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Abstract

Feature selection is an integral part of data science, offering the ability to manage
the high-dimensional challenges that sometimes curse machine learning. Although
machine learning and deep learning models have significantly improved in the field,
high-dimensional data still pose problems due to their increased computation and
memory requirements. The “short-wide” nature of tabular datasets prevalent in
real-world applications create underdetermined mathematical problems character-
ized by an excess of variables over equations. To address these challenges, feature
selection techniques need to not only reduce the dimensionality but also ensure
the stability of the selected features.

In this thesis, we extend the Repeated Elastic Net Technique (RENT) feature
selection method, originally capable of operating on only binary classification and
regression problems, to support multiclass problems. We explore the effectiveness
of this new functionality on diverse datasets and compare it with other feature
selection techniques. The extension demonstrates higher performance in certain
datasets, particularly those with a relatively high number of classes and features. It
does not consistently surpass the baseline across all datasets, however, it surpasses
or is on par with other feature selection techniques.

RENT’s ability to substantially reduce both the number of features and the overall
runtime highlights its potential as a valuable tool in the feature selection domain.
The results of this study ultimately advance our understanding of the RENT
algorithm and lay the groundwork for future research aimed at improving its ap-
plication to a broader range of real-world classification problems.
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Chapter 1

Introduction

1.1 Background and Context

Feature selection is a prerequisite in model building. It significantly impacts a
model’s performance, interpretability, and ability to generalize. Technologies to
capture more data from both physical and logical mediums continue to evolve, and
the volume, complexity, and dimensions of data in all domains continue to increase.
The need for robust feature selection methods has become more pronounced in
this data-heavy world. One such method is the Repeated Elastic Net Technique
(RENT), which has demonstrated its effectiveness in handling binary classification
and regression problems [1].

1.2 Problem Statement

The primary goal of this paper is to extend the RENT feature selection method
to support multiclass problems, broadening its use into diverse areas. The current
implementation of RENT only supports binary classification and regression tasks,
which limits its domain of applications in the real world, unlike other techniques
already present in literature [2][3][4][5]
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1.3 Proposed Solution

We propose an adaptation of the RENT algorithm using a one-vs-rest approach.
This is integrated into the logistic regression model employed by RENT for feature
selection. The current implementation of RENT requires the user to provide three
thresholds as hyperparameters: the percentage of non-zero weights of each feature,
the frequency of coefficient alternation between positive and negative values across
models, and the significance of coefficient deviation from zero [1]. In our proposed
extension, we update the calculation of these thresholds to accommodate the one-
vs-rest technique. This technique generates one model for each class in the target
variable, as opposed to binary classification tasks where a single model and one set
of weights are produced. This modification would allow RENT to handle multiple
classes while preserving its core functionalities efficiently.

1.4 Paper Structure

The paper is structured as follows: Section 2 provides a background on the machine
learning models and feature selection techniques, including RENT. Section 3 de-
tails the proposed extension of RENT for multiclass problems. Section 4 describes
the methodologies applied. Section 5 presents the datasets and experimental setup
of this paper. Section 6 provides the empirical evaluation of the proposed method
and compares its performance with other techniques. These are further discussed
in Section 7. Section 8 concludes the paper. And finally, Section 9 describes the
potential avenues for future research.

The Python scripts for this study are present in the GitHub repository: https:
//github.com/karkinissan/Multiclass RENT/tree/multi class

2
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Chapter 2

Theory

2.1 Models

2.1.1 Perceptron

A perceptron is used in supervised learning tasks for binary classification problems.
It is a simple yet powerful algorithm that can be used to learn linear decision
boundaries within data. Consider X = {xi | i ∈ {1, . . . , k}} as a set of k training
samples in a given dataset. Each sample within the dataset is represented as an n-
dimensional vector denoted by xi = [x1, x2, . . . , xn]. The components of this vector
correspond to the input features. The input signal to the perceptron is a single
instance of the dataset. Each component of the input vector is associated with a
weight wn. These set of weights w represent the importance or strength of the
respective input features in determining the output prediction. The perceptron’s
weights are also referred to as its model parameters.

The perceptron algorithm computes a weighted sum of the input features and their
corresponding weights [6]. This weighted sum is commonly referred to as the net
input. A bias term w0x0 with x0 = 1 is added into the net input to shift the
decision boundary away from the origin of the input feature axis. The net input
can be expressed as :

z = w0x0 + w1x1 + w2x2 + · · ·+ wnxn (2.1)

z =
n∑

j=1

(wj ∗ xj) + b = wTx+ b (2.2)
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In this equation, z denotes the net input, w represents the weights associated with
the input features, and x the input features. n indicates the number of input
features. It is important to note that w0 is the bias weight, and x0 is a unit value.

The weights are initially set to a random set of values [7]. During training, the
weights are updated to minimize the error between the predicted output and the
true output. The output y is determined with the use of a threshold function.

For classification tasks, the net input z is passed through a threshold function ϕ(z)
to determine the perceptron’s output prediction. Specifically, perceptron uses the
unit step threshold function which is a mathematical function that takes the net
input and produces a binary output of 0 or 1 based on whether the net input is
above or below a certain threshold. In the context of the perceptron, the threshold
function is used to determine whether the predicted output is a positive or negative
class label, with 0 representing the negative class and 1 representing the positive
class. For instance, if the threshold is set at 0, any net input greater than or
equal to 0 is predicted as a positive class label, while any net input less than 0 is
predicted as a negative class label. The unit step function is visualized in Figure
2.1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

z

0.0

0.5

1.0

φ
(z

)

Unit Step Function

Figure 2.1: The unit step function with threshold at 0. Any value greater than or
equal to 0 is set to 1, the rest are set to 0.

The output of the perceptron is the result of the unit step function and can be
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represented as:

ŷ = ϕ(z) =

{
1, if z ≥ threshold

0, otherwise
(2.3)

Where ŷ is the output, z is the net input, and the threshold is a predefined value
for making the decision (0 in the example).
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Bias and 
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Input 

Features
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Figure 2.2: Perceptron model.

Figure 2.2 shows the perceptron model and the flow of information through it.
During the training process, the perceptron iterates through the training data and
adjusts its weights based on the errors made by the model on the predicted output.
The weights are left alone if the prediction is correct. However, if the prediction
is incorrect, the weights are adjusted so the model output better aligns with the
expected output [6]. The learning rule of the perceptron is as follows:

wnew
j = wold

j +∆wj (2.4)

where the weight adjustments ∆wj is given by:

∆wj = η(y(i) − ŷ(i))x
(i)
j (2.5)
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In these equations, ∆wj represents the change in weight for the jth input feature,
η denotes the learning rate (a hyperparameter controlling the size of the weight
updates), y(i) is the true class label, ŷ(i) is the predicted class label for the ith

sample, and x
(i)
j is the jth input feature of the ith sample.

A perceptron is a linear classifier, i.e., it can only learn linear decision boundar-
ies. For more complex classification problems, other algorithms like support vector
machines, random forest or KNN, or deep neural networks may be more appro-
priate [8]. Perceptron uses the difference between the predicted and actual output
as a basis to update its weights. This can lead to sub-optimal convergence and
instability in the learning process [9]. These issues are overcome in the Adaline
model.

2.1.2 Adaline

Adaptive Linear Neuron (Adaline) in a binary classification model. It is similar to
perceptron but differs in how it updates its weights during training. Adaline, as
the name suggests, can only perform a linear separation of the data.
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Figure 2.3: Adaline model. It consists of a linear activation function.

As shown in Figure 2.3, the Adaline algorithm uses one more component than
the Perceptron: the activation function. The net input is passed through this
activation function before it passes through the threshold function. Adaline uses
a linear activation function, meaning that its output is a linear transformation
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of its input. It is a continuous activation function, allowing it to output real-
valued predictions rather than just binary classifications like the Perceptron. The
activation function can be represented as

f(x) = x (2.6)

It can be represented graphically by Figure 2.4

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

z

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

φ
(z

)

Linear Activation Function

Figure 2.4: Linear activation function. It outputs the same values as the inputs.

Hence the output of the linear activation function in the Adaline model is the same
as the net input.

ϕ(z) = z =
n∑

j=0

(wj ∗ xj) (2.7)

During training, the weights of the Adaline model are adjusted using the gradi-
ent descent algorithm. This process minimizes the sum of squared error (SSE)
between the predicted output and the output from the activation function [10].
This minimized function is referred to as the cost function. More details on the
gradient algorithm are provided in Section 2.2.

The cost function can be expressed by the equation:
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J(w) =
1

2

k∑
i=1

(y(i) − ϕ(z(i)))2 (2.8)

where J(w) is the cost function, k is the number of samples, y(i) is the true class
label of the ith sample, and ϕ(z(i)) is the output of the activation function for the
ith sample.

The learning rule for the Adaline model is as follows:

wnew
j = wold

j +∆wj (2.9)

∆wj = −η · ∂J(w)
∂wj

(2.10)

∆wj = η ·
k∑

i=1

(y(i) − ϕ(z(i)))x
(i)
j (2.11)

While the linear activation function does allow Adaline to provide a continuous
output, it is sensitive to outliers. This can be overcome by the logistic regression
model.

2.1.3 Logistic Regression

Logistic regression, despite its name, is a binary classification model. It uses a non-
linear activation function to compute the probability of the output label being 0,
1, or anything in between based on the linear combination of the features. The
activation function used in this model is the sigmoid function, also known as the
logistic function, shown in Figure 2.5. It is an S-shaped curve that maps the net
input to a value in (0, 1). This can be interpreted as the probability of a binary
output [11].

The sigmoid function is defined as:

f(x) =
1

1 + e−x
(2.12)

The function approaches 0 when x nears negative infinity. It rises smoothly to 0.5
when x equals 0, and approaches 1 when x nears positive infinity. The curve is
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Figure 2.5: Logistic regression model and its use of a sigmoid activation function.

symmetric around x = 0 and has a maximum slope at ϕ(x) = 0.5 or when x = 0.
This feature makes it useful for modeling probabilities.

In the logistic regression model, the sigmoid function accepts in the net input and
returns the output probability.

ϕ(z) = p(y = 1|x) = 1

1 + exp(−z)
(2.13)

Where p(y = 1|x) signifies the probability of the output variable being one given
the input variables x, exp is the exponential function, and z represents the net
input.

The logistic regression model is trained in the same way as the Adaline model.
The objective is to minimize the cost function, which measures the difference
between the predicted probabilities and the actual binary output values. It also
uses the gradient descent algorithm for updating weights. The difference is in the
logistic regression model’s activation function and the cost function. A common
cost function used for logistic regression is the binary cross-entropy loss [6], which
is defined as:

J(w) =
k∑

i=1

[
−y(i) log(ϕ(z(i)))− (1− y(i)) log(1− ϕ(z(i)))

]
(2.14)
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Figure 2.6: Sigmoid activation function.

Where ϕ(z(i)) is the predicted probability, y is the label, and log represents the
natural logarithm.

Logistic regression’s use of the sigmoid function gives it several advantages over
perceptron and Adaline. It outputs probabilities, which provide a better insight
into the model’s predictions. The sigmoid function is also smooth and differenti-
able, allowing for an easier application of the gradient descent algorithm during
the learning process [9]. It also makes the model less sensitive to outliers compared
to Adaline.

2.2 Gradient Descent

The gradient descent is an optimization algorithm commonly used in machine
learning to minimize the cost function of a model. The goal of an optimization
algorithm is to find the set of model parameters (or weights) that minimize the
difference between the predicted output and the true output. Adaline and logistic
regression use gradient descent during the learning process.

The cost function can be described by a convex shaped graph resembling a bowl.
As the cost function is a function of a model’s weights, the graph represents how
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the cost changes when the model’s weights are adjusted. This is represented in
figure 2.7.

