metode Fe- S- diagram

Et Fe- S diagram vil som et AP-NP diagram estimere om skiferen kan kategoriseres som potensielt syredannende eller ikke, og tilsvarenderesultat vil eventuelt kunne styrke eller svekke antagelsen basert på AP- NP diagrammet. Sannsynligheten for at skiferen er syredannende, samt hvor lett sporstoffer kan frigis kan indikeres ved å sammenligne forholdet mellom jern (Fe) og svovel (S).

Totalinnhold av Fe konverteres fra Fe₂O₃ på følgende måte:

$$Fe \ [mg/kg \ TS] = Fe_2O_3 \ [\%TS] * 6994$$

Formel D.3

Elementene plottes i et Fe- S diagram med henholdsvis enhetene $mol_{Fe}/tonn og mol_S/tonn$ (Figur D.4). I diagrammene legges det inn tre referanselinjer, Fe:S = 1:2, Fe:S = 1:1 og Fe:S = 2:1. Basert på disse linjene vil skiferen kategoriseres i en av tre soner:

- Syredannende (Fe:S < 1:2)
- Usikker (1:1 < Fe:S < 2:1)
- Ikke syredannende (Fe:S > 2:1)

Dersom Fe:S < 1:2 antas skiferen å være syredannende. Er Fe:S- forholdet over 2:1 gir dette en indikasjon på ar en betraktelig andel av Fe og sporstoffer er bundet til silikater og oksider, og vil med det være mindre tilgjengelig enn de hadde vært dersom disse grunnstoffene forelå bundet til sulfider. Skifere med et Fe:S- forhold imellom disse to nevnte sonene er det knyttet usikkerhet til, og kan dermed ikke kategoriseres som hverken syredannende eller ikke syredannende.

Figur D.4 - Utformingen av Fe- S- diagram.

Basert på tilsvarende vurdering som for AP-NP diagrammet kan et Fe- S diagram med et tilstrekkelig stort nok datasett med skifere med kjent etasjetilhørighet også benyttes i vurderingen av etasjetilhørighet.

Resultat Fe- S diagram

På bakgrunn av skifernes Fe og S- totalinnhold, som presenteres i Figur D.5, antas begge at begge skiferne (RE og SL) å være syredannende.

Figur D.5- Fe- S- diagram fremstilt med skiferprøvene (RE og SL).

I Figur D.6 er RE og SL er plottet med skiferprøver med kjent etasjetilhørighet. Ut ifra plottet kan det antydes at RE og SL tenderer til å tilhøre Alunskiferformasjonen (etasje 2 og 3a).

Figur D.6- Fe-S- diagram fremstilt med exceldokument med datasett utarbeidet av NGI.

Identifisering av etasjetilhørighet ved bruk av trekantdiagram

Metode for identifisering av etasjetilhørighet ved bruk av trekantdiagram Et tredje verktøy som kan benyttes til å vurdere hvorvidt en skifer er syredannende eller ikke tar utgangspunkt i identifisering av skiferens etasjetilhørighet i den kambrosilurske lagrekken. I forbindelse med fremstillingen av fagrapporten «Håndtering av potensielt syredannende svartskifer» ble det også utarbeidet et datasett med resultater fra kjemiske analyser fra et betydelig antall skifere fra samtlige lagrekker. Prøvene er kategorisert basert på etasjetilhørighet. Ved hjelp av et trekantdiagram kan tre elementer plottes imot hverandre, og trender for hver etasje vil kunne tydes (Figur D.7). De ulike elementene kan vektes ulikt for å sørge for en spredning av datapunktene innad i diagrammet for å bedre leseligheten. Ved å plotte inn analyseresultater fra uidentifiserte prøver vil man kunne tyde hvilken etasje som viser tilsvarende trend. Ved å plotte et slikt diagram for flere kombinasjoner av elementer vil antagelsen potensielt styrkes dersom gjentagende trend vises. Det ble derfor plottet ti slike trekantdisgram med ulik kombinasjon av elementer med ulik vekting.

Etasjetilhørigheten vil også kunne brukes til å estimere skiferens syredannende potensiale. I hovedsak deles etasjene inn i tre kategorier:

- Syredannende, etasje 2 og 3a (Alunskiferformasjonen)
- Usikker, etasje 3bα og 3bβ (Tøyenformasjonen)
- Ikke syredannende, etasje 3c og 4a (Hukformasjonen og Elnesformasjonen)

Figur D.7 - Trekantdiagram med fremstilt med elementene Ca, Mg og Fe for skiferprøvene (RE og SL).

Resultat av identifisering av etasjetilhørighet ved bruk av trekantdiagram

Slik det vises i trekantdiagrammene som fremkommer av Figur D.8- 17 kan det antydes at RE og SL, basert på prøvene kjemiske sammensetning, følger tilsvarende trend som skiferprøvene tilhørende Alunskiferformasjonen (etasje 2 og 3a).

Figur D.8 - Trekantdiagram med elementene Ca, Mg og Fe fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.9 - Trekantdiagram med elementene Al, Co og V fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.10- Trekantdiagram med elementene Y, V og U fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.12 - Trekantdiagram med elementene V, Cr og Zr fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.13 - Trekantdiagram med elementene TOC, Fe og S- tot fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.14 - Trekantdiagram med elementene S- tot, Mn og Zn fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.15 - Trekantdiagram med elementene TOC, Ba og U fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.16 - Trekantdiagram med elementene S- tot, Fe og Ba fremstilt med exceldokument med datasett utarbeidet av NGI.

Figur D.17 - Trekantdiagram med elementene TIC, TOC og S- tot fremstilt med exceldokument med datasett utarbeidet av NGI.

Vedlegg E- Ristetest

Før oppsett av kolonneforsøket ble det gjennomført en ristetest. Ristetesten ble kun gjennomført med skiferprøven SL og B for å begrense testomfanget ettersom hovedmålet med forsøket var å innhente et informasjonsgrunnlag for utforming av påfølgende kolonneforsøk, samt generell materialkunnskap. Det var ønskelig å undersøke effekten av kornstørrelse, samt blandingsforholdet imellom skifer og betong.

I denne fasen av forsøksrekken var det også ønskelig å undersøke materialegenskapene til betongslam (CS) og en filterkake produsert av NOAH Langøya, og disse materialene inngikk som kontroller og i kombinasjon med øvrige materialer i ristetesten.

Forbehandling av prøvemateriale og metode for oppsett av risteforsøk Skiferprøven SL og betongen ble siktet til fraksjonene <2mm og 2- 20mm. Det ble satt opp ristetester basert på materialets kornstørrelse og blandingsforhold imellom skifer og betong (25:75 betong:skifer og 10:90 betong:skifer), med L/S 10.

Materialet og milliQ-vann ble veid ved hjelp av en vekt med tre desimalers nøyaktighet. Det ble korrigert for materialets vanninnhold. Flaskene ble lagt til risting på et ristebord i 36 timer. Materialet i flaskene fikk tid til å sedimentere før eluatet ble filtrert ved bruk av et 45µm sprøytefilter. Samme dag ble det målt pH av filtrert eluat, samt sendt prøver til øvrig kjemisk analyse (metode fremkommer av Avsnitt 3.5.2). Redoks og EC til filtrert eluat ble målt fem dager senere. Det filtrerte eluatet ble oppbevart kjølig frem til analyse.

Resultater ristetest

Ved en grov visuell analyse av målt pH (Figur E.1), EC (Figur E.2) og Eh (Figur E.3) ser det ikke ut til at valgte blandingsforhold mellom skifer og betong (25:75 betong:skifer og 10:90 betong:skifer) utgjorde en signifikant effekt for parameterne. Derimot kan en viss tendens av kornstørrelsens effekt observeres.

Figur E.1 - Målt pH i eluat fra ristetest.

Figur E.2 - Målt EC i eluat fra ristetest.

Figur E.3 - Målt redoks i eluat fra ristetest.

Slik som vises av resultatene som vises i Figur E.4 utlekkingen av valgte elementer størst fra den minste kornstørrelsen (<2mm).

Figur E.4- Utlekking av Cr, Ni, Cu og Ca i ristetest for to kornstørrelsefraksjoner (<2mm og 2- 20mm).

Tabell E.1 - Analyseresultater fra ristetest. (C: betong, BS: slemmestadskifer, CS: betongslam, FK: filterkake fra NOAH, blank: milliQ- vann fra NMBU laboratoriet).

	pН	EC	Eh	v	Cr	Mn	Fe (Co I	Ni	Cu	Zn A	s :	Se (Cd	Sn S	Sb B	a T	I P	b I	U	Al	Ca	к	Mg	Мо	Na	Si
25/76 CDS				µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	. mg/I	. mg/L	mg/I	. mg/l	L mg/L
2mm - 1	10,99	1036	124	38	18	<ld< td=""><td><1,8</td><td>0,35</td><td>3,6</td><td>11</td><td><6,2</td><td>4,6</td><td>10</td><td>0,048</td><td>⊲LD</td><td>7,6</td><td>33</td><td>0,11</td><td><0,05 8</td><td>0,045</td><td>0,92</td><td>220</td><td>5,5</td><td>0,09</td><td>1,8</td><td>16</td><td>8,7</td></ld<>	<1,8	0,35	3,6	11	<6,2	4,6	10	0,048	⊲LD	7,6	33	0,11	<0,05 8	0,045	0,92	220	5,5	0,09	1,8	16	8,7
25/75 CBS 2mm - 2	11,01	1032	99,4	39	18	⊲LD	<1,8	0,26	4,1	10	⊲LD	4,5	9	0,038	⊲LD	7,3	27	0,12	⊲0,05 8	0,033	1	210	3,9	0,084	1,8	16	8,7
25/75 CBS 2mm - 3	10,95	1153	94,5	40	17	⊲LD	<1,8	0,29	4	12	<6,2	5,3	9	0,046	⊲LD	7,8	37	0,11	<0,05 8	0,05	1	210	14	0,079	1,7	16	8,6
25/75 CBS 20mm-1	11.14	609	88,1	21	2	⊲LD	6,0	<0,06 1	<0.81	2.6	<6.2	3,3	3,5	<0,01 6	⊲LD	5.0	33	0.049	0.079	0,062	2.5	89	6,7	0.020	0,47	5	6.7
25/75 CBS 20mm-2	11.22	338	122	10	2.0	d D	4.6	<0,06	d D	1.8	6.6	42	26	<0,01	⊲n	5.0	35	0.067	<0,05	0.059	17	84	11	0.027	0.38	8.4	6.6
25/75 CBS		500			2,7	-10	4,0	<0,06	-1.0	1,0	0,0		2,0	<0,01	-1.0	5,0		0,005	<0,05	0,055	.,,			0,027	0,50	0,4	0,0
25/75	11,13	582	92	28	2,7	<ld< td=""><td>2,2</td><td>1</td><td><0,81</td><td>3</td><td><6,2</td><td>5,4</td><td>3,6</td><td>6</td><td><ld< td=""><td>8,9</td><td>32</td><td>0,055</td><td>8</td><td>0,069</td><td>1,4</td><td>110</td><td>10</td><td>0,051</td><td>0,56</td><td>10</td><td>8,3</td></ld<></td></ld<>	2,2	1	<0,81	3	<6,2	5,4	3,6	6	<ld< td=""><td>8,9</td><td>32</td><td>0,055</td><td>8</td><td>0,069</td><td>1,4</td><td>110</td><td>10</td><td>0,051</td><td>0,56</td><td>10</td><td>8,3</td></ld<>	8,9	32	0,055	8	0,069	1,4	110	10	0,051	0,56	10	8,3
CSBS-1 25/75	11,58	1191	74,9	7,4	88	⊲LD	28	0,75	1,5	13	<6,2	1,1	5,9	0,047	⊲LD	0,84	200	0,15	0,31	0,014	1,2	170	18	0,030	1,9	17	2,5
CSBS-2 25/75	11,69	1104 1155	78,6	8,6	92	⊲LD	24	0,74	1,7	13	<6,2	1,3	5,0	0,042	⊲LD	0,88	200	0,15	0,30	0,011	1,3	170	25	0,040	1,9	16	2,7
CSBS-3	11,69	4	83,9	6,9	92	⊲LD	26	0,79	1,3	13	<6,2	0,98	5,5	0,038	⊲LD	0,76	230	0,18	0,33	6	1,2	160	17	0,049	2	16	2,5
FKBS-1	9,29	5530	152	15	8,9	0,23	⊲LD	1	<0,81	<1,8	<6,2	4,1	19	0,48	<3	91	120	1,2	0,12	0,77	2,3	900	210	15	1,1	300	0,27
FKBS-2	9,1	4460	176,5	15	8,6	0,41	<1,8	<0,06 1	<ld< td=""><td><1,8</td><td><ld< td=""><td>3,8</td><td>17</td><td>0,58</td><td><3</td><td>94</td><td>120</td><td>1,3</td><td>0,13</td><td>1,2</td><td>2,1</td><td>890</td><td>200</td><td>15</td><td>1,1</td><td>300</td><td>0,36</td></ld<></td></ld<>	<1,8	<ld< td=""><td>3,8</td><td>17</td><td>0,58</td><td><3</td><td>94</td><td>120</td><td>1,3</td><td>0,13</td><td>1,2</td><td>2,1</td><td>890</td><td>200</td><td>15</td><td>1,1</td><td>300</td><td>0,36</td></ld<>	3,8	17	0,58	<3	94	120	1,3	0,13	1,2	2,1	890	200	15	1,1	300	0,36
25/75 FKBS-3	9,21	5320	177,7	15	7,8	0,24	<1,8	<0,06 1	<0,81	<1,8	⊲LD	3,2	18	0,50	<3	90	120	1,3	0,12	1,2	2,2	910	210	16	1,1	300	0,35
10/90 CBS 2mm-1	10,18	1179	167	43	7,9	⊲LD	<1,8	0,14	1,6	2,7	<ld< td=""><td>8,5</td><td>7,4</td><td>0,066</td><td>⊲LD</td><td>13</td><td>31</td><td>0,12</td><td><0,05 8</td><td>0,27</td><td>0,23</td><td>220</td><td>4,3</td><td>1,9</td><td>1,7</td><td>9,5</td><td>7,5</td></ld<>	8,5	7,4	0,066	⊲LD	13	31	0,12	<0,05 8	0,27	0,23	220	4,3	1,9	1,7	9,5	7,5
10/90 CBS 2mm-2	10,24	1157	149	44	7,6	⊲LD	<1,8	0,087	1,5	2,7	⊲LD	8,4	8,2	0,066	⊲LD	13	30	0,14	⊲LD	0,21	0,23	220	13	1,6	1,7	9,3	8,0
10/90 CBS 2mm-3	10.17	1125	151.7	47	9.0	⊲n	<1.8	0.14	16	3.6	₫D	9.1	73	0.067	⊲n	14	20	0.12	dЪ	0.25	0.21	240	5.5	16	10	10	81
10/90 CSPS	10,17	1125	151,7	47	3,5	~LD	~1,0	0,14	1,0	3,0	-LD	9,1	,,,	0,007	~LD	14	29	0,12	~LD	0,25	0,21	240	5,5	1,0	1,5	10	0,1
2mm-1	11,16	1018	122	33	46	⊲LD	10	0,21	1,3	8,2	<6,2	3,3	9,1	0,042	⊲LD	5,7	58	0,1	<0,05 8	0,029	2	210	5,4	0,056	2,2	9,5	4,3
CSBS 2mm-2	11.14	1054	121.8	22	50	⊲n	75	0.19	2.1	11	d D	0.77	7.2	0.053	⊲n	3.0	57	0.12	⊲n	4D	17	170	5.8	0.054	2.1	10	3.1
10/90 CSBS	11,14	1054	121,8	22	50	-LD	2,1	0,19	2,1		~LD	0,77	1,2	0,055	-LD	3,9	51	0,12	-0.05	-1LD	1,7	170	5,8	0,054	2,1	10	5,1
2mm-3	11,08	1071	123,4	29	50	⊲LD	11	0,18	1,5	8,9	<6,2	2,7	8,4	0,045	⊲LD	5,2	65	0,093	8	0,022	2,2	210	8,7	0,060	2,2	10	3,9
FKBS-1	8,98	3560	183,5	14	7,3	0,32	<ld< td=""><td><ld< td=""><td>1,2</td><td><1,8</td><td><6,2</td><td>3,9</td><td>12</td><td>0,52</td><td>⊲LD</td><td>85</td><td>90</td><td>0,87</td><td>0,072</td><td>4,1</td><td>1,2</td><td>730</td><td>86</td><td>22</td><td>1,1</td><td>120</td><td>0,71</td></ld<></td></ld<>	<ld< td=""><td>1,2</td><td><1,8</td><td><6,2</td><td>3,9</td><td>12</td><td>0,52</td><td>⊲LD</td><td>85</td><td>90</td><td>0,87</td><td>0,072</td><td>4,1</td><td>1,2</td><td>730</td><td>86</td><td>22</td><td>1,1</td><td>120</td><td>0,71</td></ld<>	1,2	<1,8	<6,2	3,9	12	0,52	⊲LD	85	90	0,87	0,072	4,1	1,2	730	86	22	1,1	120	0,71
10/90 FKBS-2	8,91	3940	189,1	13	6,7	0,46	<1,8	⊲LD	0,9	<1,8	⊲LD	3,9	13	0,63	<ld< td=""><td>81</td><td>87</td><td>0,88</td><td>0,067</td><td>5,0</td><td>0,81</td><td>720</td><td>91</td><td>23</td><td>1,1</td><td>120</td><td>1,2</td></ld<>	81	87	0,88	0,067	5,0	0,81	720	91	23	1,1	120	1,2
10.000																											
FKBS-3	8,93	3590	193,3	13	7,8	0,49	<1,8	<ld< td=""><td>0,9</td><td><1,8</td><td><ld< td=""><td>3,8</td><td>14</td><td>0,65</td><td><ld< td=""><td>87</td><td>83</td><td>0,86</td><td>0,068</td><td>5,7</td><td>0,81</td><td>720</td><td>87</td><td>24</td><td>1,2</td><td>120</td><td>0,91</td></ld<></td></ld<></td></ld<>	0,9	<1,8	<ld< td=""><td>3,8</td><td>14</td><td>0,65</td><td><ld< td=""><td>87</td><td>83</td><td>0,86</td><td>0,068</td><td>5,7</td><td>0,81</td><td>720</td><td>87</td><td>24</td><td>1,2</td><td>120</td><td>0,91</td></ld<></td></ld<>	3,8	14	0,65	<ld< td=""><td>87</td><td>83</td><td>0,86</td><td>0,068</td><td>5,7</td><td>0,81</td><td>720</td><td>87</td><td>24</td><td>1,2</td><td>120</td><td>0,91</td></ld<>	87	83	0,86	0,068	5,7	0,81	720	87	24	1,2	120	0,91
10/10/80 CFKBS-1	10,07	3550	180,5	53	12	<ld< td=""><td><1,8</td><td>0,11</td><td><0,81</td><td>4,5</td><td><ld< td=""><td>5,2</td><td>11</td><td>0,086</td><td><ld< td=""><td>45</td><td>99</td><td>0,44</td><td>0,11</td><td>0,063</td><td>0,68</td><td>720</td><td>93</td><td>3,2</td><td>1,6</td><td>120</td><td>3,1</td></ld<></td></ld<></td></ld<>	<1,8	0,11	<0,81	4,5	<ld< td=""><td>5,2</td><td>11</td><td>0,086</td><td><ld< td=""><td>45</td><td>99</td><td>0,44</td><td>0,11</td><td>0,063</td><td>0,68</td><td>720</td><td>93</td><td>3,2</td><td>1,6</td><td>120</td><td>3,1</td></ld<></td></ld<>	5,2	11	0,086	<ld< td=""><td>45</td><td>99</td><td>0,44</td><td>0,11</td><td>0,063</td><td>0,68</td><td>720</td><td>93</td><td>3,2</td><td>1,6</td><td>120</td><td>3,1</td></ld<>	45	99	0,44	0,11	0,063	0,68	720	93	3,2	1,6	120	3,1
10/10/80 CFKBS-2	10,07	3660	155,6	50	12	<ld< td=""><td><1,8</td><td>0,083</td><td>0,9</td><td>5,3</td><td><ld< td=""><td>4,9</td><td>11</td><td>0,10</td><td><ld< td=""><td>46</td><td>97</td><td>0,51</td><td>0,13</td><td>0,068</td><td>0,75</td><td>730</td><td>95</td><td>3,8</td><td>1,7</td><td>120</td><td>2,5</td></ld<></td></ld<></td></ld<>	<1,8	0,083	0,9	5,3	<ld< td=""><td>4,9</td><td>11</td><td>0,10</td><td><ld< td=""><td>46</td><td>97</td><td>0,51</td><td>0,13</td><td>0,068</td><td>0,75</td><td>730</td><td>95</td><td>3,8</td><td>1,7</td><td>120</td><td>2,5</td></ld<></td></ld<>	4,9	11	0,10	<ld< td=""><td>46</td><td>97</td><td>0,51</td><td>0,13</td><td>0,068</td><td>0,75</td><td>730</td><td>95</td><td>3,8</td><td>1,7</td><td>120</td><td>2,5</td></ld<>	46	97	0,51	0,13	0,068	0,75	730	95	3,8	1,7	120	2,5
10/10/80 CFKBS-3	10,02	3660	155,9	53	13	<0,17	15	0,12	<0,81	5	<ld< td=""><td>4,9</td><td>11</td><td>0,084</td><td><ld< td=""><td>45</td><td>100</td><td>0,53</td><td>0,14</td><td>0,061</td><td>0,81</td><td>730</td><td>95</td><td>3,1</td><td>1,7</td><td>120</td><td>2,5</td></ld<></td></ld<>	4,9	11	0,084	<ld< td=""><td>45</td><td>100</td><td>0,53</td><td>0,14</td><td>0,061</td><td>0,81</td><td>730</td><td>95</td><td>3,1</td><td>1,7</td><td>120</td><td>2,5</td></ld<>	45	100	0,53	0,14	0,061	0,81	730	95	3,1	1,7	120	2,5
C 2mm-1	11.84	3200	70	0.55	20	<ld< td=""><td>2.1</td><td>0.83</td><td>3.2</td><td>13</td><td><6.2</td><td>0.32</td><td><0.38</td><td><ld< td=""><td><ld< td=""><td>0.52</td><td>150</td><td>0.037</td><td>0.95</td><td><0,00 42</td><td>1.6</td><td>190</td><td>65</td><td>0.025</td><td>0.033</td><td>50</td><td>1.7</td></ld<></td></ld<></td></ld<>	2.1	0.83	3.2	13	<6.2	0.32	<0.38	<ld< td=""><td><ld< td=""><td>0.52</td><td>150</td><td>0.037</td><td>0.95</td><td><0,00 42</td><td>1.6</td><td>190</td><td>65</td><td>0.025</td><td>0.033</td><td>50</td><td>1.7</td></ld<></td></ld<>	<ld< td=""><td>0.52</td><td>150</td><td>0.037</td><td>0.95</td><td><0,00 42</td><td>1.6</td><td>190</td><td>65</td><td>0.025</td><td>0.033</td><td>50</td><td>1.7</td></ld<>	0.52	150	0.037	0.95	<0,00 42	1.6	190	65	0.025	0.033	50	1.7
C 2mm-2	11.92	3130	50	0.52	22	<ld< td=""><td>2.1</td><td>0.83</td><td>3.8</td><td>13</td><td><6.2</td><td>0.33</td><td><0.38</td><td><ld< td=""><td><ld< td=""><td>0.41</td><td>130</td><td>0.031</td><td>0.89</td><td><ld< td=""><td>1.7</td><td>180</td><td>65</td><td>0.021</td><td>0.013</td><td>50</td><td>1.7</td></ld<></td></ld<></td></ld<></td></ld<>	2.1	0.83	3.8	13	<6.2	0.33	<0.38	<ld< td=""><td><ld< td=""><td>0.41</td><td>130</td><td>0.031</td><td>0.89</td><td><ld< td=""><td>1.7</td><td>180</td><td>65</td><td>0.021</td><td>0.013</td><td>50</td><td>1.7</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0.41</td><td>130</td><td>0.031</td><td>0.89</td><td><ld< td=""><td>1.7</td><td>180</td><td>65</td><td>0.021</td><td>0.013</td><td>50</td><td>1.7</td></ld<></td></ld<>	0.41	130	0.031	0.89	<ld< td=""><td>1.7</td><td>180</td><td>65</td><td>0.021</td><td>0.013</td><td>50</td><td>1.7</td></ld<>	1.7	180	65	0.021	0.013	50	1.7
C 2mm-3	11.02	1210	60	0.62	17	<1D	1.0	0.75	4.2	12	<1.D	0.24	0.49	<1 D	<1D	0.45	120	0.053	0.79	<1D	1.0	180	65	0.024	0.006	50	1.7
C 2000		3210		0,52		~LD	1,9	0,75	4,5	12	-LD	0,54	0,49	~LD	~LD	0,45	120	<0,01	0,79	~LD	1,5	180	0.5	<0,024	0,000	50	1,7
C 20mm-1	11,67	2530	70	0,86	1,6	<ld< td=""><td><1,8</td><td>0,12</td><td><0,81</td><td><1,8</td><td><6,2</td><td>0,3</td><td><0,38</td><td><ld< td=""><td><ld< td=""><td>0,23</td><td>67</td><td></td><td>0,21</td><td><ld <0,00</ld </td><td>2,1</td><td>130</td><td>16</td><td>7</td><td>0,025</td><td>23</td><td>3,3</td></ld<></td></ld<></td></ld<>	<1,8	0,12	<0,81	<1,8	<6,2	0,3	<0,38	<ld< td=""><td><ld< td=""><td>0,23</td><td>67</td><td></td><td>0,21</td><td><ld <0,00</ld </td><td>2,1</td><td>130</td><td>16</td><td>7</td><td>0,025</td><td>23</td><td>3,3</td></ld<></td></ld<>	<ld< td=""><td>0,23</td><td>67</td><td></td><td>0,21</td><td><ld <0,00</ld </td><td>2,1</td><td>130</td><td>16</td><td>7</td><td>0,025</td><td>23</td><td>3,3</td></ld<>	0,23	67		0,21	<ld <0,00</ld 	2,1	130	16	7	0,025	23	3,3
C 20mm-2	11,67	1924	75	1,1	2,3	<ld< td=""><td>2,2</td><td>0,098</td><td><ld< td=""><td><1,8</td><td><ld< td=""><td>0,31</td><td><0,38</td><td><ld< td=""><td><ld< td=""><td>0,31</td><td>56</td><td>7 <0,01</td><td>0,18</td><td>42</td><td>2,2</td><td>98</td><td>21</td><td>0,020</td><td>0,014</td><td>18</td><td>4,5</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	2,2	0,098	<ld< td=""><td><1,8</td><td><ld< td=""><td>0,31</td><td><0,38</td><td><ld< td=""><td><ld< td=""><td>0,31</td><td>56</td><td>7 <0,01</td><td>0,18</td><td>42</td><td>2,2</td><td>98</td><td>21</td><td>0,020</td><td>0,014</td><td>18</td><td>4,5</td></ld<></td></ld<></td></ld<></td></ld<>	<1,8	<ld< td=""><td>0,31</td><td><0,38</td><td><ld< td=""><td><ld< td=""><td>0,31</td><td>56</td><td>7 <0,01</td><td>0,18</td><td>42</td><td>2,2</td><td>98</td><td>21</td><td>0,020</td><td>0,014</td><td>18</td><td>4,5</td></ld<></td></ld<></td></ld<>	0,31	<0,38	<ld< td=""><td><ld< td=""><td>0,31</td><td>56</td><td>7 <0,01</td><td>0,18</td><td>42</td><td>2,2</td><td>98</td><td>21</td><td>0,020</td><td>0,014</td><td>18</td><td>4,5</td></ld<></td></ld<>	<ld< td=""><td>0,31</td><td>56</td><td>7 <0,01</td><td>0,18</td><td>42</td><td>2,2</td><td>98</td><td>21</td><td>0,020</td><td>0,014</td><td>18</td><td>4,5</td></ld<>	0,31	56	7 <0,01	0,18	42	2,2	98	21	0,020	0,014	18	4,5
C 20mm-3	11,63	1782	70,6	1	3,2	<ld< td=""><td>2,5</td><td>0,088</td><td>0,84</td><td><1,8</td><td><6,2</td><td>0,23</td><td>0,47</td><td><ld< td=""><td><ld< td=""><td>0,34</td><td>52</td><td>7</td><td>0,17</td><td><ld< td=""><td>2,2</td><td>98</td><td>16</td><td>0,024</td><td>0,01</td><td>11</td><td>4,3</td></ld<></td></ld<></td></ld<></td></ld<>	2,5	0,088	0,84	<1,8	<6,2	0,23	0,47	<ld< td=""><td><ld< td=""><td>0,34</td><td>52</td><td>7</td><td>0,17</td><td><ld< td=""><td>2,2</td><td>98</td><td>16</td><td>0,024</td><td>0,01</td><td>11</td><td>4,3</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,34</td><td>52</td><td>7</td><td>0,17</td><td><ld< td=""><td>2,2</td><td>98</td><td>16</td><td>0,024</td><td>0,01</td><td>11</td><td>4,3</td></ld<></td></ld<>	0,34	52	7	0,17	<ld< td=""><td>2,2</td><td>98</td><td>16</td><td>0,024</td><td>0,01</td><td>11</td><td>4,3</td></ld<>	2,2	98	16	0,024	0,01	11	4,3
BS 2mm-1	8,11	1296	163	6,7	<1	2,1	<ld< td=""><td>0,15</td><td>38</td><td><ld< td=""><td>29</td><td>3,1</td><td>6,0</td><td>3,7</td><td><ld< td=""><td>18</td><td>38</td><td>0,26</td><td><ld< td=""><td>28</td><td>0,048</td><td>220</td><td>10</td><td>25</td><td>0,92</td><td>5,6</td><td>5,9</td></ld<></td></ld<></td></ld<></td></ld<>	0,15	38	<ld< td=""><td>29</td><td>3,1</td><td>6,0</td><td>3,7</td><td><ld< td=""><td>18</td><td>38</td><td>0,26</td><td><ld< td=""><td>28</td><td>0,048</td><td>220</td><td>10</td><td>25</td><td>0,92</td><td>5,6</td><td>5,9</td></ld<></td></ld<></td></ld<>	29	3,1	6,0	3,7	<ld< td=""><td>18</td><td>38</td><td>0,26</td><td><ld< td=""><td>28</td><td>0,048</td><td>220</td><td>10</td><td>25</td><td>0,92</td><td>5,6</td><td>5,9</td></ld<></td></ld<>	18	38	0,26	<ld< td=""><td>28</td><td>0,048</td><td>220</td><td>10</td><td>25</td><td>0,92</td><td>5,6</td><td>5,9</td></ld<>	28	0,048	220	10	25	0,92	5,6	5,9
BS 2mm-2	8,01	1059	179,1	6	<1	3	<ld< td=""><td>0,19</td><td>35</td><td><ld< td=""><td>27</td><td>3,0</td><td>6,0</td><td>3,5</td><td><ld< td=""><td>17</td><td>33</td><td>0,23</td><td><ld< td=""><td>22</td><td>0,015</td><td>180</td><td>13</td><td>23</td><td>0,85</td><td>5,1</td><td>5,4</td></ld<></td></ld<></td></ld<></td></ld<>	0,19	35	<ld< td=""><td>27</td><td>3,0</td><td>6,0</td><td>3,5</td><td><ld< td=""><td>17</td><td>33</td><td>0,23</td><td><ld< td=""><td>22</td><td>0,015</td><td>180</td><td>13</td><td>23</td><td>0,85</td><td>5,1</td><td>5,4</td></ld<></td></ld<></td></ld<>	27	3,0	6,0	3,5	<ld< td=""><td>17</td><td>33</td><td>0,23</td><td><ld< td=""><td>22</td><td>0,015</td><td>180</td><td>13</td><td>23</td><td>0,85</td><td>5,1</td><td>5,4</td></ld<></td></ld<>	17	33	0,23	<ld< td=""><td>22</td><td>0,015</td><td>180</td><td>13</td><td>23</td><td>0,85</td><td>5,1</td><td>5,4</td></ld<>	22	0,015	180	13	23	0,85	5,1	5,4
BS 2mm-3	8,12	1163	183,1	6,6	<1	2,8	<ld< td=""><td>0,15</td><td>35</td><td><ld< td=""><td>27</td><td>3,0</td><td>5,5</td><td>3,6</td><td><ld< td=""><td>18</td><td>34</td><td>0,27</td><td><ld< td=""><td>26</td><td>0,028</td><td>200</td><td>12</td><td>24</td><td>0,9</td><td>5,3</td><td>5,9</td></ld<></td></ld<></td></ld<></td></ld<>	0,15	35	<ld< td=""><td>27</td><td>3,0</td><td>5,5</td><td>3,6</td><td><ld< td=""><td>18</td><td>34</td><td>0,27</td><td><ld< td=""><td>26</td><td>0,028</td><td>200</td><td>12</td><td>24</td><td>0,9</td><td>5,3</td><td>5,9</td></ld<></td></ld<></td></ld<>	27	3,0	5,5	3,6	<ld< td=""><td>18</td><td>34</td><td>0,27</td><td><ld< td=""><td>26</td><td>0,028</td><td>200</td><td>12</td><td>24</td><td>0,9</td><td>5,3</td><td>5,9</td></ld<></td></ld<>	18	34	0,27	<ld< td=""><td>26</td><td>0,028</td><td>200</td><td>12</td><td>24</td><td>0,9</td><td>5,3</td><td>5,9</td></ld<>	26	0,028	200	12	24	0,9	5,3	5,9
1 DS 20mm	11,37	310	201,9	4,3	<ld< td=""><td>3,4</td><td><ld< td=""><td>0,63</td><td>19</td><td><ld< td=""><td>36</td><td>1,6</td><td>2,1</td><td>4,8</td><td><ld< td=""><td>6,3</td><td>39</td><td>0,12</td><td><ld< td=""><td>2,9</td><td>0,069</td><td>32</td><td>8,6</td><td>6,7</td><td>0,17</td><td>1,9</td><td>2,1</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	3,4	<ld< td=""><td>0,63</td><td>19</td><td><ld< td=""><td>36</td><td>1,6</td><td>2,1</td><td>4,8</td><td><ld< td=""><td>6,3</td><td>39</td><td>0,12</td><td><ld< td=""><td>2,9</td><td>0,069</td><td>32</td><td>8,6</td><td>6,7</td><td>0,17</td><td>1,9</td><td>2,1</td></ld<></td></ld<></td></ld<></td></ld<>	0,63	19	<ld< td=""><td>36</td><td>1,6</td><td>2,1</td><td>4,8</td><td><ld< td=""><td>6,3</td><td>39</td><td>0,12</td><td><ld< td=""><td>2,9</td><td>0,069</td><td>32</td><td>8,6</td><td>6,7</td><td>0,17</td><td>1,9</td><td>2,1</td></ld<></td></ld<></td></ld<>	36	1,6	2,1	4,8	<ld< td=""><td>6,3</td><td>39</td><td>0,12</td><td><ld< td=""><td>2,9</td><td>0,069</td><td>32</td><td>8,6</td><td>6,7</td><td>0,17</td><td>1,9</td><td>2,1</td></ld<></td></ld<>	6,3	39	0,12	<ld< td=""><td>2,9</td><td>0,069</td><td>32</td><td>8,6</td><td>6,7</td><td>0,17</td><td>1,9</td><td>2,1</td></ld<>	2,9	0,069	32	8,6	6,7	0,17	1,9	2,1
2 2 BS 20mm-	8,41	291	203,4	5,5	<ld< td=""><td>0,94</td><td><ld< td=""><td>0,11</td><td>7,5</td><td><ld< td=""><td>7,8</td><td>2,5</td><td>2,2</td><td>0,92</td><td><ld< td=""><td>5,9</td><td>38</td><td>0,14</td><td><ld< td=""><td>3,2</td><td>0,11</td><td>29</td><td>7,9</td><td>7,0</td><td>0,21</td><td>2,0</td><td>2,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,94	<ld< td=""><td>0,11</td><td>7,5</td><td><ld< td=""><td>7,8</td><td>2,5</td><td>2,2</td><td>0,92</td><td><ld< td=""><td>5,9</td><td>38</td><td>0,14</td><td><ld< td=""><td>3,2</td><td>0,11</td><td>29</td><td>7,9</td><td>7,0</td><td>0,21</td><td>2,0</td><td>2,4</td></ld<></td></ld<></td></ld<></td></ld<>	0,11	7,5	<ld< td=""><td>7,8</td><td>2,5</td><td>2,2</td><td>0,92</td><td><ld< td=""><td>5,9</td><td>38</td><td>0,14</td><td><ld< td=""><td>3,2</td><td>0,11</td><td>29</td><td>7,9</td><td>7,0</td><td>0,21</td><td>2,0</td><td>2,4</td></ld<></td></ld<></td></ld<>	7,8	2,5	2,2	0,92	<ld< td=""><td>5,9</td><td>38</td><td>0,14</td><td><ld< td=""><td>3,2</td><td>0,11</td><td>29</td><td>7,9</td><td>7,0</td><td>0,21</td><td>2,0</td><td>2,4</td></ld<></td></ld<>	5,9	38	0,14	<ld< td=""><td>3,2</td><td>0,11</td><td>29</td><td>7,9</td><td>7,0</td><td>0,21</td><td>2,0</td><td>2,4</td></ld<>	3,2	0,11	29	7,9	7,0	0,21	2,0	2,4
BS 20mm- 3	8,46	284	204,9	6,5	<ld< td=""><td>4,2</td><td><ld< td=""><td>0,25</td><td>9,9</td><td><ld< td=""><td>9,1</td><td>2,2</td><td>1,9</td><td>1,5</td><td><ld< td=""><td>6,5</td><td>35</td><td>0,15</td><td><ld< td=""><td>3,2</td><td>0,089</td><td>27</td><td>7,4</td><td>7,6</td><td>0,25</td><td>2,2</td><td>2,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	4,2	<ld< td=""><td>0,25</td><td>9,9</td><td><ld< td=""><td>9,1</td><td>2,2</td><td>1,9</td><td>1,5</td><td><ld< td=""><td>6,5</td><td>35</td><td>0,15</td><td><ld< td=""><td>3,2</td><td>0,089</td><td>27</td><td>7,4</td><td>7,6</td><td>0,25</td><td>2,2</td><td>2,4</td></ld<></td></ld<></td></ld<></td></ld<>	0,25	9,9	<ld< td=""><td>9,1</td><td>2,2</td><td>1,9</td><td>1,5</td><td><ld< td=""><td>6,5</td><td>35</td><td>0,15</td><td><ld< td=""><td>3,2</td><td>0,089</td><td>27</td><td>7,4</td><td>7,6</td><td>0,25</td><td>2,2</td><td>2,4</td></ld<></td></ld<></td></ld<>	9,1	2,2	1,9	1,5	<ld< td=""><td>6,5</td><td>35</td><td>0,15</td><td><ld< td=""><td>3,2</td><td>0,089</td><td>27</td><td>7,4</td><td>7,6</td><td>0,25</td><td>2,2</td><td>2,4</td></ld<></td></ld<>	6,5	35	0,15	<ld< td=""><td>3,2</td><td>0,089</td><td>27</td><td>7,4</td><td>7,6</td><td>0,25</td><td>2,2</td><td>2,4</td></ld<>	3,2	0,089	27	7,4	7,6	0,25	2,2	2,4
CS-1	12,03	5400	55,2	0,21	29	<ld< td=""><td>16</td><td>10</td><td><0,81</td><td>9,8</td><td><6,2</td><td><0,09 2</td><td>0,41</td><td><ld< td=""><td><ld< td=""><td>0,46</td><td>2700</td><td>0,68</td><td>3,8</td><td><0,00 42</td><td>1,1</td><td>410</td><td>110</td><td>0,02</td><td>0,12</td><td>50</td><td>0,65</td></ld<></td></ld<></td></ld<>	16	10	<0,81	9,8	<6,2	<0,09 2	0,41	<ld< td=""><td><ld< td=""><td>0,46</td><td>2700</td><td>0,68</td><td>3,8</td><td><0,00 42</td><td>1,1</td><td>410</td><td>110</td><td>0,02</td><td>0,12</td><td>50</td><td>0,65</td></ld<></td></ld<>	<ld< td=""><td>0,46</td><td>2700</td><td>0,68</td><td>3,8</td><td><0,00 42</td><td>1,1</td><td>410</td><td>110</td><td>0,02</td><td>0,12</td><td>50</td><td>0,65</td></ld<>	0,46	2700	0,68	3,8	<0,00 42	1,1	410	110	0,02	0,12	50	0,65
CS-2	12,28	5800	52.1	0.2	29	<0,17	14	10	<0.81	10	<6.2	<0,09 2	<0,38	<ld< td=""><td><ld< td=""><td>0,54</td><td>2800</td><td>0,63</td><td>4,1</td><td>0,005 1</td><td>0.92</td><td>430</td><td>100</td><td><0,01 7</td><td>0.084</td><td>50</td><td>0,55</td></ld<></td></ld<>	<ld< td=""><td>0,54</td><td>2800</td><td>0,63</td><td>4,1</td><td>0,005 1</td><td>0.92</td><td>430</td><td>100</td><td><0,01 7</td><td>0.084</td><td>50</td><td>0,55</td></ld<>	0,54	2800	0,63	4,1	0,005 1	0.92	430	100	<0,01 7	0.084	50	0,55
CS-3	12.18	6120	50	0.22	29	<0.17	13	11	<0.81	10	<6.2	<0,09	<0.38	<ld< td=""><td><ld< td=""><td>0.54</td><td>3000</td><td>0.66</td><td>4.1</td><td><0,00 42</td><td>0.92</td><td>440</td><td>97</td><td>0.022</td><td>0.13</td><td>47</td><td>0.27</td></ld<></td></ld<>	<ld< td=""><td>0.54</td><td>3000</td><td>0.66</td><td>4.1</td><td><0,00 42</td><td>0.92</td><td>440</td><td>97</td><td>0.022</td><td>0.13</td><td>47</td><td>0.27</td></ld<>	0.54	3000	0.66	4.1	<0,00 42	0.92	440	97	0.022	0.13	47	0.27
FK-1	0,44	15630	67.0	19	81	-0.17	-10	0.093	-0.91	<1.0	-72 -1 D		41	0.67	20	89	270	2.0	0.29	<0,00	65	1800	840	40	0.66	1102	0.58
EK 2	9,40	10000	07,9	18	a,1	~0,17	~1,8	0,085	~0,81	~1,8	~00	3,1	41	0,07	27	ad	210	2,9	0,29	0,004	0,0	1005	040	4,0	0,00	- 100	0,30
FK-2	9,06	15790	/5,5	18	7,6	<0,17	<1,8	0,065	<ld< td=""><td><1,8</td><td><6,2</td><td>2,5</td><td>39</td><td>0,62</td><td>27</td><td>89</td><td>280</td><td>2,9</td><td>u,3</td><td>6 0,005</td><td>0,5</td><td>1800</td><td>850</td><td>3,9</td><td>0,06</td><td>1100</td><td>0,11 <0,09</td></ld<>	<1,8	<6,2	2,5	39	0,62	27	89	280	2,9	u,3	6 0,005	0,5	1800	850	3,9	0,06	1100	0,11 <0,09
FK-3	9,03	15810	76,3	18	7,4	<0,17	<ld< td=""><td>0,097</td><td><0,81</td><td><1,8</td><td><ld< td=""><td>2,2</td><td>40</td><td>0,63</td><td>28</td><td>88</td><td>280</td><td>3,0</td><td>0,32 <0,05</td><td>2 <0,00</td><td>6,6</td><td>1800</td><td>850</td><td>4,0</td><td>0,66</td><td>1100</td><td>9 <0,09</td></ld<></td></ld<>	0,097	<0,81	<1,8	<ld< td=""><td>2,2</td><td>40</td><td>0,63</td><td>28</td><td>88</td><td>280</td><td>3,0</td><td>0,32 <0,05</td><td>2 <0,00</td><td>6,6</td><td>1800</td><td>850</td><td>4,0</td><td>0,66</td><td>1100</td><td>9 <0,09</td></ld<>	2,2	40	0,63	28	88	280	3,0	0,32 <0,05	2 <0,00	6,6	1800	850	4,0	0,66	1100	9 <0,09
Blank	6,46	6,3	146	<ld< td=""><td><ld< td=""><td><ld< td=""><td>⊲LD</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>⊲LD</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>⊲LD</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	⊲LD	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><0,38</td><td><ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<0,38	<ld< td=""><td>4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<></td></ld<>	4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<></td></ld<>	<ld< td=""><td>8</td><td>42</td><td>⊲LD ·</td><td>⊲LD</td><td><0,5</td><td>⊲.D</td><td>0,007</td><td>⊲LD</td><td>9</td></ld<>	8	42	⊲LD ·	⊲LD	<0,5	⊲.D	0,007	⊲LD	9
Blank	6,62	3,7	163	⊲LD	<ld< td=""><td><ld< td=""><td>⊲LD</td><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>⊲LD</td><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	⊲LD	<ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><0,00 5</td><td>⊲LD</td><td><0,5</td><td>⊲LD</td><td><ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<></td></ld<>	<0,00 5	⊲LD	<0,5	⊲LD	<ld< td=""><td>⊲LD</td><td>⊲LD</td></ld<>	⊲LD	⊲LD
Blank	7,07	6.4	187	⊲n	<d.< td=""><td><i d<="" td=""><td>⊲D</td><td>⊲n</td><td>⊲n</td><td>⊲n</td><td><!-- D</td--><td>⊲n</td><td>⊲n</td><td>⊲n</td><td>⊲LD</td><td>⊲n</td><td>⊲n</td><td>⊲LD</td><td><0,05 8</td><td><ld< td=""><td>⊲LD</td><td>⊲.D</td><td>⊲LD</td><td>⊲LD</td><td><ld< td=""><td>⊲⊥D</td><td>⊲.D</td></ld<></td></ld<></td></td></i></td></d.<>	<i d<="" td=""><td>⊲D</td><td>⊲n</td><td>⊲n</td><td>⊲n</td><td><!-- D</td--><td>⊲n</td><td>⊲n</td><td>⊲n</td><td>⊲LD</td><td>⊲n</td><td>⊲n</td><td>⊲LD</td><td><0,05 8</td><td><ld< td=""><td>⊲LD</td><td>⊲.D</td><td>⊲LD</td><td>⊲LD</td><td><ld< td=""><td>⊲⊥D</td><td>⊲.D</td></ld<></td></ld<></td></td></i>	⊲D	⊲n	⊲n	⊲n	D</td <td>⊲n</td> <td>⊲n</td> <td>⊲n</td> <td>⊲LD</td> <td>⊲n</td> <td>⊲n</td> <td>⊲LD</td> <td><0,05 8</td> <td><ld< td=""><td>⊲LD</td><td>⊲.D</td><td>⊲LD</td><td>⊲LD</td><td><ld< td=""><td>⊲⊥D</td><td>⊲.D</td></ld<></td></ld<></td>	⊲n	⊲n	⊲n	⊲LD	⊲n	⊲n	⊲LD	<0,05 8	<ld< td=""><td>⊲LD</td><td>⊲.D</td><td>⊲LD</td><td>⊲LD</td><td><ld< td=""><td>⊲⊥D</td><td>⊲.D</td></ld<></td></ld<>	⊲LD	⊲.D	⊲LD	⊲LD	<ld< td=""><td>⊲⊥D</td><td>⊲.D</td></ld<>	⊲⊥D	⊲.D
Blank	6.07	3.4	104	-1.D	40	-10	-19	<1 P	d D	10	dD.	<ip< td=""><td>d P</td><td>dD</td><td>d P</td><td>d P</td><td><1P</td><td>d D</td><td>d P</td><td>d P</td><td>4.0</td><td><u>م</u>ه</td><td>d D</td><td>40</td><td><u>ط</u>ه</td><td>0.84</td><td>40</td></ip<>	d P	dD	d P	d P	<1P	d D	d P	d P	4.0	<u>م</u> ه	d D	40	<u>ط</u> ه	0.84	40
	- 10	- 14	.//	-wild	-6-64	-6-64	-1,0	- 4-8-1	-101	-1.16	-6-8-4	- 14	-1.1	-1-14	- and of	-1-14	- 4-14	-101	-1-12	- and d							
Vurderingsgrunnlag for oppsett av kolonneforsøk