Global 

minima

Local 

minima

Cost

Weight

Cost

Weight

Figure 2.7: Cost functions. Left: an ideal cost function with a single global minima.
Right: A cost function with a local and global minima.

The lowest points of the graph are where the cost function has the minimum value.
This is referred to as the global minima. The goal of the gradient descent algorithm
is to update the weights and get the cost to this point. However, depending on
the data, there can be several local minima, which are the lowest points in their
neighbourhood, but not the lowest point in the graph. The gradient refers to
the slope at any point in the cost-weight graph. The magnitude of the slope
determines the rate of change of the cost function with respect to the weights of
the model. The gradient descent algorithm starts at a random point in the graph
and iteratively adjusts the model’s weights in the direction of, and proportionally
to, the steepest descent of the cost function.

The idea behind gradient descent is to calculate the gradient (the first-order deriv-
ative) of the cost function with respect to each model parameter and update the
parameters in the direction of the negative gradient [12]. This process is repeated
until the cost function reaches a minimum or a convergence criterion is met. Figure
2.8 visualizes this process. Each iteration is a step and the step size is determined
by the learning rate. A small learning rate may lead to slow convergence, while a
large learning rate can push the algorithm beyond the optimal solution and even
result in divergence [13] as shown in Figure 2.9. Hence the learning rate needs to
be tuned to the particular problem.
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Figure 2.8: Gradient descent. On each iteration, the weights are updated in the
direction opposite of the gradient.

Cost
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Figure 2.9: Effect of learning rate on gradient descent. Left: A small learning rate
leading to a slow convergence. Right: A high learning rate resulting in large steps and
divergence.
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2.3 Regularization

Regularization is a technique applied to machine learning models to control their
complexity. The complexity of a model is proportional to the number of features
in the data and the range of values the model parameters attain during training
[14]. Regularization works by introducing a penalty term to the loss function
that the model is trying to minimize [9]. The penalty term ensures that the
model does not assign excessively large or small values to its weights based on
the requirements. The amount of regularization is controlled by a hyperparameter
called the regularization strength. A higher regularization strength would prevent
the model’s weights from having very large values, while a lower regularization
strength would allow for looser restrictions.

−3 −2 −1 0 1 2 3

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

Underfit

Overfit

Good fit

Figure 2.10: A visualization of overfitting and underfitting on data.

Regularization can prevent the overfitting or underfitting of a model on the train-
ing data. Overfitting occurs when a model is trained too closely on the training
dataset and performs poorly on new, unseen data. This is referred to as the
model memorizing the training data and not generalizing to the test data [15].
This happens due to model learning the noise present in the training data instead
of the underlying patterns or signals. This is signified by the red line in Figure
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2.10. Overfitting can be characterized by the model having high magnitudes for
its weights. Underfitting occurs when a model cannot capture the underlying pat-
terns in the training data and thus performs poorly on the training data as well as
the unseen data. This is signified by the blue line in Figure 2.10. Underfitting can
be observed in the model through the low variance in its weights during training.
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Figure 2.11: Bias-variance trade-off.

Regularization also helps balance the bias-variance trade-off. Bias refers to the
error in the model’s prediction. A model with high bias will not have properly
captured the relationship between the input features and the output signal. This
leads to underfitting. In contrast, a low bias means that a model has learned all
complexities of the training data, which results in overfitting. Variance refers to
how sensitive the model is to small changes to the input data. A model with
high variance tends to fit the noise in the training data, leading to overfitting. A
low variance means the model is too simple and has not learned enough from the
training data [9]. A representation of bias and variance as function of the model
complexity is given in Figure 2.11. A strong regularization term can reduce a
model’s bias but increase its variance, whereas a weak regularization can do the
opposite.

The regularization term is typically a function of the model’s parameters, such as
the weights learning model. The penalty term is added to the cost function to
encourage the model to choose solutions that are less likely to overfit or underfit
on the training data.
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Based on the penalty term used, the three most commonly used regularization
techniques in machine learning are L1 (Lasso) regularization, L2 (Ridge) regular-
ization, and elastic net regularization.

2.3.1 L2 Regularization

L2 regularization adds a penalty term proportional to the square of the magnitude
of the model weights to the cost function, also known as the L2 norm of the weights
[16]. A scaling parameter is multiplied by the L2 norm before adding it to the loss
function. L2 regularization is also known as Ridge regression. Equation 2.15 shows
the L2 regularization term added to the sum of squared error cost function.

J(w) =
1

2

k∑
i=1

(
y(i) −

n∑
j=0

wj · x(i)
j

)2

+
λ

2

n∑
j=0

w2
j (2.15)

The regularization strength is shown as the symbol λ (lambda) in the above for-
mula and it is a hyperparameter (see section 4.5). As λ increases, the penalty for
having large weights increases, and the model becomes more likely to have some
coefficients with smaller weights. λ is multiplied by 1/2 in the above equation for
easier differentiation. Correlated features tend to have similar weights with L2
regularization [17].

Figure 2.12 shows the constraints L2 regularization places on the weights. The
goal during learning is to be as close to the center of the cost function (visualized
in red) as possible. The L2 norm limits the weight values within the boundary of
the blue circle. The radius of the circle is controlled by the regularization strength
lambda. The higher the strength, the smaller the radius of the circle.
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Figure 2.12: Visualisation of the regularization of the L2-norm.

2.3.2 L1 Regularization

L1 regularization, also known as Lasso regression, adds the absolute value of the
model weights as a penalty term to the loss function as shown in equation 2.16.
The penalty term is also called the L1-norm of the weights [16]. L1 regularization
produces sparse weight vectors. It pushes some of the model’s parameters to be
exactly zero, resulting in them being removed from the model [17].

J(w) =
1

2

k∑
i=1

(
y(i) −

n∑
j=0

wj · x(i)
j

)2

+ λ
n∑

j=0

|wj| (2.16)

The larger the penalty term λ, the more likely the model parameters will shrink
to zero.

Figure 2.13 shows the limitations placed on the weight values by the L1 norm. The
size of the squares is inversely proportional to the regularization strength. The L1
norm ensures that the point on the square that is closest to the minima of the
cost function is at the axes. Consequently, this leads to some of the weights being
zeroed.
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Figure 2.13: Visualisation of the regularization of the L1-norm.

L1 regularization is particularly useful when a dataset consists of many predictor
variables, and only a subset is expected to be important for predicting the out-
come. By introducing sparsity in the model, L1 regularization can reduce the
model’s complexity and improve its generalization performance on unseen data.
L1 regularization shows erratic behavior when dealing with highly correlated fea-
tures as their weights do not tend to achieve similar values during training [17].
This property depends on the dataset and the regularization strength applied to
the model.

2.3.3 Elastic Net Regularization

Elastic net regularization is a compromise between L1 and L2 regularization. It
combines the sparsity properties of Lasso with the regularization properties of
Ridge, resulting in a more robust model [18]. This is done by adding both the L1
and L2 penalty terms to the loss function. The L1 term pushes the model to select
a sparse set of input features by setting some weights to zero. The L2 term adds
weight shrinkage to the model.

The elastic net regularization term is shown in equation 2.17.
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J(w) =
1

2

k∑
i=1

(
y(i) −

n∑
j=0

wj · x(i)
j

)2

+ λ

[
α

2

n∑
j=0

w2
j + (1− α)

n∑
j=0

|wj|
]

(2.17)

Where the symbol alpha α is the mixing parameter.

The mixing parameter α controls the amount of L1 or L2 regularization. When α
increases, the L1 penalty becomes more dominant, and the model becomes more
likely to have some weights equal to zero. As α decreases, the L2 penalty term
becomes more dominant, and the model becomes more likely to distribute the
weights evenly. When α = 1, the elastic net becomes lasso regression; when α = 0,
it becomes ridge regression [17]. This mixing parameter allows an elastic net to
be adaptable to various problems.

W1

W2

Figure 2.14: Visualisation of the elastic net regularization.

Figure 2.14 shows the constraint region for the elastic net regularization. Being a
combination of L1 and L2 regularization, the boundary is in a shape somewhere
between a circle and a square. This allows some of the weights to be sparse and
some to be regularized.

Elastic net regularization is useful when there are many predictor variables, some
of which are highly correlated [18]. It can select or discard these correlated features
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as a group, overcoming the weakness of the L1 regularization. However, between
two penalty terms, an elastic net adds one more hyperparameter (α), and finding
its optimal value, using cross-validation or other model selection techniques adds
to the computation cost.

2.4 One-vs-rest Modelling Strategy

The one-vs-rest (OvR) modelling strategy, also known as the one-vs-all strategy,
is used by binary classification models to tackle multiclass classification problems.
This strategy creates a binary classifier for each class in the dataset. Each classifier
is trained to distinguish samples of its specific class from all other classes [9].

The original multiclass dataset is divided into separate binary datasets, one for
each class. Binary classifiers, such as Adaline or logistic regression, are trained
on each dataset to distinguish the instance of that class from all other classes.
The instances belonging to the target class are treated as positive samples, while
the rest are treated as negative samples. This results in a set of binary classifiers
equal to the number of classes in the training dataset. During testing or inference,
the input is evaluated through each trained classifier. The class with the highest
output score, determined through majority voting, is considered the predicted
class.

The one-vs-rest technique is easy to implement, can be scaled to handle a large
number of classes, and is compatible with a wide range of binary classifiers. Im-
plementing it in unbalanced datasets can be problematic as it can lead to biased
classifiers [9].
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Figure 2.15: One-vs-rest technique. Three classifiers are trained to differentiate in-
stances of a particular class, treated as positive samples, from instances of all other
classes, treated as negative samples.

2.5 Feature Selection

Feature selection is the process of selecting a subset of relevant features from a
dataset with the purpose of training a learning model on the reduced set. Due to
the reduced dimension, feature selection lowers the complexity of the model. It
can also improve the model’s performance by eliminating irrelevant, redundant, or
noisy features that could lead to overfitting [19]. Feature selection also improves in-
terpretability, allowing a clearer understanding of the relationships between the in-
put features and the model’s predictions [20]. It helps identify the most important
factors driving a model’s performance, which can be crucial for decision-making.
While feature selection has several benefits, it is often considered alongside another
dimensionality reduction technique - feature extraction, which adopts a distinctly
different approach.

Feature selection and feature extraction are terms often found together in literature
[21][22][23]. They are both dimensionality reduction techniques; however, they
differ in terms of their output features. Feature selection retains a subset of the
original set of features in the data. As a result, the selected features retain their
original values and interpretation [24]. Applications with high interpretability
requirements would use feature selection. Feature extraction, on the other hand,
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generates a new set of features by applying some transformation to the original
data [25]. Although this can preserve the information present in the original set
of features, it may lead to a loss of interpretability [22]. Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) are popular examples of
feature reduction techniques.

Feature selection techniques are generally divided into three categories: filter meth-
ods, wrapper methods, and embedded methods.

Filter methods rank features based on their relationship to the label without con-
sidering the relationships among other features [26]. The features are evaluated
based on intrinsic metrics such as information gain, chi-square, or correlation coef-
ficient. Filter methods have low computational costs as they do not employ any
learning models. The features are ranked and selected based on some threshold.
The threshold could be the desired number of features or a minimum metric to
clear [27].

Wrapper methods search for the best-performing subset of features by training a
model with them and evaluating their performance [28]. They take into account the
interaction among features and their contribution to the model performance. This
contrasts filter methods that assess the importance of features independently. They
are computationally more expensive than filter methods due to the involvement
of a learning model; however, they are more likely to produce a better subset of
features than filter methods [29]. Techniques such as forward selection, backward
selection, and recursive feature elimination are examples of wrapper methods.