Basert på en grov totalvurdering av analyseresultater av eluat fra ristetest (Figur E.1- 4 og Tabell E.1) ble blandingsforholdet 20:80 betong:skifer i kolonneforsøket. Valget ble også basert på en praktisk tilnærming; for å opprettholde realistiske blandingsforhold for deponi kan ikke mengden betong overskride det praktisk og økonomisk anvendbare. Allikevel ønsket vi ikke et for tynt betonglag i kolonneforsøket, for å forsikre at eluatet ble eksponert for tilstrekkelig lang nok oppholdstid i betongmaterialet.

Resultatene fra ristetesten antydet økt utlekking ved redusert kornstørrelse. Basert på dette, samt ønsket om å redusere risikoen for preferential flow ble den minste kornstørrefraksjonen inkludert i videre kolonneforsøk.

For å begrense kolonneforsøkets omfang ble ikke betongslam (CS) og filterkake (FK) benyttet i videre forsøk.

Vedlegg F- Øvrige resultater fra kolonneforsøk REB

Figur F.1- Analyseresultater Na, K, Ca, Mg [mg/L].

Figur F.2- Analyseresultater Mg og Si [mg/L].

Figur F.3 - Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

Figur F.4 - Analyseresultater Mo, As, Cr [mg/L].

Figur F.4 - Analyseresultater SO4 og U [mg/L].

Figur F.5 - Analyseresultater DOC og Tot- N [mg/L].

Tabell F.1- Analyseresultater REB1.

REB1																	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0,15	0,10	0,069	0,031	0,019	10	7,4	12	0	4,7	10	12	12	27	24	20
Si	mg/L	2,4	1,3	2,1	1,6	2,0	2,0	2,2	1,4	1,5	1,4	1,3	1,1	1,8	3,4	1,5	1,1
S	mg/L	180	47	85	65	170	200	240	350	390	410	410	430	420	370	550	610
v	μg/L	0,6	0	0,091	0,058	0,077	0,024	0,12	0,11	0,11	0,1	0,10	0,088	0,031	0,39	0,29	0,29
Mn	μg/L	0,14	0,19	0	0	0	0	0	0	0	0,066	0	0	0,084	0,13	0	0
Fe	mg/L	0,011	0,053	0,017	19	24	20	22	28	26	29	11	9,0	9,1	24	25	28
Co	μg/L	7,2	1,1	0,77	0,72	0,75	0,59	0,78	0,88	0,72	0,69	0,47	0,33	0,56	1,2	0,77	0,56
Ni	μg/L	27	10	9,2	10	12	10	9,7	9	8,2	6,8	0,40	0	1,9	11	8,8	8,9
Cu	μg/L	61	15	12	10	6,0	10	8	6,9	5,5	5,0	7,8	4,2	3,5	11	6,5	3,2
Zn	μg/L	60	5,0	4,4	2,9	2,7	3,3	0,91	2,8	1,3	2,0	8,1	7,2	2,3	6,6	2,5	2,5
As	μg/L	2,8	1,6	1,6	1,4	1,2	1,1	0,93	0,99	0,89	0,74	0,63	0,47	0,41	0,64	0,60	0,49
Mo	μg/L	1200	940	2100	1700	3800	3800	3900	4200	3900	3600	3500	2900	3000	2600	3200	2800
Cd	μg/L	0,06	0,046	0,094	0,072	0,20	0,23	0,22	0,22	0,2	0,24	0,081	0,16	0,13	0,13	0,26	0,21
Pb	μg/L	6,1	2,9	2,7	2,4	2,7	2,2	2,3	2,3	2,1	2,2	2,2	1,9	2,2	0,61	0,5	0,45
Th	μg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U	μg/L	0	0,0085	0	0,0016	0,026	0,0047	0,013	0,11	0,032	0,026	0	0,0021	0	0	0	0
Ca	mg/L	440	470	600	700	840	860	920	1100	1100	1100	1100	1100	1000	780	950	1000
Mg	mg/L	0,050	0,050	0,050	0,010	0,071	0,013	0,018	0,025	0,019	0,021	0,011	0,015	0,02	0,0091	0,011	0,015
Na	mg/L	860	330	190	140	89	68	54	37	33	30	24	24	19	97	43	28
K	mg/L	530	250	170	150	120	110	110	100	90	86	72	68	67	93	40	40
DOC	mg/L	83	13	7,5	6,1	6,5	11	5,5	5	6,4	4,5	3,9	3,5	3,6	9,1	5,3	3,5
TOT- N	mg/L	5,7	1,8	1,3	1,1	0,86	0,72	0,72	0,61	0,49	0,45	0,31	0,26	0,28	0,41	0,21	0,16

REB1																	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	845	742	434	576	730	658	322	619	854	658	437	470	305	475	168	37,7
Bikarbonat (HCO3)	mg/L	0	698	783	276	0	732	1340	0	239	639	0	849	0	215	0	0
Cr (Krom)	mg/L	0,158	0,0463	0,0194	0,0329	0,0372	0,0368	0,0467	0,0431	0,0418	0,0452	0,0386	0,0373	0,035	0,0777	0,0964	0,0788
Cr3+	mg/L	0,0101	0,0027	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+	μg/L	148	43,6	18,7	37,8	44,6	44,1	54,2	64,4	50,2	50,5	45,7	41,6	37,3	79,5	115	81,2
Klorid (Cl-)	mg/L	86,8	60	24,8	34,5	23,8	17,9	15	20	22,3	22,4	15,7	17,6	13,3	17	0	0
Fluorid (F-)	mg/L	0	0	0	0	0	0	0,24	0	0,305	0,267	0	0	0,258	0,488	1840	3350
Sulfat (SO4)	mg/L	408	119	40,7	182	478	692	636	1080	1160	1290	1250	1350	1360	1290	613	1120
Sulfat-S (SO4-S)	mg/L	136	39,6	13,6	60,8	159	231	212	359	385	430	417	449	454	432	15	13
Syrekapasitet pH 4,5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasitet pH 8,3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet pH 4,5	mmol/L	68,3	36,2	27,3	23,7	26,2	33,9	32,6	30,1	32,4	32,4	28,4	29,6	25,4	19,4	12,4	13,3
Alkalinitet pH 8,3	mmol/L	54,2	12,4	7,24	9,6	14	11	5,36	19,8	14,2	11	21,1	7,84	20,4	7,92	9,6	12,7
Karbondioksid (CO2) Karbondioksid-fritt	mg/L	620	1050	884	621	535	1010	1200	454	799	944	320	958	224	503	123	27,7
CO2-fritt Karbondioksid-	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0
aggressivt CO2- aggressivt	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0

Tabell F.2- Analyseresultater REB2.

REB2																			
Uke		0		1	2	3		4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/	L 0,0	79 0),16	0,10	0,01	6 0	,021	0	6,6	3,8	6,2	4,0	14	12	28	32	19	87
Si	mg/	L 2,	1	1,6	1,2	0,84	4 0),84	0,78	0,89	0,42	0,50	0,56	0,55	0,51	0,94	2,6	1,1	1,0
S	mg/	L 15	0	28	36	85	1	140	190	220	320	360	400	390	420	420	270	440	540
v	μg/	L 0,4	9 0),13	0,11	0,1	0),11	0,10	0,11	0,13	0,14	0,14	0,10	0,10	0,11	0,32	0,33	0,33
Mn	μg/	L 0,	3 0),13	0,21	0		0	0,12	0	0	0	0,033	0	0	0,58	0,22	0	0
Fe	mg/	L 0,0	32 0,	,010	0,017	17		24	33	22	26	28	30	15	9,7	22	24	22	25
Co	μg/	L 6,	8	1,1	0,75	1,0	0),91	0,74	0,81	0,84	0,72	0,75	0,64	0,45	0,48	1,1	0,84	0,53
Ni	μg/	L 24	4 :	8,8	7,1	9,9		12	12	9,6	9,3	7,9	7,5	2,0	0	3,7	21	10	6,2
Cu	μg/	L 67	7	20	14	11	1	8,0	12	9,4	7,8	9,5	7,3	8,5	4,9	4,2	11	5,9	4,3
Zn	μg/	L 10	5	4,8	5,0	2,8		3,0	0,74	0	0,56	1,5	0	7,3	6,8	3,3	4,6	2,1	1,6
As	μg/	L 2,	7	1,5	1,4	1,7		1,5	1,4	1,2	1,1	1,0	0,9	0,89	0,74	0,65	0,57	0,65	0,67
Mo	μg/	L 98	0 6	500	980	220) 3	400	4200	4600	5300	5000	4800	4300	3700	3800	2800	3600	4100
Cd	μg/	L 0,0	68 0	,017	0,029	0,07	2 0),18	0,22	0,22	0,24	0,3	0,25	0,092	0,19	0,18	0,26	0,21	0,3
Pb	μg/	L 5,	3 2	2,9	2,6	2,6	1	2,4	2,3	2,0	1,9	1,8	1,7	1,7	1,3	1,3	0,57	0,43	0,28
Th	μg/	L 0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
U	μg/	L 0,0	35 0,	0048	0	0	0,	0018	0	0,013	0,049	0,027	0,023	0	0,0040	0,0008	0	0	0
Ca	mg/	L 44	0 4	470	530	720	8	820	900	920	1000	1100	1100	1100	1100	1100	650	860	950
Mg	mg/	L 0,0	50 0	,050	0,060	0,00	0 0	,010 (0,011	0,016	0,018	0,019	0,018	0,011	0,014	0,025	0,011	0,013	0,015
Na	mg/	L 85	0 3	340	190	130		82	61	50	37	31	29	23	22	19	100	40	30
K	mg/	L 50	0 2	250	170	140	1	110	110	100	96	94	93	76	73	75	93	47	41
DOC	mg/	L 77	7	12	7,4	5,4		5	5,2	4,7	4,3	3,8	3,6	3,2	3	3	8,3	4,7	3,7
TOT- N	mg/	L 5,	3	1,8	1,4	1,1	0),89	0,66	0,58	0,5	0,51	0,45	0,29	0,3	0,3	0,4	0,19	0,16
REB2									_		_								
Uke	00		0	1		2	3	4	5	6	7	8	9	10	11	12	29	30	31
Bikarbonat (O	03)	mg/L	1020	88	0	//3	240	/34	6/2	312	619	888	082	450	4/5	310	480	182	44,5
(HCO3)		mg/L	0	66	6 8	359	0	0	810	1370	0	273	649	0	893	0	215	0	0
Cr (Krom)		mg/L	0,19	0,04	62 0,	0374	0,0423	0,0553	0,0538	3 0,058	3 0,051	0,0512	0,053	0,0433	0,0392	0,0366	0,0661	0,0783	0,0829
Cr6+		mg/L	161	43	128	71	19.5	60.9	63.2	63	76.4	57.8	60	51.2	48.6	30	73 7	03.5	04.6
Klorid (Cl-)		mg/L mg/L	82.2	53.	.3	46	37.1	35.6	20.7	22.2	31.5	35.9	36.6	24.1	29.6	24	23.9	0	0.548
Fluorid (F-)		mg/L	0	0	-	0	0	0	0	0,204	4 0	0	0,227	0	0	0,251	0,516	1490	2060
Sulfat (SO4))	mg/L	314	77,	,1 9	3,4	235	401	595	613	991	1090	1230	1220	1300	1280	898	498	686
Sulfat-S (SO	94-S)	mg/L	105	25,	,7 3	1,2	78,3	134	198	204	330	363	409	406	434	425	299	19	17
Syrekapasite 4,5	et pH	mmol/L	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasite	et pH	mmol/I	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
o,5 Alkalinitet p	Н	mmoi/L	0	0		U	0	U	U	U	0	0	0	0	U	0	0	U	0
4,5 Alkalinitet p	н	mmol/L	69,5	40,	,4 3	9,8	21,2	24,8	35,7	32,8	30,9	34,1	33,4	31,2	30,5	26,8	19,5	12,2	11,4
8,3 Karbordiat		mmol/L	52,6	14,	,8 1	2,9	17,2	12,5	11,2	5,2	20,6	14,8	11,4	23,6	7,92	21,6	8	9,2	10,7
CO2)	sid	mg/L	746	113	30 1	190	176	539	1080	1210	454	848	968	334	993	227	507	134	32,5
Karbondioks	sid- tt	mg/I	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karbondioks	sid-	mg/L	v	0		5	v	U	U	U	v	v	v	v	v	v	v	0	0
aggressivt Co aggressivt	02-	mg/L	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
aggressivt Co aggressivt	02-	mg/L	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0

31 21 1,2 630 0,29
31 21 1,2 630 0,29
21 1,2 630 0,29
1,2 630 0,29
630 0,29
0,29
0
28
0,61
4,8
4,5
2,6
0,65
3800
0,13
0.26
0
0
1000
0.018
30
38
3.0
5,5
0,16
i0 31
26 42.9
0 0
854 0.0843
0 0
0,2 97,4
0 0
410 3810
70 1270
8 15
0 0
0 0
2,1 12,8
,32 12,1
65 31,5
0 0
0 0

Tabell F.3- Analyseresultater REB3.

Ilke	snitt		0	1 2	, ,	. 4	5	6	7	8	9	10	11	12	29	30	31
Al	mø	/L 0.0	8 0.1	3 0.09	0.00	2 0.02	4 40	5.67	7.80	2.07	2.90	11.67	11.33	18.67	27.00	21.33	42.67
Si	mg	/L 2,1	3 1.4	0 1.53	14	1.55	1.53	1.53	0.93	1.13	0.94	0.90	0.78	1.28	3.70	1.50	1.10
S	mg	/L 170.0	0 33.6	7 50.00) 93.3	146.67	186.67	230.00	336.67	376.67	406.67	403.33	423.33	420.00	296.67	466.67	593.33
v	ш <u>е</u> /	L 0.4	2 0.0	4 0.07	7 0.0	7 0.08	0.06	0.09	0.12	0.12	0.11	0.10	0.09	0.06	0.34	0.29	0.30
Mn	г.ө це/	L 0.1	5 0.1	1 0.07	7 0.00	0.00	0.04	0.00	0.02	0.00	0.03	0.00	0.00	0.30	1.48	0.00	0.00
Fe	mg	/L 0.0	2 0.0	3 0.02	18.3	24.67	24.67	21.67	29.33	27.67	29.00	12.67	9.57	14.37	22.00	22.67	27.00
Co	ug/	L 6.9	0 1.1	3 0.81	0.8	0.80	0.72	0.82	0.80	0.75	0.72	0.60	0.45	0.54	1.03	0.79	0.57
Ni	μg/	L 25.3	3 9.0	3 8.00) 10.30) 12.00	10.67	10.10	9.27	8.17	7.13	1,17	0.00	2.70	15.00	9,93	6.63
Cu	μg/	L 62,3	3 17,6	7 12,67	9,9	7 6,90	11,00	8,73	7,10	6,97	5,87	8,00	4,90	3,83	11,00	6,10	4,00
Zn	.e	L 27,6	7 3,7	3 3,63	3,02	3 2,60	1,37	0,30	1,12	0,93	0,67	7,60	7,07	2,40	4,60	2,20	2,23
As	μg/	L 2,7	7 1,5	3 1,43	1,53	3 1,30	1,27	1,08	1,06	0,96	0,81	0,78	0,65	0,58	0,61	0,60	0,60
Мо	μg/	L 1126,6	7 713,3	3 1303,33	2300,00	3400,00	3933,33	4233,33	4800,00	4500,00	4200,00	3900,00	3333,33	3400,00	2633,33	3433,33	3566,67
Cd	.e	L 0,0	6 0,0	3 0,06	5 0,09	0,18	0,23	0,24	0,25	0,25	0,24	0,10	0,17	0,14	0,18	0,22	0,21
Pb	μg/	L 5,0	7 2,7	0 2,43	2,50	2,40	2,13	2,10	1,97	1,83	1,77	1,87	1,57	1,57	0,53	0,43	0,33
Th	μg/	L 0,0	0 0,0	0 0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U	μg/	L 0,0	1 0,0	1 0,00	0,00	0,01	0,00	0,01	0,06	0,03	0,02	0,00	0,00	0,00	0,00	0,00	0,00
Ca	mg	/L 436,6	7 456,6	7 546,67	723,33	816,67	866,67	920,00	1066,67	1100,00	1100,00	1100,00	1100,00	1066,67	686,67	883,33	983,33
Mg	mg	/L 0,0	5 0,0	5 0,05	5 0,0	0,03	0,01	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,02
Na	mg	/L 863,3	3 346,6	7 190,00	136,6	7 87,00	64,67	52,67	37,67	32,33	29,67	24,00	23,00	19,33	98,67	42,00	29,33
K	mg	/L 513,3	3 256,6	7 173,33	143,33	3 116,67	110,00	106,67	98,33	92,33	90,33	75,00	70,33	72,67	90,33	44,67	39,67
DOC	mg	/L 79,0	0 12,6	7 7,43	5,93	5,80	7,40	5,17	4,67	4,87	3,97	3,53	3,23	3,30	9,13	5,27	3,70
TOT- N	mg	/L 5,5	3 1,8	0 1,37	1,10	0,87	0,68	0,62	0,53	0,49	0,49	0,32	0,29	0,30	0,39	0,20	0,16
KEB SD Uke																	
-		U	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0,070	0,031	2 0,021	3 0,008	4 0,002	5,107	6 2,344	7 4,104	8 3,580	9 2,536	10 2,082	11 1,155	12 8,327	29 5,000	30 2,517	31 38,397
Al Si	mg/L mg/L	0,070 0,252	1 0,031 0,173	2 0,021 0,473	3 0,008 0,506	4 0,002 0,620	5,107 0,654	6 2,344 0,656	7 4,104 0,491	8 3,580 0,551	9 2,536 0,425	2,082 0,377	11 1,155 0,298	12 8,327 0,457	29 5,000 1,277	30 2,517 0,400	31 38,397 0,100
Al Si S	mg/L mg/L mg/L	0,070 0,252 17,321	1 0,031 0,173 11,590	2 0,021 0,473 30,512	3 0,008 0,506 33,292	4 0,002 0,620 20,817	5,107 0,654 15,275	6 2,344 0,656 10,000	7 4,104 0,491 15,275	8 3,580 0,551 15,275	9 2,536 0,425 5,774	10 2,082 0,377 11,547	11 1,155 0,298 5,774	12 8,327 0,457 0,000	29 5,000 1,277 64,291	30 2,517 0,400 73,711	31 38,397 0,100 47,258
Al Si S V	mg/L mg/L mg/L μg/L	0,070 0,252 17,321 0,229	1 0,031 0,173 11,590 0,075	2 0,021 0,473 30,512 0,059	3 0,008 0,506 33,292 0,041	4 0,002 0,620 20,817 0,029	5,107 0,654 15,275 0,039	6 2,344 0,656 10,000 0,036	7 4,104 0,491 15,275 0,012	8 3,580 0,551 15,275 0,021	9 2,536 0,425 5,774 0,023	10 2,082 0,377 11,547 0,001	11 1,155 0,298 5,774 0,007	12 8,327 0,457 0,000 0,046	29 5,000 1,277 64,291 0,047	30 2,517 0,400 73,711 0,040	31 38,397 0,100 47,258 0,023
Al Si S V Mn	mg/L mg/L mg/L μg/L μg/L	0,070 0,252 17,321 0,229 0,150	1 0,031 0,173 11,590 0,075 0,097	2 0,021 0,473 30,512 0,059 0,121	3 0,008 0,506 33,292 0,041 0,000	4 0,002 0,620 20,817 0,029 0,000	5,107 0,654 15,275 0,039 0,069	6 2,344 0,656 10,000 0,036 0,000	7 4,104 0,491 15,275 0,012 0,035	8 3,580 0,551 15,275 0,021 0,000	9 2,536 0,425 5,774 0,023 0,033	10 2,082 0,377 11,547 0,001 0,000	11 1,155 0,298 5,774 0,007 0,000	12 8,327 0,457 0,000 0,046 0,254	29 5,000 1,277 64,291 0,047 2,267	30 2,517 0,400 73,711 0,040 0,000	31 38,397 0,100 47,258 0,023 0,000
Al Si S V Mn Fe	mg/L mg/L mg/L μg/L μg/L mg/L	0,070 0,252 17,321 0,229 0,150 0,013	1 0,031 0,173 11,590 0,075 0,097 0,024	2 0,021 0,473 30,512 0,059 0,121 0,003	3 0,008 0,506 33,292 0,041 0,000 1,155	4 0,002 0,620 20,817 0,029 0,000 1,155	5,107 0,654 15,275 0,039 0,069 7,234	6 2,344 0,656 10,000 0,036 0,000 0,577	7 4,104 0,491 15,275 0,012 0,035 4,163	8 3,580 0,551 15,275 0,021 0,000 1,528	9 2,536 0,425 5,774 0,023 0,033 1,000	10 2,082 0,377 11,547 0,001 0,000 2,082	11 1,155 0,298 5,774 0,007 0,000 0,513	12 8,327 0,457 0,000 0,046 0,254 6,768	29 5,000 1,277 64,291 0,047 2,267 3,464	30 2,517 0,400 73,711 0,040 0,000 2,082	31 38,397 0,100 47,258 0,023 0,000 1,732
Al Si V Mn Fe Co	mg/L mg/L mg/L μg/L mg/L μg/L	0,070 0,252 17,321 0,229 0,150 0,013 0,265	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095	5,107 0,654 15,275 0,039 0,069 7,234 0,126	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040
Al Si V Mn Fe Co Ni	mg/L mg/L μg/L μg/L mg/L μg/L μg/L	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000	5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084
Al Si V Mn Fe Co Ni Cu	mg/L mg/L μg/L μg/L mg/L μg/L μg/L μg/L	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015	5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,700	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000	30 2,517 0,400 73,711 0,040 0,040 2,082 0,040 1,102 0,346	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700
Al Si S V Mn Fe Co Ni Cu Zn	mg/L mg/L μg/L μg/L mg/L μg/L μg/L μg/L μg/L	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361	1 0,031 0,173 111,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436	11 1,155 0,298 5,774 0,000 0,513 0,115 0,000 0,700 0,231	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000	30 2,517 0,400 73,711 0,040 0,040 2,082 0,040 1,102 0,346 0,265	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551
Al Si S V Mn Fe Co Ni Cu Zn As	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058	1 0,031 0,173 111,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,135	11 1,155 0,298 5,774 0,000 0,513 0,115 0,000 0,700 0,231 0,159	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099
Al Si S V Mn Fe Co Ni Cu Zn As Mo	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 993,998 6	3 0,008 0,506 333,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 555,744	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 2	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 5556,776	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,135 400,000	11 1,155 0,298 5,774 0,000 0,513 0,015 0,000 0,700 0,231 0,159 404,145	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 6,015	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,93,998 6 0,033	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 555,744	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 2 0,020	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,135 400,000 0,031	11 1,155 0,298 5,774 0,000 0,513 0,115 0,000 0,700 0,231 0,159 404,145 0,015	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072	30 2,517 0,400 73,711 0,040 0,040 1,102 0,346 0,265 0,050 208,167 0,036	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 993,998 6 0,033	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 2 0,020	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,006	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,135 400,000 0,031	11 1,155 0,298 5,774 0,000 0,513 0,115 0,000 0,700 0,231 0,159 404,145 0,015	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072	30 2,517 0,400 73,711 0,040 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,93,998 6 0,033 0,379	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028 0,100	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,006 0,208	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006 0,404	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,135 400,000 0,031 0,289	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346 0,000	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,93,998 6 0,033 0,379 0,000	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028 0,100 0,000	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300 0,300	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,006 0,208 0,000	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006 0,404 0,000	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,135 400,000 0,031 0,289 0,000	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346 0,000 0,002	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,93,998 6 0,033 0,379 0,000 0,000	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028 0,100 0,000 0,000 0,001	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300 0,300 0,000 0,014	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,208 0,000 0,003	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,135 400,000 0,031 0,289 0,000 0,000	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 0,000	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U Ca	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020 5,774	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346 0,000 0,002 23,094	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,93,998 6 0,033 0,379 0,000 0,000 47,258	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028 0,100 0,000 0,000 0,001 25,166	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 2 0,300 0,020 0,300 0,000 0,014 25,166	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,208 0,000 0,003 30,551	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001 0,000	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041 57,735	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003 0,000	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004 0,000	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,436 0,135 400,000 0,031 0,289 0,000 0,000 0,000	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001 0,000	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032 0,551 0,000 0,000 57,735	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 0,000 81,445	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000 0,000 58,595	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000 0,000 28,868
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U Ca Mg	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020 5,774 0,000	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346 0,000 0,002 23,094 0,000	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,872 0,153 1,93,998 6 0,033 0,379 0,000 0,000 47,258 0,006	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,028 0,100 0,000 0,001 25,166 0,002	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 2 0,300 0,020 0,300 0,014 25,166 0,035	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,208 0,000 0,003 30,551 0,002	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001 0,000 0,002	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041 57,735 0,004	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003 0,000 0,001	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 0,351 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004 0,000 0,004	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,436 0,436 0,436 0,135 400,000 0,031	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001 0,000 0,001	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032 0,551 0,000 0,000 57,735 0,003	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 0,000 81,445 0,001	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000 0,000 58,595 0,001	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000 0,000 28,868 0,002
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U Ca Mg Na	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020 5,774 0,000 15,275	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,015 0,346 0,000 0,002 23,094 0,000 20,817	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,872 0,153 1,93,998 6 0,033 0,379 0,000 0,000 47,258 0,006 0,000	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,000 0,001 25,166 0,002 5,774	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300 0,000 0,300 0,000 0,300 0,014 25,166 0,035 4,359	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,208 0,000 0,003 30,551 0,002 3,512	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001 0,000 0,000 0,000 2,309	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041 57,735 0,004 1,155	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003 0,000 0,001 1,155	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004 0,000 0,004 0,004 0,577	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,436 0,436 0,135 400,000 0,031 0,289 0,000 0,000 0,000 0,000 0,000 1,	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001 0,000 0,001 1,000	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032 0,551 0,000 0,000 57,735 0,003 0,577	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 0,000 81,445 0,001 1,528	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000 0,000 58,595 0,001 1,732	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000 0,000 28,868 0,002 1,155
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U Ca Mg Na K	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020 5,774 0,000 15,275	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,0346 0,000 23,094 0,000 20,817 11,547	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,872 0,153 1,93,998 6 0,033 0,379 0,000 0,000 47,258 0,006 0,000 5,774	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,000 0,001 25,166 0,002 5,774 5,774	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300 0,000 0,300 0,000 0,300 0,014 25,166 0,035 4,359 5,774	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,208 0,000 0,003 30,551 0,002 3,512 0,000	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001 0,000 0,000 0,000 2,309 5,774	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041 57,735 0,004 1,155 2,082	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003 0,000 0,001 1,155 2,082	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004 0,000 0,004 0,000 0,004 0,577 3,786	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,000 0,00	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001 0,000 0,001 1,000 2,517	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032 0,551 0,000 57,735 0,003 0,577 4,933	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 81,445 0,001 1,528 4,619	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000 0,000 58,595 0,001 1,732 4,041	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000 0,000 28,868 0,002 1,155 1,528
Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Pb Th U Ca Mg Na K DOC	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0,070 0,252 17,321 0,229 0,150 0,013 0,265 1,528 4,163 28,361 0,058 127,017 1 0,009 1,168 0,000 0,020 5,774 0,000 15,275 15,275 3,464	1 0,031 0,173 11,590 0,075 0,097 0,024 0,058 0,874 2,517 2,023 0,058 96,299 0,0346 0,000 23,094 0,000 20,817 11,547 0,577	2 0,021 0,473 30,512 0,059 0,121 0,003 0,093 1,082 1,155 1,872 0,153 1,872 0,153 1,93,998 0,033 0,379 0,000 0,000 47,258 0,006 0,000 5,774 0,058	3 0,008 0,506 33,292 0,041 0,000 1,155 0,149 0,608 1,050 0,321 0,153 55,744 0,000 0,001 25,166 0,002 5,774 5,774 0,473	4 0,002 0,620 20,817 0,029 0,000 1,155 0,095 0,000 1,015 0,458 0,173 400,000 0,300 0,000 0,300 0,000 0,300 0,014 25,166 0,035 4,359 5,774 0,755	5 5,107 0,654 15,275 0,039 0,069 7,234 0,126 1,155 1,000 1,701 0,153 230,940 0,006 0,000 0,003 30,551 0,002 3,512 0,000 3,143	6 2,344 0,656 10,000 0,036 0,000 0,577 0,046 0,781 0,702 0,525 0,137 351,188 0,029 0,173 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,017 0,000 0,017 0,000 0,000 0,577 0,046 0,000 0,0	7 4,104 0,491 15,275 0,012 0,035 4,163 0,106 0,252 0,624 1,482 0,064 556,776 0,042 0,306 0,000 0,041 57,735 0,004 1,155 2,082 0,351	8 3,580 0,551 15,275 0,021 0,000 1,528 0,052 0,252 2,203 0,814 0,064 556,776 0,050 0,252 0,000 0,003 0,000 0,001 1,155 2,082 1,361	9 2,536 0,425 5,774 0,023 0,033 1,000 0,031 1,250 1,155 0,083 600,000 0,006 0,404 0,000 0,004 0,000 0,004 0,000 0,004 0,577 3,786 0,473	10 2,082 0,377 11,547 0,001 0,000 2,082 0,112 0,802 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,436 0,435 400,000 0,	11 1,155 0,298 5,774 0,007 0,000 0,513 0,115 0,000 0,231 0,159 404,145 0,015 0,306 0,000 0,001 0,000 0,001 1,000 2,517 0,252	12 8,327 0,457 0,000 0,046 0,254 6,768 0,057 0,917 0,351 0,854 0,151 400,000 0,032 0,551 0,000 57,735 0,003 0,577 4,933 0,300	29 5,000 1,277 64,291 0,047 2,267 3,464 0,219 5,292 0,000 2,000 0,035 152,753 0,072 0,112 0,000 81,445 0,001 1,528 4,619 0,850	30 2,517 0,400 73,711 0,040 0,000 2,082 0,040 1,102 0,346 0,265 0,050 208,167 0,036 0,075 0,000 0,000 58,595 0,001 1,732 4,041 0,551	31 38,397 0,100 47,258 0,023 0,000 1,732 0,040 2,084 0,700 0,551 0,099 680,686 0,085 0,104 0,000 0,000 28,868 0,002 1,155 1,528 0,200

Tabell F.4- Analyseresultater (REB) presentert med gjenomsnitt og standardavvik.