Embedded methods have feature selection as part of a model’s learning process [30].
Lasso regression, Ridge regression, and Decision trees are examples of embedded
methods [31]. These techniques provide a good balance between the computational
efficiency of filter methods and the performance of the wrapper methods.

This paper evaluates the feature selection capabilities of the Repeated Elastic Net
Technique (RENT) with four other techniques.

2.5.1 Fisher’s Score

Fisher’s score selects features that maximize the separation between different
classes and minimize the within-class variance [2]. The largest differences between
the means of the classes determine the separation. Each feature is provided a
“Fisher’s Score,” which is the ratio of the between-class variance and the within-
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class variance [32]. The features are selected in a greedy fashion, meaning those
with the higher Fisher’s score are determined to be more important. Being a
filter method, Fisher’s score is inexpensive in terms of computation costs. It is
a widely-used feature selection technique for its performance and low cost. The
fisher’s score for a feature is calculated by the formula:

F =

∑M
m=1 nm(µm − µ)2∑M

m=1

∑
x∈Nm

(x− µm)2
(2.18)

where F is the Fisher’s score, M is the number of classes, nm is the number of
samples in class m. µm is the mean of the samples in class m, µ is the overall
mean and x is the sample belonging to class m.

The numerator signifies the between-class variance and is computed as the sum
across all classes of the number of observations in each class multiplied by the
square of the difference between the mean of the samples in the mth class and the
overall mean across all samples. The denominator is the within-class variance and
it is computed as the sum, across all classes and all observations within each class,
of the squared difference between each observation and its respective class mean
[32].

2.5.2 Gini Score

The Gini score, also called the Gini index, is a metric used in decision trees for
feature selection and node splitting. It measures the impurity of a feature, quanti-
fying how poorly a feature can separate the instances between classes [3]. Hence,
features with a low Gini score are selected as those would have higher class separ-
ability. The same criterion is also used for splitting the nodes of a decision tree.
The Gini score is calculated as follows:

G(f) =
l∑

i=1

pi ∗ (1− pi) (2.19)

Where G(f) is the Gini score for feature f , l is the number of unique values for
the feature f . pi is the proportion of samples belonging to class i.

This study uses the DecisionTreeClassifier class from the scikit-learn library
[33] with the criterion parameter set to gini to calculate the Gini scores.
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2.5.3 Recursive Feature Elimination

Recursive feature elimination (RFE) works by iteratively removing features that
are deemed less important until a desired number of features is reached, or a
particular stopping criterion is met [4]. It is a wrapper-based method and thus
requires the use of another learning algorithm to determine the relevant features.
The relevancy could be derived from the model parameters and feature import-
ance, depending on the model used. Recursive feature elimination starts with the
model being trained on a set of features. The features are ranked according to the
importance criterion chosen, and the least important feature is removed from the
set. The process is repeated with now a subset of the feature set until a desired
number of features is obtained, or some stopping criterion is met. Recursive fea-
ture elimination can get computationally expensive, as it requires training multiple
models, especially for high dimensional data.

2.5.4 Random Forest Classifier

Random forest classifier (RFC) is an ensemble technique for classification tasks.
It generates predictions by combining the results of multiple decision trees. Each
decision tree is trained on a subset of the training data (with replacement) and a
subset of the feature set [5]. The splitting criterion for the decision trees commonly
used is the Gini index or entropy, both being a measure of the impurity of a
node. The random forest classifier can output a feature importance ranking using
this impurity metric from each decision tree. The importance is measured as the
average decrease in impurity across all decision trees in the random forest. The
features are then ranked according to their importance, and the desired number of
features can be selected. This study uses the RandomForestClassifier class from
the scikit-learn library for feature selection.

2.6 Repeated Elastic Net Technique

The repeated elastic net technique (RENT) aims to improve the stability and ro-
bustness of elastic net feature selection by repeating the elastic net process multiple
times on different subsets of the data [1][34]. According to Jenul et al., “The feature
selection is based on three criteria evaluating the weight distribution of features
across all elementary models.” [1] The three criteria determine: how frequently a
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feature gets selected across all models (τ1), how often the feature weights alternate
between positive and negative values (τ2), and whether the feature weights differ
significantly from zero (τ3).

The RENT library is capable of performing feature selection on binary classifica-
tion and regression problems. It uses the logistic regression model as the backend
for binary classification problems, and linear regression for regression problems.
This section shall describe the feature selection process for the classification prob-
lems.

For classification problems, RENT uses the logistic regression model with elastic
net regularization. The core idea is to train k models on unique subsets of the
data and investigate the statistics of the model coefficients across all models. The
RENT package requires the user to define the search space in terms of the reg-
ularization strengths Λ = [λ1, λ2, . . . , λn] and the L1 ratios for the elastic net
A = [α1, α2, . . . , αm]. Other hyperparameters include k - the number of models to
train, the range of the test size for the train-test splits, and the scoring metric for
evaluating the models, all of which have default values defined in the module.

The RENT algorithm for classification problems works as follows:

1. Partition the training set k times using the train-test split to create k unique
training and validation sets. The samples in each training and validation set
are unique.

2. For every λ in Λ and α in A, train k logistic regression models with them as
hyperparameters, one for every kth subset from Step 1. Evaluate the models
on their corresponding test sets.

3. For every λ and α:

(a) Calculate the mean of the evaluation metric across all k models.

(b) Calculate the fraction of weights that are zero across all model weights
and across all k models.

(c) Calculate the harmonic mean between the two values above. Call this
the “score”.

4. Find the combination of the λ and α with the highest “score” and select the
set of k model weights.

5. Calculate the three feature selection criteria:
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(a) τ1 - The fraction of non-zero weights of each feature across all k models.

(b) τ2 - The inverse of the rate of change of the sign of the weights of each
feature across all k models.

(c) τ3 - The Student’s t-test to determine whether the null hypothesis (H0)
can be rejected that the weights are equal to zero.

6. Select features that cross the user-defined thresholds (t1, t2, and t3) for the
three selection criteria from Step 5.

The total number of models to train would be k ∗ λ ∗ α.

A feature is selected if the thresholds t1, t2, and t3 of their respective hyperpara-
meters τ1,τ2, and τ3 are surpassed. The t values all range from 0 to 1. t1 is the
threshold for the fraction of non-zero weights of each feature. It refers to how
often the k elastic net models select a feature. t2 is the threshold for the fraction
of weights having the same sign (either positive or negative) across the models. t3
corresponds to the levels of statistical significance linked to the Student’s t-test.
For a significance level of 5%, the threshold would be 0.95. Similarly for a 1%
significance level, threshold t3 would be set at 0.99 [1].
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Chapter 3

Proposed Solution

3.1 One-Vs-Rest Logistic Regression Model

The current version of RENT is limited to binary classification and regression
tasks. This study aims to extend the capabilities of RENT by introducing sup-
port for multiclass classification problems. This is achieved by incorporating the
one-vs-rest (OvR) technique into the logistic regression model used in the RENT
algorithm. This is accomplished by explicitly configuring the multi class para-
meter as ovr in the LogisticRegression class from the scikit-learn library.

For a given dataset with m = 1, . . . ,M classes and n = 1, . . . , N features, the
OvR-enhanced logistic regression model will possess (M,N) weights, as opposed
to (1, N) weights in the binary classification scenario. The scikit-learn implement-
ation of the logistic regression model keeps the bias separate from the feature
coefficients. Each of the M models of the OvR models will be referred to as a ‘sub-
model ’ for the rest of the paper. For a binary classification problem, the weight
matrix for K models is of shape (K,N) and for a multiclass classification problem
with K models and M classes, the weight matrix is of shape (K,N,M). Con-
sequently, this modification necessitates an update to the methods for calculating
the three selection criteria τ1, τ2, and τ3.
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Figure 3.1: Left: N weights for K models in a binary classification problem. Right: N
weights for K models and M classes for multiclass problems as a result of the one-vs-rest
strategy.

3.2 Selection Criteria Updates

In order to adapt the calculations of the selection criteria to handle multiclass
problems, several adjustments are required:

τ1: The calculation of the fraction of weights that are non-zero for every nth feature
must consider the (K,M) weight matrix for each submodel, instead of the (K, 1)
weight vector for binary problems. The fraction of non-zero weights for the nth

feature is given as:

τ1(wn) =

∑K
k=1

∑M
m=1 1[wk,n,m ̸=0]

K ×M
(3.1)

Where Wk,n,m represents the weight of the nth feature of the kth model and its mth

submodel, and 1[wk,n,m ̸=0] represents a function that is one when Wk,n,m is not zero.

τ2: When determining the proportion of positive or negative weights for a feature,
it is necessary to consider the set of weights from each submodel separately. The
weights for a given feature in one of the submodels could be all positive, while
those in another could be all negative due to the nature of the learning process
of the logistic regression model. Aggregating the counts into a single calculation
would allow positive weights from one submodel to cancel out the negative weights
from another submodel for the same nth feature. Thus, separate analyses must be
conducted for each submodel.
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τ2(wn) =

∑M
m=1

∣∣∣∑K
k=1 sign(wk,n,m)

∣∣∣
M ×K

(3.2)

sign(wk,n,m) =


−1 if wk,n,m < 0,

0 if wk,n,m = 0,

1 if wk,n,m > 0.

(3.3)

τ3: The Student’s t-test requires the calculation of the mean and standard de-
viation of the weight values. The mean calculation must be updated to consider
each submodel separately. As with τ2, this is due to the potential for varying signs
of weights in different submodels. Assessing the proportion of positive or negative
weights and the mean weight coefficients individually for each submodel adapts
the calculation for the OvR-based logistic regression models.

µ(wn) =
1

M

M∑
m=1

∣∣∣∣∣ 1K
K∑
k=1

wk,n,m

∣∣∣∣∣ (3.4)

Similarly, the calculation of the standard deviation also needs to be updated.
The standard deviation of each submodel is obtained separately, which are then
averaged. Since standard deviation is always positive, there is no need to take an
absolute of the values.

σ(wn) =
1

M

M∑
m=1

(
σ(w1:K,n,m)

)
(3.5)

With these updates, the RENT algorithm can support multiclass classification
problems. The results of these changes are described in the Results section.
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Chapter 4

Methods

4.1 Data Preprocessing

Data preprocessing involves the steps of cleaning, transforming, and organizing raw
data into a structured format appropriate for learning algorithms. Enhancing data
quality, reducing or removing noise, and resolving any inconsistencies in the data
are the main goals of data preprocessing, which ultimately may lead to improved
model performance.

4.1.1 Label Encoding

Machine learning algorithms require numerical data. While the scikit-learn library
is able to handle string labels, there is a computation footprint associated with re-
peated conversions. It is more efficient to transform the labels prior to training and
evaluation. Label encoding is used to transform categorical data into a numerical
format. Each category value is mapped to a distinct integer value. A categorical
column with n unique labels would be mapped to p unique integer values, typically
ranging from 0 to p− 1. Label encoding can add ordinal information to data that
did not originally contain it [35]. This can lead to bias in a learning algorithm
by misleadingly associating a higher number with higher importance. Hence, la-
bel encoding is reserved for the target variables where the ordinal property does
not affect the learning process. For categorical features, using one-hot encoding is
preferred.
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4.1.2 One-hot Encoding

One-hot encoding, like label encoding converts categorical data into a numerical
format like label encoding. It achieves this in a different way by creating binary
columns for each category of a given feature [6]. It first identifies the unique
values within the categorical feature, creates a new binary column for each unique
category, and finally assigns a value of 1 to the binary column corresponding to
the category present in the original data and 0 to the other columns.