REB gj.snitt Uke			0	1	,	1	4		6	7	8	0	10	11	17	70	30	31
Karbonat (CO3)		me/L	971.67	843 33	648.67	431 33	723 33	669.00	304.0	612.6	2 860.67	666.00	459.33	468.67	309.67	475.00	192.00	41.63
Bikarbonat (HCO3)		me/L	0.00	684.00	815.67	190.33	283.00	771.00	1336.6	7 0.00	274.67	631.00	0.00	881.67	0.00	231 33	0.00	0.00
Cr (Krom)		me/L	0.17	0.05	0.03	0.04	0.05	0.05	0.06	0.05	0.05	0.05	0.04	0.04	0.03	0.07	0.09	0.08
Cr3+		mg/L	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr6+		ug/L	158.67	43.47	28.10	41.67	54.03	58.03	62.00	73.80	54.97	54.97	46.30	43.83	36.93	78.47	99.57	91.07
Klorid (Cl-)		me/L	85.03	54.23	39.33	37.47	30.83	20.30	19.83	28.00	30.70	29.77	20.57	24.90	19.90	21.20	0.00	0.18
Fluorid (F-)		me/L	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.00	0.10	0.25	0.00	0.00	0.24	0.33	1580.00	3073 33
Sulfat (SO4)		me/L	371.00	87.63	73.07	256.33	415.00	609.67	622.0	0 1040.3	3 1133.33	1246.63	1226.67	1323.33	1320.00	1022.00	527.00	1025.33
Sulfat-S (SO4-S)		me/L	123.67	29.20	24.40	85 37	138.33	203 33	207.3	3 346 3	377.00	415.67	409.00	440.67	439.00	341 33	17.33	15.00
Svrekapasitet pH 4.5		mmol/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Svrekapasitet pH 8.3		mmol/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Alkalinitet pH 4.5		mmol/L	69,13	39,33	34,97	21,90	29,47	34,93	32,00	30,17	33,20	32,53	29,97	30,10	26,20	19,63	12,23	12,50
Alkalinitet pH 8.3		mmol/L	53,00	14,07	10,81	11,59	12,77	11,17	5,07	19,97	14,33	11,13	22,30	7,81	21,03	7,92	9,04	11,83
Karbondioksid (CO2)		mg/L	711,67	1113,33 1	064,67	453,33	734,67	1046,6	7 1183,3	3 449,33	829,33	943,67	336,67	980,00	227,33	515,00	140,67	30,57
Karbondioksid-fritt CO2-fr	itt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid-aggressivt (202-	me/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
aggressive.		ing t	4,00	0,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
REB SD																		
Uke		0	1	2	3	4		5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	110,72	88,12	186,68	172,7	9 15,	14 9	,85	23,07	10,97	24,68	13,86	24,17	7,09	4,51	5,00	30,27	3,48
Bikarbonat (HCO3)	mg/L	0,00	16,37	39,11	165,1	1 490	,17 3	9,00	35,12	0,00	36,53	23,07	0,00	28,73	0,00	28,29	0,00	0,00
Cr (Krom)	mg/L	0,02	0,00	0,01	0,01	0,0	01 0	,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,01	0,00
Cr3+	mg/L	0,01	0,00	0,00	0,00	0,0	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr6+	μg/L	9,71	0,12	9,21	6,78	8,4	15 12	2,20	7,35	8,41	4,15	4,78	4,63	4,13	2,27	4,34	13,47	8,66
Klorid (Cl-)	mg/L	2,48	5,36	12,60	3,17	6,2	2 2	2,23	4,19	6,95	7,34	7,12	4,36	6,41	5,77	3,69	0,00	0,32
Fluorid (F-)	mg/L	0,00	0,00	0,00	0,00	0,0	0 0	,00	0,02	0,00	0,18	0,02	0,00	0,00	0,02	0,29	228,69	907,21
Sulfat (SO4)	mg/L	50,09	27,65	28,34	86,98	3 57,	30 7	6,07	12,29	45,28	37,86	37,86	20,82	25,17	40,00	232,31	75,78	303,29
Sulfat-S (SO4-S)	mg/L	16,44	9,17	9,46	28,76	5 18,	88 2:	5,42	4,16	14,84	12,17	12,42	7,00	7,64	14,53	78,58	2,08	2,00
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,0	0 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,0	0 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet pH 4.5	mmol/L	0,72	2,76	6,71	1,57	6,9	01 0),93	1,22	0,70	0,85	0,81	1,43	0,46	0,72	0,32	0,15	0,98
Alkalinitet pH 8.3	mmol/L	1,06	1,45	3,11	4,93	1,1	2 0),15	0,38	0,57	0,42	0,23	1,25	0,12	0,60	0,08	0,65	1,03
Karbondioksid (CO2) Karbondioksid-fritt	mg/L	80,21	56,86	160,33	3 241,9	2 342	,37 3:	5,12	37,86	8,08	26,50	24,50	18,15	19,16	3,51	17,44	21,78	2,53
CO2-fritt Karbondioksid-	mg/L	0,00	0,00	0,00	0,00	0,0	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
aggressivt CO2- aggressivt	mg/L	0,00	0,00	0,00	0,00	0,0	0 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

SLB

Figur F.6 - Analyseresultater Na, K, Ca, Mg [mg/L].

Figur F.7 - Analyseresultater Mg og Si [mg/L].

Figur F.8 - Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

Figur F.9 - Analyseresultater Mo, As, Cr [mg/L].

Figur F.10 - Analyseresultater SO4 og U [mg/L].

Figur F.11 - Analyseresultater DOC og Tot- N [mg/L].

Tabell F.4 - Analyseresultater SLB1.

SLB1 Uke		0	1	2	3		4	5	6	7	8		9	10	11	12	2	9	30	31
Al	mg/L	0.010	0.032	0.038	0.0099	0.012	-	4.4	4.6	2.6	0	0	12	1	4	11	26.00	20	.00	15.00
Si	mg/L	1.1	0.61	1.2	0.81	0.93		0.72	0.58	0.29	0.39	0.38	0.4	8 0.	59	0.78	2.80	1.	20	1.30
S	mg/L	550	84	100	190	300		350	370	420	460	500	490) 4	90	480	470.00	0 54(650.00
v	ш <u>я</u> /Г.	0.48	0	0	0.014	0.12	0	073	0.054	0.086	0.1	0.13	0.1	1 0.0	083 (0.055	0.38	0.	34	0.40
Mn	нø/L	0.45	0	0	0	0	-	0	0	0	0	0	0	,	0	0	0.00	0.	00	0.00
Fe	mg/L	0.021	0.011	0.014	24	30		26	26	29	31	29	11	9	.6	10	18.00	24	.00	27.00
Co	ug/L	6.7	1.6	1.1	1.2	1.1		1.2	0.81	0.71	0.59	0.59	0.4	0 0	33	0.46	0.71	0.	67	0.55
Ni	μg/L	22	11	10	14	15		13	11	9.7	6.5	5,9	0		0	1.2	7,40	8.	20	8,40
Cu	μg/L	58	18	16	11	8,0		11	8,5	6,8	4,7	4,0	7,0	4	.5	3,9	8,90	5.	40	3,50
Zn	μg/L	29	1,2	1,7	3,5	4,3		27	1,1	0,29	0	0,12	9,3	6	,6	0	1,00	2,	30	1,70
As	μg/L	2,1	0,82	0,54	0,45	0,44	(0,43	0,32	0,29	0,25	0,15	0,24	4 0.	10	0,18	0,19	0,	20	0,20
Мо	μg/L	700	370	540	950	1400	1	500	1500	1500	1600	1600	170	0 15	500	1700	1200,0	0 150	0,00 1	400,00
Cd	μg/L	0,056	0,022	0,043	0,06	0,12	0	,096	0,093	0,089	0,09	0,084	0,08	6 0,	054 (0,056	0,09	0,	09	0,07
Hg	μg/L	0	0	0																
Pb	μg/L	5,0	2,9	2,9	3,3	3,1		2,5	2,3	2	1,7	2,0	2,1	1	,4	1,1	0,07	0,	38	0,18
Th	μg/L	0	0	0	0	0		0	0	0	0	0	0		0	0	0,00	0,	00	0,00
U	μg/L	0,0048	0,005	0	0	0,001	60,	0019	0,022	0,018	0,029	0,025	0		0	0	0,00	0,	00	0,01
Ca	mg/L	1100	610	650	880	1100	1	100	1100	1100	1100	1200	110	0 11	00	1000	750,00	J 900),00 1	000,00
Mg	mg/L	0,050	0,050	0,050	0,010	0,019	0	,014	0,018	0,021	0,019	0,021	0,01	5 0,	019	0,034	0,03	0,	03	0,08
Na	mg/L	500	170	87	59	42		34	30	26	23	24	20	2	21	16	110,00	37	,00	22,00
K	mg/L	450	220	140	130	95		87	76	72	65	66	56	5	3	57	76,00	40	,00	34,00
DOC	mg/L	63	14	8,1	6,2	5,6		5,2	4,5	4,2	3,3	3,2	3,2	2	,9	2,6	9,1	0	4,70	3,40
TOT- N	mg/L	4,4	1,3	0,82	0,57	0,43	(0,33	0,3	0,24	0,17	0,2	0,1	5 0,	13	0,16	0,4	6	0,21	0,13
SLB1												-			10			20	20	
UKe Karbonat ((03)		ma	Л	806	540	620	419	4	624	250	662	605	562	519	246	205	41.0	30	44.1
Rikarbonat (t (HCO)	0	mg	л.	0	725	757	325	786	810	1310	102	420	718	0	018	305	41,9	4/	44,1
Cr (Krom)	. (1100.	.)	₅ mø	/L	0.178	0.0662	0.053	1 0.066	7 0.0822	0.0734	0.0684	0.0529	0.0456	0.044	0 0404	0.0371	0.0355	0.0603	0.0848	0.0836
Cr3+			mg	/L	0	0.0161	0,055	0	0,0021	0	0	0	0	0	0	0,0571	0,0555	0	0,0010	0
Cr6+			μg	/L	191	50,2	51,3	73,4	93,4	91,2	73,1	82,9	50,2	46,7	42,8	46,9	39,3	66,6	88,5	84
Klorid (Cl-	-)		mg	/L	90,4	66,6	65,6	32,5	28,6	19,1	17,9	20,4	21,6	18	11,7	15,1	10,3	14,3	0	0
Fluorid (F-	-)		mg	/L	0	0	0	0	0	0	0,203	0	0,218	0,238	0	0	0,269	0,397	1860	2170
Sulfat (SO	4)		mg	/L	1720	219	249	532	858	1230	1030	1310	1390	1530	1460	1520	1400	1590	622	722
Sulfat-S (S	604-S)		mg	/L	574	73,2	83,1	177	286	410	345	437	464	512	488	508	466	531	12	10
Syrekapasi	itet pH 4	1,5	mmo	ol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasi	itet pH 8	3,3	mme	ol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet	pH 4,5		mmo	ol/L	49	29,9	33,4	19,2	34,8	34,1	29,8	23,8	27	30,5	27,5	26,6	21,5	9,16	10,9	8,56
Alkalinitet	pH 8,3		mmo	ol/L	35,6	9	10,5	6,96	11	10,4	4,16	11	10,1	9,36	18,9	5,76	16,4	8,46	10,2	7,83
Karbondio	ksid (C)	D2)	mg	/L	591	919	1010	540	1050	1040	1130	560	746	929	380	915	224	30,7	34,5	32,3
CO2-fritt	KSIU-IIII		mg	/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karbondio	ksid-																			
aggressivt	CO2-			Л.	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0
aggressivi			ing	/L	U	0	U	0	U	0	U	U	U	U	0	0	0	0	0	0

Tabell F.5 - Analyseresultater SLB2.

SLB2								-		_				10				•••	-	
Uke		0	1	2		3	4	5	6	7		8	9	10	11	12		29	30	31
Al	mg/L	0,0082	0,038	0,048	0,0	054 0	,0056	0	0	6,2	3	,6	6,0	12	14	14	23	,00	17,00	26,00
Si	mg/L	2,0	1,4	1,2	1	,1	1,3	0,86	0,89	0,7	0,	68	0,48	0,51	0,65	0,9	0 5	,90	2,20	1,20
S	mg/L	510	76	83	19	90	310	380	380	450	4	50	470	460	470	480) 45	0,00	510,00	670,00
v	μg/L	0,43	0	0	0,0)35	0,14	0,10	0,081	0,13	30,	13	0,12	0,11	0,10	0,07	7 0	,32	0,36	0,40
Mn	μg/L	0,13	0	0,21	(0	0	0	0	0	0,0	036	0	0	0	0	0	,00	0,00	0,00
Fe	mg/L	0,021	0,012	0,016	2	3	32	27	27	30	3	0	30	11	8,5	9,2	26	i,00	26,00	29,00
Co	μg/L	6,2	1,6	1,0	1	,2	1,1	1,1	0,84	0,69) 0,	75	0,59	0,34	0,30	0,5	5 0	,68	0,78	0,37
Ni	μg/L	22	9,3	9,9	1	4	14	11	9,9	8,5	7	,5	6,1	0	0	0,4	4 10),00	8,00	2,70
Cu	μg/L	54	17	13	1	1	7,3	9,0	7,4	5,8	4	,5	3,6	5,7	2,7	2,2	9	,30	4,50	2,70
Zn	μg/L	12	2,3	1,7	0,	65	1,9	0	0	0	0,	26	0	7,0	6,4	0	1	,60	1,90	1,50
As	μg/L	1,9	0,64	0,46	0,	53	0,45	0,42	0,26	0,3	0,	21	0,2	0,14	0,17	0,1	5 0	,34	0,31	0,27
Мо	μg/L	700	340	460	8	70	1100	1200	1200	130	0 13	00	1300	1300	1200	130	0 130	0,00 1	300,00	1100,00
Cd	μg/L	0,025	0,018	0,027	0,0)36 (0,033	0,06	0,069	0,06	7 0.	09	0,062	0,074	0,032	0,06	6 0	.12	0,10	0,10
Hg	ug/L	0	0	0																
Pb	ug/L	3.6	2.5	2.2	2	4	2.4	2.3	2.0	1.8	1	.9	1.5	1.6	1.2	0.9	0 0	.13	0.23	0.24
Th	ug/L	0	0	0)	0	0	0	0		0	0	0	0	0	0	.00	0.00	0.00
U	н9/L	0	0	0		- D 0	0042	0	0.026	0.01	5 00	129	0.038	0	0	0.00	56 0	00	0.00	0.00
Ca	mg/I.	1000	590	670	8	50	1000	1100	1100	120	0 12	200	1200	1100	1100	110	0 78	0.00 1	000 00	1000.00
Mø	mg/L	0.040	0.050	0.060	0.0	000 0	1000	0.015	0.015	0.02	0 0	02	0.018	0.013	0.014	0.02	0 10	02	0.02	0.02
Na	mg/L	460	160	98	6,0	3	44	35	31	26	, v,	02 M	23	21	10	17	05	200	34.00	22.00
ING.	mg/L	400	220	160	14	20	100	01	70	20	-		25	56	19	57	71		28.00	22,00
DOC	mg/L	440	220	0.4	1.	7	5.0	51	19	/4		0	2.4	2.1	2.0	24	. 12	,00	56,00	33,00
TOT N	mg/L	62	14	8,4	0	,/ 	5,8	5,1	4,9	4,7		,8 17	3,4	3,1	2,9	3,0	5 12	2,00	5,60	3,30
101- N	mg/L	4,5	1	0,07	0,	30	0,45	0,29	0,28	0,28	s 0,	17	0,2	0,14	0,11	0,2	5 0	,52	0,19	0,11
SLB2																				
Uke					0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat	(CO3)		mg/L		773	559	686	331	624	619	259	480	792	600	566	331	346	43,5	46,8	52,3
Bikarbon	at (HCO3	5)	mg/L		0	759	786	0	859	840	1330	229	371	776	0	947	0	0	0	0
Cr (Krom	1)		mg/L		0,169	0,0591	0,0608	0,0811	0,0885	0,0713	0,0698	0,057	0,0525	0,0543	0,0482	0,0437	0,0414	0,096	0,0917	0,0848
Cr3+			mg/L		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+			μg/L		181	59,6	61,5	94	99	90,2	78,1	90,7	59	64,2	52,4	61,6	45,7	108	101	87,3
Klorid (C	1-)		mg/L		121	41,4	31	29,1	31,8	27,1	26,4	18,3	19,4	16,5	12,6	16,2	11,8	16,2	0	0
Fluorid (I	F-)		mg/L		0	0,52	0	0	0	0	0,266	0	0	0,247	0,294	0	0,257	0	2060	3500
Sulfat (SO	04)		mg/L		2120	188	219	524	917	1200	1230	1300	1340	1430	1340	1380	1400	1560	688	1160
Sulfat-S ((SO4-S)	-	mg/L		707	62,8	73	174	306	399	411	432	446	476	448	460	468	521	22	12
Syrekapa	sitet pH 4	1,5	mmol	/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapa	sitet pH 8	,3	mmol	/L ~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinite	et pH 4,5		mmol	/L	50,5	31,1	35,8	22,4	34,9	34,4	30,4	19,8	32,5	32,7	30	26,6	23,2	13,3	13	10,8
Alkalinite Kashan J	et pH 8,3	22)	mmol	/L	37,6	9,32	11,4	16,9	10,4	10,3	4,32	8	13,2	10	20,6	5,52	17,5	12,6	12,2	9,88
Karbondi	oksid (CC	52) + CO2 644	mg/L		30/ 0	958	1070	243	1080	1060	0	518	848	1000	415	920	255	31,9	54,4	58,4
Karbondi	oksid-age	ressivt	n mg/L		v	0	0	0	U	v	U	0	U	U	U	v	U	0	0	0
CO2-agg	ressivt		mg/L		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabell F.6 - Analyseresultater SLB3.

SLB3		0		2	2	4	=	6		7	0	0	10		12	20		20	21
<u>UKe</u>	π	0 0052	0.027	2	3	4		0		2	0 6 0	9	10	12	12	29	0 1	50	31
AI	mg/L	0,0053	0,027	0,034	0,013	0,0043	0	5,8		2	5,2	0	11	13	18	22,0	0 14	1,00	19,00
Si	mg/L	1,0	0,87	0,8	0,61	0,46	0,38	0,39	9 0,	24 0),21	0	0,3	0,40	0,54	2,00	1	,20	1,10
S	mg/L	630	60	85	190	360	400	380) 40	50 4	480	490	480	480	480	520,0	0 59	0,00	650,00
v	μg/L	0,46	0,13	0,10	0,12	0,15	0,13	0,10	0 0,	15 0),14	0,16	0,15	0,11	0,14	0,49	0	,44	0,37
Mn	μg/L	0	0,16	0,45	0	0	0	0	()	0	0	0	0	0	0,00	0	,00	0,00
Fe	mg/L	0,024	0,012	0,014	76	31	26	26	3	1	33	32	11	8,3	11	23,0	0 25	5,00	24,00
Co	μg/L	6,4	1,4	0,88	0,72	1,1	0,72	0,72	2 0,	45 0),46	0,38	0,43	0,26	0,39	0,95	0	,52	0,41
Ni	μg/L	23	11	10	14	15	11	11	8	,1	7,4	6,2	0	0	0,44	8,30	2	,70	4,20
Cu	μg/L	55	17	13	9,8	6,5	8,8	8,1	5	,1	4,1	3,5	6,8	2,9	2,5	8,60) 4	,90	2,60
Zn	μg/L	16	11	6,5	7,1	8,4	4,3	2,1	2	,0	2,1	1,6	9,9	7,4	2,9	1,70	5	,10	1,70
As	μg/L	2,0	0,85	0,57	0,48	0,47	0,41	0,3	5 0,	26 0	,28	0,23	0,21	0,070	0,15	0,37	0	,32	0,16
Mo	μg/L	790	270	480	1000	1500	1500	150	0 17	00 1	700	1700	1900	1600	1700	1800,	00 180	00,00	1300,00
Cd	μg/L	0,042	0,018	0,026	0,021	0,096	0,081	0,14	40,	12 0),13	0,072	0,060	0,070	0,034	0,15	0	,13	0,14
Hg	μg/L	0	0	0															
Pb	μg/L	25	34	3,5	48	74	72	78	9	3	64	62	47	39	40	11,0	0 7	,30	9,40
Th	μg/L	0	0	0	0	0	0	0	()	0	0	0	0	0	0,00	0	,00	0,00
U	μg/L	0	0	0	0,0055	0,0026	0,000	7 0,009	97 0,0	23 0	,026	0,026	0	0	0,0016	0,00	0	,00	0,00
Ca	mg/L	1100	570	690	890	1100	1100	110	0 12	00 1	200	1200	1100	1100	1000	840,0	0 94	0,00	1000,00
Mg	mg/L	0,040	0,060	0,070	0,012	0,016	0,014	0,01	8 0,	02 0	,026	0,02	0,016	0,021	0,027	0,03	0	,06	0,24
Na	mg/L	450	170	89	54	36	29	29	2	4	21	20	17	18	15	90,0	0 38	3,00	24,00
K	mg/L	420	230	150	120	90	82	76	7	2	67	63	55	58	56	64,0	0 38	3,00	36,00
DOC	mg/L	59	17	10	6	4,8	4,5	4,4	3	7	3,2	3	2,3	2,6	2,4	7,	60	4,60	3,00
TOT- N	mg/L	4,1	1,4	0,96	0,55	0,41	0,29	0,32	2 0,	21 0),17	0,2	0,14	0,12	0,16	0,	32	0,22	0,11
SLB3									_		_								
Uke	(000)		~	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat	(CO3)	2	mg/L	646	442	648	355	677	576	211	617	682	514	595	259	336	43,2	42,3	51,8
Bikarbona	at (HCC	(3)	mg/L	0	0.041	0.027	0.034	0.034	0.030	0.034	0.022	454	/80	0.017	908	0	0.081	0.086	0.067
Cr (Krom)		mg/L	0,182	2 2	9	5	6	4	4	7	. 0,015	0,02	1	5	0,017	2	1	1
Cr3+			mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+			μg/L	195	39,5	27,4	41,3	40	41,2	40,8	35,5	19,6	22,7	20,6	18,9	19,6	97,5	102	65,2
Klorid (C	1-)		mg/L	80,7	52,8	64	34,3	31,2	16,2	20,3	19,6	20	17,8	10,1	16,1	12,4	16,4	0	0
Fluorid (F	?-)		mg/L	0	0	0	0	0	0	0,258	0	0	0,204	0	0	0,209	0,297	2010	2610
Sulfat (SC	04)		mg/L	1750	162	290	544	1050	1230	1120	1380	1430	1490	1410	1450	1510	1750	670	871
Sulfat-S (SO4-S)		mg/L	584	54	96,6	181	349	410	374	462	478	496	469	483	503	584	12	8
Syrekapas	sitet pH	4,5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapas	sitet pH	8,3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinite	et pH 4,:	, ,	mmol/L	46,6	27,6	36,6	22,6	22,6	33,9	29	27,1	30,2	30	27	23,5	21,4	10,4	10,6	7,83
Karbandi	almid (C		mmoi/L	35,9	/,30	10,8	10,0	11,3	9,6	3,52	10,8	11,4	8,56	17,1	4,32	15,8	9,67	9,93	0,90
Karbondie	oksid-fr	itt	mg/L	4/4	889	1130	260	496	10/0	1120	452	827	944	430	840	240	31,7	31	38
CO2-fritt		*	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karbondi	oksid-																		
agressivt	CO2-		ma/I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
aggressiv	ι		ing/L	0	U	0	0	0	0	0	0	U	0	U	U	0	0	0	0

SLB gj.s	nitt						-		-			10			-	20	
Uke	~	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0,01	0,03	0,04	0,01	0,01	1,47	3,47	6,93	2,93	2,00	11,67	13,67	14,33	23,67	17,00	20,00
Si	mg/L	1,37	0,96	1,07	0,84	0,90	0,65	0,62	0,41	0,43	0,29	0,43	0,55	0,74	3,57	1,53	1,20
S	mg/L	563,33	73,33	89,33	190,00	323,33	376,67	376,67	443,33	463,33	486,67	476,67	480,00	480,00	480,00	580,00	656,67
V	µg/L	0,46	0,04	0,03	0,06	0,14	0,10	0,08	0,12	0,12	0,14	0,12	0,10	0,09	0,40	0,38	0,39
Mn	μg/L	0,19	0,05	0,22	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe	mg/L	0,02	0,01	0,01	41,00	31,00	26,33	26,33	30,00	31,33	30,33	11,00	8,80	10,07	22,33	25,00	26,67
Co	μg/L α	6,43	1,53	0,99	1,04	1,10	1,01	0,79	0,62	0,60	0,52	0,39	0,30	0,47	0,78	0,66	0,44
N1	μg/L	22,33	10,43	9,97	14,00	14,67	11,67	10,63	8,77	7,13	6,07	0,00	0,00	0,69	8,57	6,30	5,10
Cu	µg/L	55,67	17,33	14,00	10,60	7,27	9,60	8,00	5,90	4,43	3,70	6,50	3,37	2,87	8,93	4,93	2,93
Zn	µg/L	19,00	4,83	3,30	3,75	4,87	10,43	1,07	0,76	0,79	0,57	8,73	6,80	0,97	1,43	3,10	1,63
As	µg/L	2,00	0,77	0,52	0,49	0,45	0,42	0,31	0,28	0,25	0,19	0,20	0,11	0,16	0,30	0,28	0,21
Mo	µg/L	730,00	326,67	493,33	940,00	1333,33	1400,00	1400,00	1500,00	1533,33	1533,33	1633,33	1433,33	1566,67	1433,33	1533,33	1266,67
Ca	µg/L	0,04	0,02	0,03	0,04	0,08	0,08	0,10	0,09	0,10	0,07	0,07	0,05	0,05	0,12	0,11	0,10
Hg	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pb	μg/L	11,20	13,13	2,87	17,90	26,50	25,60	27,43	32,27	22,53	21,83	16,90	13,87	14,00	3,73	2,64	3,27
In	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0	µg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,03	0,03	0,00	0,00	0,00	0,00	0,00	0,00
Ca Ma	mg/L	1066,67	590,00	670,00	8/6,67	1066,67	1100,00	1100,00	1166,67	1166,67	1200,00	1100,00	1100,00	1033,33	790,00	946,67	1000,00
Ng	mg/L	0,04	0,05	0,06	0,01	0,02	0,01	0,02	0,02	0,02	0,02	0,01	0,02	0,03	0,03	0,04	0,11
Na	mg/L	470,00	166,67	91,33	38,67	40,67	32,67	30,00	25,33	22,67	22,33	19,33	19,33	16,00	99,33	30,33	22,67
N DOC	mg/L	436,67	223,33	150,00	126,67	95,00	86,67	1,00	/2,6/	00,07	65,00	20,67	20,33	20,07	/0,33	38,67	35,00
TOT N	mg/L	01,33	15,00	8,83	0,50	5,40	4,93	4,60	4,20	3,43	3,20	2,87	2,80	2,87	9,57	4,97	5,25
101- N	mg/L	4,27	1,23	0,82	0,50	0,42	0,30	0,30	0,24	0,17	0,20	0,14	0,12	0,19	0,57	0,21	0,12
SLB SD																	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0,002	2 0,006	0,007	0,004	0,004	2,540	3,062	4,743	2,663	3,464	0,577	0,577	3,512	2,082	3,000	5,568
Si	mg/L	0,551	1 0,403	0,231	0,246	0,421	0,247	0,252	0,252	0,237	0,253	0,114	0,131	0,183	2,060	0,577	0,100
S	mg/L	61,10	1 12,220	9,292	0,000	32,146	25,166	5,774	20,817	15,275	15,275	15,275	10,000	0,000	36,056	36,056	11,547
v	μg/L	0,025	5 0,075	0,058	0,056	0,015	0,029	0,023	0,033	0,021	0,021	0,023	0,014	0,044	0,086	0,053	0,017
Mn	μg/L	0,232	2 0,092	0,225	0,000	0,000	0,000	0,000	0,000	0,021	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	mg/L	0,002	2 0,001	0,001	30,315	1,000	0,577	0,577	1,000	1,528	1,528	0,000	0,700	0,902	4,041	1,000	2,517
Co	μg/L	0,252	2 0,115	0,110	0,277	0,000	0,253	0,062	0,145	0,145	0,121	0,046	0,035	0,080	0,148	0,131	0,095
Ni	μg/L	0,577	7 0,981	0,058	0,000	0,577	1,155	0,635	0,833	0,551	0,153	0,000	0,000	0,439	1,320	3,119	2,955
Cu	μg/L	2,082	2 0,577	1,732	0,693	0,751	1,217	0,557	0,854	0,306	0,265	0,700	0,987	0,907	0,351	0,451	0,493
Zn	μg/L	8,888	8 5,369	2,771	3,232	3,287	14,507	1,050	1,081	1,145	0,891	1,531	0,529	1,674	0,379	1,744	0,115
As	μg/L	0,100	0,114	0,057	0,040	0,015	0,010	0,046	0,021	0,035	0,040	0,051	0,051	0,017	0,096	0,067	0,056
Mo	μg/L	51,96	2 51,316	5 41,633	65,574	208,167	7 173,205	173,205	200,000	208,167	208,167	305,505	208,167	7 230,940	321,455	251,661	152,753
Cd	μg/L	0,016	5 0,002	0,010	0,020	0,045	0,018	0,036	0,027	0,023	0,011	0,013	0,019	0,016	0,028	0,021	0,038
Hg	μg/L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pb	μg/L	11,97	2 18,072	2 0,651	26,071	41,138	40,184	43,792	52,597	35,911	34,786	26,069	21,766	22,517	6,294	4,039	5,306
Th	μg/L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
U	μg/L	0,003	3 0,003	0,000	0,003	0,001	0,001	0,008	0,004	0,002	0,007	0,000	0,000	0,003	0,000	0,000	0,003
Ca	mg/L	57,73	5 20,000	20,000	15,275	57,735	0,000	0,000	57,735	57,735	0,000	0,000	0,000	57,735	45,826	50,332	0,000
Mσ	mø/L	0,006	5 0,006	0,010	0,002	0,002	0,001	0,002	0,005	0,004	0,002	0,002	0,004	0,004	0,010	0,022	0,113
	mg/L																
Na	mg/L	26,45	8 5,774	5,859	4,509	4,163	3,215	1,000	1,155	1,528	2,082	2,082	1,528	1,000	10,066	2,082	1,155
Na K	mg/L mg/L	26,45	8 5,774 5 5,774	5,859	4,509) 5,774	4,163 5,000	3,215 4,509	1,000 1,732	1,155 1,155	1,528 1,528	2,082 1,732	2,082 0,577	1,528 2,517	1,000 0,577	10,066 6,028	2,082 1,155	1,155 1,000
Na K DOC	mg/L mg/L mg/L	26,45 15,27 2,082	8 5,774 5 5,774 2 1,732	5,859 10,000 1,021	4,509 5,774 0,361	4,163 5,000 0,529	3,215 4,509 0,379	1,000 1,732 0,265	1,155 1,155 0,500	1,528 1,528 0,321	2,082 1,732 0,200	2,082 0,577 0,493	1,528 2,517 0,173	1,000 0,577 0,643	10,066 6,028 2,237	2,082 1,155 0,551	1,155 1,000 0,208

Tabell F.7 - Analyseresultater (SLB) presentert med gjenomsnitt og standardavvik.