Unlike label encoding, one-hot encoding does not suffer from the problem of ordin-
ality, making it suitable for categorical variables where no inherent order exists.
However, it can significantly increase the dimensionality of the data when deal-
ing with a large number of categories. This can lead to increased computational
complexity and the curse of dimensionality [36], potentially affecting model per-
formance. It is also not an efficient representation for the categorical features with
many categories as it creates a sparse binary vector, increasing memory require-
ment.

4.1.3 Standardization

Feature scaling is one of the most crucial transformations that needs to be applied
to the data. It transforms the input features in the data to normalize their range
and prevent features with high magnitudes from dominating the features with
smaller magnitudes. Feature scaling also enhances the performance of various
machine learning algorithms that rely on calculating distances or gradients [37].
This study uses standardization as the method of feature scaling.

Standardization, also known as z-score normalization, re-scales the features to have
a zero mean and unit standard deviation (or variance). It is applied to each feature
variable separately. The idea is to subtract the mean of the feature from each data
point and divide the result by the feature’s standard deviation. This centers the
features around zero. The following formula achieves this:

x∗
i,n =

xi,n − µn

σn

(4.1)

In this equation, xi,n is the ith sample of the nth feature, x∗
i,n is the standardized

version of the xi,n, µn is the mean and σn is the standard deviation of all samples
in feature n.
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Standardization is less sensitive to outliers and does not bind the data to a specific
range [38].

w1

w2

w1

w2

Figure 4.1: Left: Cost function of a non-standardized dataset. The arrows indicate the
direction of gradient descent, describing an oscillating behavior. Right: Cost function
of a standardized dataset. The arrows describe the more straight direction of gradient
descent.

When features have different scales, the cost function will have an irregular and
elongated shape (left image of Figure 4.1). The gradient descent algorithm may
take longer to converge in these cases as it oscillates across steeper slopes. With
standardization, all features are transferred into the same scale, which leads to
a more symmetrical and balanced landscape of the cost function (right image of
Figure 4.1). This allows the gradient descent algorithm to converge faster as it
can go straight toward the minimum [38].

4.2 Performance Evaluation

The choice of the performance metric depends on the characteristics of the data-
set. Each metric measures a different aspect of a model’s performance. To gain
a comprehensive understanding of a model’s effectiveness, it is recommended to
calculate multiple metrics. This approach provides a more nuanced perspective,
allowing for a thorough analysis of the model’s strengths and weaknesses.

33



4.2.1 Confusion Matrix

A confusion matrix is a table that shows the number of correct and incorrect pre-
dictions for each class in the dataset. It can help identify the model’s strengths
and weaknesses for every class and gain insights into misclassifications. Four met-
rics can be derived from the confusion matrix - true positives (TP ), false positives
(FP ), false negatives (FN), and true negatives (TN). Precision, recall, F1-score
and Matthews correlation coefficient are derived from these metrics providing a
more comprehensive understanding of the model performance. Figure 4.2 shows
the confusion matrix for a binary classification problem. A confusion matrix can
also be constructed for a multiclass problems. An M -class classification problem
would have a (M × M) confusion matrix, with each cell (i, j) representing the
number of samples from class i that were predicted as class j.

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Figure 4.2: Confusion matrix for a binary classification problem.

4.2.2 Accuracy

Accuracy is the ratio of correctly classified samples to the total number of samples.
It is a commonly used metric in the field of machine learning. However, it may
not be the best choice for problems where the data is imbalanced as it will favor
the majority class and be less sensitive to the performance of the minority class.
In a dataset where 97% of the samples belong to the majority class and a machine
learning model that predicts all samples as the majority class, the accuracy would
be 97%. In terms of the confusion matrix metrics, accuracy can be described by
the formula:

Accuracy =
TP + TN

TP + FP + FN + TN
(4.2)
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4.2.3 Precision

Precision measures the proportion of correctly identified positive samples among
those predicted as positive by the model. It is the ratio of the true positive to the
sum of the true positive and false positive instances:

Precision =
TP

TP + FP
(4.3)

A high precision means the model does a good job of avoiding false positives. How-
ever, precision does not consider false negatives, so it is to be used in conjunction
with other metrics.

4.2.4 Recall

Recall, also known as sensitivity, is the ratio of the true positive to the sum of the
true positive and false negative. It measures the proportion of positive samples
that the model correctly identified:

Recall =
TP

TP + FN
(4.4)

A high recall means that the model is good at identifying positive samples. In
situations where it is more important to identify all positive instances, even at the
cost of including some false positives, the recall would be one of the metrics to use.

4.2.5 F1-score

F1-score is the harmonic mean of precision and recall. It provides a measure that
takes both precision and recall into account, providing a trade-off between the two.

F1-score = 2 · Precision · Recall
Precision + Recall

(4.5)

F1-score is helpful when dealing with imbalanced datasets and when both false
positives and false negatives are to be considered. The default f1 score method
in the scikit-learn package only takes into account the results for the positive class
when the problem is a binary classification task. For multiclass classification, the
scores are generally averaged across all classes. The two most common averaging
techniques are the micro and macro averages. Micro F1-score is calculated across
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the entire dataset, giving equal weight to each sample; however, this score can
be dominated by the majority class. The macro F1-score, on the other hand, is
calculated across every class individually and then averaged. In this case, the
minority class is given the same weight as the majority class, which may not be
desirable based on the problem [39].

4.2.6 Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) is less sensitive to imbalanced data-
sets and provides a more informative representation of the classification perform-
ance. Unlike the F1-score, it also considers all four confusion matrix metrics,
including the true negative (TN), providing a balanced evaluation of a model’s
performance [40].

MCC =
(TP × TN − FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.6)

The MCC score ranges from −1 to +1. A score of +1 indicates perfect classifica-
tion, 0 indicates random classification, and −1 indicates inverse classification.

4.3 Model Validation

4.3.1 Train-test Split

A model that has been trained over an entire dataset could risk overfitting if there
is no separate test set for evaluation. A dataset without a predefined test set can
be partitioned into two distinct subsets: a training set and a test set. The test set
can be used to assess the performance of the model and ensure that it generalizes
effectively to unseen data.

The ratio of the train-test split is a user-defined hyperparameter. Commonly used
ratios include 70:30, 80:20, or 90:10. The proper ratio would depend on the size
of the training data. If the data has, say, a thousand samples, then the 70:30
ratio may be a good fit, but if the data has a billion samples the 90:10 ratio or
even a 99:1 ratio may be sufficient. To avoid bias in a classification problem, it is
necessary to maintain the same distribution of the target variable across the splits.
This is accomplished using stratified sampling.
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After the split, the model is trained on the training set and evaluated on the test
set while assessing its performance using appropriate evaluation metrics such as
accuracy, F1-score, or the root mean squared error (RMSE) based on the nature of
the problem. The model’s hyperparameters are fine-tuned, or the feature selection
strategy is adjusted based on the evaluation metric. Once the model achieves
a desired performance, it is retrained with the full dataset while retaining the
optimal hyperparameters.

Some processes use a validation set in addition to the training and test sets. The
validation set is used to tune the hyperparameters of a model. The model is ini-
tially trained on the training set and evaluated on the validation set. Adjustments
to the hyperparameters are made until the desired performance is achieved. The
model is finally tested on the test set as usual. This extra set for evaluation ensures
that the model is not tuned to the point of overfitting on the test data.

4.3.2 Cross-Validation

Cross-validation provides a more robust and comprehensive assessment of a model’s
performance than the train-test split when little data is available. The central idea
behind it is to split the dataset into numerous smaller subsets and iteratively train
and evaluate a model on various combinations them.

K-fold cross-validation

In K-fold cross-validation, the dataset is partitioned into k random subsets or
“folds” that are equal in size. A model is trained and evaluated k times on the same
set of folds; however, each time, the model is tested on the kth fold while trained on
the remaining k−1 folds. This is visualized in Figure 4.3. The performance metrics
from each iteration are averaged to provide the final performance metric. The
variance of the metrics is also measured to observe the stability of the performance.
The dataset is randomly shuffled to ensure that the data points are not arranged
in a particular order, possibly creating a bias in the model. K-fold cross-validation
is more robust as it uses multiple train-test splits reducing the risk of overfitting
on the test set [41]. However, it does add increased computational complexity to
the modeling process as the model is trained and evaluated k times. This can
also lead to some noise in the predictions and metrics as each model works with
different subsets of data.
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Figure 4.3: K-fold cross-validation with 5 folds.

Repeated K-fold cross-validation

Repeated K-fold cross-validation is an extension to the K-fold cross validation,
where the process is repeated L times, resulting in (L × K) rounds of training
and evaluation. Each repetition is done with new random splits of the data. This
technique can provide an even more robust estimate of the model performance.
However, it does come with an increased computation cost over its non-repeated
counterpart.

Stratified k-fold cross-validation

Similar to the stratification process in stratified train-test split, stratified k-fold
cross-validation ensures that the class distribution in the data is maintained for
each fold during cross-validation. As a result, the performance estimate is more
reliable and unbiased because each fold retains approximately the same class dis-
tribution as the original dataset.

38



4.4 Synthetic Dataset Generation

Synthetic dataset generation is the process of creating artificial datasets that re-
semble the characteristics of real-world data. Synthetic data can help augment
existing datasets, obfuscate data to preserve privacy and ensure confidentiality,
and test the performance of machine learning models under various conditions
[42]. The sensitivity of models to various factors like noise, redundancy, missing
values, outliers, or class imbalance can be evaluated by generating data with those
properties resulting in more robust models. The make classification function
from the scikit-learn library generates binary or multiclass classification datasets
with a specified number of samples, features, classes, informative features, re-
dundant features, and more [43]. It also provides control over the degree of class
separability, class weights, and scale. This paper evaluates the efficacy of the pro-
posed multiclass RENT approach using synthetic multiclass classification datasets
generated using the scikit-learn library.

4.5 Hyperparameter Tuning

Hyperparameters are model parameters that are not learned during training but
set beforehand by the user. They control the overall behavior and complexity of the
model and can impact its performance significantly [44]. In a logistic regression
model, common hyperparameters are the learning rate, type of regularization,
strength of regularization, and the optimization algorithm.

Hyperparameter tuning is the process of determining the optimal set of hyperpara-
meters that leads to the best possible performance for a given model and dataset.
This can be achieved using various techniques like grid search, random search, or
Bayesian optimization algorithms [45][46]. The right set of hyperparameters strikes
a balance between the model overfitting on the training set and its generalization
ability on the test set. This study uses grid search to perform hyperparameter
tuning.

Grid search searches through all possible combinations of a predefined set of hy-
perparameter values [38]. A model is trained on each set of hyperparameters
and its performance is evaluated on the validation or test set using some scoring
metric, such as accuracy or RMSE, depending on the type of problem. The hy-
perparameters of the model with the highest evaluation performance are selected
as optimal.
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Grid search is simple to implement but comes with a computational cost, especially
with high-dimensional data. This study uses the GridSearchCV class from the
scikit-learn library to implement grid search. As the name suggests, it can perform
cross-validation during the hyperparameter search. This comes with an even higher
performance cost but produces hyperparameters that are less likely to be biased.

4.6 Benchmarking

The performance of the feature selection techniques is tested on a logistic regression
model with its hyperparameters tuned. To ensure a thorough analysis, this study
measures the computational runtime associated with each technique. The runtime
is measured using Python’s timeit library [47]. To get a more reliable measure of
the runtime, each model is trained and evaluated separately a total of ten times,
and the duration of the run is tracked for every instance. Background processes
running on a machine can affect the runtimes. To account for this, the minimum
runtime across the ten trials is chosen to represent the runtime.

4.7 Jaccard Index

The Jaccard Index, also known as the Jaccard similarity coefficient, is a measure
of the similarity across two sets of data. It is the ratio of the intersection to the
union of two sets and ranges from 0 to 1, with values closer to 1 reflecting sets with
more similar items. The Jaccard index has been used in several fields of machine
learning, such as clustering [48] and recommender systems [49]. This study uses
the Jaccard index to determine the similarity of the sets of features selected by each
feature selection algorithm that was tested. For two sets, A and B, the Jaccard
index is calculated as

J(A,B) =
|A ∩B|
|A ∪B| (4.7)
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Chapter 5

Datasets and Experimental Setup

5.1 Datasets

This study uses six datasets to evaluate the performance of RENT and other
feature selection techniques on multiclass classification problems. These datasets
were chosen to represent several levels of complexity, dimensionality, number of
classes, and real-world applications. The first three datasets are synthetic. They
were generated using the scikit-learn Python library. The latter three are real-
world datasets from different fields of research.

5.1.1 Synthetic Dataset 1 (SD1)

SD1 was generated using the make classification function from the scikit-learn
library. This dataset consists of 50 features, 2000 samples, and 3 classes. It
was chosen to evaluate the performance of RENT on a relatively low-dimensional
dataset with a fair number of samples and classes. 10 out of the 50 features are
informative. The remaining features are random values or linear combinations of
the 10 informative features. 3 classes were chosen to make it a multiclass dataset.
All these configurations were set using the arguments of the make classification
method. During the development of the multiclass support for RENT, SD1 was
used for testing and debugging due to the simplicity offered by its smaller size. The
dataset is also evenly distributed to ensure no class is under or over-represented.
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5.1.2 Synthetic Dataset 2 (SD2)

This dataset has 100 features, 2000 samples, 10 classes, and 10 informative features.
It was also generated using the make classification method. SD2 was created
to evaluate the performance of the RENT on a dataset with a higher number of
features and classes while still maintaining the same number of samples. The class
distribution is also balanced.

5.1.3 Synthetic Dataset 3 (SD3)

SD3 consists of 1001 features, 500 samples, 3 classes, and 10 informative features.
Also generated using the make classification method, SD3 was created to eval-
uate the performance of RENT on a wide dataset, one that has more features than
samples. The number of classes is set to 3 for easier testing and debugging. The
class distribution is balanced.

Setting the shuffle flag to False in the make classification method ensures
that the features are ordered in the generated dataset. The informative features
are always at the beginning. Hence, the first ten features in the SD1, SD2, and
SD3 datasets are informative. This experiment sets the rest of the parameters
to default. As a result, the two features in these datasets following the first ten
are derived by linear combinations of the informative features. Any features after
those would be random noise.

5.1.4 Modified National Institute of Standards and Tech-
nology (MNIST) Dataset

The MNIST dataset is a widely used benchmarking dataset in the field of machine
learning [50]. It is a collection of handwritten digits that are 28 × 28 pixels in
size. There are images for all 10 digits between 0 and 9. Each image is normalized
with pixel intensity values in [0, 255]. It consists of 60,000 training samples and
10,000 testing samples. In this study, a smaller subset of 12,000 were used from
the training data to save on computation time. To make the dataset compatible
with RENT, the images were flattened, resulting in 784 features per sample. The
MNIST dataset was chosen to evaluate the performance of the model on a real-
world high-dimensional dataset with a large number of samples and classes.
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5.1.5 Glass Dataset

The glass dataset comprises 10 features, 214 samples, and 6 classes. It represents
the chemical composition of different types of glass in terms of their oxide content
[51]. This dataset was chosen to test the performance of RENT on real-world
low-dimensional data with a limited number of samples and classes.

5.1.6 ISOLET Dataset

The ISOLET dataset consists of 617 features, 7797 samples, and 26 classes. It is a
speech recognition dataset consisting of spoken letters from the English alphabet,
hence the 26 classes [52]. Each letter was spoken twice by every one of the 150
subjects. Three samples were dropped due to recording issues. The features consist
of sound wave properties such as discrete Fourier transformation coefficients, the
waveforms’ pitch and amplitudes, and the speech’s duration, among others. This
dataset was chosen to evaluate the performance of RENT on real-world high-
dimensional data.

Table 5.1 summarizes all datasets used in this paper.

Table 5.1: Summary of all datasets used in this study.

Dataset
#

Features
#

Samples
#

Classes
#

Training
samples

#
Test

samples

SD1 50 2000 3 1340 660

SD2 100 2000 10 1340 660

SD3 1001 500 3 335 165

MNIST 784 22000 10 12000 10000

Glass 10 214 6 143 71

ISOLET 617 7797 26 6238 1559

Using these six datasets, this paper aims to assess the effectiveness and robustness
of RENT for multiclass classification problems on various degrees of dimension-
ality, complexity, and number of classes. The diverse datasets provide a better
understanding of the strengths and limitations of the RENT and ensure the gen-
eralizability of the technique.

43



5.2 Experimental Setup

All datasets were standardized prior to training. Categorical columns were one-hot
encoded, and class labels were label encoded where applicable.

RENT requires the user to provide the three t threshold values as hyperparameters.
After a number of experiments, it was determined that t1 and t2 could be set to
the inverse of the number of classes in the dataset (1/M), as those were observed
to be promising thresholds. t3 was set to the default value of 0.975, as defined in
[1].

Two machines were used for this study. One was the author’s personal laptop,
a machine with an AMD Ryzen 9 5900HS 3.2 GHz CPU and 2x8GB of 3200
MHz DDR4 RAM running in dual-channel. The second machine was the NMBU
Orion cluster. A total of 64 CPU cores and 32 GB of RAM were utilized for the
experiments. All experiments pertaining to feature selection were run on the Orion
cluster, while the baseline and final evaluation of the selected features were run on
the laptop.

The feature selection through RENT was done for the following set of hyperpara-
meters:

• The elastic net regularization strength, C = [0.001, 0.01, 0.1, 1, 10, 100]

• The elastic net alpha parameter, l1 ratios = [0, 0.25, 0.5, 0.75, 1]

• The number of train-test splits, K = 100

The same hyperparameters were applied for all datasets.

5.3 Reproducibility

To ensure that the results of this paper are reproducible, the random seed was fixed
for the Python random library, the numpy library, and all processes and models used
from the scikit-learn library.

44



Chapter 6

Results

6.1 Data Presentation

All datasets except the MNIST and ISOLET were split into training and test
sets using a 67/33 split ratio with stratification. The MNIST and ISOLET data
came with a test set already present. Feature selection was only performed on
the training set to prevent information leakage, and the selected features were
applied to the test set for the final evaluation. The evaluation metrics micro-
averaged F1-score (F1 micro), macro-averaged F1-score (F1 macro) and Matthew’s
correlation coefficient (MCC) are used to compare the selected features. The class
distributions of all datasets can be found in Appendix B.

6.2 Baseline

In this section the baseline numbers for model performance and runtime are presen-
ted.

6.2.1 Baseline Performance

The baseline scores for the datasets were obtained using the logistic regression
model implemented in the scikit-learn library with the one-vs-all approach and
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trained on the entire feature set. The hyperparameters for the logistic regression
method were tuned using the GridSearchCV method from the scikit-learn library
for each dataset. The tuning was done on the parameters:

• C: The inverse of the regularization strength,

• penalty : The regularization technique to apply to the model

• solver: The optimization algorithm.

The grid search was performed using stratified K-fold cross-validation with five
folds. The logistic regression models with the best hyperparameters were trained
again on each dataset and evaluated to get the scores in Table 6.1.

Table 6.1: Summary of all datasets used in this study.

Dataset F1 micro F1 Macro MCC

SD1 0.8045 0.8041 0.7077

SD2 0.3273 0.3184 0.2531

SD3 0.6970 0.6961 0.5492

MNIST 0.9153 0.9141 0.9059

Glass 0.5915 0.4617 0.4396

ISOLET 0.9532 0.9530 0.9513

6.2.2 Baseline Runtime

Table 6.2 shows the training and inference runtimes of the datasets with the com-
plete feature set. The numbers were obtained through benchmarks on the logistic
regression model.
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Table 6.2: Baseline training and inference runtimes.

Dataset
Training

Runtime (sec)
Inference

Runtime (ms)

SD1 0.021 0.105

SD2 0.633 0.2499

SD3 0.22 0.2544

MNIST 9.24 14.6104

Glass 0.015 0.0476

ISOLET 4.25 1.3833

6.3 Selected Feature Counts

All the other techniques tested in this paper: the Fisher score, Gini score, recursive
feature elimination, and random forest classifiers require the user to specify the
number of features to be selected. This is not the case with RENT since it uses
the elastic net regularization . RENT selects features whose selection criteria (τ)
cross the three t thresholds. Hence, the feature selection is performed using RENT
first, and the same number of features are selected from the other techniques for
a fair comparison of their relative performance. Table 6.3 shows the number of
features selected by RENT.

Table 6.3: Feature reduction from the multiclass RENT algorithm. Columns t1 and t2
refer to the threshold values used for each dataset. t3 was fixed to 0.975 as mentioned
in Section 5.2.

Dataset
Original
Features

Selected
Features

Percentage
Reduction t1 t2

SD1 50 9 82% 0.3333 0.3333

SD2 100 13 87% 0.1000 0.1000

SD3 1001 7 99.3% 0.3333 0.3333

MNIST 784 263 66.45% 0.1000 0.1000

Glass 10 4 60% 0.1667 0.1667

ISOLET 617 375 39.22% 0.0385 0.0385
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6.4 Model Performance

Table 6.4 displays the performance scores of the multiclass RENT feature selection
method and compares it with the other techniques. The performance was evaluated
for each dataset on logistic regression models whose hyperparameters were tuned
for the subset of features selected by each feature selection technique. RENT is
often the best feature selector or ties with the next best selection method.

The confusion matrices for the best performing models are shown in Figure 6.1.
The remainder are present in Appendix C.
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Table 6.4: Comparison of performance metrics of different feature selectors.

Dataset Feature Selector F1 Micro F1 Macro MCC

SD1

None (Baseline) 0.8045 0.8041 0.7077

RENT 0.8076 0.8071 0.7124

Fisher’s score 0.8076 0.8071 0.7124

Gini Score 0.803 0.8022 0.7054

RFE 0.8076 0.8071 0.7124

RFC 0.8076 0.8071 0.7124

SD2

None (Baseline) 0.3273 0.3184 0.2531

RENT 0.347 0.3304 0.2757

Fisher’s score 0.3439 0.3367 0.2714

Gini Score 0.3424 0.3327 0.2698

RFE 0.3439 0.3367 0.2714

RFC 0.3439 0.3367 0.2714

SD3

None (Baseline) 0.697 0.6961 0.5492

RENT 0.7697 0.7696 0.657

Fisher’s score 0.7697 0.7696 0.657

Gini Score 0.7394 0.7401 0.6106

RFE 0.7273 0.7282 0.5955

RFC 0.7697 0.7696 0.657

MNIST

None (Baseline) 0.9153 0.9141 0.9059

RENT 0.892 0.8904 0.88

Fisher’s score 0.8729 0.8711 0.8587

Gini Score 0.869 0.8673 0.8544

RFE 0.8527 0.8505 0.8363

RFC 0.8612 0.8593 0.8457

Glass

None (Baseline) 0.5915 0.4617 0.4396

RENT 0.5775 0.4635 0.4155

Fisher’s score 0.5775 0.4635 0.4155

Gini Score 0.5352 0.378 0.3522

RFE 0.5352 0.3758 0.3495

RFC 0.5493 0.386 0.375

ISOLET

None (Baseline) 0.9532 0.953 0.9513

RENT 0.9513 0.951 0.9494

Fisher’s score 0.9359 0.9356 0.9333

Gini Score 0.9442 0.944 0.942

RFE 0.9442 0.9438 0.942

RFC 0.9403 0.94 0.938
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(a) Confusion matrix for the SD1 dataset with features selected by the RENT package.
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(b) Confusion matrix for the SD2 dataset with features selected by the RENT package.
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(c) Confusion matrix for the SD3 dataset with features selected by the RENT package.
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(d) Confusion matrix for the MNIST dataset with all features.
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(e) Confusion matrix for the glass dataset with all features.
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(f) Confusion matrix for the ISOLET dataset with all features.