SLB gj.snitt																		
Uke		0	1	2	3	4	4 :	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	741,67	513,67	654,33	368,00	653,0	0 606,3	3 24	40,00	586,33	693,00	558,67	559,67	312,00	329,00	42,87	45,37	49,40
Bikarbonat (HCO3)	mg/L	0,00	755,67	818,67	108,33	548,3	3 849,3	3 132	26,67	110,33	415,00	760,00	0,00	924,33	0,00	0,00	0,00	0,00
Cr (Krom)	mg/L	0,18	0,06	0,05	0,06	0,0	7 0,0)6	0,06	0,04	0,04	0,04	0,04	0,03	0,03	0,08	0,09	0,08
Cr3+	mg/L	0,00	0,01	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr6+	µg/L	189,00	49,77	46,73	69,57	77,4	7 74,2	20 0	64,00	69,70	42,93	44,53	38,60	42,47	34,87	90,70	97,17	78,83
Klorid (Cl-)	mg/L	97,37	53,60	53,53	31,97	30,5	3 20,8	30 2	21,53	19,43	20,33	17,43	11,47	15,80	11,50	15,63	0,00	0,00
Fluorid (F-)	mg/L	0,00	0,17	0,00	0,00	0,0	0,0	00	0,24	0,00	0,07	0,23	0,10	0,00	0,25	0,23	1976,67	2760,00
Sulfat (SO4)	mg/L	1863,33	189,67	252,67	533,33	941,6	7 1220,0	0 112	26,67	330,00	1386,67	1483,33	1403,33	1450,00	1436,67	1633,33	660,00	917,67
Sulfat-S (SO4-S)	mg/L	621,67	63,33	84,23	177,33	313,6	7 406,3	3 31	76,67	443,67	462,67	494,67	468,33	483,67	479,00	545,33	15,33	10,00
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet pH 4.5	mmol/L	48,70	29,53	35,27	21,40	30,7	7 34,1	3 2	29,73	23,57	29,90	31,07	28,17	25,57	22,03	10,95	11,50	9,06
Alkalinitet pH 8.3	mmol/L	36,37	8,56	10,90	13,49	10,9	0 10,1	0	4,00	11,93	11,57	9,31	18,87	5,20	16,57	10,24	10,78	8,22
Karbondioksid (CO2) Karbondioksid-fritt	mg/L	544,00	922,00	1070,00	347,67	875,3	3 1056,6	57 113	33,33	510,00	807,00	957,67	410,33	895,33	241,00	31,43	33,30	36,23
CO2-fritt Karbondioksid-	mg/L	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
agressivt CO2-																		
aggressivt	mg/L	0,00	0,00	0,00	0,00	0,0	0 0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI D CD																		
SLD SD Uke			0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mø/L	5	26.87	365.10	463 57	263.01	462.21 4	120.02	170.39	424.75	408.00	306.12	306.86	222.22	222.57	30.32	22.12	25 10
Bikarbonat (HCO3)	mg/L	5	0.00	534 78	580.98	187.64	476.27 6	601.25	938 15	114.73	295 12	538 34	0.00	653.81	0.00	0.00	0.00	0.00
Cr (Krom)	mg/L		0.12	0.04	0.04	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.03	0.02	0.02	0.06	0.06	0.06
Cr3+	mg/L		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr6+	ug/L	1	33 77	35.87	34.81	52.21	57.96	55.00	46 78	52 31	32.82	34 46	29.14	33.08	26.01	67.48	69.03	56.18
Klorid (Cl-)	mg/L		71.02	30.04	41.95	22,21	21.65	15 41	15.82	13 78	14.42	12 35	8 15	11 19	8 18	11 10	0.00	0.00
Fluorid (F-)	mg/L		0.00	0.30	0.00	0.00	0.00	0.00	0.17	0.00	0.13	0.16	0.17	0.00	0.17	0.26	1401 39	2063.17
Sulfat (SO4)	mg/L	13	133 87	135 71	180.26	377 18	668 71 8	62.82	802.93	940.80	981.08	1050.07	994 12	1027.69	1016 54	1156 51	467.88	685.25
Sulfat-S (SO4-S)	mg/L	4	44 99	45 33	60.09	125.42	222 72 72 2	87.38	268.38	313.86	327 37	350.25	331.77	342.85	338.92	386.13	12.06	7.21
Svrekanasitet nH 4 5	mmol/I		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Syrekapasitet pH 4.3	mmol/I		0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet nH 4 5	mmol/I		0,00 14 46	20.01	24.08	15 22	22.14	24.14	21.02	16.88	21.22	22.00	10.00	19 11	15.61	8.02	8 21	6.54
Alkalinitet pH 8.3	mmol/I		25 74	6.08	7 72	10.87	7.72	7.15	2 84	8 91	8 32	6.60	13.40	3 71	11.73	7 54	7.70	5.94
Karbondioksid (CO2	l) mg/L	3	86,44	652,45	757,79	290,53	647,54 7	7,15 147,27	2,64	362,40	573,00	678,14	290,96	633,62	171,05	22,24	23,57	25,82
CO2-fritt Karbondioksid-	mg/L		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
agressivt CO2-					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figur F.12 - Analyseresultater Na, K, Ca, Mg [mg/L].

Figur F.13 - Analyseresultater Mg og Si [mg/L].

Figur F.14 - Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

RE

Figur F.15 - Analyseresultater Mo, As, Cr [mg/L].

Figur F.16- Analyseresultater SO4 og U [mg/L].

Figur F.17 - Analyseresultater DOC og Tot- N [mg/L].

RE1 Uke		0	1	2	3		4	5	6	7	8		9	10	11	12	29	30	31
A1	mg/L	0.013	0.011	7.0	0	1		0	0	15	6.6		17	0.7	15	14	16	17	17
Si	mg/L	6.5	2.2	10	12	1	2	12	12	13	0,0	,	17	12	13	14	10	1/	11
c	mg/L	1400	020	780	720		5	12	12	640	620		14	15	620	560	100		850
v	ing/L	1400	930	/80	720	0	1	1.0	000	040	1.0	,	1.2	020	0.04	0.04	100	0 0 20	0.20
v Me	µg/L	2,1	2,7	2,3	2,3	2	,1	1,9	1,5	1,3	1,0	,	1,2	0,97	0,94	0,84	0,5	9 0,39	0,39
NIII E-	µg/L	370	98	410	/90	10		1200	1500	1700	180	0 1	2600	2600	3100	2600	130	0 4900	/900
re	mg/L	14	14	13	13	1	4	15	14	5,7	6,8		8,7	6,3	5,3	4,8	11	12	14
C0	µg/L	15	4,7	12	20	2	:5	28	33	36	37		54	53	63	53	16	28	41
Ni	µg/L	210	77	190	290	3.	20	330	360	360	340)	500	440	500	400	590) 680	840
Cu	μg/L	0	0	0,73	9,2	0,	34	0	0,18	3,2	1,1		0	0	0	0	1,2	2,2	2,8
Zn	μg/L	24	15	70	120	1	30	140	150	160	160)	220	200	230	120	270) 360	430
As	μg/L	4,1	5,1	3,7	3,3	2	,8	2,7	2,0	1,8	1,4		1,4	1,3	1,2	0,88	0,4	5 0,50	0,53
Мо	μg/L	6100	8800	7700	6700	60	00	5400	4700	4600	330	0 2	2900	2800	2300	2000	490) 480	520
Cd	μg/L	2,1	1,3	3,2	4,3	5	,1	5,4	5,9	5,5	5,6		7,6	7,1	7,7	3,6	8,9	14	17
Hg	μg/L																		
Pb	μg/L	0,020	0	0	0,38		D	0	0	0,17	0,16	5	0	0	0	0	0	0	0
Th	μg/L	0	0	0	0		D	0	0	0	0		0	0	0	0	0	0	0
U	μg/L	460	250	550	720	6	80	590	600	540	610)	1000	1400	1800	2100	150) 480	730
Ca	mg/L	490	510	530	570	5	90	590	610	610	600)	620	590	610	550	490) 500	500
Mg	mg/L	390	260	220	200	1	60	140	130	120	130)	140	140	140	120	650) 460	460
Na	mg/L	570	250	100	54	3	3	23	19	14	12		10	10	9,0	7,5	24	17	12
K	mg/L	140	100	92	82	7	0	67	61	52	52		59	52	54	48	57	67	69
DOC	mg/L	5,9	1,2	1,2	0,84	0,	81	0,67	0,73	0,7	0,6		0,5	0,5	0,5	0,6		1 0,68	0,61
TOT- N	mg/L	1,9	0,75	0,2	0,08	0.0)15	0	0		0	0	0,097	0,053	0,04	48 0.05	3	0 0	0
RE1				_		-	-		_		_	_							
Uke				0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	r	ng/L	0	0	0	0	0	0	0	0	0	0	0	0	1,63	0	0	0
Bikarbonat	t (HCO3)) r	ng/L	156,14	60	124	173	183	116	186	167	172	216	203	228	235	81,3	196	229
Cr (Krom)		r	ng/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr3+		r	ng/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+		ŀ	ıg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Klorid (Cl-	-)	r	ng/L	33,2	62,3	58	46,2	37,7	21,7	27,1	23,2	21,3	18,6	16,8	15	14,5	1,16	5	7,43
Fluorid (F-	-)	r	ng/L n⊙/I	1,8	1,38	0,231	0,544	0,72	0,911	0,994	0,752	0,899	0,842	0,866	0,967	1,51	3530	0,912	1,09
Sulfat C (S	4) 204 ED	г	ng/L n∝/I	4150	2830	2410	2180	2090	1970	2020	1920	2090	1850	2360	2000	1930	1180	2880	2970
Sunat-5 (5	itat nU 4	5 -	ng/L	1380	942	0	728	097	037	0/3	039	090	017	/8/	00/	042	3	900	989
Syrekapasi	itet nH 8	3 1	nmol/I	0	0	0	0	0	0	0	0	0	0	0 150	0	0	0	0 221	0 202
Alkalinitet	nH 4 5	5 1	nmol/L	1.56	0 984	2.03	2 84	3	1 01	3.06	2 74	2.81	3 54	3 33	3 74	3 01	1 33	3 21	3 75
Alkalinitet	pH 8 3		nmol/L	0	0,504	0	0	0	0	0	0	0	0	0	0	0	1,55	0,21	0,75
Karbondiol	ksid (CO	2) r	ng/L	72.9	45.6	92.4	129	137	87.8	138	125	129	162	154	171	175	63.8	151	178
Karbondiol	ksid-fritt	-, 1		12,5	10,0	,2,4	127	1.57	07,0	150	125	12)	102	104	.,.	- 10	00,0	101	175
CO2-fritt		r	ng/L	4,4	2,24	3,12	3,83	4,97	3,83	3,04	4,36	5,06	5,85	7	6,2	4,27	5,19	9,73	12,8
Karbondiol	ksid- CO2-																		
aggressivt	0.02-	r	ng/L	3.09	1.96	0.74	0	0	1.7	0	0	0	0	0	0	0	4.25	0.57	0

Tabell F.8 - Analyseresultater RE1.

RE2 Uke		0	1	2	3	4	5	6		7	8	9	10	11	12	29) 30	31
Al	mg/L	0,0099	0,012	8,9	0	3,0	0	0		7,2	7,7	7,7	13	14	14	28	15	21
Si	mg/L	6,8	7,2	7,8	9,2	9,6	11	11		10	9,8	11	11	12	12	15	14	14
s	mg/L	1500	900	780	720	690	660	650)	600	590	610	620	640	64(71	0 600	660
v	μg/L	2,2	3,0	2,7	2	1,7	1,4	1,3		1,1	0,85	0,96	0,82	0,78	0,7	7 0,9	8 1,0	0,78
Mn	µg/L	390	200	120	310	480	710	870)	900	1000	1200	1400	1700	180	0 790	0 2800	2100
Fe	mg/L	16	15	14	13	22	14	16		5,1	4,3	6,1	5,7	13	6,4	33	16	18
Co	μg/L	14	4.3	3.3	7	9,3	15	17		17	18	18	21	23	26	85	21	14
Ni	μg/L	230	56	51	100	120	190	200)	170	170	180	190	230	250	130	0 690	610
Cu	μg/L	0	0	0,44	0,16	0	0	0		2,6	0,74	0	0	0	0	3,6	5 1,5	2,0
Zn	ug/L	19	8.4	14	39	54	84	89		89	94	96	110	130	150) 53	0 200	160
As	μg/L	4.2	6.1	5.6	4.0	3.8	2.9	2.3		1.8	1.7	1.6	1.4	1.1	1.2	0.9	9 0.89	1.0
Mo	нø/L	5600	9600	9800	9700	8700	6800	620	0	5600	4500	4000	3400	2800	240	0 140	0 1400	2400
Cd	ug/L	2.2	1.2	1.9	2.8	3.2	3.7	4.1		3.6	4.2	4.0	4.5	4.6	5.6	14	6.6	5.7
Hø	ug/L	2,2	-,2	.,,,	2,0	5,2	2,1	.,.		2,0	1,2	1,0	1,0	1,0	2,0		,.	2,7
Ph	110/L	0.078	0	0	0	0.037	0	0		0.21	0.18	0.028	0	0	0	0	0	0
Th	μg/L	0	0	0	Ő	0,057	0	0		0	0	0	ő	0	0	0	0	0
U	μg/L μg/L	580	170	230	300	320	390	300	,	320	300	280	550	1300	240	0 360	0 3700	5000
C.	mg/I	400	510	530	560	580	500	610	Ś	600	600	620	610	600	60	560	0 570	600
Ca Ma	mg/L	450	340	100	180	150	120	120	, ,	07	000	020	110	120	1.4/	, 30	0 100	280
No	mg/L	450	240	190	180	150	150	120	,	97	10	8/	0.5	150	140		190	280
INd V	mg/L	000	230	140	68	30	23	18		14	12	50	9,5	9,2	8,4	- 22	. 12	13
N DOC	mg/L	160	95	8/		64	66	50		4/	46	50	46	49	52	66	54	68
DOC	mg/L	7,2	1,5	1,3	1	0,82	0,76	0,8	3	0,8	0	0,6	0,6	0,6	0,6	0,7	5 0,59	0,56
TOT- N	mg/L	1,8	0,99	0,49	0,17	0,047	0	0		0	0	0,042	0,059	0,045	0,05	8 0	0	0
RE2																		
Uke			0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat ((CO3)	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Bikarbona	t (HCO3)	mg/L	107	47	38,4	68,2	77,4	173	116	111	110	105	108	128	152	501		465
Cr (Krom))	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0,0042
Cr6+		mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0,0042
Clorid (Cl	5	μg/L mg/I	20.1	77.1	75.2	0	42.6	27.0	22.0	10.5	20.5	17.4	15.4	0	12.6	0	0	10.2
Fluorid (Fr	-)	mg/L	1.87	2.11	15	0.76	45,0	27,9	23,9	1 49	20,5	1/,4	0.004	14	15,0	2420	8,25	1.41
Sulfat (SO	94)	mg/L	4780	2,11	2500	2050	2110	1970	2040	1,40	2010	1730	2270	2050	1990	807	2180	2260
Sulfat-S (S	504-S)	mg/L	1430	919	833	683	704	658	680	611	669	576	756	685	663	7	725	752
Syrekapasi	itet pH 4,	5 mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Syrekapasi	itet pH 8,	3 mmol/L	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0,205		0,202
Alkalinitet	t pH 4,5	mmol/L	1,75	0,77	0,629	1,12	1,27	2,84	1,9	1,82	1,8	1,72	1,77	2,1	2,5	8,21		7,63
Alkalinitet	t pH 8,3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Karbondio	ksid (CO	2) mg/L	81,2	36,6	30,7	52,4	59,7	129	85,6	80,1	85,9	79,9	81,6	95,8	110	370		344
CO2-fritt Karbondio	oksid-	mg/L	4,31	2,77	3,04	3,21	3,83	4,4	1,89	0	6,64	4,22	3,74	3,26	0	9,02		8,89
aggressivt	CO2-	mg/I	254	2.64	2.07	2 72	3.1	0	0.02	0	1.15	255	1.00	0.62	0	0		0
aggiessivi		mg/L	2,56	2,04	2,97	2,75	3,1	0	0,02	0	4,45	2,55	1,99	0,62	0	0		0

Tabell F.9 - Analyseresultater RE2.

RE gj.sr Uke	nitt	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
A1	mg/L	0.01	0.01	e 40	0.00	7.50	0.00	0.00	11.10	7.15	12.25	11.25	14.50	14.00	22.00	16.00	19.00
Si	mg/L	6.65	7.45	8,40	11.10	11.20	11.50	11.50	11,10	10.40	12,55	12.00	14,50	12,00	11 70	12,50	12,50
S	mg/L	1450.00	915.00	780.00	720.00	685.00	660.00	655.00	620.00	605.00	630.00	620.00	635.00	600.00	855.00	725.00	755.00
v	ug/L	2 15	2.85	2 50	2 15	1.90	1.65	1 40	1 20	0.93	1.08	0.90	035,00	0.81	0.69	0.70	0.59
Mn	ug/L	380.00	149.00	265.00	550.00	740.00	955.00	1185.00	1300.00	1400.00	1900.00	2000.00	2400.00	2200.00	4600.00	3850.00	5000.00
Fe	mg/L	15.00	14.50	13.50	13.00	18.00	14.50	15.00	5.40	5.55	7.40	6.00	9,15	5.60	22.00	14.00	16.00
Co	μg/L	14,50	4,50	7,65	13,50	17,15	21,50	25,00	26,50	27,50	36,00	37,00	43,00	39,50	50,50	24,50	27,50
Ni	μg/L	220,00	66,50	120,50	195,00	220,00	260,00	280,00	265,00	255,00	340,00	315,00	365,00	325,00	945,00	685,00	725,00
Cu	μg/L	0,00	0,00	0,59	4,68	0,17	0,00	0,09	2,90	0,92	0,00	0,00	0,00	0,00	2,40	1,85	2,40
Zn	μg/L	21,50	11,70	42,00	79,50	92,00	112,00	119,50	124,50	127,00	158,00	155,00	180,00	135,00	400,00	280,00	295,00
As	μg/L	4,15	5,60	4,65	3,65	3,30	2,80	2,15	1,80	1,55	1,50	1,35	1,15	1,04	0,72	0,70	0,77
Mo	μg/L	5850,00	9200,00	8750,00	8200,00	7350,00	6100,00	5450,00	5100,00	3900,00	3450,00	3100,00	2550,00	2200,00	945,00	940,00	1460,00
Cd	μg/L	2,15	1,25	2,55	3,55	4,15	4,55	5,00	4,55	4,90	5,80	5,80	6,15	4,60	11,45	10,30	11,35
Hg	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pb	μg/L	0,05	0,00	0,00	0,19	0,02	0,00	0,00	0,19	0,17	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Th	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U	μg/L	520,00	210,00	390,00	510,00	500,00	490,00	495,00	430,00	455,00	640,00	975,00	1550,00	2250,00	1875,00	2090,00	2865,00
Ca	mg/L	490,00	510,00	530,00	565,00	585,00	590,00	610,00	605,00	600,00	620,00	600,00	605,00	575,00	525,00	535,00	550,00
Mg	mg/L	420,00	250,00	205,00	190,00	155,00	135,00	125,00	108,50	109,00	113,50	125,00	135,00	130,00	490,00	325,00	370,00
Na	mg/L	615,00	240,00	120,00	61,00	34,50	23,00	18,50	14,00	12,00	10,50	9,75	9,10	7,95	23,00	14,50	12,50
ĸ	mg/L	150,00	97,50	89,50	79,50	67,00	66,50	58,50	49,50	49,00	54,50	49,00	51,50	50,00	62,50	60,50	68,50
DOC TOT-	mg/L	6,55	1,35	1,25	0,92	0,82	0,72	0,78	0,75	0,30	0,55	0,55	0,55	0,60	0,88	0,64	0,59
N	mg/L	1,85	0,87	0,35	0,13	0,03	0,00	0,00	0,00	0,00	0,07	0,06	0,05	0,06	0,00	0,00	0,00
RE SD									_			10					
RE SD Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
RE SD Uke Al	mg/L	0,00	0,00	2 0,71	3 0,00	4 6,36	5 0,00	6 0,00	7 5,52	8 0,78	9 6,58	10 2,33	11 0,71	12 0,00	29 8,49	30 1,41	31 2,83
RE SD Uke Al Si	mg/L mg/L	0 0,00 0,21	1 0,00 0,35	2 0,71 1,56	3 0,00 2,69	4 6,36 2,40	5 0,00 0,71	6 0,00 0,71	7 5,52 1,41	8 0,78 0,85	9 6,58 2,12	10 2,33 1,41	11 0,71 1,41	12 0,00 0,00	29 8,49 4,67	30 1,41 2,12	31 2,83 2,12
RE SD Uke Al Si S	mg/L mg/L mg/L	0 0,00 0,21 70,71	1 0,00 0,35 21,21	2 0,71 1,56 0,00	3 0,00 2,69 0,00	4 6,36 2,40 7,07	5 0,00 0,71 0,00	6 0,00 0,71 7,07	7 5,52 1,41 28,28	8 0,78 0,85 21,21	9 6,58 2,12 28,28	10 2,33 1,41 0,00	11 0,71 1,41 7,07	12 0,00 0,00 56,57	29 8,49 4,67 205,06	30 1,41 2,12 176,78	31 2,83 2,12 134,35
RE SD Uke Al Si S V	mg/L mg/L mg/L ug/L	0 0,00 0,21 70,71 0,07	1 0,00 0,35 21,21 0,21	2 0,71 1,56 0,00 0,28	3 0,00 2,69 0,00 0,21	4 6,36 2,40 7,07 0,28	5 0,00 0,71 0,00 0,35	6 0,00 0,71 7,07 0,14	7 5,52 1,41 28,28 0,14	8 0,78 0,85 21,21 0,11	9 6,58 2,12 28,28 0,17	10 2,33 1,41 0,00 0,11	11 0,71 1,41 7,07 0,11	12 0,00 0,00 56,57 0,05	29 8,49 4,67 205,06 0,42	30 1,41 2,12 176,78 0,43	31 2,83 2,12 134,35 0,28
RE SD Uke Al Si S V Mn	mg/L mg/L μg/L μg/L	0 0,00 0,21 70,71 0,07 14,14	1 0,00 0,35 21,21 0,21 72,12	2 0,71 1,56 0,00 0,28 205,06	3 0,00 2,69 0,00 0,21 339,41	4 6,36 2,40 7,07 0,28 367,70	5 0,00 0,71 0,00 0,35 346,48	6 0,00 0,71 7,07 0,14 445,48	7 5,52 1,41 28,28 0,14 565,69	8 0,78 0,85 21,21 0,11 565,69	9 6,58 2,12 28,28 0,17 989,95	10 2,33 1,41 0,00 0,11 848,53	11 0,71 1,41 7,07 0,11 989,95	12 0,00 0,00 56,57 0,05 565,69	29 8,49 4,67 205,06 0,42 4666,90	30 1,41 2,12 176,78 0,43 1484,92	31 2,83 2,12 134,35 0,28 4101,22
RE SD Uke Al Si S V Mn Fe	mg/L mg/L μg/L μg/L mg/L	0 0,00 0,21 70,71 0,07 14,14 1,41	1 0,00 0,35 21,21 0,21 72,12 0,71	2 0,71 1,56 0,00 0,28 205,06 0,71	3 0,00 2,69 0,00 0,21 339,41 0,00	4 6,36 2,40 7,07 0,28 367,70 5,66	5 0,00 0,71 0,00 0,35 346,48 0,71	6 0,00 0,71 7,07 0,14 445,48 1,41	7 5,52 1,41 28,28 0,14 565,69 0,42	8 0,78 0,85 21,21 0,11 565,69 1,77	9 6,58 2,12 28,28 0,17 989,95 1,84	10 2,33 1,41 0,00 0,11 848,53 0,42	11 0,71 1,41 7,07 0,11 989,95 5,44	12 0,00 0,00 56,57 0,05 565,69 1,13	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,70	30 1,41 2,12 176,78 0,43 1484,92 2,83	31 2,83 2,12 134,35 0,28 4101,22 2,83
RE SD Uke Al Si S V Mn Fe Co	mg/L mg/L μg/L μg/L μg/L μg/L	0 0,00 0,21 70,71 0,07 14,14 1,41 0,71	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502.05	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09
RE SD Uke Al Si S V Mn Fe Co Ni	mg/L mg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,21 70,71 0,07 14,14 1,41 0,71 14,14	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6 3 8	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,21 70,71 14,14 1,41 0,71 14,14 0,00 3,54	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 38,60	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46 67	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,21 70,71 0,07 14,14 1,41 0,71 14,14 0,00 3,54 0,07	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,48	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,00	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,21 70,71 0,07 14,14 1,41 0,71 14,14 0,00 3,54 0,07	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565 69	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121 32	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,00	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777 82	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,33 0,33 643,47	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650 54	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1339 36
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 0,71 14,14 0,00 3,54 0,07 353,54 0,07	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,00 707,11	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,10	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7 99
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 0,07 14,14 0,07 3,54 0,07 353,55 0,07	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20	6 0,00 0,71 7,07 0,14 445,48 1,41 113,14 0,13 43,13 0,21 1060,66 1,27 0,00	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99 0,000	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 355,55 2,19 0,00	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Ph	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 0,71 14,14 0,00 3,54 0,07 353,55 0,07 0,000	1 0,00 0,35 21,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,07 0,00	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 113,14 0,13 43,13 0,21 1060,66 1,27 0,000 0,000	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,003	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99 0,00	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 0,002	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 0,71 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,04	1 0,00 0,35 21,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,00	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,000 0,000	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,000	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,000 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,03 0,000	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99 0,00 0,01 0,000	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,00	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 0,00	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,000	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,000	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,000 0,00	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 14,14 14,14 0,00 3,54 0,07 0,00 0,04 0,00 0,04 0,00 84,85	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,000 0,000 56,57	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,000 0,000 0,000	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,26,98	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,00 0,000 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000 0,000	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,03 0,000	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99 0,00 0,01 0,000 0,001	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,00 0,000	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 0,00 601,04	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,000 353,55	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 0,00 0,000 212,13	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,00 2276,88	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 0,00 3019,35
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 14,14 14,14 0,00 3,54 0,07 3,53,55 0,07 0,00 0,04 0,00 84,85 0,00	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,000 0,000 56,57 0,00	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,000 0,000 0,000 0,000	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,27 0,000	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000 254,56 7,07	5 0,000 0,71 0,000 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,000 0,000 0,000 141,42 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000 0,000 148,49 0,000	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,003 0,000 155,56 7,07	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 46,67 0,21 848,53 0,99 0,00 0,01 0,00 0,00 0,00 0,000	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,000 509,12 0,00	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 601,04 14,14	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,000 353,55 7,07	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 0,00 212,13 35,36	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,000 0,000 2276,88 49 50	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 0,00 3019,35 70,71
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 14,14 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,00 0,04 0,00 0,04 0,00 0,24 3 3,00 0,00 0,21 1,00 1,00 1,00 1,00 1,00 1	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,000 0,000 56,57 0,000	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,00 0,000 0,000 226,27 0,000 0,21,21	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,27 0,00 0,296,98 7,07	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000 254,56 7,07 7 07	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,00 0,000 0,000 0,000 141,42 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000 0,000 148,49 0,000 148,49 0,000	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,003 0,000 0,003 0,000 155,56 7,07 16,26	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 46,67 0,21 848,53 0,99 0,00 0,01 0,00 0,00 0,00 0,00 0,00	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,000 509,12 0,000	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 60,00 601,04 14,14 21,21	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,000 353,55 7,07 7,07	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 0,00 212,13 35,36 14,14	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50 226,27	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,000 2276,88 49,50 190,92	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 3019,35 70,71 127,28
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 0,71 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,00 0,04 0,00 0,04 0,00 0,04 0,00 0,21 1,4,141,4,14 1,4,14 1,4,14 1,4,141,4,14 1,4,14 1,4,141,4,14 1,4,	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,000 56,57 0,000 14,14 14 14	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,00 0,000 0,226,27 0,000 212,21 28,28	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,27 0,00 0,296,98 7,07 14,14 9,90	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000 254,56 7,07 7,07 7,07	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,00 0,00 0,000 0,000 0,000 141,42 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000 148,49 0,000 148,49 0,000 7,07 0,717	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,000 707,11 1,34 0,000 0,003 0,000 0155,56 7,07 16,26 0,000	8 0,78 0,85 21,21 565,69 1,77 13,44 120,21 46,67 0,21 848,53 0,99 0,00 0,01 0,00 0,00 219,20 0,00 29,70 0,00	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,00 509,12 0,000 37,48 0,71	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 601,04 14,14 21,21 0,35	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,000 353,55 7,07 7,07 0,14	12 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 0,00 212,13 35,36 14,14 0,64	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50 226,27 1,41	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,000 2276,88 49,50 190,92 3,54	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 3019,35 70,71 127,28 0,71
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,00 84,85 0,000 42,43 63,64 14,14	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,000 56,57 0,000 14,14 14,14 14,14 13,54	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,21 39,60 1,34 1484,92 0,92 0,00 0,00 0,000 226,27 0,000 21,21 28,28 3,54	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,27 0,00 0,296,98 7,07 14,14 9,90	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,000 254,56 7,07 7,07 2,12 4,24	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,00 0,000 0,000 0,000 141,42 0,000 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 43,13 0,21 1060,66 1,27 0,00 0,000 0,000 148,49 0,000 7,07 0,71 3,54	7 5,52 1,41 28,28 0,14 565,69 0,42 50,20 0,00 707,11 1,34 0,00 0,03 0,00 155,56 7,07 16,26 0,000 3,54	8 0,78 0,85 21,21 0,11 565,69 1,77 13,44 120,21 0,25 46,67 0,21 848,53 0,99 0,00 0,01 0,00 0,00 0,00 219,20 0,00 29,70 0,000 29,70 0,000 29,70	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,00 87,68 0,14 777,82 2,55 0,00 87,68 0,14 777,82 2,55 0,00 0,02 0,00 509,12 0,000 37,48 0,71 6,36	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 601,04 14,14 21,21 0,35 4,24	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,000 0,000 353,55 7,07 7,07 7,07 7,07 0,14 3,54	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 0,00 212,13 35,36 14,14 0,64 2,83	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50 226,27 1,41 7,78	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,000 2276,88 49,50 190,92 3,54 9,19	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 3019,35 70,71 127,28 0,71 0,71
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K DOC	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,21 70,71 14,14 1,41 14,14 0,71 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,00 84,85 0,000 42,43 63,64 14,14 0,92	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,00 0,000 56,57 0,000 14,14 14,14 13,54 0,21	2 0,71 1,56 0,00 0,28 205,06 0,71 6,15 98,29 0,71 39,60 1,34 148,492 0,92 0,00 0,00 0,000 226,27 0,000 21,21 28,28 3,54 0,07	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 0,27 0,00 0,26,98 7,07 14,14 9,90 3,54 0,11	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,24 53,74 0,71 1909,19 1,34 0,00 0,03 0,00 0,03 0,00 254,56 7,07 7,07 2,12 4,24 0,01	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,14 989,95 1,20 0,00 0,14 989,95 1,20 0,000 0,14 1,42 0,000 0,707 0,000 7,077 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 0,21 1060,66 1,27 0,00 0,000 1,48,49 0,000 7,07 0,71 3,54 0,07	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,00 707,11 1,34 0,00 0,03 0,00 155,56 7,07 16,26 0,00 3,54 0,07	8 0,78 0,85 21,21 565,69 1,77 13,44 120,21 46,67 0,21 848,53 0,99 0,00 0,01 0,00 219,20 0,00 29,70 0,000 4,24 0,42	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,000 87,68 0,14 777,82 2,55 0,000 87,68 0,14 777,82 2,55 0,000 0,000 0,000 509,12 0,000 37,48 0,71 6,36 0,07	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 0,00 601,04 14,14 21,21 0,35 4,24 0,07	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,00 0,000 353,55 7,07 7,07 0,14 3,54 0,07	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 212,13 35,36 14,14 0,64 2,83 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50 226,27 1,41 7,78 0,18	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,00 2276,88 49,50 190,92 3,54 9,19 0,06	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 0,000 3019,35 70,71 127,28 0,71 0,71 0,04
RE SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K DOC TOT-N	mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µ	0 0,00 0,21 70,71 14,14 1,41 14,14 1,071 14,14 0,00 3,54 0,07 353,55 0,07 0,00 0,04 0,00 84,85 0,00 42,43 63,64 14,14 0,92 0,07	1 0,00 0,35 21,21 0,21 72,12 0,71 0,28 14,85 0,00 4,67 0,71 565,69 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	2 0,71 1,56 0,00 0,28 205,06 0,71 39,60 1,34 1484,92 0,92 0,00 0,00 0,00 0,000 226,27 0,000 21,21 28,28 3,54 0,07 0,21	3 0,00 2,69 0,00 0,21 339,41 0,00 9,19 134,35 6,39 57,28 0,49 2121,32 1,06 0,00 296,98 7,07 14,14 9,90 3,54 0,11 0,06	4 6,36 2,40 7,07 0,28 367,70 5,66 11,10 141,42 0,71 1909,19 1,34 0,00 0,03 0,00 254,56 7,07 7,07 7,07 2,12 4,24 0,01 0,02	5 0,00 0,71 0,00 0,35 346,48 0,71 9,19 98,99 0,00 39,60 0,00 39,60 0,14 989,95 1,20 0,00 0,00 141,42 0,000 7,07 0,000 0,71 0,000	6 0,00 0,71 7,07 0,14 445,48 1,41 11,31 113,14 0,13 0,21 1060,66 1,27 0,00 0,000 148,49 0,000 7,07 0,71 3,54 0,07	7 5,52 1,41 28,28 0,14 565,69 0,42 13,44 134,35 0,42 50,20 0,00 707,11 1,34 0,00 0,03 0,00 155,56 7,07 16,26 0,00 3,54 0,07 0,00	8 0,78 0,85 21,21 565,69 1,77 13,44 120,21 46,67 0,21 848,53 0,99 0,00 0,01 0,00 219,20 0,00 29,70 0,000 4,24 0,42 0,00	9 6,58 2,12 28,28 0,17 989,95 1,84 25,46 226,27 0,000 87,68 0,14 777,82 2,55 0,000 87,68 0,12 0,000 509,12 0,000 37,48 0,71 6,36 0,07 0,04	10 2,33 1,41 0,00 0,11 848,53 0,42 22,63 176,78 0,00 63,64 0,07 424,26 1,84 0,00 0,00 0,00 601,04 14,14 21,21 0,35 4,24 0,07 0,00	11 0,71 1,41 7,07 0,11 989,95 5,44 28,28 190,92 0,00 70,71 0,07 353,55 2,19 0,00 0,00 0,00 353,55 7,07 7,07 0,14 3,54 0,07	12 0,00 0,00 56,57 0,05 565,69 1,13 19,09 106,07 0,00 21,21 0,23 282,84 1,41 0,00 0,00 212,13 35,36 14,14 0,64 2,83 0,00 0,00	29 8,49 4,67 205,06 0,42 4666,90 15,56 48,79 502,05 1,70 183,85 0,38 643,47 3,61 0,00 0,00 0,00 2439,52 49,50 226,27 1,41 7,78 0,18 0,08	30 1,41 2,12 176,78 0,43 1484,92 2,83 4,95 7,07 0,49 113,14 0,28 650,54 5,23 0,00 0,00 0,00 2276,88 49,50 190,92 3,54 9,19 0,06 0,00	31 2,83 2,12 134,35 0,28 4101,22 2,83 19,09 162,63 0,57 190,92 0,33 1329,36 7,99 0,00 0,00 0,00 0,00 3019,35 70,71 127,28 0,71 0,71 0,04 0,00

Tabell F.10 - Analyseresultater (RE) presentert med gjenomsnitt og standardavvik.

RE gj.snitt Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00
Bikarbonat (HCO3)	mg/L	131.57	53.50	81.20	120.60	130.20	144 50	151.00	139.00	141.00	160.50	155 50	178.00	193.50	201.15	196.00	347.00
Cr (Krom)	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr3+	mg/L	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr6+	ug/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Klorid (Cl-)	mg/L	31.15	69.70	66.65	54.65	40.65	24.80	25.50	21.35	20.90	18.00	16.10	14 50	14.05	1.06	6.77	8 87
Fluorid (F-)	mg/L	1.84	1.75	0.87	0.65	1.14	0.87	1.04	1.12	1.22	1.22	0.93	1.27	1.53	2975.00	1.27	1.25
Sulfat (SO4)	mg/L	4215.00	2795.00	2455.00	2115.00	2100.00	1970.00	2030.00	1875.00	2050.00	1790.00	2315.00	2025.00	1960.00	993.50	2530.00	2615.00
Sulfat-S (SO4-S)	mg/L	1405.00	930,50	818.00	705.50	700,50	657,50	676,50	625.00	682,50	596,50	771.50	676.00	652.50	5.00	842.50	870,50
Syrekapasitet pH 4.5	mmol/L	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0,00	0.00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,08	0,00	0.00	0,10	0.22	0.25
Alkalinitet pH 4.5	mmol/L	1,66	0,88	1,33	1,98	2,14	2,38	2,48	2,28	2,31	2,63	2,55	2,92	3,21	4,77	3,21	5,69
Alkalinitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid (CO2)	mg/L	77,05	41,10	61,55	90,70	98,35	108,40	111,80	102,55	107,45	120,95	117,80	133,40	142,50	216,90	151,00	261,00
Karbondioksid-fritt CO2-fritt Karbondioksid	mg/L	4,36	2,51	3,08	3,52	4,40	4,12	2,47	2,18	5,85	5,04	5,37	4,73	2,14	7,11	9,73	10,85
aggressivt CO2-																	
aggressivt	mg/L	2,83	2,30	1,86	1,37	1,55	0,85	0,01	0,00	2,23	1,28	1,00	0,31	0,00	2,13	0,57	0,00
RE SD																	
Uke	-	0	1	2	3	4	5	6	7	8	9	10	11	12	17	18	19
Karbonat (CO3)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,15	0,00		0,00
Bikarbonat (HCO3)	mg/L	34,75	9,19	60,53	74,10	74,67	40,31	49,50	39,60	43,84	78,49	67,18	70,71	58,69	296,77		166,88
Cr (Krom)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr3+	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr6+	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Klorid (Cl-)	mg/L	2,90	10,47	12,23	11,95	4,17	4,38	2,26	2,62	0,57	0,85	0,99	0,71	0,64	0,15	2,50	2,03
Fluorid (F-)	mg/L	0,05	0,52	0,90	0,15	0,59	0,06	0,06	0,51	0,46	0,54	0,09	0,43	0,02	784,89	0,50	0,23
Sulfat (SO4)	mg/L	91,92	49,50	63,64	91,92	14,14	0,00	14,14	63,64	56,57	84,85	63,64	35,36	42,43	263,75	494,97	502,05
Sulfat-S (SO4-S)	mg/L	35,36	16,26	21,21	31,82	4,95	0,71	4,95	19,80	19,09	28,99	21,92	12,73	14,85	2,83	166,17	167,58
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,00	0,00	0,14		0,06
Alkalinitet pH 4.5	mmol/L	0,13	0,15	0,99	1,22	1,22	0,66	0,82	0,65	0,71	1,29	1,10	1,16	1,00	4,86		2,74
Alkalinitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
Karbondioksid (CO2) Karbondioksid-fritt	mg/L	5,87	6,36	43,63	54,16	54,66	29,13	37,05	31,75	30,48	58,05	51,19	53,17	45,96	216,52		117,38
CO2-fritt Karbondioksid-	mg/L	0,06	0,37	0,06	0,44	0,81	0,40	0,81	3,08	1,12	1,15	2,31	2,08	3,02	2,71		2,76
aggressivt CO2-	1																
aggressivt	mg/L	0,37	0,48	1,58	1,93	2,19	1,20	0,01	0,00	3,15	1,80	1,41	0,44	0,00	3,01		0,00

SL

Figur F.18 - Analyseresultater Na, K, Ca, Mg [mg/L].

Figur F.19 - Analyseresultater Mg og Si [mg/L].

Figur F.20 - Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

Figur F.21 - Analyseresultater Mo, As, Cr [mg/L].

Figur F.22 - Analyseresultater SO4 og U [mg/L].

Figur F.23 - Analyseresultater DOC og Tot- N [mg/L].

Tabell F.11 - Analyseresultater SL1.

SL1 Uke		0	1	2	3	4	5	6	7		8	9	10	11	1	2	29	30	31
Al	mg/L	0.012	0.0032	0	0	6.0	0	0	10	,	15	10	16	31	1	6	19	14	16
Si	mg/L	10	13	15	16	16	17	17	16		16	17	17	17	1	7	9.8	11	13
S	mg/L	2000	1300	1100	970	860	800	760	670		540	600	580	570	55	50	670	580	570
v	шø/L	3.8	3.8	3.9	3.6	3.4	3.2	3	2.4	1	2.1	2.4	2.3	2.0	1	9	1.1	0.95	0.96
Mn	ug/L	1300	1400	1800	2200	2900	3600	4100	400	0 4	500	4800	5000	5100	52	00	190	980	1100
Fe	mg/L	13	13	11	12	22	15	13	4.9)	4.9	5.8	5.8	6.5	5	7	15	14	12
Co	ш <u>а</u> /Г.	98	78	90	100	110	130	140	130	D 1	40	130	140	130	13	30	7.9	22	18
Ni	µg/L	1700	1400	1600	1700	1800	2000	2000	180	0 1	800	1800	1700	1700	16	00	950	1000	1300
Cu	110/L	43	0	2.8	3	3.2	26	33	4 9	,	3 2	2.5	2.5	0	0)	2.0	83	33
Zn	μg/L	1000	1000	1400	1500	1500	1800	1800	160	0 1	600	1600	1500	1500	15	00	580	680	920
As	μg/L.	27	27	24	2.2	21	21	19	1 7	, 1	14	19	14	14	1	3	13	0.90	1.0
Mo	μg/L μg/Ι	3100	3900	3700	3000	3100	2500	2300	190	0 1	900	2000	1800	1800	17	00	400	600	580
Cd	μg/L	54	45	51	53	54	63	63	57	, 1	59	60	58	59	5	8	28	32	41
Hø	μg/L	54	45	51	55	54	05	05	57		57	00	50	57	5	0	20	52	41
Ph	μg/L	0.11	0.046	0	0	0.024	0.043	0.022	0.2	4 0	10	0	0	0	0	`	0	0	0
Th	μg/L μg/Ι	0,11	0,040	0	0	0,024	0,045	0,022	0,2		0	0	0	0	0	ý	0	0	0
U	μg/L μg/L	640	820	730	790	840	800	790	630		540	770	720	720	72	, 20	150	260	340
C°	mg/L	470	500	520	540	560	580	600	590	n (510	620	640	640	66	50	550	580	600
Mσ	mg/L	1100	690	550	460	370	310	260	210		170	130	110	95	8	2	250	160	150
Na	mg/L	160	84	45	26	18	14	12	210		75	66	6.0	52	5	0	18	12	07
V	mg/L	76	59	52	52	10	45	41	26	,	25	27	24	22	2,	2	10	12	50
N DOC	mg/L	5.2	24	19	15	1 2	45	1 1	30	·	<i>55</i>	0.0	0.0	07	0	5 7	45	4/	0.82
DOC	ing/L	5,2	2,4	1,0	1,5	1,5	1,1	1,1	1		0,9	0,0	0,0	0,7	0,	, /	1,5	0,95	0,82
TOT- N	mg/L	1,1	0,16	0,033	0,006	0	0	0		0	0	0,022	0,022	0,01	8 0,	016	0	0	0
SL1																			
Uke					0 1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)		mg/L		0 0	0	0	0	0	0	0	0	0	0	0	2,21	0	0 0	0
Bikarbonat	(HCO3))	mg/L		234 30	58 389	402	423	404	405	376	368	300	336	320	300	119	205	271
Cr (Krom)			mg/L		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr3+			mg/L		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
Cr6+			μg/L		0 0	0	0	0	0	0	0	0	0	0	0	0	(0	0
Klorid (Cl-	.)		mg/L		27,9 61	8,6 49	37	37,1	27,9	23,6	19,1	18,9	14,1	13,4	14,3	12,8	1,74	5	8,97
Fluorid (F-	-) 		mg/L		3,33 3,	27 2,06	1,35	2,02	1,86	1,45	1,72	1,79	1,67	1,37	1,7	1,69	2230	1,91	1,46
Sulfat S (S)	4) (04 S)		mg/L		6280 40	3420	2670	2660	2400	2340	2060	2200	1650	2060	1790	1730	744	2160	1990
Surekanaci	tet nH 4	5	mmol	ι/π	2090 13	530 1140	890	887	800	0	088	733	550	080	598	5/8		/21	600
Syrekanaei	tet pH 8	3	mmol	/L	031 0	101 0	0 402	0 300	0 327	0.262	0 222	0 225	0 220	0 377	0 272	0 192		0 0 0 66	0 3/10
Alkalinitet	pH 4.5	-	mmol	/L	3,84 K	03 637	6 59	6.94	6.63	6.64	6 17	6.03	4.91	5.5	5.24	5	1 04	3 3 36	4 44
Alkalinitet	pH 8.3		mmol	/L	0 0	0,57	0	0	0	0,04	0,17	0,05	0	0	0	0	1,90	, 3,30	-,
Karbondiol	ksid (CO	2)	mg/L		183 2	74 285	308	319	306	304	281	280	230	259	243	226	91.4	160	211
Karbondiol	ksid-fritt	CO2-fri	t mg/L		13,6 8.	4 4,22	17,7	13,6	14,4	12,4	9,77	14,3	14,5	16,6	12	8,05	5.37	11.7	15,4
Karbondiol	ksid-agg	ressivt	-		,	,			,		- -							1.	
CO2-aggre	ssivt		mg/L		0 0	0	0	0	0	0	0	0	0	0	0	0	2,89	1,05	0

SL2 Uke		0	1		2	3	4	5	6	7		8	9	10	11	12	29	30	31
Al	mg/L	0.0064	0.0039		0	0	0	0	0	35		9.1	16	14	18	8.6	22	16	15
Si	mg/L	9.6	13	1	14	16	17	17	18	17	,	17	18	18	18	18	9.6	11	12
s	mg/L	1800	1300	1	100	960	850	780	750	69(n	650	610	580	570	560	620	580	570
v	ug/L	3.6	3.8	1	100	4 1	3.8	3.4	3.1	27	,	24	24	23	21	1.0	0.81	0.75	0.83
Mn	µg/L	1000	1400	15	800	2600	2800	3300	3800	380	0	3800	3900	4000	4100	4200	1000	2000	3400
Fe	μg/L mg/I	15	1400		12	17	14	12	14	60	······	68	60	5.8	0 3	5.4	15	14	12
Co	ug/L	73	66		72	02	05	120	130	140	'n	140	140	130	130	130	41	50	66
Ni	µg/L	1400	1200	13	300	1500	1500	1900	2000	200	ю.	2000	1900	1900	1800	1800	1700	1700	1700
Cu	µg/L	2 3	0	1.	0	3.5	37	3 1	6.2	57	, 0,	44	5.5	2.0	2.6	3.5	2.6	2.9	2.9
Zn	μg/L μg/I	800	820	10	000	1300	1400	1800	1900	190	0	1800	1800	1700	1700	1700	830	930	950
As	µg/L	2.6	2.5	2	26	2.5	2.2	2.0	2.0	1.90	2	16	16	15	13	13	0.65	0.74	0.90
Mo	μg/L μg/Ι	2,0	2,5	2'	700	2,5	2,2	2,0	2400	210	'n	1000	2000	1000	1700	1600	500	760	840
Cd	µg/L	46	30		20	44	46	58	62	65		64	62	62	62	60	20	/00	45
На	µg/L	40	57		,,		40	50	02	05		04	02	02	02	00	57	45	45
Dh	µg/L	0.072	0.034		0	0	0	0	0.081	0.2	2	0.18	0.04	0	0	0	0	0	0
Th	µg/L µg/I	0,072	0,054		0	0	0	0	0,001	0,2.	2	0,10	0,04	0	0	0.002	1 0	0	0
III II	µg/L	510	870	8	70	900	880	790	820	73(n	740	770	730	710	710	220	350	420
Co.	μg/L mg/I	470	510	5	10	540	560	570	610	620	n	620	630	640	650	660	570	500	420 600
Ca Ma	mg/L	900	650	5	50	450	360	300	260	210	n	180	150	120	100	000	180	160	160
Na	mg/L	130	82		57	32	10	14	12	0 1	l I	0.2	75	6.0	6.1	57	21	14	11
I Va	mg/L	68	55		52	50	15	14	12	20		37	20	24	22	22	44	50	11
N DOC	mg/L	4.2	25	1	18	15	12	1	42	0.0	,	00	0.8	0.8	07	07	0.0	0.72	40
	шg/L	4,2	2,5		.,0	1,5	1,2	1	1	0,9	, 	0,9	0,0	0,8	0,7	0,7	0,9	0,72	0,05
TOT- N	mg/L	0,85	0,24	0,	062	0,006	0	0	0	0		0	0,016	0,019	0,012	0,01	0	0	0
SL2									_										
Uke			~	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat ((CO3)	n N	ig/L	0	0	0	0	0	0	0	0	0	0	0	0	6,62	0	0	0
Bikarbona Cr (Krom)	at (HCO3) n	ig/L	174	365	397	451	467	449	456	441	427	430	384	369	337	196	236	299
Cr3+	,		ig/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+		и и	g/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Klorid (Cl	l-)	m	g/L	21	64.8	39.4	27.5	21.7	12.9	13.9	10,1	11	12.8	12.1	12	11.2	2.22	5	21.5
Fluorid (F-	-)	m	ig/L	3,34	3,35	2,3	1,26	2,05	1,85	1,86	1,68	1,74	1,68	1,32	1,66	1,67	2090	1,86	2,12
Sulfat (SO	04)	m	ng/L	5030	3960	3440	2620	2590	2370	2240	2050	2160	1770	2070	1790	1750	697	2150	2450
Sulfat-S (S	SO4-S)	n	ıg/L	1680	1320	1150	874	863	789	745	684	719	589	690	598	584	2	716	816
Syrekapas	sitet pH 4	,5 m	mol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapas	sitet pH 8	,3 п	mol/L	0,306	0,179	0	0,316	0,35	0,307	0,248	0,303	0,308	0,314	0,306	0,305	0	0,202),327	0,294
Alkalinitet	t pH 4,5	n	imol/L	2,85	5,98	6,51	7,39	7,65	7,37	7,47	7,23	7	7,04	6,29	6,05	5,75	3,2	3,86	4,9
Alkalinitet	t pH 8,3	п	mol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karbondio	oksid-frit	52) m t	lg/L	139	271	291	339	352	338	340	332	322	324	290	280	253	150	184	228
CO2-fritt		m	ıg/L	13,5	7,88	4,88	13,9	15,4	13,5	10,9	13,3	13,6	13,8	13,5	13,4	4,58	8,89	14,4	12,9
Karbondio	oksid-																		
aggressivt		m	ıg/L	5,44	0	0	0	0	0	0	0	0	0	0	0	0	0,01	0	0

Tabell F.12 - Analyseresultater SL2.

SL gj.snitt Uke	t	0	1	,	3	4	5	6	7	8	0	10	11	12	29	30	31
A1	ma/I	0.01	0.00		0.00	2.00	0.00	0.00	22.60	12.05	12.00	10	24.60	12 20	20.60	15.00	16.60
c;	mg/L	0,01	0,00	0,00	0,00	3,00	0,00	0,00	22,50	12,05	13,00	15,00	24,50	12,30	20,50	15,00	15,50
S	mg/L	9,80	13,00	14,50	16,00	16,50	17,00	17,50	10,50	16,50	17,50	17,50	570.00	17,50	9,70	580.00	12,50
v	ng/L	1900,00	1300,00	2.05	965,00	855,00	790,00	755,00	080,00	045,00	605,00	380,00	370,00	555,00	045,00	580,00	570,00
Mn	µg/L	3,70	3,80	3,95	3,85	3,00	3,30	3,05	2,55	2,25	4250.00	2,50	2,05	1,90	0,90	0,85	2250.00
Fe	mg/L	1150,00	1400,00	11.60	2400,00	2850,00	12 50	12 50	5900,00	4150,00	4350,00	4500,00	4000,00	4/00,00	15.00	1490,00	12.00
Co	ug/L	85 50	72.00	81.00	96.00	102 50	125.00	135.00	135.00	140.00	135.00	135.00	130.00	130.00	24.45	36.00	42.00
Ni	µg/L	1550.00	1300.00	1450.00	1600.00	1650.00	1950.00	2000.00	1900.00	1900.00	1850.00	1800.00	1750.00	1700.00	1325.00	1350.00	1500.00
Cu	ug/L	3,30	0.00	2.85	3.25	3.45	2.85	4.75	5.30	3.80	4.00	2.70	1.30	1.75	2.30	5.60	3.10
Zn	μg/L	900.00	910.00	1200.00	1400.00	1450.00	1800.00	1850.00	1750.00	1700.00	1700.00	1600.00	1600.00	1600.00	705.00	805.00	935.00
As	μg/L	2,65	2,60	2,50	2,35	2,15	2,05	1,95	1,75	1,50	1,75	1,45	1,35	1,30	0,98	0,82	0,95
Мо	μg/L	2950,00	3850,00	3700,00	3300,00	3050,00	2550,00	2350,00	2000,00	1900,00	2000,00	1850,00	1750,00	1650,00	495,00	680,00	710,00
Cd	μg/L	50,00	42,00	45,00	48,50	50,00	60,50	62,50	61,00	61,50	61,00	60,00	60,50	59,00	33,50	37,50	43,00
Hg	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pb	μg/L	0,09	0,04	0,00	0,00	0,01	0,02	0,05	0,23	0,19	0,02	0,00	0,00	0,00	0,00	0,00	0,00
Th	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U	μg/L	575,00	845,00	800,00	845,00	860,00	795,00	805,00	680,00	690,00	770,00	725,00	715,00	715,00	185,00	305,00	380,00
Ca	mg/L	470,00	505,00	515,00	540,00	560,00	575,00	605,00	605,00	615,00	625,00	640,00	645,00	660,00	560,00	585,00	600,00
Mg	mg/L	1000,00	670,00	550,00	455,00	365,00	305,00	260,00	210,00	175,00	140,00	115,00	97,50	87,50	215,00	160,00	155,00
Na	mg/L	145,00	83,00	51,00	29,00	18,50	14,00	12,00	8,80	8,35	7,05	6,45	5,65	5,35	19,50	13,00	10,35
K	mg/L	72,00	56,50	52,50	51,00	44,50	45,00	41,50	37,50	36,00	38,00	34,00	33,00	33,00	43,50	48,50	49,00
DOC	mg/L	4,70	2,45	1,80	1,50	1,25	1,05	1,05	0,95	0,90	0,80	0,80	0,70	0,70	1,10	0,83	0,83
TOT- N	mg/L	0,98	0,20	0,05	0,01	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,02	0,01	0,00	0,00	0,00
OT OT																	
SL SD		0	1	2	2	4	5	6	7		0	10	11	12	20	20	21
SL SD Uke	ma/I	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
SL SD Uke Al	mg/L	0,00	0,00	2 0,00	3 0,00	4,24	5 0,00	6 0,00	17,68	8 4,17	9 4,24	10 1,41	9,19	12 5,23	29 2,12	30	31 0,71
SL SD Uke Al Si	mg/L mg/L	0,00	0,00 0,00	2 0,00 0,71	3 0,00 0,00	4,24 0,71	5 0,00 0,00	6 0,00 0,71	7 17,68 0,71	8 4,17 0,71	9 4,24 0,71	10 1,41 0,71	11 9,19 0,71	12 5,23 0,71	29 2,12 0,14	30 1,41 0,00	31 0,71 0,71
SL SD Uke Al Si S	mg/L mg/L mg/L	0,00 0,28 141,42	0,00 0,00 0,00	2 0,00 0,71 0,00	3 0,00 0,00 7,07	4 4,24 0,71 7,07	5 0,00 0,00 14,14	6 0,00 0,71 7,07	7 17,68 0,71 14,14	8 4,17 0,71 7,07	9 4,24 0,71 7,07	10 1,41 0,71 0,00	9,19 0,71 0,00	12 5,23 0,71 7,07	29 2,12 0,14 35,36	30 1,41 0,00 0,00	31 0,71 0,71 0,00
SL SD Uke Al Si S V Mn	mg/L mg/L μg/L μg/L	0,00 0,28 141,42 0,14	1 0,00 0,00 0,00 0,00	2 0,00 0,71 0,00 0,07	3 0,00 0,00 7,07 0,35	4,24 0,71 7,07 0,28	5 0,00 0,00 14,14 0,14	6 0,00 0,71 7,07 0,07	7 17,68 0,71 14,14 0,21	8 4,17 0,71 7,07 0,21	9 4,24 0,71 7,07 0,00	10 1,41 0,71 0,00 0,00	9,19 0,71 0,00 0,07	12 5,23 0,71 7,07 0,00	29 2,12 0,14 35,36 0,21	30 1,41 0,00 0,00 0,14	31 0,71 0,71 0,00 0,09
SL SD Uke Al Si S V Mn Fo	mg/L mg/L μg/L μg/L mg/L	0 0,00 0,28 141,42 0,14 212,13	1 0,00 0,00 0,00 0,00 0,00	2 0,00 0,71 0,00 0,07 0,00	3 0,00 0,00 7,07 0,35 282,84	4 4,24 0,71 7,07 0,28 70,71	5 0,00 0,00 14,14 0,14 212,13	6 0,00 0,71 7,07 0,07 212,13	7 17,68 0,71 14,14 0,21 141,42	8 4,17 0,71 7,07 0,21 494,97	9 4,24 0,71 7,07 0,00 636,40	10 1,41 0,71 0,00 0,00 707,11	11 9,19 0,71 0,00 0,07 707,11	12 5,23 0,71 7,07 0,00 707,11	29 2,12 0,14 35,36 0,21 572,76	30 1,41 0,00 0,00 0,14 721,25	31 0,71 0,00 0,09 1626,35
SL SD Uke Al Si S V Mn Fe Co	mg/L mg/L μg/L μg/L mg/L	0 0,00 0,28 141,42 0,14 212,13 1,41	1 0,00 0,00 0,00 0,00 0,00 1,41	2 0,00 0,71 0,00 0,07 0,00 0,71	3 0,00 0,00 7,07 0,35 282,84 3,54	4 4,24 0,71 7,07 0,28 70,71 5,66	5 0,00 0,00 14,14 0,14 212,13 2,12	6 0,00 0,71 7,07 0,07 212,13 0,71	7 17,68 0,71 14,14 0,21 141,42 0,78	8 4,17 0,71 7,07 0,21 494,97 1,34	9 4,24 0,71 7,07 0,00 636,40 0,14	10 1,41 0,71 0,00 0,00 707,11 0,00	11 9,19 0,71 0,00 0,07 707,11 1,98	12 5,23 0,71 7,07 0,00 707,11 0,21	29 2,12 0,14 35,36 0,21 572,76 0,00	30 1,41 0,00 0,00 0,14 721,25 0,00	31 0,71 0,00 0,09 1626,35 0,00
SL SD Uke Al Si S V Mn Fe Co Ni	mg/L mg/L μg/L μg/L mg/L μg/L	0,00 0,28 141,42 0,14 212,13 1,41 17,68	1 0,00 0,00 0,00 0,00 1,41 8,49	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73	3 0,00 0,00 7,07 0,35 282,84 3,54 5,66	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61	5 0,00 0,00 14,14 0,14 212,13 2,12 7,07	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07	10 1,41 0,00 0,00 707,11 0,00 7,07	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41	30 1,41 0,00 0,00 0,14 721,25 0,00 19,80	31 0,71 0,00 0,09 1626,35 0,00 33,94
SL SD Uke Al Si S V Mn Fe Co Ni Cu	mg/L mg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13	1 0,00 0,00 0,00 0,00 1,41 8,49 141,42	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73 212,13	3 0,00 0,00 7,07 0,35 282,84 3,54 5,66 141,42	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13	5 0,00 0,00 14,14 0,14 212,13 2,12 7,07 70,71	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71	10 1,41 0,71 0,00 0,00 707,11 0,00 7,07 141,42	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33	30 1,41 0,00 0,00 0,14 721,25 0,00 19,80 494,97	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn	mg/L mg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73 212,13 0,07	3 0,00 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35	5 0,00 0,00 14,14 0,14 212,13 2,12 7,07 70,71 0,35	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42	30 1,41 0,00 0,00 0,14 721,25 0,00 19,80 494,97 3,82	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn Ac	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73 212,13 0,07 282,84	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71	5 0,00 0,00 14,14 0,14 212,13 2,12 7,07 70,71 0,35 0,00	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Ma	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07	1 0,00 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73 212,13 0,07 282,84 0,14	3 0,00 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 2,13	1 0,00 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71	2 0,00 0,71 0,00 0,07 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21 0,00 	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,07	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35	30 1,41 0,00 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 77	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24	2 0,00 0,71 0,00 0,77 12,73 212,13 0,07 282,84 0,14 0,00 8,49	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66	5 0,00 14,14 0,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21 0,00 1,41	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78	30 1,41 0,00 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00	5 0,00 14,14 0,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,71 0,71 0,71	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21 0,00 1,41 0,00	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12 0,00	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02	5 0,00 14,14 0,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,71 0,71 0,71 0,00 0,04	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,14 0,00 3,54 0,00 0,01	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,07 70,71 2,83 0,00 0,00 0,00	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12 0,00 0,000	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,00	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,00	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00 0,00	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,71 0,71 0,71 0,01	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,14 0,00 3,54 0,00 0,01 0,00	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 70,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,07 70,71 2,83 0,00 0,00 0,00	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12 0,00 0,000 0,000	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,000 0,000	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,00	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,00
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Co	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 0,01 0,00 35,36	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00 0,00 0,00	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,21 141,42 0,21 141,42 0,21 142,26 6,36 0,00 0,00 0,00 0,000 7,7,78	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 28,28	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 0,03 0,00 7,07	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71 0,00 0,04 0,00 2,1,21	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 70,71	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00 0,00	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 0,00 7,07	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 0,00 0,00 7,07	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,000 70,71 1,41 0,00 0,000 0,000 7,07	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000 49,50	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,00 0,00 63,64	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,000 56,57
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 17,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92 0,00	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 35,36 7,07	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00 0,00 7,778 0,00	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 28,28 0,00	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 0,03 0,00 7,07 7,07	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71 0,00 0,04 0,00 2,1,21 7,07	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71 21,21	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 70,71 7,07	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00 0,000 7,07	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 7,07 0,00	11 9,19 0,71 0,00 0,07 707,11 1,98 0,00 70,71 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 0,00 7,07 7,07	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,000 70,71 1,41 0,00 0,000 7,07 0,000	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000 49,50 14,14	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,00 63,64 7,07	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,00 56,57 0,00
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 141,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92 0,000 141,42	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 35,36 7,07 28,28	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 8,49 0,00 0,00 0,00 98,99 7,07 0,000	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00 0,00 0,00 7,778 0,00 7,07	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 0,02 0,00 28,28 0,00 28,28 0,00 7,07	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 0,03 0,00 7,07 7,07 7,07	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71 0,00 0,04 0,00 21,21 7,07 0,00	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71 21,21 0,00	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 0,01 0,00 70,71 7,07 7,07	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00 0,000 7,07 14,14	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 7,07 0,00 7,07	11 9,19 0,71 0,00 0,07 707,11 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 0,00 7,07 7,07 3,54	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,00 0,00 7,07 0,000 7,78	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000 49,50 14,14 49,50	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,00 63,64 7,07 0,00	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,000 56,57 0,000 7,07
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 141,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92 0,000 141,42 21,21	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 35,36 7,07 28,28 1,41	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00 0,00 98,99 7,07 0,00 8,49	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00 0,00 7,778 0,00 7,07 4,24	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 0,02 0,00 28,28 0,00 28,28 0,00 7,07	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 7,07 7,07 7,07 7,07 0,00	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05 70,71 0,71 0,71 0,07 70,71 0,00 0,044 0,000 21,21 7,07 0,00 21,21 7,07 0,00 0,00	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71 21,21 0,00 0,42	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 0,01 0,00 70,71 7,07 7,07	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00 0,00 7,07 14,14 0,64	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 0,00 7,07 141,42 0,28 141,42 0,07 0,00 0,00 0,00 1,00 0,00 1,00 0,00 1,00 0,00 1,00 0,00 1,00 0,00 1,00 0,00 1,00 1,00 1,00 0,00 1,00 1,00 1,00 0,00 0,00 1,00 1,00 1,00 0,00 0,00 1,00 1,00 0,00 0,00 0,00 0,000 0,	11 9,19 0,71 0,00 0,07 707,11 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 0,00 0,00 7,07 7,07 3,54 0,64	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,00 0,00 7,07 0,000 7,78 0,49	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000 49,50 14,14 49,50 2,12	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,000 63,64 7,07 0,000 1,41	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,00 56,57 0,00 7,07 0,92
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 141,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92 0,00 141,42 21,21 5,66	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 35,36 7,07 28,28 1,41 2,12	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00 98,99 7,07 0,00 8,49 0,01	3 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,00 0,00 0,00 7,778 0,00 7,07 4,24 1,41	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 28,28 0,00 28,28 0,00 7,07 20,71 0,71 0,71	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 7,07 7,07 7,07 7,07 0,00 0,00	6 0,00 0,71 7,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71 0,00 0,04 0,00 21,21 7,07 0,00 0,00 0,00 0,00	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71 21,21 0,00 0,42 2,12	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 70,71 7,07 7,07 1,20 1,41	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,03 0,00 0,00 7,07 14,14 0,64 1,41	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 7,07 0,00 7,07 0,00 7,07 0,64 0,00	11 9,19 0,71 0,00 0,07 707,11 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 0,00 7,07 7,07 3,54 0,64 0,00	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,00 0,00 7,07 0,00 7,78 0,49 0,00	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,00 0,000 0,000 49,50 14,14 49,50 2,12 0,71	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,000 0,000 63,64 7,07 0,000 1,41 2,12	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,000 56,57 0,000 7,07 0,92 1,41
SL SD Uke Al Si S V Mn Fe Co Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K DOC	mg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	0 0,00 0,28 141,42 0,14 212,13 1,41 141,68 212,13 1,41 141,42 0,07 212,13 5,66 0,00 0,03 0,00 91,92 0,00 141,42 21,21 5,66 0,71	1 0,00 0,00 0,00 1,41 8,49 141,42 0,00 127,28 0,14 70,71 4,24 0,00 0,01 0,00 35,36 7,07 28,28 1,41 2,12 0,07	2 0,00 0,71 0,00 0,71 12,73 212,13 0,07 282,84 0,14 0,00 8,49 0,00 0,00 0,00 98,99 7,07 0,00 8,49 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,000 0,000000	3 0,00 0,00 7,07 0,35 282,84 3,54 5,66 141,42 0,35 141,42 0,21 424,26 6,36 0,000 0,000 77,78 0,000 7,07 4,24 1,41 0,00	4 4,24 0,71 7,07 0,28 70,71 5,66 10,61 212,13 0,35 70,71 0,07 70,71 5,66 0,00 0,02 0,00 28,28 0,00 28,28 0,00 7,07 20,71 0,71 0,71	5 0,00 14,14 212,13 2,12 7,07 70,71 0,35 0,00 0,07 70,71 3,54 0,00 0,03 0,00 7,07 7,07 7,07 7,07 7,07	6 0,00 0,71 7,07 0,07 212,13 0,71 7,07 0,00 2,05 70,71 0,07 70,71 0,07 70,71 0,00 0,04 0,00 21,21 7,07 0,00 0,00 0,00 0,01 0,07	7 17,68 0,71 14,14 0,21 141,42 0,78 7,07 141,42 0,57 212,13 0,07 141,42 5,66 0,00 0,01 0,00 70,71 21,21 0,00 0,42 2,12 0,07	8 4,17 0,71 7,07 0,21 494,97 1,34 0,00 141,42 0,85 141,42 0,14 0,00 3,54 0,00 0,01 0,00 70,71 7,07 7,07 1,20 1,41 0,00	9 4,24 0,71 7,07 0,00 636,40 0,14 7,07 10,71 2,12 141,42 0,21 0,00 1,41 0,00 0,00 7,07 14,14 0,64 1,41 0,00	10 1,41 0,71 0,00 707,11 0,00 7,07 141,42 0,28 141,42 0,07 70,71 2,83 0,00 0,00 0,00 7,07 0,64 0,00 0,00	11 9,19 0,71 0,00 0,07 707,11 1,84 141,42 0,07 70,71 2,12 0,00 0,00 0,00 7,07 7,07 3,54 0,64 0,00 0,00	12 5,23 0,71 7,07 0,00 707,11 0,21 0,00 141,42 2,47 141,42 0,00 70,71 1,41 0,00 0,00 0,00 7,07 0,00 7,78 0,49 0,000 0,000	29 2,12 0,14 35,36 0,21 572,76 0,00 23,41 530,33 0,42 176,78 0,46 134,35 7,78 0,46 134,35 7,78 0,00 0,000 0,000 49,500 14,14 49,500 2,12 0,711 0,28	30 1,41 0,00 0,14 721,25 0,00 19,80 494,97 3,82 176,78 0,11 113,14 7,78 0,00 0,00 0,000 63,64 7,07 0,000 1,41 2,12 0,15	31 0,71 0,00 0,09 1626,35 0,00 33,94 282,84 0,28 21,21 0,07 183,85 2,83 0,00 0,00 0,000 56,57 0,000 7,07 0,92 1,41 0,01

Tabell F.13 - Analyseresultater (SL) presentert med gjenomsnitt og standardavvik.

SL gj.snitt																	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	4,42	0,00	0,00	0,00
Bikarbonat (HCO3)	mg/L	204,00	366,50	393,00	426,50	445,00	426,50	430,50	408,50	397,50	365,00	360,00	344,50	318,50	157,50	220,50	285,00
Cr (Krom)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr3+	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr6+	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Klorid (Cl-)	mg/L	24,45	66,70	44,20	32,25	29,40	20,40	18,75	14,60	14,95	13,45	12,75	13,15	12,00	1,98	5,00	15,24
Fluorid (F-)	mg/L	3,34	3,31	2,18	1,31	2,04	1,86	1,66	1,70	1,77	1,68	1,35	1,68	1,68	2160,00	1,89	1,79
Sulfat (SO4)	mg/L	5655,00	3980,00	3430,00	2645,00	2625,00	2385,00	2290,00	2055,00	2180,00	1710,00	2065,00	1790,00	1740,00	720,50	2155,00	2220,00
Sulfat-S (SO4-S)	mg/L	1885,00	1325,00	1145,00	882,00	875,00	794,50	762,00	686,00	726,00	569,50	688,00	598,00	581,00	1,50	718,50	740,50
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,31	0,19	0,00	0,36	0,33	0,32	0,27	0,26	0,32	0,32	0,34	0,29	0,09	0,10	0,30	0,32
Alkalinitet pH 4.5	mmol/L	3,35	6,01	6,44	6,99	7,30	7,00	7,06	6,70	6,52	5,98	5,90	5,65	5,38	2,58	3,61	4,67
Alkalinitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid (CO2)	mg/L	161,00	272,50	288,00	323,50	335,50	322,00	322,00	306,50	301,00	277,00	274,50	261,50	239,50	120,75	172,00	219,50
Karbondioksid-fritt CO2-	~																
fritt Karbondioksid agaressivt	mg/L	13,55	8,14	4,55	15,80	14,50	13,95	11,65	11,54	13,95	14,15	15,05	12,70	6,32	7,13	13,05	14,15
CO2-aggressivt	mg/L	2,72	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,53	0,00

SL SD																	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,12	0,00	0,00	0,00
Bikarbonat (HCO3)	mg/L	42,43	2,12	5,66	34,65	31,11	31,82	36,06	45,96	41,72	91,92	33,94	34,65	26,16	54,45	21,92	19,80
Cr (Krom)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr3+	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr6+	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Klorid (Cl-)	mg/L	4,88	2,69	6,79	6,72	10,89	10,61	6,86	6,36	5,59	0,92	0,92	1,63	1,13	0,34	0,00	8,86
Fluorid (F-)	mg/L	0,01	0,06	0,17	0,06	0,02	0,01	0,29	0,03	0,04	0,01	0,04	0,03	0,01	98,99	0,04	0,47
Sulfat (SO4)	mg/L	883,88	28,28	14,14	35,36	49,50	21,21	70,71	7,07	28,28	84,85	7,07	0,00	14,14	33,23	7,07	325,27
Sulfat-S (SO4-S)	mg/L	289,91	7,07	7,07	11,31	16,97	7,78	24,04	2,83	9,90	27,58	2,83	0,00	4,24	0,71	3,54	106,77
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,01	0,00	0,06	0,03	0,01	0,02	0,06	0,01	0,01	0,05	0,02	0,13	0,14	0,04	0,04
Alkalinitet pH 4.5	mmol/L	0,70	0,04	0,10	0,57	0,50	0,52	0,59	0,75	0,69	1,51	0,56	0,57	0,53	0,88	0,35	0,33
Alkalinitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid (CO2)	mg/L	31,11	2,12	4,24	21,92	23,33	22,63	25,46	36,06	29,70	66,47	21,92	26,16	19,09	41,37	16,97	12,02
Karbondioksid-fritt CO2-fritt	mg/L	0,07	0,37	0,47	2,69	1,27	0,64	1,06	2,50	0,49	0,49	2,19	0,99	2,45	2,49	1,91	1,77
Karbondioksid-aggressivt CO2-	a																
aggressivt	mg/L	3,85	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,04	0,74	0,00

B

Figur F.24 - Analyseresultater Na, K, Ca, Mg [mg/L].