Figure 6.1: Confusion matrix for all datasets trained on the feature subset with the
highest performance. The columns indicate the actual class, and the rows indicate the
predicted class.
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6.5 Runtimes

Table 6.5 shows the runtimes of each feature selection technique on the datasets.

Table 6.5: Runtimes for feature selection techniques.

Selection Runtime (seconds)

Method SD1 SD2 SD3 MNIST Glass ISOLET

RENT 115.28 173.36 277.08 98634.51 89.96 58779.5

Fisher’s score 0.36 0.2 0.09 350.59 0 3.63

Gini score 0.06 0.12 0.19 18.55 0 3.87

RFE 0.1 0.6 4.1 50949.71 0.17 57.44

RFC 2.61 2.89 2.62 17.95 1.66 5.42

Table 6.6 shows the the training and inference runtimes of the logistic regression
models on the selected features. The hyperparameters were tuned separately for
each dataset. Features selected from the multiclass RENT technique were used for
the benchmark.

Table 6.6: Final training and inference times on selected feature subset.

Dataset
Training

Runtime (sec)
Inference

Runtime (ms)

SD1 0.019 0.0681

SD2 0.02 0.0824

SD3 0.01 0.0572

MNIST 4.02 6.109

Glass 0.011 0.0474

ISOLET 2.78 0.9123

6.6 Selected Features

For the synthetic datasets SD1, SD2, and SD3, it is possible to evaluate the feature
selection quality at a glance as shown in Table 6.7. As mentioned in the section
5.1 the first ten features of the datasets are informative, while the rest are either
derived from the first ten or random noise.

The similarity of the features selected by each method can be calculated using the
Jaccard index and plotted as shown in the figures 6.2 to 6.7.
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Table 6.7: Indices of selected features. MNIST and ISOLET datasets were skipped
here due to their much higher number of features. See Appendix A.

Dataset Feature Selector Selected Features

SD1

RENT 1, 2, 3, 4, 5, 7, 8, 10, 11

Fisher’s score 1, 2, 3, 4, 5, 7, 8, 10, 11

Gini score 1, 2, 3, 4, 5, 8, 9, 10, 11

RFE 1, 2, 3, 4, 5, 7, 8, 10, 11

RFC 1, 2, 3, 4, 5, 7, 8, 10, 11

SD2

RENT 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 47

Fisher’s score 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 47

Gini score 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 22, 81

RFE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 47

RFC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 47

SD3

RENT 1, 2, 3, 4, 5, 10, 11

Fisher’s score 1, 2, 3, 4, 5, 10, 11

Gini score 2, 3, 5, 10, 11, 200, 611

RFE 2, 3, 4, 5, 10, 679, 752

RFC 1, 2, 3, 4, 5, 10, 11

Glass

RENT 2, 3, 4, 8

Fisher’s score 2, 3, 4, 8

Gini score 1, 3, 4, 8

RFE 1, 2, 3, 5

RFC 1, 3, 4, 7
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Figure 6.2: Jaccard index for features selected in the SD1 dataset.
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Figure 6.3: Jaccard index for features selected in the SD2 dataset.
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Figure 6.4: Jaccard index for features selected in the SD3 dataset.
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Figure 6.5: Jaccard index for features selected in the MNIST dataset.
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Figure 6.6: Jaccard index for features selected in the glass dataset.
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Figure 6.7: Jaccard index for features selected in the ISOLET dataset.
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Chapter 7

Discussion

This thesis aimed to add support for multiclass classification to the RENT package
and compare its performance with other feature selection techniques. The modified
RENT package demonstrates competitive performance when compared to other
widely used feature selection methods. This section discusses the performance
gains of the RENT technique, the reduction in features, and the speedup obtained
as a result compared to the baseline.

7.1 RENT Performance Gains

Comparing tables 6.4 and 6.1, with one exception, the feature selection techniques
experienced a noticeable increase in performance on the synthetic dataset. Com-
pared to the baseline, the Gini score method lost some performance on the SD1
dataset and there are performance losses across all metrics and feature selection
techniques for the MNIST, glass and ISOLET datasets.

Table 7.1 compares the MCC scores of RENT with the baseline. A significant
boost in performance can be observed for datasets SD2 and SD3. Among the
three synthetic datasets, SD2 and SD3 are more complex in terms of the num-
ber of features and classes. The performance of multiclass RENT on the MNIST,
glass, and ISOLET datasets shows a decline in MCC by 2.94%, 5.80%, and 0.20%,
respectively. These datasets, however, still exhibit a significant reduction in fea-
tures. While the MCC values for these datasets may not be optimal, the feature
reduction can lead to a significant reduction in model training and inference times.
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Table 7.1: Comparison of MCC and feature reduction percentages between the baseline
and RENT methods.

Dataset Baseline
MCC

RENT
MCC

% Change
in MCC

%
Reduction
in features

SD1 0.7077 0.7124 0.66% 82%

SD2 0.2531 0.2757 8.20% 87%

SD3 0.5492 0.6570 16.41% 99.30%

MNIST 0.9059 0.8800 -2.94% 66.45%

Glass 0.4396 0.4155 -5.80% 60%

ISOLET 0.9513 0.9494 -0.20% 39.22%

This is explored further in Tables 7.2 and 7.3.

The low performance on the SD2 dataset is also apparent on the confusion matrix
in Figure 6.1b. There are no true positives for class 5, and many of the samples in
the test set have been labelled incorrectly as the class 2, 7, 8 or 9. The confusion
matrix for the glass dataset in Figure 6.1e also paints an interesting picture. None
of the samples for class 2 were predicted correctly, and classes 3 and 4 only had one
correct prediction. Given the higher number of samples for the rest of the classes,
this is a good indicator of a model being biased towards the majority class.

7.2 Comparisons to Other Methods

Evaluating the performance metrics of multiclass RENT compared to the remain-
ing feature selection techniques from Table 6.4, RENT shares the best performance
in three of the six datasets and ties with the rest.

RENT draws with Fisher’s score, recursive feature elimination, and random forest
classifier in the SD1 dataset. RENT also draws with Fisher’s score and random
forest classifier selectors for dataset SD3, while it ties to the Fisher’s score selector
in the glass dataset. It is worth noting that these datasets have relatively fewer
classes and features than the rest, which could account for the observed outcomes.

RENT is the best-performing feature selection technique in datasets SD2, MNIST,
and ISOLET. All three are datasets with a higher number of classes and features
compared to the rest.
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Looking at Table 6.5, RENT is shown to take significantly longer to select features
compared to the rest of the techniques. This can be attributed to the larger
number of model that RENT trains. For each regularization strength and L1 ratio
provided as hyperparameters, K models are trained. For each dataset, the number
of trained models is multiplied by the number of classes due to the implementation
of the one-vs-rest technique.

It is worth noting that the feature selection process is a one-time investment and
depending on the application a longer computation may not be critical. The
number of models trained in RENT can be controlled through the elastic net search
space and the K hyperparameter. While the performance difference between the
features selected by RENT and the other techniques might not be significant,
the three thresholds t1, t2, and t3 could be fine-tuned to achieve to get higher
performance.

7.3 Runtimes Reductions

Table 7.2 shows a notable decrease in the model training times across all datasets
as a result of the feature selection process. The datasets SD1 and glass exhibit
the most modest runtime gains, which can be attributed to their relatively small
number of features and samples compared to the other datasets. The RENT and
ISOLET datasets see a 66.45% and 39.22% reduction in runtime respectively.

Table 7.2: Comparison of training runtimes between the full feature set and selected
feature subset.

Dataset
Baseline
training

runtime (sec)

Final
training

runtime (sec)
% reduction

SD1 0.021 0.019 9.52%

SD2 0.633 0.02 96.84%

SD3 0.22 0.01 95.45%

MNIST 9.24 4.02 56.49%

Glass 0.015 0.011 26.67%

ISOLET 4.25 2.78 34.59%

Table 7.3 shows the decrease in the model inference times across all datasets.
All datasets except glass show a modest reduction in inference time. The low
reduction for the glass dataset could be attributed to its already minuscule dataset
size compared to the rest.
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Table 7.3: Comparison of inference runtimes between the full feature set and selected
feature subset.

Dataset
Baseline
inference

runtime (ms)

Final
inference

runtime (ms)
% reduction

SD1 0.105 0.0681 35.14%

SD2 0.2499 0.0824 67.03%

SD3 0.2544 0.0572 77.52%

MNIST 14.6104 6.109 58.19%

Glass 0.0476 0.0474 0.42%

ISOLET 1.3833 0.9123 34.05%

This highlights another advantage of using feature selection techniques - a reduc-
tion in runtime on real-world datasets with similar performance to the full feature
set. A reduction in features also comes with a potential increase in interpretability.
This serves as a compelling reason to use RENT in scenarios where costs are a con-
cern. Applications that require frequent model re-training and serve a high volume
inference traffic would benefit from feature selection. One would need to take into
account data drifting, which would require re-running the feature selection process
at regular intervals.

7.4 Selected Features

Table 6.7 portrays the features selected by each method examined in this study
for four datasets. Analyzing dataset SD1, the sixth feature is not considered
important by any of the methods despite its inclusion in the informative feature
set. Furthermore, the ninth feature is excluded by four out of the five methods,
with the Gini score method being the sole exception. The Jaccard index plot in
Figure 6.2 also shows how the Gini score is the only method that has a different set
of selected features. Interestingly, all methods selected the eleventh feature even
though it is a redundant feature derived from the ten previous informative features.
One could speculate that the eleventh feature encapsulates information from the
sixth and ninth features, giving it higher importance than the individual features.
This is investigated by calculating the correlation between the informative and
derived features as shown in Figure 7.1.

It can be observed that both features eleven and twelve are highly correlated with
most of the informative features. However, there are no distinct relationships with
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Figure 7.1: Correlation plot of the informative and derived features from the SD1
dataset.

the sixth and ninth feature that could account for their absence from the selected
features list. If a high correlation was the factor the absence then feature ten
would be a prime candidate due to its high correlation with both features eleven
and twelve. However, that is not the case, hence the correlation test is inconclusive
in explaining the selected features.

In the case of dataset SD2, four of the five methods accurately selected all ten
informative features, with the Gini method failing to select the eighth feature.
The Gini score method, again, is the only method with a different set of features
selected as evidenced by the Jaccard index plot in Figure 6.3. Notably, all methods
also selected the two derived features, eleven and twelve. All methods also selected
features containing random noise. Removing those features could improve system
performance.

For the SD3 dataset, RENT, Fisher’s score, and random forest classifier techniques
selected the same set of features as seen in Figure 6.4. Informative features six
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to nine were not selected by any method. Four out of the five methods did how-
ever select the derived feature eleven. The Gini and recursive feature elimination
methods each selected two random noise features. The number of features to be
returned by those techniques were set to the same number of features selected by
RENT. Fine-tuning this number could have prevented the selection of the noise.
In real-world applications, noise in the data could go unnoticed when proper ana-
lysis (like the correlation test) is not done. One would also not be aware of the
proper number of features to be selected. In such circumstances, RENT offers an
advantage as it does not require user-defined feature counts.