Figur F.25 - Analyseresultater Mg, Si [mg/L].

Figur F.26 - Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

Figur F.27 - Analyseresultater Mo, As, Cr [mg/L].

Figur F.28 - Analyseresultater SO4 og U [mg/L].

Figur F.29 - Analyseresultater DOC og Tot-N [mg/L].

Tabell F.14 - Analyseresultater B1.

B1 Uke		0	1	2	3	4	5	6	7		8	9	10	11	12	2	9	30	31
Al	mg/L	0.18	0.24	0.16	0.15	0.41	130	380	130) 3	90	390	370	330	430	8	7	740	780
Si	mg/L	1.2	1.9	1.5	1.3	1.1	0.93	0.78	0.5	3 0	25	0.29	0.48	0.41	0.78	1	7	1.3	1.2
S	mg/L	8.8	1.4	0.95	0.91	1.1	0.91	0.98	1	0	99	1	1.1	1.0	1.1	1	6	10	8.5
v	шg/L	0.14	0.065	0,25	0.053	0.049	0,011	0.014	0.02	6 0	044	0.043	0 0094	0.032	0		100	0.13	0.12
Mn	μg/L μg/L	0,14	0,005	0.15	0,055	0,049	0,011	0,014	0.02	80, 80	25	0.1	0,0074	0,052	0	0,0	0	0,15	0,12
Fe	mg/L	0.012	0 011	0.014	17	28	14	15	15		,20 74	15	61	4 2	5.4	0	6	10	23
Co	ug/L	2.1	0.94	0.75	0.65	0.57	0.48	0.38	0.3	. 0	45	03	0.22	0.17	0.40	1	,0	0.32	0.38
Ni	μg/L	7.2	33	2.8	5.5	53	33	2.2	3.5		,45	0	0,22	0,17	0,40	, 1 3	,0 0	0	0,50
Cu	μg/L μg/Ι	17	13	10	5.0	3.4	5.8	4.0	3.7		2.0	3	4.6	1.0	3.8		,,, D	6.5	3 1
Zn	μg/L μg/Ι	43	65	11	10	23	21	21	10	-	2,9 21	21	26	23	3,0	0	5	11	11
Ac	µg/L	4,5	0,5	0	0.062	25	0.05	0.020	0.04	• •	0	21	20	25	35	9	,5	0.14	0.10
As Mo	µg/L	0,41	15	14	12	12	0,05	12	0,04	•	12	12	12	11	14	0,0	4	0,14	0,10
M0	µg/L	3/	15	14	13	15	12	12	12	2 0 0	12	12	13		14	4	4	54	32
Ca U	µg/L	0	0,069	0	0	0	0,0088	0,024	0,01	2 0,0	062	0,016	0,012	0	0	0,0)1/	0	0
Hg	µg/L	0	0	0															
Pb	µg/L	2,5	2,9	2,3	2,1	2,1	1,9	1,8	1,5	1	1,6	1,6	1,8	1,5	1,3	0	,6	0,5	0,39
Th	μg/L	0	0	0	0	0	0	0	0		0	0	0	0	0	-	0	0	0
U	μg/L	0	0	0	0	0,024	0,044	0,051	0,06	4 0,	052	0,072	0,041	0,032	0,009	5	0	0	0
Ca	mg/L	520	520	550	670	660	640	630	620) 6	520	610	580	560	520	4.	20	390	360
Mg	mg/L	0,030	0,050	0,050	0,0040	0,053	0,021	0,044	0,03	90,	063	0,051	0,051	0,034	0	0,0	061	0,0061	0,0061
Na	mg/L	180	82	44	28	21	18	16	13		14	12	10	9,5	8,6	3	2	13	10
K	mg/L	220	150	96	74	51	38	34	24	2	23	18	14	12	11	2	6	12	16
DOC	mg/L	30	10	6,7	4,8	4	3,8	3,3	2,8	2	2,7	2,5	2,4	2,1	1,9	7	,4	3,5	2,5
TOT-N	mg/L	1,9	1,3	0,95	0,77	0,61	0,43	0,006	0,27	70	,28	0,29	0,19	0,16	0,21	0,	69	0,39	0,26
B1							•		-		-		•	10			20	20	
UKe Karkanat (CON		m o /I		45 44	2	3	4	504	202	(04	0	9	720	270	12	29	30	31
Rarbonat (``````````````````````````````````````	mg/L		45 40	2 066	307	340	071	202	094	615	204	/30	3/0	252	202	254	38,4
Dikaroonat	(neos)	,	ing/L	0,	025 0,0	07 0,00	5 0,005	0,005	0,004	0,007	0,003	015	0,007	0,005	0,005	0,006	0,036	0,021	0,021
Cr (Krom)			mg/L		1 1	9	4	9	6	7	9	0,004	6	1	4	2	6	6	7
Cr3+			mg/L		0 (0	0	0	0	0	0	0	0	0,005	0,005	0	0	0	0
Cr6+			ug/L		28 6.	3 5.5	6.68	6.83	7.54	6.26	6.74	5.6	8.86	0	0	8.58	45.9	27	23.8
Klorid (Cl-	.)		mg/L	4	14 13	7 9 9	7 8 98	7 35	5 14	5.26	4 13	4 1	3 22	1 32	3 16	2.07	4 72	0	,-
Fluorid (F-	.)		mg/L	-	0 (0	0,50	0	0	0	0	0	0	0	0	0	0	13.4	15.4
Sulfat (SO4	4)		mg/L	3	0.6 () 0	0	0	0	0	0	0	0	0	33.7	0	46	4.48	5.12
Sulfat-S (S	04-S)		mg/L	1	0,2 (0	0	0	0	0	0	0	0	0	11,2	0	15,3	4	3
Syrekapasi	tet pH 4,	.5	mmol/	L	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasi	tet pH 8,	,3	mmol/	L	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet	pH 4,5		mmol/	L 1	5,8 26	,2 35,5	20,2	22,7	32,7	31	28,5	31,7	31,5	29,9	28,7	24,9	21,8	14,9	18,7
Alkalinitet	pH 8,3		mmol/	L 4	,08 6,	58 9,84	15,1	8,48	8,4	3,36	17	10,8	8,4	17,8	6,16	20,7	8,48	10,6	0,64
Karbondiol	ksid (CO	02)	mg/L	5	18 85	9 113	0 225	625	1070	1210	509	919	1020	535	993	185	584	187	796
Karbondiol Karbondiol	ksid-fritt ksid-agg	CO2-fritt ressivt	mg/L		0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO2-aggre	ssivt		mg/L		0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0

Tabell F.15 - Analyseresultater B2.

B2 Uke		0	1	2	3	4	5	6		7	8	9	10	11	12	2	29	30	31
Al	mg/L	0.19	0.11	0.19	0.18	0.41	200	41	0 3	270	390	390	330	360	42	0	19	550	600
Si	mg/L	13	14	1.5	1.0	11	0.76	0.6	6 0	1 3 3	0.2	0.21	0 34	0.25	0.5	6	21	19	1.5
S	mg/L	9.1	1.6	0.94	0.87	1.1	0.87	0.9	2 ().86	0.84	0.92	0.77	0.93	0,8	18	48	19	15
v	11g/L	0	0	0	0.019	0.049	0.016	5 0.00	52 0	017	0.045	0.042	0.012	0.019	o,c) 14	0.14	0.15
Mn	µg/L	0	0.17	0	0	0,049	0,010	, 0,00	52 0,	0	0	0,042	0,012	0,012	, u		0	0,14	0,15
Fe	mg/L	0.011	0.024	0.013	16	28	13	14		15	15	13	51	43	5	n	11	18	10
Co	ug/L	2.2	0.83	0.70	0.62	0.57	0.30	0.4	, 5 (1.0	0.32	0.44	0.25	0.3	0.3	.7 (1 08	0.47	0.4
Ni	µв/2.	6.8	3.1	3.2	4.5	53	2.5	2	1	17	0.35	0,44	0,25	0,5	0,2	· ·	29	41	6.1
Cu	µg/L	17	13	10	5.4	3.4	0.2	2, 5		37	3.2	3.2	4.2	20	2	4	80	3.8	2.8
Zn	μg/L μg/L	27	2.9	75	12	2,4	19	2,		12	10	16	7,2	2,7	2,	-	0,2	9,0 8 0	2,0
Δ.e	μg/L μg/L	2,7	0.19	0	0.077	0.046	0.073	22		029	0	0	0.059	- 22	1.	,	9,2) 20	0,5	0,0
Mo	μg/L μα/Ι	27	16	14	12	12	12	, 0		11	11	12	12	12	1/	, `	720	47	56
Cd	µg/L	57	10	14	15	15	0.016	12		027	0.024	12	12	0.01	1.	•	12	4/	0.012
На	µg/L	0	0	0	0	0	0,018	5 0,00	01 0	,027	0,034	0	0	0,01	. 0	0	,020	0	0,013
Dh	µg/L	2.2	20	24	2.2	2.1	1.0		7	1.6	1.6	1.4	1.5	1.2	,	1 4	144	0.44	0.21
Th	µg/L	3,2	2,0	2,4	2,5	2,1	1,9	1,	/	1,0	1,0	1,4	1,5	1,5	1,	1 (0,44	0,44	0,51
	µg/L	0	0	0	0	0	0	0		0	0	0	0	0	- 0		0	0	0
0	µg/L	0	0	0	0	0,024	0,02	0,0.	ss (5,03	0,035	0,018	0,019	0,033	5 0	0	0	0	0
Ca	mg/L	490	490	550	650	660	630	64		500	600	590	570	550	52	0 4	420	370	350
Mg	mg/L	0,030	0,050	0,050	0,0060	0,053	0,015	5 0,04	44 0	,019	0,019	0,016	0,0099	0,01	7 0	0,	0071	0,0091	0,0061
Na	mg/L	180	80	39	25	21	16	15	•	11	12	11	9	9,6	8,	2	28	13	10
K	mg/L	210	140	92	70	51	36	32	2	23	21	17	14	13	11	l	17	10	15
DOC	mg/L	30	11	6,5	4,4	3,6	3,1	3,2	2 :	2,6	2,3	2,3	1,9	1,8	1,	6	8	3,5	2,9
101-N	mg/L	1,9	1,3	0,89	0,74	0,58	0,41	0,3	9 (),26	0,25	0,25	0,18	0,15	0,1	8 (0,71	0,39	0,28
D 2																			
B2 Uke				0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat ((CO3)		mg/L	262	466	614	276	703	470	197	710	600	442	744	341	300	442	264	28,8
Bikarbona	t (HCO3)		mg/L	466	1140	898	0	75,7	1010	1490	0	659	0	0	1040	0	298	0	996
Cr (Krom)			mg/L	0,0259	0,0073	0,0058	0,0045	0,0212	0,0045	0,0039	0,0097	0,0034	0,0085	0,0054	0,0046	0,0054	0,0856	0,0408	0,0342
Cr3+			mg/L	0	0	0	0	0,0142	0	0	0	0	0	0,0054	0,0046	0	0	0	0,0025
Cr6+			μg/L	26,5	6,23	5,5	4,74	6,95	5,78	4,28	8,73	4,79	8,66	0	0	6,84	91,4	47,8	31,7
Klorid (Cl-	-)		mg/L	37	16,4	9,32	8,77	7,18	4,85	4,88	3,88	5,11	3,06	1,26	4,44	2,3	4,87	0	0,258
Fluorid (F-	-)		mg/L	0	0	0	0	0	0	0	0	0,461	0	0	0	0	0	48,1	33,1
Sulfat (SO	4)		mg/L	30,1	0	0	0	0	5,29	0	0	0	0	0	32,8	0	156	16	11
Sulfat-S (S	SO4-S)		mg/L	10	0	0	0	0	1,76	0	0	0	0	0	10,9	0	52	4	3
Syrekapasi	itet pH 4,5	5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasi	itet pH 8,3	3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet	pH 4,5		mmol/L	16,4	34,2	35,2	20,7	24,7	32,2	31	27,8	30,8	32	28,4	28,4	25,8	19,6	14	17,3
Alkalinitet	pH 8,3		mmol/L	4,36	7,76	10,2	16,1	11,7	7,84	3,28	16	10	24,6	16	5,68	20,8	7,36	9,6	0,48
Karbondio	ksid (CO2	2) CO2-	mg/L	528	1160	1100	202	570	1070	1220	521	915	324	546	1000	220	539	194	739
fritt	KSIQ-IIIII V	02-	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karbondio	ksid-aggr	essivt	0																
CO2-aggre	essivt		mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

B gj.snit	t						-		_						•••	•••	
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0,19	0,18	0,18	0,17	0,41	165,00	395,00	200,00	390,00	390,00	350,00	345,00	425,00	53,00	645,00	690,00
Si	mg/L	1,25	1,65	1,50	1,15	1,10	0,85	0,72	0,43	0,23	0,25	0,41	0,33	0,67	1,90	1,60	1,35
s	mg/L	8,95	1,50	0,95	0,89	1,10	0,89	0,95	0,93	0,92	0,96	0,94	0,97	0,99	32,00	14,50	11,75
v	μg/L	0,07	0,03	0,00	0,04	0,05	0,01	0,01	0,02	0,04	0,04	0,01	0,03	0,00	0,12	0,14	0,14
Mn	μg/L	0,00	0,09	0,08	0,00	0,10	0,00	0,00	0,04	0,13	0,05	0,00	0,00	0,00	0,00	0,00	0,00
Fe	mg/L	0,01	0,02	0,01	16,50	28,00	13,50	15,00	15,00	19,50	14,00	5,60	4,25	5,20	10,30	14,00	16,50
Co	μg/L	2,15	0,89	0,73	0,64	0,57	0,44	0,42	0,38	0,39	0,37	0,24	0,24	0,39	0,99	0,40	0,39
Ni	μg/L	7,00	3,20	3,00	5,00	5,30	2,90	2,15	2,60	0,68	0,00	0,00	0,00	0,00	3,40	2,05	3,05
Cu	μg/L	17,00	13,00	10,00	5,65	3,40	7,50	5,00	3,70	3,55	3,10	4,40	2,40	3,10	8,95	5,15	2,95
Zn	μg/L	3,50	5,15	9,25	15,50	23,00	19,50	21,50	16,00	20,00	18,50	24,00	22,50	24,00	9,35	9,95	9,75
As	μg/L	0,42	0,09	0,00	0,07	0,05	0,06	0,01	0,04	0,00	0,02	0,03	0,00	0,00	0,15	0,13	0,10
Mo	μg/L	37.00	15.50	14.00	13.00	13.00	12.00	12.00	11.50	11.50	12.00	12.50	12.00	14.00	58.00	40.50	44.00
Cd	ug/L	0.00	0.03	0.00	0.00	0.00	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.00	0.02	0.00	0.01
Hø	ц <i>я</i> /L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pb	ця/Г.	2.85	2.45	2.35	2,20	2.10	1.90	1.75	1.55	1.60	1 50	1.65	1.40	1 20	0.52	0.47	0.35
Th	на/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,52	0.00	0.00
11	μg/L μg/Ι	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.05	0,00	0,00	0,00	0,00	0,00	0,00
C2	μg/L mα/I	505.00	505.00	550.00	660.00	660.00	635.00	625.00	610.00	610.00	600.00	575.00	555.00	\$20.00	420.00	200.00	255.00
Ca Ma	mg/L	505,00	505,00	350,00	000,00	000,00	0.02	0.04	010,00	610,00	600,00	5/5,00	555,00	520,00	420,00	380,00	355,00
Mg	mg/L	0,03	0,05	0,05	0,01	0,05	0,02	0,04	0,03	0,04	0,03	0,03	0,03	0,00	0,01	0,01	0,01
Na	mg/L	180,00	81,00	41,50	26,50	21,00	17,00	15,50	12,00	13,00	11,50	9,50	9,55	8,40	30,00	13,00	10,00
ĸ	mg/L	215,00	145,00	94,00	72,00	51,00	37,00	33,00	23,50	22,00	17,50	14,00	12,50	11,00	21,50	11,00	15,50
DOC	mg/L	30,00	10,50	6,60	4,60	3,80	3,45	3,25	2,70	2,50	2,40	2,15	1,95	1,75	7,70	3,50	2,70
TOT-N	mg/L	1,90	1,30	0,92	0,76	0,60	0,42	0,20	0,27	0,27	0,27	0,19	0,16	0,20	0,70	0,39	0,27
B SD Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Al	mg/L	0.01	0.09	0.02	0.02	0.00	49 50	21.21	98.99	0.00	0.00	28.28	21.21	7.07	48.08	134.35	127.28
Si	mg/L	0.07	0.35	0.00	0.21	0.00	0.12	0.08	0.14	0.04	0.06	0.10	0.11	0.16	0.28	0.42	0.21
s	mg/L	0.21	0.14	0.01	0.03	0.00	0.03	0.04	0.10	0.11	0.06	0.23	0.05	0.16	22.63	636	4 60
v	ug/L	0,21	0.05	0,01	0,05	0,00	0,00	0,04	0,10	0,00	0,00	0,25	0,05	0,10	0.02	0,00	0.02
Mn	μg/L μg/L	0,10	0,05	0,00	0,02	0,00	0,00	0,01	0,01	0.00	0.00	0,00	0,01	0,00	0,05	0,01	0,02
Fe	μg/L mα/I	0,00	0,12	0,11		0.00	0.00	0.00	0.06	0.18	0.07	0.00	0.00	0.00	0.00	0.00	
Co	mg/L		0.01	0.00	0,00	0,00	0,00	0,00	0,06	0,18	0,07	0,00	0,00	0,00	0,00	0,00	0,00
00	$\mu \alpha / T$	0,00	0,01	0,00	0,00	0,00 0,00	0,00 0,71	0,00 0,00	0,06 0,00	0,18 6,36	0,07 1,41	0,00 0,71	0,00 0,07	0,00 0,28	0,00 0,99	0,00 5,66	9,19
NG	μg/L	0,00	0,01 0,08	0,00 0,04	0,00	0,00 0,00 0,00	0,00 0,71 0,06	0,00 0,00 0,05	0,06 0,00 0,09	0,18 6,36 0,09	0,07 1,41 0,10	0,00 0,71 0,02	0,00 0,07 0,09	0,00 0,28 0,02	0,00 0,99 0,01	0,00 5,66 0,11	0,00 9,19 0,01
Ni	μg/L μg/L	0,07 0,28	0,01 0,08 0,14	0,00 0,04 0,28	0,71 0,02 0,71	0,00 0,00 0,00 0,00	0,00 0,71 0,06 0,57	0,00 0,00 0,05 0,07	0,06 0,00 0,09 1,27	0,18 6,36 0,09 0,46	0,07 1,41 0,10 0,00	0,00 0,71 0,02 0,00	0,00 0,07 0,09 0,00	0,00 0,28 0,02 0,00	0,00 0,99 0,01 0,71	0,00 5,66 0,11 2,90	0,00 9,19 0,01 4,31
Ni Cu Zn	μg/L μg/L μg/L	0,07 0,28 0,00	0,01 0,08 0,14 0,00	0,00 0,04 0,28 0,00	0,00 0,71 0,02 0,71 0,35	0,00 0,00 0,00 0,00 0,00	0,00 0,71 0,06 0,57 2,40	0,00 0,00 0,05 0,07 0,14	0,06 0,00 0,09 1,27 0,00	0,18 6,36 0,09 0,46 0,49	0,07 1,41 0,10 0,00 0,14	0,00 0,71 0,02 0,00 0,28	0,00 0,07 0,09 0,00 0,71	0,00 0,28 0,02 0,00 0,99	0,00 0,99 0,01 0,71 0,07	0,00 5,66 0,11 2,90 1,91	0,00 9,19 0,01 4,31 0,21
Ni Cu Zn	μg/L μg/L μg/L μg/L	0,07 0,28 0,00 1,13	0,01 0,08 0,14 0,00 1,91	0,00 0,04 0,28 0,00 2,47	0,71 0,02 0,71 0,35 4,95	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,71 0,06 0,57 2,40 2,12	0,00 0,00 0,05 0,07 0,14 0,71	0,06 0,00 1,27 0,00 4,24	0,18 6,36 0,09 0,46 0,49 1,41	0,07 1,41 0,10 0,00 0,14 3,54	0,00 0,71 0,02 0,00 0,28 2,83	0,00 0,07 0,09 0,00 0,71 0,71	0,00 0,28 0,02 0,00 0,99 15,56	0,00 0,99 0,01 0,71 0,07 0,21	0,00 5,66 0,11 2,90 1,91 1,48	0,00 9,19 0,01 4,31 0,21 1,77
Ni Cu Zn As	μg/L μg/L μg/L μg/L μg/L	0,07 0,28 0,00 1,13 0,01	0,01 0,08 0,14 0,00 1,91 0,13	0,00 0,04 0,28 0,00 2,47 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,71 0,06 0,57 2,40 2,12 0,02	0,00 0,00 0,05 0,07 0,14 0,71 0,02	0,06 0,00 0,09 1,27 0,00 4,24 0,01	0,18 6,36 0,09 0,46 0,49 1,41 0,00	0,07 1,41 0,10 0,00 0,14 3,54 0,03	0,00 0,71 0,02 0,00 0,28 2,83 0,04	0,00 0,07 0,09 0,00 0,71 0,71 0,00	0,00 0,28 0,02 0,00 0,99 15,56 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08	0,00 5,66 0,11 2,90 1,91 1,48 0,01	0,00 9,19 0,01 4,31 0,21 1,77 0,01
Ni Cu Zn As Mo	μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,28 0,00 1,13 0,01 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71	0,00 0,04 0,28 0,00 2,47 0,00 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00	0,06 0,00 1,27 0,00 4,24 0,01 0,71	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71	0,00 0,07 0,09 0,00 0,71 0,71 0,71 0,00 1,41	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97
Ni Cu Zn As Mo Cd	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,28 0,00 1,13 0,01 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,01	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01
Ni Cu Zn As Mo Cd Hg	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,28 0,00 1,13 0,01 0,00 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00	0,06 0,09 1,27 0,00 4,24 0,01 0,71 0,01 0,00	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,01 0,00	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00
Ni Cu Zn As Mo Cd Hg Pb	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,49	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,14	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,00	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,01 0,00 0,14	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,11	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00	9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,06
Ni Cu Zn As Mo Cd Hg Pb Th	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,49 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,07 0,00	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,14 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,01 0,00 0,07 0,00	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,01 0,21 0,00	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,01 0,00 0,14 0,00	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,00 0,14 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,11 0,00	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,04 0,00	9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,06 0,00
Ni Cu Zn As Mo Cd Hg Pb Th U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,49 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,14 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00 0,01	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,02	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,01	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,04	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,02	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,00	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,00 0,14 0,00 0,01	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,11 0,00 0,00	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,00 0,00	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,06 0,00 0,00
Ni Cu Zn As Mo Cd Hg Pb Th U Ca	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,49 0,00 0,00 21,21	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00 21,21	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,14 0,00 0,00 14,14	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00 0,01 7,07	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,02 14,14	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,01 14,14	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,14 0,00 0,04 14,14	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,02 7,07	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,00 7,07	0,00 0,28 0,02 0,99 15,56 0,00 0,00 0,00 0,14 0,00 0,01 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,11 0,00 0,00 0,00 0,00	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,04 0,00 0,00 14,14	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,00 0,00 0,00 7,07
Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00 21,21 0,00	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,00 0,14 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00 0,01 7,07 0,00	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,07 14,14 0,01	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,00 1,4,14 0,03	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,14 0,00 0,14 14,14 0,02	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,02 7,07 0,03	0,00 0,07 0,09 0,71 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,00 7,07 0,01	0,00 0,28 0,02 0,99 15,56 0,00 0,00 0,00 0,14 0,00 0,01 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,11 0,00 0,00 0,00 0,00	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,04 0,00 0,00 14,14 0,00	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,00 0,00 7,07 0,00
Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,00 0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00 21,21 0,00 1,41	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,00 0,14 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00 0,01 7,07 0,00 0,71	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,07 14,14 0,01 1,41	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,00 1,4,14	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,14 0,00 0,14 14,14 0,02 0,71	0,00 0,71 0,02 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,22 7,07 0,03 0,71	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,14 0,00 7,07 0,01 0,07	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,14 0,00 0,01 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,01 0,00 0,00 0,00 0,00 0	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,00 14,14 0,00 0,00 0,0	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,00 0,00 0,00 7,07 0,00 0,00
Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00 21,21 0,00 1,41 7,07	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,00 0,00 0,14 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,07 0,00 0,01 7,07 0,00 0,71 1,41	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,07 14,14 0,01 1,41 0,71	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,00 1,4,14 1,41	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,14 0,00 0,00 0,14 0,00 0,14 0,00 0,00 0,14 0,00 0,00 0,14 0,00 0,00 0,14 0,00	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,22 7,07 0,03 0,71 0,00	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,14 0,00 7,07 0,01 0,07 0,71	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,14 0,00 0,01 0,00 0,00	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,00 0,00 0,00 0,00 0,00 2,83 6,36	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,00 14,14 0,00 0,00 1,41	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,00 0,00 0,00 7,07 0,00 0,00
Ni Cu Zn As Mo Cd Hg Pb Th U Ca Mg Na K DOC	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,07 0,28 0,00 1,13 0,01 0,00 0,00 0,00 0,00 0,00	0,01 0,08 0,14 0,00 1,91 0,13 0,71 0,05 0,00 0,64 0,00 0,00 21,21 0,00 1,41 7,07 0,71	0,00 0,04 0,28 0,00 2,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,71 0,02 0,71 0,35 4,95 0,01 0,00 0,00 0,00 0,00 0,00 0,14 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,71 0,06 0,57 2,40 2,12 0,02 0,00 0,01 0,00 0,00 0,00 0,0	0,00 0,00 0,05 0,07 0,14 0,71 0,02 0,00 0,01 0,00 0,01 7,07 0,00 0,71 1,41 0,07	0,06 0,00 1,27 0,00 4,24 0,01 0,71 0,01 0,00 0,07 0,00 0,07 0,00 0,02 14,14 0,01 1,41 0,71 0,14	0,18 6,36 0,09 0,46 0,49 1,41 0,00 0,71 0,02 0,00 0,00 0,00 0,00 0,00 1,4,14 1,41 1,41	0,07 1,41 0,10 0,00 0,14 3,54 0,03 0,00 0,01 0,00 0,14 0,00 0,14 0,00 0,14 14,14 0,02 0,71 0,71 0,14	0,00 0,71 0,02 0,00 0,28 2,83 0,04 0,71 0,01 0,00 0,21 0,00 0,21 0,00 0,02 7,07 0,03 0,71 0,00 0,35	0,00 0,07 0,09 0,00 0,71 0,71 0,00 1,41 0,00 0,14 0,00 0,14 0,00 7,07 0,01 0,07 0,71 0,21	0,00 0,28 0,02 0,00 0,99 15,56 0,00 0,00 0,00 0,00 0,14 0,00 0,01 0,00 0,01 0,00 0,28 0,00 0,21	0,00 0,99 0,01 0,71 0,07 0,21 0,08 19,80 0,01 0,00 0,00 0,00 0,00 0,00 0,00 2,83 6,36 0,42	0,00 5,66 0,11 2,90 1,91 1,48 0,01 9,19 0,00 0,00 0,00 0,00 14,14 0,00 0,00 1,41 0,00	0,00 9,19 0,01 4,31 0,21 1,77 0,01 16,97 0,01 0,00 0,00 0,00 0,00 7,07 0,00 0,00

Tabell F.16 - Analyseresultater (B) presentert med gjenomsnitt og standardavvik.

B gj.snitt Uko		0	1	,	3	4	5	6	7	8	0	10	11	12	20	30	31
Karbonat (CO2)	ma/I	262.60	1 122 60	602.00	201.00	-	407.00	100.50	702.00	(24.00	472.00	777.00	200.00	12	23	250.00	31
Rarbonat (UCO3)	mg/L	253,50	433,50	602,00	291,50	606,00	487,00	199,50	702,00	624,00	4/3,00	737,00	355,50	276,00	4/5,50	259,00	33,60
Cr (Krom)	mg/L	467,50	961,50	932,00	0,00	212,35	990,50	1485,00	0,00	637,00	449,00	0,00	1020,00	0,00	295,50	0,00	1028,00
Cr3+	mg/L mg/I	0,05	0,01	0,01	0,00	0,01	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,06	0,05	0,03
Cr6+	ing/L	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00
Klorid (CL)	μg/L mα/I	27,25	0,18	5,51	5,/1	0,89	6,00	5,27	1,74	5,20	8,70	0,00	0,00	7,71	08,05	57,40	21,15
Fluorid (E-)	mg/L	39,20	15,05	9,05	0,00	0,00	3,00	5,07	4,01	4,01	5,14	1,29	3,80	2,19	4,80	20.75	0,15
Sulfat (SO4)	mg/L mg/I	20.25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23	0,00	0,00	22.25	0,00	101.00	10.24	24,25
Sulfat S (SO4 S)	mg/L	30,35	0,00	0,00	0,00	0,00	2,65	0,00	0,00	0,00	0,00	0,00	33,25	0,00	101,00	10,24	8,06
Sunat-5 (504-5)	mg/L	10,10	0,00	0,00	0,00	0,00	0,88	0,00	0,00	0,00	0,00	0,00	11,05	0,00	33,65	4,00	3,00
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Allealisitet all 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet pH 4.5	mmol/L	16,10	30,20	35,35	20,45	23,70	32,45	31,00	28,15	31,25	31,75	29,15	28,55	25,35	20,70	14,45	18,00
Alkalinitet pH 8.5	mmoi/L	4,22	7,22	10,02	15,60	10,09	8,12	3,32	16,50	10,40	16,50	16,90	5,92	20,75	7,92	10,10	0,56
Karbondioksid (CO2)	mg/L	523,00	1009,50	1115,00	213,50	597,50	1070,00	1215,00	515,00	917,00	672,00	540,50	996,50	202,50	561,50	190,50	767,50
CO2-fritt	mg/L	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Karbondioksid-	Ū.																
aggressivt CO2-	~																
aggressivt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
B SD Uke		0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
Karbonat (CO3)	mg/L	12.02	45.96	16.97	21.92	137.18	24.04	3.54	11.31	33.94	43.84	9.90	20.51	33.94	47.38	7.07	6.79
Bikarbonat (HCO3)	mg/L	2.12	252.44	48.08	0.00	193.25	27.58	7.07	0.00	31.11	634.98	0.00	28,28	0.00	3.54	0.00	45.25
Cr (Krom)	mg/L	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.03	0.01	0.01
Cr3+	mg/L	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr6+	ug/L	1.06	0.07	0.01	1.37	0.08	1.24	1.40	1.41	0.57	0.14	0.00	0.00	1.23	32.17	14.71	5.59
Klorid (Cl-)	mg/L	3,11	1.91	0.46	0.15	0.12	0.21	0.27	0.18	0.71	0.11	0.04	0.91	0.16	0.11	0.00	0.18
Fluorid (F-)	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00	24.54	12.52
Sulfat (SO4)	mg/L	0.35	0.00	0.00	0.00	0.00	3,74	0.00	0.00	0.00	0.00	0.00	0.64	0.00	77.78	8.15	4.16
Sulfat-S (SO4-S)	mg/L	0.14	0.00	0.00	0.00	0.00	1.24	0.00	0.00	0.00	0.00	0.00	0.21	0.00	25.95	0.00	0.00
Svrekapasitet pH 4.5	mmol/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Syrekapasitet pH 8.3	mmol/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Alkalinitet pH 4 5	mmol/L	0.42	5 66	0.21	0.35	1 41	0.35	0.00	0.49	0.64	0.35	1.06	0.21	0.64	1.56	0.64	0.99
Alkalinitet pH 8 3	mmol/L	0.20	0.76	0.25	0,55	2.28	0,55	0.06	0.71	0.57	11.46	1,00	0.34	0.07	0.79	0.71	0.11
Karbondioksid (CO2)	ma/I	7.07	212.84	21.21	16.26	38.80	0,40	7.07	8.40	2.83	402.15	7 78	4 05	24.75	31.82	4 05	40.31
Karbondioksid-fritt	ing/L	7,07	212,04	21,21	10,20	20,02	0,00	7,07	0,49	2,85	492,15	7,78	4,95	24,75	51,62	4,95	40,51
CO2-fritt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid-																	
aggressivt CO2-	ma/I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
aggressivi	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

pH, EC og Eh

Tabell F.17- Målt pH, samt gjennomsnittlig pH og standardavvik.

nH																
uke	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
B1	12,43	12,75	12,48	12,43	12,5	12,48	12,238	12	12,49	12,76	12,70	12,58	12,51	12,49	12,29	12,19
B2	12,43	12,52	12,47	12,44	12,48	12,48	12,258	12	12,53	12,76	12,7	12,56	12,49	12,45	12,27	12,18
RE1	8,05	8,13	8,2	9,088	8	8,08	8,28	8,3	8,21	8,25	7,98	8,01	8,09	7,41	7,5	7,58
RE2	8,13	8	8,04	8,185	7,8	7,99	8,05	7,97	7,91	7,95	7,79	8,05	8,06	7,82	8,1	8,15
SL1	7,69	8,1	7,99	8,26	7,9	8,15	7,99	7,85	7,85	7,83	7,76	7,95	7,86	7,5	7,47	7,53
SL2	7,67	8,08	8,04	8,139	7,9	7,96	7,97	7,88	7,85	7,88	7,86	7,94	7,93	7,4	7,43	7,56
REB1	12,71	12,65	12,52	12,44	12,48	12,45	12,036	12	12,5	12,57	12,55	12,42	12,38	12,41	12,17	12,07
REB2	12,72	12,71	12,53	12,45	12,5	12,48	12,095	12	12,52	12,6	12,58	12,48	12,41	12,43	12,21	12,06
REB3	12,69	12,72	12,52	12,42	12,48	12,46	12,12	12	12,52	12,6	12,56	12,46	12,41	12,42	12,21	12,05
SLB1	12,56	12,65	12,48	12,42	12,48	12,45	12,22	12	12,47	12,59	12,52	12,42	12,32	12,16	12,04	11,87
SLB2	12,53	12,65	12,5	12,43	12,41	12,44	12,345	12	12,51	12,59	12,56	12,45	12,37	12,3	12,11	11,97
SLB3	12,52	12,61	12,5	12,42	12,47	12,43	12,325	12	12,5	12,65	12,5	12,42	12,34	12,21	12,02	11,87

Gj.snitt																
В	12,43	12,64	12,48	12,44	12,49	12,48	12,25	12,00	12,51	12,76	12,70	12,57	12,50	12,47	12,28	12,19
RE	8,09	8,07	8,12	8,64	7,90	8,04	8,17	8,14	8,06	8,10	7,89	8,03	8,08	7,62	7,80	7,87
SL	7,68	8,09	8,02	8,20	7,90	8,06	7,98	7,87	7,85	7,86	7,81	7,95	7,90	7,45	7,45	7,55
REB	12,71	12,69	12,52	12,44	12,49	12,46	12,08	12,00	12,51	12,59	12,56	12,45	12,40	12,42	12,20	12,06
SLB	12,54	12,64	12,49	12,42	12,45	12,44	12,30	12,00	12,49	12,61	12,53	12,43	12,34	12,22	12,06	11,90
SD																
В	0,00	0,16	0,01	0,01	0,01	0,00	0,01	0,00	0,03	0,00	0,00	0,01	0,01	0,03	0,01	0,01
RE	0,06	0,09	0,11	0,64	0,20	0,25	0,24	0,23	0,21	0,21	0,13	0,03	0,02	0,29	0,42	0,40
SL	0,01	0,10	0,19	0,89	0,20	0,23	0,32	0,02	0,36	0,41	0,17	0,12	0,26	0,37	0,65	0,61
REB	0,02	0,04	0,01	0,02	0,01	0,02	0,04	0,00	0,01	0,02	0,02	0,03	0,02	0,01	0,02	0,01
SLB	0,02	0,02	0,01	0,01	0,04	0,01	0,07	0,00	0,02	0,03	0,03	0,02	0,03	0,07	0,05	0,06

Tabell F.18- Målt EC, samt gjennomsnittlig EC og standardavvik [mS/cm].