The Jaccard index shows that, for the MNIST and ISOLET datasets, none of the
methods agreed on the feature sets to select, as seen in Figures 6.5 and 6.7. These
two are also the only datasets where the RENT method disagrees with the Fisher’s
score method on the selected feature subsets. For the MNIST dataset, the RENT
selected features are more similar to the features selected by the random forest
classifier method, and for the ISOLET dataset, the feature are similar to the ones
from recursive feature elimination. For the glass dataset, both RENT and Fisher’s
score methods agree on the selected feature subset. All other techniques selected
a unique subset and showed a decline in their final performance, as seen in Table
6.4.

The difference in performance from the selected feature subsets across all datasets
and techniques were not significantly different and a low Jaccard index for the
MNIST, glass and ISOLET datasets indicate that the features might be correlated.

The selected features for the MNIST dataset have been visualized in the form of
an image in Figure 7.2. The 784-dimensional feature set is reshaped back to a
28x28 image. The white pixels indicate the selected features.

Considering that the MNIST dataset consists of images of handwritten digits, the
features selected by the Fisher and random forest classifier methods appear to
describe the region where the digit is likely to be present, towards the center.
The overall circular shape is suggestive of the number zero. In contrast, features
selected by the RENT, Gini score, and recursive feature elimination methods are
spread throughout the image. This is further investigated by studying regions in
MNIST data where the digits are present.

Figure 7.3 is an image created by coalescing all MNIST training data. As expected,
it reveals a high concentration of pixels around the center of the image, signify-
ing that most digits have pixels clustered around this region. This image aligns
with the features selected by the Fisher and random forest classifier methods. To
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Figure 7.2: MNIST features selected by all techniques visualized as 28x28 pixel images.

understand the features selected by the remaining methods, one can examine the
binarized version of this image.

In Figure 7.4, the pixels from Figure 7.3 are set to a value of one if their ori-
ginal value is greater than zero. This shows that, across all the training data in
the MNIST dataset, the digits fall under the yellow region, which is much lar-
ger than the region visible in Figure 7.3. The RENT, Gini score, and recursive
feature elimination methods selected the features along the edges. Since RENT
exhibits a higher test performance than Fisher’s score or random forest classifier
methods, this could indicate information in the outer regions that are relevant for
classification, overlooked by the two techniques. This can be investigated further
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Figure 7.3: Composite image of all MNIST training data.

MNIST - Binarized

Figure 7.4: Binarized composite image of all MNIST training data.

by subtracting the feature map from the RENT method from each of the other
methods yielding results shown in Figure 7.5.

Figure 7.5 visualizes the features that were selected by RENT but not by the other
four techniques. It was obtained through a set difference of the selected features
by RENT with the other methods. With the recursive feature elimination, as was
apparent from Figure 7.2, there are regions around the center of the image that
it fails to capture. And compared to the rest of the techniques, RENT captures
regions that extend out further from the center, aligning with our assumptions.
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Figure 7.5: Comparison of features selected by RENT with other methods.
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Chapter 8

Conclusion

This study successfully modified the RENT algorithm to support multiclass clas-
sification problems, expanding its applications to more diverse and complex scen-
arios. The modifications were rigorously tested on a variety of datasets and bench-
marked against several established feature selection techniques providing valuable
insights into its performance and potential areas of improvement.

While RENT demonstrated a higher performance in certain datasets, particularly
those featuring a relatively high number of classes, it only sometimes outperformed
other feature selection techniques or the baseline across all datasets. Regardless,
even in cases where RENT’s performance was not clearly superior, the algorithm
significantly reduced the number of features and the overall runtime. This study
demonstrated its potential as a valuable tool in the feature selection domain.

The insights gained from this study contribute to our understanding of the RENT
algorithm’s strength and limitations and serve as a platform for future research to
enhance its performance and applications across a broader spectrum of real-world
classification problems.
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Chapter 9

Future Work

In light of the findings from this study, there are some areas for future research.
Our analysis revealed that RENT performs well, particularly on datasets with a
high number of classes. It would be beneficial to explore further the underlying
factors contributing to this phenomenon and determine potential improvements
to the RENT algorithm that capitalize on its strengths. Also, the current RENT
implementation requires the user to select the three t thresholds manually. Future
work could automate this process by exhaustively examining all possible values for
each t threshold and selecting the optimal values based on the model performance.
This would streamline the application of RENT and also enable more efficient
and accurate feature selection, further supporting its application in real-world
scenarios. Nested k-fold cross-validation is another avenue of research. Running
the feature selection process multiple times on different folds of the data increases
the time and cost complexity, but it would give us another indicator of the stability
of the selected features and model performance.
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Appendix A

Features Selected for the MNIST
and ISOLET datasets

A.1 MNIST

A.1.1 MNIST with RENT

67, 68, 69, 70, 71, 95, 96, 98, 100, 101, 102, 103, 104, 105, 122, 124, 125, 126, 127,
128, 129, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 163, 164, 175, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 206, 208, 209,
211, 212, 213, 214, 219, 220, 222, 230, 232, 235, 236, 239, 240, 241, 244, 245, 246,
249, 264, 267, 268, 269, 270, 271, 273, 274, 278, 285, 290, 291, 292, 295, 296, 297,
298, 299, 300, 301, 306, 312, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327,
328, 329, 330, 332, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355,
356, 358, 359, 360, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 387, 401,
402, 403, 404, 406, 407, 408, 409, 410, 415, 416, 428, 429, 430, 431, 432, 434, 435,
436, 437, 438, 439, 440, 441, 442, 456, 457, 460, 461, 462, 463, 464, 465, 467, 469,
483, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 513, 514, 515, 516, 517,
518, 519, 522, 523, 526, 536, 538, 539, 540, 541, 542, 543, 544, 550, 551, 552, 557,
567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 584, 594,
596, 597, 598, 599, 601, 602, 603, 605, 609, 612, 626, 627, 628, 629, 630, 656, 657,
658, 659, 661, 682, 683, 708, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721,
737, 741, 742, 743, 744, 745
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A.1.2 MNIST with Fisher’s score

99, 100, 101, 102, 103, 104, 124, 125, 126, 127, 128, 129, 130, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
211, 212, 213, 216, 236, 237, 238, 240, 241, 244, 245, 246, 262, 263, 264, 265, 266,
268, 269, 270, 271, 272, 273, 274, 275, 289, 290, 291, 292, 293, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304, 317, 318, 319, 320, 321, 323, 324, 325, 326, 327, 328,
329, 330, 331, 332, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356,
357, 358, 359, 360, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 385,
386, 387, 388, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 413,
414, 415, 416, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440,
441, 442, 443, 444, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466,
468, 469, 470, 471, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 496,
497, 498, 499, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 523, 524, 525,
526, 538, 539, 540, 541, 542, 543, 544, 545, 546, 550, 551, 552, 553, 566, 567, 568,
569, 570, 571, 572, 573, 574, 577, 578, 579, 580, 581, 595, 596, 597, 598, 599, 600,
606, 624, 625, 626, 627, 628, 629, 630, 631, 632, 654, 655, 656, 657, 658, 659, 685,
711, 712, 713, 714, 715, 740, 741, 742

A.1.3 MNIST with Gini score

96, 99, 102, 103, 104, 123, 124, 126, 127, 131, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 162, 165, 175, 179, 180, 181, 183, 184, 185, 186, 187, 189, 190,
191, 192, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 238,
239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 261, 262, 263, 265, 266, 267, 268,
269, 271, 272, 273, 274, 275, 276, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300,
301, 302, 303, 316, 317, 318, 319, 320, 321, 322, 323, 325, 326, 327, 328, 329, 330,
331, 343, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 371,
372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 387, 388, 398,
401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 415, 426, 428, 429, 430, 431,
433, 435, 436, 437, 438, 439, 440, 441, 442, 443, 456, 459, 460, 461, 462, 463, 464,
466, 467, 468, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 497, 498, 511,
513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 540, 542, 543, 544, 545, 546,
547, 550, 551, 555, 556, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577,
579, 581, 582, 583, 598, 599, 601, 602, 603, 604, 605, 606, 607, 609, 610, 613, 624,
625, 626, 627, 628, 629, 630, 631, 633, 634, 651, 653, 656, 657, 658, 659, 660, 661,
663, 681, 682, 685, 687, 688, 712, 714
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A.1.4 MNIST with RFE

68, 71, 73, 74, 98, 99, 100, 104, 106, 121, 123, 125, 126, 127, 128, 131, 132, 147,
149, 150, 151, 154, 155, 159, 161, 164, 165, 178, 179, 182, 184, 186, 187, 192, 193,
194, 201, 207, 209, 213, 217, 230, 232, 234, 235, 239, 241, 242, 243, 244, 246, 248,
249, 258, 259, 262, 266, 267, 269, 271, 272, 274, 275, 277, 278, 286, 290, 292, 294,
295, 297, 298, 300, 301, 305, 306, 312, 313, 317, 318, 319, 321, 324, 325, 327, 328,
330, 331, 332, 333, 341, 343, 345, 346, 347, 353, 354, 357, 358, 359, 360, 361, 370,
371, 372, 375, 376, 377, 378, 379, 380, 381, 382, 384, 385, 386, 387, 388, 390, 398,
401, 403, 404, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 418, 425, 426,
427, 430, 432, 435, 438, 440, 441, 442, 443, 444, 445, 453, 454, 455, 456, 457, 458,
460, 461, 462, 464, 469, 470, 471, 473, 474, 482, 483, 485, 487, 488, 489, 490, 492,
495, 496, 497, 498, 499, 500, 502, 509, 510, 511, 512, 513, 515, 518, 521, 522, 523,
525, 526, 527, 528, 529, 530, 537, 539, 540, 542, 543, 545, 549, 550, 551, 553, 554,
556, 564, 565, 566, 568, 569, 571, 572, 573, 575, 577, 578, 579, 580, 581, 585, 594,
597, 600, 602, 605, 606, 610, 611, 612, 613, 621, 623, 624, 625, 628, 629, 631, 632,
633, 638, 640, 652, 653, 654, 655, 656, 659, 666, 684, 685, 687, 688, 710, 712, 713,
717, 718, 719, 743, 744, 746, 749

A.1.5 MNIST with RFC

100, 101, 102, 103, 125, 126, 127, 128, 129, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 216, 217, 218, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 317,
318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 344, 345, 346,
347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 372, 373, 374, 375,
376, 377, 378, 379, 380, 381, 382, 383, 384, 386, 387, 400, 401, 402, 403, 404, 405,
406, 407, 408, 409, 410, 411, 412, 414, 415, 428, 429, 430, 431, 432, 433, 434, 435,
436, 437, 438, 439, 440, 441, 442, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464,
465, 466, 467, 468, 469, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
495, 496, 497, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524,
525, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 567, 568,
569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 596, 597, 598, 599,
600, 601, 602, 603, 604, 606, 607, 624, 625, 626, 627, 628, 629, 630, 631, 632, 654,
655, 656, 657, 658, 659, 660, 661, 685
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A.2 ISOLET

A.2.1 ISOLET with RENT

1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 15, 16, 17, 18, 19, 21, 34, 38, 45, 46, 48, 51, 53, 61,
65, 66, 67, 68, 69, 70, 73, 76, 78, 82, 84, 85, 98, 99, 100, 101, 102, 104, 105, 106,
107, 115, 116, 118, 129, 130, 131, 132, 133, 134, 136, 138, 139, 142, 143, 144, 145,
146, 147, 151, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 177, 178,
179, 180, 181, 182, 183, 184, 186, 187, 189, 191, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 208, 209, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 221, 222, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 237, 238, 239, 240,
241, 242, 243, 244, 249, 250, 252, 253, 255, 258, 259, 260, 261, 262, 263, 264, 265,
266, 267, 268, 273, 275, 276, 277, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304, 308, 309, 310, 312, 320, 321, 322, 324, 325, 327, 328,
329, 330, 331, 332, 333, 334, 335, 336, 337, 342, 343, 344, 352, 360, 361, 362, 363,
364, 367, 368, 372, 373, 376, 381, 383, 384, 385, 387, 388, 389, 390, 391, 394, 395,
396, 397, 398, 399, 400, 408, 411, 412, 413, 414, 416, 417, 418, 419, 420, 421, 422,
423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440,
441, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 461, 462,
463, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 485, 486, 487, 488, 489,
490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 505, 508, 510,
511, 512, 513, 514, 515, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 530, 531,
533, 537, 538, 539, 540, 541, 545, 546, 548, 549, 551, 552, 553, 554, 555, 556, 557,
558, 559, 560, 562, 565, 566, 567, 569, 572, 574, 576, 577, 578, 579, 581, 582, 583,
584, 585, 587, 588, 590, 591, 592, 595, 596, 597, 598, 599, 600, 601, 602, 604, 606,
607, 608, 609, 610, 611, 612, 614, 616

A.2.2 ISOLET with Fisher’s score

2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 66,
67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 87, 88, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 122, 123,
124, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 162, 163, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 211, 212,
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213, 214, 215, 216, 217, 218, 219, 220, 221, 226, 227, 229, 230, 231, 232, 233, 234,
235, 236, 258, 259, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 276,
290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 309, 310, 311, 312,
313, 332, 333, 356, 357, 358, 359, 360, 361, 362, 363, 371, 372, 373, 380, 381, 382,
383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 409, 410,
411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
433, 436, 440, 441, 442, 443, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480,
481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 505, 508, 509,
510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550,
551, 552, 553, 554, 555, 556, 557, 558, 566, 567, 568, 569, 570, 571, 572, 573, 574,
575, 576, 579, 581, 584, 585, 586, 587, 588, 589, 590, 591, 592, 596, 610, 614, 615,
616, 617

A.2.3 ISOLET with Gini score

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 29, 33, 34, 35, 36,
39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 91, 95, 97,
98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 116, 117, 118,
119, 120, 122, 124, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 150, 154, 155, 157, 160, 164, 166, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188,
189, 190, 193, 195, 198, 199, 200, 201, 203, 204, 205, 207, 209, 212, 213, 214, 216,
217, 220, 221, 222, 225, 228, 229, 231, 234, 237, 238, 239, 241, 242, 243, 244, 246,
247, 248, 252, 253, 254, 255, 257, 260, 263, 264, 265, 268, 271, 272, 275, 276, 277,
278, 285, 286, 290, 293, 294, 297, 298, 306, 308, 310, 311, 312, 315, 319, 320, 321,
323, 326, 329, 330, 331, 332, 333, 334, 335, 337, 339, 340, 345, 347, 348, 350, 352,
357, 360, 361, 362, 363, 364, 365, 367, 372, 374, 376, 377, 380, 383, 385, 386, 387,
389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 402, 404, 407, 410, 411, 412,
416, 417, 418, 422, 424, 425, 426, 427, 431, 432, 433, 434, 436, 438, 439, 442, 443,
449, 455, 456, 457, 458, 460, 461, 464, 465, 466, 467, 469, 470, 472, 474, 475, 476,
479, 480, 481, 484, 485, 486, 487, 488, 489, 491, 492, 493, 494, 495, 496, 497, 498,
499, 500, 502, 503, 504, 505, 506, 510, 512, 515, 516, 518, 519, 520, 522, 523, 527,
528, 529, 534, 535, 537, 538, 540, 542, 543, 545, 547, 548, 549, 550, 552, 553, 554,
555, 557, 558, 560, 561, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 581, 582,
584, 586, 587, 588, 589, 591, 593, 594, 596, 599, 603, 607, 610, 611, 612, 613, 616,
617
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A.2.4 ISOLET with RFE

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 29, 33, 34, 35, 36,
39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 91, 95, 97,
98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 116, 117, 118,
119, 120, 122, 124, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 150, 154, 155, 157, 160, 164, 166, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188,
189, 190, 193, 195, 198, 199, 200, 201, 203, 204, 205, 207, 209, 212, 213, 214, 216,
217, 220, 221, 222, 225, 228, 229, 231, 234, 237, 238, 239, 241, 242, 243, 244, 246,
247, 248, 252, 253, 254, 255, 257, 260, 263, 264, 265, 268, 271, 272, 275, 276, 277,
278, 285, 286, 290, 293, 294, 297, 298, 306, 308, 310, 311, 312, 315, 319, 320, 321,
323, 326, 329, 330, 331, 332, 333, 334, 335, 337, 339, 340, 345, 347, 348, 350, 352,
357, 360, 361, 362, 363, 364, 365, 367, 372, 374, 376, 377, 380, 383, 385, 386, 387,
389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 402, 404, 407, 410, 411, 412,
416, 417, 418, 422, 424, 425, 426, 427, 431, 432, 433, 434, 436, 438, 439, 442, 443,
449, 455, 456, 457, 458, 460, 461, 464, 465, 466, 467, 469, 470, 472, 474, 475, 476,
479, 480, 481, 484, 485, 486, 487, 488, 489, 491, 492, 493, 494, 495, 496, 497, 498,
499, 500, 502, 503, 504, 505, 506, 510, 512, 515, 516, 518, 519, 520, 522, 523, 527,
528, 529, 534, 535, 537, 538, 540, 542, 543, 545, 547, 548, 549, 550, 552, 553, 554,
555, 557, 558, 560, 561, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 581, 582,
584, 586, 587, 588, 589, 591, 593, 594, 596, 599, 603, 607, 610, 611, 612, 613, 616,
617

A.2.5 ISOLET with RFC

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 227, 228, 232, 233, 234, 235, 239, 240,
241, 259, 260, 262, 264, 265, 266, 267, 268, 271, 272, 273, 291, 292, 294, 295, 296,
297, 298, 299, 300, 301, 302, 303, 304, 321, 322, 323, 324, 325, 326, 327, 328, 329,
330, 331, 332, 333, 334, 335, 343, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 364, 365, 368, 371, 372, 373, 377, 378, 379, 380, 381, 382, 383,
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384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 410, 411,
412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 428, 429, 430,
433, 434, 436, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460,
461, 462, 463, 464, 465, 466, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483,
484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 503, 505, 506, 508,
509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525,
526, 527, 528, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 566, 567, 568, 569, 570,
571, 572, 574, 575, 577, 581, 582, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594,
595, 596, 597, 598, 599
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Appendix B

Class distribution of datasets

This section shows the class distribution of all the datasets used in this study.

Table B.1: SD1 dataset class distribution.

Class Percentage

1 33.35%

2 33.20%

3 33.45%

Table B.2: SD2 dataset class distribution.

Class Percentage

1 10.05%

2 10.05%

3 10.00%

4 10.05%

5 9.85%

6 10.00%

7 10.05%

8 9.90%

9 10.05%

10 10.00%
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Table B.3: SD3 dataset class distribution.

Class Percentage

1 33.2%

2 33.6%

3 33.2%

Table B.4: MNIST dataset class distribution.

Class Percentage

1 9.86 %

2 11.25 %

3 9.98 %

4 10.20 %

5 9.74 %

6 9.01 %

7 9.82 %

8 10.41 %

9 9.75 %

10 9.94 %

Table B.5: Glass dataset class distribution.

Class Percentage

1 32.71%

2 35.51%

3 7.94%

5 6.07%

6 4.20%

7 13.55%
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Table B.6: ISOLET dataset class distribution.

Class Percentage

1 3.84%

2 3.84%

3 3.84%

4 3.84%

5 3.84%

6 3.82%

7 3.84%

8 3.84%

9 3.84%

10 3.84%

11 3.84%

12 3.84%

13 3.83%

14 3.84%

15 3.84%

16 3.84%

17 3.84%

18 3.84%

19 3.84%

20 3.84%

21 3.84%

22 3.84%

23 3.84%

24 3.84%

25 3.84%

26 3.84%
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Appendix C

Confusion Matrix

This section contains the confusion matrix not included in section 6.4
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0 1 2
0

1
2

180 18 31

6 187 23

24 27 164

(a) SD1 dataset with all features.

0 1 2

0
1

2

180 18 31

3 186 27

41 29 145

(b) SD1 dataset with Fisher’s score
method.

0 1 2

0
1

2

169 19 41

8 179 29

30 27 158

(c) SD1 dataset with Gini score
method.

0 1 2

0
1

2

180 18 31

3 186 27

41 29 145

(d) SD1 dataset with RFE method.

0 1 2

0
1

2

180 18 31

3 186 27

41 29 145

(e) SD1 dataset with RFC method.

Figure C.1: Confusion matrix for the SD1 dataset
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0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

31 2 2 5 4 1 1 10 3 1

2 26 1 8 10 1 7 4 10 2

6 6 18 5 11 1 1 2 8 15

0 7 14 24 4 6 2 9 4 3

6 4 1 9 26 4 5 4 1 3

10 9 8 7 3 4 4 7 3 7

5 1 4 4 5 5 16 4 14 11

12 7 4 6 3 1 4 22 2 2

0 6 0 4 4 1 4 3 31 9

3 3 17 4 2 4 7 3 3 18

(a) SD2 dataset with all features.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

31 1 1 1 12 0 1 8 3 2

1 20 2 8 13 0 6 4 12 5

6 9 21 5 4 0 0 4 9 15

1 6 8 31 2 1 4 10 4 6

4 4 0 11 27 2 5 4 3 3

9 10 7 9 5 1 4 7 4 6

4 2 7 4 5 3 21 1 12 10

11 4 3 5 5 2 3 23 4 3

0 6 4 4 1 0 7 1 36 3

10 3 7 5 0 1 5 1 4 28

(b) SD2 dataset with Fisher’s score
method.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

32 1 0 1 12 0 1 9 3 1

1 19 2 8 14 0 6 3 13 5

8 8 22 4 4 1 0 4 8 14

1 7 8 28 2 1 2 12 5 7

5 5 0 11 28 0 3 5 4 2

9 7 7 10 6 2 3 7 5 6

3 3 6 4 5 3 19 1 15 10

15 1 3 5 7 1 2 21 4 4

0 7 3 4 1 0 9 1 33 4

9 3 8 4 0 2 5 2 4 27

(c) SD2 dataset with Gini score method.
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(d) SD2 dataset with RFE method.
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(e) SD2 dataset with RFC method.

Figure C.2: Confusion matrix for the SD2 dataset
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(e) SD3 dataset with RFC method.

Figure C.3: Confusion matrix for the SD3 dataset
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(a) MNIST dataset with RENT method.
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(b) MNIST dataset with Fisher’s score
method.
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method.
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(d) MNIST dataset with RFE method.
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(e) MNIST dataset with RFC method.

Figure C.4: Confusion matrix for the MNIST dataset

95



0 1 2 3 4 5
0

1
2

3
4

5

12 11 0 0 0 0

5 18 0 0 2 0

1 5 0 0 0 0

0 3 0 1 0 0

0 1 0 0 1 1

0 1 0 0 0 9

(a) glass dataset with RENT method.
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(b) glass dataset with Fisher’s score
method.
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(c) glass dataset with Gini score
method.

0 1 2 3 4 5

0
1

2
3

4
5

13 10 0 0 0 0

6 16 0 0 1 2

1 5 0 0 0 0

0 3 0 1 0 0

0 1 0 0 1 1

0 1 0 0 0 9

(d) glass dataset with RFE method.
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(e) glass dataset with RFC method.

Figure C.5: Confusion matrix for the glass dataset
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(a) ISOLET dataset with RENT method.
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(b) ISOLET dataset with Fisher’s score method.
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(c) ISOLET dataset with Gini score method.
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(d) ISOLET dataset with RFE method.
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(e) ISOLET dataset with RFC method.

Figure C.6: Confusion matrix for the ISOLET dataset

99



100



  


	Preface
	Abstract