EC																
Uke	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
B1	5,569	5,378	5,582	5,915	4,855	5,945	0,795	6,19	6,66	6,52	6,04	5,92	5,63	3,915	3,936	3,938
B2	5,407	5,089	5,402	5,844	4,94	5,833	4,05	6,14	6,55	6,3	6,12	5,97	5,6	3,94	3,718	3,579
RE1	4,855	5,222	2,534	0,1817	2,99	1,801	2,9	2,95	2,97	3,06	3,07	3,02	3,01	3,827	3,211	3,299
RE2	4,94	4,745	2,782	0,1684	2,95	3	2,81	2,76	2,76	2,83	2,95	2,9	3	3,092	2,827	2,905
SL1	5,222	3,269	3,177	0,0917	3,62	3,56	3,38	3,27	3,1	3,02	2,96	2,79	2,83	2,77	3,627	2,517
SL2	4,745	3,341	3,291	0,0472	3,85	3,41	3,4	3,25	3,16	3,08	3,02	2,86	2,9	2,614	2,675	2,557
REB1	11,44	6,408	4,09	6,549	6,155	6,46	1,717	8,06	8,33	8,16	7,85	7,53	7,15	3,392	3,977	5,158
REB2	11,33	6,765	4,816	6,564	6,28	6,613	0,0603	8,15	8,55	8,25	8,18	7,73	7,35	3,5	3,459	4,966
REB3	11,43	6,113	5,626	6,699	5,162	6,392	0,1546	8,08	8,53	8,24	8,05	7,68	7,28	4,529	4,408	5,174
SLB1	9,38	6,003	5,631	6,415	6,478	6,807	2,3	7,99	7,48	7,99	7,6	6,96	6,42	3,371	4,386	4,262
SLB2	9,132	4,796	5,613	6,638	2,452	6,715	1,506	8,15	8,48	8,03	7,78	7,19	6,72	4,594	4,757	4,684
SLB3	8,901	2,322	5,807	6,46	6,611	6,587	0,042	7,96	8,08	7,84	7,44	6,9	6,4	4,362	4,358	4,226
Gj.snitt																
В	5,49	5,23	5,49	5,88	4,90	5,89	2,42	6,17	6,61	6,41	6,08	5,95	5,62	3,93	3,83	3,76
RE	4,90	4,98	2,66	0,18	2,97	2,40	2,86	2,86	2,87	2,95	3,01	2,96	3,01	3,46	3,02	3,10
SL	4,98	3,31	3,23	0,07	3,74	3,49	3,39	3,26	3,13	3,05	2,99	2,83	2,87	2,69	3,15	2,54
REB	11,40	6,43	4,84	6,60	5,87	6,49	0,64	8,10	8,47	8,22	8,03	7,65	7,26	3,81	3,95	5,10
SLB	9,14	4,37	5,68	6,50	5,18	6,70	1,28	8,03	8,01	7,95	7,61	7,02	6,51	4,11	4,50	4,39
SD																
В	0,11	0,20	0,13	0,05	0,06	0,08	2,30	0,04	0,08	0,16	0,06	0,04	0,02	0,02	0,15	0,25
RE	0,06	0,34	0,18	0,01	0,03	0,85	0,06	0,13	0,15	0,16	0,08	0,08	0,01	0,52	0,27	0,28
SL	0,34	0,05	0,08	0,03	0,16	0,11	0,01	0,01	0,04	0,04	0,04	0,05	0,05	0,11	0,67	0,03

REB	0,06	0,33	0,77	0,08	0,61	0,11	0,93	1,58	0,12	0,05	0,17	0,10	0,10	0,63	0,48	0,12
SLB	0,24	1,88	0,11	0,12	2,36	0,11	1,15	2,30	0,50	0,10	0,17	0,15	0,18	0,65	0,22	0,25

Tabell F.19- Målt Eh, samt gjennomsnittlig Eh og standardavvik [mV]. (Verdiene er ikke korrigert for redokselektrode (+206 mV).

Redox (Eh)																
Uke	0	1	2	3	4	5	6	7	8	9	10	11	12	29	30	31
B1	15,00	135,70	-13,20	-5,90	90,30	62,60	127,70		103,20	112,00	149,50	191,80	165,50	6,00	24,90	-46,10
B2	-10,60	14,00	-11,50	-6,60	10,30	35,20	48,30		63,20	79,10	90,80	103,90	113,50	-2,00	22,10	-49,10
RE1	243,90	138,10	159,00	202,20		184,00	175,60	200,30	183,10	169,30	260,40	268,80	282,90	249,40	235,10	254,10
RE2	227,60	160,70	183,10	213,90		216,30	194,80	206,80	197,00	182,50	267,90	267,00	271,20	249,10	234,80	253,20
SL1	229,50	185,60	200,70	257,90		234,50	223,00	225,60	225,30	207,90	277,50	276,30	293,20	252,10	249,20	258,40
SL2	230,50	195,70	206,20	202,70		239,80	232,30	230,00	233,50	217,20	227,60	282,80	293,00	259,70	253,20	251,00
REB1	-63,80	-27,30	-10,40	14,40	12,40	32,60	54,40		31,50	20,50	80,20	42,50	35,50	5,50	26,90	-39,70
REB2	-57,50	-15,80	-15,00	30,00	10,50	38,00	55,20		27,30	24,60	68,60	32,10	22,50	3,00	18,90	-33,40
REB3	-56,90	-9,00	-13,80	15,60	16,30	39,00	62,20		25,70	41,20	66,80	34,50	23,10	1,50	14,80	-28,70
SLB1	-53,40	-13,00	-17,90	8,70	17,50	39,70	72,30		32,70	43,50	64,20	41,40	28,60	3,10	16,50	-18,40
SLB2	-53,20	-10,50	-15,00	32,00	33,20	42,60	71,50		27,80	46,20	58,80	45,10	30,10	2,70	14,80	-17,00
SLB3	-57,50	-14,70	-15,60	38,00	22,70	49,30	76,80		29,24	54,50	60,00	46,50	33,30	4,20	15,50	-13,40
Gj.snitt																
В	2,20	74,85	-12,35	-6,25	50,30	48,90	88,00		83,20	95,55	120,15	147,85	139,50	2,00	23,50	-47,60
RE	235,75	149,40	171,05	208,05		200,15	185,20	203,55	190,05	175,90	264,15	267,90	277,05	249,25	234,95	253,65
SL	230,00	190,65	203,45	230,30		237,15	227,65	227,80	229,40	212,55	252,55	279,55	293,10	255,90	251,20	254,70
REB	-59,40	-17,37	-13,07	20,00	13,07	36,53	57,27		28,17	28,77	71,87	36,37	27,03	3,33	20,20	-33,93
SLB	-54,70	-12,73	-16,17	26,23	24,47	43,87	73,53		29,91	48,07	61,00	44,33	30,67	3,33	15,60	-16,27
SD																
В	18,10	86,05	1,20	0,49	56,57	19,37	56,14	0,00	28,28	23,26	41,51	62,15	36,77	5,66	1,98	2,12
RE	11,53	15,98	17,04	8,27	0,00	22,84	13,58	4,60	9,83	9,33	5,30	1,27	8,27	0,21	0,21	0,64
SL	0,71	7,14	3,89	39,03	0,00	3,75	6,58	3,11	5,80	6,58	35,28	4,60	0,14	5,37	2,83	5,23
REB	3,82	9,25	2,39	8,68	2,96	3,44	4,29	0,00	3,00	10,96	7,27	5,45	7,34	2,02	6,15	5,52
SLB	2,43	2,11	1,53	15,48	8,00	4,92	2,86	0,00	2,52	5,73	2,84	2,64	2,40	0,78	0,85	2,58

Modellering metningsgrad (SI) mineraler i Visual MINTEQ

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	7,357	-3,64	CaCrO4(s)	-9,203	-6,986
Al(OH)3 (Soil)	7,357	-1,12	Calcite	-5,285	3,179
Al2(MoO4)3(s)	-74,885	-77,717	CaMoO4(s)	-7,356	0,59
Al2O3(s)	14,717	-5,396	Chalcedony	-6,865	-3,28
Al4(OH)10SO4(s)	1,889	-20,811	Chrysotile Cr(OH)3	38,731	6,182
AlOHSO4(s)	-20,183	-16,953	(am) Cr(VI)-	-13,729	-13,269
Alunite	-23,216	-22,19	Ettringite Cr(VI)-	54,615	-6,587
Anhydrite	-5,03	-0,682	Jarosite	-32,689	-14,255
Aragonite	-5,285	3,033	Cr2O3 (c)	-27,456	-26,163
Artinite	7,176	-2,639	CrCl3(s)	-61,243	-76,573
Boehmite	7,358	-1,43	Cristobalite	-6,865	-3,479
Brucite	17,487	0,184	CrO3(s)	-31,715	-28,513
CaCO3xH2O(s)	-5,286	1,838	Diaspore	7,358	0,301

Tabell F.20- Modellert metningsgrad (SI) REB uke 5.

Tabell F.21- Modellert metningsgrad (SI) REB uke 12.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	7,501	-3,497	CaMoO4(s)	-7,388	0,559
Al(OH)3 (Soil)	7,501	-0,976	Chalcedony	-6,836	-3,251
Al2(MoO4)3(s)	-74,709	-77,54	Chrysotile	39,1	6,551
Al2O3(s)	15,004	-5,109	Cr metal	-70,489	-101,278
Al4(OH)10SO4(s)	2,839	-19,861	Cr(OH)2(s) Cr(OH)3	-37,566	-48,448
AlOHF2(s)	-27,239	-27,646	(am) Cr(VI)-	-28,12	-27,66
AlOHSO4(s)	-19,663	-16,433	Ettringite Cr(VI)-	55,022	-6,179
Alunite	-22,327	-21,301	Jarosite	-33,746	-15,312
Anhydrite	-4,648	-0,301	Cr2O3 (c)	-56,238	-54,945
Aragonite	-5,587	2,731	CrCl2(s)	-69,372	-83,661
Artinite	7,076	-2,739	CrCl3(s)	-75,83	-91,16
Boehmite	7,502	-1,286	CrF3(s)	-80,23	-68,934
Brucite	17,59	0,287	Cristobalite	-6,836	-3,451
CaCO3xH2O(s)	-5,588	1,536	CrO3(s)	-31,684	-28,483
CaCrO4(s)	-9,167	-6,95	Cryolite	-69,168	-35,261
Calcite	-5,587	2,877	Diaspore	7,502	0,445
Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
-------------------	---------	------------	------------------------------	---------	------------
			Cr(VI)-	-	
Al(OH)3 (am)	8,009	-2,988	Jarosite	-29,963	-11,529
Al(OH)3 (Soil)	8,009	-0,468	Cr2O3 (c)	-15,693	-14,4
Al2(MoO4)3(s)	-71,911	-74,743	CrF3(s)	-46,734	-35,438
Al2O3(s)	16,025	-4,088	Cristobalite	-6,732	-3,347
Al4(OH)10SO4(s)	5,386	-17,314	CrO3(s)	-30,679	-27,478
AlOHF2(s)	-17,913	-18,32	Cryolite	-42,797	-8,889
AlOHSO4(s)	-18,642	-15,412	Diaspore Dolomite	8,011	0,955
Alunite	-20,346	-19,32	(disordered) Dolomite	-18,245	-1,787
Anhydrite	-4,905	-0,558	(ordered)	-18,245	-1,225
Aragonite	-6,555	1,763	Epsomite	-10,055	-7,908
Artinite	4,915	-4,899	Ettringite Fe(OH)2	66,489	8,954
Boehmite	8,011	-0,776	(am)	5,687	-7,966
Brucite	16,611	-0,692	Fe(OH)2 (c)	5,687	-7,203
CaCO3xH2O(s)	-6,557	0,566	Fe2(SO4)3(s)	-64,981	-61,677
CaCrO4(s)	-8,93	-6,713	Fe3(OH)8(s)	20,661	0,439
Calcite	-6,555	1,909	FeCr2O4(s)	-10,004	-17,454
CaMoO4(s)	-7,564	0,383	FeMoO4(s)	-23,623	-13,551
Chalcedony	-6,732	-3,147	Ferrihydrite Ferrihydrite	7,487	4,108
Chrysotile	36,372	3,823	(aged)	7,487	4,618
Cr(OH)3 (am)	-7,85	-7,39	Fluorite	-4,176	6,345
Cr(VI)-Ettringite	54,413	-6,788			

Tabell F.22- Modellert metningsgrad (SI) REB uke 31.

Tabell F.23- Modellert metningsgrad (SI) SLB uke 5.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	6,994	-4,004	Cr(VI)-Jarosite	-31,997	-13,563
Al(OH)3 (Soil)	6,994	-1,483	Cr2O3 (c)	-27,467	-26,174
Al2(MoO4)3(s)	-77	-79,832	CrCl3(s)	-61,185	-76,515
Al2O3(s)	13,991	-6,122	Cristobalite	-7,318	-3,932
Al4(OH)10SO4(s)	0,638	-22,062	CrO3(s)	-31,483	-28,282
AlOHSO4(s)	-20,344	-17,114	Diaspore	6,995	-0,062
Alunite	-24,015	-22,989	Dolomite (disordered) Dolomite	-15,678	0,779
Anhydrite	-4,72	-0,373	(ordered)	-15,678	1,342
Aragonite	-5,285	3,032	Epsomite	-9,834	-7,687
Artinite	7,115	-2,699	Ettringite	67,658	10,123
Boehmite	6,995	-1,793	Fe(OH)2 (am)	3,601	-10,052

Brucite	17,511	0,208	Fe(OH)2 (c)	3,601	-9,289
CaCO3xH2O(s)	-5,286	1,837	Fe(OH)2.7Cl.3(s)	2,351	5,391
CaCrO4(s)	-8,864	-6,646	Fe2(SO4)3(s)	-67,823	-64,52
Calcite	-5,285	3,178	Fe3(OH)8(s)	17,793	-2,429
CaMoO4(s)	-7,711	0,235	FeCr2O4(s)	-23,865	-31,315
Chalcedony	-7,318	-3,733	FeMoO4(s)	-26,728	-16,657
Chrysotile	37,897	5,348	Ferrihydrite Ferrihydrite	7,096	3,717
Cr(OH)3 (am)	-13,735	-13,275	(aged)	7,096	4,227
Cr(VI)-Ettringite	55,226	-5,975			

Tabell F.24- Modellert metningsgrad (SI) SLB uke 12.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	7,524	-3,474	Chalcedony	-7,129	-3,544
Al(OH)3 (Soil)	7,524	-0,953	Chrysotile Cr(OH)3	38,975	6,426
Al2(MoO4)3(s)	-75,047	-77,878	(am) Cr(VI)-	-27,578	-27,118
Al2O3(s)	15,05	-5,063	Ettringite Cr(VI)-	10,599	-50,602
Al4(OH)10SO4(s)	3,064	-19,636	Jarosite	-62,752	-44,318
AlOHF2(s)	-27,059	-27,466	Cr2O3 (c)	-55,154	-53,861
AlOHSO4(s)	-19,508	-16,278	CrCl3(s)	-75,439	-90,769
Alunite	-22,121	-21,095	CrF3(s)	-79,452	-68,157
Anhydrite	-4,63	-0,282	Cristobalite	-7,129	-3,743
Aragonite	-5,585	2,733	CrO3(s)	-46,279	-43,078
Artinite	7,499	-2,316	Cryolite	-69,074	-35,166
Boehmite	7,525	-1,263	Diaspore Dolomite	7,525	0,468
Brucite	17,744	0,441	(disordered) Dolomite	-15,828	0,63
CaCO3xH2O(s)	-5,586	1,537	(ordered)	-15,828	1,192
CaCrO4(s)	-23,877	-21,659	Epsomite	-9,294	-7,146
Calcite	-5,585	2,878			
CaMoO4(s)	-7,63	0,317			

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	8,093	-2,904	Chrysotile Cr(OH)3	38,465	5,916
Al(OH)3 (Soil)	8,093	-0,384	(am) Cr(VI)-	-7,854	-7,394
Al2(MoO4)3(s)	-71,502	-74,334	Ettringite Cr(VI)-	54,022	-7,179
Al2O3(s)	16,191	-3,922	Jarosite	-28,855	-10,421
Al4(OH)10SO4(s)	5,929	-16,771	Cr2O3 (c)	-15,704	-14,411

AlOHF2(s)	-17,801	-18,208	CrF3(s)	-46,696	-35,401
AlOHSO4(s)	-18,352	-15,122	Cristobalite	-6,434	-3,048
Alunite	-19,931	-18,905	CrO3(s)	-30,289	-27,088
Anhydrite	-4,989	-0,642	Cryolite	-43,465	-9,558
Aragonite	-6,448	1,87	Diaspore Dolomite	8,095	1,038
Artinite	6,312	-3,502	(disordered) Dolomite	-17,241	-0,784
Boehmite	8,095	-0,693	(ordered)	-17,241	-0,222
Brucite	17,11	-0,193	Epsomite	-9,345	-7,198
CaCO3xH2O(s)	-6,449	0,674	Ettringite Fe(OH)2	65,549	8,014
CaCrO4(s)	-8,831	-6,614	(am)	5,748	-7,905
Calcite	-6,448	2,016	Fe(OH)2 (c)	5,748	-7,142
CaMoO4(s)	-7,773	0,173			
Chalcedony	-6,434	-2,849			

Tabell F.25-	Modellert	metningsgrad	(SI)) RE uke	5.
			· ·	/	

Mineral	log IAP	Sat. index	Mineral lo	og IAP	Sat. index
Anhvdrite	-4.618	-0.27	Fe(OH)2 (am)	8.544	-5.109
Aragonite	-7,541	0,777	Fe(OH)2 (c)	8,544	-4,346
Artinite	5,478	-4,337	Fe(OH)2.7Cl.3(s)) 6,758	9,798
Brucite	13,396	-3,907	Fe2(SO4)3(s)	-34,816	-31,512
CaCO3xH2O(s)	-7,541	-0,418	Fe3(OH)8(s)	28,893	8,671
Calcite	-7,541	0,923	FeCr2O4(s)	-45,224	-52,675
CaMoO4(s)	-7,378	0,568	FeMoO4(s)	-12,605	-2,534
Chalcedony	-3,372	0,213	Ferrihydrite Ferrihydrite	10,175	6,796
Chrysotile	33,445	0,896	(aged)	10,175	7,306
Cr metal	-61,509	-92,298	Fluorite	-11,35	-0,829
Cr(OH)2(s)	-32,031	-42,913	Goethite	10,175	9,577
Cr(OH)3 (am)	-26,886	-26,426	Greenalite	18,889	-1,921
Cr2O3 (c)	-53,769	-52,476	Gypsum	-4,619	-0,007
CrCl2(s)	-54,808	-69,097	H2MoO4(s)	-21,15	-8,187
CrCl3(s)	-61,052	-76,382	Halite	-6,412	-7,955
CrF3(s)	-64,568	-53,272	Hausmannite	62,289	0,509
Cristobalite	-3,372	0,014	Hematite	20,352	21,54
Dolomite (disordered)	-15,456	1,001	H-Jarosite	-6,254	-1,262
Dolomite (ordered)	-15,456	1,563	Huntite	-31,288	
Epsomite	-4 <u>,</u> 998	-2,851	_		

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	11,856	0,859	Calcite	-7,316	1,147
Al(OH)3 (Soil)	11,856	3,379	CaMoO4(s)	-7,811	0,136
Al2(MoO4)3(s)	-40,991	-43,823	Chalcedony	-3,372	0,213
Al2O3(s)	23,715	3,602	Chrysotile Cr(OH)3	33,3	0,751
Al4(OH)10SO4(s)	29,027	6,327	(am) Cr(VI)-	-27,058	-26,598
AlOHF2(s)	-12,826	-13,233	Ettringite Cr(VI)-	-29,663	-90,865
AlOHSO4(s)	-6,543	-3,313	Jarosite	-56,466	-38,032
Alunite	3,845	4,871	Cr2O3 (c)	-54,113	-52,82
Anhydrite	-4,642	-0,295	CrCl3(s)	-61,772	-77,102
Aragonite	-7,316	1,002	CrF3(s)	-64,082	-52,787
Artinite	5,62	-4,194	Cristobalite	-3,372	0,013
Boehmite	11,857	3,07	CrO3(s)	-45,3	-42,099
Brucite	13,348	-3,955	Cryolite	-48,69	-14,782
CaCO3xH2O(s)	-7,317	-0,194	Diaspore Dolomite	11,857	4,801
CaCrO4(s)	-31,542	-29,325	(disordered)	-15,042	1,416

Tabell F.26- Modellert metningsgrad (SI) RE uke 12.

Tabell F.27- Modellert metningsgrad (SI) SL uke 5.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Anhydrite	-4,624	-0,277	Ferrihydrite Ferrihydrite	10,219	6,84
Aragonite	-6,998	1,32	(aged)	10,219	7,35
Artinite	6,821	-2,993	Fluorite	-10,883	-0,362
Brucite	13,841	-3,462	Goethite	10,22	9,621
CaCO3xH2O(s)	-6,999	0,125	Greenalite	16,756	-4,054
Calcite	-6,998	1,466	Gypsum	-4,627	-0,015
CaMoO4(s)	-7,885	0,061	H2MoO4(s)	-21,748	-8,785
Chalcedony	-3,22	0,365	Halite	-6,538	-8,081
Chrysotile	35,084	2,535	Hausmannite	65,443	3,664
Cristobalite	-3,22	0,165	Hematite	20,442	21,63
Dolomite (disordered)	-14,015	2,442	H-Jarosite	-6,315	-1,322
Dolomite (ordered)	-14,015	3,005	Huntite	-28,05	1,726
Epsomite	-4,651	-2,504	Hydromagnesit	e -14,232	-5,855
Fe(OH)2 (am)	7,732	-5,921	K2MoO4(s)	-11,556	-14,824
Fe(OH)2 (c)	7,732	-5,158	KCl(s)	-6,264	-7,164
Fe(OH)2.7Cl.3(s)	6,812	9,852	K-Jarosite	-1,217	9,601
Fe2(SO4)3(s)	-35,017	-31,714	Lepidocrocite	10,22	8,849
Fe3(OH)8(s)	28,17	7,948	Lime	13,862	-19,183
FeMoO4(s)	-14,014	-3,943			

Mineral	log IAP	Sat. index	Mineral log I	AP Sa	it. index
Al(OH)3 (am)	12,14	1,143	K-Jarosite	-2,626	8,193
Al(OH)3 (Soil)	12,14	3,663	Lepidocrocite	9,567	8,196
Al2(MoO4)3(s)	-39,233	-42,065	Lime	13,401	-19,644
Al2O3(s)	24,283	4,17	Maghemite	19,135	12,749
Al4(OH)10SO4(s)	30,558	7,858	Magnesioferrite	31,878	14,522
AlOHF2(s)	-11,972	-12,379	Magnesite	-7,977	-0,481
AlOHSO4(s)	-5,863	-2,633	Magnetite	26,428	22,654
Alunite	5,097	6,124	Manganite	26,511	1,171
Anhydrite	-4,604	-0,257	Melanterite	-10,717	-8,471
Aragonite	-7,319	0,998	Mg(OH)2 (active)	12,743	-6,051
Artinite	4,764	-5,051	Mg2(OH)3Cl:4H2O(s	5) 14,087	-11,913
Boehmite	12,141	3,354	MgCO3:5H2O(s)	-7,981	-3,441
Brucite	12,743	-4,56	MgCr2O4(s)	-42,399	-58,919
CaCO3xH2O(s)	-7,32	-0,197	MgCrO4(s)	-36,241	-41,78
CaCrO4(s)	-35,584	-33,366	MgF2(s)	-11,37	-3,274
Calcite	-7,319	1,144	MgMoO4(s)	-8,429	-6,579
CaMoO4(s)	-7,771	0,175	Mirabilite	-9,817	-8,562
Chalcedony	-3,217	0,368	MnCl2:4H2O(s)	-11,665	-14,399
Chrysotile	31,794	-0,755	MnCO3 (am)	-9,59	0,91
Cr(OH)3 (am)	-27,572	-27,112	MnSO4(s)	-6,875	-9,573
Cr(VI)-Ettringite	-42,29	-103,491	MoO3(s)	-21,172	-13,172
Cr(VI)-Jarosite	-64,585	-46,151	Na2Cr2O7(s)	-89,774	-79,839
Cr2O3 (c)	-55,142	-53,849	Na2CrO4(s)	-40,79	-43,755
CrCl3(s)	-61,759	-77,089	Na2Mo2O7(s)	-34,149	-17,453
CrF3(s)	-63,741	-52,446	Na2MoO4(s)	-12,977	-14,485
Cristobalite	-3,217	0,168	Na2MoO4:2H2O(s)	-12,979	-14,203
CrO3(s)	-48,984	-45,783	NaF(s)	-7,959	-7,468
Cryolite	-47,907	-13,999	Na-Jarosite	-3,212	1,866
Diaspore	12,141	5,085	Natron	-12,533	-11,105
Dolomite (disordered)	-15,296	1,161	Nesquehonite	-7,979	-3,352
Dolomite (ordered)	-15,296	1,724	Periclase	12,743	-9,11
Epsomite	-5,267	-3,12	Portlandite	13,4	-9,533
Ettringite	50,649	-6,886	Powellite	-7,771	0,095
Fe(OH)2 (am)	7,293	-6,36	Pyrochroite	11,129	-4,237
Fe(OH)2 (c)	7,293	-5,597	Pyrolusite	41,893	0,029
Fe(OH)2.7Cl.3(s)	6,147	9,187	Quartz	-3,217	0,822
Fe2(SO4)3(s)	-34,88	-31,576	Rhodochrosite	-9,59	1,407
Fe3(OH)8(s)	26,425	6,203	Rutherfordine	-21,634	-6,879
FeCr2O4(s)	-47,849	-55,299	Schoepite	-0,915	-6,404
FeMoO4(s)	-13,879	-3,807	Sepiolite	15,832	-0,131
Ferrihydrite	9,566	6,187	Sepiolite (A)	15,832	-2,948

Tabell F.28- Modellert metningsgrad (SI) SL uke 12.

Ferrihydrite (aged)	9,566	6,697	Siderite	-13,426	-2,849
Fluorite	-10,713	-0,191	SiO2 (am,gel)	-3,217	-0,483
Gibbsite (C)	12,14	4,213	SiO2 (am,ppt)	-3,217	-0,45
Goethite	9,567	8,968	Spinel	37,027	-0,512
Greenalite	15,444	-5,366	Thenardite	-9,81	-10,148
Gypsum	-4,605	0,006	Thermonatrite	-12,526	-13,182
H2MoO4(s)	-21,173	-8,209	U(OH)2SO4(s)	-41,82	-38,65
Halite	-7,298	-8,842	U(SO4)2 (c)	-59,824	-48,323
Halloysite	17,847	7,949	U3O8(s)	-9,918	-31,866
Hausmannite	64,154	2,374	U4O9(s)	-64,497	-62,237
Hematite	19,135	20,323	UF4(s)	-72,042	-42,646
Hercynite	31,577	8,125	UF4:2.5H2O(s)	-72,044	-39,283
H-Jarosite	-7,311	-2,319	UO2 (am)	-23,815	-25,51
Huntite	-31,249	-1,473	UO2(NO3)2(s)	-28,704	-41
Hydromagnesite	-19,167	-10,79	UO2(NO3)2:2H2O(s)	-28,706	-33,602
Imogolite	21,064	7,72	UO2(NO3)2:3H2O(s)	-28,707	-32,113
K2Cr2O7(s)	-88,6	-71,214	UO2(NO3)2:6H2O(s)	-28,709	-30,718
K2CrO4(s)	-39,616	-39,07	UO2(OH)2 (beta)	-0,914	-6,627
K2MoO4(s)	-11,804	-15,071	UO3(s)	-0,913	-8,758
K-Alum	-19,193	-13,969	Uraninite	-23,815	-19,104
Kaolinite	17,847	10,148	Vaterite	-7,319	0,57
KCl(s)	-6,711	-7,611	-		

Tabell F.29- Modellert metningsgrad (SI) B uke 5.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index		
Al(OH)3 (am)	8,45	-2,547	Imogolite	9,682	-3,663		
Al(OH)3 (Soil)	8,45	-0,027	K2Cr2O7(s)	-46,52	28 -29,142		
Al2(MoO4)3(s)	-71,271	-74,103	K2CrO4(s)	-13,8	9 -13,344		
Al2O3(s)	16,902	-3,211	K2MoO4(s)	-10,64	42 -13,91		
Aragonite	-5,401	2,917	Kaolinite	2,463	-5,236		
Artinite	7,593	-2,221	KCl(s)	-7,02	6 -7,926		
Boehmite	8,451	-0,337	Lepidocrocite	6,812	5,441		
Brucite	17,763	0,46	Lime	22,53	1 -10,514		
CaCO3xH2O(s)	-5,401	1,722	Maghemite	13,62	5 7,239		
CaCrO4(s)	-10,108	-7,89	Magnesioferrite	31,38	8 14,032		
Calcite	-5,401	3,063	Magnesite	-10,10	68 -2,672		
CaMoO4(s)	-6,86	1,086	Magnetite	16,52	5 12,751		
Chalcedony	-7,219	-3,634	Mg(OH)2 (active	e) 17,76	3 -1,031		
Chrysotile	38,852	6,303	Mg2(OH)3Cl:4H	I2O(s) 19,12	4 -6,876		
Cr(OH)3 (am)	-16,142	-15,682	MgCO3:5H2O(s)) -10,1	71 -5,631		
Cr(VI)-Ettringite	54,153	-7,048	MgCr2O4(s)	-14,5	18 -31,038		
Cr(VI)-Jarosite	-35,468	-17,034	MgCrO4(s)	-14,8	75 -20,414		
Cr2O3 (c)	-32,282	-30,989	MgMoO4(s)	-11,62	27 -9,777		

CrCl3(s)	-65,342	-80,672	MoO3(s)	-29,391	-21,391
Cristobalite	-7,219	-3,834	Na2Cr2O7(s)	-46,726	-36,791
CrO3(s)	-32,639	-29,438	Na2CrO4(s)	-14,087	-17,052
Diaspore	8,451	1,394	Na2Mo2O7(s)	-40,23	-23,533
Dolomite (disordered)	-15,569	0,889	Na2MoO4(s)	-10,839	-12,347
Dolomite (ordered)	-15,569	1,451	Na2MoO4:2H2O(s)	-10,84	-12,064
Fe(OH)2 (am)	2,9	-10,754	Natron	-9,386	-7,957
Fe(OH)2 (c)	2,9	-9,99	Nesquehonite	-10,17	-5,543
Fe(OH)2.7Cl.3(s)	1,891	4,931	Periclase	17,764	-4,09
Fe3(OH)8(s)	16,523	-3,699	Portlandite	22,53	-0,403
FeCr2O4(s)	-29,382	-36,832	Powellite	-6,86	1,006
FeMoO4(s)	-26,491	-16,42	Quartz	-7,219	-3,179
Ferrihydrite	6,811	3,433	Rutherfordine	-35,13	-20,375
Ferrihydrite (aged)	6,811	3,943	Schoepite	-7,199	-12,688
Gibbsite (C)	8,45	0,523	Sepiolite	13,868	-2,095
Goethite	6,812	6,213	Sepiolite (A)	13,868	-4,912
Greenalite	-5,739	-26,549	Siderite	-25,032	-14,455
H2MoO4(s)	-29,392	-16,428	SiO2 (am,gel)	-7,219	-4,484
Halite	-7,124	-8,668	SiO2 (am,ppt)	-7,219	-4,452
Halloysite	2,463	-7,435	Spinel	34,666	-2,873
Hematite	13,625	14,813	Thermonatrite	-9,38	-10,036
Hercynite	19,802	-3,65	U3O8(s)	-32,048	-53,996
Huntite	-35,905	-6,129	U4O9(s)	-99,465	-97,206
Hydromagnesite	-22,911	-14,534	UO2 (am)	-33,376	-35,072

Tabell F.30- Modellert metningsgrad (SI) B uke 12.

Mineral	log IAP	AP Sat. index Mineral		og IAP	Sat. index
Al(OH)3 (am)	8,937	-2,061	Fe(OH)2.7Cl.3(s) 1,315	4,355
Al(OH)3 (Soil)	8,937	0,46	Fe3(OH)8(s)	13,409	-6,813
Al2(MoO4)3(s)	-79,288	-82,12	FeCr2O4(s)	-42,079	-49,529
Al2O3(s)	17,876	-2,237	FeMoO4(s)	-31,705	-21,634
Aragonite	-5,706	2,612	Ferrihydrite Ferrihydrite	6,363	2,985
Boehmite	8,937	0,15	(aged)	6,363	3,495
CaCO3xH2O(s)	-5,707	1,417	Gibbsite (C)	8,937	1,01
CaCrO4(s)	-9,987	-7,769	Goethite	6,364	5,765
Calcite	-5,706	2,758	Greenalite	-12,624	-33,434
CaMoO4(s)	-9,804	-1,858	H2MoO4(s)	-32,389	-19,425
Chalcedony	-7,336	-3,751	Halite	-7,944	-9,487
Cr(OH)3 (am)	-21,382	-20,922	Halloysite	3,203	-6,695
Cr(VI)-Ettringite	55,645	-5,556	Hematite	12,729	13,917
Cr(VI)-Jarosite	-37,187	-18,753	Hercynite	18,558	-4,894
Cr2O3 (c)	-42,761	-41,468	Imogolite	10,539	-2,806

CrCl3(s)	-71,864	-87,194 K2Cr2O7(s)	-47,415	-30,029
Cristobalite	-7,336	-3,95 K2CrO4(s)	-14,845	-14,299
CrO3(s)	-32,57	-29,369 K2MoO4(s)	-14,663	-17,931
Diaspore	8,937	1,881 Kaolinite	3,203	-4,496
Fe(OH)2 (am)	0,682	-12,971 KCl(s)	-7,965	-8,865
Fe(OH)2 (c)	0,682	-12,208 Lepidocrocite	6,364	4,993

Tabell F.31- Modellert metningsgrad (SI) B uke 31.

Mineral	log IAP	Sat. index	Mineral	log IAP	Sat. index
Al(OH)3 (am)	9,519	-1,479	Chrysotile Cr(OH)3	37,132	4,583
Al(OH)3 (Soil)	9,519	1,042	(am) Cr(VI)-	-8,499	-8,039
Al2(MoO4)3(s)	-75,101	-77,933	Ettringite Cr(VI)-	56,518	-4,683
Al2O3(s)	19,039	-1,074	Jarosite	-32,079	-13,645
Al4(OH)10SO4(s)	8,968	-13,732	Cr2O3 (c)	-16,996	-15,703
AlOHF2(s)	-21,238	-21,645	CrF3(s)	-54,634	-43,339
AlOHSO4(s)	-19,588	-16,358	Cristobalite	-6,778	-3,393
Alunite	-20,942	-19,916	CrO3(s)	-31,378	-28,177
Anhydrite	-7,169	-2,821	Cryolite	-56,521	-22,613
Aragonite	-6,522	1,795	Diaspore Dolomite	9,519	2,463
Artinite	5,33	-4,484	(disordered) Dolomite	-18,087	-1,629
Boehmite	9,519	0,732	(ordered)	-18,087	-1,067
Brucite	16,896	-0,407	Epsomite	-12,215	-10,068
CaCO3xH2O(s)	-6,523	0,6	Ettringite Fe(OH)2	63,331	5,796
CaCrO4(s)	-9,44	-7,222	(am)	5,536	-8,117
Calcite	-6,522	1,941	Fe(OH)2 (c)	5,536	-7,354
CaMoO4(s)	-9,441	-1,495	Fe2(SO4)3(s)	-72,68	-69,377
Chalcedony	-6,778	-3,193			

Vedlegg G- Elementanalyse Eluat fra ristetest og kolonneforsøk ble analysert etter metode som kommer frem av Tabell

G.1

Element/parameter	Analysemetode	Notat	Laboratorium
Ca, S, Mg, Na, K, Si	Målt med instrumentet Agilent Technology ICP- OES 510DV	Prøvene ble fortynnet 10 ganger før analyse på grunn av høy ionekonsentrasjon.	Jord og vann- kjemilaboratoriet ved NMBU av Valentina Zivanovic.
As, Al, Cd, Cu, Co, Zn, Fe, Mn, Mo, V, Ni, Pb, U, Th	Analysert ved bruk av Agilent Technology ICP- MS- 8800 QQQ	Prøvene ble fortynnet 10 ganger før analyse på grunn av høy ionekonsentrasjon.	Jord og vann- kjemilaboratoriet ved NMBU av Valentina Zivanovic.
DOC	Total dissolved carbon anlayser	pH justert med 0,1M HCl	Jord og vann- kjemilaboratoriet ved NMBU av Mona Mirgeloybayat, Oddny Gimmingsrud og Valentina Zivanovic.
TOT- N	Analysert med instrumentet FIAstar 5000	Preparert med (K ₂ S ₂ O ₈) og oppvarming i en autoklav i 30 minutter etterfulgt av avkjøling og filtrering (0,45 µm)	Jord og vann- kjemilaboratoriet ved NMBU av Oddny Gimmingsrud og Valentina Zivanovic.
CO3, HCO3, CO2, CO2- fritt, CO2- aggressivt	W-CO2F-CC2	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic
Cr	W-METAXDG1	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic
Cr3+	W-CR3DGIC-CC	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic
Cr6+	W-CR6-IC	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic
Cl-, F-, SO4, S-SO4	W-CL-IC, W-F-IC, W- SO4-IC	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic

Tabell G.1 - Metode for elementanalyse.

Syrekapasitet pH 4.5, syrekapasitet pH 8.3	W-ACID-PCT	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic
Alkalinitet pH 4.5, alkalinitet pH 8.3	W-ALK-PCT	Ytterligere spesifisering (Tabell G.2)	ALS Czech Republic

Tabell G.2 - Spesifisert metode for analyser utført av ALS Czech Republic.

Analysemetoder	Metodebeskrivelser
W-ACID-PCT	CZ_SOP_D06_02_073 (CSN 75 73 72) Bestemmelse av basenøytraliserende evne (syrekapasitet) ved potensiometrisk titrering.
W-ALK-PCT	CZ_SOP_D06_02_072 (CSN EN ISO 9963-1,CSN EN ISO 9963-2, CSN 75 7373, SM2320) Bestemmelse av syrenøytraliserende evne (alkalinitet) ved potensiometrisk titrering og bestemmelse av karbonathardhet og bestemmelse av CO2-varianter ved utregning fra målte verdier inkludert utregning av total mineralisering.
W-CL-IC	CZ_SOP_D06_02_068 (CSN EN ISO 10304-1, CSN EN 16192) Bestemmelse av løst fluorid, klorid, nitritt, bromid, nitrat og sulfat ved IC og bestemmelse av nitritt-N og nitrat-N og sulfat-S ved utregning fra målte verdier inkludert utregning av total mineralisering.
W-CO2F-CC2	CZ_SOP_D06_02_072 (CSN EN ISO 9963-1, CSN 75 7373) Bestemmelse av syrenøytraliserende evne (alkalinitet) ved potensiometrisk titrering og bestemmelse av karbonathardhet og bestemmelse av karbondioksid -varianter (CO2, CO3, HCO3) ved utregning fra målte verdier inkludert utregning av total mineralisering.
W-CR3DGIC-CC	CZ_SOP_D06_02_u06 støkiometriske utregninger av konsentrasjonen til aktuelle forbindelser fra målte verdier. Utregning av trivalent krom Cr(III) som forskjellen mellom krom Cr og Heksavalent krom Cr(VI).
W-CR6-IC	CZ_SOP_D06_02_122 unntatt kap. 10.2; 11.3.2; 11.5; 12.2.2; 15.5 (CSN EN 16192, EPA 7199, SM 3500-Cr) Bestemmelse av Heksavalent krom ved ionekromatografi med spektrofotometrisk deteksjon og trivalent krom bestemmelse ved utregning fra målte verdier.
W-F-IC	CZ_SOP_D06_02_068 (CSN EN ISO 10304-1, CSN EN 16192) Bestemmelse av løst fluorid, klorid, nitritt, bromid, nitrat og sulfat ved IC og bestemmelse av nitritt-N og nitrat-N og sulfat-S ved utregning fra målte verdier inkludert utregning av total mineralisering.
W-METAXDG1	CZ_SOP_D06_02_001 (US EPA 200.7, ISO 11885, CSN EN 16192, US EPA 6010, SM 3120, CSN 75 7358 prøver opparbeidet i henhold til CZ_SOP_D06_02_J02 kap. 10.1 og 10.2) Bestemmelse av elementer ved AES med ICP og støkiometriske utregninger av konsentrasjonen til aktuelle forbindelser fra målte verdier inkludert utregning av total mineralisering og kalkulering av summen Ca+Mg. Prøven ble homogenisert og mineralisert med salpetersyre i autoklav under høyt trykk og temperatur før analyse.
W-SO4-IC	CZ_SOP_D06_02_068 (CSN EN ISO 10304-1, CSN EN 16192) Bestemmelse av løst fluorid, klorid, nitritt, bromid, nitrat og sulfat ved IC og bestemmelse av nitritt-N og nitrat-N og sulfat-S ved utregning fra målte verdier inkludert utregning av total mineralisering.

Vedlegg H- Kolonneforsøk ARDB Metode kolonneforsøk ARDB- kolonner

Som følge av målt pH- nivå for skifer inkludert i ristetest (SL) ble det i planleggingen av kolonneforsøket drøftet at skiferne potensielt ikke ville bli netto syredannende i løpet av forsøksperioden. På bakgrunn av ønske å undersøke hvordan betongen påvirkes av ARD ble det valgt å inkludere et triplikat med betongkolonner som ble vannet med ARD- vann (pH \sim 2,7). Disse kolonnene omtales som ARDB.

ARD- vannet ble samlet fra en IBC- kontainer med syredannende svartskifer (opprinnelig stående hos NGI, senere flyttet til NOAH Langøya). Toppen av kontaineren er skåret av, slik at materialet eksponeres for omgivelsenes klima. Infiltrert vann dreneres ut og samles i en 25L plastkanne, dette vannet omtales som ARD- vann og er benyttet til vanning av ARDBkolonnene.

ARDB- kolonnene fulgte samme vanningsprosedyre og -metode som første vanningsperide av B- kolonnene med tilførsel av 1,5L i uke 0, etterfulgt av 0,5L til og med uke 12 (Avsnitt 3.4.3), men ble vannet med ARD- vann i stede for milliQ- vann. Disse kolonnene ble også vannet ved bruk av plastbeger med fem hull. Etter de tretten ukene med vanning (inkludert uke 0) opphørte vanningen av kolonnene. ARDB- kolonnene ble analysert for de samme parameterne og elementene som de resterende kolonnene etter tilsvarende metoder.

Det ble benyttet ARD- vann fra to alunskiferkontainere, AT1 og AT2. Det ble hentet vann fra AT1- kontaineren to ganger, derav AT1.1 og AT1.2. ARD- vannet ble oppbevart i 20L plastdunker i et kjølig, mørkt rom imellom vanningene. ARD- vannene ble benyttet i følgende tidsintervall:

- Uke 0- 4 vannet med AT1.1
- Uke 5- 10 vannet med AT2
- Uke 11- 12 vannet med AT1.2

Samtlige ARD- vann ble også analysert (etter filtrering 0,45µm), i hovedsak for tilsvarende parametere og elementer som eluatprøvene fra kolonneforsøk.

Figur G.1 - Analyseresultater Na, K, Ca, Mg [mg/L].

Figur G.2 - Analyseresultater Mg og Si [mg/L].

Figur G.3- Analyseresultater Fe, Al, Cu, Mn, Zn [mg/L].

Figur G.4- Analyseresultater Mo, As, Cr [mg/L].

Figur G.5- Analyseresultater SO4 og U [mg/L].

ARDR1														
Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Al	mg/L	0,0077	0,049	0,095	0,010	0,020	0	8,3	7,6	8,0	11	17	27	17
Si	mg/L	0,57	1,0	1,4	1,3	1,2	0,66	0,65	0,49	0,34	0,39	0,51	0,39	0,78
S	mg/L	330	64	64	140	210	300	330	400	420	450	430	420	430
V	μg/L	0,25	0,11	0,11	0,11	0,13	0,16	0,17	0,21	0,2	0,23	0,22	0,21	0,22
Mn	μg/L	0	0,8	0	0	0	0	0	0	0	0	0	0	0
Fe	mg/L	0,021	0,014	0,013	20	24	28	22	24	23	91	8,4	13	8,1
Co	μg/L	2,6	1,6	1,1	0,92	0,92	1,0	0,7	0,61	0,58	0,58	0,48	0,41	0,47
Ni	μg/L	7,7	6,2	5,2	9,5	8,5	6,4	5,9	4,8	3,5	3,9	0	0	0
Cu	μg/L	21	16	11	7,7	4,6	6,6	5,7	3,8	3,5	3,1	5,5	3,7	2,4
Zn	μg/L	12	20	22	28	24	21	17	14	12	10	18	16	8,8
As	μg/L	0,60	0,34	0,23	0,30	0,31	0,31	0,38	0,33	0,44	0,37	0,24	0,16	0,29
Mo	μg/L	73	47	49	63	65	57	54	47	42	38	37	32	28
Cd	μg/L	0	0	0,0093	0	0	0,009	0,006	0,0092	0,0093	0,0095	0,017	0	0

Tabell G.3 - Analyseresultater ARDB1.

Hg	μg/L	0	0	0										
Pb	μg/L	1,9	2,1	2,0	1,7	1,4	0,91	0,8	0,57	0,52	1,7	0,57	0,56	0,31
Th	μg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
U	μg/L	0	0	0	0	0,00094	0	0,007	0,024	0,029	0,021	0	0,0019	0,0064
Ca	mg/L	910	580	600	770	830	870	870	930	900	900	870	840	840
Mg	mg/L	0,030	0,040	0,060	0,0070	0,010	0,015	0,016	0,022	0,025	0,023	0,019	0,022	0,026
Na	mg/L	170	93	50	33	24	21	21	16	16	16	13	13	11
Κ	mg/L	210	150	94	70	52	38	33	26	24	19	15	15	13
DOC	mg/L	63	14	8,8	6,9	5,6	4,5	4,3	3,9	3,4	3,3	2,8	2,7	2,4
TOT- N	mg/L	2,2	1,7	1,5	1,5	1,6	1,5	1,8	1,7	1,8	1,8	1,7	1,8	1,9

ARDB1 Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Karbonat (CO3)	mg/L	590	499	485	250	504	331	106	547	341	226	499	33,4	56,2
Bikarbonat (HCO3)	mg/L	0	1180	1100	0	410	957	1280	0	581	742	0	0	0
Cr (Krom)	mg/L	0,075 8	0,041 4	0,043 5	0,063	0,074 3	0,065 6	0,071 4	0,051 4	0,048 6	0,048 8	0,038 4	0,034 5	0,030 9
Cr3+	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+	μg/L	77,9	39,3	45,3	72,9	76,4	84,3	80,6	68,2	56,1	51,2	42,2	38,1	36,3
Klorid (Cl-)	mg/L	18,2	22,6	16	11,7	9,02	5,46	4,95	4,13	4,31	3,22	1,65	3,95	3,09
Fluorid (F-)	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Sulfat (SO4)	mg/L	793	162	180	374	598	1040	907	1240	1260	1390	1290	1340	1360
Sulfat-S (SO4-S)	mg/L	264	53,9	60,2	124	199	348	302	412	420	463	430	448	454
Syrekapasitet pH 4,5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasitet pH 8,3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet pH 4,5	mmol/L	36,8	35,9	34,2	19,7	23,5	26,7	24,6	19,8	20,9	19,7	17,6	14,4	15,4
Alkalinitet pH 8,3	mmol/L	26,9	8,32	8,08	15,5	8,4	5,52	1,76	10,7	5,68	3,76	9,28	13,8	14,4
Karbondioksid (CO2)	mg/L	433	1210	1150	183	665	933	1000	401	669	701	366	24,5	41,2
fritt	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
CO2-aggressivt	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabell G.4- Analyseresultater ARDB2.

ARDB2 Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Al	mg/L	0,021	0,013	0,041	0,0083	0,023	0	12	10	5,5	0	7,8	9,5	13
Si	mg/L	1,5	2,6	2,5	2,2	2,1	1,9	1,9	1,7	0,96	1,5	1,7	1,9	1,8
S	mg/L	270	84	110	130	210	280	330	370	400	430	400	420	410
V	μg/L	0,44	0,076	0,12	0,12	0,17	0,19	0,24	0,27	0,3	0,35	0,32	0,38	0,29
Mn	μg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe	mg/L	0,018	0,012	0,013	19	23	19	20	26	24	24	8,1	8,4	10
Co	μg/L	2,6	1,1	0,82	0,81	0,77	0,67	0,67	0,51	0,59	0,58	0,46	0,45	0,52
Ni	μg/L	9,9	4,3	4,0	7,0	7,5	5,4	4,9	4,8	4,0	3,5	0	0	0,47
Cu	μg/L	22	14	11	7,8	4,5	6,9	5,8	4,9	4,0	3,5	5,9	4,4	2,0
Zn	μg/L	4,3	4,5	7,5	9,4	12	9,0	8,9	8,2	3,2	2,9	12	9,5	0

As	μg/L	0,70	0,27	0,19	0,17	0,21	0,34	0,35	0,42	0,42	0,34	0,30	0,22	0,19
Mo	μg/L	76	34	35	40	43	42	45	48	46	45	46	43	41
Cd	μg/L	0,0071	0	0	0,0094	0,0093	0	0	0,0092	0,0062	0,019	0,011	0,029	0
Hg	μg/L	0	0	0										
Pb	μg/L	2,3	1,8	1,7	1,6	1,3	1,0	0,86	0,78	0,65	0,6	0,73	0,71	0,33
Th	μg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
U	μg/L	0	0	0	0	0	0,0014	0,011	0,02	0,031	0,017	0	0	0,0016
Ca	mg/L	860	560	620	730	800	830	860	890	880	890	860	850	820
Mg	mg/L	0,050	0,050	0,060	0,0090	0,012	0,019	0,027	0,034	0,047	0,065	0,065	0,13	0,084
Na	mg/L	180	88	46	31	24	23	21	19	17	17	15	16	14
K	mg/L	220	160	100	73	50	38	31	25	22	17	15	13	13
DOC	mg/L	62	14	10	7,6	6,5	5,7	5,2	4,9	3,6	4,1	3,8	3,1	3
TOT- N	mg/L	2,9	1,6	1,5	1,5	1,4	1,2	1,5	1,5	1,7	1,6	1,5	1,6	1,8

ARDB2 Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Karbonat (CO3)	mg/L	583	418	446	446	533	331	106	562	331	216	528	35,3	307
Bikarbonat (HCO3)	mg/L	0	1180	1070	334	188	922	1270	224	596	771	0	0	0
Cr (Krom)	mg/L	0,0712	0,0321	0,0331	0,0367	0,0472	0,0465	0,051	0,0503	0,0527	0,0576	0,05	0,0457	0,0434
Cr3+	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr6+	μg/L	74,6	363	34,3	44,9	54,9	56,4	61,1	63,8	58,1	64,4	56,7	51,5	47,4
Klorid (Cl-)	mg/L	32,4	19,5	11,5	10,9	8,04	5,33	2,24	4,05	3,94	3,13	1,66	4,07	2,83
Fluorid (F-)	mg/L	0	0	0	0	0	0	0	0	0	0	0	0,388	0,284
Sulfat (SO4)	mg/L	830	280	280	376	609	1030	469	1140	1200	1310	1230	1300	1210
Sulfat-S (SO4-S)	mg/L	277	93,3	93,5	125	203	344	156	382	399	436	409	434	402
Syrekapasitet pH 4,5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrekapasitet pH 8,3	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitet pH 4,5	mmol/L	37,6	33,3	32,5	20,4	20,8	26,2	24,4	22,4	20,8	19,8	18,4	14,8	15,3
Alkalinitet pH 8,3	mmol/L	27,9	6,96	7,44	7,44	8,88	5,52	1,76	9,36	5,52	3,6	9,6	14,3	10,2
Karbondioksid (CO2)	mg/L	428	1160	1100	569	526	908	996	574	672	715	387	25,9	225
CO2-fritt Karbondioksid-	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
aggressivt CO2- aggressivt	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0

ARDB3 Uke		0	1	2	3	4	5	5 6	5	7	8	9	10	11	12
Al	mg/L	0,0053	0,17	0,19	0,013	0,012	0	0	7,4	6,8	4,	3	13	12	18
Si	mg/L	0,81	1,2	0,85	0,65	0,64	0,46	0,59	0,34	0,2	5 0,4	4 (0,67	0,64	0,95
S	mg/L	170	12	16	39	72	130	210	330	370) 42	0	420	420	430
V	μg/L	0,27	0,10	0,11	0,082	0,088	0,12	0,14	0,14	0,1	6 0,2	2 (0,19	0,14	0,18
Mn	μg/L	0	0	0,31	0,055	0	0	0	0	0	0		0	0	0
Fe	mg/L	0,016	0,014	0,03	20	22	18	23	26	26	24	1	9,7	8,4	9,6
Co	μg/L	3,0	1,2	0,85	0,93	0,93	0,88	0,94	0,85	0,9	2 0,7	6 (0,65	0,55	0,72
Ni	μg/L	9,6	4,7	3,9	7,8	8,4	6,6	7,2	7,1	6,2	5,	1	0	0	0
Cu	μg/L	25	14	11	7,8	5,2	8,4	9,5	6,4	5,3	5,	0	6,9	3,6	3,1
Zn	μg/L	4,4	6,5	9,0	13	18	19	18	18	12	11	l	20	16	28
As	μg/L	0,72	0,28	0,19	0,28	0,25	0,34	0,48	0,38	0,4	6 0,4	4 (0,35	0,22	0,34
Мо	μg/L	86	28	28	37	49	66	77	88	84	78	3	82	60	62
Cd	μg/L	0	0	0	0	0,0063	0,027	0,006	0,009	1 0,01	6 0,0	13	0	0,011	0
Hg	μg/L	0	0	0											
Pb	μg/L	3,4	2,6	2,3	2,2	2,0	1,9	1,7	1,4	1,1	0,9	91	1,2	0,83	0,68
Th	μg/L	0	0	0	0	0	0	0	0	0	0		0	0	0
U	μg/L	0	0	0	0,0017	0,0026	0	0,011	0,012	0,02	6 0,0	25 0,	,0070	0,00094	0
Ca	mg/L	800	560	600	740	770	820	900	990	980) 99	0	990	920	930
Mg	mg/L	0,040	0,050	0,050	0,0070	0,0080	0,0079	0,012	0,016	0,01	9 0,0	19 0	,016	0,017	0,025
Na	mg/L	180	94	46	33	25	23	23	17	17	17	7	16	16	13
K	mg/L	210	170	98	73	54	41	36	25	24	18	3	16	15	14
DOC	mg/L	59	17	7,1	5,6	5,1	4,9	4,6	4,2	3,9	3,	7	4,1	3,1	2,7
TOT- N	mg/L	2,8	1,9	1,5	1,6	1,5	1,5	1,7	1,7	1,8	1,	7	1,6	1,6	2
ARDB3 Uke			0	1	2	3	4	5	6	7	8	9	10	11	12
Karbonat (CC	03)	mg/L	590	434	648	43,9	770	542	173	612	533	346	624	211	346
Bikarbonat (F	HCO3)	mg/L	0	783	903	0	0	952	1430	0	591	903	0	884	0
Cr (Krom)		mg/L	0,103	0,0194	4 0,0207	0,0282	0,0465	0,0699	0,097	0,0997	0,211	0,0994	0,0913	0,0745	0,0686
Cr3+		mg/L	0,0129	0	0,0023	0	0	0	0	0	0,0787	0	0	0	0
Cr6+		$\mu g/L$	90,2	18,7	18,4	35,2	54,1	84,3	105	129	132	116	100	0	91,5
Klorid (Cl-)		mg/L	28,8	24,8	13	11,7	9,23	6,38	5,04	4,12	3,86	2,84	1,39	3,44	2,41
Fluorid (F-)		mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Sulfat (SO4)		mg/L	423	40,7	38,6	111	204	488	626	1020	1120	1290	1250	1320	1160
Sulfat-S (SO4	4-S)	mg/L	141	13,6	12,9	37	68	163	208	339	374	431	418	440	388
Syrekapasitet	pH 4,5	mmol/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Alkalinitat pl	грн 8,5 1 4 5	mmol/L	40.4	27.3	36.4	24.2	26.2	22.7	20.2	25.6	27.4	26.3	23.1	21.5	18.8
Alkalinitet p	183	mmol/L	30.6	27,3 7 24	10.8	33.5	13.4	9 04	2 88	15.4	27, 4 8,88	5 76	12.7	3 52	13
Karbondioksi	id (CO2)	mg/L	433	884	1130	32.2	565	1080	1160	449	817	905	458	792	253
Karbondioksi CO2-fritt Karbondioksi	id-fritt	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0
aggressivt CO aggressivt	02-	mg/L	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabell G.5- Analyseresultater ARDB3.

ARDB C		0	1	2	3	4	5	6	7	8	9	10	11	12
Al	mg/L	0,01	0,08	0,11	0,01	0,02	0,00	6,77	8,33	6,77	5,10	12,60	16,17	16,00
Si	mg/L	0,96	1,60	1,58	1,38	1,31	1,01	1,05	0,84	0,52	0,78	0,96	0,98	1,18
S	mg/L	256,67	53,33	63,33	103,00	164,00	236,67	290,00	366,67	396,67	433,33	416,67	420,00	423,33
V	μg/L	0,32	0,10	0,11	0,10	0,13	0,16	0,18	0,21	0,22	0,26	0,24	0,24	0,23
Mn	μg/L	0,00	0,27	0,10	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe	mg/L	0,02	0,01	0,02	19,67	23,00	21,67	21,67	25,33	24,33	46,33	8,73	9,93	9,23
Co	μg/L	2,73	1,30	0,92	0,89	0,87	0,85	0,77	0,66	0,70	0,64	0,53	0,47	0,57
Ni	μg/L	9,07	5,07	4,37	8,10	8,13	6,13	6,00	5,57	4,57	4,17	0,00	0,00	0,16
Cu	μg/L	22,67	14,67	11,00	7,77	4,77	7,30	7,00	5,03	4,27	3,87	6,10	3,90	2,50
Zn	μg/L	6,90	10,33	12,83	16,80	18,00	16,33	14,63	13,40	9,07	7,97	16,67	13,83	12,27
As	μg/L	0,67	0,30	0,20	0,25	0,26	0,33	0,40	0,38	0,44	0,37	0,30	0,20	0,27
Мо	μg/L	78,33	36,33	37,33	46,67	52,33	55,00	58,67	61,00	57,33	53,67	55,00	45,00	43,67
Cd	μg/L	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00
Hg	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pb	μg/L	2,53	2,17	2,00	1,83	1,57	1,27	1,12	0,92	0,76	1,07	0,83	0,70	0,44
Th	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,03	0,02	0,00	0,00	0,00
Ca	mg/L	856,67	566,67	606,67	746,67	800,00	840,00	876,67	936,67	920,00	926,67	906,67	870,00	863,33
Mg	mg/L	0,04	0,05	0,06	0,01	0,01	0,01	0,02	0,02	0,03	0,04	0,03	0,06	0,05
Na	mg/L	176,67	91,67	47,33	32,33	24,33	22,33	21,67	17,33	16,67	16,67	14,67	15,00	12,67
Κ	mg/L	213,33	160,00	97,33	72,00	52,00	39,00	33,33	25,33	23,33	18,00	15,33	14,33	13,33
DOC	mg/L	61,33	15,00	8,63	6,70	5,73	5,03	4,70	4,33	3,63	3,70	3,57	2,97	2,70
TOT-N	mg/L	2,63	1,73	1,50	1,53	1,50	1,40	1,67	1,63	1,77	1,70	1,60	1,67	1,90

Tabell G.6- Analyseresultater (ARDB) presentert med gjenomsnitt og standardavvik.

ARDB SD Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Al	mg/L	0,01	0,08	0,08	0,00	0,01	0,00	6,15	1,45	1,25	5,54	4,61	9,46	2,65
Si	mg/L	0,48	0,87	0,84	0,78	0,74	0,78	0,74	0,75	0,39	0,63	0,65	0,81	0,55
S	mg/L	80,83	37,17	47,00	55,65	79,67	92,92	69,28	35,12	25,17	15,28	15,28	0,00	11,55
V	μg/L	0,10	0,02	0,01	0,02	0,04	0,04	0,05	0,07	0,07	0,08	0,07	0,12	0,06
Mn	μg/L	0,00	0,46	0,18	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe	mg/L	0,00	0,00	0,01	0,58	1,00	5,51	1,53	1,15	1,53	38,68	0,85	2,66	1,00
Co	μg/L	0,23	0,26	0,15	0,07	0,09	0,17	0,15	0,17	0,19	0,10	0,10	0,07	0,13
Ni	$\mu g/L$	1,19	1,00	0,72	1,28	0,55	0,64	1,15	1,33	1,44	0,83	0,00	0,00	0,27
Cu	$\mu g/L$	2,08	1,15	0,00	0,06	0,38	0,96	2,17	1,31	0,93	1,00	0,72	0,44	0,56
Zn	$\mu g/L$	4,42	8,43	7,97	9,87	6,00	6,43	4,99	4,93	5,08	4,42	4,16	3,75	14,32
As	$\mu g/L$	0,06	0,04	0,02	0,07	0,05	0,02	0,07	0,05	0,02	0,03	0,06	0,03	0,08
Mo	$\mu g/L$	6,81	9,71	10,69	14,22	11,37	12,12	16,50	23,39	23,18	21,36	23,81	14,11	17,16
Cd	$\mu g/L$	0,00	0,00	0,01	0,01	0,00	0,01	0,00	0,00	0,01	0,00	0,01	0,01	0,00
Hg	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Pb	μg/L	0,78	0,40	0,30	0,32	0,38	0,55	0,50	0,43	0,30	0,57	0,33	0,14	0,21
Th	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U	μg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Ca	mg/L	55,08	11,55	11,55	20,82	30,00	26,46	20,82	50,33	52,92	55,08	72,34	43,59	58,59
Mg	mg/L	0,01	0,01	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,03	0,03	0,06	0,03
Na	mg/L	5,77	3,21	2,31	1,15	0,58	1,15	1,15	1,53	0,58	0,58	1,53	1,73	1,53
K	mg/L	5,77	10,00	3,06	1,73	2,00	1,73	2,52	0,58	1,15	1,00	0,58	1,15	0,58
DOC	mg/L	2,08	1,73	1,46	1,01	0,71	0,61	0,46	0,51	0,25	0,40	0,68	0,23	0,30
TOT-N	mg/L	0,38	0,15	0,00	0,06	0,10	0,17	0,15	0,12	0,06	0,10	0,10	0,12	0,10

ARDB Gj.snitt Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Karbonat (CO3)	mg/L	587,67	450,33	526,33	246,63	602,33	401,33	128,33	573,67	401,67	262,67	550,33	93,23	236,40
Bikarbonat (HCO3)	mg/L	0,00	1047,67	1024,33	111,33	199,33	943,67	1326,67	74,67	589,33	805,33	0,00	294,67	0,00
Cr (Krom)	mg/L	0,08	0,03	0,03	0,04	0,06	0,06	0,07	0,07	0,10	0,07	0,06	0,05	0,05
Cr3+	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00
Cr6+	μg/L	80,90	140,33	32,67	51,00	61,80	75,00	82,23	87,00	82,07	77,20	66,30	29,87	58,40
Klorid (Cl-)	mg/L	26,47	22,30	13,50	11,43	8,76	5,72	4,08	4,10	4,04	3,06	1,57	3,82	2,78
Fluorid (F-)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,09
Sulfat (SO4)	mg/L	682,00	160,90	166,20	287,00	470,33	852,67	667,33	1133,33	1193,33	1330,00	1256,67	1320,00	1243,33
Sulfat-S (SO4- S)	mg/L	227,33	53,60	55,53	95,33	156,67	285,00	222,00	377,67	397,67	443,33	419,00	440,67	414,67
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet pH 4.5	mmol/L	38.27	32.17	34.37	24.77	23.50	28.87	26.07	22.60	23.03	21.93	19.70	16.90	16.50
Alkalinitet pH 8 3	mmol/L	28 47	7.51	8 77	18.81	10.23	6 69	2.13	11.82	6 69	4 37	10.53	10.54	12.53
Karbondioksid	mg/L	431 33	1084 67	1126.67	261 40	585 33	973 67	1052.00	474 67	719 33	773 67	403.67	280.80	173.07
Karbondioksid-	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Karbondioksid-	ing L	0,00	0,00	0,00	0,00	5,00	0,00	5,00	0,00	0,00	0,00	0,00	0,00	0,00
aggressivt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

ARDB SD Uke		0	1	2	3	4	5	6	7	8	9	10	11	12
Karbonat (CO3)	mg/L	415,56	321,10	377,62	224,26	434,33	292,37	93,45	406,17	291,56	190,42	391,15	88,40	216,03
Bikarbonat (HCO3)	mg/L	0,00	752,54	727,00	192,83	205,23	667,52	939,53	129,33	416,79	571,73	0,00	360,89	0,00
Cr (Krom)	mg/L	0,06	0,02	0,02	0,03	0,04	0,04	0,05	0,05	0,09	0,05	0,05	0,04	0,04
Cr3+	mg/L	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00
Cr6+	µg/L	57,42	199,35	24,79	39,48	45,17	55,03	60,05	65,04	63,18	58,31	50,34	26,72	44,83
Klorid (Cl-)	mg/L	20,05	15,89	9,81	8,10	6,22	4,06	3,22	2,90	2,86	2,17	1,11	2,71	1,98
Fluorid (F-)	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,22	0,16
Sulfat (SO4)	mg/L	499,67	141,55	142,76	221,20	358,29	629,91	520,63	804,94	845,14	941,51	889,11	933,60	883,35
Sulfat-S (SO4-S)	mg/L	166,57	47,17	47,68	73,45	119,34	210,56	173,26	268,17	281,64	313,84	296,46	311,68	294,67
Syrekapasitet pH 4.5	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Syrekapasitet pH 8.3	mmol/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alkalinitet pH 4.5	mmol/L	27,08	22,91	24,34	18,14	16,73	20,56	18,50	16,10	16,43	15,66	14,04	12,17	11,72
Alkalinitet pH 8.3	mmol/L	20,16	5,35	6,29	15,72	7,41	4,88	1,55	8,57	4,86	3,17	7,52	8,24	9,11
Karbondioksid (CO2)	mg/L	305,01	773,91	797,07	290,77	419,81	690,65	745,84	346,84	510,99	551,04	286,92	323,66	158,17

Karbondioksid-fritt														
CO2-fritt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Karbondioksid-														
aggressivt CO2-														
aggressivt	mg/L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Figur G.6- Gjennomsnittlig målt pH.

Tabell G.7- Målt pH for ARDB- kolonner, samt gjennomsnitt og standardavvik.

рН													
uke	0	1	2	3	4	5	6	7	8	9	10	11	12
ARDB1	12,51	12,63	12,44	12,37	12,4	12,33	12,244	12	12,36	12,4	12,34	12,26	12,19
ARDB2	12,52	12,62	12,41	12,38	12,38	12,33	12,239	12	12,35	12,4	12,37	12,25	12,25
ARDB3	12,5	12,66	12,49	12,44	12,48	12,46	12,376	12	12,45	12,49	12,39	12,3	12,18
Gj.snitt	12,51	12,64	12,45	12,40	12,42	12,37	12,29	12,00	12,39	12,43	12,37	12,27	12,21
SD	0,01	0,02	0,04	0,04	0,05	0,08	0,08	0,00	0,06	0,05	0,03	0,03	0,04

Figur G.7- Gjennomsnittlig målt EC.

EC													
Uke	0	1	2	3	4	5	6	7	8	9	10	11	12
ARDB1	6,804	5,415	5,26	5,734	5,368	5,193	1,059	5,87	5,93	5,66	5,33	5,1	4,88
ARDB2	7,127	5,005	5,059	5,693	5,067	5,05	1,684	5,85	5,9	5,71	5,44	5,13	4,87
ARDB3	7,075	5,844	5,633	6,077	5,877	5,87	2,62	6,99	7,22	6,78	6,4	5,94	4,87
Gj.snitt	7,00	5,42	5,32	5,83	5,44	5,37	1,79	6,24	6,35	6,05	5,72	5,39	4,87
SD	0,17	0,42	0,29	0,21	0,41	0,44	0,79	0,65	0,75	0,63	0,59	0,48	0,01

Tabell G.8- Målt EC for ARDB- kolonner, samt gjennomsnitt og standardavvik.

Figur G.8- Gjennomsnittlig målt Eh. *Verdiene er ikke korrigert for redokselektrode (+206 mV)*

Tabell G.9- Målt Eh for ARDB- kolonner, samt gjennomsnitt og standardavvik. *Verdiene er ikke korrigert for redokselektrode (+206 mV)*

Redox (Eh)													
Uke	0	1	2	3	4	5	6	7	8	9	10	11	12
ARDB1	-37,5	-2,50	-16,50	41,00	27,30	53,90	91,60		31,60	58,10	55,7	49,2	33,5
ARDB2	-36,6	-6,10	-15,30	10,70	30,50	51,40	102,90		25,40	56,30	59	51,3	34,3
ARDB3	-41,5	-4,70	-14,20	-2,10	29,10	46,00	88,10		24,00	56,30	56,1	52,5	31,9
Gj.snitt	8,95	9,25	9,59	9,89	10,16	10,33	10,90		11,57	11,84	12,15	0,00	0,00
SD	2,61	1,81	1,15	22,13	1,60	4,04	7,73		4,04	1,04	1,80	1,67	1,22

Resultater ARDB- vann

Tabell G.10-	Analy	yseresultater	ARD-	vann.
--------------	-------	---------------	------	-------

ELEMENT	SAMPLE	AT1.1(1)	AT1.1 (2)	AT1.1 (3)	AT1.2(1)	AT1.2(2)	AT1.2(3)	AT2(1)	AT2(2)	AT2(3)
pH		2,74	2,74	2,77	2,73		2,73			
EC [mS/cm]		2.765	2.685	2.574						
Redoks [mV]		590,1	589	583,5						
Al	mg/L	5,2	5,1	5,1	6,2	5,8	5,9	8,9	9,6	8,8
Si	mg/L	8,2	8,1	8,1	17	16	17	11	12	11
S	mg/L	610	620	610	680	640	630	700	750	710
V	μg/L	12	12	12	31	28	28	37	41	37
Mn	μg/L	420	430	430	770	710	720	820	890	830
Fe	mg/L	62	64	65	110	100	100	120	130	120
Со	μg/L	18	18	18	21	20	21	37	40	38
Ni	μg/L	230	230	230	350	320	330	470	510	480
Cu	μg/L	400	400	410	460	420	430	720	800	750
Zn	μg/L	275	275	280	370	340	355	415	455	425
As	μg/L	5,2	5,5	5,3	20	19	19	21	23	21
Мо	μg/L	15	14	15	41	37	38	22	24	23
Cd	μg/L	8,7	8,7	9	14	13	13	15	16	16
Hg	μg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Pb	μg/L	0,88	0,9	0,92	3,5	3,1	3,4	0,48	0,47	0,49
Th	μg/L	7,1	7	7	16	14	15	13	12	13
U	μg/L	130	120	130	270	240	260	250	240	240
Ca	mg/L	550	550	560	680	590	630	730	690	710
Mg	mg/L	2,4	2,5	2,5	5,4	5	5,2	7,4	7,1	7,2
Na	mg/L	5,8	5,6	5,9	7,2	6,8	6,9	7	6,8	6,9
K	mg/L	0,33	0,11	0,38	0,18	0,15	0,15	0,02	0,02	0,01
DOC	mg/L	2,6	2,8	2,3	1,2	1,1	1,1	1,8	1,8	1,9
TOT-N	mg/L	1,4	1,4	1,4	1,8	1,9	1,8	1,6	1,6	1,6
Karbonat (CO3)	mg/L				0.0	0.0	0.0	0.0	0.0	0.0
Bikarbonat (HCO3)	mg/L				0.0	0.0	0.0	0.0	0.0	0.0
Cr (Krom)	mg/L				0,0082	0,006	0,0061	0,009	0,0093	0,0089
Cr3+	mg/L				0,0082	0,006	0,0061	0,009	0,0093	0,0089
Cr6+	μg/L				< 0.40	< 0.40	< 0.40	<0.40	< 0.40	< 0.40
Klorid (Cl-)	mg/L				1,6	1,66	1,65	<1.00	<1.00	<1.00
Fluorid (F-)	mg/L				2	2,33	2,83	3,2	4,54	3,48
Sulfat (SO4)	mg/L				1800	1820	1850	2050	2140	1930
Sulfat-S (SO4-S) Svrekanasitet nH	mg/L				601	606	616	684	715	644
4.5	mmol/L				7,7	7,6	7,47	6,25	7,32	7,02
Syrekapasitet pH	mmol/I				9.51	94	9.27	11.4	11.9	11.8

Verdier for Eh er ikke korrigert for redokselektrode (+206 mV)

Alkalinitet pH 4.5	mmol/L	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150
Alkalinitet pH 8.3	mmol/L	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150
(CO2)	mg/L	419	414	408	500	523	519
Karbondioksid-fritt CO2-fritt	mg/L	419	414	408	500	523	519
Karbondioksid-	8						
aggressivt	mg/L	0.0	0.0	0.0	0.0	0.0	0.0

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway